llama.h 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 7
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  57. };
  58. // pre-tokenization types
  59. enum llama_vocab_pre_type {
  60. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  61. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  63. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  64. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  65. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  66. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  67. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  68. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  69. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  70. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  71. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  72. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  73. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  74. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  75. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  76. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  77. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  78. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  79. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  80. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  81. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  82. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  83. };
  84. // note: these values should be synchronized with ggml_rope
  85. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  86. enum llama_rope_type {
  87. LLAMA_ROPE_TYPE_NONE = -1,
  88. LLAMA_ROPE_TYPE_NORM = 0,
  89. LLAMA_ROPE_TYPE_NEOX = 2,
  90. LLAMA_ROPE_TYPE_GLM = 4,
  91. };
  92. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  93. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  94. LLAMA_TOKEN_TYPE_NORMAL = 1,
  95. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  96. LLAMA_TOKEN_TYPE_CONTROL = 3,
  97. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  98. LLAMA_TOKEN_TYPE_UNUSED = 5,
  99. LLAMA_TOKEN_TYPE_BYTE = 6,
  100. };
  101. enum llama_token_attr {
  102. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  103. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  104. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  105. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  106. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  107. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  108. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  109. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  110. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  111. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  112. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  113. };
  114. // model file types
  115. enum llama_ftype {
  116. LLAMA_FTYPE_ALL_F32 = 0,
  117. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  120. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  121. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  122. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  123. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  152. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  153. };
  154. enum llama_rope_scaling_type {
  155. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  156. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  157. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  158. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  159. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  160. };
  161. enum llama_pooling_type {
  162. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  163. LLAMA_POOLING_TYPE_NONE = 0,
  164. LLAMA_POOLING_TYPE_MEAN = 1,
  165. LLAMA_POOLING_TYPE_CLS = 2,
  166. LLAMA_POOLING_TYPE_LAST = 3,
  167. };
  168. enum llama_attention_type {
  169. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  170. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  171. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  172. };
  173. enum llama_split_mode {
  174. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  175. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  176. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  177. };
  178. typedef struct llama_token_data {
  179. llama_token id; // token id
  180. float logit; // log-odds of the token
  181. float p; // probability of the token
  182. } llama_token_data;
  183. typedef struct llama_token_data_array {
  184. llama_token_data * data;
  185. size_t size;
  186. bool sorted;
  187. } llama_token_data_array;
  188. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  189. // Input data for llama_decode
  190. // A llama_batch object can contain input about one or many sequences
  191. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  192. //
  193. // - token : the token ids of the input (used when embd is NULL)
  194. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  195. // - pos : the positions of the respective token in the sequence
  196. // - seq_id : the sequence to which the respective token belongs
  197. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  198. //
  199. typedef struct llama_batch {
  200. int32_t n_tokens;
  201. llama_token * token;
  202. float * embd;
  203. llama_pos * pos;
  204. int32_t * n_seq_id;
  205. llama_seq_id ** seq_id;
  206. int8_t * logits; // TODO: rename this to "output"
  207. // NOTE: helpers for smooth API transition - can be deprecated in the future
  208. // for future-proof code, use the above fields instead and ignore everything below
  209. //
  210. // pos[i] = all_pos_0 + i*all_pos_1
  211. //
  212. llama_pos all_pos_0; // used if pos == NULL
  213. llama_pos all_pos_1; // used if pos == NULL
  214. llama_seq_id all_seq_id; // used if seq_id == NULL
  215. } llama_batch;
  216. enum llama_model_kv_override_type {
  217. LLAMA_KV_OVERRIDE_TYPE_INT,
  218. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  219. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  220. LLAMA_KV_OVERRIDE_TYPE_STR,
  221. };
  222. struct llama_model_kv_override {
  223. enum llama_model_kv_override_type tag;
  224. char key[128];
  225. union {
  226. int64_t val_i64;
  227. double val_f64;
  228. bool val_bool;
  229. char val_str[128];
  230. };
  231. };
  232. struct llama_model_params {
  233. int32_t n_gpu_layers; // number of layers to store in VRAM
  234. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  235. // main_gpu interpretation depends on split_mode:
  236. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  237. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  238. // LLAMA_SPLIT_LAYER: ignored
  239. int32_t main_gpu;
  240. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  241. const float * tensor_split;
  242. // comma separated list of RPC servers to use for offloading
  243. const char * rpc_servers;
  244. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  245. // If the provided progress_callback returns true, model loading continues.
