ggml.c 695 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #elif defined(GGML_USE_VULKAN)
  239. #include "ggml-vulkan.h"
  240. #endif
  241. #elif defined(GGML_USE_OPENBLAS)
  242. #if defined(GGML_BLAS_USE_MKL)
  243. #include <mkl.h>
  244. #else
  245. #include <cblas.h>
  246. #endif
  247. #elif defined(GGML_USE_CLBLAST)
  248. #include "ggml-opencl.h"
  249. #elif defined(GGML_USE_VULKAN)
  250. #include "ggml-vulkan.h"
  251. #elif defined(GGML_USE_SYCL)
  252. #include "ggml-sycl.h"
  253. #endif
  254. // floating point type used to accumulate sums
  255. typedef double ggml_float;
  256. #undef MIN
  257. #undef MAX
  258. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  259. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  260. //
  261. // global data
  262. //
  263. // precomputed gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  265. // precomputed quick gelu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  291. for (int i = 0; i < n; i++) {
  292. y[i] = GGML_FP16_TO_FP32(x[i]);
  293. }
  294. }
  295. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  296. int i = 0;
  297. #if defined(__F16C__)
  298. for (; i + 7 < n; i += 8) {
  299. __m256 x_vec = _mm256_loadu_ps(x + i);
  300. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  301. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  302. }
  303. for(; i + 3 < n; i += 4) {
  304. __m128 x_vec = _mm_loadu_ps(x + i);
  305. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  306. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  307. }
  308. #endif
  309. for (; i < n; i++) {
  310. y[i] = GGML_FP32_TO_FP16(x[i]);
  311. }
  312. }
  313. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  314. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  315. }
  316. //
  317. // timing
  318. //
  319. #if defined(_MSC_VER) || defined(__MINGW32__)
  320. static int64_t timer_freq, timer_start;
  321. void ggml_time_init(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceFrequency(&t);
  324. timer_freq = t.QuadPart;
  325. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  326. // and the uptime is high enough.
  327. // We subtract the program start time to reduce the likelihood of that happening.
  328. QueryPerformanceCounter(&t);
  329. timer_start = t.QuadPart;
  330. }
  331. int64_t ggml_time_ms(void) {
  332. LARGE_INTEGER t;
  333. QueryPerformanceCounter(&t);
  334. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  335. }
  336. int64_t ggml_time_us(void) {
  337. LARGE_INTEGER t;
  338. QueryPerformanceCounter(&t);
  339. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  340. }
  341. #else
  342. void ggml_time_init(void) {}
  343. int64_t ggml_time_ms(void) {
  344. struct timespec ts;
  345. clock_gettime(CLOCK_MONOTONIC, &ts);
  346. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  347. }
  348. int64_t ggml_time_us(void) {
  349. struct timespec ts;
  350. clock_gettime(CLOCK_MONOTONIC, &ts);
  351. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  352. }
  353. #endif
  354. int64_t ggml_cycles(void) {
  355. return clock();
  356. }
  357. int64_t ggml_cycles_per_ms(void) {
  358. return CLOCKS_PER_SEC/1000;
  359. }
  360. #ifdef GGML_PERF
  361. #define ggml_perf_time_ms() ggml_time_ms()
  362. #define ggml_perf_time_us() ggml_time_us()
  363. #define ggml_perf_cycles() ggml_cycles()
  364. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  365. #else
  366. #define ggml_perf_time_ms() 0
  367. #define ggml_perf_time_us() 0
  368. #define ggml_perf_cycles() 0
  369. #define ggml_perf_cycles_per_ms() 0
  370. #endif
  371. //
  372. // cross-platform UTF-8 file paths
  373. //
  374. #ifdef _WIN32
  375. static wchar_t * ggml_mbstowcs(const char * mbs) {
  376. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  377. if (!wlen) {
  378. errno = EINVAL;
  379. return NULL;
  380. }
  381. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  382. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  383. if (!wlen) {
  384. GGML_FREE(wbuf);
  385. errno = EINVAL;
  386. return NULL;
  387. }
  388. return wbuf;
  389. }
  390. #endif
  391. FILE * ggml_fopen(const char * fname, const char * mode) {
  392. #ifdef _WIN32
  393. FILE * file = NULL;
  394. // convert fname (UTF-8)
  395. wchar_t * wfname = ggml_mbstowcs(fname);
  396. if (wfname) {
  397. // convert mode (ANSI)
  398. wchar_t * wmode = GGML_MALLOC(strlen(mode) + 1);
  399. wchar_t * wmode_p = wmode;
  400. do {
  401. *wmode_p++ = (wchar_t)*mode;
  402. } while (*mode++);
  403. // open file
  404. file = _wfopen(wfname, wmode);
  405. GGML_FREE(wfname);
  406. GGML_FREE(wmode);
  407. }
  408. return file;
  409. #else
  410. return fopen(fname, mode);
  411. #endif
  412. }
  413. //
  414. // cache line
  415. //
  416. #if defined(__cpp_lib_hardware_interference_size)
  417. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  418. #else
  419. #if defined(__POWER9_VECTOR__)
  420. #define CACHE_LINE_SIZE 128
  421. #else
  422. #define CACHE_LINE_SIZE 64
  423. #endif
  424. #endif
  425. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  426. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  427. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  428. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  429. [GGML_TYPE_I8] = {
  430. .type_name = "i8",
  431. .blck_size = 1,
  432. .type_size = sizeof(int8_t),
  433. .is_quantized = false,
  434. },
  435. [GGML_TYPE_I16] = {
  436. .type_name = "i16",
  437. .blck_size = 1,
  438. .type_size = sizeof(int16_t),
  439. .is_quantized = false,
  440. },
  441. [GGML_TYPE_I32] = {
  442. .type_name = "i32",
  443. .blck_size = 1,
  444. .type_size = sizeof(int32_t),
  445. .is_quantized = false,
  446. },
  447. [GGML_TYPE_I64] = {
  448. .type_name = "i64",
  449. .blck_size = 1,
  450. .type_size = sizeof(int64_t),
  451. .is_quantized = false,
  452. },
  453. [GGML_TYPE_F64] = {
  454. .type_name = "f64",
  455. .blck_size = 1,
  456. .type_size = sizeof(double),
  457. .is_quantized = false,
  458. .nrows = 1,
  459. },
  460. [GGML_TYPE_F32] = {
  461. .type_name = "f32",
  462. .blck_size = 1,
  463. .type_size = sizeof(float),
  464. .is_quantized = false,
  465. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  466. .vec_dot_type = GGML_TYPE_F32,
  467. .nrows = 1,
  468. },
  469. [GGML_TYPE_F16] = {
  470. .type_name = "f16",
  471. .blck_size = 1,
  472. .type_size = sizeof(ggml_fp16_t),
  473. .is_quantized = false,
