llama.cpp 354 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #ifdef GGML_USE_CUBLAS
  7. # include "ggml-cuda.h"
  8. #elif defined(GGML_USE_CLBLAST)
  9. # include "ggml-opencl.h"
  10. #endif
  11. #ifdef GGML_USE_METAL
  12. # include "ggml-metal.h"
  13. #endif
  14. #ifdef GGML_USE_MPI
  15. # include "ggml-mpi.h"
  16. #endif
  17. #ifndef QK_K
  18. # ifdef GGML_QKK_64
  19. # define QK_K 64
  20. # else
  21. # define QK_K 256
  22. # endif
  23. #endif
  24. #ifdef __has_include
  25. #if __has_include(<unistd.h>)
  26. #include <unistd.h>
  27. #if defined(_POSIX_MAPPED_FILES)
  28. #include <sys/mman.h>
  29. #endif
  30. #if defined(_POSIX_MEMLOCK_RANGE)
  31. #include <sys/resource.h>
  32. #endif
  33. #endif
  34. #endif
  35. #if defined(_WIN32)
  36. #define WIN32_LEAN_AND_MEAN
  37. #ifndef NOMINMAX
  38. #define NOMINMAX
  39. #endif
  40. #include <windows.h>
  41. #include <io.h>
  42. #include <stdio.h> // for _fseeki64
  43. #endif
  44. #include <algorithm>
  45. #include <array>
  46. #include <cassert>
  47. #include <cinttypes>
  48. #include <climits>
  49. #include <cmath>
  50. #include <cstdarg>
  51. #include <cstddef>
  52. #include <cstdint>
  53. #include <cstdio>
  54. #include <cstring>
  55. #include <ctime>
  56. #include <forward_list>
  57. #include <fstream>
  58. #include <functional>
  59. #include <initializer_list>
  60. #include <map>
  61. #include <memory>
  62. #include <mutex>
  63. #include <numeric>
  64. #include <queue>
  65. #include <random>
  66. #include <regex>
  67. #include <set>
  68. #include <sstream>
  69. #include <thread>
  70. #include <unordered_map>
  71. #if defined(_MSC_VER)
  72. #pragma warning(disable: 4244 4267) // possible loss of data
  73. #endif
  74. #ifdef __GNUC__
  75. #ifdef __MINGW32__
  76. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  77. #else
  78. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  79. #endif
  80. #else
  81. #define LLAMA_ATTRIBUTE_FORMAT(...)
  82. #endif
  83. #define LLAMA_MAX_NODES 4096
  84. //
  85. // logging
  86. //
  87. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  88. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  89. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  90. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  91. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  92. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  93. //
  94. // helpers
  95. //
  96. static size_t utf8_len(char src) {
  97. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  98. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  99. return lookup[highbits];
  100. }
  101. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  102. std::string result;
  103. for (size_t pos = 0; ; pos += search.length()) {
  104. auto new_pos = s.find(search, pos);
  105. if (new_pos == std::string::npos) {
  106. result += s.substr(pos, s.size() - pos);
  107. break;
  108. }
  109. result += s.substr(pos, new_pos - pos) + replace;
  110. pos = new_pos;
  111. }
  112. s = std::move(result);
  113. }
  114. static bool is_float_close(float a, float b, float abs_tol) {
  115. // Check for non-negative tolerance
  116. if (abs_tol < 0.0) {
  117. throw std::invalid_argument("Tolerance must be non-negative");
  118. }
  119. // Exact equality check
  120. if (a == b) {
  121. return true;
  122. }
  123. // Check for infinities
  124. if (std::isinf(a) || std::isinf(b)) {
  125. return false;
  126. }
  127. // Regular comparison using the provided absolute tolerance
  128. return std::fabs(b - a) <= abs_tol;
  129. }
  130. #ifdef GGML_USE_CPU_HBM
  131. #include <hbwmalloc.h>
  132. #endif
  133. static void zeros(std::ofstream & file, size_t n) {
  134. char zero = 0;
  135. for (size_t i = 0; i < n; ++i) {
  136. file.write(&zero, 1);
  137. }
  138. }
  139. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  140. static std::string format(const char * fmt, ...) {
  141. va_list ap;
  142. va_list ap2;
  143. va_start(ap, fmt);
  144. va_copy(ap2, ap);
  145. int size = vsnprintf(NULL, 0, fmt, ap);
  146. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  147. std::vector<char> buf(size + 1);
  148. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  149. GGML_ASSERT(size2 == size);
  150. va_end(ap2);
  151. va_end(ap);
  152. return std::string(buf.data(), size);
  153. }
  154. //
  155. // gguf constants (sync with gguf.py)
  156. //
  157. enum llm_arch {
  158. LLM_ARCH_LLAMA,
  159. LLM_ARCH_FALCON,
  160. LLM_ARCH_BAICHUAN,
  161. LLM_ARCH_GPT2,
  162. LLM_ARCH_GPTJ,
  163. LLM_ARCH_GPTNEOX,
  164. LLM_ARCH_MPT,
  165. LLM_ARCH_STARCODER,
  166. LLM_ARCH_PERSIMMON,
  167. LLM_ARCH_REFACT,
  168. LLM_ARCH_BLOOM,
  169. LLM_ARCH_STABLELM,
  170. LLM_ARCH_UNKNOWN,
  171. };
  172. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  173. { LLM_ARCH_LLAMA, "llama" },
  174. { LLM_ARCH_FALCON, "falcon" },
  175. { LLM_ARCH_GPT2, "gpt2" },
  176. { LLM_ARCH_GPTJ, "gptj" },
  177. { LLM_ARCH_GPTNEOX, "gptneox" },
  178. { LLM_ARCH_MPT, "mpt" },
  179. { LLM_ARCH_BAICHUAN, "baichuan" },
  180. { LLM_ARCH_STARCODER, "starcoder" },
  181. { LLM_ARCH_PERSIMMON, "persimmon" },
  182. { LLM_ARCH_REFACT, "refact" },
  183. { LLM_ARCH_BLOOM, "bloom" },
  184. { LLM_ARCH_STABLELM, "stablelm" },
  185. };
  186. enum llm_kv {
  187. LLM_KV_GENERAL_ARCHITECTURE,
  188. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  189. LLM_KV_GENERAL_ALIGNMENT,
  190. LLM_KV_GENERAL_NAME,
  191. LLM_KV_GENERAL_AUTHOR,
  192. LLM_KV_GENERAL_URL,
  193. LLM_KV_GENERAL_DESCRIPTION,
  194. LLM_KV_GENERAL_LICENSE,
  195. LLM_KV_GENERAL_SOURCE_URL,
  196. LLM_KV_GENERAL_SOURCE_HF_REPO,
  197. LLM_KV_CONTEXT_LENGTH,
  198. LLM_KV_EMBEDDING_LENGTH,
  199. LLM_KV_BLOCK_COUNT,
  200. LLM_KV_FEED_FORWARD_LENGTH,
  201. LLM_KV_USE_PARALLEL_RESIDUAL,
  202. LLM_KV_TENSOR_DATA_LAYOUT,
  203. LLM_KV_ATTENTION_HEAD_COUNT,
  204. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  205. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  206. LLM_KV_ATTENTION_CLAMP_KQV,
  207. LLM_KV_ATTENTION_LAYERNORM_EPS,
  208. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  209. LLM_KV_ROPE_DIMENSION_COUNT,
  210. LLM_KV_ROPE_FREQ_BASE,
  211. LLM_KV_ROPE_SCALE_LINEAR,
  212. LLM_KV_ROPE_SCALING_TYPE,
  213. LLM_KV_ROPE_SCALING_FACTOR,
  214. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  215. LLM_KV_ROPE_SCALING_FINETUNED,
  216. LLM_KV_TOKENIZER_MODEL,
  217. LLM_KV_TOKENIZER_LIST,
  218. LLM_KV_TOKENIZER_TOKEN_TYPE,
  219. LLM_KV_TOKENIZER_SCORES,
  220. LLM_KV_TOKENIZER_MERGES,
  221. LLM_KV_TOKENIZER_BOS_ID,
  222. LLM_KV_TOKENIZER_EOS_ID,
  223. LLM_KV_TOKENIZER_UNK_ID,
  224. LLM_KV_TOKENIZER_SEP_ID,
  225. LLM_KV_TOKENIZER_PAD_ID,
  226. LLM_KV_TOKENIZER_ADD_BOS,
  227. LLM_KV_TOKENIZER_ADD_EOS,
  228. LLM_KV_TOKENIZER_HF_JSON,
  229. LLM_KV_TOKENIZER_RWKV,
  230. };
  231. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  232. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  233. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  234. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  235. { LLM_KV_GENERAL_NAME, "general.name" },
  236. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  237. { LLM_KV_GENERAL_URL, "general.url" },
  238. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  239. { LLM_KV_GENERAL_LICENSE, "general.license" },
  240. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  241. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  242. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  243. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  244. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  245. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  246. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  247. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  248. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  249. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  250. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  251. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  252. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  253. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  254. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  255. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  256. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  257. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  258. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  259. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  260. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  261. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  262. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  263. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  264. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  265. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  266. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  267. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  268. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  269. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  270. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  271. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  272. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  273. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  274. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  275. };
  276. struct LLM_KV {
  277. LLM_KV(llm_arch arch) : arch(arch) {}
  278. llm_arch arch;
  279. std::string operator()(llm_kv kv) const {
  280. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  281. }
  282. };
  283. enum llm_tensor {
  284. LLM_TENSOR_TOKEN_EMBD,
  285. LLM_TENSOR_TOKEN_EMBD_NORM,
  286. LLM_TENSOR_POS_EMBD,
  287. LLM_TENSOR_OUTPUT,
  288. LLM_TENSOR_OUTPUT_NORM,
  289. LLM_TENSOR_ROPE_FREQS,
  290. LLM_TENSOR_ATTN_Q,
  291. LLM_TENSOR_ATTN_K,
  292. LLM_TENSOR_ATTN_V,
  293. LLM_TENSOR_ATTN_QKV,
  294. LLM_TENSOR_ATTN_OUT,
  295. LLM_TENSOR_ATTN_NORM,
  296. LLM_TENSOR_ATTN_NORM_2,
  297. LLM_TENSOR_ATTN_ROT_EMBD,
  298. LLM_TENSOR_FFN_GATE,
  299. LLM_TENSOR_FFN_DOWN,
  300. LLM_TENSOR_FFN_UP,
  301. LLM_TENSOR_FFN_NORM,
  302. LLM_TENSOR_ATTN_Q_NORM,
  303. LLM_TENSOR_ATTN_K_NORM,
  304. };
  305. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  306. {
  307. LLM_ARCH_LLAMA,
  308. {
  309. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  310. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  311. { LLM_TENSOR_OUTPUT, "output" },
  312. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  313. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  314. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  315. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  316. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  317. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  318. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  319. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  320. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  321. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  322. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  323. },
  324. },
  325. {
  326. LLM_ARCH_BAICHUAN,
  327. {
  328. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  329. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  330. { LLM_TENSOR_OUTPUT, "output" },
  331. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  332. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  333. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  334. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  335. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  336. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  337. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  338. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  339. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  340. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  341. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  342. },
  343. },
  344. {
  345. LLM_ARCH_FALCON,
  346. {
  347. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  348. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  349. { LLM_TENSOR_OUTPUT, "output" },
  350. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  351. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  352. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  353. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  354. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  355. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  356. },
  357. },
  358. {
  359. LLM_ARCH_GPT2,
  360. {
  361. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  362. },
  363. },
  364. {
  365. LLM_ARCH_GPTJ,
  366. {
  367. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  368. },
  369. },
  370. {
  371. LLM_ARCH_GPTNEOX,
  372. {
  373. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  374. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  375. { LLM_TENSOR_OUTPUT, "output" },
  376. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  377. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  378. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  379. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  380. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  381. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  382. },
  383. },
  384. {
  385. LLM_ARCH_PERSIMMON,
  386. {
  387. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  388. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  389. { LLM_TENSOR_OUTPUT, "output"},
  390. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  391. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  392. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  393. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  394. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  395. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  396. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  397. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  398. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  399. },
  400. },
  401. {
  402. LLM_ARCH_MPT,
  403. {
  404. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  405. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  406. { LLM_TENSOR_OUTPUT, "output" },
  407. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  408. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  409. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  410. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  411. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  412. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  413. },
  414. },
  415. {
  416. LLM_ARCH_STARCODER,
  417. {
  418. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  419. { LLM_TENSOR_POS_EMBD, "position_embd" },
  420. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  421. { LLM_TENSOR_OUTPUT, "output" },
  422. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  423. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  424. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  425. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  426. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  427. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  428. },
  429. },
  430. {
  431. LLM_ARCH_REFACT,
  432. {
  433. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  434. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  435. { LLM_TENSOR_OUTPUT, "output" },
  436. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  437. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  438. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  439. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  442. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  443. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  444. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  445. },
  446. },
  447. {
  448. LLM_ARCH_BLOOM,
  449. {
  450. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  451. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  452. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  453. { LLM_TENSOR_OUTPUT, "output" },
  454. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  455. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  456. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  457. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  458. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  459. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  460. },
  461. },
  462. {
  463. LLM_ARCH_STABLELM,
  464. {
  465. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  466. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  467. { LLM_TENSOR_OUTPUT, "output" },
  468. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  469. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  470. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  471. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  472. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  473. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  474. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  475. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  476. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  477. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  478. },
  479. },
  480. {
  481. LLM_ARCH_UNKNOWN,
  482. {
  483. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  484. },
  485. },
  486. };
  487. static llm_arch llm_arch_from_string(const std::string & name) {
  488. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  489. if (kv.second == name) {
  490. return kv.first;
  491. }
  492. }
  493. return LLM_ARCH_UNKNOWN;
  494. }
  495. // helper to handle gguf constants
  496. // usage:
  497. //
  498. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  499. //
  500. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  501. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  502. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  503. //
  504. struct LLM_TN {
  505. LLM_TN(llm_arch arch) : arch(arch) {}
  506. llm_arch arch;
  507. std::string operator()(llm_tensor tensor) const {
  508. return LLM_TENSOR_NAMES[arch].at(tensor);
  509. }
  510. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  511. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  512. }
  513. std::string operator()(llm_tensor tensor, int bid) const {
  514. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  515. }
  516. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  517. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  518. }
  519. };
  520. //
  521. // gguf helpers
  522. //
  523. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  524. do { \
  525. const std::string skey(key); \
  526. const int kid = gguf_find_key(ctx, skey.c_str()); \
  527. if (kid >= 0) { \
  528. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  529. if (ktype != (type)) { \
  530. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  531. } \
  532. (dst) = func(ctx, kid); \
  533. } else if (req) { \
  534. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  535. } \
  536. } while (0)
  537. static std::map<int8_t, std::string> LLAMA_ROPE_SCALING_TYPES = {
  538. { LLAMA_ROPE_SCALING_NONE, "none" },
  539. { LLAMA_ROPE_SCALING_LINEAR, "linear" },
  540. { LLAMA_ROPE_SCALING_YARN, "yarn" },
  541. };
  542. static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
  543. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  544. if (kv.second == name) {
  545. return kv.first;
  546. }
  547. }
  548. return LLAMA_ROPE_SCALING_UNSPECIFIED;
  549. }
  550. //
  551. // ggml helpers
  552. //
  553. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  554. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  555. if (plan.work_size > 0) {
  556. buf.resize(plan.work_size);
  557. plan.work_data = buf.data();
  558. }
  559. ggml_graph_compute(graph, &plan);
  560. }
  561. //
  562. // llama helpers
  563. //
  564. inline void * llama_host_malloc(size_t n) {
  565. #ifdef GGML_USE_CUBLAS
  566. if (ggml_cublas_loaded()) {
  567. return ggml_cuda_host_malloc(n);
  568. } else {
  569. return malloc(n);
  570. }
  571. #elif GGML_USE_METAL
  572. return ggml_metal_host_malloc(n);
  573. #elif GGML_USE_CPU_HBM
  574. return hbw_malloc(n);
  575. #else
  576. return malloc(n);
  577. #endif
  578. }
  579. inline void llama_host_free(void * ptr) {
  580. #ifdef GGML_USE_CUBLAS
  581. if (ggml_cublas_loaded()) {
  582. return ggml_cuda_host_free(ptr);
  583. } else {
  584. return free(ptr);
  585. }
  586. #elif GGML_USE_METAL
  587. return ggml_metal_host_free(ptr);
  588. #elif GGML_USE_CPU_HBM
  589. return hbw_free(ptr);
  590. #else
  591. return free(ptr);
  592. #endif
  593. }
  594. #if defined(_WIN32)
  595. static std::string llama_format_win_err(DWORD err) {
  596. LPSTR buf;
  597. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  598. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  599. if (!size) {
  600. return "FormatMessageA failed";
  601. }
  602. std::string ret(buf, size);
  603. LocalFree(buf);
  604. return ret;
  605. }
  606. #endif
  607. struct llama_buffer {
  608. void * data = NULL;
  609. size_t size = 0;
  610. // fallback to malloc / free
  611. // useful in cases where CUDA can try to allocate PINNED memory
  612. bool fallback = false;
  613. void resize(size_t n) {
  614. llama_host_free(data);
  615. data = llama_host_malloc(n);
  616. if (!data) {
  617. fallback = true;
  618. data = malloc(n);
  619. } else {
  620. fallback = false;
  621. }
  622. GGML_ASSERT(data);
  623. size = n;
  624. }
  625. ~llama_buffer() {
  626. if (data) {
  627. if (fallback) { // NOLINT
  628. free(data);
  629. } else {
  630. llama_host_free(data);
  631. }
  632. }
  633. data = NULL;
  634. }
  635. };
  636. struct llama_file {
  637. // use FILE * so we don't have to re-open the file to mmap
  638. FILE * fp;
  639. size_t size;
  640. llama_file(const char * fname, const char * mode) {
  641. fp = std::fopen(fname, mode);
  642. if (fp == NULL) {
  643. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  644. }
  645. seek(0, SEEK_END);
  646. size = tell();
  647. seek(0, SEEK_SET);
  648. }
  649. size_t tell() const {
  650. #ifdef _WIN32
  651. __int64 ret = _ftelli64(fp);
  652. #else
  653. long ret = std::ftell(fp);
  654. #endif
  655. GGML_ASSERT(ret != -1); // this really shouldn't fail
  656. return (size_t) ret;
  657. }
  658. void seek(size_t offset, int whence) const {
  659. #ifdef _WIN32
  660. int ret = _fseeki64(fp, (__int64) offset, whence);
  661. #else
  662. int ret = std::fseek(fp, (long) offset, whence);
  663. #endif
  664. GGML_ASSERT(ret == 0); // same
  665. }
  666. void read_raw(void * ptr, size_t len) const {
  667. if (len == 0) {
  668. return;
  669. }
  670. errno = 0;
  671. std::size_t ret = std::fread(ptr, len, 1, fp);
  672. if (ferror(fp)) {
  673. throw std::runtime_error(format("read error: %s", strerror(errno)));
  674. }
  675. if (ret != 1) {
  676. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  677. }
  678. }
  679. uint32_t read_u32() const {
  680. uint32_t ret;
  681. read_raw(&ret, sizeof(ret));
  682. return ret;
  683. }
  684. void write_raw(const void * ptr, size_t len) const {
  685. if (len == 0) {
  686. return;
  687. }
  688. errno = 0;
  689. size_t ret = std::fwrite(ptr, len, 1, fp);
  690. if (ret != 1) {
  691. throw std::runtime_error(format("write error: %s", strerror(errno)));
  692. }
  693. }
  694. void write_u32(std::uint32_t val) const {
  695. write_raw(&val, sizeof(val));
  696. }
  697. ~llama_file() {
  698. if (fp) {
  699. std::fclose(fp);
  700. }
  701. }
  702. };
  703. struct llama_mmap {
  704. void * addr;
  705. size_t size;
  706. llama_mmap(const llama_mmap &) = delete;
  707. #ifdef _POSIX_MAPPED_FILES
  708. static constexpr bool SUPPORTED = true;
  709. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  710. size = file->size;
  711. int fd = fileno(file->fp);
  712. int flags = MAP_SHARED;
  713. // prefetch/readahead impairs performance on NUMA systems
  714. if (numa) { prefetch = 0; }
  715. #ifdef __linux__
  716. if (prefetch) { flags |= MAP_POPULATE; }
  717. #endif
  718. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  719. if (addr == MAP_FAILED) {
  720. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  721. }
  722. if (prefetch > 0) {
  723. // Advise the kernel to preload the mapped memory
  724. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  725. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  726. strerror(errno));
  727. }
  728. }
  729. if (numa) {
  730. // advise the kernel not to use readahead
  731. // (because the next page might not belong on the same node)
  732. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  733. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  734. strerror(errno));
  735. }
  736. }
  737. }
  738. ~llama_mmap() {
  739. munmap(addr, size);
  740. }
  741. #elif defined(_WIN32)
  742. static constexpr bool SUPPORTED = true;
  743. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  744. (void) numa;
  745. size = file->size;
  746. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  747. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  748. DWORD error = GetLastError();
  749. if (hMapping == NULL) {
  750. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  751. }
  752. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  753. error = GetLastError();
  754. CloseHandle(hMapping);
  755. if (addr == NULL) {
  756. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  757. }
  758. if (prefetch) {
  759. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  760. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  761. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  762. // may fail on pre-Windows 8 systems
  763. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  764. if (pPrefetchVirtualMemory) {
  765. // advise the kernel to preload the mapped memory
  766. WIN32_MEMORY_RANGE_ENTRY range;
  767. range.VirtualAddress = addr;
  768. range.NumberOfBytes = (SIZE_T)size;
  769. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  770. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  771. llama_format_win_err(GetLastError()).c_str());
  772. }
  773. }
  774. }
  775. }
  776. ~llama_mmap() {
  777. if (!UnmapViewOfFile(addr)) {
  778. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  779. llama_format_win_err(GetLastError()).c_str());
  780. }
  781. }
  782. #else
  783. static constexpr bool SUPPORTED = false;
  784. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  785. (void) file;
  786. (void) prefetch;
  787. (void) numa;
  788. throw std::runtime_error(std::string("mmap not supported"));
  789. }
  790. #endif
  791. };
  792. // Represents some region of memory being locked using mlock or VirtualLock;
  793. // will automatically unlock on destruction.
  794. struct llama_mlock {
  795. void * addr = NULL;
  796. size_t size = 0;
  797. bool failed_already = false;
  798. llama_mlock() {}
  799. llama_mlock(const llama_mlock &) = delete;
  800. ~llama_mlock() {
  801. if (size) {
  802. raw_unlock(addr, size);
  803. }
  804. }
  805. void init(void * ptr) {
  806. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  807. addr = ptr;
  808. }
  809. void grow_to(size_t target_size) {
  810. GGML_ASSERT(addr);
  811. if (failed_already) {
  812. return;
  813. }
  814. size_t granularity = lock_granularity();
  815. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  816. if (target_size > size) {
  817. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  818. size = target_size;
  819. } else {
  820. failed_already = true;
  821. }
  822. }
  823. }
  824. #ifdef _POSIX_MEMLOCK_RANGE
  825. static constexpr bool SUPPORTED = true;
  826. static size_t lock_granularity() {
  827. return (size_t) sysconf(_SC_PAGESIZE);
  828. }
  829. #ifdef __APPLE__
  830. #define MLOCK_SUGGESTION \
  831. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  832. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  833. #else
  834. #define MLOCK_SUGGESTION \
  835. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  836. #endif
  837. bool raw_lock(const void * addr, size_t size) const {
  838. if (!mlock(addr, size)) {
  839. return true;
  840. }
  841. char* errmsg = std::strerror(errno);
  842. bool suggest = (errno == ENOMEM);
  843. // Check if the resource limit is fine after all
  844. struct rlimit lock_limit;
  845. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  846. suggest = false;
  847. }
  848. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  849. suggest = false;
  850. }
  851. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  852. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  853. return false;
  854. }
  855. #undef MLOCK_SUGGESTION
  856. static void raw_unlock(void * addr, size_t size) {
  857. if (munlock(addr, size)) {
  858. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  859. }
  860. }
  861. #elif defined(_WIN32)
  862. static constexpr bool SUPPORTED = true;
  863. static size_t lock_granularity() {
  864. SYSTEM_INFO si;
  865. GetSystemInfo(&si);
  866. return (size_t) si.dwPageSize;
  867. }
  868. bool raw_lock(void * ptr, size_t len) const {
  869. for (int tries = 1; ; tries++) {
  870. if (VirtualLock(ptr, len)) {
  871. return true;
  872. }
  873. if (tries == 2) {
  874. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  875. len, size, llama_format_win_err(GetLastError()).c_str());
  876. return false;
  877. }
  878. // It failed but this was only the first try; increase the working
  879. // set size and try again.
  880. SIZE_T min_ws_size, max_ws_size;
  881. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  882. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  883. llama_format_win_err(GetLastError()).c_str());
  884. return false;
  885. }
  886. // Per MSDN: "The maximum number of pages that a process can lock
  887. // is equal to the number of pages in its minimum working set minus
  888. // a small overhead."
  889. // Hopefully a megabyte is enough overhead:
  890. size_t increment = len + 1048576;
  891. // The minimum must be <= the maximum, so we need to increase both:
  892. min_ws_size += increment;
  893. max_ws_size += increment;
  894. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  895. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  896. llama_format_win_err(GetLastError()).c_str());
  897. return false;
  898. }
  899. }
  900. }
  901. static void raw_unlock(void * ptr, size_t len) {
  902. if (!VirtualUnlock(ptr, len)) {
  903. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  904. llama_format_win_err(GetLastError()).c_str());
  905. }
  906. }
  907. #else
  908. static constexpr bool SUPPORTED = false;
  909. static size_t lock_granularity() {
  910. return (size_t) 65536;
  911. }
  912. bool raw_lock(const void * addr, size_t len) const {
  913. fprintf(stderr, "warning: mlock not supported on this system\n");
  914. return false;
  915. }
  916. static void raw_unlock(const void * addr, size_t len) {}
  917. #endif
  918. };
  919. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  920. static void ggml_offload_nop(struct ggml_tensor * tensor) {
  921. (void) tensor;
  922. }
  923. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  924. std::vector<char> result(8, 0);
  925. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  926. if (n_tokens < 0) {
  927. result.resize(-n_tokens);
  928. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  929. GGML_ASSERT(check == -n_tokens);
  930. }
  931. else {
  932. result.resize(n_tokens);
  933. }
  934. return std::string(result.data(), result.size());
  935. }
  936. //
  937. // globals
  938. //
  939. struct llama_state {
  940. // We save the log callback globally
  941. ggml_log_callback log_callback = llama_log_callback_default;
  942. void * log_callback_user_data = nullptr;
  943. };
  944. static llama_state g_state;
  945. // available llama models
  946. enum e_model {
  947. MODEL_UNKNOWN,
  948. MODEL_1B,
  949. MODEL_3B,
  950. MODEL_7B,
  951. MODEL_8B,
  952. MODEL_13B,
  953. MODEL_15B,
  954. MODEL_30B,
  955. MODEL_34B,
  956. MODEL_40B,
  957. MODEL_65B,
  958. MODEL_70B,
  959. };
  960. static const size_t kiB = 1024;
  961. static const size_t MiB = 1024*kiB;
  962. static const size_t GiB = 1024*MiB;
  963. struct llama_hparams {
  964. bool vocab_only;
  965. uint32_t n_vocab;
  966. uint32_t n_ctx_train; // context size the model was trained on
  967. uint32_t n_embd;
  968. uint32_t n_head;
  969. uint32_t n_head_kv;
  970. uint32_t n_layer;
  971. uint32_t n_rot;
  972. uint32_t n_ff;
  973. float f_norm_eps;
  974. float f_norm_rms_eps;
  975. float rope_freq_base_train;
  976. float rope_freq_scale_train;
  977. uint32_t n_yarn_orig_ctx;
  978. int8_t rope_scaling_type_train : 3;
  979. bool rope_finetuned : 1;
  980. float f_clamp_kqv;
  981. float f_max_alibi_bias;
  982. bool operator!=(const llama_hparams & other) const {
  983. if (this->vocab_only != other.vocab_only) return true;
  984. if (this->n_vocab != other.n_vocab) return true;
  985. if (this->n_ctx_train != other.n_ctx_train) return true;
  986. if (this->n_embd != other.n_embd) return true;
  987. if (this->n_head != other.n_head) return true;
  988. if (this->n_head_kv != other.n_head_kv) return true;
  989. if (this->n_layer != other.n_layer) return true;
  990. if (this->n_rot != other.n_rot) return true;
  991. if (this->n_ff != other.n_ff) return true;
  992. if (this->rope_finetuned != other.rope_finetuned) return true;
  993. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  994. const float EPSILON = 1e-9;
  995. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  996. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  997. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  998. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  999. return false;
  1000. }
  1001. uint32_t n_gqa() const {
  1002. return n_head/n_head_kv;
  1003. }
  1004. uint32_t n_embd_head() const {
  1005. return n_embd/n_head;
  1006. }
  1007. uint32_t n_embd_gqa() const {
  1008. return n_embd/n_gqa();
  1009. }
  1010. };
  1011. struct llama_cparams {
  1012. uint32_t n_ctx; // context size used during inference
  1013. uint32_t n_batch;
  1014. uint32_t n_threads; // number of threads to use for generation
  1015. uint32_t n_threads_batch; // number of threads to use for batch processing
  1016. float rope_freq_base;
  1017. float rope_freq_scale;
  1018. uint32_t n_yarn_orig_ctx;
  1019. // These hyperparameters are not exposed in GGUF, because all
  1020. // existing YaRN models use the same values for them.
  1021. float yarn_ext_factor;
  1022. float yarn_attn_factor;
  1023. float yarn_beta_fast;
  1024. float yarn_beta_slow;
  1025. bool mul_mat_q;
  1026. };
  1027. struct llama_layer {
  1028. // normalization
  1029. struct ggml_tensor * attn_norm;
  1030. struct ggml_tensor * attn_norm_b;
  1031. struct ggml_tensor * attn_norm_2;
  1032. struct ggml_tensor * attn_norm_2_b;
  1033. struct ggml_tensor * attn_q_norm;
  1034. struct ggml_tensor * attn_q_norm_b;
  1035. struct ggml_tensor * attn_k_norm;
  1036. struct ggml_tensor * attn_k_norm_b;
  1037. // attention
  1038. struct ggml_tensor * wq;
  1039. struct ggml_tensor * wk;
  1040. struct ggml_tensor * wv;
  1041. struct ggml_tensor * wo;
  1042. struct ggml_tensor * wqkv;
  1043. // attention bias
  1044. struct ggml_tensor * bo;
  1045. struct ggml_tensor * bqkv;
  1046. // normalization
  1047. struct ggml_tensor * ffn_norm;
  1048. struct ggml_tensor * ffn_norm_b;
  1049. // ff
  1050. struct ggml_tensor * ffn_gate; // w1
  1051. struct ggml_tensor * ffn_down; // w2
  1052. struct ggml_tensor * ffn_up; // w3
  1053. // ff bias
  1054. struct ggml_tensor * ffn_down_b; // b2
  1055. struct ggml_tensor * ffn_up_b; // b3
  1056. };
  1057. struct llama_kv_cell {
  1058. llama_pos pos = -1;
  1059. llama_pos delta = 0;
  1060. std::set<llama_seq_id> seq_id;
  1061. bool has_seq_id(const llama_seq_id & id) const {
  1062. return seq_id.find(id) != seq_id.end();
  1063. }
  1064. };
  1065. // ring-buffer of cached KV data
  1066. struct llama_kv_cache {
  1067. bool has_shift = false;
  1068. // Note: The value of head isn't only used to optimize searching
  1069. // for a free KV slot. llama_decode_internal also uses it, so it
  1070. // cannot be freely changed after a slot has been allocated.