  246. // If it returns false, model loading is immediately aborted.
  247. llama_progress_callback progress_callback;
  248. // context pointer passed to the progress callback
  249. void * progress_callback_user_data;
  250. // override key-value pairs of the model meta data
  251. const struct llama_model_kv_override * kv_overrides;
  252. // Keep the booleans together to avoid misalignment during copy-by-value.
  253. bool vocab_only; // only load the vocabulary, no weights
  254. bool use_mmap; // use mmap if possible
  255. bool use_mlock; // force system to keep model in RAM
  256. bool check_tensors; // validate model tensor data
  257. };
  258. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  259. // https://github.com/ggerganov/llama.cpp/pull/7544
  260. struct llama_context_params {
  261. uint32_t seed; // RNG seed, -1 for random
  262. uint32_t n_ctx; // text context, 0 = from model
  263. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  264. uint32_t n_ubatch; // physical maximum batch size
  265. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  266. uint32_t n_threads; // number of threads to use for generation
  267. uint32_t n_threads_batch; // number of threads to use for batch processing
  268. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  269. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  270. enum llama_attention_type attention_type; // attention type to use for embeddings
  271. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  272. float rope_freq_base; // RoPE base frequency, 0 = from model
  273. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  274. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  275. float yarn_attn_factor; // YaRN magnitude scaling factor
  276. float yarn_beta_fast; // YaRN low correction dim
  277. float yarn_beta_slow; // YaRN high correction dim
  278. uint32_t yarn_orig_ctx; // YaRN original context size
  279. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  280. ggml_backend_sched_eval_callback cb_eval;
  281. void * cb_eval_user_data;
  282. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  283. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  284. // Keep the booleans together to avoid misalignment during copy-by-value.
  285. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  286. bool embeddings; // if true, extract embeddings (together with logits)
  287. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  288. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  289. // Abort callback
  290. // if it returns true, execution of llama_decode() will be aborted
  291. // currently works only with CPU execution
  292. ggml_abort_callback abort_callback;
  293. void * abort_callback_data;
  294. };
  295. // model quantization parameters
  296. typedef struct llama_model_quantize_params {
  297. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  298. enum llama_ftype ftype; // quantize to this llama_ftype
  299. enum ggml_type output_tensor_type; // output tensor type
  300. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  301. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  302. bool quantize_output_tensor; // quantize output.weight
  303. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  304. bool pure; // quantize all tensors to the default type
  305. bool keep_split; // quantize to the same number of shards
  306. void * imatrix; // pointer to importance matrix data
  307. void * kv_overrides; // pointer to vector containing overrides
  308. } llama_model_quantize_params;
  309. // grammar types
  310. struct llama_grammar;
  311. // grammar element type
  312. enum llama_gretype {
  313. // end of rule definition
  314. LLAMA_GRETYPE_END = 0,
  315. // start of alternate definition for rule
  316. LLAMA_GRETYPE_ALT = 1,
  317. // non-terminal element: reference to rule
  318. LLAMA_GRETYPE_RULE_REF = 2,
  319. // terminal element: character (code point)
  320. LLAMA_GRETYPE_CHAR = 3,
  321. // inverse char(s) ([^a], [^a-b] [^abc])
  322. LLAMA_GRETYPE_CHAR_NOT = 4,
  323. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  324. // be an inclusive range ([a-z])
  325. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  326. // modifies a preceding LLAMA_GRETYPE_CHAR or
  327. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  328. LLAMA_GRETYPE_CHAR_ALT = 6,
  329. // any character (.)
