common.cpp 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <algorithm>
  4. #include <cassert>
  5. #include <cmath>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <fstream>
  9. #include <iterator>
  10. #include <iostream>
  11. #include <regex>
  12. #include <sstream>
  13. #include <string>
  14. #include <unordered_map>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(LLAMA_USE_CURL)
  38. #include <curl/curl.h>
  39. #include <curl/easy.h>
  40. #include <thread>
  41. #include <future>
  42. #endif
  43. #if defined(_MSC_VER)
  44. #pragma warning(disable: 4244 4267) // possible loss of data
  45. #endif
  46. #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
  47. #define GGML_USE_CUBLAS_SYCL
  48. #endif
  49. #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
  50. #define GGML_USE_CUBLAS_SYCL_VULKAN
  51. #endif
  52. #if defined(LLAMA_USE_CURL)
  53. #ifdef __linux__
  54. #include <linux/limits.h>
  55. #elif defined(_WIN32)
  56. #define PATH_MAX MAX_PATH
  57. #else
  58. #include <sys/syslimits.h>
  59. #endif
  60. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  61. #define LLAMA_CURL_MAX_HEADER_LENGTH 256
  62. #endif // LLAMA_USE_CURL
  63. int32_t get_num_physical_cores() {
  64. #ifdef __linux__
  65. // enumerate the set of thread siblings, num entries is num cores
  66. std::unordered_set<std::string> siblings;
  67. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  68. std::ifstream thread_siblings("/sys/devices/system/cpu"
  69. + std::to_string(cpu) + "/topology/thread_siblings");
  70. if (!thread_siblings.is_open()) {
  71. break; // no more cpus
  72. }
  73. std::string line;
  74. if (std::getline(thread_siblings, line)) {
  75. siblings.insert(line);
  76. }
  77. }
  78. if (!siblings.empty()) {
  79. return static_cast<int32_t>(siblings.size());
  80. }
  81. #elif defined(__APPLE__) && defined(__MACH__)
  82. int32_t num_physical_cores;
  83. size_t len = sizeof(num_physical_cores);
  84. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  85. if (result == 0) {
  86. return num_physical_cores;
  87. }
  88. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  89. if (result == 0) {
  90. return num_physical_cores;
  91. }
  92. #elif defined(_WIN32)
  93. //TODO: Implement
  94. #endif
  95. unsigned int n_threads = std::thread::hardware_concurrency();
  96. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  97. }
  98. void process_escapes(std::string & input) {
  99. std::size_t input_len = input.length();
  100. std::size_t output_idx = 0;
  101. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  102. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  103. switch (input[++input_idx]) {
  104. case 'n': input[output_idx++] = '\n'; break;
  105. case 'r': input[output_idx++] = '\r'; break;
  106. case 't': input[output_idx++] = '\t'; break;
  107. case '\'': input[output_idx++] = '\''; break;
  108. case '\"': input[output_idx++] = '\"'; break;
  109. case '\\': input[output_idx++] = '\\'; break;
  110. case 'x':
  111. // Handle \x12, etc
  112. if (input_idx + 2 < input_len) {
  113. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  114. char *err_p = nullptr;
  115. const long val = std::strtol(x, &err_p, 16);
  116. if (err_p == x + 2) {
  117. input_idx += 2;
  118. input[output_idx++] = char(val);
  119. break;
  120. }
  121. }
  122. // fall through
  123. default: input[output_idx++] = '\\';
  124. input[output_idx++] = input[input_idx]; break;
  125. }
  126. } else {
  127. input[output_idx++] = input[input_idx];
  128. }
  129. }
  130. input.resize(output_idx);
  131. }
  132. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  133. bool result = true;
  134. try {
  135. if (!gpt_params_parse_ex(argc, argv, params)) {
  136. gpt_print_usage(argc, argv, gpt_params());
  137. exit(0);
  138. }
  139. }
  140. catch (const std::invalid_argument & ex) {
  141. fprintf(stderr, "%s\n", ex.what());
  142. gpt_print_usage(argc, argv, gpt_params());
  143. exit(1);
  144. }
  145. return result;
  146. }
  147. static bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
  148. llama_sampling_params& sparams = params.sparams;
  149. if (arg == "-s" || arg == "--seed") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. return true;
  153. }
  154. params.seed = std::stoul(argv[i]);
  155. return true;
  156. }
  157. if (arg == "-t" || arg == "--threads") {
  158. if (++i >= argc) {
  159. invalid_param = true;
  160. return true;
  161. }
  162. params.n_threads = std::stoi(argv[i]);
  163. if (params.n_threads <= 0) {
  164. params.n_threads = std::thread::hardware_concurrency();
  165. }
  166. return true;
  167. }
  168. if (arg == "-tb" || arg == "--threads-batch") {
  169. if (++i >= argc) {
  170. invalid_param = true;
  171. return true;
  172. }
  173. params.n_threads_batch = std::stoi(argv[i]);
  174. if (params.n_threads_batch <= 0) {
  175. params.n_threads_batch = std::thread::hardware_concurrency();
  176. }
  177. return true;
  178. }
  179. if (arg == "-td" || arg == "--threads-draft") {
  180. if (++i >= argc) {
  181. invalid_param = true;
  182. return true;
  183. }
  184. params.n_threads_draft = std::stoi(argv[i]);
  185. if (params.n_threads_draft <= 0) {
  186. params.n_threads_draft = std::thread::hardware_concurrency();
  187. }
  188. return true;
  189. }
  190. if (arg == "-tbd" || arg == "--threads-batch-draft") {
  191. if (++i >= argc) {
  192. invalid_param = true;
  193. return true;
  194. }
  195. params.n_threads_batch_draft = std::stoi(argv[i]);
  196. if (params.n_threads_batch_draft <= 0) {
  197. params.n_threads_batch_draft = std::thread::hardware_concurrency();
  198. }
  199. return true;
  200. }
  201. if (arg == "-p" || arg == "--prompt") {
  202. if (++i >= argc) {
  203. invalid_param = true;
  204. return true;
  205. }
  206. params.prompt = argv[i];
  207. return true;
  208. }
  209. if (arg == "-e" || arg == "--escape") {
  210. params.escape = true;
  211. return true;
  212. }
  213. if (arg == "--prompt-cache") {
  214. if (++i >= argc) {
  215. invalid_param = true;
  216. return true;
  217. }
  218. params.path_prompt_cache = argv[i];
  219. return true;
  220. }
  221. if (arg == "--prompt-cache-all") {
  222. params.prompt_cache_all = true;
  223. return true;
  224. }
  225. if (arg == "--prompt-cache-ro") {
  226. params.prompt_cache_ro = true;
  227. return true;
  228. }
  229. if (arg == "-bf" || arg == "--binary-file") {
  230. if (++i >= argc) {
  231. invalid_param = true;
  232. return true;
  233. }
  234. std::ifstream file(argv[i], std::ios::binary);
  235. if (!file) {
  236. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  237. invalid_param = true;
  238. return true;
  239. }
  240. // store the external file name in params
  241. params.prompt_file = argv[i];
  242. std::ostringstream ss;
  243. ss << file.rdbuf();
  244. params.prompt = ss.str();
  245. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
  246. return true;
  247. }
  248. if (arg == "-f" || arg == "--file") {
  249. if (++i >= argc) {
  250. invalid_param = true;
  251. return true;
  252. }
  253. std::ifstream file(argv[i]);
  254. if (!file) {
  255. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  256. invalid_param = true;
  257. return true;
  258. }
  259. // store the external file name in params
  260. params.prompt_file = argv[i];
  261. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  262. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  263. params.prompt.pop_back();
  264. }
  265. return true;
  266. }
  267. if (arg == "-n" || arg == "--n-predict") {
  268. if (++i >= argc) {
  269. invalid_param = true;
  270. return true;
  271. }
  272. params.n_predict = std::stoi(argv[i]);
  273. return true;
  274. }
  275. if (arg == "--top-k") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. return true;
  279. }
  280. sparams.top_k = std::stoi(argv[i]);
  281. return true;
  282. }
  283. if (arg == "-c" || arg == "--ctx-size") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. return true;
  287. }
  288. params.n_ctx = std::stoi(argv[i]);
  289. return true;
  290. }
  291. if (arg == "--grp-attn-n" || arg == "-gan") {
  292. if (++i >= argc) {
  293. invalid_param = true;
  294. return true;
  295. }
  296. params.grp_attn_n = std::stoi(argv[i]);
  297. return true;
  298. }
  299. if (arg == "--grp-attn-w" || arg == "-gaw") {
  300. if (++i >= argc) {
  301. invalid_param = true;
  302. return true;
  303. }
  304. params.grp_attn_w = std::stoi(argv[i]);
  305. return true;
  306. }
  307. if (arg == "--rope-freq-base") {
  308. if (++i >= argc) {
  309. invalid_param = true;
  310. return true;
  311. }
  312. params.rope_freq_base = std::stof(argv[i]);
  313. return true;
  314. }
  315. if (arg == "--rope-freq-scale") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. return true;
  319. }
  320. params.rope_freq_scale = std::stof(argv[i]);
  321. return true;
  322. }
  323. if (arg == "--rope-scaling") {
  324. if (++i >= argc) {
  325. invalid_param = true;
  326. return true;
  327. }
  328. std::string value(argv[i]);
  329. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  330. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  331. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  332. else { invalid_param = true; }
  333. return true;
  334. }
  335. if (arg == "--rope-scale") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. return true;
  339. }
  340. params.rope_freq_scale = 1.0f / std::stof(argv[i]);
  341. return true;
  342. }
  343. if (arg == "--yarn-orig-ctx") {
  344. if (++i >= argc) {
  345. invalid_param = true;
  346. return true;
  347. }
  348. params.yarn_orig_ctx = std::stoi(argv[i]);
  349. return true;
  350. }
  351. if (arg == "--yarn-ext-factor") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. return true;
  355. }
  356. params.yarn_ext_factor = std::stof(argv[i]);
  357. return true;
  358. }
  359. if (arg == "--yarn-attn-factor") {
  360. if (++i >= argc) {
  361. invalid_param = true;
  362. return true;
  363. }
  364. params.yarn_attn_factor = std::stof(argv[i]);
  365. return true;
  366. }
  367. if (arg == "--yarn-beta-fast") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. return true;
  371. }
  372. params.yarn_beta_fast = std::stof(argv[i]);
  373. return true;
  374. }
  375. if (arg == "--yarn-beta-slow") {
  376. if (++i >= argc) {
  377. invalid_param = true;
  378. return true;
  379. }
  380. params.yarn_beta_slow = std::stof(argv[i]);
  381. return true;
  382. }
  383. if (arg == "--pooling") {
  384. if (++i >= argc) {
  385. invalid_param = true;
  386. return true;
  387. }
  388. std::string value(argv[i]);
