| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- from __future__ import annotations
- import ast
- import logging
- import argparse
- import contextlib
- import json
- import os
- import re
- import sys
- from enum import IntEnum
- from pathlib import Path
- from hashlib import sha256
- from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
- from itertools import chain
- import math
- import numpy as np
- import torch
- if TYPE_CHECKING:
- from torch import Tensor
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
- import gguf
- logger = logging.getLogger("hf-to-gguf")
- ###### MODEL DEFINITIONS ######
- class SentencePieceTokenTypes(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- AnyModel = TypeVar("AnyModel", bound="type[Model]")
- class Model:
- _model_classes: dict[str, type[Model]] = {}
- dir_model: Path
- ftype: gguf.LlamaFileType
- fname_out: Path
- is_big_endian: bool
- endianess: gguf.GGUFEndian
- use_temp_file: bool
- lazy: bool
- part_names: list[str]
- is_safetensors: bool
- hparams: dict[str, Any]
- block_count: int
- tensor_map: gguf.TensorNameMap
- tensor_names: set[str] | None
- gguf_writer: gguf.GGUFWriter
- model_name: str | None
- metadata_override: Path | None
- dir_model_card: Path
- # subclasses should define this!
- model_arch: gguf.MODEL_ARCH
- def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
- use_temp_file: bool = False, eager: bool = False,
- metadata_override: Path | None = None, model_name: str | None = None,
- split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
- small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
- if type(self) is Model:
- raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
- self.dir_model = dir_model
- self.ftype = ftype
- self.fname_out = fname_out
- self.is_big_endian = is_big_endian
- self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
- self.use_temp_file = use_temp_file
- self.lazy = not eager
- self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
- self.is_safetensors = len(self.part_names) > 0
- if not self.is_safetensors:
- self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
- self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
- self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
- self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
- self.tensor_names = None
- self.metadata_override = metadata_override
- self.model_name = model_name
- self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
- # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
- if self.ftype == gguf.LlamaFileType.GUESSED:
- # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
- _, first_tensor = next(self.get_tensors())
- if first_tensor.dtype == torch.float16:
- logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
- self.ftype = gguf.LlamaFileType.MOSTLY_F16
- else:
- logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
- self.ftype = gguf.LlamaFileType.MOSTLY_BF16
- # Configure GGUF Writer
- self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
- split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
- @classmethod
- def __init_subclass__(cls):
- # can't use an abstract property, because overriding it without type errors
- # would require using decorated functions instead of simply defining the property
- if "model_arch" not in cls.__dict__:
- raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
- def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
- key = next((k for k in keys if k in self.hparams), None)
- if key is not None:
- return self.hparams[key]
- if optional:
- return None
- raise KeyError(f"could not find any of: {keys}")
- def set_vocab(self):
- self._set_vocab_gpt2()
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- tensor_names_from_parts: set[str] = set()
- index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
- index_name += ".index.json"
- index_file = self.dir_model / index_name
- if index_file.is_file():
- self.tensor_names = set()
- logger.info(f"gguf: loading model weight map from '{index_name}'")
- with open(index_file, "r", encoding="utf-8") as f:
- index: dict[str, Any] = json.load(f)
- weight_map = index.get("weight_map")
- if weight_map is None or not isinstance(weight_map, dict):
- raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
- self.tensor_names.update(weight_map.keys())
- else:
- self.tensor_names = tensor_names_from_parts
- weight_map = {}
- for part_name in self.part_names:
- logger.info(f"gguf: loading model part '{part_name}'")
- ctx: ContextManager[Any]
- if self.is_safetensors:
- from safetensors import safe_open
- ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
- else:
- ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
- with ctx as model_part:
- tensor_names_from_parts.update(model_part.keys())
- for name in model_part.keys():
- if self.is_safetensors:
- if self.lazy:
- data = model_part.get_slice(name)
- data = LazyTorchTensor.from_safetensors_slice(data)
- else:
- data = model_part.get_tensor(name)
- else:
- data = model_part[name]
- if self.lazy:
- data = LazyTorchTensor.from_eager(data)
- yield name, data
- # verify tensor name presence and identify potentially missing files
- if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
- missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
- extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
- missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
- if len(extra) == 0 and len(missing_files) > 0:
- raise ValueError(f"Missing or incomplete model files: {missing_files}")
- else:
- raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
- f"Missing tensors: {missing}\n"
- f"Extra tensors: {extra}")
- def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
- if key not in gguf.MODEL_TENSORS[self.model_arch]:
- raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
- name: str = gguf.TENSOR_NAMES[key]
- if "{bid}" in name:
- assert bid is not None
- name = name.format(bid=bid)
- return name + suffix
- def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
- if key not in gguf.MODEL_TENSORS[self.model_arch]:
- return False
- key_name: str = gguf.TENSOR_NAMES[key]
- if "{bid}" in key_name:
- if bid is None:
- return False
- key_name = key_name.format(bid=bid)
- else:
- if bid is not None:
- return False
- return name == (key_name + suffix)
- def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
- new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
- if new_name is None:
- raise ValueError(f"Can not map tensor {name!r}")
- return new_name
- def set_gguf_parameters(self):
- self.gguf_writer.add_block_count(self.block_count)
- if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
- self.gguf_writer.add_context_length(n_ctx)
- logger.info(f"gguf: context length = {n_ctx}")
- if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
- self.gguf_writer.add_embedding_length(n_embd)
- logger.info(f"gguf: embedding length = {n_embd}")
- if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
- self.gguf_writer.add_feed_forward_length(n_ff)
- logger.info(f"gguf: feed forward length = {n_ff}")
- if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
- self.gguf_writer.add_head_count(n_head)
- logger.info(f"gguf: head count = {n_head}")
- if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
- self.gguf_writer.add_head_count_kv(n_head_kv)
- logger.info(f"gguf: key-value head count = {n_head_kv}")
- if (rope_theta := self.hparams.get("rope_theta")) is not None:
- self.gguf_writer.add_rope_freq_base(rope_theta)
- logger.info(f"gguf: rope theta = {rope_theta}")
- if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
- self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
- logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
- if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
- self.gguf_writer.add_layer_norm_eps(f_norm_eps)
- logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
- if (n_experts := self.hparams.get("num_local_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- logger.info(f"gguf: expert count = {n_experts}")
- if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
- self.gguf_writer.add_expert_used_count(n_experts_used)
- logger.info(f"gguf: experts used count = {n_experts_used}")
- if (head_dim := self.hparams.get("head_dim")) is not None:
- self.gguf_writer.add_key_length(head_dim)
- self.gguf_writer.add_value_length(head_dim)
- self.gguf_writer.add_file_type(self.ftype)
- logger.info(f"gguf: file type = {self.ftype}")
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- return [(self.map_tensor_name(name), data_torch)]
- def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
- del name, new_name, bid, n_dims # unused
- return False
- # some models need extra generated tensors (like rope_freqs)
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- return ()
- def prepare_tensors(self):
- max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
- for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # use the first number-like part of the tensor name as the block id
- bid = None
- for part in name.split("."):
- if part.isdecimal():
- bid = int(part)
- break
- for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
- # TODO: why do we squeeze here?
- # data = data_torch.squeeze().numpy()
- data = data_torch.numpy()
- # if data ends up empty, it means data_torch was a scalar tensor -> restore
- if len(data.shape) == 0:
- data = data_torch.numpy()
- n_dims = len(data.shape)
- data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
- # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
- if n_dims <= 1 or new_name.endswith("_norm.weight"):
- data_qtype = gguf.GGMLQuantizationType.F32
- # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
- # Some tensor types are always in float32
- if data_qtype is False and (
- any(
- self.match_model_tensor_name(new_name, key, bid)
- for key in (
- gguf.MODEL_TENSOR.FFN_GATE_INP,
- gguf.MODEL_TENSOR.POS_EMBD,
- gguf.MODEL_TENSOR.TOKEN_TYPES,
- gguf.MODEL_TENSOR.SSM_CONV1D,
- gguf.MODEL_TENSOR.TIME_MIX_FIRST,
- gguf.MODEL_TENSOR.TIME_MIX_W1,
- gguf.MODEL_TENSOR.TIME_MIX_W2,
- gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
- gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
- gguf.MODEL_TENSOR.POSNET_NORM1,
- gguf.MODEL_TENSOR.POSNET_NORM2,
- )
- )
- or not new_name.endswith(".weight")
- ):
- data_qtype = gguf.GGMLQuantizationType.F32
- if data_qtype is False and any(
- self.match_model_tensor_name(new_name, key, bid)
- for key in (
- gguf.MODEL_TENSOR.TOKEN_EMBD,
- gguf.MODEL_TENSOR.OUTPUT,
- )
- ):
- if self.ftype in (
- gguf.LlamaFileType.MOSTLY_TQ1_0,
- gguf.LlamaFileType.MOSTLY_TQ2_0,
- ):
- # TODO: use Q4_K and Q6_K
- data_qtype = gguf.GGMLQuantizationType.F16
- # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
- if isinstance(data_qtype, bool):
- if self.ftype == gguf.LlamaFileType.ALL_F32:
- data_qtype = gguf.GGMLQuantizationType.F32
- elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
- data_qtype = gguf.GGMLQuantizationType.F16
- elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
- data_qtype = gguf.GGMLQuantizationType.BF16
- elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
- data_qtype = gguf.GGMLQuantizationType.Q8_0
- elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
- data_qtype = gguf.GGMLQuantizationType.TQ1_0
- elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
- data_qtype = gguf.GGMLQuantizationType.TQ2_0
- else:
- raise ValueError(f"Unknown file type: {self.ftype.name}")
- try:
- data = gguf.quants.quantize(data, data_qtype)
- except gguf.QuantError as e:
- logger.warning("%s, %s", e, "falling back to F16")
- data_qtype = gguf.GGMLQuantizationType.F16
- data = gguf.quants.quantize(data, data_qtype)
- shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
- # reverse shape to make it similar to the internal ggml dimension order
- shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
- # n_dims is implicit in the shape
- logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
- self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
- def set_type(self):
- self.gguf_writer.add_type(gguf.GGUFType.MODEL)
- def prepare_metadata(self, vocab_only: bool):
- total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
- self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
- # Fallback to model directory name if metadata name is still missing
- if self.metadata.name is None:
- self.metadata.name = self.dir_model.name
- # Generate parameter weight class (useful for leader boards) if not yet determined
- if self.metadata.size_label is None and total_params > 0:
- self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
- # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
- output_type: str = self.ftype.name.partition("_")[2]
- # Filename Output
- if self.fname_out.is_dir():
- # Generate default filename based on model specification and available metadata
- if not vocab_only:
- fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
- else:
- fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
- # Use the default filename
- self.fname_out = self.fname_out / f"{fname_default}.gguf"
- else:
- # Output path is a custom defined templated filename
- # Note: `not is_dir()` is used because `.is_file()` will not detect
- # file template strings as it doesn't actually exist as a file
- # Process templated file name with the output ftype, useful with the "auto" ftype
- self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
- self.set_type()
- logger.info("Set meta model")
- self.metadata.set_gguf_meta_model(self.gguf_writer)
- logger.info("Set model parameters")
- self.set_gguf_parameters()
- logger.info("Set model tokenizer")
- self.set_vocab()
- logger.info("Set model quantization version")
- self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
- def write(self):
- self.prepare_tensors()
- self.prepare_metadata(vocab_only=False)
- self.gguf_writer.write_header_to_file(path=self.fname_out)
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.write_tensors_to_file(progress=True)
- self.gguf_writer.close()
- def write_vocab(self):
- if len(self.gguf_writer.tensors) != 1:
- raise ValueError('Splitting the vocabulary is not supported')
- self.prepare_metadata(vocab_only=True)
- self.gguf_writer.write_header_to_file(path=self.fname_out)
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.close()
- @staticmethod
- def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
- part_names: list[str] = []
- for filename in os.listdir(dir_model):
- if filename.startswith(prefix) and filename.endswith(suffix):
- part_names.append(filename)
- part_names.sort()
- return part_names
- @staticmethod
- def load_hparams(dir_model: Path):
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- return json.load(f)
- @classmethod
- def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
- assert names
- def func(modelcls: AnyModel) -> AnyModel:
- for name in names:
- cls._model_classes[name] = modelcls
- return modelcls
- return func
- @classmethod
- def from_model_architecture(cls, arch: str) -> type[Model]:
- try:
- return cls._model_classes[arch]
- except KeyError:
- raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
- def does_token_look_special(self, token: str | bytes) -> bool:
- if isinstance(token, (bytes, bytearray)):
- token_text = token.decode(encoding="utf-8")
- elif isinstance(token, memoryview):
- token_text = token.tobytes().decode(encoding="utf-8")
- else:
- token_text = token
- # Some models mark some added tokens which ought to be control tokens as not special.
- # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
- seems_special = token_text in (
- "<pad>", # deepseek-coder
- "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
- )
- seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
- seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
- # TODO: should these be marked as UNUSED instead? (maybe not)
- seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
- return seems_special
- # used for GPT-2 BPE and WordPiece vocabs
- def get_vocab_base(self) -> tuple[list[str], list[int], str]:
- tokens: list[str] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
- vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- tokpre = self.get_vocab_base_pre(tokenizer)
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.UNUSED)
- else:
- token: str = reverse_vocab[i]
- if token in added_vocab:
- # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
- # To avoid unexpected issues - we make sure to normalize non-normalized tokens
- if not tokenizer.added_tokens_decoder[i].normalized:
- previous_token = token
- token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
- if previous_token != token:
- logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
- if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- # NOTE: this was added for Gemma.
- # Encoding and decoding the tokens above isn't sufficient for this case.
- token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- toktypes.append(gguf.TokenType.NORMAL)
- tokens.append(token)
- return tokens, toktypes, tokpre
- # NOTE: this function is generated by convert_hf_to_gguf_update.py
- # do not modify it manually!
- # ref: https://github.com/ggerganov/llama.cpp/pull/6920
- # Marker: Start get_vocab_base_pre
- def get_vocab_base_pre(self, tokenizer) -> str:
- # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
- # is specific for the BPE pre-tokenizer used by the model
- # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
- # use in llama.cpp to implement the same pre-tokenizer
- chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
- chktok = tokenizer.encode(chktxt)
- chkhsh = sha256(str(chktok).encode()).hexdigest()
- logger.debug(f"chktok: {chktok}")
- logger.debug(f"chkhsh: {chkhsh}")
- res = None
- # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
- # or pull the latest version of the model from Huggingface
- # don't edit the hashes manually!
- if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
- # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
- res = "llama-bpe"
- if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
- # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
- res = "deepseek-llm"
- if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
- # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
- res = "deepseek-coder"
- if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
- # ref: https://huggingface.co/tiiuae/falcon-7b
- res = "falcon"
- if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
- # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
- res = "falcon3"
- if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
- # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
- res = "bert-bge"
- if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
- # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
- res = "bert-bge-large"
- if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
- # ref: https://huggingface.co/mosaicml/mpt-7b
- res = "mpt"
- if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
- # ref: https://huggingface.co/bigcode/starcoder2-3b
- res = "starcoder"
- if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
- # ref: https://huggingface.co/openai-community/gpt2
- res = "gpt-2"
- if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
- # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
- res = "stablelm2"
- if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
- # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
- res = "refact"
- if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
- # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
- res = "command-r"
- if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
- # ref: https://huggingface.co/Qwen/Qwen1.5-7B
- res = "qwen2"
- if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
- # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
- res = "olmo"
- if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
- # ref: https://huggingface.co/databricks/dbrx-base
- res = "dbrx"
- if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
- # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
- res = "jina-v1-en"
- if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
- res = "jina-v2-en"
- if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
- res = "jina-v2-es"
- if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
- res = "jina-v2-de"
- if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
- # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
- res = "smaug-bpe"
- if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
- # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
- res = "poro-chat"
- if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
- res = "jina-v2-code"
- if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
- # ref: https://huggingface.co/THUDM/glm-4-9b-chat
- res = "chatglm-bpe"
- if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
- # ref: https://huggingface.co/LumiOpen/Viking-7B
- res = "viking"
- if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
- # ref: https://huggingface.co/core42/jais-13b
- res = "jais"
- if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
- # ref: https://huggingface.co/WisdomShell/CodeShell-7B
- res = "codeshell"
- if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
- # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
- res = "tekken"
- if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
- # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
- res = "smollm"
- if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
- # ref: https://huggingface.co/bigscience/bloom
- res = "bloom"
- if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
- # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
- res = "gpt3-finnish"
- if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
- # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
- res = "exaone"
- if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
- # ref: https://huggingface.co/microsoft/phi-2
- res = "phi-2"
- if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
- # ref: https://huggingface.co/facebook/chameleon-7b
- res = "chameleon"
- if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
- # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
- res = "minerva-7b"
- if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
- # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
- res = "roberta-bpe"
- if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
- # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
- res = "gigachat"
- if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
- # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
- res = "megrez"
- if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
- # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
- res = "deepseek-v3"
- if res is None:
- logger.warning("\n")
- logger.warning("**************************************************************************************")
- logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
- logger.warning("** There are 2 possible reasons for this:")
- logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
- logger.warning("** - the pre-tokenization config has changed upstream")
- logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
- logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
- logger.warning("**")
- logger.warning(f"** chkhsh: {chkhsh}")
- logger.warning("**************************************************************************************")
- logger.warning("\n")
- raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
- logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
- logger.debug(f"chkhsh: {chkhsh}")
- return res
- # Marker: End get_vocab_base_pre
- def _set_vocab_none(self) -> None:
- self.gguf_writer.add_tokenizer_model("none")
- def _set_vocab_gpt2(self) -> None:
- tokens, toktypes, tokpre = self.get_vocab_base()
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_qwen(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[str] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams["vocab_size"]
- assert max(tokenizer.get_vocab().values()) < vocab_size
- tokpre = self.get_vocab_base_pre(tokenizer)
- merges = []
- vocab = {}
- mergeable_ranks = tokenizer.mergeable_ranks
- for token, rank in mergeable_ranks.items():
- vocab[QwenModel.token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
- assert len(merged) == 2
- merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
- # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
- added_vocab = tokenizer.special_tokens
- reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.UNUSED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
- special_vocab.merges = merges
- # only add special tokens when they were not already loaded from config.json
- if len(special_vocab.special_token_ids) == 0:
- special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
- # this one is usually not in config.json anyway
- special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_sentencepiece(self, add_to_gguf=True):
- tokens, scores, toktypes = self._create_vocab_sentencepiece()
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def _create_vocab_sentencepiece(self):
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if token_id >= vocab_size:
- logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
- for token_id, token_data in added_tokens_decoder.items():
- token_id = int(token_id)
- token: str = token_data["content"]
- if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
- if tokens[token_id] != token.encode("utf-8"):
- logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
- if token_data.get("special") or self.does_token_look_special(token):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
- else:
- token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- scores[token_id] = -1000.0
- tokens[token_id] = token.encode("utf-8")
- if vocab_size > len(tokens):
- pad_count = vocab_size - len(tokens)
- logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
- for i in range(1, pad_count + 1):
- tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.UNUSED)
- return tokens, scores, toktypes
- def _set_vocab_llama_hf(self):
- vocab = gguf.LlamaHfVocab(self.dir_model)
- tokens = []
- scores = []
- toktypes = []
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- assert len(tokens) == vocab.vocab_size
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
- tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
- logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
- vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
- default_pre = "mpt" if model_name == "gpt-neox" else "default"
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
- assert field # tokenizer model
- self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
- self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
- assert field # token list
- self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
- if model_name == "llama-spm":
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
- assert field # token scores
- self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
- assert field # token types
- self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
- if model_name != "llama-spm":
- field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
- assert field # token merges
- self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
- self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
- self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
- self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
- self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
- self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
- if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
- self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
- @Model.register("GPTNeoXForCausalLM")
- class GPTNeoXModel(Model):
- model_arch = gguf.MODEL_ARCH.GPTNEOX
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- tensors: list[tuple[str, Tensor]] = []
- if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
- data_torch = torch.cat(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.weight")
- elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
- qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
- data_torch = torch.cat(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.bias")
- tensors.append((self.map_tensor_name(name), data_torch))
- return tensors
- @Model.register("BloomForCausalLM", "BloomModel")
- class BloomModel(Model):
- model_arch = gguf.MODEL_ARCH.BLOOM
- def set_gguf_parameters(self):
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(4 * n_embed)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- name = re.sub(r'transformer\.', '', name)
- tensors: list[tuple[str, Tensor]] = []
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
- data_torch = torch.cat(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
- data_torch = torch.cat(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.bias")
- tensors.append((self.map_tensor_name(name), data_torch))
- if name == "word_embeddings.weight":
- assert self.tensor_names is not None
- # TODO: tie them at runtime, don't duplicate in the model file
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
- return tensors
- @Model.register("MPTForCausalLM")
- class MPTModel(Model):
- model_arch = gguf.MODEL_ARCH.MPT
- def set_vocab(self):
- try:
- self._set_vocab_gpt2()
- except Exception:
- # Fallback for SEA-LION model
- self._set_vocab_sentencepiece()
- self.gguf_writer.add_add_bos_token(False)
- self.gguf_writer.add_pad_token_id(3)
- self.gguf_writer.add_eos_token_id(1)
- self.gguf_writer.add_unk_token_id(0)
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layers"]
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
- self.gguf_writer.add_head_count_kv(kv_n_heads)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if self.hparams["attn_config"]["clip_qkv"] is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
- if self.hparams["attn_config"]["alibi"]:
- self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
- else:
- self.gguf_writer.add_max_alibi_bias(0.0)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- if "scales" in name:
- new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
- new_name = new_name.replace("scales", "act.scales")
- else:
- new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
- return [(new_name, data_torch)]
- @Model.register("OrionForCausalLM")
- class OrionModel(Model):
- model_arch = gguf.MODEL_ARCH.ORION
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- # note: config provides rms norm but it is actually layer norm
- # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
- self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
- @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
- class BaichuanModel(Model):
- model_arch = gguf.MODEL_ARCH.BAICHUAN
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- tensors: list[tuple[str, Tensor]] = []
- if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
- logger.info(f"Unpacking and permuting layer {bid}")
- tensors = [
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
- self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
- self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
- self._reverse_hf_part(data_torch, 2)),
- ]
- else:
- tensors = [(self.map_tensor_name(name), data_torch)]
- return tensors
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- def _reverse_hf_permute_part(
- self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
- ) -> Tensor:
- r = weights.shape[0] // 3
- return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
- def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
- r = weights.shape[0] // 3
- return weights[r * n_part:r * n_part + r, ...]
