1
0

speculative.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
  8. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  9. struct seq_draft {
  10. bool active = false;
  11. bool drafting = false;
  12. bool skip = false;
  13. int i_batch_dft = 0;
  14. std::vector<int> i_batch_tgt;
  15. std::vector<llama_token> tokens;
  16. struct llama_sampling_context * ctx_sampling;
  17. };
  18. int main(int argc, char ** argv) {
  19. gpt_params params;
  20. if (gpt_params_parse(argc, argv, params) == false) {
  21. return 1;
  22. }
  23. if (params.model_draft.empty()) {
  24. fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
  25. return 1;
  26. }
  27. // max number of parallel drafting sequences (i.e. tree branches)
  28. const int n_seq_dft = params.n_parallel;
  29. // probability threshold for accepting a token from the draft model
  30. const float p_accept = params.p_accept;
  31. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  32. const float p_split = params.p_split;
  33. #ifndef LOG_DISABLE_LOGS
  34. log_set_target(log_filename_generator("speculative", "log"));
  35. LOG_TEE("Log start\n");
  36. log_dump_cmdline(argc, argv);
  37. #endif // LOG_DISABLE_LOGS
  38. // init llama.cpp
  39. llama_backend_init(params.numa);
  40. llama_model * model_tgt = NULL;
  41. llama_model * model_dft = NULL;
  42. llama_context * ctx_tgt = NULL;
  43. llama_context * ctx_dft = NULL;
  44. // load the target model
  45. params.logits_all = true;
  46. std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
  47. // load the draft model
  48. params.model = params.model_draft;
  49. params.n_gpu_layers = params.n_gpu_layers_draft;
  50. std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
  51. {
  52. const int n_vocab_tgt = llama_n_vocab(model_tgt);
  53. const int n_vocab_dft = llama_n_vocab(model_dft);
  54. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  55. ? n_vocab_tgt - n_vocab_dft
  56. : n_vocab_dft - n_vocab_tgt;
  57. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  58. fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
  59. fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  60. n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  61. return 1;
  62. }
  63. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  64. const char * token_text_tgt = llama_token_get_text(model_tgt, i);
  65. const char * token_text_dft = llama_token_get_text(model_dft, i);
  66. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  67. fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
  68. fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
  69. llama_token_to_piece(ctx_tgt, i).c_str(),
  70. llama_token_to_piece(ctx_dft, i).c_str());
  71. return 1;
  72. }
  73. }
  74. }
  75. // Tokenize the prompt
  76. const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
  77. LOG("add_bos tgt: %d\n", add_bos_tgt);
  78. const bool add_bos_dft = llama_should_add_bos_token(model_dft);
  79. LOG("add_bos dft: %d\n", add_bos_dft);
  80. if (add_bos_tgt != add_bos_dft) {
  81. fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
  82. fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
  83. return 1;
  84. }
  85. std::vector<llama_token> inp;
  86. inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
  87. const int max_context_size = llama_n_ctx(ctx_tgt);
  88. const int max_tokens_list_size = max_context_size - 4;
  89. if ((int) inp.size() > max_tokens_list_size) {
  90. fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  91. return 1;
  92. }
  93. fprintf(stderr, "\n\n");
  94. for (auto id : inp) {
  95. fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
  96. }
  97. fflush(stderr);
  98. const int n_input = inp.size();
  99. const auto t_enc_start = ggml_time_us();
  100. // eval the prompt with both models
  101. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  102. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  103. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
  104. const auto t_enc_end = ggml_time_us();
  105. // the 2 models should have the same vocab
  106. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  107. // how many tokens to draft each time
  108. int n_draft = params.n_draft;
  109. int n_predict = 0;
  110. int n_drafted = 0;
  111. int n_accept = 0;
  112. int n_past_tgt = inp.size();
  113. int n_past_dft = inp.size();
  114. // used to determine end of generation
  115. bool has_eos = false;
