llama-bench.cpp 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #include "ggml-cuda.h"
  24. #include "ggml-sycl.h"
  25. #ifdef GGML_USE_CANN
  26. #include "ggml-cann.h"
  27. #endif
  28. #ifdef _WIN32
  29. #define WIN32_LEAN_AND_MEAN
  30. #ifndef NOMINMAX
  31. # define NOMINMAX
  32. #endif
  33. #include <windows.h>
  34. #endif
  35. // utils
  36. static uint64_t get_time_ns() {
  37. using clock = std::chrono::high_resolution_clock;
  38. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  39. }
  40. template<class T>
  41. static std::string join(const std::vector<T> & values, const std::string & delim) {
  42. std::ostringstream str;
  43. for (size_t i = 0; i < values.size(); i++) {
  44. str << values[i];
  45. if (i < values.size() - 1) {
  46. str << delim;
  47. }
  48. }
  49. return str.str();
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. fclose(f);
  98. }
  99. #elif defined(_WIN32)
  100. HKEY hKey;
  101. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  102. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  103. 0,
  104. KEY_READ,
  105. &hKey) != ERROR_SUCCESS) {
  106. // fail to open registry key
  107. return "";
  108. }
  109. char cpu_brand[256];
  110. DWORD cpu_brand_size = sizeof(cpu_brand);
  111. if (RegQueryValueExA(hKey,
  112. TEXT("ProcessorNameString"),
  113. NULL,
  114. NULL,
  115. (LPBYTE)cpu_brand,
  116. &cpu_brand_size) == ERROR_SUCCESS) {
  117. id.assign(cpu_brand, cpu_brand_size);
  118. }
  119. RegCloseKey(hKey);
  120. #endif
  121. // TODO: other platforms
  122. return id;
  123. }
  124. static std::string get_gpu_info() {
  125. std::string id;
  126. #ifdef GGML_USE_CUDA
  127. int count = ggml_backend_cuda_get_device_count();
  128. for (int i = 0; i < count; i++) {
  129. char buf[128];
  130. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  131. id += buf;
  132. if (i < count - 1) {
  133. id += "/";
  134. }
  135. }
  136. #endif
  137. #ifdef GGML_USE_SYCL
  138. int count = ggml_backend_sycl_get_device_count();
  139. for (int i = 0; i < count; i++) {
  140. char buf[128];
  141. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  142. id += buf;
  143. if (i < count - 1) {
  144. id += "/";
  145. }
  146. }
  147. #endif
  148. #ifdef GGML_USE_CANN
  149. uint32_t count = ggml_backend_cann_get_device_count();
  150. for (uint32_t i = 0; i < count; i++) {
  151. char buf[128];
  152. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  153. id += buf;
  154. if (i < count - 1) {
  155. id += "/";
  156. }
  157. }
  158. #endif
  159. // TODO: other backends
  160. return id;
  161. }
  162. // command line params
  163. enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
  164. static const char * output_format_str(output_formats format) {
  165. switch (format) {
  166. case NONE: return "none";
  167. case CSV: return "csv";
  168. case JSON: return "json";
  169. case JSONL: return "jsonl";
  170. case MARKDOWN: return "md";
  171. case SQL: return "sql";
  172. default: GGML_ABORT("invalid output format");
  173. }
  174. }
  175. static bool output_format_from_str(const std::string & s, output_formats & format) {
  176. if (s == "none") {
  177. format = NONE;
  178. } else if (s == "csv") {
  179. format = CSV;
  180. } else if (s == "json") {
  181. format = JSON;
  182. } else if (s == "jsonl") {
  183. format = JSONL;
  184. } else if (s == "md") {
  185. format = MARKDOWN;
  186. } else if (s == "sql") {
  187. format = SQL;
  188. } else {
  189. return false;
  190. }
  191. return true;
  192. }
  193. static const char * split_mode_str(llama_split_mode mode) {
  194. switch (mode) {
  195. case LLAMA_SPLIT_MODE_NONE: return "none";
  196. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  197. case LLAMA_SPLIT_MODE_ROW: return "row";
  198. default: GGML_ABORT("invalid split mode");
  199. }
  200. }
  201. static std::string pair_str(const std::pair<int, int> & p) {
  202. static char buf[32];
  203. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  204. return buf;
  205. }
  206. struct cmd_params {
  207. std::vector<std::string> model;
  208. std::vector<int> n_prompt;
  209. std::vector<int> n_gen;
  210. std::vector<std::pair<int, int>> n_pg;
  211. std::vector<int> n_batch;
  212. std::vector<int> n_ubatch;
  213. std::vector<ggml_type> type_k;
  214. std::vector<ggml_type> type_v;
  215. std::vector<int> n_threads;
  216. std::vector<std::string> cpu_mask;
  217. std::vector<bool> cpu_strict;
  218. std::vector<int> poll;
  219. std::vector<int> n_gpu_layers;
  220. std::vector<std::string> rpc_servers;
  221. std::vector<llama_split_mode> split_mode;
  222. std::vector<int> main_gpu;
  223. std::vector<bool> no_kv_offload;
  224. std::vector<bool> flash_attn;
  225. std::vector<std::vector<float>> tensor_split;
  226. std::vector<bool> use_mmap;
  227. std::vector<bool> embeddings;
  228. ggml_numa_strategy numa;
  229. int reps;
  230. ggml_sched_priority prio;
  231. int delay;
  232. bool verbose;
  233. output_formats output_format;
  234. output_formats output_format_stderr;
  235. };
  236. static const cmd_params cmd_params_defaults = {
  237. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  238. /* n_prompt */ {512},
  239. /* n_gen */ {128},
  240. /* n_pg */ {},
  241. /* n_batch */ {2048},
  242. /* n_ubatch */ {512},
  243. /* type_k */ {GGML_TYPE_F16},
  244. /* type_v */ {GGML_TYPE_F16},
  245. /* n_threads */ {cpu_get_num_math()},
  246. /* cpu_mask */ {"0x0"},
  247. /* cpu_strict */ {false},
  248. /* poll */ {50},
  249. /* n_gpu_layers */ {99},
  250. /* rpc_servers */ {""},
  251. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  252. /* main_gpu */ {0},
  253. /* no_kv_offload */ {false},
  254. /* flash_attn */ {false},
  255. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  256. /* use_mmap */ {true},
  257. /* embeddings */ {false},
  258. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  259. /* reps */ 5,