  474. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  475. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  476. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  477. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  478. .vec_dot_type = GGML_TYPE_F16,
  479. .nrows = 1,
  480. },
  481. [GGML_TYPE_Q4_0] = {
  482. .type_name = "q4_0",
  483. .blck_size = QK4_0,
  484. .type_size = sizeof(block_q4_0),
  485. .is_quantized = true,
  486. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  487. .from_float = quantize_row_q4_0,
  488. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  489. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  490. .vec_dot_type = GGML_TYPE_Q8_0,
  491. #if defined (__ARM_FEATURE_MATMUL_INT8)
  492. .nrows = 2,
  493. #else
  494. .nrows = 1,
  495. #endif
  496. },
  497. [GGML_TYPE_Q4_1] = {
  498. .type_name = "q4_1",
  499. .blck_size = QK4_1,
  500. .type_size = sizeof(block_q4_1),
  501. .is_quantized = true,
  502. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  503. .from_float = quantize_row_q4_1,
  504. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  505. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  506. .vec_dot_type = GGML_TYPE_Q8_1,
  507. #if defined (__ARM_FEATURE_MATMUL_INT8)
  508. .nrows = 2,
  509. #else
  510. .nrows = 1,
  511. #endif
  512. },
  513. [4] = { // GGML_TYPE_Q4_2
  514. .type_name = "DEPRECATED",
  515. .blck_size = 0,
  516. .type_size = 0,
  517. .is_quantized = false,
  518. .to_float = NULL,
  519. .from_float = NULL,
  520. .from_float_reference = NULL,
  521. .vec_dot = NULL,
  522. .vec_dot_type = GGML_TYPE_COUNT,
  523. .nrows = 1,
  524. },
  525. [5] = { // GGML_TYPE_Q4_3
  526. .type_name = "DEPRECATED",
  527. .blck_size = 0,
  528. .type_size = 0,
  529. .is_quantized = false,
  530. .to_float = NULL,
  531. .from_float = NULL,
  532. .from_float_reference = NULL,
  533. .vec_dot = NULL,
  534. .vec_dot_type = GGML_TYPE_COUNT,
  535. .nrows = 1,
  536. },
  537. [GGML_TYPE_Q5_0] = {
  538. .type_name = "q5_0",
  539. .blck_size = QK5_0,
  540. .type_size = sizeof(block_q5_0),
  541. .is_quantized = true,
  542. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  543. .from_float = quantize_row_q5_0,
  544. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  545. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  546. .vec_dot_type = GGML_TYPE_Q8_0,
  547. .nrows = 1,
  548. },
  549. [GGML_TYPE_Q5_1] = {
  550. .type_name = "q5_1",
  551. .blck_size = QK5_1,
  552. .type_size = sizeof(block_q5_1),
  553. .is_quantized = true,
  554. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  555. .from_float = quantize_row_q5_1,
  556. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  557. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  558. .vec_dot_type = GGML_TYPE_Q8_1,
  559. .nrows = 1,
  560. },
  561. [GGML_TYPE_Q8_0] = {
  562. .type_name = "q8_0",
  563. .blck_size = QK8_0,
  564. .type_size = sizeof(block_q8_0),
  565. .is_quantized = true,
  566. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  567. .from_float = quantize_row_q8_0,
  568. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  569. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  570. .vec_dot_type = GGML_TYPE_Q8_0,
  571. #if defined (__ARM_FEATURE_MATMUL_INT8)
  572. .nrows = 2,
  573. #else
  574. .nrows = 1,
  575. #endif
  576. },
  577. [GGML_TYPE_Q8_1] = {
  578. .type_name = "q8_1",
  579. .blck_size = QK8_1,
  580. .type_size = sizeof(block_q8_1),
  581. .is_quantized = true,
  582. .from_float = quantize_row_q8_1,
  583. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  584. .vec_dot_type = GGML_TYPE_Q8_1,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q2_K] = {
  588. .type_name = "q2_K",
  589. .blck_size = QK_K,
  590. .type_size = sizeof(block_q2_K),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  593. .from_float = quantize_row_q2_K,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  595. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  596. .vec_dot_type = GGML_TYPE_Q8_K,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q3_K] = {
  600. .type_name = "q3_K",
  601. .blck_size = QK_K,
  602. .type_size = sizeof(block_q3_K),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  605. .from_float = quantize_row_q3_K,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  607. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  608. .vec_dot_type = GGML_TYPE_Q8_K,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q4_K] = {
  612. .type_name = "q4_K",
  613. .blck_size = QK_K,
  614. .type_size = sizeof(block_q4_K),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  617. .from_float = quantize_row_q4_K,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  619. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  620. .vec_dot_type = GGML_TYPE_Q8_K,
  621. .nrows = 1,
  622. },
  623. [GGML_TYPE_Q5_K] = {
  624. .type_name = "q5_K",
  625. .blck_size = QK_K,
  626. .type_size = sizeof(block_q5_K),
  627. .is_quantized = true,
  628. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  629. .from_float = quantize_row_q5_K,
  630. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  631. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  632. .vec_dot_type = GGML_TYPE_Q8_K,
  633. .nrows = 1,
  634. },
  635. [GGML_TYPE_Q6_K] = {
  636. .type_name = "q6_K",
  637. .blck_size = QK_K,
  638. .type_size = sizeof(block_q6_K),
  639. .is_quantized = true,
  640. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  641. .from_float = quantize_row_q6_K,
  642. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  643. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  644. .vec_dot_type = GGML_TYPE_Q8_K,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_IQ2_XXS] = {
  648. .type_name = "iq2_xxs",
  649. .blck_size = QK_K,
  650. .type_size = sizeof(block_iq2_xxs),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  653. .from_float = NULL,
  654. .from_float_reference = NULL,
  655. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  656. .vec_dot_type = GGML_TYPE_Q8_K,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_IQ2_XS] = {
  660. .type_name = "iq2_xs",
  661. .blck_size = QK_K,
  662. .type_size = sizeof(block_iq2_xs),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  665. .from_float = NULL,
  666. .from_float_reference = NULL,
  667. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  668. .vec_dot_type = GGML_TYPE_Q8_K,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_IQ3_XXS] = {