  389. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  390. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  391. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  392. else { invalid_param = true; }
  393. return true;
  394. }
  395. if (arg == "--defrag-thold" || arg == "-dt") {
  396. if (++i >= argc) {
  397. invalid_param = true;
  398. return true;
  399. }
  400. params.defrag_thold = std::stof(argv[i]);
  401. return true;
  402. }
  403. if (arg == "--samplers") {
  404. if (++i >= argc) {
  405. invalid_param = true;
  406. return true;
  407. }
  408. const auto sampler_names = string_split(argv[i], ';');
  409. sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
  410. return true;
  411. }
  412. if (arg == "--sampling-seq") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. return true;
  416. }
  417. sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
  418. return true;
  419. }
  420. if (arg == "--top-p") {
  421. if (++i >= argc) {
  422. invalid_param = true;
  423. return true;
  424. }
  425. sparams.top_p = std::stof(argv[i]);
  426. return true;
  427. }
  428. if (arg == "--min-p") {
  429. if (++i >= argc) {
  430. invalid_param = true;
  431. return true;
  432. }
  433. sparams.min_p = std::stof(argv[i]);
  434. return true;
  435. }
  436. if (arg == "--temp") {
  437. if (++i >= argc) {
  438. invalid_param = true;
  439. return true;
  440. }
  441. sparams.temp = std::stof(argv[i]);
  442. sparams.temp = std::max(sparams.temp, 0.0f);
  443. return true;
  444. }
  445. if (arg == "--tfs") {
  446. if (++i >= argc) {
  447. invalid_param = true;
  448. return true;
  449. }
  450. sparams.tfs_z = std::stof(argv[i]);
  451. return true;
  452. }
  453. if (arg == "--typical") {
  454. if (++i >= argc) {
  455. invalid_param = true;
  456. return true;
  457. }
  458. sparams.typical_p = std::stof(argv[i]);
  459. return true;
  460. }
  461. if (arg == "--repeat-last-n") {
  462. if (++i >= argc) {
  463. invalid_param = true;
  464. return true;
  465. }
  466. sparams.penalty_last_n = std::stoi(argv[i]);
  467. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  468. return true;
  469. }
  470. if (arg == "--repeat-penalty") {
  471. if (++i >= argc) {
  472. invalid_param = true;
  473. return true;
  474. }
  475. sparams.penalty_repeat = std::stof(argv[i]);
  476. return true;
  477. }
  478. if (arg == "--frequency-penalty") {
  479. if (++i >= argc) {
  480. invalid_param = true;
  481. return true;
  482. }
  483. sparams.penalty_freq = std::stof(argv[i]);
  484. return true;
  485. }
  486. if (arg == "--presence-penalty") {
  487. if (++i >= argc) {
  488. invalid_param = true;
  489. return true;
  490. }
  491. sparams.penalty_present = std::stof(argv[i]);
  492. return true;
  493. }
  494. if (arg == "--dynatemp-range") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. return true;
  498. }
  499. sparams.dynatemp_range = std::stof(argv[i]);
  500. return true;
  501. }
  502. if (arg == "--dynatemp-exp") {
  503. if (++i >= argc) {
  504. invalid_param = true;
  505. return true;
  506. }
  507. sparams.dynatemp_exponent = std::stof(argv[i]);
  508. return true;
  509. }
  510. if (arg == "--mirostat") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. return true;
  514. }
  515. sparams.mirostat = std::stoi(argv[i]);
  516. return true;
  517. }
  518. if (arg == "--mirostat-lr") {
  519. if (++i >= argc) {
  520. invalid_param = true;
  521. return true;
  522. }
  523. sparams.mirostat_eta = std::stof(argv[i]);
  524. return true;
  525. }
  526. if (arg == "--mirostat-ent") {
  527. if (++i >= argc) {
  528. invalid_param = true;
  529. return true;
  530. }
  531. sparams.mirostat_tau = std::stof(argv[i]);
  532. return true;
  533. }
  534. if (arg == "--cfg-negative-prompt") {
  535. if (++i >= argc) {
  536. invalid_param = true;
  537. return true;
  538. }
  539. sparams.cfg_negative_prompt = argv[i];
  540. return true;
  541. }
  542. if (arg == "--cfg-negative-prompt-file") {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. return true;
  546. }
  547. std::ifstream file(argv[i]);
  548. if (!file) {
  549. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  550. invalid_param = true;
  551. return true;
  552. }
  553. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  554. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  555. sparams.cfg_negative_prompt.pop_back();
  556. }
  557. return true;
  558. }
  559. if (arg == "--cfg-scale") {
  560. if (++i >= argc) {
  561. invalid_param = true;
  562. return true;
  563. }
  564. sparams.cfg_scale = std::stof(argv[i]);
  565. return true;
  566. }
  567. if (arg == "-b" || arg == "--batch-size") {
  568. if (++i >= argc) {
  569. invalid_param = true;
  570. return true;
  571. }
  572. params.n_batch = std::stoi(argv[i]);
  573. return true;
  574. }
  575. if (arg == "-ub" || arg == "--ubatch-size") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. return true;
  579. }
  580. params.n_ubatch = std::stoi(argv[i]);
  581. return true;
  582. }
  583. if (arg == "--keep") {
  584. if (++i >= argc) {
  585. invalid_param = true;
  586. return true;
  587. }
  588. params.n_keep = std::stoi(argv[i]);
  589. return true;
  590. }
  591. if (arg == "--draft") {
  592. if (++i >= argc) {
  593. invalid_param = true;
  594. return true;
  595. }
  596. params.n_draft = std::stoi(argv[i]);
  597. return true;
  598. }
  599. if (arg == "--chunks") {
  600. if (++i >= argc) {
  601. invalid_param = true;
  602. return true;
  603. }
  604. params.n_chunks = std::stoi(argv[i]);
  605. return true;
  606. }
  607. if (arg == "-np" || arg == "--parallel") {
  608. if (++i >= argc) {
  609. invalid_param = true;
  610. return true;
  611. }
  612. params.n_parallel = std::stoi(argv[i]);
  613. return true;
  614. }
  615. if (arg == "-ns" || arg == "--sequences") {
  616. if (++i >= argc) {
  617. invalid_param = true;
  618. return true;
  619. }
  620. params.n_sequences = std::stoi(argv[i]);
  621. return true;
  622. }
  623. if (arg == "--p-split" || arg == "-ps") {
  624. if (++i >= argc) {
  625. invalid_param = true;
  626. return true;
  627. }
  628. params.p_split = std::stof(argv[i]);
  629. return true;
  630. }
  631. if (arg == "-m" || arg == "--model") {
  632. if (++i >= argc) {
  633. invalid_param = true;
  634. return true;
  635. }
  636. params.model = argv[i];
  637. return true;
  638. }
  639. if (arg == "-md" || arg == "--model-draft") {
  640. if (++i >= argc) {
  641. invalid_param = true;
  642. return true;
  643. }
  644. params.model_draft = argv[i];
  645. return true;
  646. }
  647. if (arg == "-a" || arg == "--alias") {
  648. if (++i >= argc) {
  649. invalid_param = true;
  650. return true;
  651. }
  652. params.model_alias = argv[i];
  653. return true;
  654. }
  655. if (arg == "-mu" || arg == "--model-url") {
  656. if (++i >= argc) {
  657. invalid_param = true;
  658. return true;
  659. }
  660. params.model_url = argv[i];
  661. return true;
  662. }
  663. if (arg == "-hfr" || arg == "--hf-repo") {
  664. if (++i >= argc) {
  665. invalid_param = true;
  666. return true;
  667. }
  668. params.hf_repo = argv[i];
  669. return true;
  670. }
  671. if (arg == "-hff" || arg == "--hf-file") {
  672. if (++i >= argc) {
  673. invalid_param = true;
  674. return true;
  675. }
  676. params.hf_file = argv[i];
  677. return true;
  678. }
  679. if (arg == "--lora") {
  680. if (++i >= argc) {
  681. invalid_param = true;
  682. return true;
  683. }
  684. params.lora_adapter.emplace_back(argv[i], 1.0f);
  685. params.use_mmap = false;
  686. return true;
  687. }
  688. if (arg == "--lora-scaled") {
  689. if (++i >= argc) {
  690. invalid_param = true;
  691. return true;
  692. }
  693. const char* lora_adapter = argv[i];
  694. if (++i >= argc) {
  695. invalid_param = true;
  696. return true;
  697. }
  698. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  699. params.use_mmap = false;
  700. return true;
  701. }
  702. if (arg == "--lora-base") {
  703. if (++i >= argc) {
  704. invalid_param = true;
  705. return true;
  706. }
  707. params.lora_base = argv[i];
  708. return true;
  709. }
  710. if (arg == "--control-vector") {
  711. if (++i >= argc) {
  712. invalid_param = true;
  713. return true;
  714. }
  715. params.control_vectors.push_back({ 1.0f, argv[i], });
  716. return true;
  717. }
  718. if (arg == "--control-vector-scaled") {
  719. if (++i >= argc) {
  720. invalid_param = true;
  721. return true;
  722. }
  723. const char* fname = argv[i];
  724. if (++i >= argc) {
  725. invalid_param = true;
  726. return true;
  727. }
  728. params.control_vectors.push_back({ std::stof(argv[i]), fname, });
  729. return true;
  730. }
  731. if (arg == "--control-vector-layer-range") {
  732. if (++i >= argc) {
  733. invalid_param = true;
  734. return true;
  735. }
  736. params.control_vector_layer_start = std::stoi(argv[i]);
  737. if (++i >= argc) {
  738. invalid_param = true;
  739. return true;
  740. }
  741. params.control_vector_layer_end = std::stoi(argv[i]);
  742. return true;
  743. }
  744. if (arg == "--mmproj") {
  745. if (++i >= argc) {
  746. invalid_param = true;
  747. return true;
  748. }
  749. params.mmproj = argv[i];
  750. return true;
  751. }
  752. if (arg == "--image") {
  753. if (++i >= argc) {
  754. invalid_param = true;
  755. return true;
  756. }
  757. params.image = argv[i];
  758. return true;
  759. }
  760. if (arg == "-i" || arg == "--interactive") {
  761. params.interactive = true;
  762. return true;
  763. }
  764. if (arg == "--embedding") {
  765. params.embedding = true;
  766. return true;
  767. }
  768. if (arg == "--interactive-first") {
  769. params.interactive_first = true;
  770. return true;
  771. }
  772. if (arg == "-ins" || arg == "--instruct") {
  773. params.instruct = true;
  774. return true;
  775. }
  776. if (arg == "-cml" || arg == "--chatml") {
  777. params.chatml = true;
  778. return true;
  779. }
  780. if (arg == "--infill") {
  781. params.infill = true;
  782. return true;
  783. }
  784. if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  785. params.dump_kv_cache = true;
  786. return true;
  787. }
  788. if (arg == "-nkvo" || arg == "--no-kv-offload") {
  789. params.no_kv_offload = true;
  790. return true;
  791. }
  792. if (arg == "-ctk" || arg == "--cache-type-k") {
  793. params.cache_type_k = argv[++i];
  794. return true;
  795. }
  796. if (arg == "-ctv" || arg == "--cache-type-v") {
  797. params.cache_type_v = argv[++i];
  798. return true;
  799. }
  800. if (arg == "--multiline-input") {
  801. params.multiline_input = true;
  802. return true;
  803. }
  804. if (arg == "--simple-io") {
  805. params.simple_io = true;
  806. return true;
  807. }
  808. if (arg == "-cb" || arg == "--cont-batching") {
  809. params.cont_batching = true;
  810. return true;