  260. /* prio */ GGML_SCHED_PRIO_NORMAL,
  261. /* delay */ 0,
  262. /* verbose */ false,
  263. /* output_format */ MARKDOWN,
  264. /* output_format_stderr */ NONE,
  265. };
  266. static void print_usage(int /* argc */, char ** argv) {
  267. printf("usage: %s [options]\n", argv[0]);
  268. printf("\n");
  269. printf("options:\n");
  270. printf(" -h, --help\n");
  271. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  272. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  273. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  274. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  275. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  276. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  277. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  278. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  279. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  280. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  281. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  282. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  283. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  284. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  285. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  286. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  287. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  288. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  289. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  290. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  291. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  292. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  293. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  294. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  295. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  296. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  297. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  298. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  299. printf("\n");
  300. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  301. }
  302. static ggml_type ggml_type_from_name(const std::string & s) {
  303. if (s == "f16") {
  304. return GGML_TYPE_F16;
  305. }
  306. if (s == "q8_0") {
  307. return GGML_TYPE_Q8_0;
  308. }
  309. if (s == "q4_0") {
  310. return GGML_TYPE_Q4_0;
  311. }
  312. if (s == "q4_1") {
  313. return GGML_TYPE_Q4_1;
  314. }
  315. if (s == "q5_0") {
  316. return GGML_TYPE_Q5_0;
  317. }
  318. if (s == "q5_1") {
  319. return GGML_TYPE_Q5_1;
  320. }
  321. if (s == "iq4_nl") {
  322. return GGML_TYPE_IQ4_NL;
  323. }
  324. return GGML_TYPE_COUNT;
  325. }
  326. static cmd_params parse_cmd_params(int argc, char ** argv) {
  327. cmd_params params;
  328. std::string arg;
  329. bool invalid_param = false;
  330. const std::string arg_prefix = "--";
  331. const char split_delim = ',';
  332. params.verbose = cmd_params_defaults.verbose;
  333. params.output_format = cmd_params_defaults.output_format;
  334. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  335. params.reps = cmd_params_defaults.reps;
  336. params.numa = cmd_params_defaults.numa;
  337. params.prio = cmd_params_defaults.prio;
  338. params.delay = cmd_params_defaults.delay;
  339. for (int i = 1; i < argc; i++) {
  340. arg = argv[i];
  341. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  342. std::replace(arg.begin(), arg.end(), '_', '-');
  343. }
  344. if (arg == "-h" || arg == "--help") {
  345. print_usage(argc, argv);
  346. exit(0);
  347. } else if (arg == "-m" || arg == "--model") {
  348. if (++i >= argc) {
  349. invalid_param = true;
  350. break;
  351. }
  352. auto p = string_split<std::string>(argv[i], split_delim);
  353. params.model.insert(params.model.end(), p.begin(), p.end());
  354. } else if (arg == "-p" || arg == "--n-prompt") {
  355. if (++i >= argc) {
  356. invalid_param = true;
  357. break;
  358. }
  359. auto p = string_split<int>(argv[i], split_delim);
  360. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  361. } else if (arg == "-n" || arg == "--n-gen") {
  362. if (++i >= argc) {
  363. invalid_param = true;
  364. break;
  365. }
  366. auto p = string_split<int>(argv[i], split_delim);
  367. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  368. } else if (arg == "-pg") {
  369. if (++i >= argc) {
  370. invalid_param = true;
  371. break;
  372. }
  373. auto p = string_split<std::string>(argv[i], ',');
  374. if (p.size() != 2) {
  375. invalid_param = true;
  376. break;
  377. }
  378. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  379. } else if (arg == "-b" || arg == "--batch-size") {
  380. if (++i >= argc) {
  381. invalid_param = true;
  382. break;
  383. }
  384. auto p = string_split<int>(argv[i], split_delim);
  385. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  386. } else if (arg == "-ub" || arg == "--ubatch-size") {
  387. if (++i >= argc) {
  388. invalid_param = true;
  389. break;
  390. }
  391. auto p = string_split<int>(argv[i], split_delim);
  392. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  393. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  394. if (++i >= argc) {
  395. invalid_param = true;
  396. break;
  397. }
  398. auto p = string_split<std::string>(argv[i], split_delim);
  399. std::vector<ggml_type> types;
  400. for (const auto & t : p) {
  401. ggml_type gt = ggml_type_from_name(t);
  402. if (gt == GGML_TYPE_COUNT) {
  403. invalid_param = true;
  404. break;
  405. }
  406. types.push_back(gt);
  407. }
  408. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  409. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  410. if (++i >= argc) {
  411. invalid_param = true;
  412. break;
  413. }
  414. auto p = string_split<std::string>(argv[i], split_delim);
  415. std::vector<ggml_type> types;
  416. for (const auto & t : p) {
  417. ggml_type gt = ggml_type_from_name(t);
  418. if (gt == GGML_TYPE_COUNT) {
  419. invalid_param = true;