  672. .type_name = "iq3_xxs",
  673. .blck_size = QK_K,
  674. .type_size = sizeof(block_iq3_xxs),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  677. .from_float = quantize_row_iq3_xxs,
  678. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  679. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. .nrows = 1,
  682. },
  683. [GGML_TYPE_IQ3_S] = {
  684. .type_name = "iq3_s",
  685. .blck_size = QK_K,
  686. .type_size = sizeof(block_iq3_s),
  687. .is_quantized = true,
  688. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  689. .from_float = quantize_row_iq3_s,
  690. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  691. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  692. .vec_dot_type = GGML_TYPE_Q8_K,
  693. .nrows = 1,
  694. },
  695. [GGML_TYPE_IQ2_S] = {
  696. .type_name = "iq2_s",
  697. .blck_size = QK_K,
  698. .type_size = sizeof(block_iq2_s),
  699. .is_quantized = true,
  700. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  701. .from_float = quantize_row_iq2_s,
  702. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  703. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  704. .vec_dot_type = GGML_TYPE_Q8_K,
  705. .nrows = 1,
  706. },
  707. [GGML_TYPE_IQ1_S] = {
  708. .type_name = "iq1_s",
  709. .blck_size = QK_K,
  710. .type_size = sizeof(block_iq1_s),
  711. .is_quantized = true,
  712. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  713. .from_float = NULL,
  714. .from_float_reference = NULL,
  715. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  716. .vec_dot_type = GGML_TYPE_Q8_K,
  717. .nrows = 1,
  718. },
  719. [GGML_TYPE_IQ4_NL] = {
  720. .type_name = "iq4_nl",
  721. .blck_size = QK4_NL,
  722. .type_size = sizeof(block_iq4_nl),
  723. .is_quantized = true,
  724. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  725. .from_float = quantize_row_iq4_nl,
  726. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  727. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  728. .vec_dot_type = GGML_TYPE_Q8_0,
  729. .nrows = 1,
  730. },
  731. [GGML_TYPE_IQ4_XS] = {
  732. .type_name = "iq4_xs",
  733. #if QK_K == 64
  734. .blck_size = QK4_NL,
  735. #else
  736. .blck_size = QK_K,
  737. #endif
  738. .type_size = sizeof(block_iq4_xs),
  739. .is_quantized = true,
  740. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  741. .from_float = quantize_row_iq4_xs,
  742. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  743. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  744. #if QK_K == 64
  745. .vec_dot_type = GGML_TYPE_Q8_0,
  746. #else
  747. .vec_dot_type = GGML_TYPE_Q8_K,
  748. #endif
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_Q8_K] = {
  752. .type_name = "q8_K",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_q8_K),
  755. .is_quantized = true,
  756. .from_float = quantize_row_q8_K,
  757. }
  758. };
  759. // For internal test use
  760. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  761. GGML_ASSERT(type < GGML_TYPE_COUNT);
  762. return type_traits[type];
  763. }
  764. //
  765. // simd mappings
  766. //
  767. #if defined(__ARM_NEON)
  768. #if !defined(__aarch64__)
  769. // 64-bit compatibility
  770. inline static float vaddvq_f32(float32x4_t v) {
  771. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  772. }
  773. #endif
  774. #endif
  775. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  776. // we then implement the fundamental computation operations below using only these macros
  777. // adding support for new architectures requires to define the corresponding SIMD macros
  778. //
  779. // GGML_F32_STEP / GGML_F16_STEP
  780. // number of elements to process in a single step
  781. //
  782. // GGML_F32_EPR / GGML_F16_EPR
  783. // number of elements to fit in a single register
  784. //
  785. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  786. #define GGML_SIMD
  787. // F32 NEON
  788. #define GGML_F32_STEP 16
  789. #define GGML_F32_EPR 4
  790. #define GGML_F32x4 float32x4_t
  791. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  792. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  793. #define GGML_F32x4_LOAD vld1q_f32
  794. #define GGML_F32x4_STORE vst1q_f32
  795. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  796. #define GGML_F32x4_ADD vaddq_f32
  797. #define GGML_F32x4_MUL vmulq_f32
  798. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  799. #define GGML_F32x4_REDUCE(res, x) \
  800. { \
  801. int offset = GGML_F32_ARR >> 1; \
  802. for (int i = 0; i < offset; ++i) { \
  803. x[i] = vaddq_f32(x[i], x[offset+i]); \
  804. } \
  805. offset >>= 1; \
  806. for (int i = 0; i < offset; ++i) { \
  807. x[i] = vaddq_f32(x[i], x[offset+i]); \
  808. } \
  809. offset >>= 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = vaddq_f32(x[i], x[offset+i]); \
  812. } \
  813. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  814. }
  815. #define GGML_F32_VEC GGML_F32x4
  816. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  817. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  818. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  819. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  820. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  821. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  822. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  823. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  824. // F16 NEON
  825. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  826. #define GGML_F16_STEP 32
  827. #define GGML_F16_EPR 8
  828. #define GGML_F16x8 float16x8_t
  829. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  830. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  831. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  832. #define GGML_F16x8_STORE vst1q_f16
  833. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  834. #define GGML_F16x8_ADD vaddq_f16
  835. #define GGML_F16x8_MUL vmulq_f16
  836. #define GGML_F16x8_REDUCE(res, x) \
  837. do { \
  838. int offset = GGML_F16_ARR >> 1; \
  839. for (int i = 0; i < offset; ++i) { \
  840. x[i] = vaddq_f16(x[i], x[offset+i]); \
  841. } \
  842. offset >>= 1; \
  843. for (int i = 0; i < offset; ++i) { \
  844. x[i] = vaddq_f16(x[i], x[offset+i]); \
  845. } \
  846. offset >>= 1; \
  847. for (int i = 0; i < offset; ++i) { \
  848. x[i] = vaddq_f16(x[i], x[offset+i]); \
  849. } \
  850. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  851. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  852. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  853. } while (0)