  811. }
  812. if (arg == "--color") {
  813. params.use_color = true;
  814. return true;
  815. }
  816. if (arg == "--mlock") {
  817. params.use_mlock = true;
  818. return true;
  819. }
  820. if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  821. if (++i >= argc) {
  822. invalid_param = true;
  823. return true;
  824. }
  825. params.n_gpu_layers = std::stoi(argv[i]);
  826. if (!llama_supports_gpu_offload()) {
  827. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  828. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  829. }
  830. return true;
  831. }
  832. if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  833. if (++i >= argc) {
  834. invalid_param = true;
  835. return true;
  836. }
  837. params.n_gpu_layers_draft = std::stoi(argv[i]);
  838. if (!llama_supports_gpu_offload()) {
  839. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  840. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  841. }
  842. return true;
  843. }
  844. if (arg == "--main-gpu" || arg == "-mg") {
  845. if (++i >= argc) {
  846. invalid_param = true;
  847. return true;
  848. }
  849. params.main_gpu = std::stoi(argv[i]);
  850. #ifndef GGML_USE_CUBLAS_SYCL
  851. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
  852. #endif // GGML_USE_CUBLAS_SYCL
  853. return true;
  854. }
  855. if (arg == "--split-mode" || arg == "-sm") {
  856. if (++i >= argc) {
  857. invalid_param = true;
  858. return true;
  859. }
  860. std::string arg_next = argv[i];
  861. if (arg_next == "none") {
  862. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  863. }
  864. else if (arg_next == "layer") {
  865. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  866. }
  867. else if (arg_next == "row") {
  868. #ifdef GGML_USE_SYCL
  869. fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
  870. exit(1);
  871. #endif // GGML_USE_SYCL
  872. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  873. }
  874. else {
  875. invalid_param = true;
  876. return true;
  877. }
  878. #ifndef GGML_USE_CUBLAS_SYCL
  879. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
  880. #endif // GGML_USE_CUBLAS_SYCL
  881. return true;
  882. }
  883. if (arg == "--tensor-split" || arg == "-ts") {
  884. if (++i >= argc) {
  885. invalid_param = true;
  886. return true;
  887. }
  888. std::string arg_next = argv[i];
  889. // split string by , and /
  890. const std::regex regex{ R"([,/]+)" };
  891. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  892. std::vector<std::string> split_arg{ it, {} };
  893. if (split_arg.size() >= llama_max_devices()) {
  894. invalid_param = true;
  895. return true;
  896. }
  897. for (size_t i = 0; i < llama_max_devices(); ++i) {
  898. if (i < split_arg.size()) {
  899. params.tensor_split[i] = std::stof(split_arg[i]);
  900. }
  901. else {
  902. params.tensor_split[i] = 0.0f;
  903. }
  904. }
  905. #ifndef GGML_USE_CUBLAS_SYCL_VULKAN
  906. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
  907. #endif // GGML_USE_CUBLAS_SYCL
  908. return true;
  909. }
  910. if (arg == "--no-mmap") {
  911. params.use_mmap = false;
  912. return true;
  913. }
  914. if (arg == "--numa") {
  915. if (++i >= argc) {
  916. invalid_param = true;
  917. return true;
  918. }
  919. std::string value(argv[i]);
  920. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  921. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  922. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  923. else { invalid_param = true; }
  924. return true;
  925. }
  926. if (arg == "--verbose-prompt") {
  927. params.verbose_prompt = true;
  928. return true;
  929. }
  930. if (arg == "--no-display-prompt") {
  931. params.display_prompt = false;
  932. return true;
  933. }
  934. if (arg == "-r" || arg == "--reverse-prompt") {
  935. if (++i >= argc) {
  936. invalid_param = true;
  937. return true;
  938. }
  939. params.antiprompt.emplace_back(argv[i]);
  940. return true;
  941. }
  942. if (arg == "-ld" || arg == "--logdir") {
  943. if (++i >= argc) {
  944. invalid_param = true;
  945. return true;
  946. }
  947. params.logdir = argv[i];
  948. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  949. params.logdir += DIRECTORY_SEPARATOR;
  950. }
  951. return true;
  952. }
  953. if (arg == "-lcs" || arg == "--lookup-cache-static") {
  954. if (++i >= argc) {
  955. invalid_param = true;
  956. return true;
  957. }
  958. params.lookup_cache_static = argv[i];
  959. return true;
  960. }
  961. if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
  962. if (++i >= argc) {
  963. invalid_param = true;
  964. return true;
  965. }
  966. params.lookup_cache_dynamic = argv[i];
  967. return true;
  968. }
  969. if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
  970. if (++i >= argc) {
  971. invalid_param = true;
  972. return true;
  973. }
  974. params.logits_file = argv[i];
  975. return true;
  976. }
  977. if (arg == "--perplexity" || arg == "--all-logits") {
  978. params.logits_all = true;
  979. return true;
  980. }
  981. if (arg == "--ppl-stride") {
  982. if (++i >= argc) {
  983. invalid_param = true;
  984. return true;
  985. }
  986. params.ppl_stride = std::stoi(argv[i]);
  987. return true;
  988. }
  989. if (arg == "-ptc" || arg == "--print-token-count") {
  990. if (++i >= argc) {
  991. invalid_param = true;
  992. return true;
  993. }
  994. params.n_print = std::stoi(argv[i]);
  995. return true;
  996. }
  997. if (arg == "--ppl-output-type") {
  998. if (++i >= argc) {
  999. invalid_param = true;
  1000. return true;
  1001. }
  1002. params.ppl_output_type = std::stoi(argv[i]);
  1003. return true;
  1004. }
  1005. if (arg == "--hellaswag") {
  1006. params.hellaswag = true;
  1007. return true;
  1008. }
  1009. if (arg == "--hellaswag-tasks") {
  1010. if (++i >= argc) {
  1011. invalid_param = true;
  1012. return true;
  1013. }
  1014. params.hellaswag_tasks = std::stoi(argv[i]);
  1015. return true;
  1016. }
  1017. if (arg == "--winogrande") {
  1018. params.winogrande = true;
  1019. return true;
  1020. }
  1021. if (arg == "--winogrande-tasks") {
  1022. if (++i >= argc) {
  1023. invalid_param = true;
  1024. return true;
  1025. }
  1026. params.winogrande_tasks = std::stoi(argv[i]);
  1027. return true;
  1028. }
  1029. if (arg == "--multiple-choice") {
  1030. params.multiple_choice = true;
  1031. return true;
  1032. }
  1033. if (arg == "--multiple-choice-tasks") {
  1034. if (++i >= argc) {
  1035. invalid_param = true;
  1036. return true;
  1037. }
  1038. params.multiple_choice_tasks = std::stoi(argv[i]);
  1039. return true;
  1040. }
  1041. if (arg == "--kl-divergence") {
  1042. params.kl_divergence = true;
  1043. return true;
  1044. }
  1045. if (arg == "--ignore-eos") {
  1046. params.ignore_eos = true;
  1047. return true;
  1048. }
  1049. if (arg == "--no-penalize-nl") {
  1050. sparams.penalize_nl = false;
  1051. return true;
  1052. }
  1053. if (arg == "-l" || arg == "--logit-bias") {
  1054. if (++i >= argc) {
  1055. invalid_param = true;
  1056. return true;
  1057. }
  1058. std::stringstream ss(argv[i]);
  1059. llama_token key;
  1060. char sign;
  1061. std::string value_str;
  1062. try {
  1063. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1064. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1065. }
  1066. else {
  1067. throw std::exception();
  1068. }
  1069. }
  1070. catch (const std::exception&) {
  1071. invalid_param = true;
  1072. return true;
  1073. }
  1074. return true;
  1075. }
  1076. if (arg == "-h" || arg == "--help") {
  1077. gpt_print_usage(argc, argv, gpt_params());
  1078. exit(0);
  1079. }
  1080. if (arg == "--version") {
  1081. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1082. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1083. exit(0);
  1084. }
  1085. if (arg == "--random-prompt") {
  1086. params.random_prompt = true;
  1087. return true;
  1088. }
  1089. if (arg == "--in-prefix-bos") {
  1090. params.input_prefix_bos = true;
  1091. return true;
  1092. }
  1093. if (arg == "--in-prefix") {
  1094. if (++i >= argc) {
  1095. invalid_param = true;
  1096. return true;
  1097. }
  1098. params.input_prefix = argv[i];
  1099. return true;
  1100. }
  1101. if (arg == "--in-suffix") {
  1102. if (++i >= argc) {
  1103. invalid_param = true;
  1104. return true;
  1105. }
  1106. params.input_suffix = argv[i];
  1107. return true;
  1108. }
  1109. if (arg == "--grammar") {
  1110. if (++i >= argc) {
  1111. invalid_param = true;
  1112. return true;
  1113. }
  1114. sparams.grammar = argv[i];
  1115. return true;
  1116. }
  1117. if (arg == "--grammar-file") {
  1118. if (++i >= argc) {
  1119. invalid_param = true;
  1120. return true;
  1121. }
  1122. std::ifstream file(argv[i]);
  1123. if (!file) {
  1124. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1125. invalid_param = true;
  1126. return true;
  1127. }
  1128. std::copy(
  1129. std::istreambuf_iterator<char>(file),
  1130. std::istreambuf_iterator<char>(),
  1131. std::back_inserter(sparams.grammar)
  1132. );
  1133. return true;
  1134. }
  1135. if (arg == "--override-kv") {
  1136. if (++i >= argc) {
  1137. invalid_param = true;
  1138. return true;
  1139. }
  1140. char* sep = strchr(argv[i], '=');
  1141. if (sep == nullptr || sep - argv[i] >= 128) {
  1142. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  1143. invalid_param = true;
  1144. return true;
  1145. }
  1146. struct llama_model_kv_override kvo;
  1147. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  1148. kvo.key[sep - argv[i]] = 0;
  1149. sep++;
  1150. if (strncmp(sep, "int:", 4) == 0) {
  1151. sep += 4;
  1152. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  1153. kvo.int_value = std::atol(sep);
  1154. }
  1155. else if (strncmp(sep, "float:", 6) == 0) {
  1156. sep += 6;
  1157. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  1158. kvo.float_value = std::atof(sep);
  1159. }
  1160. else if (strncmp(sep, "bool:", 5) == 0) {
  1161. sep += 5;
  1162. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  1163. if (std::strcmp(sep, "true") == 0) {
  1164. kvo.bool_value = true;
  1165. }
  1166. else if (std::strcmp(sep, "false") == 0) {
  1167. kvo.bool_value = false;
  1168. }
  1169. else {
  1170. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  1171. invalid_param = true;
  1172. return true;
  1173. }
  1174. }
  1175. else {
  1176. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  1177. invalid_param = true;
  1178. return true;
  1179. }
  1180. params.kv_overrides.push_back(kvo);
  1181. return true;
  1182. }
  1183. #ifndef LOG_DISABLE_LOGS
  1184. // Parse args for logging parameters
  1185. if (log_param_single_parse(argv[i])) {
  1186. // Do nothing, log_param_single_parse automatically does it's thing