  420. break;
  421. }
  422. types.push_back(gt);
  423. }
  424. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  425. } else if (arg == "-t" || arg == "--threads") {
  426. if (++i >= argc) {
  427. invalid_param = true;
  428. break;
  429. }
  430. auto p = string_split<int>(argv[i], split_delim);
  431. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  432. } else if (arg == "-C" || arg == "--cpu-mask") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. auto p = string_split<std::string>(argv[i], split_delim);
  438. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  439. } else if (arg == "--cpu-strict") {
  440. if (++i >= argc) {
  441. invalid_param = true;
  442. break;
  443. }
  444. auto p = string_split<bool>(argv[i], split_delim);
  445. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  446. } else if (arg == "--poll") {
  447. if (++i >= argc) {
  448. invalid_param = true;
  449. break;
  450. }
  451. auto p = string_split<int>(argv[i], split_delim);
  452. params.poll.insert(params.poll.end(), p.begin(), p.end());
  453. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  454. if (++i >= argc) {
  455. invalid_param = true;
  456. break;
  457. }
  458. auto p = string_split<int>(argv[i], split_delim);
  459. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  460. } else if (arg == "-rpc" || arg == "--rpc") {
  461. if (++i >= argc) {
  462. invalid_param = true;
  463. break;
  464. }
  465. params.rpc_servers.push_back(argv[i]);
  466. } else if (arg == "-sm" || arg == "--split-mode") {
  467. if (++i >= argc) {
  468. invalid_param = true;
  469. break;
  470. }
  471. auto p = string_split<std::string>(argv[i], split_delim);
  472. std::vector<llama_split_mode> modes;
  473. for (const auto & m : p) {
  474. llama_split_mode mode;
  475. if (m == "none") {
  476. mode = LLAMA_SPLIT_MODE_NONE;
  477. } else if (m == "layer") {
  478. mode = LLAMA_SPLIT_MODE_LAYER;
  479. } else if (m == "row") {
  480. mode = LLAMA_SPLIT_MODE_ROW;
  481. } else {
  482. invalid_param = true;
  483. break;
  484. }
  485. modes.push_back(mode);
  486. }
  487. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  488. } else if (arg == "-mg" || arg == "--main-gpu") {
  489. if (++i >= argc) {
  490. invalid_param = true;
  491. break;
  492. }
  493. params.main_gpu = string_split<int>(argv[i], split_delim);
  494. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. break;
  498. }
  499. auto p = string_split<bool>(argv[i], split_delim);
  500. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  501. } else if (arg == "--numa") {
  502. if (++i >= argc) {
  503. invalid_param = true;
  504. break;
  505. } else {
  506. std::string value(argv[i]);
  507. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  508. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  509. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  510. else { invalid_param = true; break; }
  511. }
  512. } else if (arg == "-fa" || arg == "--flash-attn") {
  513. if (++i >= argc) {
  514. invalid_param = true;
  515. break;
  516. }
  517. auto p = string_split<bool>(argv[i], split_delim);
  518. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  519. } else if (arg == "-mmp" || arg == "--mmap") {
  520. if (++i >= argc) {
  521. invalid_param = true;
  522. break;
  523. }
  524. auto p = string_split<bool>(argv[i], split_delim);
  525. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  526. } else if (arg == "-embd" || arg == "--embeddings") {
  527. if (++i >= argc) {
  528. invalid_param = true;
  529. break;
  530. }
  531. auto p = string_split<bool>(argv[i], split_delim);
  532. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  533. } else if (arg == "-ts" || arg == "--tensor-split") {
  534. if (++i >= argc) {
  535. invalid_param = true;
  536. break;
  537. }
  538. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  539. // split string by ; and /
  540. const std::regex regex{R"([;/]+)"};
  541. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  542. std::vector<std::string> split_arg{it, {}};
  543. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  544. std::vector<float> tensor_split(llama_max_devices());
  545. for (size_t i = 0; i < llama_max_devices(); ++i) {
  546. if (i < split_arg.size()) {
  547. tensor_split[i] = std::stof(split_arg[i]);
  548. } else {
  549. tensor_split[i] = 0.0f;
  550. }
  551. }
  552. params.tensor_split.push_back(tensor_split);
  553. }
  554. } else if (arg == "-r" || arg == "--repetitions") {
  555. if (++i >= argc) {
  556. invalid_param = true;
  557. break;
  558. }
  559. params.reps = std::stoi(argv[i]);
  560. } else if (arg == "--prio") {
  561. if (++i >= argc) {
  562. invalid_param = true;
  563. break;
  564. }
  565. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  566. } else if (arg == "--delay") {
  567. if (++i >= argc) {
  568. invalid_param = true;
  569. break;
  570. }
  571. params.delay = std::stoi(argv[i]);
  572. } else if (arg == "-o" || arg == "--output") {
  573. if (++i >= argc) {
  574. invalid_param = true;
  575. break;
  576. }
  577. invalid_param = !output_format_from_str(argv[i], params.output_format);
  578. } else if (arg == "-oe" || arg == "--output-err") {
  579. if (++i >= argc) {
  580. invalid_param = true;
  581. break;
  582. }
  583. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  584. } else if (arg == "-v" || arg == "--verbose") {
  585. params.verbose = true;
  586. } else {
  587. invalid_param = true;
  588. break;
  589. }
  590. }
  591. if (invalid_param) {
  592. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  593. print_usage(argc, argv);
  594. exit(1);
  595. }
  596. // set defaults