  1071. uint32_t head = 0;
  1072. uint32_t size = 0;
  1073. // computed before each graph build
  1074. uint32_t n = 0;
  1075. std::vector<llama_kv_cell> cells;
  1076. struct ggml_tensor * k = NULL;
  1077. struct ggml_tensor * v = NULL;
  1078. struct ggml_context * ctx = NULL;
  1079. llama_buffer buf;
  1080. ~llama_kv_cache() {
  1081. if (ctx) {
  1082. ggml_free(ctx);
  1083. }
  1084. #ifdef GGML_USE_CUBLAS
  1085. if (ggml_cublas_loaded()) {
  1086. ggml_cuda_free_data(k);
  1087. ggml_cuda_free_data(v);
  1088. }
  1089. #endif
  1090. }
  1091. };
  1092. struct llama_vocab {
  1093. using id = int32_t;
  1094. using token = std::string;
  1095. using ttype = llama_token_type;
  1096. struct token_data {
  1097. token text;
  1098. float score;
  1099. ttype type;
  1100. };
  1101. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1102. std::unordered_map<token, id> token_to_id;
  1103. std::vector<token_data> id_to_token;
  1104. std::unordered_map<token, id> special_tokens_cache;
  1105. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1106. // default LLaMA special tokens
  1107. id special_bos_id = 1;
  1108. id special_eos_id = 2;
  1109. id special_unk_id = 0;
  1110. id special_sep_id = -1;
  1111. id special_pad_id = -1;
  1112. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1113. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1114. id linefeed_id = 13;
  1115. id special_prefix_id = 32007;
  1116. id special_middle_id = 32009;
  1117. id special_suffix_id = 32008;
  1118. id special_eot_id = 32010;
  1119. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1120. GGML_ASSERT(token_left.find(" ") == std::string::npos);
  1121. GGML_ASSERT(token_left.find("\n") == std::string::npos);
  1122. GGML_ASSERT(token_right.find(" ") == std::string::npos);
  1123. GGML_ASSERT(token_right.find("\n") == std::string::npos);
  1124. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1125. if (it == bpe_ranks.end()) {
  1126. return -1;
  1127. }
  1128. return it->second;
  1129. }
  1130. };
  1131. struct llama_model {
  1132. e_model type = MODEL_UNKNOWN;
  1133. llm_arch arch = LLM_ARCH_UNKNOWN;
  1134. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1135. std::string name = "n/a";
  1136. llama_hparams hparams = {};
  1137. llama_vocab vocab;
  1138. struct ggml_tensor * tok_embd;
  1139. struct ggml_tensor * pos_embd;
  1140. struct ggml_tensor * tok_norm;
  1141. struct ggml_tensor * tok_norm_b;
  1142. struct ggml_tensor * output_norm;
  1143. struct ggml_tensor * output_norm_b;
  1144. struct ggml_tensor * output;
  1145. std::vector<llama_layer> layers;
  1146. int n_gpu_layers;
  1147. // context
  1148. struct ggml_context * ctx = NULL;
  1149. // the model memory buffer
  1150. llama_buffer buf;
  1151. // model memory mapped file
  1152. std::unique_ptr<llama_mmap> mapping;
  1153. // objects representing data potentially being locked in memory
  1154. llama_mlock mlock_buf;
  1155. llama_mlock mlock_mmap;
  1156. // for quantize-stats only
  1157. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1158. int64_t t_load_us = 0;
  1159. int64_t t_start_us = 0;
  1160. ~llama_model() {
  1161. if (ctx) {
  1162. ggml_free(ctx);
  1163. }
  1164. #ifdef GGML_USE_CUBLAS
  1165. if (ggml_cublas_loaded()) {
  1166. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1167. ggml_cuda_free_data(tensors_by_name[i].second);
  1168. }
  1169. ggml_cuda_free_scratch();
  1170. }
  1171. #endif
  1172. #if defined(GGML_USE_CLBLAST)
  1173. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1174. ggml_cl_free_data(tensors_by_name[i].second);
  1175. }
  1176. #endif
  1177. }
  1178. };
  1179. struct llama_context {
  1180. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1181. ~llama_context() {
  1182. #ifdef GGML_USE_METAL
  1183. if (ctx_metal) {
  1184. ggml_metal_free(ctx_metal);
  1185. }
  1186. #endif
  1187. if (alloc) {
  1188. ggml_allocr_free(alloc);
  1189. }
  1190. }
  1191. llama_cparams cparams;
  1192. const llama_model & model;
  1193. // key + value cache for the self attention
  1194. struct llama_kv_cache kv_self;
  1195. std::mt19937 rng;
  1196. bool has_evaluated_once = false;
  1197. int64_t t_start_us;
  1198. int64_t t_load_us;
  1199. int64_t t_sample_us = 0;
  1200. int64_t t_p_eval_us = 0;
  1201. int64_t t_eval_us = 0;
  1202. int32_t n_sample = 0; // number of tokens sampled
  1203. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1204. int32_t n_eval = 0; // number of eval calls
  1205. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1206. std::vector<float> logits;
  1207. bool logits_all = false;
  1208. // input embedding (1-dimensional array: [n_embd])
  1209. std::vector<float> embedding;
  1210. // reusable buffer for `struct ggml_graph_plan.work_data`
  1211. std::vector<uint8_t> work_buffer;
  1212. // memory buffers used to evaluate the model
  1213. llama_buffer buf_compute;
  1214. llama_buffer buf_alloc;
  1215. ggml_allocr * alloc = NULL;
  1216. #ifdef GGML_USE_METAL
  1217. ggml_metal_context * ctx_metal = NULL;
  1218. #endif
  1219. #ifdef GGML_USE_MPI
  1220. ggml_mpi_context * ctx_mpi = NULL;
  1221. #endif
  1222. };
  1223. //
  1224. // kv cache helpers
  1225. //
  1226. static bool llama_kv_cache_init(
  1227. const struct llama_hparams & hparams,
  1228. struct llama_kv_cache & cache,
  1229. ggml_type wtype,
  1230. uint32_t n_ctx,
  1231. int n_gpu_layers) {
  1232. const uint32_t n_embd = hparams.n_embd_gqa();
  1233. const uint32_t n_layer = hparams.n_layer;
  1234. const int64_t n_mem = n_layer*n_ctx;
  1235. const int64_t n_elements = n_embd*n_mem;
  1236. cache.has_shift = false;
  1237. cache.head = 0;
  1238. cache.size = n_ctx;
  1239. cache.cells.clear();
  1240. cache.cells.resize(n_ctx);
  1241. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1242. memset(cache.buf.data, 0, cache.buf.size);
  1243. struct ggml_init_params params;
  1244. params.mem_size = cache.buf.size;
  1245. params.mem_buffer = cache.buf.data;
  1246. params.no_alloc = false;
  1247. cache.ctx = ggml_init(params);
  1248. if (!cache.ctx) {
  1249. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1250. return false;
  1251. }
  1252. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1253. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1254. ggml_set_name(cache.k, "cache_k");
  1255. ggml_set_name(cache.v, "cache_v");
  1256. (void) n_gpu_layers;
  1257. #ifdef GGML_USE_CUBLAS
  1258. if (ggml_cublas_loaded()) {
  1259. size_t vram_kv_cache = 0;
  1260. if (n_gpu_layers > (int)n_layer + 1) {
  1261. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1262. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1263. vram_kv_cache += ggml_nbytes(cache.v);
  1264. }
  1265. if (n_gpu_layers > (int)n_layer + 2) {
  1266. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1267. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1268. vram_kv_cache += ggml_nbytes(cache.k);
  1269. }
  1270. if (vram_kv_cache > 0) {
  1271. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1272. }
  1273. }
  1274. #endif
  1275. return true;
  1276. }
  1277. // find an empty slot of size "n_tokens" in the cache
  1278. // updates the cache head
  1279. // Note: On success, it's important that cache.head points
  1280. // to the first cell of the slot.
  1281. static bool llama_kv_cache_find_slot(
  1282. struct llama_kv_cache & cache,
  1283. const struct llama_batch & batch) {
  1284. const uint32_t n_ctx = cache.size;
  1285. const uint32_t n_tokens = batch.n_tokens;
  1286. if (n_tokens > n_ctx) {
  1287. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1288. return false;
  1289. }
  1290. uint32_t n_tested = 0;
  1291. while (true) {
  1292. if (cache.head + n_tokens > n_ctx) {
  1293. n_tested += n_ctx - cache.head;
  1294. cache.head = 0;
  1295. continue;
  1296. }
  1297. bool found = true;
  1298. for (uint32_t i = 0; i < n_tokens; i++) {
  1299. if (cache.cells[cache.head + i].pos >= 0) {
  1300. found = false;
  1301. cache.head += i + 1;
  1302. n_tested += i + 1;
  1303. break;
  1304. }
  1305. }
  1306. if (found) {
  1307. break;
  1308. }
  1309. if (n_tested >= n_ctx) {
  1310. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1311. return false;
  1312. }
  1313. }
  1314. for (uint32_t i = 0; i < n_tokens; i++) {
  1315. cache.cells[cache.head + i].pos = batch.pos[i];
  1316. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1317. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1318. }
  1319. }
  1320. return true;
  1321. }
  1322. // find how many cells are currently in use
  1323. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1324. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1325. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1326. return i + 1;
  1327. }
  1328. }
  1329. return 0;
  1330. }
  1331. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  1332. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  1333. cache.cells[i].pos = -1;
  1334. cache.cells[i].seq_id.clear();
  1335. }
  1336. cache.head = 0;
  1337. }
  1338. static void llama_kv_cache_seq_rm(
  1339. struct llama_kv_cache & cache,
  1340. llama_seq_id seq_id,
  1341. llama_pos p0,
  1342. llama_pos p1) {
  1343. uint32_t new_head = cache.size;
  1344. if (p0 < 0) p0 = 0;
  1345. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1346. for (uint32_t i = 0; i < cache.size; ++i) {
  1347. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1348. if (seq_id < 0) {
  1349. cache.cells[i].seq_id.clear();
  1350. } else if (cache.cells[i].has_seq_id(seq_id)) {
  1351. cache.cells[i].seq_id.erase(seq_id);
  1352. } else {
  1353. continue;
  1354. }
  1355. if (cache.cells[i].seq_id.empty()) {
  1356. cache.cells[i].pos = -1;
  1357. if (new_head == cache.size) new_head = i;
  1358. }
  1359. }
  1360. }
  1361. // If we freed up a slot, set head to it so searching can start there.
  1362. if (new_head != cache.size) cache.head = new_head;
  1363. }
  1364. static void llama_kv_cache_seq_cp(
  1365. struct llama_kv_cache & cache,
  1366. llama_seq_id seq_id_src,
  1367. llama_seq_id seq_id_dst,
  1368. llama_pos p0,
  1369. llama_pos p1) {
  1370. if (p0 < 0) p0 = 0;
  1371. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1372. cache.head = 0;
  1373. for (uint32_t i = 0; i < cache.size; ++i) {
  1374. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1375. cache.cells[i].seq_id.insert(seq_id_dst);
  1376. }
  1377. }
  1378. }
  1379. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1380. uint32_t new_head = cache.size;
  1381. for (uint32_t i = 0; i < cache.size; ++i) {
  1382. if (!cache.cells[i].has_seq_id(seq_id)) {
  1383. cache.cells[i].pos = -1;
  1384. cache.cells[i].seq_id.clear();
  1385. if (new_head == cache.size) new_head = i;
  1386. } else {
  1387. cache.cells[i].seq_id.clear();
  1388. cache.cells[i].seq_id.insert(seq_id);
  1389. }
  1390. }
  1391. // If we freed up a slot, set head to it so searching can start there.
  1392. if (new_head != cache.size) cache.head = new_head;
  1393. }
  1394. static void llama_kv_cache_seq_shift(
  1395. struct llama_kv_cache & cache,
  1396. llama_seq_id seq_id,
  1397. llama_pos p0,
  1398. llama_pos p1,
  1399. llama_pos delta) {
  1400. uint32_t new_head = cache.size;
  1401. if (p0 < 0) p0 = 0;
  1402. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1403. for (uint32_t i = 0; i < cache.size; ++i) {
  1404. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1405. cache.has_shift = true;
  1406. cache.cells[i].pos += delta;
  1407. cache.cells[i].delta += delta;
  1408. if (cache.cells[i].pos < 0) {
  1409. cache.cells[i].pos = -1;
  1410. cache.cells[i].seq_id.clear();
  1411. if (new_head == cache.size) new_head = i;
  1412. }
  1413. }
  1414. }
  1415. // If we freed up a slot, set head to it so searching can start there.
  1416. // Otherwise we just start the next search from the beginning.
  1417. cache.head = new_head != cache.size ? new_head : 0;
  1418. }
  1419. //
  1420. // model loading and saving
  1421. //
  1422. enum llama_fver {
  1423. GGUF_FILE_VERSION_V1 = 1,
  1424. GGUF_FILE_VERSION_V2 = 2,
  1425. GGUF_FILE_VERSION_V3 = 3,
  1426. };
  1427. static const char * llama_file_version_name(llama_fver version) {
  1428. switch (version) {
  1429. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1430. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  1431. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  1432. }
  1433. return "unknown";
  1434. }
  1435. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1436. char buf[256];
  1437. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1438. for (size_t i = 1; i < ne.size(); i++) {
  1439. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1440. }
  1441. return buf;
  1442. }
  1443. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1444. char buf[256];
  1445. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1446. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1447. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1448. }
  1449. return buf;
  1450. }
  1451. struct llama_model_loader {
  1452. int n_kv = 0;
  1453. int n_tensors = 0;
  1454. int n_created = 0;
  1455. int64_t n_elements = 0;
  1456. size_t n_bytes = 0;
  1457. bool use_mmap = false;
  1458. llama_file file;
  1459. llama_ftype ftype;
  1460. llama_fver fver;
  1461. std::unique_ptr<llama_mmap> mapping;
  1462. struct gguf_context * ctx_gguf = NULL;
  1463. struct ggml_context * ctx_meta = NULL;
  1464. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1465. struct gguf_init_params params = {
  1466. /*.no_alloc = */ true,
  1467. /*.ctx = */ &ctx_meta,
  1468. };
  1469. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1470. if (!ctx_gguf) {
  1471. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1472. }
  1473. n_kv = gguf_get_n_kv(ctx_gguf);
  1474. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1475. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1476. for (int i = 0; i < n_tensors; i++) {
  1477. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1478. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1479. n_elements += ggml_nelements(t);
  1480. n_bytes += ggml_nbytes(t);
  1481. }
  1482. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1483. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1484. // determine file type based on the number of tensors for each quantization and print meta data
  1485. // TODO: make optional
  1486. {
  1487. std::map<enum ggml_type, uint32_t> n_type;
  1488. uint32_t n_type_max = 0;
  1489. enum ggml_type type_max = GGML_TYPE_F32;
  1490. for (int i = 0; i < n_tensors; i++) {
  1491. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1492. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1493. n_type[meta->type]++;
  1494. if (n_type_max < n_type[meta->type]) {
  1495. n_type_max = n_type[meta->type];
  1496. type_max = meta->type;
  1497. }
  1498. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1499. }
  1500. switch (type_max) {
  1501. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1502. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1503. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1504. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1505. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1506. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1507. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1508. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1509. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1510. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1511. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1512. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1513. default:
  1514. {
  1515. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1516. ftype = LLAMA_FTYPE_ALL_F32;
  1517. } break;
  1518. }
  1519. // this is a way to mark that we have "guessed" the file type
  1520. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1521. {
  1522. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1523. if (kid >= 0) {
  1524. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1525. }
  1526. }
  1527. for (int i = 0; i < n_kv; i++) {
  1528. const char * name = gguf_get_key(ctx_gguf, i);
  1529. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1530. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1531. }
  1532. // print type counts
  1533. for (auto & kv : n_type) {
  1534. if (kv.second == 0) {
  1535. continue;
  1536. }
  1537. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1538. }
  1539. }
  1540. if (!llama_mmap::SUPPORTED) {
  1541. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1542. use_mmap = false;
  1543. }
  1544. this->use_mmap = use_mmap;
  1545. }
  1546. ~llama_model_loader() {
  1547. if (ctx_gguf) {
  1548. gguf_free(ctx_gguf);
  1549. }
  1550. if (ctx_meta) {
  1551. ggml_free(ctx_meta);
  1552. }
  1553. }
  1554. std::string get_arch_name() const {
  1555. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1556. std::string arch_name;
  1557. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1558. return arch_name;
  1559. }
  1560. enum llm_arch get_arch() const {
  1561. const std::string arch_name = get_arch_name();
  1562. return llm_arch_from_string(arch_name);
  1563. }
  1564. const char * get_tensor_name(int i) const {
  1565. return gguf_get_tensor_name(ctx_gguf, i);
  1566. }
  1567. struct ggml_tensor * get_tensor_meta(int i) const {
  1568. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1569. }
  1570. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1571. ctx_size_p = 0;
  1572. mmapped_size_p = 0;
  1573. for (int i = 0; i < n_tensors; i++) {
  1574. struct ggml_tensor * meta = get_tensor_meta(i);
  1575. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1576. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1577. }
  1578. }
  1579. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1580. if (backend != GGML_BACKEND_CPU) {
  1581. ggml_set_no_alloc(ctx, true);
  1582. }
  1583. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1584. tensor->backend = backend; // TODO: ggml_set_backend
  1585. ggml_set_name(tensor, ggml_get_name(meta));
  1586. if (backend != GGML_BACKEND_CPU) {
  1587. ggml_set_no_alloc(ctx, use_mmap);
  1588. }
  1589. n_created++;
  1590. return tensor;
  1591. }
  1592. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1593. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1594. if (cur == NULL) {
  1595. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1596. }
  1597. if (backend == GGML_BACKEND_GPU_SPLIT) {
  1598. if (ne.size() == 1) {
  1599. throw std::runtime_error(format("%s: 1-dimensional tensor '%s' cannot be split on the GPU", __func__, name.c_str()));
  1600. }
  1601. }
  1602. {
  1603. bool is_ok = true;
  1604. for (size_t i = 0; i < ne.size(); ++i) {
  1605. if (ne[i] != cur->ne[i]) {
  1606. is_ok = false;
  1607. break;
  1608. }
  1609. }
  1610. if (!is_ok) {
  1611. throw std::runtime_error(
  1612. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1613. __func__, name.c_str(),
  1614. llama_format_tensor_shape(ne).c_str(),
  1615. llama_format_tensor_shape(cur).c_str()));
  1616. }
  1617. }
  1618. return create_tensor_for(ctx, cur, backend);
  1619. }
  1620. void done_getting_tensors() const {
  1621. if (n_created != n_tensors) {
  1622. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1623. }
  1624. }
  1625. size_t file_offset(const char * name) const {
  1626. const int idx = gguf_find_tensor(ctx_gguf, name);
  1627. if (idx < 0) {
  1628. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1629. }
  1630. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1631. }
  1632. void load_data_for(struct ggml_tensor * cur) const {
  1633. const size_t offs = file_offset(ggml_get_name(cur));
  1634. if (use_mmap) {
  1635. cur->data = (uint8_t *) mapping->addr + offs;
  1636. } else {
  1637. file.seek(offs, SEEK_SET);
  1638. file.read_raw(cur->data, ggml_nbytes(cur));
  1639. }
  1640. }
  1641. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1642. size_t size_data = 0;
  1643. size_t size_lock = 0;
  1644. size_t size_pref = 0; // prefetch
  1645. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1646. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1647. size_data += ggml_nbytes(cur);
  1648. if (cur->backend == GGML_BACKEND_CPU) {
  1649. size_pref += ggml_nbytes(cur);
  1650. }
  1651. }
  1652. if (use_mmap) {
  1653. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1654. if (lmlock) {
  1655. lmlock->init(mapping->addr);
  1656. }
  1657. }
  1658. size_t done_size = 0;
  1659. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1660. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1661. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1662. if (progress_callback) {
  1663. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1664. }
  1665. // allocate temp buffer if not using mmap
  1666. if (!use_mmap && cur->data == NULL) {
  1667. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1668. #ifdef GGML_USE_CPU_HBM
  1669. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1670. #else
  1671. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1672. #endif
  1673. }
  1674. load_data_for(cur);
  1675. switch (cur->backend) {
  1676. case GGML_BACKEND_CPU:
  1677. if (use_mmap && lmlock) {
  1678. size_lock += ggml_nbytes(cur);
  1679. lmlock->grow_to(size_lock);
  1680. }
  1681. break;
  1682. #ifdef GGML_USE_CUBLAS
  1683. case GGML_BACKEND_GPU:
  1684. case GGML_BACKEND_GPU_SPLIT:
  1685. // old code:
  1686. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1687. // TODO: test if this works !!
  1688. ggml_cuda_transform_tensor(cur->data, cur);
  1689. if (!use_mmap) {
  1690. free(cur->data);
  1691. }
  1692. break;
  1693. #elif defined(GGML_USE_CLBLAST)
  1694. case GGML_BACKEND_GPU:
  1695. ggml_cl_transform_tensor(cur->data, cur);
  1696. if (!use_mmap) {
  1697. free(cur->data);
  1698. }
  1699. break;
  1700. #endif
  1701. default:
  1702. continue;
  1703. }
  1704. done_size += ggml_nbytes(cur);
  1705. }
  1706. }
  1707. };
  1708. //
  1709. // load LLaMA models
  1710. //
  1711. static std::string llama_model_arch_name(llm_arch arch) {
  1712. auto it = LLM_ARCH_NAMES.find(arch);
  1713. if (it == LLM_ARCH_NAMES.end()) {
  1714. return "unknown";
  1715. }
  1716. return it->second;
  1717. }
  1718. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1719. if (ftype & LLAMA_FTYPE_GUESSED) {
  1720. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1721. }
  1722. switch (ftype) {
  1723. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1724. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1725. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1726. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1727. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1728. return "mostly Q4_1, some F16";
  1729. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1730. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1731. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1732. // K-quants
  1733. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1734. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1735. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1736. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1737. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1738. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1739. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1740. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1741. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1742. default: return "unknown, may not work";
  1743. }
  1744. }
  1745. static const char * llama_model_type_name(e_model type) {
  1746. switch (type) {
  1747. case MODEL_1B: return "1B";
  1748. case MODEL_3B: return "3B";
  1749. case MODEL_7B: return "7B";
  1750. case MODEL_8B: return "8B";
  1751. case MODEL_13B: return "13B";
  1752. case MODEL_15B: return "15B";
  1753. case MODEL_30B: return "30B";
  1754. case MODEL_34B: return "34B";
  1755. case MODEL_40B: return "40B";
  1756. case MODEL_65B: return "65B";
  1757. case MODEL_70B: return "70B";
  1758. default: return "?B";
  1759. }
  1760. }
  1761. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1762. model.arch = ml.get_arch();
  1763. if (model.arch == LLM_ARCH_UNKNOWN) {
  1764. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1765. }
  1766. }
  1767. static void llm_load_hparams(
  1768. llama_model_loader & ml,
  1769. llama_model & model) {
  1770. struct gguf_context * ctx = ml.ctx_gguf;
  1771. const auto kv = LLM_KV(model.arch);
  1772. auto & hparams = model.hparams;
  1773. // get general kv
  1774. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1775. // get hparams kv
  1776. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1777. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1778. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1779. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1780. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1781. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1782. // n_head_kv is optional, default to n_head
  1783. hparams.n_head_kv = hparams.n_head;
  1784. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1785. hparams.rope_finetuned = false;
  1786. GGUF_GET_KEY(ctx, hparams.rope_finetuned, gguf_get_val_bool, GGUF_TYPE_BOOL, false,
  1787. kv(LLM_KV_ROPE_SCALING_FINETUNED));
  1788. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  1789. GGUF_GET_KEY(ctx, hparams.n_yarn_orig_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false,
  1790. kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN));
  1791. // rope_freq_base (optional)
  1792. hparams.rope_freq_base_train = 10000.0f;
  1793. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1794. std::string rope_scaling("linear");
  1795. GGUF_GET_KEY(ctx, rope_scaling, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_ROPE_SCALING_TYPE));
  1796. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  1797. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
  1798. // rope_freq_scale (inverse of the kv) is optional
  1799. float ropescale = 0.0f;
  1800. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALING_FACTOR));
  1801. if (ropescale == 0.0f) { // try the old key name
  1802. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1803. }
  1804. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  1805. // sanity check for n_rot (optional)
  1806. {
  1807. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1808. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1809. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1810. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1811. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1812. }
  1813. }
  1814. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1815. // gpt-j n_rot = rotary_dim
  1816. }
  1817. // arch-specific KVs
  1818. switch (model.arch) {
  1819. case LLM_ARCH_LLAMA:
  1820. {
  1821. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1822. switch (hparams.n_layer) {
  1823. case 26: model.type = e_model::MODEL_3B; break;
  1824. case 32: model.type = e_model::MODEL_7B; break;
  1825. case 40: model.type = e_model::MODEL_13B; break;
  1826. case 48: model.type = e_model::MODEL_34B; break;
  1827. case 60: model.type = e_model::MODEL_30B; break;
  1828. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1829. default: model.type = e_model::MODEL_UNKNOWN;
  1830. }
  1831. } break;
  1832. case LLM_ARCH_FALCON:
  1833. {
  1834. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1835. switch (hparams.n_layer) {
  1836. case 32: model.type = e_model::MODEL_7B; break;
  1837. case 60: model.type = e_model::MODEL_40B; break;
  1838. default: model.type = e_model::MODEL_UNKNOWN;
  1839. }
  1840. } break;
  1841. case LLM_ARCH_BAICHUAN:
  1842. {
  1843. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1844. switch (hparams.n_layer) {
  1845. case 32: model.type = e_model::MODEL_7B; break;
  1846. case 40: model.type = e_model::MODEL_13B; break;
  1847. default: model.type = e_model::MODEL_UNKNOWN;
  1848. }
  1849. } break;
  1850. case LLM_ARCH_STARCODER:
  1851. {
  1852. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1853. switch (hparams.n_layer) {
  1854. case 24: model.type = e_model::MODEL_1B; break;
  1855. case 36: model.type = e_model::MODEL_3B; break;
  1856. case 42: model.type = e_model::MODEL_7B; break;
  1857. case 40: model.type = e_model::MODEL_15B; break;
  1858. default: model.type = e_model::MODEL_UNKNOWN;
  1859. }
  1860. } break;
  1861. case LLM_ARCH_PERSIMMON:
  1862. {
  1863. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1864. switch (hparams.n_layer) {
  1865. case 36: model.type = e_model::MODEL_8B; break;
  1866. default: model.type = e_model::MODEL_UNKNOWN;
  1867. }
  1868. } break;
  1869. case LLM_ARCH_REFACT:
  1870. {
  1871. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1872. switch (hparams.n_layer) {
  1873. case 32: model.type = e_model::MODEL_1B; break;
  1874. default: model.type = e_model::MODEL_UNKNOWN;
  1875. }
  1876. } break;
  1877. case LLM_ARCH_BLOOM:
  1878. {
  1879. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1880. switch (hparams.n_layer) {
  1881. case 24: model.type = e_model::MODEL_1B; break;
  1882. case 30:
  1883. switch (hparams.n_embd) {
  1884. case 2560: model.type = e_model::MODEL_3B; break;
  1885. case 4096: model.type = e_model::MODEL_7B; break;
  1886. } break;
  1887. }
  1888. } break;
  1889. case LLM_ARCH_MPT:
  1890. {
  1891. hparams.f_clamp_kqv = 0.0f;
  1892. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1893. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1894. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1895. switch (hparams.n_layer) {
  1896. case 32: model.type = e_model::MODEL_7B; break;
  1897. case 48: model.type = e_model::MODEL_30B; break;
  1898. default: model.type = e_model::MODEL_UNKNOWN;
  1899. }
  1900. } break;
  1901. case LLM_ARCH_STABLELM:
  1902. {
  1903. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1904. switch (hparams.n_layer) {
  1905. case 32: model.type = e_model::MODEL_3B; break;
  1906. default: model.type = e_model::MODEL_UNKNOWN;
  1907. }
  1908. } break;
  1909. default: (void)0;
  1910. }
  1911. model.ftype = ml.ftype;
  1912. }
  1913. // TODO: This should probably be in llama.h
  1914. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  1915. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1916. static void llm_load_vocab(
  1917. llama_model_loader & ml,
  1918. llama_model & model) {
  1919. auto & vocab = model.vocab;
  1920. struct gguf_context * ctx = ml.ctx_gguf;
  1921. const auto kv = LLM_KV(model.arch);
  1922. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1923. if (token_idx == -1) {
  1924. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1925. }
  1926. const float * scores = nullptr;
  1927. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1928. if (score_idx != -1) {
  1929. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1930. }
  1931. const int * toktypes = nullptr;
  1932. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1933. if (toktype_idx != -1) {
  1934. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1935. }
  1936. // determine vocab type
  1937. {
  1938. std::string tokenizer_name;
  1939. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1940. if (tokenizer_name == "llama") {
  1941. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1942. // default special tokens
  1943. vocab.special_bos_id = 1;
  1944. vocab.special_eos_id = 2;
  1945. vocab.special_unk_id = 0;
  1946. vocab.special_sep_id = -1;
  1947. vocab.special_pad_id = -1;
  1948. } else if (tokenizer_name == "gpt2") {
  1949. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1950. // read bpe merges and populate bpe ranks
  1951. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1952. if (merges_keyidx == -1) {
  1953. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1954. }
  1955. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1956. for (int i = 0; i < n_merges; i++) {
  1957. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1958. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1959. std::string first;
  1960. std::string second;
  1961. const size_t pos = word.find(' ', 1);
  1962. if (pos != std::string::npos) {
  1963. first = word.substr(0, pos);
  1964. second = word.substr(pos + 1);
  1965. }
  1966. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1967. }
  1968. // default special tokens
  1969. vocab.special_bos_id = 11;
  1970. vocab.special_eos_id = 11;
  1971. vocab.special_unk_id = -1;
  1972. vocab.special_sep_id = -1;
  1973. vocab.special_pad_id = -1;
  1974. } else {
  1975. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1976. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1977. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1978. }
  1979. }
  1980. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1981. vocab.id_to_token.resize(n_vocab);
  1982. for (uint32_t i = 0; i < n_vocab; i++) {
  1983. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1984. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1985. vocab.token_to_id[word] = i;
  1986. auto & token_data = vocab.id_to_token[i];
  1987. token_data.text = std::move(word);
  1988. token_data.score = scores ? scores[i] : 0.0f;
  1989. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1990. }
  1991. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1992. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1993. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1994. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1995. } else {
  1996. const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
  1997. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1998. vocab.linefeed_id = ids[0];
  1999. }
  2000. // special tokens
  2001. {
  2002. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  2003. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  2004. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  2005. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  2006. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  2007. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  2008. };
  2009. for (const auto & it : special_token_types) {
  2010. const std::string & key = kv(std::get<0>(it));
  2011. int32_t & id = std::get<1>(it), old_id = id;
  2012. GGUF_GET_KEY(ctx, id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, key);
  2013. // Must be >= -1 and < vocab size. Since the key is unsigned, -1
  2014. // can only come from the default value, so there's no point in
  2015. // validating that.
  2016. if (size_t(id + 1) > vocab.id_to_token.size()) {
  2017. LLAMA_LOG_WARN("%s: bad special token: '%s' = %d, using default id %d\n",
  2018. __func__, key.c_str(), id, old_id);
  2019. id = old_id;
  2020. }
  2021. }
  2022. // Handle add_bos_token and add_eos_token
  2023. std::string key = kv(LLM_KV_TOKENIZER_ADD_BOS);
  2024. int kid = gguf_find_key(ctx, key.c_str());
  2025. enum gguf_type ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
  2026. vocab.special_add_bos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
  2027. if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
  2028. LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
  2029. }
  2030. key = kv(LLM_KV_TOKENIZER_ADD_EOS);
  2031. kid = gguf_find_key(ctx, key.c_str());
  2032. ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
  2033. vocab.special_add_eos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
  2034. if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
  2035. LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
  2036. }
  2037. }
  2038. // build special tokens cache
  2039. {
  2040. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  2041. // and will always be correctly labeled in 'added_tokens.json' etc.
  2042. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  2043. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  2044. // are special tokens.
  2045. // From testing, this appears to corelate 1:1 with special tokens.
  2046. //
  2047. // Counting special tokens and verifying in only one direction
  2048. // is sufficient to detect difference in those two sets.