  116. // target model sampling context
  117. struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
  118. // draft sequence data
  119. std::vector<seq_draft> drafts(n_seq_dft);
  120. params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
  121. params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
  122. for (int s = 0; s < n_seq_dft; ++s) {
  123. drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
  124. }
  125. llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
  126. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
  127. const auto t_dec_start = ggml_time_us();
  128. // sample from the last token of the prompt
  129. drafts[0].i_batch_tgt.resize(1);
  130. drafts[0].i_batch_tgt[0] = 0;
  131. while (true) {
  132. // print current draft sequences
  133. for (int s = 0; s < n_seq_dft; ++s) {
  134. if (!drafts[s].active) {
  135. continue;
  136. }
  137. const auto & tokens = drafts[s].tokens;
  138. LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
  139. }
  140. int i_dft = 0;
  141. int s_keep = 0;
  142. while (true) {
  143. LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  144. // sample from the target model
  145. llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
  146. llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
  147. //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
  148. const std::string token_str = llama_token_to_piece(ctx_tgt, id);
  149. if (!params.use_color) {
  150. printf("%s", token_str.c_str());
  151. }
  152. if (id == llama_token_eos(model_tgt)) {
  153. has_eos = true;
  154. }
  155. ++n_predict;
  156. // check if the target token matches any of the drafts
  157. {
  158. bool matches = false;
  159. for (int s = 0; s < n_seq_dft; ++s) {
  160. if (!drafts[s].active) {
  161. continue;
  162. }
  163. if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
  164. LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
  165. s_keep = s;
  166. matches = true;
  167. } else {
  168. drafts[s].active = false;
  169. }
  170. }
  171. if (matches) {
  172. ++n_accept;
  173. ++n_past_tgt;
  174. ++n_past_dft;
  175. ++i_dft;
  176. if (params.use_color) {
  177. // Color token according to its origin sequence
  178. printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  179. fflush(stdout);
  180. }
  181. continue;
  182. }
  183. }
  184. if (params.use_color) {
  185. printf("%s", token_str.c_str());
  186. }
  187. fflush(stdout);
  188. LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
  189. // TODO: simplify
  190. {
  191. LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  192. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  193. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  194. llama_kv_cache_seq_keep(ctx_dft, 0);
  195. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  196. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  197. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  198. llama_kv_cache_seq_keep(ctx_tgt, 0);
  199. }
  200. for (int s = 0; s < n_seq_dft; ++s) {
  201. drafts[s].active = false;
  202. drafts[s].tokens.clear();
  203. drafts[s].i_batch_tgt.clear();
  204. }
  205. // note: will be erased after the speculation phase
  206. drafts[0].tokens.push_back(id);
  207. drafts[0].i_batch_tgt.push_back(0);
  208. llama_batch_clear(batch_dft);
  209. llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
  210. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  211. // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  212. llama_decode (ctx_dft, batch_dft);
  213. ++n_past_dft;
  214. break;
  215. }
  216. if (n_predict > params.n_predict || has_eos) {
  217. break;
  218. }
  219. llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
  220. int n_seq_cur = 1;
  221. int n_past_cur = n_past_dft;
  222. for (int s = 0; s < n_seq_dft; ++s) {
  223. drafts[s].active = false;
  224. drafts[s].drafting = false;
  225. }
  226. drafts[0].active = true;
  227. drafts[0].drafting = true;
  228. drafts[0].i_batch_dft = 0;
  229. llama_batch_clear(batch_tgt);
  230. llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  231. // sample n_draft tokens from the draft model using tree-based sampling
  232. for (int i = 0; i < n_draft; ++i) {
  233. batch_dft.n_tokens = 0;
  234. for (int s = 0; s < n_seq_dft; ++s) {
  235. drafts[s].skip = false;
  236. }
  237. for (int s = 0; s < n_seq_dft; ++s) {