  597. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  598. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  599. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  600. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  601. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  602. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  603. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  604. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  605. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  606. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  607. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  608. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  609. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  610. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  611. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  612. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  613. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  614. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  615. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  616. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  617. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  618. return params;
  619. }
  620. struct cmd_params_instance {
  621. std::string model;
  622. int n_prompt;
  623. int n_gen;
  624. int n_batch;
  625. int n_ubatch;
  626. ggml_type type_k;
  627. ggml_type type_v;
  628. int n_threads;
  629. std::string cpu_mask;
  630. bool cpu_strict;
  631. int poll;
  632. int n_gpu_layers;
  633. std::string rpc_servers;
  634. llama_split_mode split_mode;
  635. int main_gpu;
  636. bool no_kv_offload;
  637. bool flash_attn;
  638. std::vector<float> tensor_split;
  639. bool use_mmap;
  640. bool embeddings;
  641. llama_model_params to_llama_mparams() const {
  642. llama_model_params mparams = llama_model_default_params();
  643. mparams.n_gpu_layers = n_gpu_layers;
  644. if (!rpc_servers.empty()) {
  645. mparams.rpc_servers = rpc_servers.c_str();
  646. }
  647. mparams.split_mode = split_mode;
  648. mparams.main_gpu = main_gpu;
  649. mparams.tensor_split = tensor_split.data();
  650. mparams.use_mmap = use_mmap;
  651. return mparams;
  652. }
  653. bool equal_mparams(const cmd_params_instance & other) const {
  654. return model == other.model &&
  655. n_gpu_layers == other.n_gpu_layers &&
  656. rpc_servers == other.rpc_servers &&
  657. split_mode == other.split_mode &&
  658. main_gpu == other.main_gpu &&
  659. use_mmap == other.use_mmap &&
  660. tensor_split == other.tensor_split;
  661. }
  662. llama_context_params to_llama_cparams() const {
  663. llama_context_params cparams = llama_context_default_params();
  664. cparams.n_ctx = n_prompt + n_gen;
  665. cparams.n_batch = n_batch;
  666. cparams.n_ubatch = n_ubatch;
  667. cparams.type_k = type_k;
  668. cparams.type_v = type_v;
  669. cparams.offload_kqv = !no_kv_offload;
  670. cparams.flash_attn = flash_attn;
  671. cparams.embeddings = embeddings;
  672. return cparams;
  673. }
  674. };
  675. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  676. std::vector<cmd_params_instance> instances;
  677. // this ordering minimizes the number of times that each model needs to be reloaded
  678. for (const auto & m : params.model)
  679. for (const auto & nl : params.n_gpu_layers)
  680. for (const auto & rpc : params.rpc_servers)
  681. for (const auto & sm : params.split_mode)
  682. for (const auto & mg : params.main_gpu)
  683. for (const auto & ts : params.tensor_split)
  684. for (const auto & mmp : params.use_mmap)
  685. for (const auto & embd : params.embeddings)
  686. for (const auto & nb : params.n_batch)
  687. for (const auto & nub : params.n_ubatch)
  688. for (const auto & tk : params.type_k)
  689. for (const auto & tv : params.type_v)
  690. for (const auto & nkvo : params.no_kv_offload)
  691. for (const auto & fa : params.flash_attn)
  692. for (const auto & nt : params.n_threads)
  693. for (const auto & cm : params.cpu_mask)
  694. for (const auto & cs : params.cpu_strict)
  695. for (const auto & pl : params.poll) {
  696. for (const auto & n_prompt : params.n_prompt) {
  697. if (n_prompt == 0) {
  698. continue;
  699. }
  700. cmd_params_instance instance = {
  701. /* .model = */ m,
  702. /* .n_prompt = */ n_prompt,
  703. /* .n_gen = */ 0,
  704. /* .n_batch = */ nb,
  705. /* .n_ubatch = */ nub,
  706. /* .type_k = */ tk,
  707. /* .type_v = */ tv,
  708. /* .n_threads = */ nt,
  709. /* .cpu_mask = */ cm,
  710. /* .cpu_strict = */ cs,
  711. /* .poll = */ pl,
  712. /* .n_gpu_layers = */ nl,
  713. /* .rpc_servers = */ rpc,
  714. /* .split_mode = */ sm,
  715. /* .main_gpu = */ mg,
  716. /* .no_kv_offload= */ nkvo,
  717. /* .flash_attn = */ fa,
  718. /* .tensor_split = */ ts,
  719. /* .use_mmap = */ mmp,
  720. /* .embeddings = */ embd,
  721. };
  722. instances.push_back(instance);
  723. }
  724. for (const auto & n_gen : params.n_gen) {
  725. if (n_gen == 0) {
  726. continue;
  727. }
  728. cmd_params_instance instance = {
  729. /* .model = */ m,
  730. /* .n_prompt = */ 0,
  731. /* .n_gen = */ n_gen,
  732. /* .n_batch = */ nb,
  733. /* .n_ubatch = */ nub,
  734. /* .type_k = */ tk,
  735. /* .type_v = */ tv,
  736. /* .n_threads = */ nt,
  737. /* .cpu_mask = */ cm,
  738. /* .cpu_strict = */ cs,
  739. /* .poll = */ pl,
  740. /* .n_gpu_layers = */ nl,
  741. /* .rpc_servers = */ rpc,
  742. /* .split_mode = */ sm,
  743. /* .main_gpu = */ mg,
  744. /* .no_kv_offload= */ nkvo,
  745. /* .flash_attn = */ fa,
  746. /* .tensor_split = */ ts,
  747. /* .use_mmap = */ mmp,
  748. /* .embeddings = */ embd,
  749. };
  750. instances.push_back(instance);
  751. }
  752. for (const auto & n_pg : params.n_pg) {
  753. if (n_pg.first == 0 && n_pg.second == 0) {
  754. continue;
  755. }
  756. cmd_params_instance instance = {
  757. /* .model = */ m,
  758. /* .n_prompt = */ n_pg.first,
  759. /* .n_gen = */ n_pg.second,
  760. /* .n_batch = */ nb,
  761. /* .n_ubatch = */ nub,
  762. /* .type_k = */ tk,
  763. /* .type_v = */ tv,
  764. /* .n_threads = */ nt,
  765. /* .cpu_mask = */ cm,
  766. /* .cpu_strict = */ cs,
  767. /* .poll = */ pl,
  768. /* .n_gpu_layers = */ nl,