  854. #define GGML_F16_VEC GGML_F16x8
  855. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  856. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  857. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  858. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  859. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  860. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  861. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  862. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  863. #else
  864. // if FP16 vector arithmetic is not supported, we use FP32 instead
  865. // and take advantage of the vcvt_ functions to convert to/from FP16
  866. #define GGML_F16_STEP 16
  867. #define GGML_F16_EPR 4
  868. #define GGML_F32Cx4 float32x4_t
  869. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  870. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  871. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  872. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  873. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  874. #define GGML_F32Cx4_ADD vaddq_f32
  875. #define GGML_F32Cx4_MUL vmulq_f32
  876. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  877. #define GGML_F16_VEC GGML_F32Cx4
  878. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  879. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  880. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  881. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  882. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  883. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  884. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  885. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  886. #endif
  887. #elif defined(__AVX512F__)
  888. #define GGML_SIMD
  889. // F32 AVX512
  890. #define GGML_F32_STEP 64
  891. #define GGML_F32_EPR 16
  892. #define GGML_F32x16 __m512
  893. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  894. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  895. #define GGML_F32x16_LOAD _mm512_loadu_ps
  896. #define GGML_F32x16_STORE _mm512_storeu_ps
  897. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  898. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  899. #define GGML_F32x16_ADD _mm512_add_ps
  900. #define GGML_F32x16_MUL _mm512_mul_ps
  901. #define GGML_F32x16_REDUCE(res, x) \
  902. do { \
  903. int offset = GGML_F32_ARR >> 1; \
  904. for (int i = 0; i < offset; ++i) { \
  905. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  906. } \
  907. offset >>= 1; \
  908. for (int i = 0; i < offset; ++i) { \
  909. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  910. } \
  911. offset >>= 1; \
  912. for (int i = 0; i < offset; ++i) { \
  913. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  914. } \
  915. res = _mm512_reduce_add_ps(x[0]); \
  916. } while (0)
  917. // TODO: is this optimal ?
  918. #define GGML_F32_VEC GGML_F32x16
  919. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  920. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  921. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  922. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  923. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  924. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  925. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  926. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  927. // F16 AVX512
  928. // F16 AVX
  929. #define GGML_F16_STEP 64
  930. #define GGML_F16_EPR 16
  931. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  932. #define GGML_F32Cx16 __m512
  933. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  934. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  935. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  936. // so F16C guard isn't required
  937. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  938. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  939. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  940. #define GGML_F32Cx16_ADD _mm512_add_ps
  941. #define GGML_F32Cx16_MUL _mm512_mul_ps
  942. #define GGML_F32Cx16_REDUCE(res, x) \
  943. do { \
  944. int offset = GGML_F32_ARR >> 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  947. } \
  948. offset >>= 1; \
  949. for (int i = 0; i < offset; ++i) { \
  950. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  951. } \
  952. offset >>= 1; \
  953. for (int i = 0; i < offset; ++i) { \
  954. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  955. } \
  956. res = _mm512_reduce_add_ps(x[0]); \
  957. } while (0)
  958. #define GGML_F16_VEC GGML_F32Cx16
  959. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  960. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  961. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  962. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  963. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  964. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  965. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  966. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  967. #elif defined(__AVX__)
  968. #define GGML_SIMD
  969. // F32 AVX
  970. #define GGML_F32_STEP 32
  971. #define GGML_F32_EPR 8
  972. #define GGML_F32x8 __m256
  973. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  974. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  975. #define GGML_F32x8_LOAD _mm256_loadu_ps
  976. #define GGML_F32x8_STORE _mm256_storeu_ps
  977. #if defined(__FMA__)
  978. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  979. #else
  980. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  981. #endif
  982. #define GGML_F32x8_ADD _mm256_add_ps
  983. #define GGML_F32x8_MUL _mm256_mul_ps
  984. #define GGML_F32x8_REDUCE(res, x) \
  985. do { \
  986. int offset = GGML_F32_ARR >> 1; \
  987. for (int i = 0; i < offset; ++i) { \
  988. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  989. } \
  990. offset >>= 1; \
  991. for (int i = 0; i < offset; ++i) { \
  992. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  993. } \
  994. offset >>= 1; \
  995. for (int i = 0; i < offset; ++i) { \
  996. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  997. } \
  998. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  999. _mm256_extractf128_ps(x[0], 1)); \
  1000. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1001. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1002. } while (0)
  1003. // TODO: is this optimal ?