  2049. //
  2050. uint32_t special_tokens_count_by_type = 0;
  2051. uint32_t special_tokens_count_from_verification = 0;
  2052. bool special_tokens_definition_mismatch = false;
  2053. for (const auto & t : vocab.token_to_id) {
  2054. const auto & token = t.first;
  2055. const auto & id = t.second;
  2056. // Count all non-normal tokens in the vocab while iterating
  2057. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  2058. special_tokens_count_by_type++;
  2059. }
  2060. // Skip single character tokens
  2061. if (token.length() > 1) {
  2062. bool is_tokenizable = false;
  2063. // Split token string representation in two, in all possible ways
  2064. // and check if both halves can be matched to a valid token
  2065. for (unsigned i = 1; i < token.length();) {
  2066. const auto left = token.substr(0, i);
  2067. const auto right = token.substr(i);
  2068. // check if we didnt partition in the middle of a utf sequence
  2069. auto utf = utf8_len(left.at(left.length() - 1));
  2070. if (utf == 1) {
  2071. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  2072. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  2073. is_tokenizable = true;
  2074. break;
  2075. }
  2076. i++;
  2077. } else {
  2078. // skip over the rest of multibyte utf sequence
  2079. i += utf - 1;
  2080. }
  2081. }
  2082. if (!is_tokenizable) {
  2083. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  2084. // it's faster to re-filter them here, since there are way less candidates now
  2085. // Calculate a total "utf" length of a token string representation
  2086. size_t utf8_str_len = 0;
  2087. for (unsigned i = 0; i < token.length();) {
  2088. utf8_str_len++;
  2089. i += utf8_len(token.at(i));
  2090. }
  2091. // And skip the ones which are one character
  2092. if (utf8_str_len > 1) {
  2093. // At this point what we have left are special tokens only
  2094. vocab.special_tokens_cache[token] = id;
  2095. // Count manually found special tokens
  2096. special_tokens_count_from_verification++;
  2097. // If this manually found special token is not marked as such, flag a mismatch
  2098. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  2099. special_tokens_definition_mismatch = true;
  2100. }
  2101. }
  2102. }
  2103. }
  2104. }
  2105. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  2106. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  2107. __func__,
  2108. special_tokens_count_from_verification, vocab.id_to_token.size(),
  2109. special_tokens_count_by_type, vocab.id_to_token.size()
  2110. );
  2111. } else {
  2112. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  2113. __func__,
  2114. special_tokens_count_from_verification, vocab.id_to_token.size()
  2115. );
  2116. }
  2117. }
  2118. }
  2119. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  2120. const auto & hparams = model.hparams;
  2121. const auto & vocab = model.vocab;
  2122. const auto rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  2123. // hparams
  2124. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  2125. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  2126. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  2127. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  2128. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  2129. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  2130. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  2131. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  2132. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  2133. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  2134. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  2135. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  2136. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  2137. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  2138. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  2139. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  2140. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  2141. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  2142. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  2143. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  2144. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  2145. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  2146. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  2147. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  2148. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  2149. if (ml.n_bytes < GiB) {
  2150. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2151. } else {
  2152. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2153. }
  2154. // general kv
  2155. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  2156. // special tokens
  2157. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  2158. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  2159. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  2160. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  2161. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  2162. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  2163. }
  2164. static void llm_load_tensors(
  2165. llama_model_loader & ml,
  2166. llama_model & model,
  2167. int n_gpu_layers,
  2168. int main_gpu,
  2169. const float * tensor_split,
  2170. bool use_mlock,
  2171. llama_progress_callback progress_callback,
  2172. void * progress_callback_user_data) {
  2173. model.t_start_us = ggml_time_us();
  2174. auto & ctx = model.ctx;
  2175. auto & hparams = model.hparams;
  2176. model.n_gpu_layers = n_gpu_layers;
  2177. size_t ctx_size;
  2178. size_t mmapped_size;
  2179. ml.calc_sizes(ctx_size, mmapped_size);
  2180. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
  2181. // create the ggml context
  2182. {
  2183. model.buf.resize(ctx_size);
  2184. if (use_mlock) {
  2185. model.mlock_buf.init (model.buf.data);
  2186. model.mlock_buf.grow_to(model.buf.size);
  2187. }
  2188. struct ggml_init_params params = {
  2189. /*.mem_size =*/ model.buf.size,
  2190. /*.mem_buffer =*/ model.buf.data,
  2191. /*.no_alloc =*/ ml.use_mmap,
  2192. };
  2193. model.ctx = ggml_init(params);
  2194. if (!model.ctx) {
  2195. throw std::runtime_error(format("ggml_init() failed"));
  2196. }
  2197. }
  2198. (void) main_gpu;
  2199. enum ggml_backend_type llama_backend_offload = GGML_BACKEND_CPU;
  2200. enum ggml_backend_type llama_backend_offload_split = GGML_BACKEND_CPU;
  2201. #ifdef GGML_USE_CUBLAS
  2202. if (ggml_cublas_loaded()) {
  2203. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  2204. ggml_cuda_set_main_device(main_gpu);
  2205. llama_backend_offload = GGML_BACKEND_GPU;
  2206. llama_backend_offload_split = GGML_BACKEND_GPU_SPLIT;
  2207. }
  2208. #elif defined(GGML_USE_CLBLAST)
  2209. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  2210. llama_backend_offload = GGML_BACKEND_GPU;
  2211. llama_backend_offload_split = GGML_BACKEND_GPU;
  2212. #endif
  2213. // prepare memory for the weights
  2214. size_t vram_weights = 0;
  2215. {
  2216. const int64_t n_embd = hparams.n_embd;
  2217. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2218. const int64_t n_layer = hparams.n_layer;
  2219. const int64_t n_vocab = hparams.n_vocab;
  2220. const auto tn = LLM_TN(model.arch);
  2221. switch (model.arch) {
  2222. case LLM_ARCH_LLAMA:
  2223. case LLM_ARCH_REFACT:
  2224. {
  2225. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2226. // output
  2227. {
  2228. ggml_backend_type backend_norm;
  2229. ggml_backend_type backend_output;
  2230. if (n_gpu_layers > int(n_layer)) {
  2231. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2232. // on Windows however this is detrimental unless everything is on the GPU
  2233. #ifndef _WIN32
  2234. backend_norm = llama_backend_offload;
  2235. #else
  2236. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2237. #endif // _WIN32
  2238. backend_output = llama_backend_offload_split;
  2239. } else {
  2240. backend_norm = GGML_BACKEND_CPU;
  2241. backend_output = GGML_BACKEND_CPU;
  2242. }
  2243. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2244. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2245. if (backend_norm == GGML_BACKEND_GPU) {
  2246. vram_weights += ggml_nbytes(model.output_norm);
  2247. }
  2248. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2249. vram_weights += ggml_nbytes(model.output);
  2250. }
  2251. }
  2252. const uint32_t n_ff = hparams.n_ff;
  2253. const int i_gpu_start = n_layer - n_gpu_layers;
  2254. model.layers.resize(n_layer);
  2255. for (uint32_t i = 0; i < n_layer; ++i) {
  2256. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2257. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2258. auto & layer = model.layers[i];
  2259. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2260. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2261. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2262. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2263. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2264. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2265. layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2266. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2267. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2268. if (backend == GGML_BACKEND_GPU) {
  2269. vram_weights +=
  2270. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2271. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2272. ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2273. }
  2274. }
  2275. } break;
  2276. case LLM_ARCH_BAICHUAN:
  2277. {
  2278. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2279. {
  2280. ggml_backend_type backend_norm;
  2281. ggml_backend_type backend_output;
  2282. if (n_gpu_layers > int(n_layer)) {
  2283. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2284. // on Windows however this is detrimental unless everything is on the GPU
  2285. #ifndef _WIN32
  2286. backend_norm = llama_backend_offload;
  2287. #else
  2288. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2289. #endif // _WIN32
  2290. backend_output = llama_backend_offload_split;
  2291. } else {
  2292. backend_norm = GGML_BACKEND_CPU;
  2293. backend_output = GGML_BACKEND_CPU;
  2294. }
  2295. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2296. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2297. if (backend_norm == GGML_BACKEND_GPU) {
  2298. vram_weights += ggml_nbytes(model.output_norm);
  2299. }
  2300. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2301. vram_weights += ggml_nbytes(model.output);
  2302. }
  2303. }
  2304. const uint32_t n_ff = hparams.n_ff;
  2305. const int i_gpu_start = n_layer - n_gpu_layers;
  2306. model.layers.resize(n_layer);
  2307. for (uint32_t i = 0; i < n_layer; ++i) {
  2308. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2309. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2310. auto & layer = model.layers[i];
  2311. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2312. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2313. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2314. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2315. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2316. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2317. layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2318. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2319. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2320. if (backend == GGML_BACKEND_GPU) {
  2321. vram_weights +=
  2322. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2323. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2324. ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2325. }
  2326. }
  2327. } break;
  2328. case LLM_ARCH_FALCON:
  2329. {
  2330. // TODO: CPU-only for now
  2331. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2332. // output
  2333. {
  2334. ggml_backend_type backend_norm;
  2335. ggml_backend_type backend_output;
  2336. if (n_gpu_layers > int(n_layer)) {
  2337. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2338. // on Windows however this is detrimental unless everything is on the GPU
  2339. #ifndef _WIN32
  2340. backend_norm = llama_backend_offload;
  2341. #else
  2342. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2343. #endif // _WIN32
  2344. backend_output = llama_backend_offload_split;
  2345. } else {
  2346. backend_norm = GGML_BACKEND_CPU;
  2347. backend_output = GGML_BACKEND_CPU;
  2348. }
  2349. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2350. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2351. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2352. if (backend_norm == GGML_BACKEND_GPU) {
  2353. vram_weights += ggml_nbytes(model.output_norm);
  2354. vram_weights += ggml_nbytes(model.output_norm_b);
  2355. }
  2356. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2357. vram_weights += ggml_nbytes(model.output);
  2358. }
  2359. }
  2360. const uint32_t n_ff = hparams.n_ff;
  2361. const int i_gpu_start = n_layer - n_gpu_layers;
  2362. model.layers.resize(n_layer);
  2363. for (uint32_t i = 0; i < n_layer; ++i) {
  2364. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2365. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2366. auto & layer = model.layers[i];
  2367. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2368. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2369. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2370. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2371. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2372. if (backend == GGML_BACKEND_GPU) {
  2373. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2374. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2375. }
  2376. }
  2377. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2378. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2379. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2380. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2381. if (backend == GGML_BACKEND_GPU) {
  2382. vram_weights +=
  2383. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2384. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2385. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2386. }
  2387. }
  2388. } break;
  2389. case LLM_ARCH_STARCODER:
  2390. {
  2391. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2392. model.pos_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2393. // output
  2394. {
  2395. ggml_backend_type backend_norm;
  2396. ggml_backend_type backend_output;
  2397. if (n_gpu_layers > int(n_layer)) {
  2398. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2399. // on Windows however this is detrimental unless everything is on the GPU
  2400. #ifndef _WIN32
  2401. backend_norm = llama_backend_offload;
  2402. #else
  2403. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2404. #endif // _WIN32
  2405. backend_output = llama_backend_offload_split;
  2406. } else {
  2407. backend_norm = GGML_BACKEND_CPU;
  2408. backend_output = GGML_BACKEND_CPU;
  2409. }
  2410. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2411. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2412. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2413. if (backend_norm == GGML_BACKEND_GPU) {
  2414. vram_weights += ggml_nbytes(model.output_norm);
  2415. vram_weights += ggml_nbytes(model.output_norm_b);
  2416. }
  2417. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2418. vram_weights += ggml_nbytes(model.output);
  2419. }
  2420. }
  2421. const uint32_t n_ff = hparams.n_ff;
  2422. const int i_gpu_start = n_layer - n_gpu_layers;
  2423. model.layers.resize(n_layer);
  2424. for (uint32_t i = 0; i < n_layer; ++i) {
  2425. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2426. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2427. auto & layer = model.layers[i];
  2428. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2429. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2430. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2431. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2432. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2433. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2434. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2435. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2436. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2437. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2438. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2439. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2440. if (backend == GGML_BACKEND_GPU) {
  2441. vram_weights +=
  2442. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2443. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2444. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2445. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2446. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_down_b) +
  2447. ggml_nbytes(layer.ffn_up) + ggml_nbytes(layer.ffn_up_b);
  2448. }
  2449. }
  2450. } break;
  2451. case LLM_ARCH_PERSIMMON:
  2452. {
  2453. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2454. {
  2455. ggml_backend_type backend_norm;
  2456. ggml_backend_type backend_output;
  2457. if (n_gpu_layers > int(n_layer)) {
  2458. #ifdef GGML_USE_CUBLAS
  2459. if (n_gpu_layers > int(n_layer + 1)) {
  2460. LLAMA_LOG_ERROR("%s: CUDA backend missing Persimmon CUDA ops, can offload at most %ld layers. See: https://github.com/ggerganov/llama.cpp/issues/4038\n",
  2461. __func__, n_layer + 1);
  2462. throw std::runtime_error("Persimmon CUDA offload failed");
  2463. }
  2464. #endif
  2465. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2466. // on Windows however this is detrimental unless everything is on the GPU
  2467. #ifndef _WIN32
  2468. backend_norm = llama_backend_offload;
  2469. #else
  2470. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2471. #endif // _WIN32
  2472. backend_output = llama_backend_offload_split;
  2473. } else {
  2474. backend_norm = GGML_BACKEND_CPU;
  2475. backend_output = GGML_BACKEND_CPU;
  2476. }
  2477. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2478. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2479. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2480. if (backend_norm == GGML_BACKEND_GPU) {
  2481. vram_weights += ggml_nbytes(model.output_norm);
  2482. vram_weights += ggml_nbytes(model.output_norm_b);
  2483. }
  2484. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2485. vram_weights += ggml_nbytes(model.output);
  2486. }
  2487. }
  2488. const uint32_t n_ff = hparams.n_ff;
  2489. const int i_gpu_start = n_layer - n_gpu_layers;
  2490. model.layers.resize(n_layer);
  2491. for (uint32_t i = 0; i < n_layer; ++i) {
  2492. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload;
  2493. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split;
  2494. auto & layer = model.layers[i];
  2495. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2496. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2497. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2498. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2499. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2500. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2501. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2502. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2503. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2504. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2505. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2506. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2507. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2508. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2509. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2510. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2511. }
  2512. } break;
  2513. case LLM_ARCH_BLOOM:
  2514. {
  2515. // TODO: CPU-only for now
  2516. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2517. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2518. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2519. // output
  2520. {
  2521. ggml_backend_type backend_norm;
  2522. ggml_backend_type backend_output;
  2523. if (n_gpu_layers > int(n_layer)) {
  2524. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2525. // on Windows however this is detrimental unless everything is on the GPU
  2526. #ifndef _WIN32
  2527. backend_norm = llama_backend_offload;
  2528. #else
  2529. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2530. #endif // _WIN32
  2531. backend_output = llama_backend_offload_split;
  2532. } else {
  2533. backend_norm = GGML_BACKEND_CPU;
  2534. backend_output = GGML_BACKEND_CPU;
  2535. }
  2536. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2537. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2538. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2539. if (backend_norm == GGML_BACKEND_GPU) {
  2540. vram_weights += ggml_nbytes(model.output_norm);
  2541. vram_weights += ggml_nbytes(model.output_norm_b);
  2542. }
  2543. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2544. vram_weights += ggml_nbytes(model.output);
  2545. }
  2546. }
  2547. const uint32_t n_ff = hparams.n_ff;
  2548. const int i_gpu_start = n_layer - n_gpu_layers;
  2549. model.layers.resize(n_layer);
  2550. for (uint32_t i = 0; i < n_layer; ++i) {
  2551. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2552. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2553. auto & layer = model.layers[i];
  2554. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2555. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2556. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2557. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2558. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2559. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2560. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2561. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2562. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2563. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2564. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2565. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2566. if (backend == GGML_BACKEND_GPU) {
  2567. vram_weights +=
  2568. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2569. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2570. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2571. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2572. ggml_nbytes(layer.ffn_up) + ggml_nbytes(layer.ffn_up_b) +
  2573. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_down_b);
  2574. }
  2575. }
  2576. } break;
  2577. case LLM_ARCH_MPT:
  2578. {
  2579. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2580. // output
  2581. {
  2582. ggml_backend_type backend_norm;
  2583. ggml_backend_type backend_output;
  2584. if (n_gpu_layers > int(n_layer)) {
  2585. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2586. // on Windows however this is detrimental unless everything is on the GPU
  2587. #ifndef _WIN32
  2588. backend_norm = llama_backend_offload;
  2589. #else
  2590. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2591. #endif // _WIN32
  2592. backend_output = llama_backend_offload_split;
  2593. } else {
  2594. backend_norm = GGML_BACKEND_CPU;
  2595. backend_output = GGML_BACKEND_CPU;
  2596. }
  2597. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2598. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2599. if (backend_norm == GGML_BACKEND_GPU) {
  2600. vram_weights += ggml_nbytes(model.output_norm);
  2601. }
  2602. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2603. vram_weights += ggml_nbytes(model.output);
  2604. }
  2605. }
  2606. const uint32_t n_ff = hparams.n_ff;
  2607. const int i_gpu_start = n_layer - n_gpu_layers;
  2608. model.layers.resize(n_layer);
  2609. for (uint32_t i = 0; i < n_layer; ++i) {
  2610. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2611. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2612. auto & layer = model.layers[i];
  2613. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2614. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2615. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2616. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2617. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2618. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2619. if (backend == GGML_BACKEND_GPU) {
  2620. vram_weights +=
  2621. ggml_nbytes(layer.attn_norm) +
  2622. ggml_nbytes(layer.wqkv) +
  2623. ggml_nbytes(layer.wo) +
  2624. ggml_nbytes(layer.ffn_norm) +
  2625. ggml_nbytes(layer.ffn_down) +
  2626. ggml_nbytes(layer.ffn_up);
  2627. }
  2628. }
  2629. } break;
  2630. case LLM_ARCH_STABLELM:
  2631. {
  2632. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2633. // output
  2634. {
  2635. ggml_backend_type backend_norm;
  2636. ggml_backend_type backend_output;
  2637. if (n_gpu_layers > int(n_layer)) {
  2638. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2639. // on Windows however this is detrimental unless everything is on the GPU
  2640. #ifndef _WIN32
  2641. backend_norm = llama_backend_offload;
  2642. #else
  2643. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
  2644. #endif // _WIN32
  2645. backend_output = llama_backend_offload_split;
  2646. } else {
  2647. backend_norm = GGML_BACKEND_CPU;
  2648. backend_output = GGML_BACKEND_CPU;
  2649. }
  2650. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2651. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2652. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2653. if (backend_norm == GGML_BACKEND_GPU) {
  2654. vram_weights += ggml_nbytes(model.output_norm);
  2655. }
  2656. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2657. vram_weights += ggml_nbytes(model.output);
  2658. }
  2659. }
  2660. const uint32_t n_ff = hparams.n_ff;
  2661. const int i_gpu_start = n_layer - n_gpu_layers;
  2662. model.layers.resize(n_layer);
  2663. for (uint32_t i = 0; i < n_layer; ++i) {
  2664. /*
  2665. llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ]
  2666. */
  2667. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
  2668. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
  2669. auto & layer = model.layers[i];
  2670. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2671. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2672. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2673. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2674. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2675. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2676. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2677. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2678. layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2679. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2680. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2681. if (backend == GGML_BACKEND_GPU) {
  2682. vram_weights +=
  2683. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2684. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2685. ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2686. }
  2687. }
  2688. } break;
  2689. default:
  2690. throw std::runtime_error("unknown architecture");
  2691. }
  2692. }
  2693. ml.done_getting_tensors();
  2694. // print memory requirements
  2695. {
  2696. // this is the total memory required to run the inference
  2697. size_t mem_required =
  2698. ctx_size +
  2699. mmapped_size - vram_weights; // weights in VRAM not in memory
  2700. LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
  2701. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2702. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2703. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2704. if (n_gpu_layers > (int) hparams.n_layer) {
  2705. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2706. }
  2707. #ifdef GGML_USE_CUBLAS
  2708. const int max_backend_supported_layers = hparams.n_layer + 3;
  2709. const int max_offloadable_layers = hparams.n_layer + 3;
  2710. #elif GGML_USE_CLBLAST
  2711. const int max_backend_supported_layers = hparams.n_layer + 1;
  2712. const int max_offloadable_layers = hparams.n_layer + 1;
  2713. #endif // GGML_USE_CUBLAS
  2714. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2715. LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2716. #else
  2717. (void) n_gpu_layers;
  2718. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2719. }
  2720. // populate `tensors_by_name`
  2721. for (int i = 0; i < ml.n_tensors; ++i) {
  2722. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2723. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2724. }
  2725. (void) tensor_split;
  2726. #ifdef GGML_USE_CUBLAS
  2727. {
  2728. ggml_cuda_set_tensor_split(tensor_split);
  2729. }
  2730. #endif
  2731. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2732. if (progress_callback) {
  2733. progress_callback(1.0f, progress_callback_user_data);
  2734. }
  2735. model.mapping = std::move(ml.mapping);
  2736. // loading time will be recalculate after the first eval, so
  2737. // we take page faults deferred by mmap() into consideration
  2738. model.t_load_us = ggml_time_us() - model.t_start_us;
  2739. }
  2740. static bool llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
  2741. try {
  2742. llama_model_loader ml(fname, params.use_mmap);
  2743. model.hparams.vocab_only = params.vocab_only;
  2744. llm_load_arch (ml, model);
  2745. llm_load_hparams(ml, model);
  2746. llm_load_vocab (ml, model);
  2747. llm_load_print_meta(ml, model);
  2748. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2749. throw std::runtime_error("vocab size mismatch");
  2750. }
  2751. if (params.vocab_only) {
  2752. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2753. return true;
  2754. }
  2755. llm_load_tensors(
  2756. ml, model, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.use_mlock,
  2757. params.progress_callback, params.progress_callback_user_data
  2758. );
  2759. } catch (const std::exception & err) {
  2760. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2761. return false;
  2762. }
  2763. return true;
  2764. }
  2765. //
  2766. // llm_build
  2767. //
  2768. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  2769. enum llm_rope_type {
  2770. LLM_ROPE,
  2771. LLM_ROPE_NEOX,
  2772. LLM_ROPE_GLM,
  2773. };
  2774. enum llm_ffn_op_type {
  2775. LLM_FFN_SILU,
  2776. LLM_FFN_GELU,
  2777. LLM_FFN_RELU,
  2778. LLM_FFN_RELU_SQR,
  2779. };
  2780. enum llm_ffn_gate_type {
  2781. LLM_FFN_SEQ,
  2782. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  2783. };
  2784. enum llm_norm_type {
  2785. LLM_NORM,
  2786. LLM_NORM_RMS,
  2787. };
  2788. static struct ggml_tensor * llm_build_inp_embd(
  2789. struct ggml_context * ctx,
  2790. const llama_hparams & hparams,
  2791. const llama_batch & batch,
  2792. struct ggml_tensor * tok_embd,
  2793. const llm_build_cb & cb) {
  2794. const int64_t n_embd = hparams.n_embd;
  2795. struct ggml_tensor * inpL;
  2796. if (batch.token) {
  2797. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  2798. cb(inp_tokens, "inp_tokens", -1);
  2799. inpL = ggml_get_rows(ctx, tok_embd, inp_tokens);
  2800. } else {
  2801. #ifdef GGML_USE_MPI
  2802. GGML_ASSERT(false && "not implemented");
  2803. #endif
  2804. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  2805. }
  2806. return inpL;
  2807. }
  2808. // Persimmon: n_rot = n_embd_head/2
  2809. // Other: n_rot = n_embd_head
  2810. static void llm_build_k_shift(
  2811. struct ggml_context * ctx,
  2812. const llama_hparams & hparams,
  2813. const llama_cparams & cparams,
  2814. const llama_kv_cache & kv,
  2815. struct ggml_cgraph * graph,
  2816. llm_rope_type type,
  2817. int64_t n_ctx,
  2818. int64_t n_rot,
  2819. float freq_base,
  2820. float freq_scale,
  2821. const llm_build_cb & cb) {
  2822. const int64_t n_layer = hparams.n_layer;
  2823. const int64_t n_head_kv = hparams.n_head_kv;
  2824. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2825. const int64_t n_embd_head = hparams.n_embd_head();
  2826. const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
  2827. const float ext_factor = cparams.yarn_ext_factor;
  2828. const float attn_factor = cparams.yarn_attn_factor;
  2829. const float beta_fast = cparams.yarn_beta_fast;
  2830. const float beta_slow = cparams.yarn_beta_slow;
  2831. GGML_ASSERT(n_embd_head % n_rot == 0);
  2832. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx);
  2833. cb(K_shift, "K_shift", -1);
  2834. int rope_type = 0;
  2835. switch (type) {
  2836. case LLM_ROPE: rope_type = 0; break;
  2837. case LLM_ROPE_NEOX: rope_type = 2; break;
  2838. case LLM_ROPE_GLM: rope_type = 4; break;
  2839. }
  2840. for (int il = 0; il < n_layer; ++il) {
  2841. struct ggml_tensor * tmp =
  2842. // we rotate only the first n_rot dimensions
  2843. ggml_rope_custom_inplace(ctx,
  2844. ggml_view_3d(ctx, kv.k,
  2845. n_rot, n_head_kv, n_ctx,
  2846. ggml_element_size(kv.k)*n_embd_head,
  2847. ggml_element_size(kv.k)*n_embd_gqa,
  2848. ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il),
  2849. K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  2850. ext_factor, attn_factor, beta_fast, beta_slow);
  2851. cb(tmp, "K_shifted", il);
  2852. ggml_build_forward_expand(graph, tmp);
  2853. }
  2854. }
  2855. static void llm_build_kv_store(
  2856. struct ggml_context * ctx,
  2857. const llama_hparams & hparams,
  2858. const llama_kv_cache & kv,
  2859. struct ggml_cgraph * graph,
  2860. struct ggml_tensor * k_cur,
  2861. struct ggml_tensor * v_cur,
  2862. int64_t n_ctx,
  2863. int32_t n_tokens,
  2864. int32_t kv_head,
  2865. const llm_build_cb & cb,
  2866. int64_t il) {
  2867. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2868. // compute the transposed [n_tokens, n_embd] V matrix
  2869. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens));
  2870. //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
  2871. cb(v_cur_t, "v_cur_t", il);
  2872. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k, n_tokens*n_embd_gqa,
  2873. (ggml_element_size(kv.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2874. cb(k_cache_view, "k_cache_view", il);
  2875. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v, n_tokens, n_embd_gqa,
  2876. ( n_ctx)*ggml_element_size(kv.v),
  2877. (il*n_ctx)*ggml_element_size(kv.v)*n_embd_gqa + kv_head*ggml_element_size(kv.v));
  2878. cb(v_cache_view, "v_cache_view", il);
  2879. // important: storing RoPE-ed version of K in the KV cache!