  769. /* .rpc_servers = */ rpc,
  770. /* .split_mode = */ sm,
  771. /* .main_gpu = */ mg,
  772. /* .no_kv_offload= */ nkvo,
  773. /* .flash_attn = */ fa,
  774. /* .tensor_split = */ ts,
  775. /* .use_mmap = */ mmp,
  776. /* .embeddings = */ embd,
  777. };
  778. instances.push_back(instance);
  779. }
  780. }
  781. return instances;
  782. }
  783. struct test {
  784. static const std::string build_commit;
  785. static const int build_number;
  786. static const bool cuda;
  787. static const bool vulkan;
  788. static const bool kompute;
  789. static const bool metal;
  790. static const bool sycl;
  791. static const bool gpu_blas;
  792. static const bool blas;
  793. static const std::string cpu_info;
  794. static const std::string gpu_info;
  795. std::string model_filename;
  796. std::string model_type;
  797. uint64_t model_size;
  798. uint64_t model_n_params;
  799. int n_batch;
  800. int n_ubatch;
  801. int n_threads;
  802. std::string cpu_mask;
  803. bool cpu_strict;
  804. int poll;
  805. bool has_rpc;
  806. ggml_type type_k;
  807. ggml_type type_v;
  808. int n_gpu_layers;
  809. llama_split_mode split_mode;
  810. int main_gpu;
  811. bool no_kv_offload;
  812. bool flash_attn;
  813. std::vector<float> tensor_split;
  814. bool use_mmap;
  815. bool embeddings;
  816. int n_prompt;
  817. int n_gen;
  818. std::string test_time;
  819. std::vector<uint64_t> samples_ns;
  820. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  821. model_filename = inst.model;
  822. char buf[128];
  823. llama_model_desc(lmodel, buf, sizeof(buf));
  824. model_type = buf;
  825. model_size = llama_model_size(lmodel);
  826. model_n_params = llama_model_n_params(lmodel);
  827. n_batch = inst.n_batch;
  828. n_ubatch = inst.n_ubatch;
  829. n_threads = inst.n_threads;
  830. cpu_mask = inst.cpu_mask;
  831. cpu_strict = inst.cpu_strict;
  832. poll = inst.poll;
  833. has_rpc = !inst.rpc_servers.empty();
  834. type_k = inst.type_k;
  835. type_v = inst.type_v;
  836. n_gpu_layers = inst.n_gpu_layers;
  837. split_mode = inst.split_mode;
  838. main_gpu = inst.main_gpu;
  839. no_kv_offload = inst.no_kv_offload;
  840. flash_attn = inst.flash_attn;
  841. tensor_split = inst.tensor_split;
  842. use_mmap = inst.use_mmap;
  843. embeddings = inst.embeddings;
  844. n_prompt = inst.n_prompt;
  845. n_gen = inst.n_gen;
  846. // RFC 3339 date-time format
  847. time_t t = time(NULL);
  848. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  849. test_time = buf;
  850. (void) ctx;
  851. }
  852. uint64_t avg_ns() const {
  853. return ::avg(samples_ns);
  854. }
  855. uint64_t stdev_ns() const {
  856. return ::stdev(samples_ns);
  857. }
  858. std::vector<double> get_ts() const {
  859. int n_tokens = n_prompt + n_gen;
  860. std::vector<double> ts;
  861. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  862. return ts;
  863. }
  864. double avg_ts() const {
  865. return ::avg(get_ts());
  866. }
  867. double stdev_ts() const {
  868. return ::stdev(get_ts());
  869. }
  870. static std::string get_backend() {
  871. if (cuda) {
  872. return GGML_CUDA_NAME;
  873. }
  874. if (vulkan) {
  875. return "Vulkan";
  876. }
  877. if (kompute) {
  878. return "Kompute";
  879. }
  880. if (metal) {
  881. return "Metal";
  882. }
  883. if (sycl) {
  884. return GGML_SYCL_NAME;
  885. }
  886. if (gpu_blas) {
  887. return "GPU BLAS";
  888. }
  889. if (blas) {
  890. return "BLAS";
  891. }
  892. return "CPU";
  893. }
  894. static const std::vector<std::string> & get_fields() {
  895. static const std::vector<std::string> fields = {
  896. "build_commit", "build_number",
  897. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  898. "cpu_info", "gpu_info",
  899. "model_filename", "model_type", "model_size", "model_n_params",
  900. "n_batch", "n_ubatch",
  901. "n_threads", "cpu_mask", "cpu_strict", "poll",
  902. "type_k", "type_v",
  903. "n_gpu_layers", "split_mode",
  904. "main_gpu", "no_kv_offload", "flash_attn",
  905. "tensor_split", "use_mmap", "embeddings",
  906. "n_prompt", "n_gen", "test_time",
  907. "avg_ns", "stddev_ns",
  908. "avg_ts", "stddev_ts",
  909. };
  910. return fields;
  911. }
  912. enum field_type {STRING, BOOL, INT, FLOAT};
  913. static field_type get_field_type(const std::string & field) {
  914. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  915. field == "n_threads" || field == "poll" ||
  916. field == "model_size" || field == "model_n_params" ||
  917. field == "n_gpu_layers" || field == "main_gpu" ||
  918. field == "n_prompt" || field == "n_gen" ||
  919. field == "avg_ns" || field == "stddev_ns") {
  920. return INT;
  921. }
  922. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  923. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  924. field == "cpu_strict" ||
  925. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  926. return BOOL;
  927. }
  928. if (field == "avg_ts" || field == "stddev_ts") {
  929. return FLOAT;
  930. }
  931. return STRING;
  932. }
  933. std::vector<std::string> get_values() const {
  934. std::string tensor_split_str;
  935. int max_nonzero = 0;
  936. for (size_t i = 0; i < llama_max_devices(); i++) {
  937. if (tensor_split[i] > 0) {
  938. max_nonzero = i;
  939. }
  940. }
  941. for (int i = 0; i <= max_nonzero; i++) {
  942. char buf[32];
  943. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  944. tensor_split_str += buf;
  945. if (i < max_nonzero) {
  946. tensor_split_str += "/";
  947. }
  948. }
  949. std::vector<std::string> values = {
  950. build_commit, std::to_string(build_number),
  951. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  952. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  953. cpu_info, gpu_info,
  954. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  955. std::to_string(n_batch), std::to_string(n_ubatch),
  956. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  957. ggml_type_name(type_k), ggml_type_name(type_v),