  330. LLAMA_GRETYPE_CHAR_ANY = 7,
  331. };
  332. typedef struct llama_grammar_element {
  333. enum llama_gretype type;
  334. uint32_t value; // Unicode code point or rule ID
  335. } llama_grammar_element;
  336. // performance timing information
  337. struct llama_timings {
  338. double t_start_ms;
  339. double t_end_ms;
  340. double t_load_ms;
  341. double t_sample_ms;
  342. double t_p_eval_ms;
  343. double t_eval_ms;
  344. int32_t n_sample;
  345. int32_t n_p_eval;
  346. int32_t n_eval;
  347. };
  348. // used in chat template
  349. typedef struct llama_chat_message {
  350. const char * role;
  351. const char * content;
  352. } llama_chat_message;
  353. // lora adapter
  354. struct llama_lora_adapter;
  355. // Helpers for getting default parameters
  356. LLAMA_API struct llama_model_params llama_model_default_params(void);
  357. LLAMA_API struct llama_context_params llama_context_default_params(void);
  358. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  359. // Initialize the llama + ggml backend
  360. // If numa is true, use NUMA optimizations
  361. // Call once at the start of the program
  362. LLAMA_API void llama_backend_init(void);
  363. //optional:
  364. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  365. // Call once at the end of the program - currently only used for MPI
  366. LLAMA_API void llama_backend_free(void);
  367. LLAMA_API struct llama_model * llama_load_model_from_file(
  368. const char * path_model,
  369. struct llama_model_params params);
  370. LLAMA_API void llama_free_model(struct llama_model * model);
  371. LLAMA_API struct llama_context * llama_new_context_with_model(
  372. struct llama_model * model,
  373. struct llama_context_params params);
  374. // Frees all allocated memory
  375. LLAMA_API void llama_free(struct llama_context * ctx);
  376. LLAMA_API int64_t llama_time_us(void);
  377. LLAMA_API size_t llama_max_devices(void);
  378. LLAMA_API bool llama_supports_mmap (void);
  379. LLAMA_API bool llama_supports_mlock (void);
  380. LLAMA_API bool llama_supports_gpu_offload(void);
  381. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  382. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  383. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  384. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  385. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  386. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  387. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  388. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  389. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  390. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  391. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  392. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  393. // Get the model's RoPE frequency scaling factor
  394. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  395. // Functions to access the model's GGUF metadata scalar values
  396. // - The functions return the length of the string on success, or -1 on failure
  397. // - The output string is always null-terminated and cleared on failure
  398. // - GGUF array values are not supported by these functions
  399. // Get metadata value as a string by key name
  400. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  401. // Get the number of metadata key/value pairs
  402. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  403. // Get metadata key name by index
  404. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  405. // Get metadata value as a string by index
  406. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  407. // Get a string describing the model type
  408. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  409. // Returns the total size of all the tensors in the model in bytes
  410. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  411. // Returns the total number of parameters in the model
  412. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  413. // Get a llama model tensor
  414. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  415. // Returns true if the model contains an encoder that requires llama_encode() call
  416. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  417. // For encoder-decoder models, this function returns id of the token that must be provided
  418. // to the decoder to start generating output sequence. For other models, it returns -1.
  419. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  420. // Returns 0 on success
  421. LLAMA_API uint32_t llama_model_quantize(
  422. const char * fname_inp,
  423. const char * fname_out,
  424. const llama_model_quantize_params * params);
  425. // Load a LoRA adapter from file
  426. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  427. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  428. struct llama_model * model,
  429. const char * path_lora);
  430. // Add a loaded LoRA adapter to given context
  431. // This will not modify model's weight
  432. LLAMA_API int32_t llama_lora_adapter_set(
  433. struct llama_context * ctx,
  434. struct llama_lora_adapter * adapter,
  435. float scale);
  436. // Remove a LoRA adapter from given context
  437. // Return -1 if the adapter is not present in the context
  438. LLAMA_API int32_t llama_lora_adapter_remove(
  439. struct llama_context * ctx,
  440. struct llama_lora_adapter * adapter);
  441. // Manually free a LoRA adapter
  442. // Note: loaded adapters will be free when the associated model is deleted
  443. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  444. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  445. // the currently loaded vector.