- @Model.register("XverseForCausalLM")
- class XverseModel(Model):
- model_arch = gguf.MODEL_ARCH.XVERSE
- def set_vocab(self):
- assert (self.dir_model / "tokenizer.json").is_file()
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytes] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
- # because vocab_size is the count of items, and indexes start at 0.
- max_vocab_index = max(tokenizer.get_vocab().values())
- if max_vocab_index >= vocab_size:
- raise ValueError("Vocabulary size exceeds expected maximum size.")
- reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for token_id in range(vocab_size):
- token_text = reverse_vocab[token_id].encode('utf-8')
- # replace "\x00" to string with length > 0
- if token_text == b"\x00":
- toktype = gguf.TokenType.BYTE # special
- token_text = f"<{token_text}>".encode('utf-8')
- elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
- toktype = gguf.TokenType.BYTE # special
- elif reverse_vocab[token_id] in added_vocab:
- if tokenizer.added_tokens_decoder[token_id].special:
- toktype = gguf.TokenType.CONTROL
- else:
- toktype = gguf.TokenType.USER_DEFINED
- else:
- toktype = gguf.TokenType.NORMAL
- tokens.append(token_text)
- toktypes.append(toktype)
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith("q_proj.weight"):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
- if name.endswith("k_proj.weight"):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
- return [(self.map_tensor_name(name), data_torch)]
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- @Model.register("FalconForCausalLM", "RWForCausalLM")
- class FalconModel(Model):
- model_arch = gguf.MODEL_ARCH.FALCON
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- self.gguf_writer.add_context_length(2048) # not in config.json
- self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
- if "query_key_value" in name:
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
- head_dim = self.hparams["hidden_size"] // n_head
- qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("GPTBigCodeForCausalLM")
- class StarCoderModel(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- @Model.register("GPTRefactForCausalLM")
- class RefactModel(Model):
- model_arch = gguf.MODEL_ARCH.REFACT
- def set_vocab(self):
- super().set_vocab()
- # TODO: how to determine special FIM tokens automatically?
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
- special_vocab._set_special_token("prefix", 1)
- special_vocab._set_special_token("suffix", 3)
- special_vocab._set_special_token("middle", 2)
- special_vocab.chat_template = None # do not add it twice
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- block_count = self.hparams["n_layer"]
- # refact uses Alibi. So this is from config.json which might be used by training.
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(ff_dim)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- n_head = self.hparams["n_head"]
- n_head_kv = 1
- head_dim = self.hparams["n_embd"] // n_head
- tensors: list[tuple[str, Tensor]] = []
- if bid is not None:
- if name == f"transformer.h.{bid}.attn.kv.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
- elif name == f"transformer.h.{bid}.attn.q.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
- elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
- if len(tensors) == 0:
- tensors.append((self.map_tensor_name(name), data_torch))
- return tensors
- @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
- class StableLMModel(Model):
- model_arch = gguf.MODEL_ARCH.STABLELM
- def set_vocab(self):
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- else:
- # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
- self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
- self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
- self.gguf_writer.add_file_type(self.ftype)
- _q_norms: list[dict[str, Tensor]] | None = None
- _k_norms: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams["num_key_value_heads"]
- if name.find("q_layernorm.norms") != -1:
- assert bid is not None
- if self._q_norms is None:
- self._q_norms = [{} for _ in range(self.block_count)]
- self._q_norms[bid][name] = data_torch
- if len(self._q_norms[bid]) >= n_head:
- return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
- else:
- return []
- if name.find("k_layernorm.norms") != -1:
- assert bid is not None
- if self._k_norms is None:
- self._k_norms = [{} for _ in range(self.block_count)]
- self._k_norms[bid][name] = data_torch
- if len(self._k_norms[bid]) >= n_kv_head:
- return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
- datas: list[Tensor] = []
- # extract the norms in order
- for xid in range(n_head):
- ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
- datas.append(norms[ename])
- del norms[ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
- new_name = self.map_tensor_name(merged_name)
- return [(new_name, data_torch)]
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._q_norms is not None or self._k_norms is not None:
- # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
- norms = (
- [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
- ) + (
- [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
- )
- if len(norms) > 0:
- raise ValueError(f"Unprocessed norms: {norms}")
- @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
- class LlamaModel(Model):
- model_arch = gguf.MODEL_ARCH.LLAMA
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- try:
- self._set_vocab_llama_hf()
- except (FileNotFoundError, TypeError):
- # Llama 3
- self._set_vocab_gpt2()
- # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
- if self.hparams.get("vocab_size", 32000) == 32016:
- special_vocab = gguf.SpecialVocab(
- self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'eot']
- )
- special_vocab._set_special_token("prefix", 32007)
- special_vocab._set_special_token("suffix", 32008)
- special_vocab._set_special_token("middle", 32009)
- special_vocab._set_special_token("eot", 32010)
- special_vocab.add_to_gguf(self.gguf_writer)
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- if "add_prefix_space" in tokenizer_config_json:
- self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
- # Apply to granite small models only
- if self.hparams.get("vocab_size", 32000) == 49152:
- self.gguf_writer.add_add_bos_token(False)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- if "head_dim" in hparams:
- rope_dim = hparams["head_dim"]
- else:
- rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
- self.gguf_writer.add_rope_dimension_count(rope_dim)
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- @staticmethod
- def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- _experts: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- if name.endswith(("q_proj.weight", "q_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight", "k_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
- # process the experts separately
- if name.find("block_sparse_moe.experts") != -1:
- n_experts = self.hparams["num_local_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for wid in ["w1", "w2", "w3"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
- if rope_scaling.get("rope_type", '').lower() == "llama3":
- base = self.hparams.get("rope_theta", 10000.0)
- dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
- factor = rope_scaling.get("factor", 8.0)
- low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
- high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
- old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
- low_freq_wavelen = old_context_len / low_freq_factor
- high_freq_wavelen = old_context_len / high_freq_factor
- assert low_freq_wavelen != high_freq_wavelen
- rope_factors = []
- for freq in freqs:
- wavelen = 2 * math.pi / freq
- if wavelen < high_freq_wavelen:
- rope_factors.append(1)
- elif wavelen > low_freq_wavelen:
- rope_factors.append(factor)
- else:
- smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
- rope_factors.append(1 / ((1 - smooth) / factor + smooth))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("DeciLMForCausalLM")
- class DeciModel(Model):
- model_arch = gguf.MODEL_ARCH.DECI
- @staticmethod
- def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
- # DeciLM-specific code
- intermediate_size = int(2 * ffn_mult * n_embd / 3)
- return DeciModel._find_multiple(intermediate_size, 256)
- @staticmethod
- def _find_multiple(n: int, k: int) -> int:
- # DeciLM-specific code
- if n % k == 0:
- return n
- return n + k - (n % k)
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
- _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
- assert self.block_count == len(_block_configs)
- self._num_kv_heads = list()
- self._num_heads = list()
- _ffn_multipliers = list()
- # ***linear attention layer***
- # if n_heads_in_group is None and replace_with_linear is True
- # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
- # ***attention-free layer***
- # if n_heads_in_group is None and replace_with_linear is False
- # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
- # ***normal attention-layer***
- # if n_heads_in_group is not None, then
- # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
- # _num_heads[il] is num_attention_head
- for il in range(len(_block_configs)):
- if _block_configs[il]["attention"]["n_heads_in_group"] is None:
- if _block_configs[il]["attention"]["replace_with_linear"] is True:
- self._num_kv_heads.append(0)
- self._num_heads.append(self.hparams["num_attention_heads"])
- else:
- self._num_kv_heads.append(0)
- self._num_heads.append(0)
- else:
- self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
- self._num_heads.append(self.hparams["num_attention_heads"])
- _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
- assert self.block_count == len(self._num_kv_heads)
- assert self.block_count == len(self._num_heads)
- assert self.block_count == len(_ffn_multipliers)
- assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
- assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
- assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
- self._ffn_dims: list[int] = [
- DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
- for multiplier in _ffn_multipliers
- ]
- def set_vocab(self):
- # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
- # eos_token from '|eot_id|' to '|end_of_text|'
- if self.hparams.get("vocab_size", 128256) == 128256:
- tokens, toktypes, tokpre = self.get_vocab_base()
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
- else:
- # DeciLM-7B
- self._set_vocab_llama_hf()
- def set_gguf_parameters(self):
- if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
- assert self.block_count == len(self._num_kv_heads)
- assert self.block_count == len(self._num_heads)
- assert self.block_count == len(self._ffn_dims)
- if (rope_theta := self.hparams.get("rope_theta")) is not None:
- self.gguf_writer.add_rope_freq_base(rope_theta)
- self.gguf_writer.add_head_count_kv(self._num_kv_heads)
- self.gguf_writer.add_head_count(self._num_heads)
- self.gguf_writer.add_feed_forward_length(self._ffn_dims)
- self.gguf_writer.add_block_count(self.block_count)
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_file_type(self.ftype)
- else: # DeciLM-7B
- super().set_gguf_parameters()
- if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
- self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
- assert self.block_count == len(self._num_kv_heads)
- self.gguf_writer.add_head_count_kv(self._num_kv_heads)
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- if "head_dim" in hparams:
- rope_dim = hparams["head_dim"]
- else:
- rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
- self.gguf_writer.add_rope_dimension_count(rope_dim)
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- @staticmethod
- def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- if bid is not None:
- if "num_key_value_heads_per_layer" in self.hparams:
- n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
- elif "block_configs" in self.hparams:
- n_kv_head = self._num_kv_heads[bid]
- n_head = self._num_heads[bid]
- else:
- n_kv_head = self.hparams.get("num_key_value_heads")
- else:
- n_kv_head = self.hparams.get("num_key_value_heads")
- if name.endswith(("q_proj.weight", "q_proj.bias")):
- data_torch = DeciModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight", "k_proj.bias")):
- data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
- return [(self.map_tensor_name(name), data_torch)]
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
- if rope_scaling.get("rope_type", '').lower() == "llama3":
- base = self.hparams.get("rope_theta", 10000.0)
- dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
- factor = rope_scaling.get("factor", 8.0)
- low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
- high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
- old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
- low_freq_wavelen = old_context_len / low_freq_factor
- high_freq_wavelen = old_context_len / high_freq_factor
- assert low_freq_wavelen != high_freq_wavelen
- rope_factors = []
- for freq in freqs:
- wavelen = 2 * math.pi / freq
- if wavelen < high_freq_wavelen:
- rope_factors.append(1)
- elif wavelen > low_freq_wavelen:
- rope_factors.append(factor)
- else:
- smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
- rope_factors.append(1 / ((1 - smooth) / factor + smooth))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
- def prepare_tensors(self):
- super().prepare_tensors()
- @Model.register("BitnetForCausalLM")
- class BitnetModel(Model):
- model_arch = gguf.MODEL_ARCH.BITNET
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
- def weight_quant(self, weight: Tensor) -> Tensor:
- dtype = weight.dtype
- weight = weight.float()
- scale = weight.abs().mean().clamp(min=1e-5)
- iscale = 1 / scale
- # TODO: multiply by the scale directly instead of inverting it twice
- # (this is also unnecessarily doubly inverted upstream)
- # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
- result = (weight * iscale).round().clamp(-1, 1) / iscale
- return result.type(dtype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- new_name = self.map_tensor_name(name)
- if any(self.match_model_tensor_name(new_name, key, bid) for key in [
- gguf.MODEL_TENSOR.ATTN_Q,
- gguf.MODEL_TENSOR.ATTN_K,
- gguf.MODEL_TENSOR.ATTN_V,
- gguf.MODEL_TENSOR.ATTN_OUT,
- gguf.MODEL_TENSOR.FFN_UP,
- gguf.MODEL_TENSOR.FFN_DOWN,
- gguf.MODEL_TENSOR.FFN_GATE,
- ]):