  958. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  959. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  960. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  961. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  962. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  963. std::to_string(avg_ts()), std::to_string(stdev_ts())
  964. };
  965. return values;
  966. }
  967. std::map<std::string, std::string> get_map() const {
  968. std::map<std::string, std::string> map;
  969. auto fields = get_fields();
  970. auto values = get_values();
  971. std::transform(fields.begin(), fields.end(), values.begin(),
  972. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  973. return map;
  974. }
  975. };
  976. const std::string test::build_commit = LLAMA_COMMIT;
  977. const int test::build_number = LLAMA_BUILD_NUMBER;
  978. const bool test::cuda = !!ggml_cpu_has_cuda();
  979. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  980. const bool test::kompute = !!ggml_cpu_has_kompute();
  981. const bool test::metal = !!ggml_cpu_has_metal();
  982. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  983. const bool test::blas = !!ggml_cpu_has_blas();
  984. const bool test::sycl = !!ggml_cpu_has_sycl();
  985. const std::string test::cpu_info = get_cpu_info();
  986. const std::string test::gpu_info = get_gpu_info();
  987. struct printer {
  988. virtual ~printer() {}
  989. FILE * fout;
  990. virtual void print_header(const cmd_params & params) { (void) params; }
  991. virtual void print_test(const test & t) = 0;
  992. virtual void print_footer() { }
  993. };
  994. struct csv_printer : public printer {
  995. static std::string escape_csv(const std::string & field) {
  996. std::string escaped = "\"";
  997. for (auto c : field) {
  998. if (c == '"') {
  999. escaped += "\"";
  1000. }
  1001. escaped += c;
  1002. }
  1003. escaped += "\"";
  1004. return escaped;
  1005. }
  1006. void print_header(const cmd_params & params) override {
  1007. std::vector<std::string> fields = test::get_fields();
  1008. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1009. (void) params;
  1010. }
  1011. void print_test(const test & t) override {
  1012. std::vector<std::string> values = t.get_values();
  1013. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1014. fprintf(fout, "%s\n", join(values, ",").c_str());
  1015. }
  1016. };
  1017. static std::string escape_json(const std::string & value) {
  1018. std::string escaped;
  1019. for (auto c : value) {
  1020. if (c == '"') {
  1021. escaped += "\\\"";
  1022. } else if (c == '\\') {
  1023. escaped += "\\\\";
  1024. } else if (c <= 0x1f) {
  1025. char buf[8];
  1026. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1027. escaped += buf;
  1028. } else {
  1029. escaped += c;
  1030. }
  1031. }
  1032. return escaped;
  1033. }
  1034. static std::string format_json_value(const std::string & field, const std::string & value) {
  1035. switch (test::get_field_type(field)) {
  1036. case test::STRING:
  1037. return "\"" + escape_json(value) + "\"";
  1038. case test::BOOL:
  1039. return value == "0" ? "false" : "true";
  1040. default:
  1041. return value;
  1042. }
  1043. }
  1044. struct json_printer : public printer {
  1045. bool first = true;
  1046. void print_header(const cmd_params & params) override {
  1047. fprintf(fout, "[\n");
  1048. (void) params;
  1049. }
  1050. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1051. assert(fields.size() == values.size());
  1052. for (size_t i = 0; i < fields.size(); i++) {
  1053. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1054. }
  1055. }
  1056. void print_test(const test & t) override {
  1057. if (first) {
  1058. first = false;
  1059. } else {
  1060. fprintf(fout, ",\n");
  1061. }
  1062. fprintf(fout, " {\n");
  1063. print_fields(test::get_fields(), t.get_values());
  1064. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1065. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1066. fprintf(fout, " }");
  1067. fflush(fout);
  1068. }
  1069. void print_footer() override {
  1070. fprintf(fout, "\n]\n");
  1071. }
  1072. };
  1073. struct jsonl_printer : public printer {
  1074. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1075. assert(fields.size() == values.size());
  1076. for (size_t i = 0; i < fields.size(); i++) {
  1077. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1078. }
  1079. }
  1080. void print_test(const test & t) override {
  1081. fprintf(fout, "{");
  1082. print_fields(test::get_fields(), t.get_values());
  1083. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1084. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1085. fprintf(fout, "}\n");
  1086. fflush(fout);
  1087. }
  1088. };
  1089. struct markdown_printer : public printer {
  1090. std::vector<std::string> fields;
  1091. static int get_field_width(const std::string & field) {
  1092. if (field == "model") {
  1093. return -30;
  1094. }
  1095. if (field == "t/s") {
  1096. return 20;
  1097. }
  1098. if (field == "size" || field == "params") {
  1099. return 10;
  1100. }
  1101. if (field == "n_gpu_layers") {
  1102. return 3;
  1103. }
  1104. if (field == "n_threads") {
  1105. return 7;
  1106. }
  1107. if (field == "n_batch") {
  1108. return 7;
  1109. }
  1110. if (field == "n_ubatch") {
  1111. return 8;
  1112. }
  1113. if (field == "type_k" || field == "type_v") {
  1114. return 6;
  1115. }
  1116. if (field == "split_mode") {
  1117. return 5;
  1118. }
  1119. if (field == "flash_attn") {
  1120. return 2;
  1121. }
  1122. if (field == "use_mmap") {
  1123. return 4;
  1124. }
  1125. if (field == "test") {
  1126. return 13;
  1127. }
  1128. int width = std::max((int)field.length(), 10);
  1129. if (test::get_field_type(field) == test::STRING) {
  1130. return -width;
  1131. }
  1132. return width;
  1133. }
  1134. static std::string get_field_display_name(const std::string & field) {