  446. // n_embd should be the size of a single layer's control, and data should point
  447. // to an n_embd x n_layers buffer starting from layer 1.
  448. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  449. // See llama_control_vector_load in common to load a control vector.
  450. LLAMA_API int32_t llama_control_vector_apply(
  451. struct llama_context * lctx,
  452. const float * data,
  453. size_t len,
  454. int32_t n_embd,
  455. int32_t il_start,
  456. int32_t il_end);
  457. //
  458. // KV cache
  459. //
  460. // Information associated with an individual cell in the KV cache view.
  461. struct llama_kv_cache_view_cell {
  462. // The position for this cell. Takes KV cache shifts into account.
  463. // May be negative if the cell is not populated.
  464. llama_pos pos;
  465. };
  466. // An updateable view of the KV cache.
  467. struct llama_kv_cache_view {
  468. // Number of KV cache cells. This will be the same as the context size.
  469. int32_t n_cells;
  470. // Maximum number of sequences that can exist in a cell. It's not an error
  471. // if there are more sequences in a cell than this value, however they will
  472. // not be visible in the view cells_sequences.
  473. int32_t n_seq_max;
  474. // Number of tokens in the cache. For example, if there are two populated
  475. // cells, the first with 1 sequence id in it and the second with 2 sequence
  476. // ids then you'll have 3 tokens.
  477. int32_t token_count;
  478. // Number of populated cache cells.
  479. int32_t used_cells;
  480. // Maximum contiguous empty slots in the cache.
  481. int32_t max_contiguous;
  482. // Index to the start of the max_contiguous slot range. Can be negative
  483. // when cache is full.
  484. int32_t max_contiguous_idx;
  485. // Information for an individual cell.
  486. struct llama_kv_cache_view_cell * cells;
  487. // The sequences for each cell. There will be n_seq_max items per cell.
  488. llama_seq_id * cells_sequences;
  489. };
  490. // Create an empty KV cache view. (use only for debugging purposes)
  491. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  492. // Free a KV cache view. (use only for debugging purposes)
  493. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  494. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  495. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  496. // Returns the number of tokens in the KV cache (slow, use only for debug)
  497. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  498. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  499. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  500. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  501. // Clear the KV cache - both cell info is erased and KV data is zeroed
  502. LLAMA_API void llama_kv_cache_clear(
  503. struct llama_context * ctx);
  504. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  505. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  506. // seq_id < 0 : match any sequence
  507. // p0 < 0 : [0, p1]
  508. // p1 < 0 : [p0, inf)
  509. LLAMA_API bool llama_kv_cache_seq_rm(
  510. struct llama_context * ctx,
  511. llama_seq_id seq_id,
  512. llama_pos p0,
  513. llama_pos p1);
  514. // Copy all tokens that belong to the specified sequence to another sequence
  515. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  516. // p0 < 0 : [0, p1]
  517. // p1 < 0 : [p0, inf)
  518. LLAMA_API void llama_kv_cache_seq_cp(
  519. struct llama_context * ctx,
  520. llama_seq_id seq_id_src,
  521. llama_seq_id seq_id_dst,
  522. llama_pos p0,
  523. llama_pos p1);
  524. // Removes all tokens that do not belong to the specified sequence
  525. LLAMA_API void llama_kv_cache_seq_keep(
  526. struct llama_context * ctx,
  527. llama_seq_id seq_id);
  528. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  529. // If the KV cache is RoPEd, the KV data is updated accordingly:
  530. // - lazily on next llama_decode()
  531. // - explicitly with llama_kv_cache_update()
  532. // p0 < 0 : [0, p1]
  533. // p1 < 0 : [p0, inf)
  534. LLAMA_API void llama_kv_cache_seq_add(
  535. struct llama_context * ctx,
  536. llama_seq_id seq_id,
  537. llama_pos p0,
  538. llama_pos p1,
  539. llama_pos delta);
  540. // Integer division of the positions by factor of `d > 1`
  541. // If the KV cache is RoPEd, the KV data is updated accordingly:
  542. // - lazily on next llama_decode()
  543. // - explicitly with llama_kv_cache_update()
  544. // p0 < 0 : [0, p1]
  545. // p1 < 0 : [p0, inf)
  546. LLAMA_API void llama_kv_cache_seq_div(
  547. struct llama_context * ctx,
  548. llama_seq_id seq_id,
  549. llama_pos p0,
  550. llama_pos p1,
  551. int d);
  552. // Returns the largest position present in the KV cache for the specified sequence
  553. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  554. struct llama_context * ctx,
  555. llama_seq_id seq_id);