  1004. #define GGML_F32_VEC GGML_F32x8
  1005. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1006. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1007. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1008. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1009. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1010. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1011. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1012. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1013. // F16 AVX
  1014. #define GGML_F16_STEP 32
  1015. #define GGML_F16_EPR 8
  1016. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1017. #define GGML_F32Cx8 __m256
  1018. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1019. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1020. #if defined(__F16C__)
  1021. // the _mm256_cvt intrinsics require F16C
  1022. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1023. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1024. #else
  1025. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1026. float tmp[8];
  1027. for (int i = 0; i < 8; i++) {
  1028. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1029. }
  1030. return _mm256_loadu_ps(tmp);
  1031. }
  1032. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1033. float arr[8];
  1034. _mm256_storeu_ps(arr, y);
  1035. for (int i = 0; i < 8; i++)
  1036. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1037. }
  1038. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1039. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1040. #endif
  1041. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1042. #define GGML_F32Cx8_ADD _mm256_add_ps
  1043. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1044. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1045. #define GGML_F16_VEC GGML_F32Cx8
  1046. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1047. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1048. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1049. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1050. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1051. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1052. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1053. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1054. #elif defined(__POWER9_VECTOR__)
  1055. #define GGML_SIMD
  1056. // F32 POWER9
  1057. #define GGML_F32_STEP 32
  1058. #define GGML_F32_EPR 4
  1059. #define GGML_F32x4 vector float
  1060. #define GGML_F32x4_ZERO 0.0f
  1061. #define GGML_F32x4_SET1 vec_splats
  1062. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1063. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1064. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1065. #define GGML_F32x4_ADD vec_add
  1066. #define GGML_F32x4_MUL vec_mul
  1067. #define GGML_F32x4_REDUCE(res, x) \
  1068. { \
  1069. int offset = GGML_F32_ARR >> 1; \
  1070. for (int i = 0; i < offset; ++i) { \
  1071. x[i] = vec_add(x[i], x[offset+i]); \
  1072. } \
  1073. offset >>= 1; \
  1074. for (int i = 0; i < offset; ++i) { \
  1075. x[i] = vec_add(x[i], x[offset+i]); \
  1076. } \
  1077. offset >>= 1; \
  1078. for (int i = 0; i < offset; ++i) { \
  1079. x[i] = vec_add(x[i], x[offset+i]); \
  1080. } \
  1081. res = vec_extract(x[0], 0) + \
  1082. vec_extract(x[0], 1) + \
  1083. vec_extract(x[0], 2) + \
  1084. vec_extract(x[0], 3); \
  1085. }
  1086. #define GGML_F32_VEC GGML_F32x4
  1087. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1088. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1089. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1090. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1091. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1092. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1093. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1094. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1095. // F16 POWER9
  1096. #define GGML_F16_STEP GGML_F32_STEP
  1097. #define GGML_F16_EPR GGML_F32_EPR
  1098. #define GGML_F16_VEC GGML_F32x4
  1099. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1100. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1101. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1103. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1104. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1105. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1106. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1107. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1108. #define GGML_F16_VEC_STORE(p, r, i) \
  1109. if (i & 0x1) \
  1110. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1111. r[i - GGML_ENDIAN_BYTE(0)]), \
  1112. 0, p - GGML_F16_EPR)
  1113. #elif defined(__wasm_simd128__)
  1114. #define GGML_SIMD
  1115. // F32 WASM
  1116. #define GGML_F32_STEP 16
  1117. #define GGML_F32_EPR 4
  1118. #define GGML_F32x4 v128_t
  1119. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1120. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1121. #define GGML_F32x4_LOAD wasm_v128_load
  1122. #define GGML_F32x4_STORE wasm_v128_store
  1123. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1124. #define GGML_F32x4_ADD wasm_f32x4_add
  1125. #define GGML_F32x4_MUL wasm_f32x4_mul
  1126. #define GGML_F32x4_REDUCE(res, x) \
  1127. { \
  1128. int offset = GGML_F32_ARR >> 1; \
  1129. for (int i = 0; i < offset; ++i) { \
  1130. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1131. } \
  1132. offset >>= 1; \
  1133. for (int i = 0; i < offset; ++i) { \
  1134. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1135. } \
  1136. offset >>= 1; \
  1137. for (int i = 0; i < offset; ++i) { \
  1138. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1139. } \
  1140. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1141. wasm_f32x4_extract_lane(x[0], 1) + \
  1142. wasm_f32x4_extract_lane(x[0], 2) + \
  1143. wasm_f32x4_extract_lane(x[0], 3); \
  1144. }
  1145. #define GGML_F32_VEC GGML_F32x4
  1146. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1147. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1148. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1149. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1150. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1151. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1152. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1153. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1154. // F16 WASM
  1155. #define GGML_F16_STEP 16
  1156. #define GGML_F16_EPR 4
  1157. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1158. float tmp[4];
  1159. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1160. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1161. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1162. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1163. return wasm_v128_load(tmp);
  1164. }
  1165. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1166. float tmp[4];
  1167. wasm_v128_store(tmp, x);
  1168. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1169. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1170. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1171. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1172. }
  1173. #define GGML_F16x4 v128_t
  1174. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1175. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1176. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1177. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1178. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1179. #define GGML_F16x4_ADD wasm_f32x4_add
  1180. #define GGML_F16x4_MUL wasm_f32x4_mul
  1181. #define GGML_F16x4_REDUCE(res, x) \
  1182. { \
  1183. int offset = GGML_F16_ARR >> 1; \
  1184. for (int i = 0; i < offset; ++i) { \
  1185. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1186. } \
  1187. offset >>= 1; \
  1188. for (int i = 0; i < offset; ++i) { \
  1189. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1190. } \
  1191. offset >>= 1; \
  1192. for (int i = 0; i < offset; ++i) { \
  1193. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1194. } \
  1195. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1196. wasm_f32x4_extract_lane(x[0], 1) + \
  1197. wasm_f32x4_extract_lane(x[0], 2) + \
  1198. wasm_f32x4_extract_lane(x[0], 3); \
  1199. }
  1200. #define GGML_F16_VEC GGML_F16x4
  1201. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1202. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1203. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1204. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1205. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1206. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1207. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1208. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1209. #elif defined(__SSE3__)
  1210. #define GGML_SIMD
  1211. // F32 SSE
  1212. #define GGML_F32_STEP 32
  1213. #define GGML_F32_EPR 4
  1214. #define GGML_F32x4 __m128
  1215. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1216. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1217. #define GGML_F32x4_LOAD _mm_loadu_ps
  1218. #define GGML_F32x4_STORE _mm_storeu_ps
  1219. #if defined(__FMA__)
  1220. // TODO: Does this work?
  1221. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1222. #else
  1223. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1224. #endif
  1225. #define GGML_F32x4_ADD _mm_add_ps
  1226. #define GGML_F32x4_MUL _mm_mul_ps
  1227. #define GGML_F32x4_REDUCE(res, x) \
  1228. { \
  1229. int offset = GGML_F32_ARR >> 1; \
  1230. for (int i = 0; i < offset; ++i) { \
  1231. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1232. } \
  1233. offset >>= 1; \
  1234. for (int i = 0; i < offset; ++i) { \
  1235. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1236. } \
  1237. offset >>= 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1240. } \
  1241. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1242. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1243. }
  1244. // TODO: is this optimal ?