- # transform weight into 1/0/-1 (in fp32)
- data_torch = self.weight_quant(data_torch)
- yield (new_name, data_torch)
- @Model.register("GrokForCausalLM")
- class GrokModel(Model):
- model_arch = gguf.MODEL_ARCH.GROK
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- _experts: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find(".moe.") != -1:
- n_experts = self.hparams["num_local_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for wid in ["linear", "linear_1", "linear_v"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("DbrxForCausalLM")
- class DbrxModel(Model):
- model_arch = gguf.MODEL_ARCH.DBRX
- def set_gguf_parameters(self):
- ffn_config = self.hparams["ffn_config"]
- attn_config = self.hparams["attn_config"]
- self.gguf_writer.add_block_count(self.hparams["n_layers"])
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
- self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
- self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
- self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
- self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
- self.gguf_writer.add_layer_norm_eps(1e-5)
- self.gguf_writer.add_file_type(self.ftype)
- logger.info(f"gguf: file type = {self.ftype}")
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- n_expert = self.hparams["ffn_config"]["moe_num_experts"]
- n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
- n_embd = self.hparams["d_model"]
- # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
- # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
- # But llama.cpp moe graph works differently
- # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
- # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
- exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
- "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- experts = False
- for exp_tensor_name in exp_tensor_names.keys():
- if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
- experts = True
- data_torch = data_torch.view(n_expert, n_ff, n_embd)
- if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
- data_torch = data_torch.permute(*permute_tensor)
- break
- # map tensor names
- # In MoE models the ffn tensors are typically most of the model weights,
- # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
- # Every other model has the weight names ending in .weight,
- # let's assume that is the convention which is not the case for dbrx:
- # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
- new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
- return [(new_name, data_torch)]
- def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
- del name, new_name, bid # unused
- return n_dims > 1
- @Model.register("MiniCPMForCausalLM")
- class MiniCPMModel(Model):
- model_arch = gguf.MODEL_ARCH.MINICPM
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- embedding_scale = float(self.hparams["scale_emb"])
- self.gguf_writer.add_embedding_scale(embedding_scale)
- logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
- residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
- self.gguf_writer.add_residual_scale(residual_scale)
- logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
- logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
- self.gguf_writer.add_logit_scale(logit_scale)
- logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
- if self.hparams.get("rope_scaling") is not None:
- if self.hparams["rope_scaling"].get("type") == "longrope":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
- logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
- rope_scaling = self.find_hparam(['rope_scaling'], True)
- if rope_scaling is not None:
- long_factors = rope_scaling.get('long_factor', None)
- short_factors = rope_scaling.get('short_factor', None)
- if long_factors is None or short_factors is None:
- raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
- if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
- raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith(("q_proj.weight")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("MiniCPM3ForCausalLM")
- class MiniCPM3Model(Model):
- model_arch = gguf.MODEL_ARCH.MINICPM3
- def set_gguf_parameters(self):
- hparams = self.hparams
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(self.block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
- self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
- self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
- self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
- self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- rope_scaling = self.find_hparam(['rope_scaling'], True)
- if rope_scaling is not None:
- rope_dims = self.hparams["qk_rope_head_dim"]
- long_factors = rope_scaling.get('long_factor', None)
- short_factors = rope_scaling.get('short_factor', None)
- if long_factors is None or short_factors is None:
- raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
- if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
- raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- @Model.register("QWenLMHeadModel")
- class QwenModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN
- @staticmethod
- def token_bytes_to_string(b):
- from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
- byte_encoder = bytes_to_unicode()
- return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
- @staticmethod
- def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
- parts = [bytes([b]) for b in token]
- while True:
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- if min_rank is None or (max_rank is not None and min_rank >= max_rank):
- break
- assert min_idx is not None
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
- return parts
- def set_vocab(self):
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- @Model.register("Qwen2ForCausalLM")
- class Qwen2Model(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- self._set_vocab_gpt2()
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "yarn":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
- @Model.register("Qwen2VLForConditionalGeneration")
- class Qwen2VLModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2VL
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- mrope_section = self.hparams["rope_scaling"]["mrope_section"]
- mrope_section += [0] * max(0, 4 - len(mrope_section))
- self.gguf_writer.add_rope_dimension_sections(mrope_section)
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- self._set_vocab_gpt2()
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- for name, data in super().get_tensors():
- if name.startswith("visual."):
- continue
- yield name, data
- @Model.register("WavTokenizerDec")
- class WavTokenizerDecModel(Model):
- model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- if \
- name.endswith("codebook.cluster_size") or \
- name.endswith("codebook.embed_avg") or \
- name.endswith("codebook.inited"):
- logger.debug(f"Skipping {name!r}")
- return []
- logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
- return [(self.map_tensor_name(name), data_torch)]
- def set_vocab(self):
- self._set_vocab_none()
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
- self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
- self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
- self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
- self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
- self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
- self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
- self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
- self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
- self.gguf_writer.add_causal_attention(False)
- @Model.register("Qwen2MoeForCausalLM")
- class Qwen2MoeModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2MOE
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- if (n_experts := self.hparams.get("num_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
- self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
- logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
- if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
- self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
- logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
- _experts: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find("experts") != -1:
- n_experts = self.hparams["num_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("GPT2LMHeadModel")
- class GPT2Model(Model):
- model_arch = gguf.MODEL_ARCH.GPT2
- def set_gguf_parameters(self):
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_context_length(self.hparams["n_ctx"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- tensors: list[tuple[str, Tensor]] = []
- # we don't need these
- if name.endswith((".attn.bias", ".attn.masked_bias")):
- return tensors
- if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
- data_torch = data_torch.transpose(1, 0)
- new_name = self.map_tensor_name(name)
- tensors.append((new_name, data_torch))
- # note: GPT2 output is tied to (same as) wte in original model
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
- return tensors
- @Model.register("PhiForCausalLM")
- class Phi2Model(Model):
- model_arch = gguf.MODEL_ARCH.PHI2
- def set_gguf_parameters(self):
- block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
- rot_pct = self.find_hparam(["partial_rotary_factor"])
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(4 * n_embd)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_add_bos_token(False)
- @Model.register("Phi3ForCausalLM")
- class Phi3MiniModel(Model):
- model_arch = gguf.MODEL_ARCH.PHI3
- def set_vocab(self):
- # Phi-4 model uses GPT2Tokenizer
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- tokenizer_class = tokenizer_config_json['tokenizer_class']
- if tokenizer_class == 'GPT2Tokenizer':
- return self._set_vocab_gpt2()
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- if not tokenizer_path.is_file():
- raise ValueError(f'Error: Missing {tokenizer_path}')
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if token_id >= vocab_size:
- logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
- for token_id, foken_data in added_tokens_decoder.items():
- token_id = int(token_id)
- token = foken_data["content"].encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
- if tokens[token_id] != token:
- logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
- tokenizer_file = self.dir_model / 'tokenizer.json'
- if tokenizer_file.is_file():
- with open(tokenizer_file, "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- added_tokens = tokenizer_json.get("added_tokens", [])
- for foken_data in added_tokens:
- token_id = int(foken_data["id"])
- token = foken_data["content"].encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
- if tokens[token_id] != token:
- logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
- rms_eps = self.find_hparam(["rms_norm_eps"])
- max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
- orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
- rope_dims = n_embd // n_head
- self.gguf_writer.add_context_length(max_pos_embds)
- self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
- self.gguf_writer.add_rope_dimension_count(rope_dims)
- self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
- self.gguf_writer.add_file_type(self.ftype)
- sliding_window = self.hparams.get("sliding_window")
- # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
- if sliding_window is None:
- sliding_window = 0
- self.gguf_writer.add_sliding_window(sliding_window)
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
- orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
- rope_dims = n_embd // n_head
- # write rope scaling for long context (128k) model
- rope_scaling = self.find_hparam(['rope_scaling'], True)
- if rope_scaling is None:
- return
- scale = max_pos_embds / orig_max_pos_embds
- rope_scaling_type = rope_scaling.get('type', '').lower()
- if len(rope_scaling_type) == 0:
- raise KeyError('Missing the required key rope_scaling.type')
- if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
- attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
- elif rope_scaling_type == 'yarn':
- attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
- else:
- raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
- self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
- long_factors = rope_scaling.get('long_factor', None)
- short_factors = rope_scaling.get('short_factor', None)
- if long_factors is None or short_factors is None:
- raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
- if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
- raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
- @Model.register("PlamoForCausalLM")
- class PlamoModel(Model):
- model_arch = gguf.MODEL_ARCH.PLAMO
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(4096) # not in config.json
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
- self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
- def shuffle_attn_q_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(8, 5, 128, 5120)
- data_torch = torch.permute(data_torch, (1, 0, 2, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def shuffle_attn_output_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(5120, 8, 5, 128)
- data_torch = torch.permute(data_torch, (0, 2, 1, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- new_name = self.map_tensor_name(name)
- # shuffle for broadcasting of gqa in ggml_mul_mat
- if new_name.endswith("attn_q.weight"):
- data_torch = self.shuffle_attn_q_weight(data_torch)
- elif new_name.endswith("attn_output.weight"):
- data_torch = self.shuffle_attn_output_weight(data_torch)
- return [(new_name, data_torch)]
- @Model.register("CodeShellForCausalLM")
- class CodeShellModel(Model):
- model_arch = gguf.MODEL_ARCH.CODESHELL
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_rope_freq_base(10000.0)
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- new_name = self.map_tensor_name(name)
- tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
- assert self.tensor_names is not None
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
- # copy tok_embd.weight to output.weight
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
- return tensors
- @Model.register("InternLM2ForCausalLM")
- class InternLM2Model(Model):
- model_arch = gguf.MODEL_ARCH.INTERNLM2
- def set_vocab(self):
- # (TODO): Is there a better way?
- # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
- # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
- # recognized as an empty string in C++.
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
- tokenizer_path = self.dir_model / 'tokenizer.model'
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- if not tokenizer_path.is_file():
- logger.error(f'Error: Missing {tokenizer_path}')
- sys.exit(1)
- sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- for token_id in range(vocab_size):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- if text == b"\x00":
- # (TODO): fixme
- # Hack here and replace the \x00 characters.
- logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
- text = "🐉".encode("utf-8")
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- # take care of ununsed raw token
- if piece.startswith('[UNUSED'):
- toktype = SentencePieceTokenTypes.UNUSED
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- tokens.append(key.encode("utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
- chat_eos_token = '<|im_end|>'
- chat_eos_token_id = None
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
- for token_id, foken_data in added_tokens_decoder.items():
- token_id = int(token_id)
- token = foken_data["content"]
- if token == chat_eos_token:
- chat_eos_token_id = token_id
- token = token.encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
- if tokens[token_id] != token:
- logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
- tokenizer_file = self.dir_model / 'tokenizer.json'
- if tokenizer_file.is_file():
- with open(tokenizer_file, "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- added_tokens = tokenizer_json.get("added_tokens", [])
- for foken_data in added_tokens:
- token_id = int(foken_data["id"])
- token = foken_data["content"]
- if token == chat_eos_token:
- chat_eos_token_id = token_id
- token = token.encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
- if tokens[token_id] != token:
- logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- old_eos = special_vocab.special_token_ids["eos"]
- if chat_eos_token_id is not None:
- # For the chat model, we replace the eos with '<|im_end|>'.
- # TODO: this is a hack, should be fixed
- # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
- special_vocab.special_token_ids["eos"] = chat_eos_token_id
- logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
- " in chat mode so that the conversation can end normally.")
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- self.gguf_writer.add_file_type(self.ftype)
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- num_heads = self.hparams["num_attention_heads"]
- num_kv_heads = self.hparams["num_key_value_heads"]
- n_embd = self.hparams["hidden_size"]
- q_per_kv = num_heads // num_kv_heads
- head_dim = n_embd // num_heads
- num_groups = num_heads // q_per_kv
- if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
- qkv = data_torch
- qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
- q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
- # The model weights of q and k equire additional reshape.
- q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
- k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
- v = v.reshape((-1, v.shape[-1]))
- return [
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
- ]
- else:
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
- class BertModel(Model):
- model_arch = gguf.MODEL_ARCH.BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.vocab_size = None
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_causal_attention(False)
- # get pooling path
- pooling_path = None
- module_path = self.dir_model / "modules.json"
- if module_path.is_file():
- with open(module_path, encoding="utf-8") as f:
- modules = json.load(f)
- for mod in modules:
- if mod["type"] == "sentence_transformers.models.Pooling":
- pooling_path = mod["path"]
- break
- # get pooling type
- if pooling_path is not None:
- with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
- pooling = json.load(f)
- if pooling["pooling_mode_mean_tokens"]:
- pooling_type = gguf.PoolingType.MEAN
- elif pooling["pooling_mode_cls_token"]:
- pooling_type = gguf.PoolingType.CLS
- else:
- raise NotImplementedError("Only MEAN and CLS pooling types supported")
- self.gguf_writer.add_pooling_type(pooling_type)
- def set_vocab(self):
- tokens, toktypes, tokpre = self.get_vocab_base()
- self.vocab_size = len(tokens)
- # we need this to validate the size of the token_type embeddings
- # though currently we are passing all zeros to the token_type embeddings
- # "Sequence A" or "Sequence B"
- self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
- # convert to phantom space vocab
- def phantom(tok):
- if tok.startswith("[") and tok.endswith("]"):
- return tok
- if tok.startswith("##"):
- return tok[2:]
- return "\u2581" + tok
- tokens = list(map(phantom, tokens))
- # add vocab to gguf
- self.gguf_writer.add_tokenizer_model("bert")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- # handle special tokens
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- if name.startswith("bert."):
- name = name[5:]
- if name.endswith(".gamma"):
- name = name[:-6] + ".weight"
- if name.endswith(".beta"):
- name = name[:-5] + ".bias"
- # we are only using BERT for embeddings so we don't need the pooling layer
- if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
- return [] # we don't need these
- if name.startswith("cls.predictions"):
- return []
- if name.startswith("cls.seq_relationship"):
- return []
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("RobertaModel")
- class RobertaModel(BertModel):
- model_arch = gguf.MODEL_ARCH.BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # we need the pad_token_id to know how to chop down position_embd matrix
- if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
- self._position_offset = 1 + pad_token_id
- if "max_position_embeddings" in self.hparams:
- self.hparams["max_position_embeddings"] -= self._position_offset
- else:
- self._position_offset = None
- def set_vocab(self):
- """Support BPE tokenizers for roberta models"""
- bpe_tok_path = self.dir_model / "tokenizer.json"
- if bpe_tok_path.exists():
- self._set_vocab_gpt2()
- self.gguf_writer.add_add_bos_token(True)
- self.gguf_writer.add_add_eos_token(True)
- # we need this to validate the size of the token_type embeddings
- # though currently we are passing all zeros to the token_type embeddings
- # "Sequence A" or "Sequence B"
- self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
- else:
- return super().set_vocab()
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # if name starts with "roberta.", remove the prefix
- # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
- if name.startswith("roberta."):
- name = name[8:]
- # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
- if name == "embeddings.position_embeddings.weight":
- if self._position_offset is not None:
- data_torch = data_torch[self._position_offset:,:]
- return super().modify_tensors(data_torch, name, bid)
- @Model.register("NomicBertModel")
- class NomicBertModel(BertModel):
- model_arch = gguf.MODEL_ARCH.NOMIC_BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # the HF config claims n_ctx=8192, but it uses RoPE scaling
- self.hparams["n_ctx"] = 2048
- # SwigLU activation
- assert self.hparams["activation_function"] == "swiglu"
- # this doesn't do anything in the HF version
- assert self.hparams["causal"] is False
- # no bias tensors
- assert self.hparams["qkv_proj_bias"] is False
- assert self.hparams["mlp_fc1_bias"] is False
- assert self.hparams["mlp_fc2_bias"] is False
- # norm at end of layer
- assert self.hparams["prenorm"] is False
- # standard RoPE
- assert self.hparams["rotary_emb_fraction"] == 1.0
- assert self.hparams["rotary_emb_interleaved"] is False
- assert self.hparams["rotary_emb_scale_base"] is None
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
- class XLMRobertaModel(BertModel):
- model_arch = gguf.MODEL_ARCH.BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # we need the pad_token_id to know how to chop down position_embd matrix
- if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
- self._position_offset = 1 + pad_token_id
- if "max_position_embeddings" in self.hparams:
- self.hparams["max_position_embeddings"] -= self._position_offset
- else:
- self._position_offset = None
- def set_vocab(self):
- # to avoid TypeError: Descriptors cannot be created directly
- # exception when importing sentencepiece_model_pb2
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
- tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
- sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
- remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
- precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- if vocab_size > len(tokens):
- pad_count = vocab_size - len(tokens)
- logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
- for i in range(1, pad_count + 1):
- tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.UNUSED)
- # realign tokens (see HF tokenizer code)
- tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
- scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
- toktypes = [
- SentencePieceTokenTypes.CONTROL,
- SentencePieceTokenTypes.CONTROL,
- SentencePieceTokenTypes.CONTROL,
- SentencePieceTokenTypes.UNKNOWN,
- ] + toktypes[3:-1]
- self.gguf_writer.add_tokenizer_model("t5")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
- self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
- self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
- if precompiled_charsmap:
- self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- self.gguf_writer.add_add_bos_token(True)
- self.gguf_writer.add_add_eos_token(True)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # if name starts with "roberta.", remove the prefix
- # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
- if name.startswith("roberta."):
- name = name[8:]
- # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
- if name == "embeddings.position_embeddings.weight":
- if self._position_offset is not None:
- data_torch = data_torch[self._position_offset:,:]
- return super().modify_tensors(data_torch, name, bid)
- @Model.register("GemmaForCausalLM")
- class GemmaModel(Model):
- model_arch = gguf.MODEL_ARCH.GEMMA
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- # TODO: these special tokens should be exported only for the CodeGemma family
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
- special_vocab._set_special_token("prefix", 67)
- special_vocab._set_special_token("suffix", 69)
- special_vocab._set_special_token("middle", 68)
- special_vocab._set_special_token("fsep", 70)
- special_vocab._set_special_token("eot", 107)
- special_vocab.chat_template = None # do not add it twice
- special_vocab.add_to_gguf(self.gguf_writer)
- self.gguf_writer.add_add_space_prefix(False)
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_key_length(hparams["head_dim"])
- self.gguf_writer.add_value_length(hparams["head_dim"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
- # To prevent errors, skip loading lm_head.weight.
- if name == "lm_head.weight":
- logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
- return []
- # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
- if name.endswith("norm.weight"):
- data_torch = data_torch + 1
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("Gemma2ForCausalLM")
- class Gemma2Model(Model):
- model_arch = gguf.MODEL_ARCH.GEMMA2
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- self.gguf_writer.add_add_space_prefix(False)
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_key_length(hparams["head_dim"])
- self.gguf_writer.add_value_length(hparams["head_dim"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_attn_logit_softcapping(
- self.hparams["attn_logit_softcapping"]
- )
- self.gguf_writer.add_final_logit_softcapping(
- self.hparams["final_logit_softcapping"]
- )
- self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
- # To prevent errors, skip loading lm_head.weight.