  2880. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  2881. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  2882. }
  2883. static struct ggml_tensor * llm_build_norm(
  2884. struct ggml_context * ctx,
  2885. struct ggml_tensor * cur,
  2886. const llama_hparams & hparams,
  2887. struct ggml_tensor * mw,
  2888. struct ggml_tensor * mb,
  2889. llm_norm_type type,
  2890. const llm_build_cb & cb,
  2891. int il) {
  2892. switch (type) {
  2893. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  2894. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  2895. }
  2896. if (mw || mb) {
  2897. cb(cur, "norm", il);
  2898. }
  2899. if (mw) {
  2900. cur = ggml_mul(ctx, cur, mw);
  2901. if (mb) {
  2902. cb(cur, "norm_w", il);
  2903. }
  2904. }
  2905. if (mb) {
  2906. cur = ggml_add(ctx, cur, mb);
  2907. }
  2908. return cur;
  2909. }
  2910. static struct ggml_tensor * llm_build_ffn(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * cur,
  2913. struct ggml_tensor * up,
  2914. struct ggml_tensor * up_b,
  2915. struct ggml_tensor * gate,
  2916. struct ggml_tensor * gate_b,
  2917. struct ggml_tensor * down,
  2918. struct ggml_tensor * down_b,
  2919. llm_ffn_op_type type_op,
  2920. llm_ffn_gate_type type_gate,
  2921. const llm_build_cb & cb,
  2922. int il) {
  2923. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  2924. cb(tmp, "ffn_up", il);
  2925. if (up_b) {
  2926. tmp = ggml_add(ctx, tmp, up_b);
  2927. cb(tmp, "ffn_up_b", il);
  2928. }
  2929. if (gate) {
  2930. switch (type_gate) {
  2931. case LLM_FFN_SEQ:
  2932. {
  2933. cur = ggml_mul_mat(ctx, gate, tmp);
  2934. cb(cur, "ffn_gate", il);
  2935. } break;
  2936. case LLM_FFN_PAR:
  2937. {
  2938. cur = ggml_mul_mat(ctx, gate, cur);
  2939. cb(cur, "ffn_gate", il);
  2940. } break;
  2941. }
  2942. if (gate_b) {
  2943. cur = ggml_add(ctx, cur, gate_b);
  2944. cb(cur, "ffn_gate_b", il);
  2945. }
  2946. } else {
  2947. cur = tmp;
  2948. }
  2949. switch (type_op) {
  2950. case LLM_FFN_SILU:
  2951. {
  2952. cur = ggml_silu(ctx, cur);
  2953. cb(cur, "ffn_silu", il);
  2954. } break;
  2955. case LLM_FFN_GELU:
  2956. {
  2957. cur = ggml_gelu(ctx, cur);
  2958. cb(cur, "ffn_gelu", il);
  2959. } break;
  2960. case LLM_FFN_RELU:
  2961. {
  2962. cur = ggml_relu(ctx, cur);
  2963. cb(cur, "ffn_relu", il);
  2964. } break;
  2965. case LLM_FFN_RELU_SQR:
  2966. {
  2967. cur = ggml_relu(ctx, cur);
  2968. cb(cur, "ffn_relu", il);
  2969. cur = ggml_sqr(ctx, cur);
  2970. cb(cur, "ffn_sqr(relu)", il);
  2971. } break;
  2972. }
  2973. if (type_gate == LLM_FFN_PAR) {
  2974. cur = ggml_mul(ctx, cur, tmp);
  2975. cb(cur, "ffn_gate_par", il);
  2976. }
  2977. cur = ggml_mul_mat(ctx, down, cur);
  2978. if (down_b) {
  2979. cb(cur, "ffn_down", il);
  2980. }
  2981. if (down_b) {
  2982. cur = ggml_add(ctx, cur, down_b);
  2983. }
  2984. return cur;
  2985. }
  2986. // if max_alibi_bias > 0 then apply ALiBi
  2987. static struct ggml_tensor * llm_build_kqv(
  2988. struct ggml_context * ctx,
  2989. const llama_hparams & hparams,
  2990. const llama_kv_cache & kv,
  2991. struct ggml_tensor * wo,
  2992. struct ggml_tensor * wo_b,
  2993. struct ggml_tensor * q_cur,
  2994. struct ggml_tensor * kq_scale,
  2995. struct ggml_tensor * kq_mask,
  2996. int64_t n_ctx,
  2997. int32_t n_tokens,
  2998. int32_t n_kv,
  2999. float max_alibi_bias,
  3000. const llm_build_cb & cb,
  3001. int il) {
  3002. const int64_t n_embd = hparams.n_embd;
  3003. const int64_t n_head = hparams.n_head;
  3004. const int64_t n_head_kv = hparams.n_head_kv;
  3005. const int64_t n_embd_head = hparams.n_embd_head();
  3006. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3007. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  3008. cb(q, "q", il);
  3009. struct ggml_tensor * k =
  3010. ggml_view_3d(ctx, kv.k,
  3011. n_embd_head, n_kv, n_head_kv,
  3012. ggml_element_size(kv.k)*n_embd_gqa,
  3013. ggml_element_size(kv.k)*n_embd_head,
  3014. ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il);
  3015. cb(k, "k", il);
  3016. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  3017. cb(kq, "kq", il);
  3018. kq = ggml_scale(ctx, kq, kq_scale);
  3019. cb(kq, "kq_scaled", il);
  3020. if (max_alibi_bias > 0.0f) {
  3021. // TODO: n_head or n_head_kv
  3022. // TODO: K-shift is likely not working
  3023. // TODO: change to ggml_add
  3024. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, max_alibi_bias);
  3025. cb(kq, "kq_scaled_alibi", il);
  3026. }
  3027. kq = ggml_add(ctx, kq, kq_mask);
  3028. cb(kq, "kq_masked", il);
  3029. kq = ggml_soft_max(ctx, kq);
  3030. cb(kq, "kq_soft_max", il);
  3031. // split cached v into n_head heads
  3032. struct ggml_tensor * v =
  3033. ggml_view_3d(ctx, kv.v,
  3034. n_kv, n_embd_head, n_head_kv,
  3035. ggml_element_size(kv.v)*n_ctx,
  3036. ggml_element_size(kv.v)*n_ctx*n_embd_head,
  3037. ggml_element_size(kv.v)*n_ctx*n_embd_gqa*il);
  3038. cb(v, "v", il);
  3039. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  3040. cb(kqv, "kqv", il);
  3041. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  3042. cb(kqv_merged, "kqv_merged", il);
  3043. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd, n_tokens);
  3044. cb(cur, "kqv_merged_cont", il);
  3045. cur = ggml_mul_mat(ctx, wo, cur);
  3046. if (wo_b) {
  3047. cb(cur, "kqv_wo", il);
  3048. }
  3049. if (wo_b) {
  3050. cur = ggml_add(ctx, cur, wo_b);
  3051. }
  3052. return cur;
  3053. }
  3054. struct llm_build_context {
  3055. const llama_model & model;
  3056. const llama_hparams & hparams;
  3057. const llama_cparams & cparams;
  3058. const llama_batch & batch;
  3059. const llama_kv_cache & kv_self;
  3060. const int64_t n_embd;
  3061. const int64_t n_layer;
  3062. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  3063. const int64_t n_head;
  3064. const int64_t n_head_kv;
  3065. const int64_t n_embd_head;
  3066. const int64_t n_embd_gqa;
  3067. const float freq_base;
  3068. const float freq_scale;
  3069. const float ext_factor;
  3070. const float attn_factor;
  3071. const float beta_fast;
  3072. const float beta_slow;
  3073. const float norm_eps;
  3074. const float norm_rms_eps;
  3075. const int32_t n_tokens;
  3076. const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
  3077. const int32_t kv_head; // index of where we store new KV data in the cache
  3078. const int32_t n_orig_ctx;
  3079. const bool do_rope_shift;
  3080. const llm_build_cb & cb;
  3081. llama_buffer & buf_compute;
  3082. struct ggml_context * ctx0 = nullptr;
  3083. // TODO: consider making the entire interface noexcept
  3084. llm_build_context(
  3085. llama_context & lctx,
  3086. const llama_batch & batch,
  3087. const llm_build_cb & cb,
  3088. bool worst_case) :
  3089. model (lctx.model),
  3090. hparams (model.hparams),
  3091. cparams (lctx.cparams),
  3092. batch (batch),
  3093. kv_self (lctx.kv_self),
  3094. n_embd (hparams.n_embd),
  3095. n_layer (hparams.n_layer),
  3096. n_ctx (cparams.n_ctx),
  3097. n_head (hparams.n_head),
  3098. n_head_kv (hparams.n_head_kv),
  3099. n_embd_head (hparams.n_embd_head()),
  3100. n_embd_gqa (hparams.n_embd_gqa()),
  3101. freq_base (cparams.rope_freq_base),
  3102. freq_scale (cparams.rope_freq_scale),
  3103. ext_factor (cparams.yarn_ext_factor),
  3104. attn_factor (cparams.yarn_attn_factor),
  3105. beta_fast (cparams.yarn_beta_fast),
  3106. beta_slow (cparams.yarn_beta_slow),
  3107. norm_eps (hparams.f_norm_eps),
  3108. norm_rms_eps (hparams.f_norm_rms_eps),
  3109. n_tokens (batch.n_tokens),
  3110. n_kv (worst_case ? n_ctx : kv_self.n),
  3111. kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
  3112. n_orig_ctx (cparams.n_yarn_orig_ctx),
  3113. do_rope_shift (worst_case || kv_self.has_shift),
  3114. cb (cb),
  3115. buf_compute (lctx.buf_compute) {
  3116. GGML_ASSERT(!!kv_self.ctx);
  3117. // all initializations should be done in init()
  3118. }
  3119. void init() {
  3120. struct ggml_init_params params = {
  3121. /*.mem_size =*/ buf_compute.size,
  3122. /*.mem_buffer =*/ buf_compute.data,
  3123. /*.no_alloc =*/ true,
  3124. };
  3125. ctx0 = ggml_init(params);
  3126. }
  3127. void free() {
  3128. if (ctx0) {
  3129. ggml_free(ctx0);
  3130. ctx0 = nullptr;
  3131. }
  3132. }
  3133. struct ggml_cgraph * build_llama() {
  3134. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3135. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3136. struct ggml_tensor * cur;
  3137. struct ggml_tensor * inpL;
  3138. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3139. cb(inpL, "inp_embd", -1);
  3140. // inp_pos - contains the positions
  3141. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3142. cb(inp_pos, "inp_pos", -1);
  3143. // KQ_scale
  3144. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3145. cb(KQ_scale, "KQ_scale", -1);
  3146. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3147. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3148. cb(KQ_mask, "KQ_mask", -1);
  3149. // shift the entire K-cache if needed
  3150. if (do_rope_shift) {
  3151. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3152. }
  3153. for (int il = 0; il < n_layer; ++il) {
  3154. struct ggml_tensor * inpSA = inpL;
  3155. // norm
  3156. cur = llm_build_norm(ctx0, inpL, hparams,
  3157. model.layers[il].attn_norm, NULL,
  3158. LLM_NORM_RMS, cb, il);
  3159. cb(cur, "attn_norm", il);
  3160. // self-attention
  3161. {
  3162. // compute Q and K and RoPE them
  3163. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3164. cb(Qcur, "Qcur", il);
  3165. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3166. cb(Kcur, "Kcur", il);
  3167. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3168. cb(Vcur, "Vcur", il);
  3169. Qcur = ggml_rope_custom(
  3170. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  3171. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3172. ext_factor, attn_factor, beta_fast, beta_slow
  3173. );
  3174. cb(Qcur, "Qcur", il);
  3175. Kcur = ggml_rope_custom(
  3176. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  3177. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3178. ext_factor, attn_factor, beta_fast, beta_slow
  3179. );
  3180. cb(Kcur, "Kcur", il);
  3181. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3182. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3183. model.layers[il].wo, NULL,
  3184. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3185. cb(cur, "kqv_out", il);
  3186. }
  3187. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3188. cb(ffn_inp, "ffn_inp", il);
  3189. // feed-forward network
  3190. {
  3191. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3192. model.layers[il].ffn_norm, NULL,
  3193. LLM_NORM_RMS, cb, il);
  3194. cb(cur, "ffn_norm", il);
  3195. cur = llm_build_ffn(ctx0, cur,
  3196. model.layers[il].ffn_up, NULL,
  3197. model.layers[il].ffn_gate, NULL,
  3198. model.layers[il].ffn_down, NULL,
  3199. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3200. cb(cur, "ffn_out", il);
  3201. }
  3202. cur = ggml_add(ctx0, cur, ffn_inp);
  3203. cb(cur, "l_out", il);
  3204. // input for next layer
  3205. inpL = cur;
  3206. }
  3207. cur = inpL;
  3208. cur = llm_build_norm(ctx0, cur, hparams,
  3209. model.output_norm, NULL,
  3210. LLM_NORM_RMS, cb, -1);
  3211. cb(cur, "result_norm", -1);
  3212. // lm_head
  3213. cur = ggml_mul_mat(ctx0, model.output, cur);
  3214. cb(cur, "result_output", -1);
  3215. ggml_build_forward_expand(gf, cur);
  3216. return gf;
  3217. }
  3218. struct ggml_cgraph * build_baichuan() {
  3219. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3220. struct ggml_tensor * cur;
  3221. struct ggml_tensor * inpL;
  3222. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3223. cb(inpL, "inp_embd", -1);
  3224. // inp_pos - contains the positions
  3225. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3226. cb(inp_pos, "inp_pos", -1);
  3227. // KQ_scale
  3228. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3229. cb(KQ_scale, "KQ_scale", -1);
  3230. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3231. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3232. cb(KQ_mask, "KQ_mask", -1);
  3233. // shift the entire K-cache if needed
  3234. if (do_rope_shift) {
  3235. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3236. }
  3237. for (int il = 0; il < n_layer; ++il) {
  3238. struct ggml_tensor * inpSA = inpL;
  3239. cur = llm_build_norm(ctx0, inpL, hparams,
  3240. model.layers[il].attn_norm, NULL,
  3241. LLM_NORM_RMS, cb, il);
  3242. cb(cur, "attn_norm", il);
  3243. // self-attention
  3244. {
  3245. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3246. cb(Qcur, "Qcur", il);
  3247. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3248. cb(Kcur, "Kcur", il);
  3249. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3250. cb(Vcur, "Vcur", il);
  3251. switch (model.type) {
  3252. case MODEL_7B:
  3253. Qcur = ggml_rope_custom(
  3254. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  3255. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3256. ext_factor, attn_factor, beta_fast, beta_slow
  3257. );
  3258. Kcur = ggml_rope_custom(
  3259. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  3260. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3261. ext_factor, attn_factor, beta_fast, beta_slow
  3262. );
  3263. break;
  3264. case MODEL_13B:
  3265. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  3266. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  3267. break;
  3268. default:
  3269. GGML_ASSERT(false);
  3270. }
  3271. cb(Qcur, "Qcur", il);
  3272. cb(Kcur, "Kcur", il);
  3273. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3274. // apply ALiBi for 13B model
  3275. const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f;
  3276. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3277. model.layers[il].wo, NULL,
  3278. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, cb, il);
  3279. cb(cur, "kqv_out", il);
  3280. }
  3281. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3282. cb(ffn_inp, "ffn_inp", il);
  3283. // feed-forward network
  3284. {
  3285. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3286. model.layers[il].ffn_norm, NULL,
  3287. LLM_NORM_RMS, cb, il);
  3288. cb(cur, "ffn_norm", il);
  3289. cur = llm_build_ffn(ctx0, cur,
  3290. model.layers[il].ffn_up, NULL,
  3291. model.layers[il].ffn_gate, NULL,
  3292. model.layers[il].ffn_down, NULL,
  3293. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3294. cb(cur, "ffn_out", il);
  3295. }
  3296. cur = ggml_add(ctx0, cur, ffn_inp);
  3297. cb(cur, "l_out", il);
  3298. // input for next layer
  3299. inpL = cur;
  3300. }
  3301. cur = inpL;
  3302. cur = llm_build_norm(ctx0, cur, hparams,
  3303. model.output_norm, NULL,
  3304. LLM_NORM_RMS, cb, -1);
  3305. cb(cur, "result_norm", -1);
  3306. // lm_head
  3307. cur = ggml_mul_mat(ctx0, model.output, cur);
  3308. cb(cur, "result_output", -1);
  3309. ggml_build_forward_expand(gf, cur);
  3310. return gf;
  3311. }
  3312. struct ggml_cgraph * build_falcon() {
  3313. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3314. struct ggml_tensor * cur;
  3315. struct ggml_tensor * inpL;
  3316. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3317. cb(inpL, "inp_embd", -1);
  3318. // inp_pos - contains the positions
  3319. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3320. cb(inp_pos, "inp_pos", -1);
  3321. // KQ_scale
  3322. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3323. cb(KQ_scale, "KQ_scale", -1);
  3324. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3325. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3326. cb(KQ_mask, "KQ_mask", -1);
  3327. // shift the entire K-cache if needed
  3328. if (do_rope_shift) {
  3329. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3330. }
  3331. for (int il = 0; il < n_layer; ++il) {
  3332. struct ggml_tensor * attn_norm;
  3333. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  3334. model.layers[il].attn_norm,
  3335. model.layers[il].attn_norm_b,
  3336. LLM_NORM, cb, il);
  3337. cb(attn_norm, "attn_norm", il);
  3338. // self-attention
  3339. {
  3340. if (model.layers[il].attn_norm_2) {
  3341. // Falcon-40B
  3342. cur = llm_build_norm(ctx0, inpL, hparams,
  3343. model.layers[il].attn_norm_2,
  3344. model.layers[il].attn_norm_2_b,
  3345. LLM_NORM, cb, il);
  3346. cb(cur, "attn_norm_2", il);
  3347. } else {
  3348. cur = attn_norm;
  3349. }
  3350. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3351. cb(cur, "wqkv", il);
  3352. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3353. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3354. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3355. cb(Qcur, "Qcur", il);
  3356. cb(Kcur, "Kcur", il);
  3357. cb(Vcur, "Vcur", il);
  3358. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3359. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3360. // using mode = 2 for neox mode
  3361. Qcur = ggml_rope_custom(
  3362. ctx0, Qcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
  3363. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3364. );
  3365. cb(Qcur, "Qcur", il);
  3366. Kcur = ggml_rope_custom(
  3367. ctx0, Kcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
  3368. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3369. );
  3370. cb(Kcur, "Kcur", il);
  3371. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3372. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3373. model.layers[il].wo, NULL,
  3374. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3375. cb(cur, "kqv_out", il);
  3376. }
  3377. struct ggml_tensor * ffn_inp = cur;
  3378. // feed forward
  3379. {
  3380. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  3381. model.layers[il].ffn_up, NULL,
  3382. NULL, NULL,
  3383. model.layers[il].ffn_down, NULL,
  3384. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3385. cb(cur, "ffn_out", il);
  3386. }
  3387. cur = ggml_add(ctx0, cur, ffn_inp);
  3388. cb(cur, "l_out", il);
  3389. cur = ggml_add(ctx0, cur, inpL);
  3390. cb(cur, "l_out", il);
  3391. // input for next layer
  3392. inpL = cur;
  3393. }
  3394. cur = inpL;
  3395. // norm
  3396. cur = llm_build_norm(ctx0, cur, hparams,
  3397. model.output_norm,
  3398. model.output_norm_b,
  3399. LLM_NORM, cb, -1);
  3400. cb(cur, "result_norm", -1);
  3401. cur = ggml_mul_mat(ctx0, model.output, cur);
  3402. cb(cur, "result_output", -1);
  3403. ggml_build_forward_expand(gf, cur);
  3404. return gf;
  3405. }
  3406. struct ggml_cgraph * build_starcoder() {
  3407. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3408. struct ggml_tensor * cur;
  3409. struct ggml_tensor * pos;
  3410. struct ggml_tensor * inpL;
  3411. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3412. cb(inpL, "inp_embd", -1);
  3413. // inp_pos - contains the positions
  3414. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3415. cb(inp_pos, "inp_pos", -1);
  3416. // KQ_scale
  3417. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3418. cb(KQ_scale, "KQ_scale", -1);
  3419. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3420. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3421. cb(KQ_mask, "KQ_mask", -1);
  3422. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  3423. cb(pos, "pos_embd", -1);
  3424. inpL = ggml_add(ctx0, inpL, pos);
  3425. cb(inpL, "inpL", -1);
  3426. for (int il = 0; il < n_layer; ++il) {
  3427. cur = llm_build_norm(ctx0, inpL, hparams,
  3428. model.layers[il].attn_norm,
  3429. model.layers[il].attn_norm_b,
  3430. LLM_NORM, cb, il);
  3431. cb(cur, "attn_norm", il);
  3432. // self-attention
  3433. {
  3434. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3435. cb(cur, "wqkv", il);
  3436. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3437. cb(cur, "bqkv", il);
  3438. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3439. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3440. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3441. cb(Qcur, "Qcur", il);
  3442. cb(Kcur, "Kcur", il);
  3443. cb(Vcur, "Vcur", il);
  3444. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3445. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3446. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3447. model.layers[il].wo, model.layers[il].bo,
  3448. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3449. cb(cur, "kqv_out", il);
  3450. }
  3451. // add the input
  3452. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3453. cb(ffn_inp, "ffn_inp", il);
  3454. // FF
  3455. {
  3456. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3457. model.layers[il].ffn_norm,
  3458. model.layers[il].ffn_norm_b,
  3459. LLM_NORM, cb, il);
  3460. cb(cur, "ffn_norm", il);
  3461. cur = llm_build_ffn(ctx0, cur,
  3462. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3463. NULL, NULL,
  3464. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3465. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3466. cb(cur, "ffn_out", il);
  3467. }
  3468. inpL = ggml_add(ctx0, cur, ffn_inp);
  3469. cb(inpL, "l_out", il);
  3470. }
  3471. cur = llm_build_norm(ctx0, inpL, hparams,
  3472. model.output_norm,
  3473. model.output_norm_b,
  3474. LLM_NORM, cb, -1);
  3475. cb(cur, "result_norm", -1);
  3476. cur = ggml_mul_mat(ctx0, model.output, cur);
  3477. cb(cur, "result_output", -1);
  3478. ggml_build_forward_expand(gf, cur);
  3479. return gf;
  3480. }
  3481. struct ggml_cgraph * build_persimmon() {
  3482. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3483. const int64_t n_rot = n_embd_head / 2;
  3484. struct ggml_tensor * cur;
  3485. struct ggml_tensor * inpL;
  3486. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3487. cb(inpL, "imp_embd", -1);
  3488. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3489. cb(inp_pos, "inp_pos", -1);
  3490. // KQ_scale
  3491. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3492. cb(KQ_scale, "KQ_scale", -1);
  3493. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3494. cb(KQ_mask, "KQ_mask", -1);
  3495. if (do_rope_shift) {
  3496. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3497. }
  3498. for (int il = 0; il < n_layer; ++il) {
  3499. struct ggml_tensor * residual = inpL;
  3500. cur = llm_build_norm(ctx0, inpL, hparams,
  3501. model.layers[il].attn_norm,
  3502. model.layers[il].attn_norm_b,
  3503. LLM_NORM, cb, il);
  3504. cb(cur, "attn_norm", il);
  3505. // self attention
  3506. {
  3507. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3508. cb(cur, "wqkv", il);
  3509. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3510. cb(cur, "bqkv", il);
  3511. // split qkv
  3512. GGML_ASSERT(n_head_kv == n_head);
  3513. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  3514. cb(tmpqkv, "tmpqkv", il);
  3515. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  3516. cb(tmpqkv_perm, "tmpqkv", il);
  3517. struct ggml_tensor * tmpq = ggml_view_3d(
  3518. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3519. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3520. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3521. 0
  3522. );
  3523. cb(tmpq, "tmpq", il);
  3524. struct ggml_tensor * tmpk = ggml_view_3d(
  3525. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3526. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3527. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3528. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  3529. );
  3530. cb(tmpk, "tmpk", il);
  3531. // Q/K Layernorm
  3532. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  3533. model.layers[il].attn_q_norm,
  3534. model.layers[il].attn_q_norm_b,
  3535. LLM_NORM, cb, il);
  3536. cb(tmpq, "tmpq", il);
  3537. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  3538. model.layers[il].attn_k_norm,
  3539. model.layers[il].attn_k_norm_b,
  3540. LLM_NORM, cb, il);
  3541. cb(tmpk, "tmpk", il);
  3542. // RoPE the first n_rot of q/k, pass the other half, and concat.
  3543. struct ggml_tensor * qrot = ggml_view_3d(
  3544. ctx0, tmpq, n_rot, n_head, n_tokens,
  3545. ggml_element_size(tmpq) * n_embd_head,
  3546. ggml_element_size(tmpq) * n_embd_head * n_head,
  3547. 0
  3548. );
  3549. cb(qrot, "qrot", il);
  3550. struct ggml_tensor * krot = ggml_view_3d(
  3551. ctx0, tmpk, n_rot, n_head, n_tokens,
  3552. ggml_element_size(tmpk) * n_embd_head,
  3553. ggml_element_size(tmpk) * n_embd_head * n_head,
  3554. 0
  3555. );
  3556. cb(krot, "krot", il);
  3557. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  3558. struct ggml_tensor * qpass = ggml_view_3d(
  3559. ctx0, tmpq, n_rot, n_head, n_tokens,
  3560. ggml_element_size(tmpq) * n_embd_head,
  3561. ggml_element_size(tmpq) * n_embd_head * n_head,
  3562. ggml_element_size(tmpq) * n_rot
  3563. );
  3564. cb(qpass, "qpass", il);
  3565. struct ggml_tensor * kpass = ggml_view_3d(
  3566. ctx0, tmpk, n_rot, n_head, n_tokens,
  3567. ggml_element_size(tmpk) * n_embd_head,
  3568. ggml_element_size(tmpk) * n_embd_head * n_head,
  3569. ggml_element_size(tmpk) * n_rot
  3570. );
  3571. cb(kpass, "kpass", il);
  3572. struct ggml_tensor * qrotated = ggml_rope_custom(
  3573. ctx0, qrot, inp_pos, n_rot, 2, 0, n_orig_ctx,
  3574. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3575. );
  3576. cb(qrotated, "qrotated", il);
  3577. struct ggml_tensor * krotated = ggml_rope_custom(
  3578. ctx0, krot, inp_pos, n_rot, 2, 0, n_orig_ctx,
  3579. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3580. );
  3581. cb(krotated, "krotated", il);
  3582. // ggml currently only supports concatenation on dim=2
  3583. // so we need to permute qrot, qpass, concat, then permute back.
  3584. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  3585. cb(qrotated, "qrotated", il);
  3586. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  3587. cb(krotated, "krotated", il);
  3588. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  3589. cb(qpass, "qpass", il);
  3590. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  3591. cb(kpass, "kpass", il);
  3592. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  3593. cb(Qcur, "Qcur", il);
  3594. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  3595. cb(Kcur, "Kcur", il);
  3596. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  3597. cb(Q, "Q", il);
  3598. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  3599. cb(Kcur, "Kcur", il);
  3600. struct ggml_tensor * Vcur = ggml_view_3d(
  3601. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3602. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3603. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3604. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  3605. );
  3606. cb(Vcur, "Vcur", il);
  3607. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3608. // TODO: not tested, could be broken
  3609. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3610. model.layers[il].wo, model.layers[il].bo,
  3611. Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3612. cb(cur, "kqv_out", il);
  3613. }
  3614. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  3615. cb(ffn_inp, "ffn_inp", il);
  3616. // feed-forward network
  3617. {
  3618. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3619. model.layers[il].ffn_norm,
  3620. model.layers[il].ffn_norm_b,
  3621. LLM_NORM, cb, il);
  3622. cb(cur, "ffn_norm", il);
  3623. cur = llm_build_ffn(ctx0, cur,
  3624. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3625. NULL, NULL,
  3626. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3627. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  3628. cb(cur, "ffn_out", il);
  3629. }
  3630. cur = ggml_add(ctx0, cur, ffn_inp);
  3631. cb(cur, "l_out", il);
  3632. inpL = cur;
  3633. }
  3634. cur = inpL;
  3635. cur = llm_build_norm(ctx0, cur, hparams,
  3636. model.output_norm,
  3637. model.output_norm_b,
  3638. LLM_NORM, cb, -1);
  3639. cb(cur, "result_norm", -1);
  3640. cur = ggml_mul_mat(ctx0, model.output, cur);
  3641. cb(cur, "result_output", -1);
  3642. ggml_build_forward_expand(gf, cur);
  3643. return gf;
  3644. }
  3645. struct ggml_cgraph * build_refact() {
  3646. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3647. struct ggml_tensor * cur;
  3648. struct ggml_tensor * inpL;
  3649. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3650. cb(inpL, "inp_embd", -1);
  3651. // KQ_scale
  3652. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3653. cb(KQ_scale, "KQ_scale", -1);
  3654. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3655. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3656. cb(KQ_mask, "KQ_mask", -1);
  3657. for (int il = 0; il < n_layer; ++il) {
  3658. struct ggml_tensor * inpSA = inpL;
  3659. cur = llm_build_norm(ctx0, inpL, hparams,
  3660. model.layers[il].attn_norm, NULL,
  3661. LLM_NORM_RMS, cb, il);
  3662. cb(cur, "attn_norm", il);
  3663. // self-attention
  3664. {
  3665. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3666. cb(Qcur, "Qcur", il);
  3667. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3668. cb(Kcur, "Kcur", il);
  3669. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3670. cb(Vcur, "Vcur", il);
  3671. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3672. cb(Kcur, "Kcur", il);
  3673. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3674. cb(Qcur, "Qcur", il);
  3675. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3676. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3677. model.layers[il].wo, NULL,
  3678. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, cb, il);
  3679. cb(cur, "kqv_out", il);
  3680. }
  3681. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3682. cb(ffn_inp, "ffn_inp", il);
  3683. // feed-forward network
  3684. {
  3685. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3686. model.layers[il].ffn_norm, NULL,
  3687. LLM_NORM_RMS, cb, il);
  3688. cb(cur, "ffn_norm", il);
  3689. cur = llm_build_ffn(ctx0, cur,
  3690. model.layers[il].ffn_up, NULL,
  3691. model.layers[il].ffn_gate, NULL,
  3692. model.layers[il].ffn_down, NULL,
  3693. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3694. cb(cur, "ffn_out", il);
  3695. }
  3696. cur = ggml_add(ctx0, cur, ffn_inp);
  3697. cb(cur, "l_out", il);
  3698. // input for next layer
  3699. inpL = cur;
  3700. }
  3701. cur = inpL;
  3702. cur = llm_build_norm(ctx0, cur, hparams,
  3703. model.output_norm, NULL,
  3704. LLM_NORM_RMS, cb, -1);
  3705. cb(cur, "result_norm", -1);
  3706. // lm_head
  3707. cur = ggml_mul_mat(ctx0, model.output, cur);
  3708. cb(cur, "result_output", -1);
  3709. ggml_build_forward_expand(gf, cur);
  3710. return gf;
  3711. }
  3712. struct ggml_cgraph * build_bloom() {
  3713. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3714. struct ggml_tensor * cur;
  3715. struct ggml_tensor * inpL;
  3716. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3717. cb(inpL, "inp_embd", -1);
  3718. // KQ_scale
  3719. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3720. cb(KQ_scale, "KQ_scale", -1);
  3721. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3722. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3723. cb(KQ_mask, "KQ_mask", -1);
  3724. inpL = llm_build_norm(ctx0, inpL, hparams,
  3725. model.tok_norm,
  3726. model.tok_norm_b,
  3727. LLM_NORM, cb, -1);
  3728. cb(inpL, "inp_norm", -1);
  3729. for (int il = 0; il < n_layer; ++il) {
  3730. cur = llm_build_norm(ctx0, inpL, hparams,
  3731. model.layers[il].attn_norm,
  3732. model.layers[il].attn_norm_b,
  3733. LLM_NORM, cb, il);
  3734. cb(cur, "attn_norm", il);
  3735. // self-attention
  3736. {
  3737. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3738. cb(cur, "wqkv", il);
  3739. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3740. cb(cur, "bqkv", il);
  3741. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3742. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3743. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3744. cb(Qcur, "Qcur", il);
  3745. cb(Kcur, "Kcur", il);
  3746. cb(Vcur, "Vcur", il);
  3747. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3748. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3749. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3750. model.layers[il].wo, model.layers[il].bo,
  3751. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, cb, il);
  3752. cb(cur, "kqv_out", il);
  3753. }
  3754. // Add the input
  3755. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3756. cb(ffn_inp, "ffn_inp", il);
  3757. // FF
  3758. {
  3759. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3760. model.layers[il].ffn_norm,
  3761. model.layers[il].ffn_norm_b,
  3762. LLM_NORM, cb, il);
  3763. cb(cur, "ffn_norm", il);
  3764. cur = llm_build_ffn(ctx0, cur,
  3765. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3766. NULL, NULL,
  3767. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3768. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3769. cb(cur, "ffn_out", il);
  3770. }
  3771. inpL = ggml_add(ctx0, cur, ffn_inp);
  3772. cb(inpL, "l_out", il);
  3773. }
  3774. cur = llm_build_norm(ctx0, inpL, hparams,
  3775. model.output_norm,
  3776. model.output_norm_b,
  3777. LLM_NORM, cb, -1);
  3778. cb(cur, "result_norm", -1);
  3779. cur = ggml_mul_mat(ctx0, model.output, cur);
  3780. cb(cur, "result_output", -1);
  3781. ggml_build_forward_expand(gf, cur);
  3782. return gf;
  3783. }
  3784. struct ggml_cgraph * build_mpt() {
  3785. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  3786. struct ggml_tensor * cur;
  3787. struct ggml_tensor * inpL;
  3788. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3789. cb(inpL, "inp_embd", -1);
  3790. // KQ_scale
  3791. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3792. cb(KQ_scale, "KQ_scale", -1);
  3793. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3794. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3795. cb(KQ_mask, "KQ_mask", -1);
  3796. for (int il = 0; il < n_layer; ++il) {
  3797. struct ggml_tensor * attn_norm;
  3798. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  3799. model.layers[il].attn_norm,
  3800. NULL,
  3801. LLM_NORM, cb, il);
  3802. cb(attn_norm, "attn_norm", il);
  3803. // self-attention
  3804. {
  3805. cur = attn_norm;
  3806. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3807. cb(cur, "wqkv", il);
  3808. if (hparams.f_clamp_kqv > 0.0f) {
  3809. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  3810. cb(cur, "wqkv_clamped", il);
  3811. }
  3812. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3813. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3814. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3815. cb(Qcur, "Qcur", il);
  3816. cb(Kcur, "Kcur", il);
  3817. cb(Vcur, "Vcur", il);
  3818. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3819. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3820. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3821. model.layers[il].wo, NULL,
  3822. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, cb, il);
  3823. cb(cur, "kqv_out", il);
  3824. }
  3825. // Add the input
  3826. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3827. cb(ffn_inp, "ffn_inp", il);
  3828. // feed forward
  3829. {
  3830. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3831. model.layers[il].ffn_norm,
  3832. NULL,
  3833. LLM_NORM, cb, il);
  3834. cb(cur, "ffn_norm", il);
  3835. cur = llm_build_ffn(ctx0, cur,
  3836. model.layers[il].ffn_up, NULL,
  3837. NULL, NULL,
  3838. model.layers[il].ffn_down, NULL,
  3839. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3840. cb(cur, "ffn_out", il);
  3841. }
  3842. cur = ggml_add(ctx0, cur, ffn_inp);
  3843. cb(cur, "l_out", il);
  3844. // input for next layer
  3845. inpL = cur;
  3846. }
  3847. cur = inpL;
  3848. cur = llm_build_norm(ctx0, cur, hparams,
  3849. model.output_norm,
  3850. NULL,
  3851. LLM_NORM, cb, -1);
  3852. cb(cur, "result_norm", -1);
  3853. cur = ggml_mul_mat(ctx0, model.output, cur);
  3854. cb(cur, "result_output", -1);
  3855. ggml_build_forward_expand(gf, cur);
  3856. return gf;
  3857. }
  3858. struct ggml_cgraph * build_stablelm() {
  3859. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3860. struct ggml_tensor * cur;
  3861. struct ggml_tensor * inpL;
  3862. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3863. cb(inpL, "inp_embd", -1);
  3864. // inp_pos - contains the positions
  3865. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3866. cb(inp_pos, "inp_pos", -1);
  3867. // KQ_scale
  3868. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3869. cb(KQ_scale, "KQ_scale", -1);
  3870. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3871. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3872. cb(KQ_mask, "KQ_mask", -1);
  3873. // shift the entire K-cache if needed
  3874. if (do_rope_shift) {
  3875. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, hparams.n_rot, freq_base, freq_scale, cb);
  3876. }
  3877. for (int il = 0; il < n_layer; ++il) {
  3878. struct ggml_tensor * inpSA = inpL;
  3879. // norm
  3880. cur = llm_build_norm(ctx0, inpL, hparams,
  3881. model.layers[il].attn_norm,
  3882. model.layers[il].attn_norm_b,
  3883. LLM_NORM, cb, il);
  3884. cb(cur, "attn_norm", il);
  3885. // self-attention
  3886. {
  3887. // compute Q and K and RoPE them
  3888. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3889. cb(tmpq, "tmpq", il);
  3890. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3891. cb(tmpk, "tmpk", il);
  3892. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3893. cb(Vcur, "Vcur", il);
  3894. // RoPE the first n_rot of q/k, pass the other half, and concat.
  3895. struct ggml_tensor * qrot = ggml_cont(ctx0, ggml_view_3d(
  3896. ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
  3897. ggml_element_size(tmpq) * n_embd_head,
  3898. ggml_element_size(tmpq) * n_embd_head * n_head,
  3899. 0
  3900. ));
  3901. cb(qrot, "qrot", il);
  3902. struct ggml_tensor * krot = ggml_cont(ctx0, ggml_view_3d(
  3903. ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
  3904. ggml_element_size(tmpk) * n_embd_head,
  3905. ggml_element_size(tmpk) * n_embd_head * n_head_kv,
  3906. 0
  3907. ));
  3908. cb(krot, "krot", il);
  3909. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  3910. struct ggml_tensor * qpass = ggml_view_3d(
  3911. ctx0, tmpq, (n_embd_head - hparams.n_rot), n_head, n_tokens,
  3912. ggml_element_size(tmpq) * n_embd_head,
  3913. ggml_element_size(tmpq) * n_embd_head * n_head,
  3914. ggml_element_size(tmpq) * hparams.n_rot
  3915. );
  3916. cb(qpass, "qpass", il);
  3917. struct ggml_tensor * kpass = ggml_view_3d(
  3918. ctx0, tmpk, (n_embd_head - hparams.n_rot), n_head_kv, n_tokens,
  3919. ggml_element_size(tmpk) * (n_embd_head),
  3920. ggml_element_size(tmpk) * (n_embd_head) * n_head_kv,
  3921. ggml_element_size(tmpk) * hparams.n_rot
  3922. );
  3923. cb(kpass, "kpass", il);
  3924. struct ggml_tensor * qrotated = ggml_rope_custom(
  3925. ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
  3926. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3927. );
  3928. cb(qrotated, "qrotated", il);
  3929. struct ggml_tensor * krotated = ggml_rope_custom(
  3930. ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
  3931. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3932. );
  3933. cb(krotated, "krotated", il);
  3934. // ggml currently only supports concatenation on dim=2
  3935. // so we need to permute qrot, qpass, concat, then permute back.