  1135. if (field == "n_gpu_layers") {
  1136. return "ngl";
  1137. }
  1138. if (field == "split_mode") {
  1139. return "sm";
  1140. }
  1141. if (field == "n_threads") {
  1142. return "threads";
  1143. }
  1144. if (field == "no_kv_offload") {
  1145. return "nkvo";
  1146. }
  1147. if (field == "flash_attn") {
  1148. return "fa";
  1149. }
  1150. if (field == "use_mmap") {
  1151. return "mmap";
  1152. }
  1153. if (field == "embeddings") {
  1154. return "embd";
  1155. }
  1156. if (field == "tensor_split") {
  1157. return "ts";
  1158. }
  1159. return field;
  1160. }
  1161. void print_header(const cmd_params & params) override {
  1162. // select fields to print
  1163. fields.emplace_back("model");
  1164. fields.emplace_back("size");
  1165. fields.emplace_back("params");
  1166. fields.emplace_back("backend");
  1167. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1168. if (!is_cpu_backend) {
  1169. fields.emplace_back("n_gpu_layers");
  1170. }
  1171. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1172. fields.emplace_back("n_threads");
  1173. }
  1174. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1175. fields.emplace_back("cpu_mask");
  1176. }
  1177. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1178. fields.emplace_back("cpu_strict");
  1179. }
  1180. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1181. fields.emplace_back("poll");
  1182. }
  1183. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1184. fields.emplace_back("n_batch");
  1185. }
  1186. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1187. fields.emplace_back("n_ubatch");
  1188. }
  1189. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1190. fields.emplace_back("type_k");
  1191. }
  1192. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1193. fields.emplace_back("type_v");
  1194. }
  1195. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1196. fields.emplace_back("main_gpu");
  1197. }
  1198. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1199. fields.emplace_back("split_mode");
  1200. }
  1201. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1202. fields.emplace_back("no_kv_offload");
  1203. }
  1204. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1205. fields.emplace_back("flash_attn");
  1206. }
  1207. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1208. fields.emplace_back("tensor_split");
  1209. }
  1210. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1211. fields.emplace_back("use_mmap");
  1212. }
  1213. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1214. fields.emplace_back("embeddings");
  1215. }
  1216. fields.emplace_back("test");
  1217. fields.emplace_back("t/s");
  1218. fprintf(fout, "|");
  1219. for (const auto & field : fields) {
  1220. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1221. }
  1222. fprintf(fout, "\n");
  1223. fprintf(fout, "|");
  1224. for (const auto & field : fields) {
  1225. int width = get_field_width(field);
  1226. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1227. }
  1228. fprintf(fout, "\n");
  1229. }
  1230. void print_test(const test & t) override {
  1231. std::map<std::string, std::string> vmap = t.get_map();
  1232. fprintf(fout, "|");
  1233. for (const auto & field : fields) {
  1234. std::string value;
  1235. char buf[128];
  1236. if (field == "model") {
  1237. value = t.model_type;
  1238. } else if (field == "size") {
  1239. if (t.model_size < 1024*1024*1024) {
  1240. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1241. } else {
  1242. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1243. }
  1244. value = buf;
  1245. } else if (field == "params") {
  1246. if (t.model_n_params < 1000*1000*1000) {
  1247. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1248. } else {
  1249. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1250. }
  1251. value = buf;
  1252. } else if (field == "backend") {
  1253. value = test::get_backend();
  1254. if (t.has_rpc) {
  1255. value += "+RPC";
  1256. }
  1257. } else if (field == "test") {
  1258. if (t.n_prompt > 0 && t.n_gen == 0) {
  1259. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1260. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1261. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1262. } else {
  1263. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1264. }
  1265. value = buf;
  1266. } else if (field == "t/s") {
  1267. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1268. value = buf;
  1269. } else if (vmap.find(field) != vmap.end()) {
  1270. value = vmap.at(field);
  1271. } else {
  1272. assert(false);
  1273. exit(1);
  1274. }
  1275. int width = get_field_width(field);
  1276. if (field == "t/s") {
  1277. // HACK: the utf-8 character is 2 bytes
  1278. width += 1;
  1279. }
  1280. fprintf(fout, " %*s |", width, value.c_str());
  1281. }
  1282. fprintf(fout, "\n");
  1283. }
  1284. void print_footer() override {
  1285. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1286. }
  1287. };
  1288. struct sql_printer : public printer {
  1289. static std::string get_sql_field_type(const std::string & field) {
  1290. switch (test::get_field_type(field)) {
  1291. case test::STRING:
  1292. return "TEXT";
  1293. case test::BOOL:
  1294. case test::INT:
  1295. return "INTEGER";
  1296. case test::FLOAT:
  1297. return "REAL";
  1298. default:
  1299. assert(false);
  1300. exit(1);
  1301. }
  1302. }
  1303. void print_header(const cmd_params & params) override {
  1304. std::vector<std::string> fields = test::get_fields();
  1305. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1306. for (size_t i = 0; i < fields.size(); i++) {
  1307. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1308. }
  1309. fprintf(fout, ");\n");
  1310. fprintf(fout, "\n");
  1311. (void) params;
  1312. }
  1313. void print_test(const test & t) override {
  1314. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1315. fprintf(fout, "VALUES (");