  556. // Defragment the KV cache
  557. // This will be applied:
  558. // - lazily on next llama_decode()
  559. // - explicitly with llama_kv_cache_update()
  560. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  561. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  562. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  563. //
  564. // State / sessions
  565. //
  566. // Returns the maximum size in bytes of the state (rng, logits, embedding
  567. // and kv_cache) - will often be smaller after compacting tokens
  568. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  569. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  570. "use llama_state_get_size instead");
  571. // Copies the state to the specified destination address.
  572. // Destination needs to have allocated enough memory.
  573. // Returns the number of bytes copied
  574. LLAMA_API size_t llama_state_get_data(
  575. struct llama_context * ctx,
  576. uint8_t * dst);
  577. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  578. struct llama_context * ctx,
  579. uint8_t * dst),
  580. "use llama_state_get_data instead");
  581. // Set the state reading from the specified address
  582. // Returns the number of bytes read
  583. LLAMA_API size_t llama_state_set_data(
  584. struct llama_context * ctx,
  585. const uint8_t * src);
  586. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  587. struct llama_context * ctx,
  588. const uint8_t * src),
  589. "use llama_state_set_data instead");
  590. // Save/load session file
  591. LLAMA_API bool llama_state_load_file(
  592. struct llama_context * ctx,
  593. const char * path_session,
  594. llama_token * tokens_out,
  595. size_t n_token_capacity,
  596. size_t * n_token_count_out);
  597. LLAMA_API DEPRECATED(bool llama_load_session_file(
  598. struct llama_context * ctx,
  599. const char * path_session,
  600. llama_token * tokens_out,
  601. size_t n_token_capacity,
  602. size_t * n_token_count_out),
  603. "use llama_state_load_file instead");
  604. LLAMA_API bool llama_state_save_file(
  605. struct llama_context * ctx,
  606. const char * path_session,
  607. const llama_token * tokens,
  608. size_t n_token_count);
  609. LLAMA_API DEPRECATED(bool llama_save_session_file(
  610. struct llama_context * ctx,
  611. const char * path_session,
  612. const llama_token * tokens,
  613. size_t n_token_count),
  614. "use llama_state_save_file instead");
  615. // Get the exact size needed to copy the KV cache of a single sequence
  616. LLAMA_API size_t llama_state_seq_get_size(
  617. struct llama_context * ctx,
  618. llama_seq_id seq_id);
  619. // Copy the KV cache of a single sequence into the specified buffer
  620. LLAMA_API size_t llama_state_seq_get_data(
  621. struct llama_context * ctx,
  622. uint8_t * dst,
  623. llama_seq_id seq_id);
  624. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  625. // Returns:
  626. // - Positive: Ok
  627. // - Zero: Failed to load
  628. LLAMA_API size_t llama_state_seq_set_data(
  629. struct llama_context * ctx,
  630. const uint8_t * src,
  631. llama_seq_id dest_seq_id);
  632. LLAMA_API size_t llama_state_seq_save_file(
  633. struct llama_context * ctx,
  634. const char * filepath,
  635. llama_seq_id seq_id,
  636. const llama_token * tokens,
  637. size_t n_token_count);
  638. LLAMA_API size_t llama_state_seq_load_file(
  639. struct llama_context * ctx,
  640. const char * filepath,
  641. llama_seq_id dest_seq_id,
  642. llama_token * tokens_out,
  643. size_t n_token_capacity,
  644. size_t * n_token_count_out);
  645. //
  646. // Decoding
  647. //
  648. // Return batch for single sequence of tokens starting at pos_0
  649. //
  650. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  651. //
  652. LLAMA_API struct llama_batch llama_batch_get_one(
  653. llama_token * tokens,
  654. int32_t n_tokens,
  655. llama_pos pos_0,
  656. llama_seq_id seq_id);
  657. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  658. // Each token can be assigned up to n_seq_max sequence ids
  659. // The batch has to be freed with llama_batch_free()
  660. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  661. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  662. // The rest of the llama_batch members are allocated with size n_tokens
  663. // All members are left uninitialized
  664. LLAMA_API struct llama_batch llama_batch_init(
  665. int32_t n_tokens,
  666. int32_t embd,
  667. int32_t n_seq_max);
  668. // Frees a batch of tokens allocated with llama_batch_init()
  669. LLAMA_API void llama_batch_free(struct llama_batch batch);
  670. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  671. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  672. // 0 - success
  673. // < 0 - error
  674. LLAMA_API int32_t llama_encode(
  675. struct llama_context * ctx,
  676. struct llama_batch batch);