  1187. // and returns if a match was found and parsed.
  1188. return true;
  1189. }
  1190. if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
  1191. // We have a matching known parameter requiring an argument,
  1192. // now we need to check if there is anything after this argv
  1193. // and flag invalid_param or parse it.
  1194. if (++i >= argc) {
  1195. invalid_param = true;
  1196. return true;
  1197. }
  1198. if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
  1199. invalid_param = true;
  1200. return true;
  1201. }
  1202. return true;
  1203. }
  1204. // End of Parse args for logging parameters
  1205. #endif // LOG_DISABLE_LOGS
  1206. return false;
  1207. }
  1208. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  1209. bool invalid_param = false;
  1210. std::string arg;
  1211. const std::string arg_prefix = "--";
  1212. llama_sampling_params & sparams = params.sparams;
  1213. for (int i = 1; i < argc; i++) {
  1214. arg = argv[i];
  1215. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  1216. std::replace(arg.begin(), arg.end(), '_', '-');
  1217. }
  1218. if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
  1219. throw std::invalid_argument("error: unknown argument: " + arg);
  1220. }
  1221. }
  1222. if (invalid_param) {
  1223. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  1224. }
  1225. if (params.prompt_cache_all &&
  1226. (params.interactive || params.interactive_first ||
  1227. params.instruct)) {
  1228. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  1229. }
  1230. // short-hand to avoid specifying --hf-file -> default it to --model
  1231. if (!params.hf_repo.empty() && params.hf_file.empty()) {
  1232. params.hf_file = params.model;
  1233. }
  1234. if (params.escape) {
  1235. process_escapes(params.prompt);
  1236. process_escapes(params.input_prefix);
  1237. process_escapes(params.input_suffix);
  1238. process_escapes(sparams.cfg_negative_prompt);
  1239. for (auto & antiprompt : params.antiprompt) {
  1240. process_escapes(antiprompt);
  1241. }
  1242. }
  1243. if (!params.kv_overrides.empty()) {
  1244. params.kv_overrides.emplace_back();
  1245. params.kv_overrides.back().key[0] = 0;
  1246. }
  1247. return true;
  1248. }
  1249. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  1250. const llama_sampling_params & sparams = params.sparams;
  1251. std::string sampler_type_chars;
  1252. std::string sampler_type_names;
  1253. for (const auto sampler_type : sparams.samplers_sequence) {
  1254. sampler_type_chars += static_cast<char>(sampler_type);
  1255. sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
  1256. }
  1257. sampler_type_names.pop_back();
  1258. printf("\n");
  1259. printf("usage: %s [options]\n", argv[0]);
  1260. printf("\n");
  1261. printf("options:\n");
  1262. printf(" -h, --help show this help message and exit\n");
  1263. printf(" --version show version and build info\n");
  1264. printf(" -i, --interactive run in interactive mode\n");
  1265. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  1266. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  1267. printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
  1268. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  1269. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  1270. printf(" halt generation at PROMPT, return control in interactive mode\n");
  1271. printf(" (can be specified more than once for multiple prompts).\n");
  1272. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  1273. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  1274. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  1275. printf(" -tb N, --threads-batch N\n");
  1276. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1277. printf(" -td N, --threads-draft N");
  1278. printf(" number of threads to use during generation (default: same as --threads)\n");
  1279. printf(" -tbd N, --threads-batch-draft N\n");
  1280. printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
  1281. printf(" -p PROMPT, --prompt PROMPT\n");
  1282. printf(" prompt to start generation with (default: empty)\n");
  1283. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  1284. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  1285. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  1286. printf(" not supported with --interactive or other interactive options\n");
  1287. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  1288. printf(" --random-prompt start with a randomized prompt.\n");
  1289. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  1290. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  1291. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  1292. printf(" -f FNAME, --file FNAME\n");
  1293. printf(" prompt file to start generation.\n");
  1294. printf(" -bf FNAME, --binary-file FNAME\n");
  1295. printf(" binary file containing multiple choice tasks.\n");
  1296. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  1297. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  1298. printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
  1299. printf(" -ub N, --ubatch-size N\n");
  1300. printf(" physical maximum batch size (default: %d)\n", params.n_ubatch);
  1301. printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
  1302. printf(" (default: %s)\n", sampler_type_names.c_str());
  1303. printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
  1304. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  1305. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  1306. printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
  1307. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  1308. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  1309. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  1310. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  1311. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  1312. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  1313. printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
  1314. printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
  1315. printf(" --mirostat N use Mirostat sampling.\n");
  1316. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  1317. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  1318. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  1319. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  1320. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  1321. printf(" modifies the likelihood of token appearing in the completion,\n");
  1322. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  1323. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  1324. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  1325. printf(" --grammar-file FNAME file to read grammar from\n");
  1326. printf(" --cfg-negative-prompt PROMPT\n");
  1327. printf(" negative prompt to use for guidance. (default: empty)\n");
  1328. printf(" --cfg-negative-prompt-file FNAME\n");
  1329. printf(" negative prompt file to use for guidance. (default: empty)\n");
  1330. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  1331. printf(" --rope-scaling {none,linear,yarn}\n");
  1332. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1333. printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
  1334. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  1335. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1336. printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
  1337. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1338. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1339. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1340. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1341. printf(" --pooling {none,mean,cls}\n");
  1342. printf(" pooling type for embeddings, use model default if unspecified\n");
  1343. printf(" -dt N, --defrag-thold N\n");
  1344. printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
  1345. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  1346. printf(" --no-penalize-nl do not penalize newline token\n");
  1347. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  1348. printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
  1349. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  1350. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  1351. printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
  1352. printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
  1353. printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
  1354. printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
  1355. printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
  1356. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  1357. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  1358. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  1359. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  1360. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  1361. printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
  1362. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1363. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  1364. printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
  1365. if (llama_supports_mlock()) {
  1366. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1367. }
  1368. if (llama_supports_mmap()) {
  1369. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1370. }
  1371. printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
  1372. printf(" - distribute: spread execution evenly over all nodes\n");
  1373. printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
  1374. printf(" - numactl: use the CPU map provided by numactl\n");
  1375. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  1376. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  1377. if (llama_supports_gpu_offload()) {
  1378. printf(" -ngl N, --n-gpu-layers N\n");
  1379. printf(" number of layers to store in VRAM\n");
  1380. printf(" -ngld N, --n-gpu-layers-draft N\n");
  1381. printf(" number of layers to store in VRAM for the draft model\n");
  1382. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1383. printf(" how to split the model across multiple GPUs, one of:\n");
  1384. printf(" - none: use one GPU only\n");
  1385. printf(" - layer (default): split layers and KV across GPUs\n");
  1386. printf(" - row: split rows across GPUs\n");
  1387. printf(" -ts SPLIT, --tensor-split SPLIT\n");
  1388. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1389. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1390. printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
  1391. }
  1392. printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
  1393. printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
  1394. printf(" -gan N, --grp-attn-n N\n");