  1245. #define GGML_F32_VEC GGML_F32x4
  1246. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1247. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1248. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1249. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1250. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1251. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1252. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1253. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1254. // F16 SSE
  1255. #define GGML_F16_STEP 32
  1256. #define GGML_F16_EPR 4
  1257. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1258. float tmp[4];
  1259. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1260. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1261. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1262. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1263. return _mm_loadu_ps(tmp);
  1264. }
  1265. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1266. float arr[4];
  1267. _mm_storeu_ps(arr, y);
  1268. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1269. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1270. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1271. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1272. }
  1273. #define GGML_F32Cx4 __m128
  1274. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1275. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1276. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1277. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1278. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1279. #define GGML_F32Cx4_ADD _mm_add_ps
  1280. #define GGML_F32Cx4_MUL _mm_mul_ps
  1281. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1282. #define GGML_F16_VEC GGML_F32Cx4
  1283. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1284. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1285. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1286. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1287. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1288. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1289. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1290. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1291. #endif
  1292. // GGML_F32_ARR / GGML_F16_ARR
  1293. // number of registers to use per step
  1294. #ifdef GGML_SIMD
  1295. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1296. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1297. #endif
  1298. //
  1299. // fundamental operations
  1300. //
  1301. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1302. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1303. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1304. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1305. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1306. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1307. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1308. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1309. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1310. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1311. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1312. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1313. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1314. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1315. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1316. assert(nrc == 1);
  1317. UNUSED(nrc);
  1318. UNUSED(bx);
  1319. UNUSED(by);
  1320. UNUSED(bs);
  1321. #ifdef GGML_SIMD
  1322. float sumf = 0.0f;
  1323. const int np = (n & ~(GGML_F32_STEP - 1));
  1324. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1325. GGML_F32_VEC ax[GGML_F32_ARR];
  1326. GGML_F32_VEC ay[GGML_F32_ARR];
  1327. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1328. for (int j = 0; j < GGML_F32_ARR; j++) {
  1329. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1330. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1331. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1332. }
  1333. }
  1334. // reduce sum0..sum3 to sum0
  1335. GGML_F32_VEC_REDUCE(sumf, sum);
  1336. // leftovers
  1337. for (int i = np; i < n; ++i) {
  1338. sumf += x[i]*y[i];
  1339. }
  1340. #else
  1341. // scalar
  1342. ggml_float sumf = 0.0;
  1343. for (int i = 0; i < n; ++i) {
  1344. sumf += (ggml_float)(x[i]*y[i]);
  1345. }
  1346. #endif
  1347. *s = sumf;
  1348. }
  1349. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1350. assert(nrc == 1);
  1351. UNUSED(nrc);
  1352. UNUSED(bx);
  1353. UNUSED(by);
  1354. UNUSED(bs);
  1355. ggml_float sumf = 0.0;
  1356. #if defined(GGML_SIMD)
  1357. const int np = (n & ~(GGML_F16_STEP - 1));
  1358. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1359. GGML_F16_VEC ax[GGML_F16_ARR];
  1360. GGML_F16_VEC ay[GGML_F16_ARR];
  1361. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1362. for (int j = 0; j < GGML_F16_ARR; j++) {
  1363. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1364. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1365. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1366. }
  1367. }
  1368. // reduce sum0..sum3 to sum0
  1369. GGML_F16_VEC_REDUCE(sumf, sum);
  1370. // leftovers
  1371. for (int i = np; i < n; ++i) {
  1372. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1373. }
  1374. #else
  1375. for (int i = 0; i < n; ++i) {
  1376. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1377. }
  1378. #endif
  1379. *s = sumf;
  1380. }
  1381. // compute GGML_VEC_DOT_UNROLL dot products at once
  1382. // xs - x row stride in bytes
  1383. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1384. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1385. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1386. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1387. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1388. }
  1389. #if defined(GGML_SIMD)
  1390. const int np = (n & ~(GGML_F16_STEP - 1));
  1391. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1392. GGML_F16_VEC ax[GGML_F16_ARR];
  1393. GGML_F16_VEC ay[GGML_F16_ARR];
  1394. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1395. for (int j = 0; j < GGML_F16_ARR; j++) {
  1396. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1397. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1398. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1399. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1400. }
  1401. }
  1402. }
  1403. // reduce sum0..sum3 to sum0
  1404. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1405. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1406. }
  1407. // leftovers
  1408. for (int i = np; i < n; ++i) {