  3936. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  3937. cb(qrotated, "qrotated", il);
  3938. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  3939. cb(krotated, "krotated", il);
  3940. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  3941. cb(qpass, "qpass", il);
  3942. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  3943. cb(kpass, "kpass", il);
  3944. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  3945. cb(Qcur, "Qcur", il);
  3946. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  3947. cb(Kcur, "Kcur", il);
  3948. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  3949. cb(Q, "Q", il);
  3950. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  3951. cb(Kcur, "Kcur", il);
  3952. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3953. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3954. model.layers[il].wo, NULL,
  3955. Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3956. cb(cur, "kqv_out", il);
  3957. }
  3958. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3959. cb(ffn_inp, "ffn_inp", il);
  3960. // feed-forward network
  3961. {
  3962. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3963. model.layers[il].ffn_norm,
  3964. model.layers[il].ffn_norm_b,
  3965. LLM_NORM, cb, il);
  3966. cb(cur, "ffn_norm", il);
  3967. cur = llm_build_ffn(ctx0, cur,
  3968. model.layers[il].ffn_up, NULL,
  3969. model.layers[il].ffn_gate, NULL,
  3970. model.layers[il].ffn_down, NULL,
  3971. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3972. cb(cur, "ffn_out", il);
  3973. }
  3974. cur = ggml_add(ctx0, cur, ffn_inp);
  3975. cb(cur, "l_out", il);
  3976. // input for next layer
  3977. inpL = cur;
  3978. }
  3979. cur = inpL;
  3980. cur = llm_build_norm(ctx0, cur, hparams,
  3981. model.output_norm,
  3982. model.output_norm_b,
  3983. LLM_NORM, cb, -1);
  3984. cb(cur, "result_norm", -1);
  3985. // lm_head
  3986. cur = ggml_mul_mat(ctx0, model.output, cur);
  3987. cb(cur, "result_output", -1);
  3988. ggml_build_forward_expand(gf, cur);
  3989. return gf;
  3990. }
  3991. };
  3992. //
  3993. // tensor offloading helpers
  3994. //
  3995. // TODO: will be removed with backend v2
  3996. enum llm_offload_func_e {
  3997. OFFLOAD_FUNC_NOP,
  3998. OFFLOAD_FUNC,
  3999. OFFLOAD_FUNC_KQ,
  4000. OFFLOAD_FUNC_V,
  4001. OFFLOAD_FUNC_NR,
  4002. OFFLOAD_FUNC_EMB,
  4003. OFFLOAD_FUNC_OUT,
  4004. };
  4005. // TODO: will be removed with backend v2
  4006. struct llm_offload_trie {
  4007. struct node {
  4008. ~node() {
  4009. for (int i = 0; i < 256; ++i) {
  4010. if (children[i]) {
  4011. delete children[i];
  4012. }
  4013. }
  4014. }
  4015. node * children[256] = { nullptr };
  4016. llm_offload_func_e func = OFFLOAD_FUNC_NOP;
  4017. };
  4018. llm_offload_trie() {
  4019. root = new node;
  4020. }
  4021. llm_offload_trie(const std::unordered_map<const char *, llm_offload_func_e> & map) {
  4022. root = new node;
  4023. for (const auto & kv : map) {
  4024. add(kv.first, kv.second);
  4025. }
  4026. }
  4027. ~llm_offload_trie() {
  4028. delete root;
  4029. }
  4030. void add(const char * name, llm_offload_func_e func) {
  4031. node * cur = root;
  4032. for (int i = 0; ; ++i) {
  4033. const uint8_t c = name[i];
  4034. if (!c) {
  4035. break;
  4036. }
  4037. if (!cur->children[c]) {
  4038. cur->children[c] = new node;
  4039. }
  4040. cur = cur->children[c];
  4041. }
  4042. cur->func = func;
  4043. }
  4044. llm_offload_func_e find(const char * name) const {
  4045. const node * cur = root;
  4046. for (int i = 0; ; ++i) {
  4047. const uint8_t c = name[i];
  4048. if (!c) {
  4049. break;
  4050. }
  4051. if (!cur->children[c]) {
  4052. return OFFLOAD_FUNC_NOP;
  4053. }
  4054. cur = cur->children[c];
  4055. }
  4056. return cur->func;
  4057. }
  4058. node * root = nullptr;
  4059. };
  4060. // TODO: will be removed with backend v2
  4061. static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map = {
  4062. //{ "inp_tokens", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
  4063. //{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
  4064. { "pos_embd", OFFLOAD_FUNC_NR },
  4065. { "inp_pos", OFFLOAD_FUNC_KQ }, // this is often used for KQ ops (e.g. rope)
  4066. { "KQ_scale", OFFLOAD_FUNC_KQ },
  4067. { "KQ_mask", OFFLOAD_FUNC_KQ },
  4068. { "K_shift", OFFLOAD_FUNC_KQ },
  4069. { "K_shifted", OFFLOAD_FUNC_KQ },
  4070. { "inp_norm", OFFLOAD_FUNC_NR },
  4071. { "inp_norm_w", OFFLOAD_FUNC_NR },
  4072. { "inp_norm_wb", OFFLOAD_FUNC_NR },
  4073. { "norm", OFFLOAD_FUNC },
  4074. { "norm_w", OFFLOAD_FUNC },
  4075. { "norm_wb", OFFLOAD_FUNC },
  4076. { "attn_norm", OFFLOAD_FUNC },
  4077. { "attn_norm_2", OFFLOAD_FUNC },
  4078. { "wqkv", OFFLOAD_FUNC_KQ },
  4079. { "bqkv", OFFLOAD_FUNC_KQ },
  4080. { "wqkv_clamped", OFFLOAD_FUNC_KQ },
  4081. { "tmpk", OFFLOAD_FUNC_KQ },
  4082. { "tmpq", OFFLOAD_FUNC_KQ },
  4083. { "tmpv", OFFLOAD_FUNC_V },
  4084. { "Kcur", OFFLOAD_FUNC_KQ },
  4085. { "Qcur", OFFLOAD_FUNC_KQ },
  4086. { "Vcur", OFFLOAD_FUNC_V },
  4087. { "krot", OFFLOAD_FUNC_KQ },
  4088. { "qrot", OFFLOAD_FUNC_KQ },
  4089. { "kpass", OFFLOAD_FUNC_KQ },
  4090. { "qpass", OFFLOAD_FUNC_KQ },
  4091. { "krotated", OFFLOAD_FUNC_KQ },
  4092. { "qrotated", OFFLOAD_FUNC_KQ },
  4093. { "q", OFFLOAD_FUNC_KQ },
  4094. { "k", OFFLOAD_FUNC_KQ },
  4095. { "kq", OFFLOAD_FUNC_KQ },
  4096. { "kq_scaled", OFFLOAD_FUNC_KQ },
  4097. { "kq_scaled_alibi", OFFLOAD_FUNC_KQ },
  4098. { "kq_masked", OFFLOAD_FUNC_KQ },
  4099. { "kq_soft_max", OFFLOAD_FUNC_V },
  4100. { "v", OFFLOAD_FUNC_V },
  4101. { "kqv", OFFLOAD_FUNC_V },
  4102. { "kqv_merged", OFFLOAD_FUNC_V },
  4103. { "kqv_merged_cont", OFFLOAD_FUNC_V },
  4104. { "kqv_wo", OFFLOAD_FUNC_V },
  4105. { "kqv_out", OFFLOAD_FUNC_V },
  4106. { "ffn_inp", OFFLOAD_FUNC },
  4107. { "ffn_norm", OFFLOAD_FUNC },
  4108. { "ffn_up", OFFLOAD_FUNC },
  4109. { "ffn_up_b", OFFLOAD_FUNC },
  4110. { "ffn_gate", OFFLOAD_FUNC },
  4111. { "ffn_gate_b", OFFLOAD_FUNC },
  4112. { "ffn_gate_par", OFFLOAD_FUNC },
  4113. { "ffn_down", OFFLOAD_FUNC },
  4114. { "ffn_down_b", OFFLOAD_FUNC },
  4115. { "ffn_out", OFFLOAD_FUNC },
  4116. { "ffn_silu", OFFLOAD_FUNC },
  4117. { "ffn_gelu", OFFLOAD_FUNC },
  4118. { "ffn_relu", OFFLOAD_FUNC },
  4119. { "ffn_sqr(relu)", OFFLOAD_FUNC },
  4120. { "l_out", OFFLOAD_FUNC },
  4121. { "result_norm", OFFLOAD_FUNC_EMB },
  4122. { "result_output", OFFLOAD_FUNC_OUT },
  4123. };
  4124. static llm_offload_trie k_offload_func_trie(k_offload_map);
  4125. static struct ggml_cgraph * llama_build_graph(
  4126. llama_context & lctx,
  4127. const llama_batch & batch) {
  4128. const auto & model = lctx.model;
  4129. // check if we should build the worst-case graph (for memory measurement)
  4130. const bool worst_case = ggml_allocr_is_measure(lctx.alloc);
  4131. // keep track of the input that has already been allocated
  4132. bool alloc_inp_tokens = false;
  4133. bool alloc_inp_embd = false;
  4134. bool alloc_inp_pos = false;
  4135. bool alloc_inp_KQ_scale = false;
  4136. bool alloc_inp_KQ_mask = false;
  4137. bool alloc_inp_K_shift = false;
  4138. #ifdef GGML_USE_CUBLAS
  4139. const bool do_offload = true;
  4140. #else
  4141. const bool do_offload = true; // TODO: set to false after finishing refactoring
  4142. #endif
  4143. int n_non_view = 0; // number of non-view tensors that have been processed by the callback
  4144. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  4145. // TODO: will be removed with backend v2
  4146. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  4147. if (il >= 0) {
  4148. ggml_format_name(cur, "%s-%d", name, il);
  4149. } else {
  4150. ggml_set_name(cur, name);
  4151. }
  4152. //
  4153. // allocate input tensors and set input data
  4154. //
  4155. // TODO: will be removed with backend v2
  4156. if (!alloc_inp_tokens && strcmp(name, "inp_tokens") == 0) {
  4157. ggml_allocr_alloc(lctx.alloc, cur);
  4158. if (!ggml_allocr_is_measure(lctx.alloc) && batch.token) {
  4159. const int64_t n_tokens = cur->ne[0];
  4160. memcpy(cur->data, batch.token, n_tokens*ggml_element_size(cur));
  4161. }
  4162. alloc_inp_tokens = true;
  4163. }
  4164. if (!alloc_inp_embd && strcmp(name, "inp_embd") == 0) {
  4165. ggml_allocr_alloc(lctx.alloc, cur);
  4166. if (!ggml_allocr_is_measure(lctx.alloc) && batch.embd) {
  4167. const int64_t n_embd = cur->ne[0];
  4168. const int64_t n_tokens = cur->ne[1];
  4169. memcpy(cur->data, batch.embd, n_tokens*n_embd*ggml_element_size(cur));
  4170. }
  4171. alloc_inp_embd = true;
  4172. }
  4173. if (!alloc_inp_pos && strcmp(name, "inp_pos") == 0) {
  4174. ggml_allocr_alloc(lctx.alloc, cur);
  4175. if (!ggml_allocr_is_measure(lctx.alloc) && batch.pos) {
  4176. const int64_t n_tokens = cur->ne[0];
  4177. int32_t * data = (int32_t *) cur->data;
  4178. for (int i = 0; i < n_tokens; ++i) {
  4179. data[i] = batch.pos[i];
  4180. }
  4181. }
  4182. alloc_inp_pos = true;
  4183. }
  4184. if (!alloc_inp_KQ_scale && strcmp(name, "KQ_scale") == 0) {
  4185. ggml_allocr_alloc(lctx.alloc, cur);
  4186. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4187. const int64_t n_embd_head = model.hparams.n_embd_head();
  4188. ggml_set_f32(cur, 1.0f/sqrtf(float(n_embd_head)));
  4189. }
  4190. alloc_inp_KQ_scale = true;
  4191. }
  4192. if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) {
  4193. ggml_allocr_alloc(lctx.alloc, cur);
  4194. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4195. const int64_t n_kv = cur->ne[0];
  4196. const int64_t n_tokens = cur->ne[1];
  4197. float * data = (float *) cur->data;
  4198. memset(data, 0, ggml_nbytes(cur));
  4199. for (int h = 0; h < 1; ++h) {
  4200. for (int j = 0; j < n_tokens; ++j) {
  4201. const llama_pos pos = batch.pos[j];
  4202. const llama_seq_id seq_id = batch.seq_id[j][0];
  4203. for (int i = 0; i < n_kv; ++i) {
  4204. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  4205. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4206. }
  4207. }
  4208. }
  4209. }
  4210. }
  4211. alloc_inp_KQ_mask = true;
  4212. }
  4213. if (!alloc_inp_K_shift && strcmp(name, "K_shift") == 0) {
  4214. ggml_allocr_alloc(lctx.alloc, cur);
  4215. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4216. const int64_t n_ctx = cur->ne[0];
  4217. int32_t * data = (int32_t *) cur->data;
  4218. for (int i = 0; i < n_ctx; ++i) {
  4219. data[i] = lctx.kv_self.cells[i].delta;
  4220. }
  4221. }
  4222. alloc_inp_K_shift = true;
  4223. }
  4224. // view tensors are not processed further
  4225. if (cur->view_src != nullptr) {
  4226. return;
  4227. }
  4228. if (cur->op != GGML_OP_NONE) {
  4229. n_non_view++;
  4230. }
  4231. //
  4232. // offload layers
  4233. //
  4234. // TODO: will be removed with backend v2
  4235. //#define LLAMA_OFFLOAD_DEBUG
  4236. if (!do_offload) {
  4237. return;
  4238. }
  4239. const int n_layer = model.hparams.n_layer;
  4240. const int n_gpu_layers = model.n_gpu_layers;
  4241. const int i_gpu_start = n_layer - n_gpu_layers;
  4242. // should we offload the final norm? yes if we are not computing embeddings
  4243. const bool offload_emb = lctx.embedding.empty();
  4244. static const std::unordered_map<llm_offload_func_e, std::string, std::hash<int>> k_offload_func_name = {
  4245. { OFFLOAD_FUNC_NOP, "CPU" },
  4246. { OFFLOAD_FUNC_OUT, "CPU" },
  4247. #ifdef GGML_USE_CUBLAS
  4248. { OFFLOAD_FUNC, "GPU (CUDA)" },
  4249. { OFFLOAD_FUNC_KQ, "GPU (CUDA) KQ" },
  4250. { OFFLOAD_FUNC_V, "GPU (CUDA) V" },
  4251. { OFFLOAD_FUNC_NR, "GPU (CUDA) NR" },
  4252. { OFFLOAD_FUNC_EMB, "GPU (CUDA) EMB" },
  4253. #else
  4254. { OFFLOAD_FUNC, "CPU" },
  4255. { OFFLOAD_FUNC_KQ, "CPU" },
  4256. { OFFLOAD_FUNC_V, "CPU" },
  4257. { OFFLOAD_FUNC_NR, "CPU" },
  4258. { OFFLOAD_FUNC_EMB, "CPU" },
  4259. #endif // GGML_USE_CUBLAS
  4260. };
  4261. // check the global map for what offload function to use for this tensor
  4262. llm_offload_func_e func_e = k_offload_func_trie.find(name);
  4263. if (func_e == OFFLOAD_FUNC_NOP) {
  4264. #ifdef LLAMA_OFFLOAD_DEBUG
  4265. // if a tensor hasn't been offloaded, we warn the user
  4266. if (worst_case) {
  4267. LLAMA_LOG_WARN("%s: %32s: not offloaded (ref: %s)\n", __func__,
  4268. cur->name, "https://github.com/ggerganov/llama.cpp/pull/3837");
  4269. }
  4270. #endif
  4271. return;
  4272. }
  4273. // count the number of layers and respect the provided n_gpu_layers
  4274. switch (func_e) {
  4275. case OFFLOAD_FUNC_NOP:
  4276. case OFFLOAD_FUNC_OUT:
  4277. break;
  4278. case OFFLOAD_FUNC:
  4279. if (n_gpu_layers < n_layer) {
  4280. if (il < i_gpu_start) {
  4281. func_e = OFFLOAD_FUNC_NOP;
  4282. }
  4283. }
  4284. break;
  4285. case OFFLOAD_FUNC_NR:
  4286. if (n_gpu_layers <= n_layer + 0) {
  4287. func_e = OFFLOAD_FUNC_NOP;
  4288. }
  4289. break;
  4290. case OFFLOAD_FUNC_V:
  4291. if (n_gpu_layers <= n_layer + 1) {
  4292. func_e = OFFLOAD_FUNC_NOP;
  4293. }
  4294. break;
  4295. case OFFLOAD_FUNC_KQ:
  4296. if (n_gpu_layers <= n_layer + 2) {
  4297. func_e = OFFLOAD_FUNC_NOP;
  4298. }
  4299. break;
  4300. case OFFLOAD_FUNC_EMB:
  4301. if (!offload_emb || n_gpu_layers < n_layer) {
  4302. func_e = OFFLOAD_FUNC_NOP;
  4303. }
  4304. break;
  4305. default: GGML_ASSERT(false);
  4306. }
  4307. offload_func_t func = ggml_offload_nop;
  4308. // this is needed for compatibility with Metal for example
  4309. #ifdef GGML_USE_CUBLAS
  4310. static offload_func_t ggml_offload_gpu = ggml_cuda_assign_buffers_no_alloc;
  4311. #else
  4312. static offload_func_t ggml_offload_gpu = ggml_offload_nop;
  4313. #endif
  4314. switch (func_e) {
  4315. case OFFLOAD_FUNC_NOP:
  4316. case OFFLOAD_FUNC_OUT: func = ggml_offload_nop; break;
  4317. case OFFLOAD_FUNC:
  4318. case OFFLOAD_FUNC_KQ:
  4319. case OFFLOAD_FUNC_V:
  4320. case OFFLOAD_FUNC_NR:
  4321. case OFFLOAD_FUNC_EMB: func = ggml_offload_gpu; break;
  4322. default: GGML_ASSERT(false);
  4323. }
  4324. // apply offload function to the tensor
  4325. func(cur);
  4326. #ifdef LLAMA_OFFLOAD_DEBUG
  4327. if (worst_case) {
  4328. LLAMA_LOG_INFO("%s: %32s: %s\n", __func__, cur->name, k_offload_func_name.at(func_e).c_str());
  4329. }
  4330. #endif
  4331. };
  4332. struct ggml_cgraph * result = NULL;
  4333. struct llm_build_context llm(lctx, batch, cb, worst_case);
  4334. llm.init();
  4335. switch (model.arch) {
  4336. case LLM_ARCH_LLAMA:
  4337. {
  4338. result = llm.build_llama();
  4339. } break;
  4340. case LLM_ARCH_BAICHUAN:
  4341. {
  4342. result = llm.build_baichuan();
  4343. } break;
  4344. case LLM_ARCH_FALCON:
  4345. {
  4346. result = llm.build_falcon();
  4347. } break;
  4348. case LLM_ARCH_STARCODER:
  4349. {
  4350. result = llm.build_starcoder();
  4351. } break;
  4352. case LLM_ARCH_PERSIMMON:
  4353. {
  4354. result = llm.build_persimmon();
  4355. } break;
  4356. case LLM_ARCH_REFACT:
  4357. {
  4358. result = llm.build_refact();
  4359. } break;
  4360. case LLM_ARCH_BLOOM:
  4361. {
  4362. result = llm.build_bloom();
  4363. } break;
  4364. case LLM_ARCH_MPT:
  4365. {
  4366. result = llm.build_mpt();
  4367. } break;
  4368. case LLM_ARCH_STABLELM:
  4369. {
  4370. result = llm.build_stablelm();
  4371. } break;
  4372. default:
  4373. GGML_ASSERT(false);
  4374. }
  4375. llm.free();
  4376. if (worst_case) {
  4377. int n_non_view_total = 0;
  4378. for (int i = 0; i < result->n_nodes; ++i) {
  4379. if (result->nodes[i]->view_src == nullptr) {
  4380. n_non_view_total++;
  4381. }
  4382. }
  4383. LLAMA_LOG_INFO("%s: non-view tensors processed: %d/%d\n", __func__, n_non_view, n_non_view_total);
  4384. if (n_non_view != n_non_view_total) {
  4385. LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__);
  4386. LLAMA_LOG_WARN("%s: not all non-view tensors have been processed with a callback\n", __func__);
  4387. LLAMA_LOG_WARN("%s: this can indicate an inefficiency in the graph implementation\n", __func__);
  4388. LLAMA_LOG_WARN("%s: build with LLAMA_OFFLOAD_DEBUG for more info\n", __func__);
  4389. LLAMA_LOG_WARN("%s: ref: https://github.com/ggerganov/llama.cpp/pull/3837\n", __func__);
  4390. LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__);
  4391. }
  4392. }
  4393. return result;
  4394. }
  4395. // decode a batch of tokens by evaluating the transformer
  4396. //
  4397. // - lctx: llama context
  4398. // - batch: batch to evaluate
  4399. //
  4400. // return 0 on success
  4401. // return positive int on warning
  4402. // return negative int on error
  4403. //
  4404. static int llama_decode_internal(
  4405. llama_context & lctx,
  4406. llama_batch batch) {
  4407. const uint32_t n_tokens = batch.n_tokens;
  4408. if (n_tokens == 0) {
  4409. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4410. return -1;
  4411. }
  4412. const auto & model = lctx.model;
  4413. const auto & hparams = model.hparams;
  4414. const auto & cparams = lctx.cparams;
  4415. const auto n_batch = cparams.n_batch;
  4416. GGML_ASSERT(n_tokens <= n_batch);
  4417. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4418. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4419. const int64_t t_start_us = ggml_time_us();
  4420. #ifdef GGML_USE_MPI
  4421. // TODO: needs fix after #3228
  4422. GGML_ASSERT(false && "not implemented");
  4423. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4424. #endif
  4425. GGML_ASSERT(n_threads > 0);
  4426. auto & kv_self = lctx.kv_self;
  4427. GGML_ASSERT(!!kv_self.ctx);
  4428. const int64_t n_embd = hparams.n_embd;
  4429. const int64_t n_vocab = hparams.n_vocab;
  4430. // helpers for smoother batch API transistion
  4431. // after deprecating the llama_eval calls, these will be removed
  4432. std::vector<llama_pos> pos;
  4433. std::vector<int32_t> n_seq_id;
  4434. std::vector<llama_seq_id *> seq_id_arr;
  4435. std::vector<std::vector<llama_seq_id>> seq_id;
  4436. if (batch.pos == nullptr) {
  4437. pos.resize(n_tokens);
  4438. for (uint32_t i = 0; i < n_tokens; i++) {
  4439. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4440. }
  4441. batch.pos = pos.data();
  4442. }
  4443. if (batch.seq_id == nullptr) {
  4444. n_seq_id.resize(n_tokens);
  4445. seq_id.resize(n_tokens);
  4446. seq_id_arr.resize(n_tokens);
  4447. for (uint32_t i = 0; i < n_tokens; i++) {
  4448. n_seq_id[i] = 1;
  4449. seq_id[i].resize(1);
  4450. seq_id[i][0] = batch.all_seq_id;
  4451. seq_id_arr[i] = seq_id[i].data();
  4452. }
  4453. batch.n_seq_id = n_seq_id.data();
  4454. batch.seq_id = seq_id_arr.data();
  4455. }
  4456. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4457. return 1;
  4458. }
  4459. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4460. // after enough generations, the benefit from this heuristic disappears
  4461. // if we start defragmenting the cache, the benefit from this will be more important
  4462. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4463. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4464. //printf("kv_self.n = %d\n", kv_self.n);
  4465. ggml_allocr_reset(lctx.alloc);
  4466. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4467. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4468. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4469. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4470. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4471. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4472. #ifdef GGML_USE_CUBLAS
  4473. for (int i = 0; i < gf->n_leafs; i++) {
  4474. ggml_tensor * node = gf->leafs[i];
  4475. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4476. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4477. ggml_cuda_copy_to_device(node);
  4478. }
  4479. }
  4480. for (int i = 0; i < gf->n_nodes; i++) {
  4481. ggml_tensor * node = gf->nodes[i];
  4482. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4483. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4484. }
  4485. }
  4486. // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
  4487. if (!lctx.embedding.empty()) {
  4488. embeddings->backend = GGML_BACKEND_CPU;
  4489. }
  4490. res->backend = GGML_BACKEND_CPU;
  4491. #endif
  4492. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4493. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4494. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4495. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4496. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4497. // with the BLAS calls. need a better solution
  4498. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4499. n_threads = std::min(4, n_threads);
  4500. }
  4501. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4502. const bool full_offload_supported =
  4503. model.arch == LLM_ARCH_LLAMA ||
  4504. model.arch == LLM_ARCH_BAICHUAN ||
  4505. model.arch == LLM_ARCH_FALCON ||
  4506. model.arch == LLM_ARCH_REFACT ||
  4507. model.arch == LLM_ARCH_MPT ||
  4508. model.arch == LLM_ARCH_STARCODER ||
  4509. model.arch == LLM_ARCH_STABLELM;
  4510. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4511. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4512. n_threads = 1;
  4513. }
  4514. #if GGML_USE_MPI
  4515. const int64_t n_layer = hparams.n_layer;
  4516. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4517. #endif
  4518. #ifdef GGML_USE_METAL
  4519. if (lctx.ctx_metal) {
  4520. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4521. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4522. } else {
  4523. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4524. }
  4525. #else
  4526. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4527. #endif
  4528. #if GGML_USE_MPI
  4529. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4530. #endif
  4531. // update the kv ring buffer
  4532. {
  4533. if (kv_self.has_shift) {
  4534. kv_self.has_shift = false;
  4535. for (uint32_t i = 0; i < kv_self.size; ++i) {
  4536. kv_self.cells[i].delta = 0;
  4537. }
  4538. }
  4539. kv_self.head += n_tokens;
  4540. // Ensure kv cache head points to a valid index.
  4541. if (kv_self.head >= kv_self.size) {
  4542. kv_self.head = 0;
  4543. }
  4544. }
  4545. #ifdef GGML_PERF
  4546. // print timing information per ggml operation (for debugging purposes)
  4547. // requires GGML_PERF to be defined
  4548. ggml_graph_print(gf);
  4549. #endif
  4550. // plot the computation graph in dot format (for debugging purposes)
  4551. //if (n_past%100 == 0) {
  4552. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4553. //}
  4554. // extract logits
  4555. // TODO: do not compute and extract logits if only embeddings are needed
  4556. // need to update the graphs to skip "result_output"
  4557. {
  4558. auto & logits_out = lctx.logits;
  4559. if (batch.logits) {
  4560. logits_out.resize(n_vocab * n_tokens);
  4561. for (uint32_t i = 0; i < n_tokens; i++) {
  4562. if (batch.logits[i] == 0) {
  4563. continue;
  4564. }
  4565. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4566. }
  4567. } else if (lctx.logits_all) {
  4568. logits_out.resize(n_vocab * n_tokens);
  4569. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4570. } else {
  4571. logits_out.resize(n_vocab);
  4572. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4573. }
  4574. }
  4575. // extract embeddings
  4576. if (!lctx.embedding.empty()) {
  4577. auto & embedding_out = lctx.embedding;
  4578. embedding_out.resize(n_embd);
  4579. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4580. }
  4581. // measure the performance only for the single-token evals
  4582. if (n_tokens == 1) {
  4583. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4584. lctx.n_eval++;
  4585. }
  4586. else if (n_tokens > 1) {
  4587. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4588. lctx.n_p_eval += n_tokens;
  4589. }
  4590. // get a more accurate load time, upon first eval
  4591. // TODO: fix this
  4592. if (!lctx.has_evaluated_once) {
  4593. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4594. lctx.has_evaluated_once = true;
  4595. }
  4596. return 0;
  4597. }
  4598. //
  4599. // tokenizer
  4600. //
  4601. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  4602. return vocab.type;
  4603. }
  4604. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  4605. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  4606. }
  4607. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  4608. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  4609. }
  4610. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  4611. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  4612. }
  4613. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  4614. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  4615. }
  4616. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  4617. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  4618. }
  4619. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  4620. GGML_ASSERT(llama_is_byte_token(vocab, id));
  4621. const auto& token_data = vocab.id_to_token.at(id);
  4622. switch (llama_vocab_get_type(vocab)) {
  4623. case LLAMA_VOCAB_TYPE_SPM: {
  4624. auto buf = token_data.text.substr(3, 2);
  4625. return strtol(buf.c_str(), NULL, 16);
  4626. }
  4627. case LLAMA_VOCAB_TYPE_BPE: {
  4628. GGML_ASSERT(false);
  4629. return unicode_to_bytes_bpe(token_data.text);
  4630. }
  4631. default:
  4632. GGML_ASSERT(false);
  4633. }
  4634. }
  4635. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  4636. static const char * hex = "0123456789ABCDEF";
  4637. switch (llama_vocab_get_type(vocab)) {
  4638. case LLAMA_VOCAB_TYPE_SPM: {
  4639. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  4640. return vocab.token_to_id.at(buf);
  4641. }
  4642. case LLAMA_VOCAB_TYPE_BPE: {
  4643. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  4644. }
  4645. default:
  4646. GGML_ASSERT(false);
  4647. }
  4648. }
  4649. static void llama_escape_whitespace(std::string & text) {
  4650. replace_all(text, " ", "\xe2\x96\x81");
  4651. }
  4652. static void llama_unescape_whitespace(std::string & word) {
  4653. replace_all(word, "\xe2\x96\x81", " ");
  4654. }
  4655. struct llm_symbol {
  4656. using index = int;
  4657. index prev;
  4658. index next;
  4659. const char * text;
  4660. size_t n;
  4661. };
  4662. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  4663. // SPM tokenizer
  4664. // original implementation:
  4665. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  4666. struct llm_bigram_spm {
  4667. struct comparator {
  4668. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  4669. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  4670. }
  4671. };
  4672. using queue_storage = std::vector<llm_bigram_spm>;
  4673. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  4674. llm_symbol::index left;
  4675. llm_symbol::index right;
  4676. float score;
  4677. size_t size;
  4678. };
  4679. struct llm_tokenizer_spm {
  4680. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  4681. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  4682. // split string into utf8 chars
  4683. int index = 0;
  4684. size_t offs = 0;
  4685. while (offs < text.size()) {
  4686. llm_symbol sym;
  4687. size_t len = utf8_len(text[offs]);
  4688. sym.text = text.c_str() + offs;
  4689. sym.n = std::min(len, text.size() - offs);
  4690. offs += sym.n;
  4691. sym.prev = index - 1;
  4692. sym.next = offs == text.size() ? -1 : index + 1;
  4693. index++;
  4694. symbols.emplace_back(sym);
  4695. }
  4696. // seed the work queue with all possible 2-character tokens.
  4697. for (size_t i = 1; i < symbols.size(); ++i) {
  4698. try_add_bigram(i - 1, i);
  4699. }
  4700. // keep substituting the highest frequency pairs for as long as we can.
  4701. while (!work_queue.empty()) {
  4702. auto bigram = work_queue.top();
  4703. work_queue.pop();
  4704. auto & left_sym = symbols[bigram.left];
  4705. auto & right_sym = symbols[bigram.right];
  4706. // if one of the symbols already got merged, skip it.
  4707. if (left_sym.n == 0 || right_sym.n == 0 ||
  4708. left_sym.n + right_sym.n != bigram.size) {
  4709. continue;
  4710. }
  4711. // merge the right sym into the left one
  4712. left_sym.n += right_sym.n;
  4713. right_sym.n = 0;
  4714. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  4715. // remove the right sym from the chain
  4716. left_sym.next = right_sym.next;
  4717. if (right_sym.next >= 0) {
  4718. symbols[right_sym.next].prev = bigram.left;
  4719. }
  4720. // find more substitutions
  4721. try_add_bigram(left_sym.prev, bigram.left);
  4722. try_add_bigram(bigram.left, left_sym.next);
  4723. }
  4724. for (int i = 0; i != -1; i = symbols[i].next) {
  4725. auto & symbol = symbols[i];
  4726. resegment(symbol, output);
  4727. }
  4728. }
  4729. private:
  4730. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  4731. auto text = std::string(symbol.text, symbol.n);
  4732. auto token = vocab.token_to_id.find(text);
  4733. // Do we need to support is_unused?
  4734. if (token != vocab.token_to_id.end()) {
  4735. output.push_back((*token).second);
  4736. return;
  4737. }
  4738. const auto p = rev_merge.find(text);
  4739. if (p == rev_merge.end()) {
  4740. // output any symbols that did not form tokens as bytes.
  4741. for (int j = 0; j < (int)symbol.n; ++j) {
  4742. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  4743. output.push_back(token_id);
  4744. }
  4745. return;
  4746. }
  4747. resegment(symbols[p->second.first], output);
  4748. resegment(symbols[p->second.second], output);
  4749. }
  4750. void try_add_bigram(int left, int right) {
  4751. if (left == -1 || right == -1) {
  4752. return;
  4753. }
  4754. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  4755. auto token = vocab.token_to_id.find(text);
  4756. if (token == vocab.token_to_id.end()) {
  4757. return;
  4758. }
  4759. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  4760. return;
  4761. }
  4762. const auto & tok_data = vocab.id_to_token[(*token).second];
  4763. llm_bigram_spm bigram;
  4764. bigram.left = left;
  4765. bigram.right = right;
  4766. bigram.score = tok_data.score;
  4767. bigram.size = text.size();
  4768. work_queue.push(bigram);
  4769. // Do we need to support is_unused?