  1395. printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
  1396. printf(" -gaw N, --grp-attn-w N\n");
  1397. printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
  1398. printf(" -dkvc, --dump-kv-cache\n");
  1399. printf(" verbose print of the KV cache\n");
  1400. printf(" -nkvo, --no-kv-offload\n");
  1401. printf(" disable KV offload\n");
  1402. printf(" -ctk TYPE, --cache-type-k TYPE\n");
  1403. printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
  1404. printf(" -ctv TYPE, --cache-type-v TYPE\n");
  1405. printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
  1406. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  1407. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1408. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  1409. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1410. printf(" --control-vector FNAME\n");
  1411. printf(" add a control vector\n");
  1412. printf(" --control-vector-scaled FNAME S\n");
  1413. printf(" add a control vector with user defined scaling S\n");
  1414. printf(" --control-vector-layer-range START END\n");
  1415. printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
  1416. printf(" -m FNAME, --model FNAME\n");
  1417. printf(" model path (default: %s)\n", params.model.c_str());
  1418. printf(" -md FNAME, --model-draft FNAME\n");
  1419. printf(" draft model for speculative decoding (default: unused)\n");
  1420. printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
  1421. printf(" model download url (default: unused)\n");
  1422. printf(" -hfr REPO, --hf-repo REPO\n");
  1423. printf(" Hugging Face model repository (default: unused)\n");
  1424. printf(" -hff FILE, --hf-file FILE\n");
  1425. printf(" Hugging Face model file (default: unused)\n");
  1426. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  1427. printf(" path under which to save YAML logs (no logging if unset)\n");
  1428. printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
  1429. printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
  1430. printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
  1431. printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
  1432. printf(" --override-kv KEY=TYPE:VALUE\n");
  1433. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1434. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1435. printf(" -ptc N, --print-token-count N\n");
  1436. printf(" print token count every N tokens (default: %d)\n", params.n_print);
  1437. printf("\n");
  1438. #ifndef LOG_DISABLE_LOGS
  1439. log_print_usage();
  1440. #endif // LOG_DISABLE_LOGS
  1441. }
  1442. std::string get_system_info(const gpt_params & params) {
  1443. std::ostringstream os;
  1444. os << "system_info: n_threads = " << params.n_threads;
  1445. if (params.n_threads_batch != -1) {
  1446. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  1447. }
  1448. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  1449. return os.str();
  1450. }
  1451. std::string gpt_random_prompt(std::mt19937 & rng) {
  1452. const int r = rng() % 10;
  1453. switch (r) {
  1454. case 0: return "So";
  1455. case 1: return "Once upon a time";
  1456. case 2: return "When";
  1457. case 3: return "The";
  1458. case 4: return "After";
  1459. case 5: return "If";
  1460. case 6: return "import";
  1461. case 7: return "He";
  1462. case 8: return "She";
  1463. case 9: return "They";
  1464. }
  1465. GGML_UNREACHABLE();
  1466. }
  1467. //
  1468. // String utils
  1469. //
  1470. std::vector<std::string> string_split(std::string input, char separator) {
  1471. std::vector<std::string> parts;
  1472. size_t separator_pos = input.find(separator);
  1473. while (separator_pos != std::string::npos) {
  1474. std::string part = input.substr(0, separator_pos);
  1475. parts.emplace_back(part);
  1476. input = input.substr(separator_pos + 1);
  1477. separator_pos = input.find(separator);
  1478. }
  1479. parts.emplace_back(input);
  1480. return parts;
  1481. }
  1482. std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  1483. std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
  1484. {"top_k", llama_sampler_type::TOP_K},
  1485. {"top_p", llama_sampler_type::TOP_P},
  1486. {"typical_p", llama_sampler_type::TYPICAL_P},
  1487. {"min_p", llama_sampler_type::MIN_P},
  1488. {"tfs_z", llama_sampler_type::TFS_Z},
  1489. {"temperature", llama_sampler_type::TEMPERATURE}
  1490. };
  1491. // since samplers names are written multiple ways
  1492. // make it ready for both system names and input names
  1493. std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
  1494. {"top-k", llama_sampler_type::TOP_K},
  1495. {"top-p", llama_sampler_type::TOP_P},
  1496. {"nucleus", llama_sampler_type::TOP_P},
  1497. {"typical-p", llama_sampler_type::TYPICAL_P},
  1498. {"typical", llama_sampler_type::TYPICAL_P},
  1499. {"min-p", llama_sampler_type::MIN_P},
  1500. {"tfs-z", llama_sampler_type::TFS_Z},
  1501. {"tfs", llama_sampler_type::TFS_Z},
  1502. {"temp", llama_sampler_type::TEMPERATURE}
  1503. };
  1504. std::vector<llama_sampler_type> sampler_types;
  1505. sampler_types.reserve(names.size());
  1506. for (const auto & name : names)
  1507. {
  1508. auto sampler_item = sampler_canonical_name_map.find(name);
  1509. if (sampler_item != sampler_canonical_name_map.end())
  1510. {
  1511. sampler_types.push_back(sampler_item->second);
  1512. }
  1513. else
  1514. {
  1515. if (allow_alt_names)
  1516. {
  1517. sampler_item = sampler_alt_name_map.find(name);
  1518. if (sampler_item != sampler_alt_name_map.end())
  1519. {
  1520. sampler_types.push_back(sampler_item->second);
  1521. }
  1522. }
  1523. }
  1524. }
  1525. return sampler_types;
  1526. }
  1527. std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
  1528. std::unordered_map<char, llama_sampler_type> sampler_name_map {
  1529. {'k', llama_sampler_type::TOP_K},
  1530. {'p', llama_sampler_type::TOP_P},
  1531. {'y', llama_sampler_type::TYPICAL_P},
  1532. {'m', llama_sampler_type::MIN_P},
  1533. {'f', llama_sampler_type::TFS_Z},
  1534. {'t', llama_sampler_type::TEMPERATURE}
  1535. };
  1536. std::vector<llama_sampler_type> sampler_types;
  1537. sampler_types.reserve(names_string.size());
  1538. for (const auto & c : names_string) {
  1539. const auto sampler_item = sampler_name_map.find(c);
  1540. if (sampler_item != sampler_name_map.end()) {
  1541. sampler_types.push_back(sampler_item->second);
  1542. }
  1543. }
  1544. return sampler_types;
  1545. }
  1546. std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
  1547. switch (sampler_type) {
  1548. case llama_sampler_type::TOP_K: return "top_k";
  1549. case llama_sampler_type::TFS_Z: return "tfs_z";
  1550. case llama_sampler_type::TYPICAL_P: return "typical_p";
  1551. case llama_sampler_type::TOP_P: return "top_p";
  1552. case llama_sampler_type::MIN_P: return "min_p";
  1553. case llama_sampler_type::TEMPERATURE: return "temperature";
  1554. default : return "";
  1555. }
  1556. }
  1557. //
  1558. // Model utils
  1559. //
  1560. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  1561. auto mparams = llama_model_default_params();
  1562. if (params.n_gpu_layers != -1) {
  1563. mparams.n_gpu_layers = params.n_gpu_layers;
  1564. }
  1565. mparams.main_gpu = params.main_gpu;
  1566. mparams.split_mode = params.split_mode;
  1567. mparams.tensor_split = params.tensor_split;
  1568. mparams.use_mmap = params.use_mmap;
  1569. mparams.use_mlock = params.use_mlock;
  1570. if (params.kv_overrides.empty()) {
  1571. mparams.kv_overrides = NULL;
  1572. } else {
  1573. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  1574. mparams.kv_overrides = params.kv_overrides.data();
  1575. }
  1576. return mparams;
  1577. }
  1578. static ggml_type kv_cache_type_from_str(const std::string & s) {
  1579. if (s == "f32") {
  1580. return GGML_TYPE_F32;
  1581. }
  1582. if (s == "f16") {
  1583. return GGML_TYPE_F16;
  1584. }
  1585. if (s == "q8_0") {
  1586. return GGML_TYPE_Q8_0;
  1587. }
  1588. if (s == "q4_0") {
  1589. return GGML_TYPE_Q4_0;
  1590. }
  1591. if (s == "q4_1") {
  1592. return GGML_TYPE_Q4_1;
  1593. }
  1594. if (s == "iq4_nl") {
  1595. return GGML_TYPE_IQ4_NL;
  1596. }
  1597. if (s == "q5_0") {
  1598. return GGML_TYPE_Q5_0;
  1599. }
  1600. if (s == "q5_1") {
  1601. return GGML_TYPE_Q5_1;
  1602. }
  1603. throw std::runtime_error("Invalid cache type: " + s);
  1604. }
  1605. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  1606. auto cparams = llama_context_default_params();
  1607. cparams.n_ctx = params.n_ctx;
  1608. cparams.n_seq_max = params.n_parallel;
  1609. cparams.n_batch = params.n_batch;
  1610. cparams.n_ubatch = params.n_ubatch;
  1611. cparams.n_threads = params.n_threads;
  1612. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  1613. cparams.seed = params.seed;
  1614. cparams.logits_all = params.logits_all;
  1615. cparams.embeddings = params.embedding;
  1616. cparams.rope_scaling_type = params.rope_scaling_type;
  1617. cparams.rope_freq_base = params.rope_freq_base;
  1618. cparams.rope_freq_scale = params.rope_freq_scale;
  1619. cparams.yarn_ext_factor = params.yarn_ext_factor;
  1620. cparams.yarn_attn_factor = params.yarn_attn_factor;
  1621. cparams.yarn_beta_fast = params.yarn_beta_fast;
  1622. cparams.yarn_beta_slow = params.yarn_beta_slow;
  1623. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  1624. cparams.pooling_type = params.pooling_type;
  1625. cparams.defrag_thold = params.defrag_thold;
  1626. cparams.offload_kqv = !params.no_kv_offload;
  1627. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  1628. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  1629. return cparams;
  1630. }
  1631. void llama_batch_clear(struct llama_batch & batch) {
  1632. batch.n_tokens = 0;
  1633. }
  1634. void llama_batch_add(
  1635. struct llama_batch & batch,
  1636. llama_token id,
  1637. llama_pos pos,
  1638. const std::vector<llama_seq_id> & seq_ids,
  1639. bool logits) {
  1640. batch.token [batch.n_tokens] = id;
  1641. batch.pos [batch.n_tokens] = pos;
  1642. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  1643. for (size_t i = 0; i < seq_ids.size(); ++i) {
  1644. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  1645. }
  1646. batch.logits [batch.n_tokens] = logits;
  1647. batch.n_tokens++;
  1648. }
  1649. #ifdef LLAMA_USE_CURL
  1650. static bool llama_download_file(CURL * curl, const char * url, const char * path) {
  1651. bool force_download = false;
  1652. // Set the URL, allow to follow http redirection
  1653. curl_easy_setopt(curl, CURLOPT_URL, url);
  1654. curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
  1655. #if defined(_WIN32)
  1656. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  1657. // operating system. Currently implemented under MS-Windows.