  1409. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1410. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1411. }
  1412. }
  1413. #else
  1414. for (int i = 0; i < n; ++i) {
  1415. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1416. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1417. }
  1418. }
  1419. #endif
  1420. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1421. s[i] = sumf[i];
  1422. }
  1423. }
  1424. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1425. #if defined(GGML_SIMD)
  1426. const int np = (n & ~(GGML_F32_STEP - 1));
  1427. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1428. GGML_F32_VEC ax[GGML_F32_ARR];
  1429. GGML_F32_VEC ay[GGML_F32_ARR];
  1430. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1431. for (int j = 0; j < GGML_F32_ARR; j++) {
  1432. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1433. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1434. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1435. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1436. }
  1437. }
  1438. // leftovers
  1439. for (int i = np; i < n; ++i) {
  1440. y[i] += x[i]*v;
  1441. }
  1442. #else
  1443. // scalar
  1444. for (int i = 0; i < n; ++i) {
  1445. y[i] += x[i]*v;
  1446. }
  1447. #endif
  1448. }
  1449. // xs and vs are byte strides of x and v
  1450. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1451. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1452. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1453. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1454. x[i] = (const float *) ((const char *) xv + i*xs);
  1455. v[i] = (const float *) ((const char *) vv + i*vs);
  1456. }
  1457. #if defined(GGML_SIMD)
  1458. const int np = (n & ~(GGML_F32_STEP - 1));
  1459. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1460. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1461. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1462. }
  1463. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1464. GGML_F32_VEC ay[GGML_F32_ARR];
  1465. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1466. for (int j = 0; j < GGML_F32_ARR; j++) {
  1467. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1468. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1469. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1470. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1471. }
  1472. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1473. }
  1474. }
  1475. // leftovers
  1476. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1477. for (int i = np; i < n; ++i) {
  1478. y[i] += x[k][i]*v[k][0];
  1479. }
  1480. }
  1481. #else
  1482. // scalar
  1483. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1484. for (int i = 0; i < n; ++i) {
  1485. y[i] += x[k][i]*v[k][0];
  1486. }
  1487. }
  1488. #endif
  1489. }
  1490. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1491. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1492. #if defined(GGML_USE_ACCELERATE)
  1493. vDSP_vsmul(y, 1, &v, y, 1, n);
  1494. #elif defined(GGML_SIMD)
  1495. const int np = (n & ~(GGML_F32_STEP - 1));
  1496. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1497. GGML_F32_VEC ay[GGML_F32_ARR];
  1498. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1499. for (int j = 0; j < GGML_F32_ARR; j++) {
  1500. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1501. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1502. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1503. }
  1504. }
  1505. // leftovers
  1506. for (int i = np; i < n; ++i) {
  1507. y[i] *= v;
  1508. }
  1509. #else
  1510. // scalar
  1511. for (int i = 0; i < n; ++i) {
  1512. y[i] *= v;
  1513. }
  1514. #endif
  1515. }
  1516. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1517. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1518. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1519. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1520. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1521. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1522. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1523. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1524. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1525. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1526. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1527. // TODO: optimize performance
  1528. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1529. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1530. static const float GELU_COEF_A = 0.044715f;
  1531. static const float GELU_QUICK_COEF = -1.702f;
  1532. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1533. inline static float ggml_gelu_f32(float x) {
  1534. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1535. }
  1536. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1537. const uint16_t * i16 = (const uint16_t *) x;
  1538. for (int i = 0; i < n; ++i) {
  1539. y[i] = ggml_table_gelu_f16[i16[i]];
  1540. }
  1541. }
  1542. #ifdef GGML_GELU_FP16
  1543. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1544. uint16_t t;
  1545. for (int i = 0; i < n; ++i) {
  1546. if (x[i] <= -10.0f) {
  1547. y[i] = 0.0f;
  1548. } else if (x[i] >= 10.0f) {
  1549. y[i] = x[i];
  1550. } else {
  1551. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1552. memcpy(&t, &fp16, sizeof(uint16_t));
  1553. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1554. }
  1555. }
  1556. }
  1557. #else
  1558. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1559. for (int i = 0; i < n; ++i) {
  1560. y[i] = ggml_gelu_f32(x[i]);
  1561. }
  1562. }
  1563. #endif
  1564. inline static float ggml_gelu_quick_f32(float x) {
  1565. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1566. }
  1567. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1568. // const uint16_t * i16 = (const uint16_t *) x;
  1569. // for (int i = 0; i < n; ++i) {
  1570. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1571. // }
  1572. //}
  1573. #ifdef GGML_GELU_QUICK_FP16
  1574. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1575. uint16_t t;
  1576. for (int i = 0; i < n; ++i) {
  1577. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1578. memcpy(&t, &fp16, sizeof(uint16_t));
  1579. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1580. }
  1581. }
  1582. #else
  1583. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1584. for (int i = 0; i < n; ++i) {
  1585. y[i] = ggml_gelu_quick_f32(x[i]);
  1586. }
  1587. }
  1588. #endif
  1589. // Sigmoid Linear Unit (SiLU) function
  1590. inline static float ggml_silu_f32(float x) {
  1591. return x/(1.0f + expf(-x));
  1592. }
  1593. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1594. // const uint16_t * i16 = (const uint16_t *) x;