  4770. rev_merge[text] = std::make_pair(left, right);
  4771. }
  4772. const llama_vocab & vocab;
  4773. std::vector<llm_symbol> symbols;
  4774. llm_bigram_spm::queue work_queue;
  4775. std::map<std::string, std::pair<int, int>> rev_merge;
  4776. };
  4777. // BPE tokenizer
  4778. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  4779. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  4780. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  4781. struct llm_bigram_bpe {
  4782. struct comparator {
  4783. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  4784. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  4785. }
  4786. };
  4787. using queue_storage = std::vector<llm_bigram_bpe>;
  4788. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  4789. llm_symbol::index left;
  4790. llm_symbol::index right;
  4791. std::string text;
  4792. int rank;
  4793. size_t size;
  4794. };
  4795. struct llm_tokenizer_bpe {
  4796. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  4797. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  4798. int final_prev_index = -1;
  4799. auto word_collection = bpe_gpt2_preprocess(text);
  4800. symbols_final.clear();
  4801. for (auto & word : word_collection) {
  4802. work_queue = llm_bigram_bpe::queue();
  4803. symbols.clear();
  4804. int index = 0;
  4805. size_t offset = 0;
  4806. while (offset < word.size()) {
  4807. llm_symbol sym;
  4808. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  4809. sym.text = word.c_str() + offset;
  4810. sym.n = char_len;
  4811. offset += sym.n;
  4812. sym.prev = index - 1;
  4813. sym.next = offset == word.size() ? -1 : index + 1;
  4814. index++;
  4815. symbols.emplace_back(sym);
  4816. }
  4817. for (size_t i = 1; i < symbols.size(); ++i) {
  4818. add_new_bigram(i - 1, i);
  4819. }
  4820. // build token(s)
  4821. while (!work_queue.empty()) {
  4822. auto bigram = work_queue.top();
  4823. work_queue.pop();
  4824. auto & left_symbol = symbols[bigram.left];
  4825. auto & right_symbol = symbols[bigram.right];
  4826. if (left_symbol.n == 0 || right_symbol.n == 0) {
  4827. continue;
  4828. }
  4829. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  4830. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  4831. if (left_token + right_token != bigram.text) {
  4832. continue; // Skip this bigram if it's outdated
  4833. }
  4834. // merge the right sym into the left one
  4835. left_symbol.n += right_symbol.n;
  4836. right_symbol.n = 0;
  4837. // remove the right sym from the chain
  4838. left_symbol.next = right_symbol.next;
  4839. if (right_symbol.next >= 0) {
  4840. symbols[right_symbol.next].prev = bigram.left;
  4841. }
  4842. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  4843. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  4844. }
  4845. // add the fnished tokens to the final list keeping correct order for next and prev
  4846. for (auto & sym : symbols) {
  4847. if (sym.n > 0) {
  4848. sym.prev = final_prev_index;
  4849. sym.next = -1;
  4850. if (final_prev_index != -1) {
  4851. symbols_final[final_prev_index].next = symbols_final.size();
  4852. }
  4853. symbols_final.emplace_back(sym);
  4854. final_prev_index = symbols_final.size() - 1;
  4855. }
  4856. }
  4857. }
  4858. symbols = symbols_final;
  4859. if (!symbols.empty()) {
  4860. for (int i = 0; i != -1; i = symbols[i].next) {
  4861. auto & symbol = symbols[i];
  4862. if (symbol.n == 0) {
  4863. continue;
  4864. }
  4865. const std::string str = std::string(symbol.text, symbol.n);
  4866. const auto token = vocab.token_to_id.find(str);
  4867. if (token == vocab.token_to_id.end()) {
  4868. for (auto j = str.begin(); j != str.end(); ++j) {
  4869. std::string byte_str(1, *j);
  4870. auto token_multibyte = vocab.token_to_id.find(byte_str);
  4871. if (token_multibyte == vocab.token_to_id.end()) {
  4872. throw std::runtime_error("ERROR: byte not found in vocab");
  4873. }
  4874. output.push_back((*token_multibyte).second);
  4875. }
  4876. } else {
  4877. output.push_back((*token).second);
  4878. }
  4879. }
  4880. }
  4881. }
  4882. private:
  4883. void add_new_bigram(int left, int right) {
  4884. if (left == -1 || right == -1) {
  4885. return;
  4886. }
  4887. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  4888. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  4889. int rank_found = -1;
  4890. rank_found = vocab.find_bpe_rank(left_token, right_token);
  4891. if (rank_found < 0) {
  4892. return;
  4893. }
  4894. llm_bigram_bpe bigram;
  4895. bigram.left = left;
  4896. bigram.right = right;
  4897. bigram.text = left_token + right_token;
  4898. bigram.size = left_token.size() + right_token.size();
  4899. bigram.rank = rank_found;
  4900. work_queue.push(bigram);
  4901. }
  4902. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  4903. std::vector<std::string> bpe_words;
  4904. std::vector<std::string> bpe_encoded_words;
  4905. std::string token = "";
  4906. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  4907. bool collecting_numeric = false;
  4908. bool collecting_letter = false;
  4909. bool collecting_special = false;
  4910. bool collecting_whitespace_lookahead = false;
  4911. bool collecting = false;
  4912. std::vector<std::string> text_utf;
  4913. text_utf.reserve(text.size());
  4914. bpe_words.reserve(text.size());
  4915. bpe_encoded_words.reserve(text.size());
  4916. auto cps = codepoints_from_utf8(text);
  4917. for (size_t i = 0; i < cps.size(); ++i)
  4918. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  4919. for (int i = 0; i < (int)text_utf.size(); i++) {
  4920. const std::string & utf_char = text_utf[i];
  4921. bool split_condition = false;
  4922. int bytes_remain = text_utf.size() - i;
  4923. // forward backward lookups
  4924. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  4925. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  4926. // handling contractions
  4927. if (!split_condition && bytes_remain >= 2) {
  4928. // 's|'t|'m|'d
  4929. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  4930. split_condition = true;
  4931. }
  4932. if (split_condition) {
  4933. if (token.size()) {
  4934. bpe_words.emplace_back(token); // push previous content as token
  4935. }
  4936. token = utf_char + utf_char_next;
  4937. bpe_words.emplace_back(token);
  4938. token = "";
  4939. i++;
  4940. continue;
  4941. }
  4942. }
  4943. if (!split_condition && bytes_remain >= 3) {
  4944. // 're|'ve|'ll
  4945. if (utf_char == "\'" && (
  4946. (utf_char_next == "r" && utf_char_next_next == "e") ||
  4947. (utf_char_next == "v" && utf_char_next_next == "e") ||
  4948. (utf_char_next == "l" && utf_char_next_next == "l"))
  4949. ) {
  4950. split_condition = true;
  4951. }
  4952. if (split_condition) {
  4953. // current token + next token can be defined
  4954. if (token.size()) {
  4955. bpe_words.emplace_back(token); // push previous content as token
  4956. }
  4957. token = utf_char + utf_char_next + utf_char_next_next;
  4958. bpe_words.emplace_back(token); // the contraction
  4959. token = "";
  4960. i += 2;
  4961. continue;
  4962. }
  4963. }
  4964. if (!split_condition && !collecting) {
  4965. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  4966. collecting_letter = true;
  4967. collecting = true;
  4968. }
  4969. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  4970. collecting_numeric = true;
  4971. collecting = true;
  4972. }
  4973. else if (
  4974. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  4975. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  4976. ) {
  4977. collecting_special = true;
  4978. collecting = true;
  4979. }
  4980. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  4981. collecting_whitespace_lookahead = true;
  4982. collecting = true;
  4983. }
  4984. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  4985. split_condition = true;
  4986. }
  4987. }
  4988. else if (!split_condition && collecting) {
  4989. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  4990. split_condition = true;
  4991. }
  4992. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  4993. split_condition = true;
  4994. }
  4995. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  4996. split_condition = true;
  4997. }
  4998. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  4999. split_condition = true;
  5000. }
  5001. }
  5002. if (utf_char_next == "") {
  5003. split_condition = true; // final
  5004. token += utf_char;
  5005. }
  5006. if (split_condition) {
  5007. if (token.size()) {
  5008. bpe_words.emplace_back(token);
  5009. }
  5010. token = utf_char;
  5011. collecting = false;
  5012. collecting_letter = false;
  5013. collecting_numeric = false;
  5014. collecting_special = false;
  5015. collecting_whitespace_lookahead = false;
  5016. }
  5017. else {
  5018. token += utf_char;
  5019. }
  5020. }
  5021. for (std::string & word : bpe_words) {
  5022. std::string encoded_token = "";
  5023. for (char & c : word) {
  5024. encoded_token += bytes_to_unicode_bpe(c);
  5025. }
  5026. bpe_encoded_words.emplace_back(encoded_token);
  5027. }
  5028. return bpe_encoded_words;
  5029. }
  5030. const llama_vocab & vocab;
  5031. std::vector<llm_symbol> symbols;
  5032. std::vector<llm_symbol> symbols_final;
  5033. llm_bigram_bpe::queue work_queue;
  5034. };
  5035. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
  5036. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  5037. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  5038. } FRAGMENT_BUFFER_VARIANT_TYPE;
  5039. struct fragment_buffer_variant{
  5040. fragment_buffer_variant(llama_vocab::id _token)
  5041. :
  5042. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  5043. token(_token),
  5044. raw_text(_dummy),
  5045. offset(0),
  5046. length(0){}
  5047. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  5048. :
  5049. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  5050. token((llama_vocab::id)-1),
  5051. raw_text(_raw_text),
  5052. offset(_offset),
  5053. length(_length){
  5054. GGML_ASSERT( _offset >= 0 );
  5055. GGML_ASSERT( _length >= 1 );
  5056. GGML_ASSERT( offset + length <= raw_text.length() );
  5057. }
  5058. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  5059. const llama_vocab::id token;
  5060. const std::string _dummy;
  5061. const std::string & raw_text;
  5062. const uint64_t offset;
  5063. const uint64_t length;
  5064. };
  5065. // #define PRETOKENIZERDEBUG
  5066. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
  5067. {
  5068. // for each special token
  5069. for (const auto & st: vocab.special_tokens_cache) {
  5070. const auto & special_token = st.first;
  5071. const auto & special_id = st.second;
  5072. // for each text fragment
  5073. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  5074. while (it != buffer.end()) {
  5075. auto & fragment = (*it);
  5076. // if a fragment is text ( not yet processed )
  5077. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  5078. auto * raw_text = &(fragment.raw_text);
  5079. auto raw_text_base_offset = fragment.offset;
  5080. auto raw_text_base_length = fragment.length;
  5081. // loop over the text
  5082. while (true) {
  5083. // find the first occurence of a given special token in this fragment
  5084. // passing offset argument only limit the "search area" but match coordinates
  5085. // are still relative to the source full raw_text
  5086. auto match = raw_text->find(special_token, raw_text_base_offset);
  5087. // no occurences found, stop processing this fragment for a given special token
  5088. if (match == std::string::npos) break;
  5089. // check if match is within bounds of offset <-> length
  5090. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  5091. #ifdef PRETOKENIZERDEBUG
  5092. fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5093. #endif
  5094. auto source = std::distance(buffer.begin(), it);
  5095. // if match is further than base offset
  5096. // then we have some text to the left of it
  5097. if (match > raw_text_base_offset) {
  5098. // left
  5099. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  5100. const int64_t left_reminder_length = match - raw_text_base_offset;
  5101. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  5102. #ifdef PRETOKENIZERDEBUG
  5103. fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  5104. #endif
  5105. it++;
  5106. }
  5107. // special token
  5108. buffer.emplace_after(it, special_id);
  5109. it++;
  5110. // right
  5111. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  5112. const int64_t right_reminder_offset = match + special_token.length();
  5113. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  5114. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  5115. #ifdef PRETOKENIZERDEBUG
  5116. fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  5117. #endif
  5118. it++;
  5119. if (source == 0) {
  5120. buffer.erase_after(buffer.before_begin());
  5121. } else {
  5122. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5123. }
  5124. // repeat for the right side
  5125. raw_text_base_offset = right_reminder_offset;
  5126. raw_text_base_length = right_reminder_length;
  5127. #ifdef PRETOKENIZERDEBUG
  5128. fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5129. #endif
  5130. } else {
  5131. if (source == 0) {
  5132. buffer.erase_after(buffer.before_begin());
  5133. } else {
  5134. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5135. }
  5136. break;
  5137. }
  5138. }
  5139. }
  5140. it++;
  5141. }
  5142. }
  5143. }
  5144. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  5145. std::vector<llama_vocab::id> output;
  5146. // OG tokenizer behavior:
  5147. //
  5148. // tokenizer.encode('', add_bos=True) returns [1]
  5149. // tokenizer.encode('', add_bos=False) returns []
  5150. if (bos && vocab.special_bos_id != -1) {
  5151. output.push_back(vocab.special_bos_id);
  5152. }
  5153. if (raw_text.empty()) {
  5154. return output;
  5155. }
  5156. std::forward_list<fragment_buffer_variant> fragment_buffer;
  5157. fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
  5158. if (special) tokenizer_st_partition( vocab, fragment_buffer );
  5159. switch (vocab.type) {
  5160. case LLAMA_VOCAB_TYPE_SPM:
  5161. {
  5162. for (const auto & fragment: fragment_buffer)
  5163. {
  5164. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5165. {
  5166. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  5167. // TODO: It's likely possible to get rid of this string copy entirely
  5168. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  5169. // and passing 'add space prefix' as bool argument
  5170. //
  5171. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  5172. if (&fragment == &fragment_buffer.front()) {
  5173. raw_text = " " + raw_text; // prefix with space if the first token is not special
  5174. }
  5175. #ifdef PRETOKENIZERDEBUG
  5176. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5177. #endif
  5178. llm_tokenizer_spm tokenizer(vocab);
  5179. llama_escape_whitespace(raw_text);
  5180. tokenizer.tokenize(raw_text, output);
  5181. }
  5182. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5183. {
  5184. output.push_back(fragment.token);
  5185. }
  5186. }
  5187. } break;
  5188. case LLAMA_VOCAB_TYPE_BPE:
  5189. {
  5190. for (const auto & fragment: fragment_buffer)
  5191. {
  5192. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5193. {
  5194. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  5195. #ifdef PRETOKENIZERDEBUG
  5196. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5197. #endif
  5198. llm_tokenizer_bpe tokenizer(vocab);
  5199. tokenizer.tokenize(raw_text, output);
  5200. }
  5201. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5202. {
  5203. output.push_back(fragment.token);
  5204. }
  5205. }
  5206. } break;
  5207. }
  5208. return output;
  5209. }
  5210. //
  5211. // grammar - internal
  5212. //
  5213. struct llama_partial_utf8 {
  5214. uint32_t value; // bit value so far (unshifted)
  5215. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  5216. };
  5217. struct llama_grammar {
  5218. const std::vector<std::vector<llama_grammar_element>> rules;
  5219. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5220. // buffer for partially generated UTF-8 sequence from accepted tokens
  5221. llama_partial_utf8 partial_utf8;
  5222. };
  5223. struct llama_grammar_candidate {
  5224. size_t index;
  5225. const uint32_t * code_points;
  5226. llama_partial_utf8 partial_utf8;
  5227. };
  5228. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  5229. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  5230. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  5231. const char * src,
  5232. llama_partial_utf8 partial_start) {
  5233. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  5234. const char * pos = src;
  5235. std::vector<uint32_t> code_points;
  5236. uint32_t value = partial_start.value;
  5237. int n_remain = partial_start.n_remain;
  5238. // continue previous decode, if applicable
  5239. while (*pos != 0 && n_remain > 0) {
  5240. uint8_t next_byte = static_cast<uint8_t>(*pos);
  5241. if ((next_byte >> 6) != 2) {
  5242. // invalid sequence, abort
  5243. code_points.push_back(0);
  5244. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  5245. }
  5246. value = (value << 6) + (next_byte & 0x3F);
  5247. ++pos;
  5248. --n_remain;
  5249. }
  5250. if (partial_start.n_remain > 0 && n_remain == 0) {
  5251. code_points.push_back(value);
  5252. }
  5253. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  5254. while (*pos != 0) {
  5255. uint8_t first_byte = static_cast<uint8_t>(*pos);
  5256. uint8_t highbits = first_byte >> 4;
  5257. n_remain = lookup[highbits] - 1;
  5258. if (n_remain < 0) {
  5259. // invalid sequence, abort
  5260. code_points.clear();
  5261. code_points.push_back(0);
  5262. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  5263. }
  5264. uint8_t mask = (1 << (7 - n_remain)) - 1;
  5265. value = first_byte & mask;
  5266. ++pos;
  5267. while (*pos != 0 && n_remain > 0) {
  5268. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  5269. ++pos;
  5270. --n_remain;
  5271. }
  5272. if (n_remain == 0) {
  5273. code_points.push_back(value);
  5274. }
  5275. }
  5276. code_points.push_back(0);
  5277. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  5278. }
  5279. // returns true iff pos points to the end of one of the definitions of a rule
  5280. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  5281. switch (pos->type) {
  5282. case LLAMA_GRETYPE_END: return true; // NOLINT
  5283. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5284. default: return false;
  5285. }
  5286. }
  5287. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5288. // asserts that pos is pointing to a char range element
  5289. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5290. const llama_grammar_element * pos,
  5291. const uint32_t chr) {
  5292. bool found = false;
  5293. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5294. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5295. do {
  5296. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5297. // inclusive range, e.g. [a-z]
  5298. found = found || (pos->value <= chr && chr <= pos[1].value);
  5299. pos += 2;
  5300. } else {
  5301. // exact char match, e.g. [a] or "a"
  5302. found = found || pos->value == chr;
  5303. pos += 1;
  5304. }
  5305. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5306. return std::make_pair(found == is_positive_char, pos);
  5307. }
  5308. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5309. // range at pos (regular or inverse range)
  5310. // asserts that pos is pointing to a char range element
  5311. static bool llama_grammar_match_partial_char(
  5312. const llama_grammar_element * pos,
  5313. const llama_partial_utf8 partial_utf8) {
  5314. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5315. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5316. uint32_t partial_value = partial_utf8.value;
  5317. int n_remain = partial_utf8.n_remain;
  5318. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5319. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5320. return false;
  5321. }
  5322. // range of possible code points this partial UTF-8 sequence could complete to
  5323. uint32_t low = partial_value << (n_remain * 6);
  5324. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5325. if (low == 0) {
  5326. if (n_remain == 2) {
  5327. low = 1 << 11;
  5328. } else if (n_remain == 3) {
  5329. low = 1 << 16;
  5330. }
  5331. }
  5332. do {
  5333. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5334. // inclusive range, e.g. [a-z]
  5335. if (pos->value <= high && low <= pos[1].value) {
  5336. return is_positive_char;
  5337. }
  5338. pos += 2;
  5339. } else {
  5340. // exact char match, e.g. [a] or "a"
  5341. if (low <= pos->value && pos->value <= high) {
  5342. return is_positive_char;
  5343. }
  5344. pos += 1;
  5345. }
  5346. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5347. return !is_positive_char;
  5348. }
  5349. // transforms a grammar pushdown stack into N possible stacks, all ending
  5350. // at a character range (terminal element)
  5351. static void llama_grammar_advance_stack(
  5352. const std::vector<std::vector<llama_grammar_element>> & rules,
  5353. const std::vector<const llama_grammar_element *> & stack,
  5354. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5355. if (stack.empty()) {
  5356. new_stacks.emplace_back(stack);
  5357. return;
  5358. }
  5359. const llama_grammar_element * pos = stack.back();
  5360. switch (pos->type) {
  5361. case LLAMA_GRETYPE_RULE_REF: {
  5362. const size_t rule_id = static_cast<size_t>(pos->value);
  5363. const llama_grammar_element * subpos = rules[rule_id].data();
  5364. do {
  5365. // init new stack without the top (pos)
  5366. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5367. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5368. // if this rule ref is followed by another element, add that to stack
  5369. new_stack.push_back(pos + 1);
  5370. }
  5371. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5372. // if alternate is nonempty, add to stack
  5373. new_stack.push_back(subpos);
  5374. }
  5375. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5376. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5377. // scan to end of alternate def
  5378. subpos++;
  5379. }
  5380. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5381. // there's another alternate def of this rule to process
  5382. subpos++;
  5383. } else {
  5384. break;
  5385. }
  5386. } while (true);
  5387. break;
  5388. }
  5389. case LLAMA_GRETYPE_CHAR:
  5390. case LLAMA_GRETYPE_CHAR_NOT:
  5391. new_stacks.emplace_back(stack);
  5392. break;
  5393. default:
  5394. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5395. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5396. // those
  5397. GGML_ASSERT(false);
  5398. }
  5399. }
  5400. // takes a set of possible pushdown stacks on a grammar, which are required to
  5401. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5402. // produces the N possible stacks if the given char is accepted at those
  5403. // positions
  5404. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5405. const std::vector<std::vector<llama_grammar_element>> & rules,
  5406. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5407. const uint32_t chr) {
  5408. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5409. for (const auto & stack : stacks) {
  5410. if (stack.empty()) {
  5411. continue;
  5412. }
  5413. auto match = llama_grammar_match_char(stack.back(), chr);
  5414. if (match.first) {
  5415. const llama_grammar_element * pos = match.second;
  5416. // update top of stack to next element, if any
  5417. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5418. if (!llama_grammar_is_end_of_sequence(pos)) {
  5419. new_stack.push_back(pos);
  5420. }
  5421. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5422. }
  5423. }
  5424. return new_stacks;
  5425. }
  5426. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5427. const std::vector<std::vector<llama_grammar_element>> & rules,
  5428. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5429. const std::vector<llama_grammar_candidate> & candidates);
  5430. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5431. const std::vector<std::vector<llama_grammar_element>> & rules,
  5432. const std::vector<const llama_grammar_element *> & stack,
  5433. const std::vector<llama_grammar_candidate> & candidates) {
  5434. std::vector<llama_grammar_candidate> rejects;
  5435. if (stack.empty()) {
  5436. for (const auto & tok : candidates) {
  5437. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5438. rejects.push_back(tok);
  5439. }
  5440. }
  5441. return rejects;
  5442. }
  5443. const llama_grammar_element * stack_pos = stack.back();
  5444. std::vector<llama_grammar_candidate> next_candidates;
  5445. for (const auto & tok : candidates) {
  5446. if (*tok.code_points == 0) {
  5447. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5448. // that cannot satisfy this position in grammar
  5449. if (tok.partial_utf8.n_remain != 0 &&
  5450. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5451. rejects.push_back(tok);
  5452. }
  5453. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5454. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5455. } else {
  5456. rejects.push_back(tok);
  5457. }
  5458. }
  5459. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5460. // update top of stack to next element, if any
  5461. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5462. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5463. stack_after.push_back(stack_pos_after);
  5464. }
  5465. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5466. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5467. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5468. for (const auto & tok : next_rejects) {
  5469. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5470. }
  5471. return rejects;
  5472. }
  5473. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5474. const std::vector<std::vector<llama_grammar_element>> & rules,
  5475. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5476. const std::vector<llama_grammar_candidate> & candidates) {
  5477. GGML_ASSERT(!stacks.empty()); // REVIEW
  5478. if (candidates.empty()) {
  5479. return std::vector<llama_grammar_candidate>();
  5480. }
  5481. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5482. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5483. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5484. }
  5485. return rejects;
  5486. }
  5487. //
  5488. // grammar - external
  5489. //
  5490. struct llama_grammar * llama_grammar_init(
  5491. const llama_grammar_element ** rules,
  5492. size_t n_rules,
  5493. size_t start_rule_index) {
  5494. const llama_grammar_element * pos;
  5495. // copy rule definitions into vectors
  5496. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5497. for (size_t i = 0; i < n_rules; i++) {
  5498. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5499. vec_rules[i].push_back(*pos);
  5500. }
  5501. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5502. }
  5503. // loop over alternates of start rule to build initial stacks
  5504. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5505. pos = rules[start_rule_index];
  5506. do {
  5507. std::vector<const llama_grammar_element *> stack;
  5508. if (!llama_grammar_is_end_of_sequence(pos)) {
  5509. // if alternate is nonempty, add to stack
  5510. stack.push_back(pos);
  5511. }
  5512. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5513. while (!llama_grammar_is_end_of_sequence(pos)) {
  5514. // scan to end of alternate def
  5515. pos++;
  5516. }
  5517. if (pos->type == LLAMA_GRETYPE_ALT) {
  5518. // there's another alternate def of this rule to process
  5519. pos++;
  5520. } else {
  5521. break;
  5522. }
  5523. } while (true);
  5524. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5525. }
  5526. void llama_grammar_free(struct llama_grammar * grammar) {
  5527. delete grammar;
  5528. }
  5529. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5530. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5531. // redirect elements in stacks to point to new rules
  5532. for (size_t is = 0; is < result->stacks.size(); is++) {
  5533. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5534. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5535. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5536. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5537. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5538. }
  5539. }
  5540. }
  5541. }
  5542. }
  5543. return result;
  5544. }
  5545. //
  5546. // sampling
  5547. //
  5548. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5549. if (seed == LLAMA_DEFAULT_SEED) {
  5550. seed = time(NULL);
  5551. }
  5552. ctx->rng.seed(seed);
  5553. }
  5554. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5555. GGML_ASSERT(candidates->size > 0);
  5556. const int64_t t_start_sample_us = ggml_time_us();
  5557. // Sort the logits in descending order
  5558. if (!candidates->sorted) {
  5559. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5560. return a.logit > b.logit;
  5561. });
  5562. candidates->sorted = true;
  5563. }
  5564. float max_l = candidates->data[0].logit;
  5565. float cum_sum = 0.0f;
  5566. for (size_t i = 0; i < candidates->size; ++i) {
  5567. float p = expf(candidates->data[i].logit - max_l);
  5568. candidates->data[i].p = p;
  5569. cum_sum += p;
  5570. }
  5571. for (size_t i = 0; i < candidates->size; ++i) {
  5572. candidates->data[i].p /= cum_sum;
  5573. }
  5574. if (ctx) {
  5575. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5576. }
  5577. }
  5578. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5579. const int64_t t_start_sample_us = ggml_time_us();
  5580. k = std::max(k, (int) min_keep);
  5581. k = std::min(k, (int) candidates->size);
  5582. // Sort scores in descending order
  5583. if (!candidates->sorted) {
  5584. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5585. return a.logit > b.logit;
  5586. };
  5587. if (k == (int) candidates->size) {
  5588. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5589. } else {
  5590. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5591. }
  5592. candidates->sorted = true;
  5593. }
  5594. candidates->size = k;
  5595. if (ctx) {
  5596. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5597. }
  5598. }
  5599. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5600. if (p >= 1.0f) {
  5601. return;
  5602. }
  5603. llama_sample_softmax(ctx, candidates);
  5604. const int64_t t_start_sample_us = ggml_time_us();
  5605. // Compute the cumulative probabilities
  5606. float cum_sum = 0.0f;
  5607. size_t last_idx = candidates->size;
  5608. for (size_t i = 0; i < candidates->size; ++i) {
  5609. cum_sum += candidates->data[i].p;
  5610. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  5611. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  5612. if (cum_sum >= p && i + 1 >= min_keep) {
  5613. last_idx = i + 1;
  5614. break;
  5615. }
  5616. }
  5617. // Resize the output vector to keep only the top-p tokens
  5618. candidates->size = last_idx;
  5619. if (ctx) {
  5620. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5621. }
  5622. }
  5623. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5624. if (p <= 0.0f || !candidates->size) {
  5625. return;
  5626. }
  5627. llama_sample_softmax(ctx, candidates);
  5628. const int64_t t_start_sample_us = ggml_time_us();
  5629. float scale = candidates->data[0].p; // scale by max prob
  5630. size_t i = 1; // first token always matches
  5631. for (; i < candidates->size; ++i) {
  5632. if (candidates->data[i].p < p * scale && i >= min_keep) {
  5633. break; // prob too small
  5634. }
  5635. }
  5636. // Resize the output vector to keep only the matching tokens
  5637. candidates->size = i;
  5638. if (ctx) {
  5639. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5640. }
  5641. }
  5642. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  5643. if (z >= 1.0f || candidates->size <= 2) {
  5644. return;
  5645. }
  5646. llama_sample_softmax(nullptr, candidates);
  5647. const int64_t t_start_sample_us = ggml_time_us();
  5648. // Compute the first and second derivatives
  5649. std::vector<float> first_derivatives(candidates->size - 1);
  5650. std::vector<float> second_derivatives(candidates->size - 2);
  5651. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  5652. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  5653. }
  5654. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5655. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  5656. }
  5657. // Calculate absolute value of second derivatives
  5658. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5659. second_derivatives[i] = std::abs(second_derivatives[i]);
  5660. }
  5661. // Normalize the second derivatives
  5662. {
  5663. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  5664. if (second_derivatives_sum > 1e-6f) {
  5665. for (float & value : second_derivatives) {
  5666. value /= second_derivatives_sum;
  5667. }
  5668. } else {
  5669. for (float & value : second_derivatives) {
  5670. value = 1.0f / second_derivatives.size();
  5671. }
  5672. }
  5673. }
  5674. float cum_sum = 0.0f;
  5675. size_t last_idx = candidates->size;
  5676. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5677. cum_sum += second_derivatives[i];
  5678. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  5679. if (cum_sum > z && i >= min_keep) {
  5680. last_idx = i;
  5681. break;
  5682. }
  5683. }
  5684. // Resize the output vector to keep only the tokens above the tail location
  5685. candidates->size = last_idx;
  5686. if (ctx) {
  5687. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5688. }
  5689. }
  5690. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5691. // Reference implementation:
  5692. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  5693. if (p >= 1.0f) {
  5694. return;
  5695. }
  5696. // Compute the softmax of logits and calculate entropy
  5697. llama_sample_softmax(nullptr, candidates);
  5698. const int64_t t_start_sample_us = ggml_time_us();
  5699. float entropy = 0.0f;
  5700. for (size_t i = 0; i < candidates->size; ++i) {
  5701. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  5702. }
  5703. // Compute the absolute difference between negative log probability and entropy for each candidate
  5704. std::vector<float> shifted_scores;
  5705. for (size_t i = 0; i < candidates->size; ++i) {
  5706. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  5707. shifted_scores.push_back(shifted_score);
  5708. }
  5709. // Sort tokens based on the shifted_scores and their corresponding indices
  5710. std::vector<size_t> indices(candidates->size);
  5711. std::iota(indices.begin(), indices.end(), 0);
  5712. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  5713. return shifted_scores[a] < shifted_scores[b];
  5714. });
  5715. // Compute the cumulative probabilities
  5716. float cum_sum = 0.0f;
  5717. size_t last_idx = indices.size();
  5718. for (size_t i = 0; i < indices.size(); ++i) {
  5719. size_t idx = indices[i];
  5720. cum_sum += candidates->data[idx].p;
  5721. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  5722. if (cum_sum > p && i >= min_keep - 1) {
  5723. last_idx = i + 1;
  5724. break;
  5725. }
  5726. }
  5727. // Resize the output vector to keep only the locally typical tokens
  5728. std::vector<llama_token_data> new_candidates;
  5729. for (size_t i = 0; i < last_idx; ++i) {
  5730. size_t idx = indices[i];
  5731. new_candidates.push_back(candidates->data[idx]);
  5732. }
  5733. // Replace the data in candidates with the new_candidates data
  5734. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  5735. candidates->size = new_candidates.size();
  5736. if (ctx) {
  5737. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5738. }
  5739. }
  5740. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5741. const int64_t t_start_sample_us = ggml_time_us();
  5742. for (size_t i = 0; i < candidates_p->size; ++i) {
  5743. candidates_p->data[i].logit /= temp;
  5744. }
  5745. if (ctx) {
  5746. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5747. }
  5748. }
  5749. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5750. llama_sample_temp(ctx, candidates_p, temp);
  5751. }
  5752. void llama_sample_repetition_penalties(
  5753. struct llama_context * ctx,
  5754. llama_token_data_array * candidates,
  5755. const llama_token * last_tokens,
  5756. size_t penalty_last_n,
  5757. float penalty_repeat,
  5758. float penalty_freq,
  5759. float penalty_present) {
  5760. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  5761. return;
  5762. }
  5763. const int64_t t_start_sample_us = ggml_time_us();
  5764. // Create a frequency map to count occurrences of each token in last_tokens
  5765. std::unordered_map<llama_token, int> token_count;
  5766. for (size_t i = 0; i < penalty_last_n; ++i) {
  5767. token_count[last_tokens[i]]++;
  5768. }
  5769. // Apply frequency and presence penalties to the candidates
  5770. for (size_t i = 0; i < candidates->size; ++i) {
  5771. const auto token_iter = token_count.find(candidates->data[i].id);
  5772. if (token_iter == token_count.end()) {
  5773. continue;
  5774. }
  5775. const int count = token_iter->second;
  5776. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  5777. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  5778. if (candidates->data[i].logit <= 0) {
  5779. candidates->data[i].logit *= penalty_repeat;
  5780. } else {
  5781. candidates->data[i].logit /= penalty_repeat;
  5782. }
  5783. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  5784. }
  5785. candidates->sorted = false;
  5786. if (ctx) {
  5787. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5788. }
  5789. }
  5790. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  5791. GGML_ASSERT(ctx);
  5792. const int64_t t_start_sample_us = ggml_time_us();
  5793. bool allow_eos = false;
  5794. for (const auto & stack : grammar->stacks) {
  5795. if (stack.empty()) {
  5796. allow_eos = true;
  5797. break;
  5798. }
  5799. }
  5800. const llama_token eos = llama_token_eos(&ctx->model);
  5801. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  5802. std::vector<llama_grammar_candidate> candidates_grammar;
  5803. for (size_t i = 0; i < candidates->size; ++i) {
  5804. const llama_token id = candidates->data[i].id;
  5805. const std::string piece = llama_token_to_piece(ctx, id);
  5806. if (id == eos) {
  5807. if (!allow_eos) {
  5808. candidates->data[i].logit = -INFINITY;
  5809. }
  5810. } else if (piece.empty() || piece[0] == 0) {
  5811. candidates->data[i].logit = -INFINITY;
  5812. } else {
  5813. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  5814. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  5815. }
  5816. }
  5817. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  5818. for (const auto & reject : rejects) {
  5819. candidates->data[reject.index].logit = -INFINITY;
  5820. }
  5821. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5822. }
  5823. static void llama_log_softmax(float * array, size_t size) {
  5824. float max_l = *std::max_element(array, array + size);
  5825. float sum = 0.f;
  5826. for (size_t i = 0; i < size; ++i) {
  5827. float p = expf(array[i] - max_l);
  5828. sum += p;
  5829. array[i] = p;
  5830. }
  5831. for (size_t i = 0; i < size; ++i) {
  5832. array[i] = logf(array[i] / sum);
  5833. }
  5834. }
  5835. void llama_sample_classifier_free_guidance(
  5836. struct llama_context * ctx,
  5837. llama_token_data_array * candidates,
  5838. struct llama_context * guidance_ctx,
  5839. float scale) {
  5840. int64_t t_start_sample_us = ggml_time_us();
  5841. GGML_ASSERT(ctx);
  5842. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  5843. GGML_ASSERT(n_vocab == (int)candidates->size);
  5844. GGML_ASSERT(!candidates->sorted);
  5845. std::vector<float> logits_base;
  5846. logits_base.reserve(candidates->size);
  5847. for (size_t i = 0; i < candidates->size; ++i) {
  5848. logits_base.push_back(candidates->data[i].logit);
  5849. }
  5850. llama_log_softmax(logits_base.data(), candidates->size);
  5851. float* logits_guidance = llama_get_logits(guidance_ctx);
  5852. llama_log_softmax(logits_guidance, n_vocab);
  5853. for (int i = 0; i < n_vocab; ++i) {
  5854. float logit_guidance = logits_guidance[i];
  5855. float logit_base = logits_base[i];
  5856. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  5857. }
  5858. if (ctx) {
  5859. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5860. }
  5861. }
  5862. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  5863. GGML_ASSERT(ctx);
  5864. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  5865. int64_t t_start_sample_us;
  5866. t_start_sample_us = ggml_time_us();
  5867. llama_sample_softmax(nullptr, candidates);
  5868. // Estimate s_hat using the most probable m tokens
  5869. float s_hat = 0.0;
  5870. float sum_ti_bi = 0.0;
  5871. float sum_ti_sq = 0.0;
  5872. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  5873. float t_i = logf(float(i + 2) / float(i + 1));
  5874. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  5875. sum_ti_bi += t_i * b_i;
  5876. sum_ti_sq += t_i * t_i;
  5877. }
  5878. s_hat = sum_ti_bi / sum_ti_sq;
  5879. // Compute k from the estimated s_hat and target surprise value
  5880. float epsilon_hat = s_hat - 1;
  5881. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  5882. // Sample the next word X using top-k sampling
  5883. llama_sample_top_k(nullptr, candidates, int(k), 1);
  5884. if (ctx) {
  5885. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5886. }
  5887. llama_token X = llama_sample_token(ctx, candidates);
  5888. t_start_sample_us = ggml_time_us();
  5889. // Compute error as the difference between observed surprise and target surprise value
  5890. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5891. return candidate.id == X;
  5892. }));
  5893. float observed_surprise = -log2f(candidates->data[X_idx].p);
  5894. float e = observed_surprise - tau;
  5895. // Update mu using the learning rate and error
  5896. *mu = *mu - eta * e;
  5897. if (ctx) {
  5898. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5899. }
  5900. return X;
  5901. }
  5902. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  5903. int64_t t_start_sample_us;
  5904. t_start_sample_us = ggml_time_us();
  5905. llama_sample_softmax(ctx, candidates);
  5906. // Truncate the words with surprise values greater than mu
  5907. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5908. return -log2f(candidate.p) > *mu;
  5909. }));
  5910. if (candidates->size == 0) {
  5911. candidates->size = 1;
  5912. }
  5913. if (ctx) {
  5914. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5915. }
  5916. // Normalize the probabilities of the remaining words
  5917. llama_sample_softmax(ctx, candidates);
  5918. // Sample the next word X from the remaining words
  5919. llama_token X = llama_sample_token(ctx, candidates);
  5920. t_start_sample_us = ggml_time_us();
  5921. // Compute error as the difference between observed surprise and target surprise value
  5922. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5923. return candidate.id == X;
  5924. }));
  5925. float observed_surprise = -log2f(candidates->data[X_idx].p);
  5926. float e = observed_surprise - tau;
  5927. // Update mu using the learning rate and error
  5928. *mu = *mu - eta * e;
  5929. if (ctx) {
  5930. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5931. }
  5932. return X;
  5933. }
  5934. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  5935. const int64_t t_start_sample_us = ggml_time_us();
  5936. // Find max element
  5937. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5938. return a.logit < b.logit;
  5939. });
  5940. llama_token result = max_iter->id;
  5941. if (ctx) {
  5942. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5943. ctx->n_sample++;
  5944. }
  5945. return result;
  5946. }
  5947. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  5948. GGML_ASSERT(ctx);
  5949. const int64_t t_start_sample_us = ggml_time_us();
  5950. llama_sample_softmax(nullptr, candidates);
  5951. std::vector<float> probs;
  5952. probs.reserve(candidates->size);
  5953. for (size_t i = 0; i < candidates->size; ++i) {
  5954. probs.push_back(candidates->data[i].p);
  5955. }
  5956. std::discrete_distribution<> dist(probs.begin(), probs.end());
  5957. auto & rng = ctx->rng;
  5958. int idx = dist(rng);
  5959. llama_token result = candidates->data[idx].id;
  5960. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5961. ctx->n_sample++;
  5962. return result;
  5963. }
  5964. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  5965. const int64_t t_start_sample_us = ggml_time_us();
  5966. if (token == llama_token_eos(&ctx->model)) {
  5967. for (const auto & stack : grammar->stacks) {
  5968. if (stack.empty()) {
  5969. return;
  5970. }
  5971. }
  5972. GGML_ASSERT(false);
  5973. }
  5974. const std::string piece = llama_token_to_piece(ctx, token);
  5975. // Note terminating 0 in decoded string
  5976. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  5977. const auto & code_points = decoded.first;
  5978. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  5979. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  5980. }
  5981. grammar->partial_utf8 = decoded.second;
  5982. GGML_ASSERT(!grammar->stacks.empty());
  5983. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5984. }
  5985. //
  5986. // Beam search
  5987. //
  5988. struct llama_beam {
  5989. std::vector<llama_token> tokens;
  5990. float p; // Cumulative beam probability (renormalized relative to all beams)
  5991. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  5992. // Sort beams by probability. In case of ties, prefer beams at eob.