- if name == "lm_head.weight":
- logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
- return []
- # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
- if name.endswith("norm.weight"):
- data_torch = data_torch + 1
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("Starcoder2ForCausalLM")
- class StarCoder2Model(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER2
- @Model.register("Rwkv6ForCausalLM")
- class Rwkv6Model(Model):
- model_arch = gguf.MODEL_ARCH.RWKV6
- def set_vocab(self):
- assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
- vocab_size = self.hparams.get("vocab_size", 65536)
- tokens: list[bytes] = ['<s>'.encode("utf-8")]
- toktypes: list[int] = [gguf.TokenType.CONTROL]
- with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
- lines = f.readlines()
- for line in lines:
- parts = line.split(' ')
- assert len(parts) >= 3
- token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
- token = token.encode("utf-8") if isinstance(token, str) else token
- assert isinstance(token, bytes)
- assert len(token) == token_len
- token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
- tokens.append(token_text.encode("utf-8"))
- toktypes.append(gguf.TokenType.NORMAL)
- remainder = vocab_size - len(tokens)
- assert remainder >= 0
- for i in range(len(tokens), vocab_size):
- tokens.append(f"[PAD{i}]".encode("utf-8"))
- toktypes.append(gguf.TokenType.UNUSED)
- self.gguf_writer.add_tokenizer_model("rwkv")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
- special_vocab.chat_template = "rwkv-world"
- # hack: Add '\n\n' as the EOT token to make it chat normally
- special_vocab._set_special_token("eot", 261)
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_size = self.hparams["head_size"]
- hidden_size = self.hparams["hidden_size"]
- layer_norm_eps = self.hparams["layer_norm_epsilon"]
- rescale_every_n_layers = self.hparams["rescale_every"]
- intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
- time_mix_extra_dim = 64 if hidden_size == 4096 else 32
- time_decay_extra_dim = 128 if hidden_size == 4096 else 64
- # RWKV isn't context limited
- self.gguf_writer.add_context_length(1048576)
- self.gguf_writer.add_embedding_length(hidden_size)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
- self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
- self.gguf_writer.add_wkv_head_size(head_size)
- self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
- self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
- self.gguf_writer.add_feed_forward_length(intermediate_size)
- self.gguf_writer.add_file_type(self.ftype)
- # required by llama.cpp, unused
- self.gguf_writer.add_head_count(0)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- new_name = self.map_tensor_name(name)
- if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
- new_name += ".weight"
- if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
- data_torch = data_torch.transpose(0, 1)
- if new_name.endswith("time_mix_w2.weight"):
- data_torch = data_torch.permute(0, 2, 1)
- if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
- data_torch = data_torch.squeeze()
- rescale_every_n_layers = self.hparams["rescale_every"]
- if rescale_every_n_layers > 0:
- if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
- data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
- yield (new_name, data_torch)
- @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
- class MambaModel(Model):
- model_arch = gguf.MODEL_ARCH.MAMBA
- def set_vocab(self):
- vocab_size = self.hparams["vocab_size"]
- # Round vocab size to next multiple of 8
- pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
- # pad using ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
- self.hparams["vocab_size"] = vocab_size
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- elif (self.dir_model / "tokenizer.model").is_file():
- self._set_vocab_sentencepiece()
- else:
- # Use the GPT-NeoX tokenizer when no tokenizer files are present
- self._set_vocab_builtin("gpt-neox", vocab_size)
- def set_gguf_parameters(self):
- d_model = self.find_hparam(["hidden_size", "d_model"])
- d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
- d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
- d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
- # ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
- dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
- rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
- use_dt_b_c_norm = False
- # For falconmamba we do apply RMS norm on B / DT and C layers
- if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
- use_dt_b_c_norm = True
- # Fail early for models which don't have a block expansion factor of 2
- assert d_inner == 2 * d_model
- self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
- self.gguf_writer.add_embedding_length(d_model)
- self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
- self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
- self.gguf_writer.add_block_count(self.block_count)
- self.gguf_writer.add_ssm_conv_kernel(d_conv)
- self.gguf_writer.add_ssm_inner_size(d_inner)
- self.gguf_writer.add_ssm_state_size(d_state)
- self.gguf_writer.add_ssm_time_step_rank(dt_rank)
- self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
- self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
- self.gguf_writer.add_file_type(self.ftype)
- _tok_embd = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
- tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
- new_name = self.map_tensor_name(name)
- if name.endswith(".A_log"):
- logger.debug("A_log --> A ==> " + new_name)
- data_torch = -torch.exp(data_torch)
- # assuming token_embd.weight is seen before output.weight
- if self._tok_embd is not None and new_name == output_name:
- if torch.equal(self._tok_embd, data_torch):
- logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
- return []
- elif new_name == tok_embd_name:
- self._tok_embd = data_torch
- return [(new_name, data_torch)]
- @Model.register("CohereForCausalLM")
- class CommandR2Model(Model):
- model_arch = gguf.MODEL_ARCH.COMMAND_R
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # max_position_embeddings = 8192 in config.json but model was actually
- # trained on 128k context length
- # aya-23 models don't have model_max_length specified
- self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
- @Model.register("Cohere2ForCausalLM")
- class Cohere2Model(Model):
- model_arch = gguf.MODEL_ARCH.COHERE2
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
- self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
- self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
- rotary_pct = self.hparams["rotary_pct"]
- hidden_size = self.hparams["hidden_size"]
- num_attention_heads = self.hparams["num_attention_heads"]
- self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
- @Model.register("OlmoForCausalLM")
- @Model.register("OLMoForCausalLM")
- class OlmoModel(Model):
- model_arch = gguf.MODEL_ARCH.OLMO
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_layer_norm_eps(1e-5)
- clip_qkv = self.hparams.get("clip_qkv")
- if clip_qkv is not None:
- self.gguf_writer.add_clamp_kqv(clip_qkv)
- # Same as super class, but permuting q_proj, k_proj
- # Copied from: LlamaModel
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- if name.endswith("q_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("Olmo2ForCausalLM")
- class Olmo2Model(Model):
- model_arch = gguf.MODEL_ARCH.OLMO2
- @Model.register("OlmoeForCausalLM")
- class OlmoeModel(Model):
- model_arch = gguf.MODEL_ARCH.OLMOE
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_layer_norm_rms_eps(1e-5)
- if (n_experts := self.hparams.get("num_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- _experts: list[dict[str, Tensor]] | None = None
- # Copied from: Qwen2MoeModel
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find("experts") != -1:
- n_experts = self.hparams["num_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- # Copied from: Qwen2MoeModel
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("JinaBertModel", "JinaBertForMaskedLM")
- class JinaBertV2Model(BertModel):
- model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.intermediate_size = self.hparams["intermediate_size"]
- def get_tensors(self):
- for name, data in super().get_tensors():
- if 'gated_layer' in name:
- d1 = data[:self.intermediate_size, :]
- name1 = name.replace('gated_layers', 'gated_layers_w')
- name1 = name1.replace('up_gated_layer', 'gated_layers_v')
- d2 = data[self.intermediate_size:, :]
- name2 = name.replace('gated_layers', 'gated_layers_v')
- name2 = name2.replace('up_gated_layer', 'gated_layers_w')
- yield name1, d1
- yield name2, d2
- continue
- yield name, data
- def set_vocab(self):
- tokenizer_class = 'BertTokenizer'
- with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_class = json.load(f)['tokenizer_class']
- if tokenizer_class == 'BertTokenizer':
- super().set_vocab()
- elif tokenizer_class == 'RobertaTokenizer':
- self._set_vocab_gpt2()
- self.gguf_writer.add_token_type_count(2)
- else:
- raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
- self.gguf_writer.add_add_bos_token(True)
- self.gguf_writer.add_add_eos_token(True)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # if name starts with "bert.", remove the prefix
- # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
- if name.startswith("bert."):
- name = name[5:]
- return super().modify_tensors(data_torch, name, bid)
- @Model.register("OpenELMForCausalLM")
- class OpenELMModel(Model):
- model_arch = gguf.MODEL_ARCH.OPENELM
- @staticmethod
- def _make_divisible(v: float | int, divisor: int) -> int:
- # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
- new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
- ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
- self._n_embd: int = self.hparams["model_dim"]
- self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
- self._num_query_heads: list[int] = self.hparams["num_query_heads"]
- self._ffn_dims: list[int] = [
- OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
- for multiplier in ffn_multipliers
- ]
- assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
- assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
- # Uses the tokenizer from meta-llama/Llama-2-7b-hf
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
- def set_gguf_parameters(self):
- n_embd = self._n_embd
- head_dim = self.hparams["head_dim"]
- rot_pct = 1.0
- assert self.block_count == len(self._num_kv_heads)
- assert self.block_count == len(self._num_query_heads)
- assert self.block_count == len(self._ffn_dims)
- self.gguf_writer.add_block_count(self.block_count)
- self.gguf_writer.add_context_length(self.hparams["max_context_length"])
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(self._ffn_dims)
- self.gguf_writer.add_head_count(self._num_query_heads)
- self.gguf_writer.add_head_count_kv(self._num_kv_heads)
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
- # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
- self.gguf_writer.add_layer_norm_rms_eps(1e-6)
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
- self.gguf_writer.add_key_length(head_dim)
- self.gguf_writer.add_value_length(head_dim)
- self.gguf_writer.add_file_type(self.ftype)
- def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
- if "n_layers" in keys:
- return self.hparams["num_transformer_layers"]
- return super().find_hparam(keys, optional)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # split ff
- if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
- ff_dim = self._ffn_dims[bid]
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
- return
- yield (self.map_tensor_name(name), data_torch)
- @Model.register("ArcticForCausalLM")
- class ArcticModel(Model):
- model_arch = gguf.MODEL_ARCH.ARCTIC
- def set_vocab(self):
- # The reason for using a custom implementation here is that the
- # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
- # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- if not tokenizer_path.is_file():
- logger.error(f'Error: Missing {tokenizer_path}')
- sys.exit(1)
- # Read the whole vocabulary from the tokenizer.model file
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- # Use the added_tokens_decoder field from tokeniser_config.json as the source
- # of information about added/redefined tokens and modify them accordingly.