  677. // Positive return values does not mean a fatal error, but rather a warning.
  678. // 0 - success
  679. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  680. // < 0 - error
  681. LLAMA_API int32_t llama_decode(
  682. struct llama_context * ctx,
  683. struct llama_batch batch);
  684. // Set the number of threads used for decoding
  685. // n_threads is the number of threads used for generation (single token)
  686. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  687. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  688. // Get the number of threads used for generation of a single token.
  689. LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
  690. // Get the number of threads used for prompt and batch processing (multiple token).
  691. LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
  692. // Set whether the model is in embeddings mode or not
  693. // If true, embeddings will be returned but logits will not
  694. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  695. // Set whether to use causal attention or not
  696. // If set to true, the model will only attend to the past tokens
  697. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  698. // Set abort callback
  699. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  700. // Wait until all computations are finished
  701. // This is automatically done when using one of the functions below to obtain the computation results
  702. // and is not necessary to call it explicitly in most cases
  703. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  704. // Token logits obtained from the last call to llama_decode()
  705. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  706. // in the order they have appeared in the batch.
  707. // Rows: number of tokens for which llama_batch.logits[i] != 0
  708. // Cols: n_vocab
  709. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  710. // Logits for the ith token. For positive indices, Equivalent to:
  711. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  712. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  713. // returns NULL for invalid ids.
  714. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  715. // Get all output token embeddings.
  716. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  717. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  718. // in the order they have appeared in the batch.
  719. // shape: [n_outputs*n_embd]
  720. // Otherwise, returns NULL.
  721. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  722. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  723. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  724. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  725. // shape: [n_embd] (1-dimensional)
  726. // returns NULL for invalid ids.
  727. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  728. // Get the embeddings for a sequence id
  729. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  730. // shape: [n_embd] (1-dimensional)
  731. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  732. //
  733. // Vocab
  734. //
  735. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  736. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  737. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  738. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  739. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  740. // Identify if Token Id is a control token or a render-able token
  741. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  742. // Special tokens
  743. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  744. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  745. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  746. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  747. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  748. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  749. // Returns -1 if unknown, 1 for true or 0 for false.
  750. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  751. // Returns -1 if unknown, 1 for true or 0 for false.
  752. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  753. // Codellama infill tokens
  754. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  755. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  756. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  757. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  758. //
  759. // Tokenization
  760. //
  761. /// @details Convert the provided text into tokens.
  762. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  763. /// @return Returns the number of tokens on success, no more than n_tokens_max
  764. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  765. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  766. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  767. /// as plaintext. Does not insert a leading space.