  238. if (!drafts[s].drafting || drafts[s].skip) {
  239. continue;
  240. }
  241. llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
  242. const auto & cur_p = drafts[s].ctx_sampling->cur;
  243. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
  244. LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  245. k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
  246. }
  247. if (cur_p[0].p < p_accept) {
  248. LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
  249. drafts[s].drafting = false;
  250. continue;
  251. }
  252. std::vector<int> sa(1, s);
  253. // attempt to split the branch if the probability is high enough
  254. for (int f = 1; f < 8; ++f) {
  255. if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
  256. LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
  257. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  258. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  259. // all previous tokens from this branch are now also part of the new branch
  260. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  261. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  262. if (batch_tgt.seq_id[t][p] == s) {
  263. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  264. batch_tgt.n_seq_id[t]++;
  265. break;
  266. }
  267. }
  268. }
  269. // copy the draft state
  270. drafts[n_seq_cur].active = true;
  271. drafts[n_seq_cur].drafting = true;
  272. drafts[n_seq_cur].skip = true;
  273. drafts[n_seq_cur].tokens = drafts[s].tokens;
  274. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  275. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  276. llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
  277. sa.push_back(n_seq_cur);
  278. n_seq_cur++;
  279. } else {
  280. break;
  281. }
  282. }
  283. // add drafted token for each sequence
  284. for (int is = 0; is < (int) sa.size(); ++is) {
  285. const llama_token id = cur_p[is].id;
  286. const int s = sa[is];
  287. llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
  288. drafts[s].tokens.push_back(id);
  289. // add unique drafted tokens to the target batch
  290. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  291. llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  292. // add the token to the batch for batched decoding with the draft model
  293. drafts[s].i_batch_dft = batch_dft.n_tokens;
  294. llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
  295. if (batch_tgt.n_tokens > n_draft) {
  296. drafts[s].drafting = false;
  297. }
  298. }
  299. }
  300. // no sequence is drafting anymore
  301. if (batch_dft.n_tokens == 0) {
  302. break;
  303. }
  304. // evaluate the drafted tokens on the draft model
  305. llama_decode(ctx_dft, batch_dft);
  306. ++n_past_cur;
  307. ++n_drafted;
  308. if (batch_tgt.n_tokens > n_draft) {
  309. break;
  310. }
  311. }
  312. // evaluate the target model on the drafted tokens
  313. {
  314. llama_kv_cache_seq_keep(ctx_tgt, 0);
  315. for (int s = 1; s < n_seq_dft; ++s) {
  316. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  317. }
  318. // LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  319. llama_decode(ctx_tgt, batch_tgt);
  320. ++n_past_tgt;
  321. }
  322. // the first token is always proposed by the target model before the speculation loop so we erase it here
  323. for (int s = 0; s < n_seq_dft; ++s) {
  324. if (!drafts[s].active) {
  325. continue;
  326. }
  327. drafts[s].tokens.erase(drafts[s].tokens.begin());
  328. }
  329. }
  330. auto t_dec_end = ggml_time_us();
  331. LOG_TEE("\n\n");
  332. LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  333. LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  334. LOG_TEE("\n");
  335. LOG_TEE("n_draft = %d\n", n_draft);
  336. LOG_TEE("n_predict = %d\n", n_predict);
  337. LOG_TEE("n_drafted = %d\n", n_drafted);
  338. LOG_TEE("n_accept = %d\n", n_accept);
  339. LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  340. LOG_TEE("\ndraft:\n");
  341. llama_print_timings(ctx_dft);
  342. LOG_TEE("\ntarget:\n");
  343. llama_print_timings(ctx_tgt);
  344. llama_sampling_free(ctx_sampling);
  345. for (int s = 0; s < n_seq_dft; ++s) {
  346. llama_sampling_free(drafts[s].ctx_sampling);
  347. }
  348. llama_batch_free(batch_dft);
  349. llama_free(ctx_tgt);
  350. llama_free_model(model_tgt);
  351. llama_free(ctx_dft);
  352. llama_free_model(model_dft);
  353. llama_backend_free();
  354. fprintf(stderr, "\n\n");
  355. return 0;
  356. }