  1316. std::vector<std::string> values = t.get_values();
  1317. for (size_t i = 0; i < values.size(); i++) {
  1318. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1319. }
  1320. fprintf(fout, ");\n");
  1321. }
  1322. };
  1323. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1324. llama_set_n_threads(ctx, n_threads, n_threads);
  1325. const llama_model * model = llama_get_model(ctx);
  1326. const int32_t n_vocab = llama_n_vocab(model);
  1327. std::vector<llama_token> tokens(n_batch);
  1328. int n_processed = 0;
  1329. while (n_processed < n_prompt) {
  1330. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1331. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1332. for (int i = 1; i < n_tokens; i++) {
  1333. tokens[i] = std::rand() % n_vocab;
  1334. }
  1335. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1336. n_processed += n_tokens;
  1337. }
  1338. llama_synchronize(ctx);
  1339. }
  1340. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1341. llama_set_n_threads(ctx, n_threads, n_threads);
  1342. const llama_model * model = llama_get_model(ctx);
  1343. const int32_t n_vocab = llama_n_vocab(model);
  1344. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1345. for (int i = 0; i < n_gen; i++) {
  1346. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1347. llama_synchronize(ctx);
  1348. token = std::rand() % n_vocab;
  1349. }
  1350. }
  1351. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1352. (void) level;
  1353. (void) text;
  1354. (void) user_data;
  1355. }
  1356. static std::unique_ptr<printer> create_printer(output_formats format) {
  1357. switch (format) {
  1358. case NONE:
  1359. return nullptr;
  1360. case CSV:
  1361. return std::unique_ptr<printer>(new csv_printer());
  1362. case JSON:
  1363. return std::unique_ptr<printer>(new json_printer());
  1364. case JSONL:
  1365. return std::unique_ptr<printer>(new jsonl_printer());
  1366. case MARKDOWN:
  1367. return std::unique_ptr<printer>(new markdown_printer());
  1368. case SQL:
  1369. return std::unique_ptr<printer>(new sql_printer());
  1370. }
  1371. GGML_ABORT("fatal error");
  1372. }
  1373. int main(int argc, char ** argv) {
  1374. // try to set locale for unicode characters in markdown
  1375. setlocale(LC_CTYPE, ".UTF-8");
  1376. #if !defined(NDEBUG)
  1377. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1378. #endif
  1379. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1380. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1381. #endif
  1382. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1383. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1384. #endif
  1385. cmd_params params = parse_cmd_params(argc, argv);
  1386. // initialize llama.cpp
  1387. if (!params.verbose) {
  1388. llama_log_set(llama_null_log_callback, NULL);
  1389. }
  1390. llama_backend_init();
  1391. llama_numa_init(params.numa);
  1392. set_process_priority(params.prio);
  1393. // initialize printer
  1394. std::unique_ptr<printer> p = create_printer(params.output_format);
  1395. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1396. if (p) {
  1397. p->fout = stdout;
  1398. p->print_header(params);
  1399. }
  1400. if (p_err) {
  1401. p_err->fout = stderr;
  1402. p_err->print_header(params);
  1403. }
  1404. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1405. llama_model * lmodel = nullptr;
  1406. const cmd_params_instance * prev_inst = nullptr;
  1407. for (const auto & inst : params_instances) {
  1408. // keep the same model between tests when possible
  1409. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1410. if (lmodel) {
  1411. llama_free_model(lmodel);
  1412. }
  1413. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1414. if (lmodel == NULL) {
  1415. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1416. return 1;
  1417. }
  1418. prev_inst = &inst;
  1419. }
  1420. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1421. if (ctx == NULL) {
  1422. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1423. llama_free_model(lmodel);
  1424. return 1;
  1425. }
  1426. test t(inst, lmodel, ctx);
  1427. llama_kv_cache_clear(ctx);
  1428. // cool off before the test
  1429. if (params.delay) {
  1430. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1431. }
  1432. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1433. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1434. LOG_TEE("%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1435. exit(1);
  1436. }
  1437. tpp.strict_cpu = t.cpu_strict;
  1438. tpp.poll = t.poll;
  1439. tpp.prio = params.prio;
  1440. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1441. if (!threadpool) {
  1442. LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1443. exit(1);
  1444. }
  1445. llama_attach_threadpool(ctx, threadpool, NULL);
  1446. // warmup run
  1447. if (t.n_prompt > 0) {
  1448. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1449. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1450. }
  1451. if (t.n_gen > 0) {
  1452. test_gen(ctx, 1, 0, t.n_threads);
  1453. }
  1454. for (int i = 0; i < params.reps; i++) {
  1455. llama_kv_cache_clear(ctx);
  1456. uint64_t t_start = get_time_ns();
  1457. if (t.n_prompt > 0) {
  1458. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1459. }
  1460. if (t.n_gen > 0) {
  1461. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1462. }
  1463. uint64_t t_ns = get_time_ns() - t_start;
  1464. t.samples_ns.push_back(t_ns);
  1465. }
  1466. if (p) {
  1467. p->print_test(t);
  1468. fflush(p->fout);
  1469. }
  1470. if (p_err) {
  1471. p_err->print_test(t);
  1472. fflush(p_err->fout);
  1473. }
  1474. llama_print_timings(ctx);
  1475. llama_free(ctx);
  1476. ggml_threadpool_free(threadpool);
  1477. }
  1478. llama_free_model(lmodel);
  1479. if (p) {
  1480. p->print_footer();
  1481. }
  1482. if (p_err) {
  1483. p_err->print_footer();
  1484. }
  1485. llama_backend_free();
  1486. return 0;
  1487. }