  768. LLAMA_API int32_t llama_tokenize(
  769. const struct llama_model * model,
  770. const char * text,
  771. int32_t text_len,
  772. llama_token * tokens,
  773. int32_t n_tokens_max,
  774. bool add_special,
  775. bool parse_special);
  776. // Token Id -> Piece.
  777. // Uses the vocabulary in the provided context.
  778. // Does not write null terminator to the buffer.
  779. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  780. // @param special If true, special tokens are rendered in the output.
  781. LLAMA_API int32_t llama_token_to_piece(
  782. const struct llama_model * model,
  783. llama_token token,
  784. char * buf,
  785. int32_t length,
  786. int32_t lstrip,
  787. bool special);
  788. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  789. /// @param text The char pointer must be large enough to hold the resulting text.
  790. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  791. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  792. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  793. /// @param unparse_special If true, special tokens are rendered in the output.
  794. LLAMA_API int32_t llama_detokenize(
  795. const struct llama_model * model,
  796. const llama_token * tokens,
  797. int32_t n_tokens,
  798. char * text,
  799. int32_t text_len_max,
  800. bool remove_special,
  801. bool unparse_special);
  802. //
  803. // Chat templates
  804. //
  805. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  806. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  807. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  808. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  809. /// @param chat Pointer to a list of multiple llama_chat_message
  810. /// @param n_msg Number of llama_chat_message in this chat
  811. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  812. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  813. /// @param length The size of the allocated buffer
  814. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  815. LLAMA_API int32_t llama_chat_apply_template(
  816. const struct llama_model * model,
  817. const char * tmpl,
  818. const struct llama_chat_message * chat,
  819. size_t n_msg,
  820. bool add_ass,
  821. char * buf,
  822. int32_t length);
  823. //
  824. // Grammar
  825. //
  826. /// Initialize a llama_grammar.
  827. ///
  828. /// @param rules The rule elements of the grammar to initialize.
  829. /// @param n_rules The number of rules.
  830. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  831. /// @return The initialized llama_grammar or nullptr if initialization failed.
  832. LLAMA_API struct llama_grammar * llama_grammar_init(
  833. const llama_grammar_element ** rules,
  834. size_t n_rules,
  835. size_t start_rule_index);
  836. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  837. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  838. /// @details Apply constraints from grammar
  839. LLAMA_API void llama_grammar_sample(
  840. const struct llama_grammar * grammar,
  841. const struct llama_context * ctx,
  842. llama_token_data_array * candidates);
  843. LLAMA_API DEPRECATED(void llama_sample_grammar(
  844. struct llama_context * ctx,
  845. llama_token_data_array * candidates,
  846. const struct llama_grammar * grammar),
  847. "use llama_grammar_sample instead");
  848. /// @details Accepts the sampled token into the grammar
  849. LLAMA_API void llama_grammar_accept_token(
  850. struct llama_grammar * grammar,
  851. struct llama_context * ctx,
  852. llama_token token);
  853. //
  854. // Sampling functions
  855. //
  856. // Sets the current rng seed.
  857. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  858. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  859. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  860. LLAMA_API void llama_sample_repetition_penalties(
  861. struct llama_context * ctx,
  862. llama_token_data_array * candidates,
  863. const llama_token * last_tokens,
  864. size_t penalty_last_n,
  865. float penalty_repeat,
  866. float penalty_freq,
  867. float penalty_present);
  868. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  869. /// @param logits Logits extracted from the original generation context.