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- if "added_tokens_decoder" in tokenizer_config_json:
- added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
- for token_id, token_json in added_tokens_decoder.items():
- token_id = int(token_id)
- if token_id >= vocab_size:
- logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
- token_content = token_json["content"]
- token_type = SentencePieceTokenTypes.USER_DEFINED
- token_score = -10000.0
- # Map unk_token to UNKNOWN, other special tokens to CONTROL
- # Set the score to 0.0 as in the original tokenizer.model
- if ("special" in token_json) and token_json["special"]:
- if token_content == tokenizer_config_json["unk_token"]:
- token_type = SentencePieceTokenTypes.UNKNOWN
- else:
- token_type = SentencePieceTokenTypes.CONTROL
- token_score = 0.0
- logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
- tokens[token_id] = token_content.encode("utf-8")
- toktypes[token_id] = token_type
- scores[token_id] = token_score
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
- _experts: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- if name.endswith("q_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
- # process the experts separately
- if name.find("block_sparse_moe.experts") != -1:
- n_experts = self.hparams["num_local_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for wid in ["w1", "w2", "w3"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("DeepseekForCausalLM")
- class DeepseekModel(Model):
- model_arch = gguf.MODEL_ARCH.DEEPSEEK
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- self._set_vocab_gpt2()
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- if "head_dim" in hparams:
- rope_dim = hparams["head_dim"]
- else:
- rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
- self.gguf_writer.add_rope_dimension_count(rope_dim)
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
- self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
- self.gguf_writer.add_expert_weights_scale(1.0)
- self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
- self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
- _experts: list[dict[str, Tensor]] | None = None
- @staticmethod
- def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- if name.endswith(("q_proj.weight", "q_proj.bias")):
- data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight", "k_proj.bias")):
- data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
- # process the experts separately
- if name.find("mlp.experts") != -1:
- n_experts = self.hparams["n_routed_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("DeepseekV2ForCausalLM")
- @Model.register("DeepseekV3ForCausalLM")
- class DeepseekV2Model(Model):
- model_arch = gguf.MODEL_ARCH.DEEPSEEK2
- def set_vocab(self):
- self._set_vocab_gpt2()
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
- self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
- self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
- self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
- self.gguf_writer.add_value_length(hparams["v_head_dim"])
- self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
- self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
- self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
- self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
- self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
- if hparams["scoring_func"] == "sigmoid":
- self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
- elif hparams["scoring_func"] == "softmax":
- self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
- else:
- raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
- self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "yarn":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
- self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
- _experts: list[dict[str, Tensor]] | None = None
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # rename e_score_correction_bias tensors
- if name.endswith("e_score_correction_bias"):
- name = name.replace("e_score_correction_bias", "e_score_correction.bias")
- # skip Multi-Token Prediction (MTP) layers
- block_count = self.hparams["num_hidden_layers"]
- match = re.match(r"model.layers.(\d+)", name)
- if match and int(match.group(1)) >= block_count:
- return []
- # process the experts separately
- if name.find("mlp.experts") != -1:
- n_experts = self.hparams["n_routed_experts"]
- assert bid is not None
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
- data_torch = torch.stack(datas, dim=0)
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
- new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
- return [(self.map_tensor_name(name), data_torch)]
- def prepare_tensors(self):
- super().prepare_tensors()
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
- @Model.register("T5WithLMHeadModel")
- @Model.register("T5ForConditionalGeneration")
- @Model.register("MT5ForConditionalGeneration")
- @Model.register("UMT5ForConditionalGeneration")
- class T5Model(Model):
- model_arch = gguf.MODEL_ARCH.T5
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.shared_token_embeddings_found = False
- def set_vocab(self):
- # to avoid TypeError: Descriptors cannot be created directly
- # exception when importing sentencepiece_model_pb2
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
- tokenizer_path = self.dir_model / 'tokenizer.model'
- # many older models use spiece.model tokenizer model filename
- if not tokenizer_path.is_file():
- tokenizer_path = self.dir_model / 'spiece.model'
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
- sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- # some models like Pile-T5 family use BPE tokenizer instead of Unigram
- if sentencepiece_model.trainer_spec.model_type == 2: # BPE
- # assure the tokenizer model file name is correct
- assert tokenizer_path.name == 'tokenizer.model'
- return self._set_vocab_sentencepiece()
- else:
- assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
- remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
- precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if token_id >= vocab_size:
- logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if vocab_size > len(tokens):
- pad_count = vocab_size - len(tokens)
- logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
- for i in range(1, pad_count + 1):
- tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.UNUSED)
- self.gguf_writer.add_tokenizer_model("t5")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
- self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
- if precompiled_charsmap:
- self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- self.gguf_writer.add_add_bos_token(False)
- self.gguf_writer.add_add_eos_token(True)
- def set_gguf_parameters(self):
- if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
- logger.warning("Couldn't find context length in config.json, assuming default value of 512")
- n_ctx = 512
- self.gguf_writer.add_context_length(n_ctx)
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
- self.gguf_writer.add_block_count(self.hparams["num_layers"])
- self.gguf_writer.add_head_count(self.hparams["num_heads"])
- self.gguf_writer.add_key_length(self.hparams["d_kv"])
- self.gguf_writer.add_value_length(self.hparams["d_kv"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
- # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
- # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
- # and decoder and ignore the remaining ones.
- if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
- if not self.shared_token_embeddings_found:
- name = "shared.weight"
- self.shared_token_embeddings_found = True
- else:
- logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
- return []
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("T5EncoderModel")
- class T5EncoderModel(Model):
- model_arch = gguf.MODEL_ARCH.T5ENCODER
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.shared_token_embeddings_found = False
- def set_vocab(self):
- # to avoid TypeError: Descriptors cannot be created directly
- # exception when importing sentencepiece_model_pb2
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
- tokenizer_path = self.dir_model / 'tokenizer.model'
- # many older models use spiece.model tokenizer model filename
- if not tokenizer_path.is_file():
- tokenizer_path = self.dir_model / 'spiece.model'
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
- sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- # some models like Pile-T5 family use BPE tokenizer instead of Unigram
- if sentencepiece_model.trainer_spec.model_type == 2: # BPE
- # assure the tokenizer model file name is correct
- assert tokenizer_path.name == 'tokenizer.model'
- return self._set_vocab_sentencepiece()
- else:
- assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
- remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
- precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if token_id >= vocab_size:
- logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if vocab_size > len(tokens):
- pad_count = vocab_size - len(tokens)
- logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
- for i in range(1, pad_count + 1):
- tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.UNUSED)
- self.gguf_writer.add_tokenizer_model("t5")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
- self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
- if precompiled_charsmap:
- self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- self.gguf_writer.add_add_bos_token(False)
- self.gguf_writer.add_add_eos_token(True)
- def set_gguf_parameters(self):
- if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
- logger.warning("Couldn't find context length in config.json, assuming default value of 512")
- n_ctx = 512
- self.gguf_writer.add_context_length(n_ctx)
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
- self.gguf_writer.add_block_count(self.hparams["num_layers"])
- self.gguf_writer.add_head_count(self.hparams["num_heads"])
- self.gguf_writer.add_key_length(self.hparams["d_kv"])
- self.gguf_writer.add_value_length(self.hparams["d_kv"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
- # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
- # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
- # and decoder and ignore the remaining ones.
- if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
- if not self.shared_token_embeddings_found:
- name = "shared.weight"
- self.shared_token_embeddings_found = True
- else:
- logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
- return []
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("JAISLMHeadModel")
- class JaisModel(Model):
- model_arch = gguf.MODEL_ARCH.JAIS
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # SwigLU activation
- assert self.hparams["activation_function"] == "swiglu"
- # ALiBi position embedding
- assert self.hparams["position_embedding_type"] == "alibi"
- # Embeddings scale
- self.embeddings_scale = 1.0
- if 'mup_embeddings_scale' in self.hparams:
- self.embeddings_scale = self.hparams['mup_embeddings_scale']
- elif 'embeddings_scale' in self.hparams:
- self.embeddings_scale = self.hparams['embeddings_scale']
- else:
- assert False
- self.width_scale = 1.0
- if 'mup_output_alpha' in self.hparams:
- assert 'mup_width_scale' in self.hparams
- self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
- elif 'width_scale' in self.hparams:
- self.width_scale = self.hparams['width_scale']
- else:
- assert False
- self.max_alibi_bias = 8.0
- def set_vocab(self):
- self._set_vocab_gpt2()
- def set_gguf_parameters(self):
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- tensors: list[tuple[str, Tensor]] = []
- # we don't need these
- if name.endswith((".attn.bias")):
- return tensors
- if name.endswith(("relative_pe.slopes")):
- # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
- # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
- # but Jais's PyTorch model simply precalculates the slope values and places them
- # in relative_pes.slopes
- n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
- first_val = float(data_torch[0].item())
- self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
- return tensors
- if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
- data_torch = data_torch.transpose(1, 0)
- new_name = self.map_tensor_name(name)
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
- tensors.append((new_name, data_torch * self.embeddings_scale))
- elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
- tensors.append((new_name, data_torch * self.width_scale))
- else:
- tensors.append((new_name, data_torch))
- return tensors
- def prepare_tensors(self):
- super().prepare_tensors()
- self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
- @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
- class ChatGLMModel(Model):
- model_arch = gguf.MODEL_ARCH.CHATGLM
- def set_vocab_chatglm3(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytes] = []
- toktypes: list[int] = []
- scores: list[float] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
- assert max(tokenizer.get_vocab().values()) < vocab_size
- role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
- special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
- for token_id in range(vocab_size):
- piece = tokenizer._convert_id_to_token(token_id)
- if token_id == 0:
- piece = "<unk>"
- elif token_id == 1:
- piece = "<bos>"
- elif token_id == 2:
- piece = "<eos>"
- text = piece.encode("utf-8")
- score = 0.0
- # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
- # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
- if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
- score = tokenizer.tokenizer.sp_model.get_score(token_id)
- if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
- if piece in special_tokens:
- toktype = SentencePieceTokenTypes.CONTROL
- elif len(piece) == 0:
- text = f"[PAD{token_id}]".encode("utf-8")
- toktype = SentencePieceTokenTypes.UNUSED
- else:
- toktype = SentencePieceTokenTypes.USER_DEFINED
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- continue
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.tokenizer.sp_model.is_unknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.tokenizer.sp_model.is_control(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.tokenizer.sp_model.is_unused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.tokenizer.sp_model.is_byte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- self.gguf_writer.add_tokenizer_model("llama")
- # glm3 needs prefix and suffix formatted as:
- # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
- self.gguf_writer.add_tokenizer_pre("chatglm-spm")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- @staticmethod
- def token_bytes_to_string(b):
- from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
- byte_encoder = bytes_to_unicode()
- return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
- @staticmethod
- def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
- parts = [bytes([b]) for b in token]
- while True:
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- if min_rank is None or (max_rank is not None and min_rank >= max_rank):
- break
- assert min_idx is not None
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
- return parts
- def set_vocab(self):
- if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
- self.set_vocab_chatglm3()
- return
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[str] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams["padded_vocab_size"]
- assert max(tokenizer.get_vocab().values()) < vocab_size
- tokpre = self.get_vocab_base_pre(tokenizer)
- merges = []
- vocab = {}
- mergeable_ranks = tokenizer.mergeable_ranks
- for token, rank in mergeable_ranks.items():
- vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
- assert len(merged) >= 2 and len(merged) <= 7
- merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
- # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
- added_vocab = tokenizer.get_added_vocab()
- reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.UNUSED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
- special_vocab.merges = merges
- # only add special tokens when they were not already loaded from config.json
- special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
- special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
- # this one is usually not in config.json anyway
- special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_head_kv = self.hparams.get("multi_query_group_num", n_head)
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
- self.gguf_writer.add_block_count(self.hparams["num_layers"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_rope_dimension_count(64)
- self.gguf_writer.add_add_bos_token(False)
- rope_freq = 10000
- if "rope_ratio" in self.hparams:
- rope_freq = rope_freq * self.hparams["rope_ratio"]
- self.gguf_writer.add_rope_freq_base(rope_freq)
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
- if name.endswith(".rotary_pos_emb.inv_freq"):
- return []
- name = name.removeprefix("transformer.")