  1658. curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  1659. #endif
  1660. // Check if the file already exists locally
  1661. struct stat model_file_info;
  1662. auto file_exists = (stat(path, &model_file_info) == 0);
  1663. // If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
  1664. char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
  1665. char etag_path[PATH_MAX] = {0};
  1666. snprintf(etag_path, sizeof(etag_path), "%s.etag", path);
  1667. char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
  1668. char last_modified_path[PATH_MAX] = {0};
  1669. snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path);
  1670. if (file_exists) {
  1671. auto * f_etag = fopen(etag_path, "r");
  1672. if (f_etag) {
  1673. if (!fgets(etag, sizeof(etag), f_etag)) {
  1674. fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
  1675. } else {
  1676. fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag);
  1677. }
  1678. fclose(f_etag);
  1679. }
  1680. auto * f_last_modified = fopen(last_modified_path, "r");
  1681. if (f_last_modified) {
  1682. if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
  1683. fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
  1684. } else {
  1685. fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path,
  1686. last_modified);
  1687. }
  1688. fclose(f_last_modified);
  1689. }
  1690. }
  1691. // Send a HEAD request to retrieve the etag and last-modified headers
  1692. struct llama_load_model_from_url_headers {
  1693. char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
  1694. char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
  1695. };
  1696. llama_load_model_from_url_headers headers;
  1697. {
  1698. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  1699. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  1700. llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
  1701. // Convert header field name to lowercase
  1702. for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) {
  1703. buffer[i] = tolower(buffer[i]);
  1704. }
  1705. const char * etag_prefix = "etag: ";
  1706. if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
  1707. strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
  1708. }
  1709. const char * last_modified_prefix = "last-modified: ";
  1710. if (strncmp(buffer, last_modified_prefix, strlen(last_modified_prefix)) == 0) {
  1711. strncpy(headers->last_modified, buffer + strlen(last_modified_prefix),
  1712. n_items - strlen(last_modified_prefix) - 2); // Remove CRLF
  1713. }
  1714. return n_items;
  1715. };
  1716. curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  1717. curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress
  1718. curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  1719. curl_easy_setopt(curl, CURLOPT_HEADERDATA, &headers);
  1720. CURLcode res = curl_easy_perform(curl);
  1721. if (res != CURLE_OK) {
  1722. curl_easy_cleanup(curl);
  1723. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  1724. return false;
  1725. }
  1726. long http_code = 0;
  1727. curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
  1728. if (http_code != 200) {
  1729. // HEAD not supported, we don't know if the file has changed
  1730. // force trigger downloading
  1731. force_download = true;
  1732. fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  1733. }
  1734. }
  1735. // If the ETag or the Last-Modified headers are different: trigger a new download
  1736. bool should_download = !file_exists
  1737. || force_download
  1738. || (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0)
  1739. || (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0);
  1740. if (should_download) {
  1741. char path_temporary[PATH_MAX] = {0};
  1742. snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path);
  1743. if (file_exists) {
  1744. fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path);
  1745. if (remove(path) != 0) {
  1746. curl_easy_cleanup(curl);
  1747. fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path);
  1748. return false;
  1749. }
  1750. }
  1751. // Set the output file
  1752. auto * outfile = fopen(path_temporary, "wb");
  1753. if (!outfile) {
  1754. curl_easy_cleanup(curl);
  1755. fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path);
  1756. return false;
  1757. }
  1758. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  1759. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  1760. return fwrite(data, size, nmemb, (FILE *)fd);
  1761. };
  1762. curl_easy_setopt(curl, CURLOPT_NOBODY, 0L);
  1763. curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  1764. curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile);
  1765. // display download progress
  1766. curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
  1767. // helper function to hide password in URL
  1768. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  1769. std::size_t protocol_pos = url.find("://");
  1770. if (protocol_pos == std::string::npos) {
  1771. return url; // Malformed URL
  1772. }
  1773. std::size_t at_pos = url.find('@', protocol_pos + 3);
  1774. if (at_pos == std::string::npos) {
  1775. return url; // No password in URL
  1776. }
  1777. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  1778. };
  1779. // start the download
  1780. fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  1781. llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified);
  1782. auto res = curl_easy_perform(curl);
  1783. if (res != CURLE_OK) {
  1784. fclose(outfile);
  1785. curl_easy_cleanup(curl);
  1786. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  1787. return false;
  1788. }
  1789. long http_code = 0;
  1790. curl_easy_getinfo (curl, CURLINFO_RESPONSE_CODE, &http_code);
  1791. if (http_code < 200 || http_code >= 400) {
  1792. fclose(outfile);
  1793. curl_easy_cleanup(curl);
  1794. fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
  1795. return false;
  1796. }
  1797. // Clean up
  1798. fclose(outfile);
  1799. // Write the new ETag to the .etag file
  1800. if (strlen(headers.etag) > 0) {
  1801. auto * etag_file = fopen(etag_path, "w");
  1802. if (etag_file) {
  1803. fputs(headers.etag, etag_file);
  1804. fclose(etag_file);
  1805. fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag);
  1806. }
  1807. }
  1808. // Write the new lastModified to the .etag file
  1809. if (strlen(headers.last_modified) > 0) {
  1810. auto * last_modified_file = fopen(last_modified_path, "w");
  1811. if (last_modified_file) {
  1812. fputs(headers.last_modified, last_modified_file);
  1813. fclose(last_modified_file);
  1814. fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path,
  1815. headers.last_modified);
  1816. }
  1817. }
  1818. if (rename(path_temporary, path) != 0) {
  1819. curl_easy_cleanup(curl);
  1820. fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path);
  1821. return false;
  1822. }
  1823. }
  1824. return true;
  1825. }
  1826. struct llama_model * llama_load_model_from_url(
  1827. const char * model_url,
  1828. const char * path_model,
  1829. const struct llama_model_params & params) {
  1830. // Basic validation of the model_url
  1831. if (!model_url || strlen(model_url) == 0) {
  1832. fprintf(stderr, "%s: invalid model_url\n", __func__);
  1833. return NULL;
  1834. }
  1835. // Initialize libcurl
  1836. auto * curl = curl_easy_init();
  1837. if (!curl) {
  1838. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  1839. return NULL;
  1840. }
  1841. if (!curl) {
  1842. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  1843. return NULL;
  1844. }
  1845. if (!llama_download_file(curl, model_url, path_model)) {
  1846. return NULL;
  1847. }
  1848. // check for additional GGUFs split to download
  1849. int n_split = 0;
  1850. {
  1851. struct gguf_init_params gguf_params = {
  1852. /*.no_alloc = */ true,
  1853. /*.ctx = */ NULL,
  1854. };
  1855. auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
  1856. if (!ctx_gguf) {
  1857. fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
  1858. curl_easy_cleanup(curl);
  1859. return NULL;
  1860. }
  1861. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  1862. if (key_n_split >= 0) {
  1863. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  1864. }
  1865. gguf_free(ctx_gguf);
  1866. }
  1867. curl_easy_cleanup(curl);
  1868. if (n_split > 1) {
  1869. char split_prefix[PATH_MAX] = {0};
  1870. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  1871. // Verify the first split file format
  1872. // and extract split URL and PATH prefixes
  1873. {
  1874. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
  1875. fprintf(stderr, "\n%s: unexpected model file name: %s"
  1876. " n_split=%d\n", __func__, path_model, n_split);
  1877. return NULL;
  1878. }
  1879. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
  1880. fprintf(stderr, "\n%s: unexpected model url: %s"
  1881. " n_split=%d\n", __func__, model_url, n_split);
  1882. return NULL;
  1883. }
  1884. }
  1885. // Prepare download in parallel
  1886. std::vector<std::future<bool>> futures_download;
  1887. for (int idx = 1; idx < n_split; idx++) {
  1888. futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
  1889. char split_path[PATH_MAX] = {0};
  1890. llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
  1891. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  1892. llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
  1893. auto * curl = curl_easy_init();
  1894. bool res = llama_download_file(curl, split_url, split_path);
  1895. curl_easy_cleanup(curl);
  1896. return res;
  1897. }, idx));
  1898. }
  1899. // Wait for all downloads to complete
  1900. for (auto & f : futures_download) {
  1901. if (!f.get()) {
  1902. return NULL;
  1903. }
  1904. }
  1905. }
  1906. return llama_load_model_from_file(path_model, params);
  1907. }
  1908. struct llama_model * llama_load_model_from_hf(
  1909. const char * repo,
  1910. const char * model,
  1911. const char * path_model,
  1912. const struct llama_model_params & params) {
  1913. // construct hugging face model url:
  1914. //
  1915. // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
  1916. // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
  1917. //
  1918. // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
  1919. // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
  1920. //
  1921. std::string model_url = "https://huggingface.co/";
  1922. model_url += repo;
  1923. model_url += "/resolve/main/";
  1924. model_url += model;
  1925. return llama_load_model_from_url(model_url.c_str(), path_model, params);
  1926. }
  1927. #else
  1928. struct llama_model * llama_load_model_from_url(
  1929. const char * /*model_url*/,
  1930. const char * /*path_model*/,
  1931. const struct llama_model_params & /*params*/) {
  1932. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  1933. return nullptr;
  1934. }
  1935. struct llama_model * llama_load_model_from_hf(
  1936. const char * /*repo*/,
  1937. const char * /*model*/,
  1938. const char * /*path_model*/,
  1939. const struct llama_model_params & /*params*/) {
  1940. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
  1941. return nullptr;
  1942. }
  1943. #endif // LLAMA_USE_CURL
  1944. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  1945. auto mparams = llama_model_params_from_gpt_params(params);
  1946. llama_model * model = nullptr;
  1947. if (!params.hf_repo.empty() && !params.hf_file.empty()) {
  1948. model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
  1949. } else if (!params.model_url.empty()) {
  1950. model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
  1951. } else {
  1952. model = llama_load_model_from_file(params.model.c_str(), mparams);
  1953. }
  1954. if (model == NULL) {
  1955. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  1956. return std::make_tuple(nullptr, nullptr);
  1957. }
  1958. auto cparams = llama_context_params_from_gpt_params(params);