  870. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  871. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  872. LLAMA_API void llama_sample_apply_guidance(
  873. struct llama_context * ctx,
  874. float * logits,
  875. float * logits_guidance,
  876. float scale);
  877. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  878. LLAMA_API void llama_sample_softmax(
  879. struct llama_context * ctx,
  880. llama_token_data_array * candidates);
  881. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  882. LLAMA_API void llama_sample_top_k(
  883. struct llama_context * ctx,
  884. llama_token_data_array * candidates,
  885. int32_t k,
  886. size_t min_keep);
  887. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  888. LLAMA_API void llama_sample_top_p(
  889. struct llama_context * ctx,
  890. llama_token_data_array * candidates,
  891. float p,
  892. size_t min_keep);
  893. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  894. LLAMA_API void llama_sample_min_p(
  895. struct llama_context * ctx,
  896. llama_token_data_array * candidates,
  897. float p,
  898. size_t min_keep);
  899. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  900. LLAMA_API void llama_sample_tail_free(
  901. struct llama_context * ctx,
  902. llama_token_data_array * candidates,
  903. float z,
  904. size_t min_keep);
  905. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  906. LLAMA_API void llama_sample_typical(
  907. struct llama_context * ctx,
  908. llama_token_data_array * candidates,
  909. float p,
  910. size_t min_keep);
  911. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  912. LLAMA_API void llama_sample_entropy(
  913. struct llama_context * ctx,
  914. llama_token_data_array * candidates_p,
  915. float min_temp,
  916. float max_temp,
  917. float exponent_val);
  918. LLAMA_API void llama_sample_temp(
  919. struct llama_context * ctx,
  920. llama_token_data_array * candidates,
  921. float temp);
  922. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  923. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  924. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  925. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  926. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  927. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  928. LLAMA_API llama_token llama_sample_token_mirostat(
  929. struct llama_context * ctx,
  930. llama_token_data_array * candidates,
  931. float tau,
  932. float eta,
  933. int32_t m,
  934. float * mu);
  935. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  936. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  937. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  938. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  939. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  940. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  941. struct llama_context * ctx,
  942. llama_token_data_array * candidates,
  943. float tau,
  944. float eta,
  945. float * mu);
  946. /// @details Selects the token with the highest probability.
  947. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  948. LLAMA_API llama_token llama_sample_token_greedy(
  949. struct llama_context * ctx,
  950. llama_token_data_array * candidates);
  951. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  952. LLAMA_API llama_token llama_sample_token(
  953. struct llama_context * ctx,
  954. llama_token_data_array * candidates);
  955. //
  956. // Model split
  957. //
  958. /// @details Build a split GGUF final path for this chunk.
  959. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  960. // Returns the split_path length.
  961. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  962. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  963. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  964. // Returns the split_prefix length.
  965. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  966. // Performance information
  967. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  968. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  969. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  970. // Print system information
  971. LLAMA_API const char * llama_print_system_info(void);
  972. // Set callback for all future logging events.
  973. // If this is not called, or NULL is supplied, everything is output on stderr.
  974. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  975. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  976. #ifdef __cplusplus
  977. }
  978. #endif
  979. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  980. #ifdef LLAMA_API_INTERNAL
  981. #include <random>
  982. #include <string>
  983. #include <vector>
  984. struct ggml_tensor;
  985. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  986. struct llama_context * ctx
  987. );
  988. struct llama_partial_utf8 {
  989. uint32_t value; // bit value so far (unshifted)
  990. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  991. };
  992. struct llama_grammar_candidate {
  993. size_t index;
  994. const uint32_t * code_points;
  995. llama_partial_utf8 partial_utf8;
  996. };
  997. using llama_grammar_rule = std::vector< llama_grammar_element>;
  998. using llama_grammar_stack = std::vector<const llama_grammar_element *>;
  999. using llama_grammar_rules = std::vector<llama_grammar_rule>;
  1000. using llama_grammar_stacks = std::vector<llama_grammar_stack>;
  1001. using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
  1002. const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
  1003. llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
  1004. void llama_grammar_accept(
  1005. const llama_grammar_rules & rules,
  1006. const llama_grammar_stacks & stacks,
  1007. const uint32_t chr,
  1008. llama_grammar_stacks & new_stacks);
  1009. std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  1010. const llama_grammar_rules & rules,
  1011. const llama_grammar_stack & stack,
  1012. const llama_grammar_candidates & candidates);
  1013. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  1014. const std::string & src,
  1015. llama_partial_utf8 partial_start);
  1016. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  1017. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  1018. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  1019. #endif // LLAMA_API_INTERNAL
  1020. #endif // LLAMA_H