  5993. bool operator<(const llama_beam & rhs) const {
  5994. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  5995. }
  5996. // Shift off first n tokens and discard them.
  5997. void shift_tokens(const size_t n) {
  5998. if (n) {
  5999. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  6000. tokens.resize(tokens.size() - n);
  6001. }
  6002. }
  6003. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  6004. };
  6005. // A struct for calculating logit-related info.
  6006. struct llama_logit_info {
  6007. const float * const logits;
  6008. const int n_vocab;
  6009. const float max_l;
  6010. const float normalizer;
  6011. struct sum_exp {
  6012. float max_l;
  6013. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  6014. };
  6015. llama_logit_info(llama_context * ctx)
  6016. : logits(llama_get_logits(ctx))
  6017. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  6018. , max_l(*std::max_element(logits, logits + n_vocab))
  6019. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  6020. { }
  6021. llama_token_data get_token_data(const llama_token token_id) const {
  6022. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  6023. return {token_id, logits[token_id], p};
  6024. }
  6025. // Return top k token_data by logit.
  6026. std::vector<llama_token_data> top_k(size_t k) {
  6027. std::vector<llama_token_data> min_heap; // min-heap by logit
  6028. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  6029. min_heap.reserve(k_min);
  6030. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  6031. min_heap.push_back(get_token_data(token_id));
  6032. }
  6033. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  6034. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  6035. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  6036. if (min_heap.front().logit < logits[token_id]) {
  6037. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  6038. min_heap.back().id = token_id;
  6039. min_heap.back().logit = logits[token_id];
  6040. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  6041. }
  6042. }
  6043. return min_heap;
  6044. }
  6045. float probability_from_logit(float logit) const {
  6046. return normalizer * std::exp(logit - max_l);
  6047. }
  6048. };
  6049. struct llama_beam_search_data {
  6050. llama_context * ctx;
  6051. size_t n_beams;
  6052. int n_past;
  6053. int n_predict;
  6054. std::vector<llama_beam> beams;
  6055. std::vector<llama_beam> next_beams;
  6056. // Re-calculated on each loop iteration
  6057. size_t common_prefix_length;
  6058. // Used to communicate to/from callback on beams state.
  6059. std::vector<llama_beam_view> beam_views;
  6060. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  6061. : ctx(ctx)
  6062. , n_beams(n_beams)
  6063. , n_past(n_past)
  6064. , n_predict(n_predict)
  6065. , beam_views(n_beams) {
  6066. beams.reserve(n_beams);
  6067. next_beams.reserve(n_beams);
  6068. }
  6069. // Collapse beams to a single beam given by index.
  6070. void collapse_beams(const size_t beam_idx) {
  6071. if (0u < beam_idx) {
  6072. std::swap(beams[0], beams[beam_idx]);
  6073. }
  6074. beams.resize(1);
  6075. }
  6076. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  6077. // The repetative patterns below reflect the 2 stages of heaps:
  6078. // * Gather elements until the vector is full, then call std::make_heap() on it.
  6079. // * If the heap is full and a new element is found that should be included, pop the
  6080. // least element to the back(), replace it with the new, then push it into the heap.
  6081. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  6082. // Min-heaps use a greater-than comparator.
  6083. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  6084. if (beam.eob) {
  6085. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  6086. if (next_beams.size() < n_beams) {
  6087. next_beams.push_back(std::move(beam));
  6088. if (next_beams.size() == n_beams) {
  6089. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6090. }
  6091. } else if (next_beams.front().p < beam.p) {
  6092. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6093. next_beams.back() = std::move(beam);
  6094. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6095. }
  6096. } else {
  6097. // beam is not at end-of-sentence, so branch with next top_k tokens.
  6098. if (!beam.tokens.empty()) {
  6099. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  6100. }
  6101. llama_logit_info logit_info(ctx);
  6102. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  6103. size_t i=0;
  6104. if (next_beams.size() < n_beams) {
  6105. for (; next_beams.size() < n_beams ; ++i) {
  6106. llama_beam next_beam = beam;
  6107. next_beam.tokens.push_back(next_tokens[i].id);
  6108. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6109. next_beams.push_back(std::move(next_beam));
  6110. }
  6111. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6112. } else {
  6113. for (; next_beams.front().p == 0.0f ; ++i) {
  6114. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6115. next_beams.back() = beam;
  6116. next_beams.back().tokens.push_back(next_tokens[i].id);
  6117. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6118. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6119. }
  6120. }
  6121. for (; i < n_beams ; ++i) {
  6122. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  6123. if (next_beams.front().p < next_p) {
  6124. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6125. next_beams.back() = beam;
  6126. next_beams.back().tokens.push_back(next_tokens[i].id);
  6127. next_beams.back().p = next_p;
  6128. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6129. }
  6130. }
  6131. }
  6132. }
  6133. // Find common_prefix_length based on beams.
  6134. // Requires beams is not empty.
  6135. size_t find_common_prefix_length() {
  6136. size_t common_prefix_length = beams[0].tokens.size();
  6137. for (size_t i = 1 ; i < beams.size() ; ++i) {
  6138. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  6139. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  6140. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  6141. common_prefix_length = j;
  6142. break;
  6143. }
  6144. }
  6145. }
  6146. return common_prefix_length;
  6147. }
  6148. // Construct beams_state to send back to caller via the callback function.
  6149. // Side effect: set common_prefix_length = find_common_prefix_length();
  6150. llama_beams_state get_beams_state(const bool last_call) {
  6151. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6152. beam_views[i] = beams[i].view();
  6153. }
  6154. common_prefix_length = find_common_prefix_length();
  6155. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  6156. }
  6157. // Loop:
  6158. // * while i < n_predict, AND
  6159. // * any of the beams have not yet reached end-of-beam (eob), AND
  6160. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  6161. // (since all other beam probabilities can only decrease)
  6162. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  6163. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  6164. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  6165. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  6166. !beams[top_beam_index()].eob ; ++i) {
  6167. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  6168. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  6169. if (common_prefix_length) {
  6170. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  6171. n_past += common_prefix_length;
  6172. }
  6173. // Zero-out next_beam probabilities to place them last in following min-heap.
  6174. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  6175. for (llama_beam & beam : beams) {
  6176. beam.shift_tokens(common_prefix_length);
  6177. fill_next_beams_by_top_probabilities(beam);
  6178. }
  6179. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  6180. beams.swap(next_beams);
  6181. renormalize_beam_probabilities(beams);
  6182. }
  6183. collapse_beams(top_beam_index());
  6184. callback(callback_data, get_beams_state(true));
  6185. }
  6186. // As beams grow, the cumulative probabilities decrease.
  6187. // Renormalize them to avoid floating point underflow.
  6188. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  6189. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  6190. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  6191. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  6192. }
  6193. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  6194. size_t top_beam_index() {
  6195. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  6196. }
  6197. // Copy (p,eob) for each beam which may have been changed by the callback.
  6198. void update_beams_from_beam_views() {
  6199. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6200. beams[i].p = beam_views[i].p;
  6201. beams[i].eob = beam_views[i].eob;
  6202. }
  6203. }
  6204. };
  6205. void llama_beam_search(llama_context * ctx,
  6206. llama_beam_search_callback_fn_t callback, void * callback_data,
  6207. size_t n_beams, int n_past, int n_predict) {
  6208. assert(ctx);
  6209. const int64_t t_start_sample_us = ggml_time_us();
  6210. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  6211. beam_search_data.loop(callback, callback_data);
  6212. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6213. ctx->n_sample++;
  6214. }
  6215. //
  6216. // quantization
  6217. //
  6218. template <typename T>
  6219. struct no_init {
  6220. T value;
  6221. no_init() { /* do nothing */ }
  6222. };
  6223. struct quantize_state_internal {
  6224. const llama_model & model;
  6225. const llama_model_quantize_params * params;
  6226. int n_attention_wv = 0;
  6227. int n_feed_forward_w2 = 0;
  6228. int i_attention_wv = 0;
  6229. int i_feed_forward_w2 = 0;
  6230. int n_k_quantized = 0;
  6231. int n_fallback = 0;
  6232. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  6233. : model(model)
  6234. , params(params)
  6235. {}
  6236. };
  6237. static void llama_convert_tensor_internal(
  6238. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  6239. const size_t nelements, const int nthread
  6240. ) {
  6241. if (output.size() < nelements) {
  6242. output.resize(nelements);
  6243. }
  6244. float * f32_output = (float *) output.data();
  6245. ggml_type_traits_t qtype;
  6246. if (ggml_is_quantized(tensor->type)) {
  6247. qtype = ggml_internal_get_type_traits(tensor->type);
  6248. if (qtype.to_float == NULL) {
  6249. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  6250. }
  6251. } else if (tensor->type != GGML_TYPE_F16) {
  6252. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  6253. }
  6254. if (nthread < 2) {
  6255. if (tensor->type == GGML_TYPE_F16) {
  6256. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  6257. } else if (ggml_is_quantized(tensor->type)) {
  6258. qtype.to_float(tensor->data, f32_output, nelements);
  6259. } else {
  6260. GGML_ASSERT(false); // unreachable
  6261. }
  6262. return;
  6263. }
  6264. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  6265. auto block_size_bytes = ggml_type_size(tensor->type);
  6266. GGML_ASSERT(nelements % block_size == 0);
  6267. auto nblocks = nelements / block_size;
  6268. auto blocks_per_thread = nblocks / nthread;
  6269. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  6270. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  6271. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  6272. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  6273. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  6274. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  6275. if (typ == GGML_TYPE_F16) {
  6276. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  6277. } else {
  6278. qtype.to_float(inbuf, outbuf, nels);
  6279. }
  6280. };
  6281. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  6282. in_buff_offs += thr_block_bytes;
  6283. out_buff_offs += thr_elems;
  6284. }
  6285. for (auto & w : workers) { w.join(); }
  6286. workers.clear();
  6287. }
  6288. static ggml_type get_k_quant_type(
  6289. quantize_state_internal & qs,
  6290. ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
  6291. ) {
  6292. const std::string name = ggml_get_name(tensor);
  6293. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6294. const llm_arch arch = qs.model.arch;
  6295. const auto tn = LLM_TN(arch);
  6296. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6297. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6298. };
  6299. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6300. int nx = tensor->ne[0];
  6301. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6302. new_type = GGML_TYPE_Q8_0;
  6303. }
  6304. else if (new_type != GGML_TYPE_Q8_0) {
  6305. new_type = GGML_TYPE_Q6_K;
  6306. }
  6307. } else if (name.find("attn_v.weight") != std::string::npos) {
  6308. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6309. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6310. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6311. }
  6312. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6313. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6314. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6315. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6316. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6317. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6318. if (qs.model.type == MODEL_70B) {
  6319. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6320. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6321. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6322. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6323. }
  6324. ++qs.i_attention_wv;
  6325. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6326. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6327. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6328. new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6329. : arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6330. : GGML_TYPE_Q3_K;
  6331. }
  6332. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6333. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6334. }
  6335. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6336. if (arch == LLM_ARCH_FALCON) {
  6337. new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6338. use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6339. } else {
  6340. if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6341. }
  6342. }
  6343. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6344. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < 4) {
  6345. new_type = GGML_TYPE_Q5_K;
  6346. }
  6347. ++qs.i_feed_forward_w2;
  6348. } else if (name.find("attn_output.weight") != std::string::npos) {
  6349. if (arch != LLM_ARCH_FALCON) {
  6350. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6351. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6352. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6353. } else {
  6354. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6355. }
  6356. }
  6357. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6358. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6359. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6360. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6361. }
  6362. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6363. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6364. }
  6365. // This can be used to reduce the size of the Q5_K_S model.
  6366. // The associated PPL increase is fully in line with the size reduction
  6367. //else {
  6368. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6369. //}
  6370. bool convert_incompatible_tensor = false;
  6371. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6372. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6373. int nx = tensor->ne[0];
  6374. int ny = tensor->ne[1];
  6375. if (nx % QK_K != 0) {
  6376. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  6377. convert_incompatible_tensor = true;
  6378. } else {
  6379. ++qs.n_k_quantized;
  6380. }
  6381. }
  6382. if (convert_incompatible_tensor) {
  6383. switch (new_type) {
  6384. case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
  6385. case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
  6386. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  6387. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  6388. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  6389. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  6390. }
  6391. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  6392. ++qs.n_fallback;
  6393. }
  6394. return new_type;
  6395. }
  6396. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6397. ggml_type quantized_type;
  6398. llama_ftype ftype = params->ftype;
  6399. switch (params->ftype) {
  6400. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6401. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6402. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6403. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6404. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6405. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6406. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6407. // K-quants
  6408. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6409. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6410. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6411. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6412. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6413. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6414. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6415. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6416. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6417. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6418. }
  6419. int nthread = params->nthread;
  6420. if (nthread <= 0) {
  6421. nthread = std::thread::hardware_concurrency();
  6422. }
  6423. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6424. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6425. #if defined(__linux__) || defined(_WIN32)
  6426. constexpr bool use_mmap = true;
  6427. #else
  6428. constexpr bool use_mmap = false;
  6429. #endif
  6430. llama_model_loader ml(fname_inp, use_mmap);
  6431. if (ml.use_mmap) {
  6432. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6433. }
  6434. llama_model model;
  6435. llm_load_arch(ml, model);
  6436. llm_load_hparams(ml, model);
  6437. struct quantize_state_internal qs(model, params);
  6438. if (params->only_copy) {
  6439. ftype = model.ftype;
  6440. }
  6441. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6442. struct gguf_context * ctx_out = gguf_init_empty();
  6443. // copy the KV pairs from the input file
  6444. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6445. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6446. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6447. for (int i = 0; i < ml.n_tensors; ++i) {
  6448. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6449. const std::string name = ggml_get_name(meta);
  6450. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6451. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6452. ++qs.n_attention_wv;
  6453. }
  6454. else if (name.find("ffn_down.weight") != std::string::npos) {
  6455. ++qs.n_feed_forward_w2;
  6456. }
  6457. }
  6458. if (qs.n_attention_wv != qs.n_feed_forward_w2 || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
  6459. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6460. __func__, qs.n_attention_wv, qs.n_feed_forward_w2, model.hparams.n_layer);
  6461. }
  6462. size_t total_size_org = 0;
  6463. size_t total_size_new = 0;
  6464. std::vector<int64_t> hist_all(1 << 4, 0);
  6465. std::vector<std::thread> workers;
  6466. workers.reserve(nthread);
  6467. std::mutex mutex;
  6468. int idx = 0;
  6469. std::vector<no_init<uint8_t>> read_data;
  6470. std::vector<no_init<uint8_t>> work;
  6471. std::vector<no_init<float>> f32_conv_buf;
  6472. // populate the original tensors so we get an initial meta data
  6473. for (int i = 0; i < ml.n_tensors; ++i) {
  6474. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6475. gguf_add_tensor(ctx_out, meta);
  6476. }
  6477. std::ofstream fout(fname_out, std::ios::binary);
  6478. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6479. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6480. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6481. // placeholder for the meta data
  6482. ::zeros(fout, meta_size);
  6483. for (int i = 0; i < ml.n_tensors; ++i) {
  6484. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6485. const std::string name = ggml_get_name(tensor);
  6486. if (!ml.use_mmap) {
  6487. if (read_data.size() < ggml_nbytes(tensor)) {
  6488. read_data.resize(ggml_nbytes(tensor));
  6489. }
  6490. tensor->data = read_data.data();
  6491. }
  6492. ml.load_data_for(tensor);
  6493. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6494. ++idx, ml.n_tensors,
  6495. ggml_get_name(tensor),
  6496. llama_format_tensor_shape(tensor).c_str(),
  6497. ggml_type_name(tensor->type));
  6498. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6499. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6500. // quantize only 2D tensors
  6501. quantize &= (tensor->n_dims == 2);
  6502. quantize &= params->quantize_output_tensor || name != "output.weight";
  6503. quantize &= !params->only_copy;
  6504. enum ggml_type new_type;
  6505. void * new_data;
  6506. size_t new_size;
  6507. if (quantize) {
  6508. new_type = quantized_type;
  6509. if (!params->pure) {
  6510. new_type = get_k_quant_type(qs, new_type, tensor, ftype);
  6511. }
  6512. // If we've decided to quantize to the same type the tensor is already
  6513. // in then there's nothing to do.
  6514. quantize = tensor->type != new_type;
  6515. }
  6516. if (!quantize) {
  6517. new_type = tensor->type;
  6518. new_data = tensor->data;
  6519. new_size = ggml_nbytes(tensor);
  6520. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6521. } else {
  6522. const size_t nelements = ggml_nelements(tensor);
  6523. float * f32_data;
  6524. if (tensor->type == GGML_TYPE_F32) {
  6525. f32_data = (float *) tensor->data;
  6526. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6527. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6528. } else {
  6529. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6530. f32_data = (float *) f32_conv_buf.data();
  6531. }
  6532. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6533. fflush(stdout);
  6534. if (work.size() < nelements * 4) {
  6535. work.resize(nelements * 4); // upper bound on size
  6536. }
  6537. new_data = work.data();
  6538. std::array<int64_t, 1 << 4> hist_cur = {};
  6539. static const int chunk_size = 32 * 512;
  6540. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6541. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6542. if (nthread_use < 2) {
  6543. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6544. } else {
  6545. size_t counter = 0;
  6546. new_size = 0;
  6547. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6548. std::array<int64_t, 1 << 4> local_hist = {};
  6549. size_t local_size = 0;
  6550. while (true) {
  6551. std::unique_lock<std::mutex> lock(mutex);
  6552. size_t first = counter; counter += chunk_size;
  6553. if (first >= nelements) {
  6554. if (local_size > 0) {
  6555. for (int j=0; j<int(local_hist.size()); ++j) {
  6556. hist_cur[j] += local_hist[j];
  6557. }
  6558. new_size += local_size;
  6559. }
  6560. break;
  6561. }
  6562. lock.unlock();
  6563. size_t last = std::min(nelements, first + chunk_size);
  6564. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6565. }
  6566. };
  6567. for (int it = 0; it < nthread_use - 1; ++it) {
  6568. workers.emplace_back(compute);
  6569. }
  6570. compute();
  6571. for (auto & w : workers) { w.join(); }
  6572. workers.clear();
  6573. }
  6574. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6575. int64_t tot_count = 0;
  6576. for (size_t i = 0; i < hist_cur.size(); i++) {
  6577. hist_all[i] += hist_cur[i];
  6578. tot_count += hist_cur[i];
  6579. }
  6580. if (tot_count > 0) {
  6581. for (size_t i = 0; i < hist_cur.size(); i++) {
  6582. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6583. }
  6584. }
  6585. LLAMA_LOG_INFO("\n");
  6586. }
  6587. total_size_org += ggml_nbytes(tensor);
  6588. total_size_new += new_size;
  6589. // update the gguf meta data as we go
  6590. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6591. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6592. // write tensor data + padding
  6593. fout.write((const char *) new_data, new_size);
  6594. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6595. }
  6596. // go back to beginning of file and write the updated meta data
  6597. {
  6598. fout.seekp(0);
  6599. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6600. gguf_get_meta_data(ctx_out, data.data());
  6601. fout.write((const char *) data.data(), data.size());
  6602. }
  6603. fout.close();
  6604. gguf_free(ctx_out);
  6605. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6606. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6607. // print histogram for all tensors
  6608. {
  6609. int64_t sum_all = 0;
  6610. for (size_t i = 0; i < hist_all.size(); i++) {
  6611. sum_all += hist_all[i];
  6612. }
  6613. if (sum_all > 0) {
  6614. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6615. for (size_t i = 0; i < hist_all.size(); i++) {
  6616. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6617. }
  6618. LLAMA_LOG_INFO("\n");
  6619. }
  6620. }
  6621. if (qs.n_fallback > 0) {
  6622. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
  6623. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  6624. }
  6625. }
  6626. static int llama_apply_lora_from_file_internal(
  6627. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  6628. ) {
  6629. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  6630. const int64_t t_start_lora_us = ggml_time_us();
  6631. auto fin = std::ifstream(path_lora, std::ios::binary);
  6632. if (!fin) {
  6633. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  6634. return 1;
  6635. }
  6636. // verify magic and version
  6637. {
  6638. uint32_t magic;
  6639. fin.read((char *) &magic, sizeof(magic));
  6640. uint32_t format_version;
  6641. fin.read((char *) &format_version, sizeof(format_version));
  6642. if (format_version != 1) {
  6643. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  6644. return 1;
  6645. }
  6646. }
  6647. int32_t lora_r;
  6648. int32_t lora_alpha;
  6649. fin.read((char *) &lora_r, sizeof(lora_r));
  6650. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  6651. float scaling = scale * (float)lora_alpha / (float)lora_r;
  6652. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  6653. // create a temporary ggml context to store the lora tensors
  6654. // todo: calculate size from biggest possible tensor
  6655. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  6656. struct ggml_init_params params;
  6657. params.mem_size = lora_buf.size();
  6658. params.mem_buffer = lora_buf.data();
  6659. params.no_alloc = false;
  6660. ggml_context * lora_ctx = ggml_init(params);
  6661. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  6662. // create a name -> tensor map of the model to accelerate lookups
  6663. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  6664. for (const auto & kv : model.tensors_by_name) {
  6665. model_tensors.insert(kv);
  6666. }
  6667. // load base model
  6668. std::unique_ptr<llama_model_loader> ml;
  6669. ggml_context * base_ctx = NULL;
  6670. std::vector<uint8_t> base_buf;
  6671. if (path_base_model) {
  6672. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  6673. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  6674. size_t ctx_size;
  6675. size_t mmapped_size;
  6676. ml->calc_sizes(ctx_size, mmapped_size);
  6677. base_buf.resize(ctx_size);
  6678. ggml_init_params base_params;
  6679. base_params.mem_size = base_buf.size();
  6680. base_params.mem_buffer = base_buf.data();
  6681. base_params.no_alloc = ml->use_mmap;
  6682. base_ctx = ggml_init(base_params);
  6683. // maybe this should in llama_model_loader
  6684. if (ml->use_mmap) {
  6685. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  6686. }
  6687. }
  6688. // read tensors and apply
  6689. bool warned = false;
  6690. int n_tensors = 0;
  6691. std::vector<uint8_t> work_buffer;
  6692. while (true) {
  6693. int32_t n_dims;
  6694. int32_t length;
  6695. int32_t ftype;
  6696. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  6697. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  6698. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  6699. if (fin.eof()) {
  6700. break;
  6701. }
  6702. int32_t ne[2] = { 1, 1 };
  6703. for (int i = 0; i < n_dims; ++i) {
  6704. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  6705. }
  6706. std::string name;
  6707. {
  6708. char buf[1024];
  6709. fin.read(buf, length);
  6710. name = std::string(buf, length);
  6711. }
  6712. // check for lora suffix and get the type of tensor
  6713. const std::string lora_suffix = ".lora";
  6714. size_t pos = name.rfind(lora_suffix);
  6715. if (pos == std::string::npos) {
  6716. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  6717. return 1;
  6718. }
  6719. std::string lora_type = name.substr(pos + lora_suffix.length());
  6720. std::string base_name = name;
  6721. base_name.erase(pos);
  6722. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  6723. if (model_tensors.find(base_name) == model_tensors.end()) {
  6724. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  6725. return 1;
  6726. }
  6727. // create ggml tensor
  6728. ggml_type wtype;
  6729. switch (ftype) {
  6730. case 0: wtype = GGML_TYPE_F32; break;
  6731. case 1: wtype = GGML_TYPE_F16; break;
  6732. default:
  6733. {
  6734. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  6735. __func__, ftype);
  6736. return false;
  6737. }
  6738. }
  6739. ggml_tensor * lora_tensor;
  6740. if (n_dims == 2) {
  6741. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  6742. }
  6743. else {
  6744. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  6745. return 1;
  6746. }
  6747. ggml_set_name(lora_tensor, "lora_tensor");
  6748. // load tensor data
  6749. size_t offset = fin.tellg();
  6750. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  6751. offset = (offset + 31) & -32;
  6752. fin.seekg(offset);
  6753. fin.read((char*)lora_tensor->data, tensor_data_size);
  6754. lora_tensors[name] = lora_tensor;
  6755. // check if we have both A and B tensors and apply
  6756. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  6757. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  6758. ggml_tensor * dest_t = model_tensors[base_name];
  6759. offload_func_t offload_func = ggml_offload_nop;
  6760. offload_func_t offload_func_force_inplace = ggml_offload_nop;
  6761. #ifdef GGML_USE_CUBLAS
  6762. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  6763. if (dest_t->type != GGML_TYPE_F16) {
  6764. throw std::runtime_error(format(
  6765. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models. dest_t->type: %d", __func__, dest_t->type));
  6766. }
  6767. offload_func = ggml_cuda_assign_buffers;
  6768. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  6769. }
  6770. #endif // GGML_USE_CUBLAS
  6771. ggml_tensor * base_t;
  6772. if (ml) {
  6773. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  6774. // load from base model
  6775. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  6776. // TODO: throw
  6777. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  6778. return 1;
  6779. }
  6780. // TODO: not tested!! maybe not working!