  1959. llama_context * lctx = llama_new_context_with_model(model, cparams);
  1960. if (lctx == NULL) {
  1961. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  1962. llama_free_model(model);
  1963. return std::make_tuple(nullptr, nullptr);
  1964. }
  1965. if (!params.control_vectors.empty()) {
  1966. if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
  1967. if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
  1968. const auto cvec = llama_control_vector_load(params.control_vectors);
  1969. if (cvec.n_embd == -1) {
  1970. llama_free(lctx);
  1971. llama_free_model(model);
  1972. return std::make_tuple(nullptr, nullptr);
  1973. }
  1974. int err = llama_control_vector_apply(lctx,
  1975. cvec.data.data(),
  1976. cvec.data.size(),
  1977. cvec.n_embd,
  1978. params.control_vector_layer_start,
  1979. params.control_vector_layer_end);
  1980. if (err) {
  1981. llama_free(lctx);
  1982. llama_free_model(model);
  1983. return std::make_tuple(nullptr, nullptr);
  1984. }
  1985. }
  1986. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  1987. const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
  1988. float lora_scale = std::get<1>(params.lora_adapter[i]);
  1989. int err = llama_model_apply_lora_from_file(model,
  1990. lora_adapter.c_str(),
  1991. lora_scale,
  1992. ((i > 0) || params.lora_base.empty())
  1993. ? NULL
  1994. : params.lora_base.c_str(),
  1995. params.n_threads);
  1996. if (err != 0) {
  1997. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  1998. llama_free(lctx);
  1999. llama_free_model(model);
  2000. return std::make_tuple(nullptr, nullptr);
  2001. }
  2002. }
  2003. if (params.ignore_eos) {
  2004. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  2005. }
  2006. {
  2007. LOG("warming up the model with an empty run\n");
  2008. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  2009. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  2010. llama_kv_cache_clear(lctx);
  2011. llama_synchronize(lctx);
  2012. llama_reset_timings(lctx);
  2013. }
  2014. return std::make_tuple(model, lctx);
  2015. }
  2016. //
  2017. // Vocab utils
  2018. //
  2019. std::vector<llama_token> llama_tokenize(
  2020. const struct llama_context * ctx,
  2021. const std::string & text,
  2022. bool add_bos,
  2023. bool special) {
  2024. return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
  2025. }
  2026. std::vector<llama_token> llama_tokenize(
  2027. const struct llama_model * model,
  2028. const std::string & text,
  2029. bool add_bos,
  2030. bool special) {
  2031. // upper limit for the number of tokens
  2032. int n_tokens = text.length() + add_bos;
  2033. std::vector<llama_token> result(n_tokens);
  2034. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  2035. if (n_tokens < 0) {
  2036. result.resize(-n_tokens);
  2037. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  2038. GGML_ASSERT(check == -n_tokens);
  2039. } else {
  2040. result.resize(n_tokens);
  2041. }
  2042. return result;
  2043. }
  2044. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  2045. std::vector<char> result(8, 0);
  2046. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  2047. if (n_tokens < 0) {
  2048. result.resize(-n_tokens);
  2049. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  2050. GGML_ASSERT(check == -n_tokens);
  2051. } else {
  2052. result.resize(n_tokens);
  2053. }
  2054. return std::string(result.data(), result.size());
  2055. }
  2056. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2057. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  2058. std::string piece;
  2059. std::string result;
  2060. for (size_t i = 0; i < tokens.size(); ++i) {
  2061. piece = llama_token_to_piece(ctx, tokens[i]);
  2062. // remove the leading space of the first non-BOS token
  2063. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  2064. piece = piece.substr(1);
  2065. }
  2066. result += piece;
  2067. }
  2068. return result;
  2069. }
  2070. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2071. std::string piece;
  2072. std::string result;
  2073. for (size_t i = 0; i < tokens.size(); ++i) {
  2074. piece = llama_token_to_piece(ctx, tokens[i]);
  2075. result += piece;
  2076. }
  2077. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  2078. return result;
  2079. }
  2080. bool llama_should_add_bos_token(const llama_model * model) {
  2081. const int add_bos = llama_add_bos_token(model);
  2082. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  2083. }
  2084. //
  2085. // YAML utils
  2086. //
  2087. // returns true if successful, false otherwise
  2088. bool create_directory_with_parents(const std::string & path) {
  2089. #ifdef _WIN32
  2090. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  2091. std::wstring wpath = converter.from_bytes(path);
  2092. // if the path already exists, check whether it's a directory
  2093. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  2094. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2095. return true;
  2096. }
  2097. size_t pos_slash = 0;
  2098. // process path from front to back, procedurally creating directories
  2099. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  2100. const std::wstring subpath = wpath.substr(0, pos_slash);
  2101. const wchar_t * test = subpath.c_str();
  2102. const bool success = CreateDirectoryW(test, NULL);
  2103. if (!success) {
  2104. const DWORD error = GetLastError();
  2105. // if the path already exists, ensure that it's a directory
  2106. if (error == ERROR_ALREADY_EXISTS) {
  2107. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  2108. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2109. return false;
  2110. }
  2111. } else {
  2112. return false;
  2113. }
  2114. }
  2115. pos_slash += 1;
  2116. }
  2117. return true;
  2118. #else
  2119. // if the path already exists, check whether it's a directory
  2120. struct stat info;
  2121. if (stat(path.c_str(), &info) == 0) {
  2122. return S_ISDIR(info.st_mode);
  2123. }
  2124. size_t pos_slash = 1; // skip leading slashes for directory creation
  2125. // process path from front to back, procedurally creating directories
  2126. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  2127. const std::string subpath = path.substr(0, pos_slash);
  2128. struct stat info;
  2129. // if the path already exists, ensure that it's a directory
  2130. if (stat(subpath.c_str(), &info) == 0) {
  2131. if (!S_ISDIR(info.st_mode)) {
  2132. return false;
  2133. }
  2134. } else {
  2135. // create parent directories
  2136. const int ret = mkdir(subpath.c_str(), 0755);
  2137. if (ret != 0) {
  2138. return false;
  2139. }
  2140. }
  2141. pos_slash += 1;
  2142. }
  2143. return true;
  2144. #endif // _WIN32
  2145. }
  2146. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  2147. if (data.empty()) {
  2148. fprintf(stream, "%s:\n", prop_name);
  2149. return;
  2150. }
  2151. fprintf(stream, "%s: [", prop_name);
  2152. for (size_t i = 0; i < data.size() - 1; ++i) {
  2153. fprintf(stream, "%e, ", data[i]);
  2154. }
  2155. fprintf(stream, "%e]\n", data.back());
  2156. }
  2157. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  2158. if (data.empty()) {
  2159. fprintf(stream, "%s:\n", prop_name);
  2160. return;
  2161. }
  2162. fprintf(stream, "%s: [", prop_name);
  2163. for (size_t i = 0; i < data.size() - 1; ++i) {
  2164. fprintf(stream, "%d, ", data[i]);
  2165. }
  2166. fprintf(stream, "%d]\n", data.back());
  2167. }
  2168. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  2169. std::string data_str(data == NULL ? "" : data);
  2170. if (data_str.empty()) {
  2171. fprintf(stream, "%s:\n", prop_name);
  2172. return;
  2173. }
  2174. size_t pos_start = 0;
  2175. size_t pos_found = 0;
  2176. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  2177. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  2178. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  2179. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  2180. data_str = "\"" + data_str + "\"";
  2181. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2182. return;
  2183. }
  2184. if (data_str.find('\n') == std::string::npos) {
  2185. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2186. return;
  2187. }
  2188. fprintf(stream, "%s: |\n", prop_name);
  2189. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  2190. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  2191. pos_start = pos_found + 1;
  2192. }
  2193. }
  2194. std::string get_sortable_timestamp() {
  2195. using clock = std::chrono::system_clock;
  2196. const clock::time_point current_time = clock::now();
  2197. const time_t as_time_t = clock::to_time_t(current_time);
  2198. char timestamp_no_ns[100];
  2199. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  2200. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  2201. current_time.time_since_epoch() % 1000000000).count();
  2202. char timestamp_ns[11];
  2203. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  2204. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  2205. }
  2206. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  2207. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  2208. const llama_sampling_params & sparams = params.sparams;
  2209. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  2210. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  2211. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  2212. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  2213. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  2214. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  2215. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  2216. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  2217. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  2218. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  2219. fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
  2220. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  2221. fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
  2222. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  2223. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  2224. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  2225. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  2226. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  2227. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  2228. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  2229. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  2230. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  2231. fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
  2232. #ifdef NDEBUG
  2233. fprintf(stream, "debug: false\n");
  2234. #else
  2235. fprintf(stream, "debug: true\n");
  2236. #endif // NDEBUG
  2237. fprintf(stream, "model_desc: %s\n", model_desc);
  2238. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  2239. #ifdef __OPTIMIZE__
  2240. fprintf(stream, "optimize: true\n");
  2241. #else
  2242. fprintf(stream, "optimize: false\n");
  2243. #endif // __OPTIMIZE__
  2244. fprintf(stream, "time: %s\n", timestamp.c_str());
  2245. fprintf(stream, "\n");
  2246. fprintf(stream, "###############\n");
  2247. fprintf(stream, "# User Inputs #\n");
  2248. fprintf(stream, "###############\n");
  2249. fprintf(stream, "\n");