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("NemotronForCausalLM")
- class NemotronModel(Model):
- model_arch = gguf.MODEL_ARCH.NEMOTRON
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- self.gguf_writer.add_pad_token_id(0)
- self.gguf_writer.add_unk_token_id(1)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
- self.gguf_writer.add_layer_norm_eps(f_norm_eps)
- # * Partial RoPE
- rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
- # * RopeScaling for Nemotron
- if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
- else:
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
- # model.layers.{l}.input_layernorm.weight
- # model.layers.{l}.post_attention_layernorm.weight
- # model.norm.weight
- if name.endswith("norm.weight"):
- data_torch = data_torch + 1
- return [(self.map_tensor_name(name), data_torch)]
- @Model.register("ExaoneForCausalLM")
- class ExaoneModel(Model):
- model_arch = gguf.MODEL_ARCH.EXAONE
- def set_gguf_parameters(self):
- hparams = self.hparams
- assert (hparams["activation_function"] == "silu")
- max_position_embeddings = hparams["max_position_embeddings"]
- embed_dim = hparams["hidden_size"]
- num_heads = hparams["num_attention_heads"]
- num_kv_heads = hparams.get("num_key_value_heads", num_heads)
- layer_norm_eps = hparams["layer_norm_epsilon"]
- intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
- num_layers = hparams["num_layers"]
- # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
- # attention_dropout_rate = hparams["attention_dropout"]
- # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
- # embed_dropout_rate = hparams["embed_dropout"]
- self.gguf_writer.add_embedding_length(embed_dim)
- self.gguf_writer.add_head_count(num_heads)
- self.gguf_writer.add_head_count_kv(num_kv_heads)
- self.gguf_writer.add_context_length(max_position_embeddings)
- self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
- self.gguf_writer.add_feed_forward_length(intermediate_size)
- self.gguf_writer.add_block_count(num_layers)
- self.gguf_writer.add_file_type(self.ftype)
- if (rope_theta := self.hparams.get("rope_theta")) is not None:
- self.gguf_writer.add_rope_freq_base(rope_theta)
- rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
- rotary_factor = rotary_factor if rotary_factor is not None else 1.0
- self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
- if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
- if hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
- def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
- if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
- if rope_scaling.get("rope_type", '').lower() == "llama3":
- base = self.hparams.get("rope_theta", 10000.0)
- dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
- factor = rope_scaling.get("factor", 8.0)
- low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
- high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
- old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
- low_freq_wavelen = old_context_len / low_freq_factor
- high_freq_wavelen = old_context_len / high_freq_factor
- assert low_freq_wavelen != high_freq_wavelen
- rope_factors = []
- for freq in freqs:
- wavelen = 2 * math.pi / freq
- if wavelen < high_freq_wavelen:
- rope_factors.append(1)
- elif wavelen > low_freq_wavelen:
- rope_factors.append(factor)
- else:
- smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
- rope_factors.append(1 / ((1 - smooth) / factor + smooth))
- yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
- @Model.register("GraniteForCausalLM")
- class GraniteModel(LlamaModel):
- """Conversion for IBM's GraniteForCausalLM"""
- model_arch = gguf.MODEL_ARCH.GRANITE
- def set_gguf_parameters(self):
- """Granite uses standard llama parameters with the following differences:
- - No head_dim support
- - New multiplier params:
- - attention_scale
- - embedding_scale
- - residual_scale
- - logits_scaling
- """
- if head_dim := self.hparams.pop("head_dim", None):
- logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
- super().set_gguf_parameters()
- # NOTE: Convert _multiplier params to _scale params for naming
- # consistency
- if attention_scale := self.hparams.get("attention_multiplier"):
- self.gguf_writer.add_attention_scale(attention_scale)
- logger.info("gguf: (granite) attention_scale = %s", attention_scale)
- if embedding_scale := self.hparams.get("embedding_multiplier"):
- self.gguf_writer.add_embedding_scale(embedding_scale)
- logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
- if residual_scale := self.hparams.get("residual_multiplier"):
- self.gguf_writer.add_residual_scale(residual_scale)
- logger.info("gguf: (granite) residual_scale = %s", residual_scale)
- if logits_scale := self.hparams.get("logits_scaling"):
- self.gguf_writer.add_logit_scale(logits_scale)
- logger.info("gguf: (granite) logits_scale = %s", logits_scale)
- @Model.register("GraniteMoeForCausalLM")
- class GraniteMoeModel(GraniteModel):
- """Conversion for IBM's GraniteMoeForCausalLM"""
- model_arch = gguf.MODEL_ARCH.GRANITE_MOE
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- """In modeling_granitemoe, the JetMoe implementation of parallel experts
- is used. This essentially merges w1 and w3 into a single tensor with 2x
- the hidden size that is then split during forward. To keep compatibility
- with existing mixtral support, we pull them apart here.
- """
- if name.endswith("block_sparse_moe.input_linear.weight"):
- ffn_dim = self.hparams["intermediate_size"]
- assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
- gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
- return [
- (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
- (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
- ]
- return super().modify_tensors(data_torch, name, bid)
- @Model.register("ChameleonForConditionalGeneration")
- @Model.register("ChameleonForCausalLM") # obsolete
- class ChameleonModel(Model):
- model_arch = gguf.MODEL_ARCH.CHAMELEON
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
- def set_vocab(self):
- self._set_vocab_gpt2()
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # ignore image tokenizer for now
- # TODO: remove this once image support is implemented for Chameleon
- if name.startswith("model.vqmodel"):
- return []
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
- hidden_dim = self.hparams.get("hidden_size")
- if name.endswith(("q_proj.weight", "q_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight", "k_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
- if name.endswith(("q_norm.weight", "q_norm.bias")):
- data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
- if name.endswith(("k_norm.weight", "k_norm.bias")):
- data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
- return [(self.map_tensor_name(name), data_torch)]
- # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
- @staticmethod
- def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
- head_dim = hidden_dim // n_heads
- data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
- data_torch = data_torch.repeat_interleave(n_heads, 0)
- return data_torch
- ###### CONVERSION LOGIC ######
- # tree of lazy tensors
- class LazyTorchTensor(gguf.LazyBase):
- _tensor_type = torch.Tensor
- # to keep the type-checker happy
- dtype: torch.dtype
- shape: torch.Size
- # only used when converting a torch.Tensor to a np.ndarray
- _dtype_map: dict[torch.dtype, type] = {
- torch.float16: np.float16,
- torch.float32: np.float32,
- }
- # used for safetensors slices
- # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
- # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
- _dtype_str_map: dict[str, torch.dtype] = {
- "F64": torch.float64,
- "F32": torch.float32,
- "BF16": torch.bfloat16,
- "F16": torch.float16,
- # "U64": torch.uint64,
- "I64": torch.int64,
- # "U32": torch.uint32,
- "I32": torch.int32,
- # "U16": torch.uint16,
- "I16": torch.int16,
- "U8": torch.uint8,
- "I8": torch.int8,
- "BOOL": torch.bool,
- "F8_E4M3": torch.float8_e4m3fn,
- "F8_E5M2": torch.float8_e5m2,
- }
- def numpy(self) -> gguf.LazyNumpyTensor:
- dtype = self._dtype_map[self.dtype]
- return gguf.LazyNumpyTensor(
- meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
- args=(self,),
- func=(lambda s: s.numpy())
- )
- @classmethod
- def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
- return torch.empty(size=shape, dtype=dtype, device="meta")
- @classmethod
- def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
- dtype = cls._dtype_str_map[st_slice.get_dtype()]
- shape: tuple[int, ...] = tuple(st_slice.get_shape())
- lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
- return cast(torch.Tensor, lazy)
- @classmethod
- def __torch_function__(cls, func, types, args=(), kwargs=None):
- del types # unused
- if kwargs is None:
- kwargs = {}
- if func is torch.Tensor.numpy:
- return args[0].numpy()
- return cls._wrap_fn(func)(*args, **kwargs)
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a huggingface model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
- )
- parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
- help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
- )
- parser.add_argument(
- "--bigendian", action="store_true",
- help="model is executed on big endian machine",
- )
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file",
- )
- parser.add_argument(
- "--use-temp-file", action="store_true",
- help="use the tempfile library while processing (helpful when running out of memory, process killed)",
- )
- parser.add_argument(
- "--no-lazy", action="store_true",
- help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
- )
- parser.add_argument(
- "--model-name", type=str, default=None,
- help="name of the model",
- )
- parser.add_argument(
- "--verbose", action="store_true",
- help="increase output verbosity",
- )
- parser.add_argument(
- "--split-max-tensors", type=int, default=0,
- help="max tensors in each split",
- )
- parser.add_argument(
- "--split-max-size", type=str, default="0",
- help="max size per split N(M|G)",
- )
- parser.add_argument(
- "--dry-run", action="store_true",
- help="only print out a split plan and exit, without writing any new files",
- )
- parser.add_argument(
- "--no-tensor-first-split", action="store_true",
- help="do not add tensors to the first split (disabled by default)"
- )
- parser.add_argument(
- "--metadata", type=Path,
- help="Specify the path for an authorship metadata override file"
- )
- return parser.parse_args()
- def split_str_to_n_bytes(split_str: str) -> int:
- if split_str.endswith("K"):
- n = int(split_str[:-1]) * 1000
- elif split_str.endswith("M"):
- n = int(split_str[:-1]) * 1000 * 1000
- elif split_str.endswith("G"):
- n = int(split_str[:-1]) * 1000 * 1000 * 1000
- elif split_str.isnumeric():
- n = int(split_str)
- else:
- raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
- if n < 0:
- raise ValueError(f"Invalid split size: {split_str}, must be positive")
- return n
- def main() -> None:
- args = parse_args()
- if args.verbose:
- logging.basicConfig(level=logging.DEBUG)
- else:
- logging.basicConfig(level=logging.INFO)
- dir_model = args.model
- if not dir_model.is_dir():
- logger.error(f'Error: {args.model} is not a directory')
- sys.exit(1)
- ftype_map: dict[str, gguf.LlamaFileType] = {
- "f32": gguf.LlamaFileType.ALL_F32,
- "f16": gguf.LlamaFileType.MOSTLY_F16,
- "bf16": gguf.LlamaFileType.MOSTLY_BF16,
- "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
- "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
- "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
- "auto": gguf.LlamaFileType.GUESSED,
- }
- is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
- if args.use_temp_file and is_split:
- logger.error("Error: Cannot use temp file when splitting")
- sys.exit(1)
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- fname_out = dir_model
- logger.info(f"Loading model: {dir_model.name}")
- hparams = Model.load_hparams(dir_model)
- with torch.inference_mode():
- output_type = ftype_map[args.outtype]
- model_architecture = hparams["architectures"][0]
- try:
- model_class = Model.from_model_architecture(model_architecture)
- except NotImplementedError:
- logger.error(f"Model {model_architecture} is not supported")
- sys.exit(1)
- model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
- is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
- eager=args.no_lazy,
- metadata_override=args.metadata, model_name=args.model_name,
- split_max_tensors=args.split_max_tensors,
- split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
- small_first_shard=args.no_tensor_first_split)
- if args.vocab_only:
- logger.info("Exporting model vocab...")
- model_instance.write_vocab()
- logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
- else:
- logger.info("Exporting model...")
- model_instance.write()
- out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
- logger.info(f"Model successfully exported to {out_path}")
- if __name__ == '__main__':
- main()
|