  6781. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  6782. ml->load_data_for(base_t);
  6783. } else {
  6784. base_t = dest_t;
  6785. }
  6786. if (ggml_is_quantized(base_t->type)) {
  6787. if (!warned) {
  6788. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  6789. "use a f16 or f32 base model with --lora-base\n", __func__);
  6790. warned = true;
  6791. }
  6792. }
  6793. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  6794. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  6795. ggml_set_name(loraA, "loraA");
  6796. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  6797. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  6798. ggml_set_name(loraB, "loraB");
  6799. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  6800. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  6801. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  6802. return 1;
  6803. }
  6804. // w = w + BA*s
  6805. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  6806. offload_func(BA);
  6807. ggml_set_name(BA, "BA");
  6808. if (scaling != 1.0f) {
  6809. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  6810. ggml_set_name(scale_tensor, "scale_tensor");
  6811. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  6812. offload_func(BA);
  6813. ggml_set_name(BA, "BA_scaled");
  6814. }
  6815. ggml_tensor * r;
  6816. if (base_t == dest_t) {
  6817. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  6818. offload_func_force_inplace(r);
  6819. ggml_set_name(r, "r_add_inplace");
  6820. }
  6821. else {
  6822. r = ggml_add(lora_ctx, base_t, BA);
  6823. offload_func(r);
  6824. ggml_set_name(r, "r_add");
  6825. r = ggml_cpy(lora_ctx, r, dest_t);
  6826. offload_func(r);
  6827. ggml_set_name(r, "r_cpy");
  6828. }
  6829. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  6830. ggml_build_forward_expand(gf, r);
  6831. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  6832. // we won't need these tensors again, reset the context to save memory
  6833. ggml_free(lora_ctx);
  6834. lora_ctx = ggml_init(params);
  6835. lora_tensors.clear();
  6836. n_tensors++;
  6837. if (n_tensors % 4 == 0) {
  6838. LLAMA_LOG_INFO(".");
  6839. }
  6840. }
  6841. }
  6842. // TODO: this should be in a destructor, it will leak on failure
  6843. ggml_free(lora_ctx);
  6844. if (base_ctx) {
  6845. ggml_free(base_ctx);
  6846. }
  6847. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  6848. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  6849. return 0;
  6850. }
  6851. //
  6852. // interface implementation
  6853. //
  6854. struct llama_model_params llama_model_default_params() {
  6855. struct llama_model_params result = {
  6856. /*.n_gpu_layers =*/ 0,
  6857. /*.main_gpu =*/ 0,
  6858. /*.tensor_split =*/ nullptr,
  6859. /*.progress_callback =*/ nullptr,
  6860. /*.progress_callback_user_data =*/ nullptr,
  6861. /*.vocab_only =*/ false,
  6862. /*.use_mmap =*/ true,
  6863. /*.use_mlock =*/ false,
  6864. };
  6865. #ifdef GGML_USE_METAL
  6866. result.n_gpu_layers = 1;
  6867. #endif
  6868. return result;
  6869. }
  6870. struct llama_context_params llama_context_default_params() {
  6871. struct llama_context_params result = {
  6872. /*.seed =*/ LLAMA_DEFAULT_SEED,
  6873. /*.n_ctx =*/ 512,
  6874. /*.n_batch =*/ 512,
  6875. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  6876. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  6877. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
  6878. /*.rope_freq_base =*/ 0.0f,
  6879. /*.rope_freq_scale =*/ 0.0f,
  6880. /*.yarn_ext_factor =*/ -1.0f,
  6881. /*.yarn_attn_factor =*/ 1.0f,
  6882. /*.yarn_beta_fast =*/ 32.0f,
  6883. /*.yarn_beta_slow =*/ 1.0f,
  6884. /*.yarn_orig_ctx =*/ 0,
  6885. /*.mul_mat_q =*/ true,
  6886. /*.f16_kv =*/ true,
  6887. /*.logits_all =*/ false,
  6888. /*.embedding =*/ false,
  6889. };
  6890. return result;
  6891. }
  6892. struct llama_model_quantize_params llama_model_quantize_default_params() {
  6893. struct llama_model_quantize_params result = {
  6894. /*.nthread =*/ 0,
  6895. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  6896. /*.allow_requantize =*/ false,
  6897. /*.quantize_output_tensor =*/ true,
  6898. /*.only_copy =*/ false,
  6899. /*.pure =*/ false,
  6900. };
  6901. return result;
  6902. }
  6903. int llama_max_devices(void) {
  6904. return LLAMA_MAX_DEVICES;
  6905. }
  6906. bool llama_mmap_supported(void) {
  6907. return llama_mmap::SUPPORTED;
  6908. }
  6909. bool llama_mlock_supported(void) {
  6910. return llama_mlock::SUPPORTED;
  6911. }
  6912. void llama_backend_init(bool numa) {
  6913. ggml_time_init();
  6914. // needed to initialize f16 tables
  6915. {
  6916. struct ggml_init_params params = { 0, NULL, false };
  6917. struct ggml_context * ctx = ggml_init(params);
  6918. ggml_free(ctx);
  6919. }
  6920. if (numa) {
  6921. ggml_numa_init();
  6922. }
  6923. #ifdef GGML_USE_MPI
  6924. ggml_mpi_backend_init();
  6925. #endif
  6926. }
  6927. void llama_backend_free(void) {
  6928. #ifdef GGML_USE_MPI
  6929. ggml_mpi_backend_free();
  6930. #endif
  6931. }
  6932. int64_t llama_time_us(void) {
  6933. return ggml_time_us();
  6934. }
  6935. struct llama_model * llama_load_model_from_file(
  6936. const char * path_model,
  6937. struct llama_model_params params) {
  6938. ggml_time_init();
  6939. llama_model * model = new llama_model;
  6940. unsigned cur_percentage = 0;
  6941. if (params.progress_callback == NULL) {
  6942. params.progress_callback_user_data = &cur_percentage;
  6943. params.progress_callback = [](float progress, void * ctx) {
  6944. unsigned * cur_percentage_p = (unsigned *) ctx;
  6945. unsigned percentage = (unsigned) (100 * progress);
  6946. while (percentage > *cur_percentage_p) {
  6947. *cur_percentage_p = percentage;
  6948. LLAMA_LOG_INFO(".");
  6949. if (percentage >= 100) {
  6950. LLAMA_LOG_INFO("\n");
  6951. }
  6952. }
  6953. };
  6954. }
  6955. if (!llama_model_load(path_model, *model, params)) {
  6956. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  6957. delete model;
  6958. return nullptr;
  6959. }
  6960. return model;
  6961. }
  6962. void llama_free_model(struct llama_model * model) {
  6963. delete model;
  6964. }
  6965. struct llama_context * llama_new_context_with_model(
  6966. struct llama_model * model,
  6967. struct llama_context_params params) {
  6968. if (!model) {
  6969. return nullptr;
  6970. }
  6971. llama_context * ctx = new llama_context(*model);
  6972. const auto & hparams = model->hparams;
  6973. auto & cparams = ctx->cparams;
  6974. cparams.n_batch = params.n_batch;
  6975. cparams.n_threads = params.n_threads;
  6976. cparams.n_threads_batch = params.n_threads_batch;
  6977. cparams.yarn_ext_factor = params.yarn_ext_factor;
  6978. cparams.yarn_attn_factor = params.yarn_attn_factor;
  6979. cparams.yarn_beta_fast = params.yarn_beta_fast;
  6980. cparams.yarn_beta_slow = params.yarn_beta_slow;
  6981. cparams.mul_mat_q = params.mul_mat_q;
  6982. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  6983. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  6984. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  6985. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  6986. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  6987. hparams.n_ctx_train;
  6988. auto rope_scaling_type = params.rope_scaling_type;
  6989. if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
  6990. rope_scaling_type = hparams.rope_scaling_type_train;
  6991. }
  6992. if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
  6993. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  6994. }
  6995. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  6996. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
  6997. }
  6998. if (params.seed == LLAMA_DEFAULT_SEED) {
  6999. params.seed = time(NULL);
  7000. }
  7001. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  7002. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  7003. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  7004. ctx->rng = std::mt19937(params.seed);
  7005. ctx->logits_all = params.logits_all;
  7006. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  7007. // reserve memory for context buffers
  7008. if (!hparams.vocab_only) {
  7009. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  7010. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  7011. llama_free(ctx);
  7012. return nullptr;
  7013. }
  7014. {
  7015. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  7016. LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
  7017. }
  7018. // resized during inference
  7019. if (params.logits_all) {
  7020. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  7021. } else {
  7022. ctx->logits.reserve(hparams.n_vocab);
  7023. }
  7024. if (params.embedding){
  7025. ctx->embedding.resize(hparams.n_embd);
  7026. }
  7027. {
  7028. static const size_t tensor_alignment = 32;
  7029. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  7030. ctx->buf_compute.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
  7031. // create measure allocator
  7032. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  7033. // build worst-case graph
  7034. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  7035. int n_past = cparams.n_ctx - n_tokens;
  7036. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  7037. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  7038. #ifdef GGML_USE_METAL
  7039. if (model->n_gpu_layers > 0) {
  7040. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  7041. ctx->ctx_metal = ggml_metal_init(1);
  7042. if (!ctx->ctx_metal) {
  7043. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  7044. llama_free(ctx);
  7045. return NULL;
  7046. }
  7047. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  7048. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7049. }
  7050. #endif
  7051. // measure memory requirements for the graph
  7052. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  7053. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  7054. // recreate allocator with exact memory requirements
  7055. ggml_allocr_free(ctx->alloc);
  7056. ctx->buf_alloc.resize(alloc_size);
  7057. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  7058. #ifdef GGML_USE_METAL
  7059. if (ctx->ctx_metal) {
  7060. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7061. }
  7062. #endif
  7063. #ifdef GGML_USE_CUBLAS
  7064. ggml_cuda_set_scratch_size(alloc_size);
  7065. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
  7066. // calculate total VRAM usage
  7067. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  7068. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  7069. size += ggml_nbytes(t);
  7070. }
  7071. };
  7072. size_t model_vram_size = 0;
  7073. for (const auto & kv : model->tensors_by_name) {
  7074. add_tensor(kv.second, model_vram_size);
  7075. }
  7076. size_t kv_vram_size = 0;
  7077. add_tensor(ctx->kv_self.k, kv_vram_size);
  7078. add_tensor(ctx->kv_self.v, kv_vram_size);
  7079. size_t ctx_vram_size = alloc_size + kv_vram_size;
  7080. size_t total_vram_size = model_vram_size + ctx_vram_size;
  7081. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
  7082. total_vram_size / 1024.0 / 1024.0,
  7083. model_vram_size / 1024.0 / 1024.0,
  7084. ctx_vram_size / 1024.0 / 1024.0);
  7085. #endif
  7086. }
  7087. #ifdef GGML_USE_METAL
  7088. if (model->n_gpu_layers > 0) {
  7089. // this allocates all Metal resources and memory buffers
  7090. void * data_ptr = NULL;
  7091. size_t data_size = 0;
  7092. if (ctx->model.mapping) {
  7093. data_ptr = ctx->model.mapping->addr;
  7094. data_size = ctx->model.mapping->size;
  7095. } else {
  7096. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  7097. data_size = ggml_get_mem_size (ctx->model.ctx);
  7098. }
  7099. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  7100. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
  7101. #define LLAMA_METAL_CHECK_BUF(result) \
  7102. if (!(result)) { \
  7103. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  7104. llama_free(ctx); \
  7105. return NULL; \
  7106. }
  7107. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  7108. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  7109. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  7110. #undef LLAMA_METAL_CHECK_BUF
  7111. }
  7112. #endif
  7113. }
  7114. #ifdef GGML_USE_MPI
  7115. ctx->ctx_mpi = ggml_mpi_init();
  7116. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  7117. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  7118. // TODO: needs fix after #3228
  7119. GGML_ASSERT(false && "not implemented");
  7120. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  7121. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  7122. llama_backend_free();
  7123. exit(1);
  7124. }
  7125. #endif
  7126. return ctx;
  7127. }
  7128. void llama_free(struct llama_context * ctx) {
  7129. delete ctx;
  7130. }
  7131. const llama_model * llama_get_model(const struct llama_context * ctx) {
  7132. return &ctx->model;
  7133. }
  7134. int llama_n_ctx(const struct llama_context * ctx) {
  7135. return ctx->cparams.n_ctx;
  7136. }
  7137. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  7138. return model->vocab.type;
  7139. }
  7140. int llama_n_vocab(const struct llama_model * model) {
  7141. return model->vocab.id_to_token.size();
  7142. }
  7143. int llama_n_ctx_train(const struct llama_model * model) {
  7144. return model->hparams.n_ctx_train;
  7145. }
  7146. int llama_n_embd(const struct llama_model * model) {
  7147. return model->hparams.n_embd;
  7148. }
  7149. float llama_rope_freq_scale_train(const struct llama_model * model) {
  7150. return model->hparams.rope_freq_scale_train;
  7151. }
  7152. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  7153. return snprintf(buf, buf_size, "%s %s %s",
  7154. llama_model_arch_name(model->arch).c_str(),
  7155. llama_model_type_name(model->type),
  7156. llama_model_ftype_name(model->ftype).c_str());
  7157. }
  7158. uint64_t llama_model_size(const struct llama_model * model) {
  7159. uint64_t size = 0;
  7160. for (const auto & it : model->tensors_by_name) {
  7161. size += ggml_nbytes(it.second);
  7162. }
  7163. return size;
  7164. }
  7165. uint64_t llama_model_n_params(const struct llama_model * model) {
  7166. uint64_t nparams = 0;
  7167. for (const auto & it : model->tensors_by_name) {
  7168. nparams += ggml_nelements(it.second);
  7169. }
  7170. return nparams;
  7171. }
  7172. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  7173. return ggml_get_tensor(model->ctx, name);
  7174. }
  7175. int llama_model_quantize(
  7176. const char * fname_inp,
  7177. const char * fname_out,
  7178. const llama_model_quantize_params * params) {
  7179. try {
  7180. llama_model_quantize_internal(fname_inp, fname_out, params);
  7181. return 0;
  7182. } catch (const std::exception & err) {
  7183. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  7184. return 1;
  7185. }
  7186. }
  7187. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7188. try {
  7189. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  7190. } catch (const std::exception & err) {
  7191. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7192. return 1;
  7193. }
  7194. }
  7195. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7196. try {
  7197. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  7198. } catch (const std::exception & err) {
  7199. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7200. return 1;
  7201. }
  7202. }
  7203. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  7204. return ctx->kv_self.head;
  7205. }
  7206. void llama_kv_cache_clear(struct llama_context * ctx) {
  7207. llama_kv_cache_clear(ctx->kv_self);
  7208. }
  7209. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  7210. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  7211. }
  7212. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  7213. if (seq_id_src == seq_id_dst) {
  7214. return;
  7215. }
  7216. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  7217. }
  7218. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  7219. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  7220. }
  7221. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  7222. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  7223. }
  7224. // Returns the *maximum* size of the state
  7225. size_t llama_get_state_size(const struct llama_context * ctx) {
  7226. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  7227. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  7228. const size_t s_rng_size = sizeof(size_t);
  7229. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  7230. const size_t s_logits_capacity = sizeof(size_t);
  7231. const size_t s_logits_size = sizeof(size_t);
  7232. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  7233. const size_t s_embedding_size = sizeof(size_t);
  7234. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  7235. const size_t s_kv_size = sizeof(size_t);
  7236. const size_t s_kv_ntok = sizeof(int);
  7237. const size_t s_kv = ctx->kv_self.buf.size;
  7238. const size_t s_total = (
  7239. + s_rng_size
  7240. + s_rng
  7241. + s_logits_capacity
  7242. + s_logits_size
  7243. + s_logits
  7244. + s_embedding_size
  7245. + s_embedding
  7246. + s_kv_size
  7247. + s_kv_ntok
  7248. + s_kv
  7249. );
  7250. return s_total;
  7251. }
  7252. // llama_context_data
  7253. struct llama_data_context {
  7254. virtual void write(const void * src, size_t size) = 0;
  7255. virtual size_t get_size_written() = 0;
  7256. virtual ~llama_data_context() = default;
  7257. };
  7258. struct llama_data_buffer_context : llama_data_context {
  7259. uint8_t * ptr;
  7260. size_t size_written = 0;
  7261. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  7262. void write(const void * src, size_t size) override {
  7263. memcpy(ptr, src, size);
  7264. ptr += size;
  7265. size_written += size;
  7266. }
  7267. size_t get_size_written() override {
  7268. return size_written;
  7269. }
  7270. };
  7271. struct llama_data_file_context : llama_data_context {
  7272. llama_file * file;
  7273. size_t size_written = 0;
  7274. llama_data_file_context(llama_file * f) : file(f) {}
  7275. void write(const void * src, size_t size) override {
  7276. file->write_raw(src, size);
  7277. size_written += size;
  7278. }
  7279. size_t get_size_written() override {
  7280. return size_written;
  7281. }
  7282. };
  7283. /** copy state data into either a buffer or file depending on the passed in context
  7284. *
  7285. * file context:
  7286. * llama_file file("/path", "wb");
  7287. * llama_data_file_context data_ctx(&file);
  7288. * llama_copy_state_data(ctx, &data_ctx);
  7289. *
  7290. * buffer context:
  7291. * std::vector<uint8_t> buf(max_size, 0);
  7292. * llama_data_buffer_context data_ctx(&buf.data());
  7293. * llama_copy_state_data(ctx, &data_ctx);
  7294. *
  7295. */
  7296. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7297. // copy rng
  7298. {
  7299. std::stringstream rng_ss;
  7300. rng_ss << ctx->rng;
  7301. const size_t rng_size = rng_ss.str().size();
  7302. char rng_buf[LLAMA_MAX_RNG_STATE];
  7303. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7304. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7305. data_ctx->write(&rng_size, sizeof(rng_size));
  7306. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7307. }
  7308. // copy logits
  7309. {
  7310. const size_t logits_cap = ctx->logits.capacity();
  7311. const size_t logits_size = ctx->logits.size();
  7312. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7313. data_ctx->write(&logits_size, sizeof(logits_size));
  7314. if (logits_size) {
  7315. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7316. }
  7317. // If there is a gap between the size and the capacity, write padding
  7318. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7319. if (padding_size > 0) {
  7320. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7321. data_ctx->write(padding.data(), padding_size);
  7322. }
  7323. }
  7324. // copy embeddings
  7325. {
  7326. const size_t embedding_size = ctx->embedding.size();
  7327. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7328. if (embedding_size) {
  7329. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7330. }
  7331. }
  7332. // copy kv cache
  7333. {
  7334. const auto & kv_self = ctx->kv_self;
  7335. const auto & hparams = ctx->model.hparams;
  7336. const auto & cparams = ctx->cparams;
  7337. const auto n_layer = hparams.n_layer;
  7338. const auto n_embd = hparams.n_embd_gqa();
  7339. const auto n_ctx = cparams.n_ctx;
  7340. const size_t kv_buf_size = kv_self.buf.size;
  7341. const uint32_t kv_head = kv_self.head;
  7342. const uint32_t kv_size = kv_self.size;
  7343. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7344. data_ctx->write(&kv_head, sizeof(kv_head));
  7345. data_ctx->write(&kv_size, sizeof(kv_size));
  7346. if (kv_buf_size) {
  7347. const size_t elt_size = ggml_element_size(kv_self.k);
  7348. ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
  7349. ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
  7350. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7351. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7352. kout3d->data = kout3d_data.data();
  7353. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7354. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7355. vout3d->data = vout3d_data.data();
  7356. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7357. n_embd, kv_head, n_layer,
  7358. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7359. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7360. kv_head, n_embd, n_layer,
  7361. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7362. ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7363. ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7364. ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
  7365. ggml_free(cpy_ctx);
  7366. // our data is now in the kout3d_data and vout3d_data buffers
  7367. // write them to file
  7368. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7369. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7370. }
  7371. for (uint32_t i = 0; i < kv_size; ++i) {
  7372. const auto & cell = kv_self.cells[i];
  7373. const llama_pos pos = cell.pos;
  7374. const size_t seq_id_size = cell.seq_id.size();
  7375. data_ctx->write(&pos, sizeof(pos));
  7376. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7377. for (auto seq_id : cell.seq_id) {
  7378. data_ctx->write(&seq_id, sizeof(seq_id));
  7379. }
  7380. }
  7381. }
  7382. }
  7383. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7384. llama_data_buffer_context data_ctx(dst);
  7385. llama_copy_state_data_internal(ctx, &data_ctx);
  7386. return data_ctx.get_size_written();
  7387. }
  7388. // Sets the state reading from the specified source address
  7389. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7390. uint8_t * inp = src;
  7391. // set rng
  7392. {
  7393. size_t rng_size;
  7394. char rng_buf[LLAMA_MAX_RNG_STATE];
  7395. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7396. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7397. std::stringstream rng_ss;
  7398. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7399. rng_ss >> ctx->rng;
  7400. GGML_ASSERT(!rng_ss.fail());
  7401. }
  7402. // set logits
  7403. {
  7404. size_t logits_cap;
  7405. size_t logits_size;
  7406. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7407. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7408. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7409. if (logits_size) {
  7410. ctx->logits.resize(logits_size);
  7411. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7412. }
  7413. inp += logits_cap * sizeof(float);
  7414. }
  7415. // set embeddings
  7416. {
  7417. size_t embedding_size;
  7418. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7419. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7420. if (embedding_size) {
  7421. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7422. inp += embedding_size * sizeof(float);
  7423. }
  7424. }
  7425. // set kv cache
  7426. {
  7427. const auto & kv_self = ctx->kv_self;
  7428. const auto & hparams = ctx->model.hparams;
  7429. const auto & cparams = ctx->cparams;
  7430. const int n_layer = hparams.n_layer;
  7431. const int n_embd = hparams.n_embd_gqa();
  7432. const int n_ctx = cparams.n_ctx;
  7433. size_t kv_buf_size;
  7434. uint32_t kv_head;
  7435. uint32_t kv_size;
  7436. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7437. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7438. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7439. if (kv_buf_size) {
  7440. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7441. const size_t elt_size = ggml_element_size(kv_self.k);
  7442. ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
  7443. ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
  7444. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7445. kin3d->data = (void *) inp;
  7446. inp += ggml_nbytes(kin3d);
  7447. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7448. vin3d->data = (void *) inp;
  7449. inp += ggml_nbytes(vin3d);
  7450. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7451. n_embd, kv_head, n_layer,
  7452. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7453. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7454. kv_head, n_embd, n_layer,
  7455. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7456. ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7457. ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7458. ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
  7459. ggml_free(cpy_ctx);
  7460. }
  7461. ctx->kv_self.head = kv_head;
  7462. ctx->kv_self.size = kv_size;
  7463. ctx->kv_self.cells.resize(kv_size);
  7464. for (uint32_t i = 0; i < kv_size; ++i) {
  7465. llama_pos pos;
  7466. size_t seq_id_size;
  7467. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7468. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7469. ctx->kv_self.cells[i].pos = pos;
  7470. llama_seq_id seq_id;
  7471. for (size_t j = 0; j < seq_id_size; ++j) {
  7472. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7473. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7474. }
  7475. }
  7476. }
  7477. const size_t nread = inp - src;
  7478. const size_t max_size = llama_get_state_size(ctx);
  7479. GGML_ASSERT(nread <= max_size);
  7480. return nread;
  7481. }
  7482. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7483. llama_file file(path_session, "rb");
  7484. // sanity checks
  7485. {
  7486. const uint32_t magic = file.read_u32();
  7487. const uint32_t version = file.read_u32();
  7488. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7489. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7490. return false;
  7491. }
  7492. llama_hparams session_hparams;
  7493. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7494. if (session_hparams != ctx->model.hparams) {
  7495. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7496. return false;
  7497. }
  7498. }
  7499. // load the prompt
  7500. {
  7501. const uint32_t n_token_count = file.read_u32();
  7502. if (n_token_count > n_token_capacity) {
  7503. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7504. return false;
  7505. }
  7506. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7507. *n_token_count_out = n_token_count;
  7508. }
  7509. // restore the context state
  7510. {
  7511. const size_t n_state_size_cur = file.size - file.tell();
  7512. const size_t n_state_size_max = llama_get_state_size(ctx);
  7513. if (n_state_size_cur > n_state_size_max) {
  7514. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7515. return false;
  7516. }
  7517. std::vector<uint8_t> state_data(n_state_size_max);
  7518. file.read_raw(state_data.data(), n_state_size_cur);
  7519. llama_set_state_data(ctx, state_data.data());
  7520. }
  7521. return true;
  7522. }
  7523. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7524. try {
  7525. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7526. } catch (const std::exception & err) {
  7527. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7528. return false;
  7529. }
  7530. }
  7531. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7532. llama_file file(path_session, "wb");
  7533. file.write_u32(LLAMA_SESSION_MAGIC);
  7534. file.write_u32(LLAMA_SESSION_VERSION);
  7535. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7536. // save the prompt
  7537. file.write_u32((uint32_t) n_token_count);
  7538. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7539. // save the context state using stream saving
  7540. llama_data_file_context data_ctx(&file);
  7541. llama_copy_state_data_internal(ctx, &data_ctx);
  7542. return true;
  7543. }
  7544. int llama_eval(
  7545. struct llama_context * ctx,
  7546. llama_token * tokens,
  7547. int32_t n_tokens,
  7548. int n_past) {
  7549. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  7550. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7551. if (ret < 0) {
  7552. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7553. }
  7554. return ret;
  7555. }
  7556. int llama_eval_embd(
  7557. struct llama_context * ctx,
  7558. float * embd,
  7559. int32_t n_tokens,
  7560. int n_past) {
  7561. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  7562. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7563. const int ret = llama_decode_internal(*ctx, batch);
  7564. if (ret < 0) {
  7565. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7566. }
  7567. return ret;
  7568. }
  7569. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7570. ctx->cparams.n_threads = n_threads;
  7571. ctx->cparams.n_threads_batch = n_threads_batch;
  7572. }
  7573. struct llama_batch llama_batch_get_one(
  7574. llama_token * tokens,
  7575. int32_t n_tokens,
  7576. llama_pos pos_0,
  7577. llama_seq_id seq_id) {
  7578. return {
  7579. /*n_tokens =*/ n_tokens,
  7580. /*tokens =*/ tokens,
  7581. /*embd =*/ nullptr,
  7582. /*pos =*/ nullptr,
  7583. /*n_seq_id =*/ nullptr,
  7584. /*seq_id =*/ nullptr,
  7585. /*logits =*/ nullptr,
  7586. /*all_pos_0 =*/ pos_0,
  7587. /*all_pos_1 =*/ 1,
  7588. /*all_seq_id =*/ seq_id,
  7589. };
  7590. }
  7591. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
  7592. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7593. if (embd) {
  7594. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7595. } else {
  7596. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7597. }
  7598. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7599. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
  7600. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
  7601. for (int i = 0; i < n_tokens; ++i) {
  7602. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  7603. }
  7604. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7605. return batch;
  7606. }
  7607. void llama_batch_free(struct llama_batch batch) {
  7608. if (batch.token) free(batch.token);
  7609. if (batch.embd) free(batch.embd);
  7610. if (batch.pos) free(batch.pos);
  7611. if (batch.n_seq_id) free(batch.n_seq_id);
  7612. if (batch.seq_id) {
  7613. for (int i = 0; i < batch.n_tokens; ++i) {
  7614. free(batch.seq_id[i]);
  7615. }
  7616. free(batch.seq_id);
  7617. }
  7618. if (batch.logits) free(batch.logits);
  7619. }
  7620. int llama_decode(
  7621. struct llama_context * ctx,
  7622. struct llama_batch batch) {
  7623. const int ret = llama_decode_internal(*ctx, batch);
  7624. if (ret < 0) {
  7625. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7626. }
  7627. return ret;
  7628. }
  7629. float * llama_get_logits(struct llama_context * ctx) {
  7630. return ctx->logits.data();
  7631. }
  7632. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7633. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7634. }
  7635. float * llama_get_embeddings(struct llama_context * ctx) {
  7636. return ctx->embedding.data();
  7637. }
  7638. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  7639. return model->vocab.id_to_token[token].text.c_str();
  7640. }
  7641. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  7642. return model->vocab.id_to_token[token].score;
  7643. }
  7644. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  7645. return model->vocab.id_to_token[token].type;
  7646. }
  7647. llama_token llama_token_bos(const struct llama_model * model) {
  7648. return model->vocab.special_bos_id;
  7649. }
  7650. llama_token llama_token_eos(const struct llama_model * model) {
  7651. return model->vocab.special_eos_id;
  7652. }
  7653. llama_token llama_token_nl(const struct llama_model * model) {
  7654. return model->vocab.linefeed_id;
  7655. }
  7656. int llama_add_bos_token(const struct llama_model * model) {
  7657. return model->vocab.special_add_bos;
  7658. }
  7659. int llama_add_eos_token(const struct llama_model * model) {
  7660. return model->vocab.special_add_eos;
  7661. }
  7662. llama_token llama_token_prefix(const struct llama_model * model) {
  7663. return model->vocab.special_prefix_id;
  7664. }
  7665. llama_token llama_token_middle(const struct llama_model * model) {
  7666. return model->vocab.special_middle_id;
  7667. }
  7668. llama_token llama_token_suffix(const struct llama_model * model) {
  7669. return model->vocab.special_suffix_id;
  7670. }
  7671. llama_token llama_token_eot(const struct llama_model * model) {
  7672. return model->vocab.special_eot_id;
  7673. }
  7674. int llama_tokenize(
  7675. const struct llama_model * model,
  7676. const char * text,
  7677. int text_len,
  7678. llama_token * tokens,
  7679. int n_max_tokens,
  7680. bool add_bos,
  7681. bool special) {
  7682. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  7683. if (n_max_tokens < (int) res.size()) {
  7684. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  7685. return -((int) res.size());
  7686. }
  7687. for (size_t i = 0; i < res.size(); i++) {
  7688. tokens[i] = res[i];
  7689. }
  7690. return res.size();
  7691. }
  7692. static std::string llama_decode_text(const std::string & text) {
  7693. std::string decoded_text;
  7694. auto unicode_sequences = codepoints_from_utf8(text);
  7695. for (auto& unicode_sequence : unicode_sequences) {
  7696. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  7697. }
  7698. return decoded_text;
  7699. }
  7700. // does not write null-terminator to buf
  7701. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  7702. if (0 <= token && token < llama_n_vocab(model)) {
  7703. switch (llama_vocab_get_type(model->vocab)) {
  7704. case LLAMA_VOCAB_TYPE_SPM: {
  7705. if (llama_is_normal_token(model->vocab, token)) {
  7706. std::string result = model->vocab.id_to_token[token].text;
  7707. llama_unescape_whitespace(result);
  7708. if (length < (int) result.length()) {
  7709. return -result.length();
  7710. }
  7711. memcpy(buf, result.c_str(), result.length());
  7712. return result.length();
  7713. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  7714. if (length < 3) {
  7715. return -3;
  7716. }
  7717. memcpy(buf, "\xe2\x96\x85", 3);
  7718. return 3;
  7719. } else if (llama_is_control_token(model->vocab, token)) {
  7720. ;
  7721. } else if (llama_is_byte_token(model->vocab, token)) {
  7722. if (length < 1) {
  7723. return -1;
  7724. }
  7725. buf[0] = llama_token_to_byte(model->vocab, token);
  7726. return 1;
  7727. } else {
  7728. // TODO: for now we accept all unsupported token types,
  7729. // suppressing them like CONTROL tokens.
  7730. // GGML_ASSERT(false);
  7731. }
  7732. break;
  7733. }
  7734. case LLAMA_VOCAB_TYPE_BPE: {
  7735. if (llama_is_normal_token(model->vocab, token)) {
  7736. std::string result = model->vocab.id_to_token[token].text;
  7737. result = llama_decode_text(result);
  7738. if (length < (int) result.length()) {
  7739. return -result.length();
  7740. }
  7741. memcpy(buf, result.c_str(), result.length());
  7742. return result.length();
  7743. } else if (llama_is_control_token(model->vocab, token)) {
  7744. ;
  7745. } else {
  7746. // TODO: for now we accept all unsupported token types,
  7747. // suppressing them like CONTROL tokens.
  7748. // GGML_ASSERT(false);
  7749. }
  7750. break;
  7751. }
  7752. default:
  7753. GGML_ASSERT(false);
  7754. }
  7755. }
  7756. return 0;
  7757. }
  7758. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  7759. struct llama_timings result = {
  7760. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  7761. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  7762. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  7763. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  7764. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  7765. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  7766. /*.n_sample =*/ std::max(1, ctx->n_sample),
  7767. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  7768. /*.n_eval =*/ std::max(1, ctx->n_eval),
  7769. };
  7770. return result;
  7771. }
  7772. void llama_print_timings(struct llama_context * ctx) {
  7773. const llama_timings timings = llama_get_timings(ctx);
  7774. LLAMA_LOG_INFO("\n");
  7775. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  7776. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7777. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  7778. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  7779. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  7780. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7781. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  7782. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  7783. }
  7784. void llama_reset_timings(struct llama_context * ctx) {
  7785. ctx->t_start_us = ggml_time_us();
  7786. ctx->t_sample_us = ctx->n_sample = 0;
  7787. ctx->t_eval_us = ctx->n_eval = 0;
  7788. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  7789. }
  7790. const char * llama_print_system_info(void) {
  7791. static std::string s;
  7792. s = "";
  7793. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  7794. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  7795. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  7796. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  7797. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  7798. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  7799. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  7800. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  7801. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  7802. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  7803. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  7804. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  7805. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  7806. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  7807. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  7808. return s.c_str();
  7809. }
  7810. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  7811. fprintf(stream, "\n");
  7812. fprintf(stream, "###########\n");
  7813. fprintf(stream, "# Timings #\n");
  7814. fprintf(stream, "###########\n");
  7815. fprintf(stream, "\n");
  7816. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  7817. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  7818. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  7819. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  7820. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  7821. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  7822. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  7823. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  7824. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  7825. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  7826. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  7827. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  7828. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  7829. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  7830. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  7831. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  7832. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  7833. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  7834. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  7835. }
  7836. // For internal test use
  7837. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  7838. struct llama_context * ctx
  7839. ) {
  7840. return ctx->model.tensors_by_name;
  7841. }
  7842. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  7843. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  7844. g_state.log_callback_user_data = user_data;
  7845. }
  7846. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  7847. va_list args_copy;
  7848. va_copy(args_copy, args);
  7849. char buffer[128];
  7850. int len = vsnprintf(buffer, 128, format, args);
  7851. if (len < 128) {
  7852. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  7853. } else {
  7854. char* buffer2 = new char[len+1];
  7855. vsnprintf(buffer2, len+1, format, args_copy);
  7856. buffer2[len] = 0;
  7857. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  7858. delete[] buffer2;
  7859. }
  7860. va_end(args_copy);
  7861. }
  7862. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  7863. va_list args;
  7864. va_start(args, format);
  7865. llama_log_internal_v(level, format, args);
  7866. va_end(args);
  7867. }
  7868. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  7869. (void) level;
  7870. (void) user_data;
  7871. fputs(text, stderr);
  7872. fflush(stderr);
  7873. }