  2250. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  2251. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  2252. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  2253. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  2254. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  2255. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  2256. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  2257. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  2258. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  2259. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  2260. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  2261. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  2262. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  2263. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  2264. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  2265. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  2266. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  2267. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  2268. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  2269. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  2270. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  2271. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  2272. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  2273. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  2274. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  2275. fprintf(stream, "logit_bias:\n");
  2276. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  2277. if (ignore_eos && lb.first == logit_bias_eos->first) {
  2278. continue;
  2279. }
  2280. fprintf(stream, " %d: %f", lb.first, lb.second);
  2281. }
  2282. fprintf(stream, "lora:\n");
  2283. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2284. if (std::get<1>(la) != 1.0f) {
  2285. continue;
  2286. }
  2287. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  2288. }
  2289. fprintf(stream, "lora_scaled:\n");
  2290. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2291. if (std::get<1>(la) == 1.0f) {
  2292. continue;
  2293. }
  2294. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  2295. }
  2296. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  2297. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  2298. fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
  2299. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  2300. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  2301. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  2302. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  2303. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  2304. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  2305. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  2306. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  2307. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  2308. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  2309. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  2310. fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
  2311. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  2312. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  2313. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  2314. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  2315. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  2316. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  2317. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  2318. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  2319. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  2320. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  2321. fprintf(stream, "reverse_prompt:\n");
  2322. for (std::string ap : params.antiprompt) {
  2323. size_t pos = 0;
  2324. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  2325. ap.replace(pos, 1, "\\n");
  2326. pos += 1;
  2327. }
  2328. fprintf(stream, " - %s\n", ap.c_str());
  2329. }
  2330. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  2331. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  2332. fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
  2333. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  2334. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  2335. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  2336. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
  2337. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  2338. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  2339. fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
  2340. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  2341. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  2342. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  2343. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  2344. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  2345. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  2346. }
  2347. //
  2348. // KV cache utils
  2349. //
  2350. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
  2351. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  2352. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  2353. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2354. llama_kv_cache_view_cell * c_curr = view.cells;
  2355. llama_seq_id * cs_curr = view.cells_sequences;
  2356. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2357. if (i % row_size == 0) {
  2358. printf("\n%5d: ", i);
  2359. }
  2360. int seq_count = 0;
  2361. for (int j = 0; j < view.n_seq_max; j++) {
  2362. if (cs_curr[j] >= 0) { seq_count++; }
  2363. }
  2364. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  2365. }
  2366. printf("\n=== Done dumping\n");
  2367. }
  2368. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
  2369. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  2370. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  2371. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2372. std::unordered_map<llama_seq_id, size_t> seqs;
  2373. llama_kv_cache_view_cell * c_curr = view.cells;
  2374. llama_seq_id * cs_curr = view.cells_sequences;
  2375. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2376. for (int j = 0; j < view.n_seq_max; j++) {
  2377. if (cs_curr[j] < 0) { continue; }
  2378. if (seqs.find(cs_curr[j]) == seqs.end()) {
  2379. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2380. const size_t sz = seqs.size();
  2381. seqs[cs_curr[j]] = sz;
  2382. }
  2383. }
  2384. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2385. }
  2386. printf("=== Sequence legend: ");
  2387. for (const auto & it : seqs) {
  2388. printf("%zu=%d, ", it.second, it.first);
  2389. }
  2390. printf("'+'=other sequence ids");
  2391. c_curr = view.cells;
  2392. cs_curr = view.cells_sequences;
  2393. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2394. if (i % row_size == 0) {
  2395. printf("\n%5d: ", i);
  2396. }
  2397. for (int j = 0; j < view.n_seq_max; j++) {
  2398. if (cs_curr[j] >= 0) {
  2399. const auto & it = seqs.find(cs_curr[j]);
  2400. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  2401. } else {
  2402. putchar('.');
  2403. }
  2404. }
  2405. putchar(' ');
  2406. }
  2407. printf("\n=== Done dumping\n");
  2408. }
  2409. void llama_embd_normalize(const float * inp, float * out, int n) {
  2410. double sum = 0.0;
  2411. for (int i = 0; i < n; i++) {
  2412. sum += inp[i] * inp[i];
  2413. }
  2414. sum = sqrt(sum);
  2415. const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
  2416. for (int i = 0; i < n; i++) {
  2417. out[i] = inp[i] * norm;
  2418. }
  2419. }
  2420. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
  2421. double sum = 0.0;
  2422. double sum1 = 0.0;
  2423. double sum2 = 0.0;
  2424. for (int i = 0; i < n; i++) {
  2425. sum += embd1[i] * embd2[i];
  2426. sum1 += embd1[i] * embd1[i];
  2427. sum2 += embd2[i] * embd2[i];
  2428. }
  2429. return sum / (sqrt(sum1) * sqrt(sum2));
  2430. }
  2431. //
  2432. // Control vector utils
  2433. //
  2434. static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
  2435. int32_t n_tensors;
  2436. size_t n_bytes = 0;
  2437. uint32_t max_direction_layer = 0;
  2438. llama_control_vector_data result = { -1, {} };
  2439. // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
  2440. {
  2441. struct ggml_init_params meta_params = {
  2442. /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
  2443. /* .mem_buffer = */ nullptr,
  2444. /* .no_alloc = */ true,
  2445. };
  2446. ggml_context * meta_ctx = ggml_init(meta_params);
  2447. struct gguf_init_params meta_gguf_params = {
  2448. /* .no_alloc = */ true,
  2449. /* .ctx = */ &meta_ctx,
  2450. };
  2451. struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
  2452. if (!meta_ctx_gguf) {
  2453. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2454. ggml_free(meta_ctx);
  2455. return result;
  2456. }
  2457. n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
  2458. for (int i = 0; i < n_tensors; i++) {
  2459. std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
  2460. // split on '.'
  2461. size_t dotpos = name.find('.');
  2462. if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
  2463. try {
  2464. uint32_t layer = std::stoi(name.substr(dotpos + 1));
  2465. if (layer == 0) {
  2466. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2467. ggml_free(meta_ctx);
  2468. gguf_free(meta_ctx_gguf);
  2469. return result;
  2470. }
  2471. if (layer > max_direction_layer) {
  2472. max_direction_layer = layer;
  2473. }
  2474. } catch (...) {
  2475. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2476. ggml_free(meta_ctx);
  2477. gguf_free(meta_ctx_gguf);
  2478. return result;
  2479. }
  2480. }
  2481. struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
  2482. if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
  2483. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2484. ggml_free(meta_ctx);
  2485. gguf_free(meta_ctx_gguf);
  2486. return result;
  2487. }
  2488. if (result.n_embd == -1) {
  2489. result.n_embd = ggml_nelements(tensor_meta);
  2490. } else if (ggml_nelements(tensor_meta) != result.n_embd) {
  2491. fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
  2492. ggml_free(meta_ctx);
  2493. gguf_free(meta_ctx_gguf);
  2494. return result;
  2495. }
  2496. n_bytes += ggml_nbytes(tensor_meta);
  2497. }
  2498. ggml_free(meta_ctx);
  2499. gguf_free(meta_ctx_gguf);
  2500. }
  2501. if (n_tensors == 0) {
  2502. fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
  2503. return result;
  2504. }
  2505. // load and scale tensors into final control vector context
  2506. struct ggml_init_params ggml_params = {
  2507. /* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
  2508. /* .mem_buffer = */ nullptr,
  2509. /* .no_alloc = */ false,
  2510. };
  2511. struct ggml_context * ctx = ggml_init(ggml_params);
  2512. struct gguf_init_params params = {
  2513. /*.no_alloc = */ false,
  2514. /*.ctx = */ &ctx,
  2515. };
  2516. struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
  2517. if (!ctx_gguf) {
  2518. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2519. ggml_free(ctx);
  2520. return result;
  2521. }
  2522. // do not store data for layer 0 (it's not used)
  2523. result.data.resize(result.n_embd * max_direction_layer);
  2524. for (uint32_t il = 1; il <= max_direction_layer; il++) {
  2525. const std::string name = "direction." + std::to_string(il);
  2526. const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
  2527. float * dst = result.data.data() + result.n_embd * (il - 1);
  2528. if (tensor) {
  2529. const float * src = (const float *) tensor->data;
  2530. for (int j = 0; j < result.n_embd; j++) {
  2531. dst[j] = src[j] * load_info.strength;
  2532. }
  2533. } else {
  2534. for (int j = 0; j < result.n_embd; j++) {
  2535. dst[j] = 0.0f;
  2536. }
  2537. }
  2538. }
  2539. return result;
  2540. }
  2541. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
  2542. llama_control_vector_data result = { -1, {} };
  2543. for (const auto & info : load_infos) {
  2544. auto cur = llama_control_vector_load_one(info);
  2545. if (cur.n_embd == -1) {
  2546. return result;
  2547. }
  2548. if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
  2549. fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
  2550. return result;
  2551. }
  2552. if (result.n_embd == -1) {
  2553. result = std::move(cur);
  2554. } else {
  2555. for (size_t i = 0; i < cur.data.size(); i++) {
  2556. result.data[i] += cur.data[i];
  2557. }
  2558. }
  2559. }
  2560. if (result.n_embd == -1) {
  2561. fprintf(stderr, "%s: no vectors passed\n", __func__);
  2562. }
  2563. return result;
  2564. }