  1595. // for (int i = 0; i < n; ++i) {
  1596. // y[i] = ggml_table_silu_f16[i16[i]];
  1597. // }
  1598. //}
  1599. #ifdef GGML_SILU_FP16
  1600. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1601. uint16_t t;
  1602. for (int i = 0; i < n; ++i) {
  1603. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1604. memcpy(&t, &fp16, sizeof(uint16_t));
  1605. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1606. }
  1607. }
  1608. #else
  1609. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1610. for (int i = 0; i < n; ++i) {
  1611. y[i] = ggml_silu_f32(x[i]);
  1612. }
  1613. }
  1614. #endif
  1615. inline static float ggml_silu_backward_f32(float x, float dy) {
  1616. const float s = 1.0f/(1.0f + expf(-x));
  1617. return dy*s*(1.0f + x*(1.0f - s));
  1618. }
  1619. #ifdef GGML_SILU_FP16
  1620. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1621. for (int i = 0; i < n; ++i) {
  1622. // we did not use x[i] to compute forward silu but its f16 equivalent
  1623. // take derivative at f16 of x[i]:
  1624. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1625. float usedx = GGML_FP16_TO_FP32(fp16);
  1626. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1627. }
  1628. }
  1629. #else
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1633. }
  1634. }
  1635. #endif
  1636. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1637. #ifndef GGML_USE_ACCELERATE
  1638. ggml_float sum = 0.0;
  1639. for (int i = 0; i < n; ++i) {
  1640. sum += (ggml_float)x[i];
  1641. }
  1642. *s = sum;
  1643. #else
  1644. vDSP_sve(x, 1, s, n);
  1645. #endif
  1646. }
  1647. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. }
  1654. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1655. float sum = 0.0f;
  1656. for (int i = 0; i < n; ++i) {
  1657. sum += GGML_FP16_TO_FP32(x[i]);
  1658. }
  1659. *s = sum;
  1660. }
  1661. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1662. #ifndef GGML_USE_ACCELERATE
  1663. float max = -INFINITY;
  1664. for (int i = 0; i < n; ++i) {
  1665. max = MAX(max, x[i]);
  1666. }
  1667. *s = max;
  1668. #else
  1669. vDSP_maxv(x, 1, s, n);
  1670. #endif
  1671. }
  1672. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1673. ggml_vec_norm_f32(n, s, x);
  1674. *s = 1.f/(*s);
  1675. }
  1676. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1677. float max = -INFINITY;
  1678. int idx = 0;
  1679. for (int i = 0; i < n; ++i) {
  1680. max = MAX(max, x[i]);
  1681. if (max == x[i]) { idx = i; }
  1682. }
  1683. *s = idx;
  1684. }
  1685. //
  1686. // data types
  1687. //
  1688. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1689. "NONE",
  1690. "DUP",
  1691. "ADD",
  1692. "ADD1",
  1693. "ACC",
  1694. "SUB",
  1695. "MUL",
  1696. "DIV",
  1697. "SQR",
  1698. "SQRT",
  1699. "LOG",
  1700. "SUM",
  1701. "SUM_ROWS",
  1702. "MEAN",
  1703. "ARGMAX",
  1704. "REPEAT",
  1705. "REPEAT_BACK",
  1706. "CONCAT",
  1707. "SILU_BACK",
  1708. "NORM",
  1709. "RMS_NORM",
  1710. "RMS_NORM_BACK",
  1711. "GROUP_NORM",
  1712. "MUL_MAT",
  1713. "MUL_MAT_ID",
  1714. "OUT_PROD",
  1715. "SCALE",
  1716. "SET",
  1717. "CPY",
  1718. "CONT",
  1719. "RESHAPE",
  1720. "VIEW",
  1721. "PERMUTE",
  1722. "TRANSPOSE",
  1723. "GET_ROWS",
  1724. "GET_ROWS_BACK",
  1725. "DIAG",
  1726. "DIAG_MASK_INF",
  1727. "DIAG_MASK_ZERO",
  1728. "SOFT_MAX",
  1729. "SOFT_MAX_BACK",
  1730. "ROPE",
  1731. "ROPE_BACK",
  1732. "ALIBI",
  1733. "CLAMP",
  1734. "CONV_TRANSPOSE_1D",
  1735. "IM2COL",
  1736. "CONV_TRANSPOSE_2D",
  1737. "POOL_1D",
  1738. "POOL_2D",
  1739. "UPSCALE",
  1740. "PAD",
  1741. "ARANGE",
  1742. "TIMESTEP_EMBEDDING",
  1743. "ARGSORT",
  1744. "LEAKY_RELU",
  1745. "FLASH_ATTN",
  1746. "FLASH_FF",
  1747. "FLASH_ATTN_BACK",
  1748. "SSM_CONV",
  1749. "SSM_SCAN",
  1750. "WIN_PART",
  1751. "WIN_UNPART",
  1752. "GET_REL_POS",
  1753. "ADD_REL_POS",
  1754. "UNARY",
  1755. "MAP_UNARY",
  1756. "MAP_BINARY",
  1757. "MAP_CUSTOM1_F32",
  1758. "MAP_CUSTOM2_F32",
  1759. "MAP_CUSTOM3_F32",
  1760. "MAP_CUSTOM1",
  1761. "MAP_CUSTOM2",
  1762. "MAP_CUSTOM3",
  1763. "CROSS_ENTROPY_LOSS",
  1764. "CROSS_ENTROPY_LOSS_BACK",
  1765. };
  1766. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1767. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1768. "none",
  1769. "x",
  1770. "x+y",
  1771. "x+y",
  1772. "view(x,nb,offset)+=y->x",
  1773. "x-y",
  1774. "x*y",
  1775. "x/y",
  1776. "x^2",
  1777. "√x",
  1778. "log(x)",
  1779. "Σx",
  1780. "Σx_k",
  1781. "Σx/n",
  1782. "argmax(x)",
  1783. "repeat(x)",
  1784. "repeat_back(x)",
  1785. "concat(x, y)",
  1786. "silu_back(x)",
  1787. "norm(x)",
  1788. "rms_norm(x)",
  1789. "rms_norm_back(x)",
  1790. "group_norm(x)",
  1791. "X*Y",
  1792. "X[i]*Y",
  1793. "X*Y",
  1794. "x*v",
  1795. "y-\\>view(x)",
  1796. "x-\\>y",
  1797. "cont(x)",
  1798. "reshape(x)",
  1799. "view(x)",
  1800. "permute(x)",
  1801. "transpose(x)",
  1802. "get_rows(x)",
  1803. "get_rows_back(x)",
  1804. "diag(x)",
  1805. "diag_mask_inf(x)",
  1806. "diag_mask_zero(x)",
  1807. "soft_max(x)",
  1808. "soft_max_back(x)",
  1809. "rope(x)",
  1810. "rope_back(x)",
  1811. "alibi(x)",
  1812. "clamp(x)",
  1813. "conv_transpose_1d(x)",
  1814. "im2col(x)",
  1815. "conv_transpose_2d(x)",
  1816. "pool_1d(x)",
  1817. "pool_2d(x)",
  1818. "upscale(x)",
  1819. "pad(x)",
  1820. "arange(start, stop, step)",
  1821. "timestep_embedding(timesteps, dim, max_period)",
  1822. "argsort(x)",
  1823. "leaky_relu(x)",
  1824. "flash_attn(x)",
  1825. "flash_ff(x)",
  1826. "flash_attn_back(x)",
  1827. "ssm_conv(x)",
  1828. "ssm_scan(x)",
  1829. "win_part(x)",
  1830. "win_unpart(x)",
  1831. "get_rel_pos(x)",
  1832. "add_rel_pos(x)",
  1833. "unary(x)",
  1834. "f(x)",
  1835. "f(x,y)",
  1836. "custom_f32(x)",
  1837. "custom_f32(x,y)",
  1838. "custom_f32(x,y,z)",
  1839. "custom(x)",
  1840. "custom(x,y)",
  1841. "custom(x,y,z)",
  1842. "cross_entropy_loss(x,y)",
  1843. "cross_entropy_loss_back(x,y)",
  1844. };
  1845. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1846. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1847. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1848. "ABS",
  1849. "SGN",
  1850. "NEG",
  1851. "STEP",
  1852. "TANH",
  1853. "ELU",
  1854. "RELU",
  1855. "GELU",
  1856. "GELU_QUICK",
  1857. "SILU",
  1858. "HARDSWISH",
  1859. "HARDSIGMOID",
  1860. };
  1861. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1862. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1863. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1864. // WARN:
  1865. // Mis-configuration can lead to problem that's hard to reason about:
  1866. // * At best it crash or talks nosense.
  1867. // * At worst it talks slightly difference but hard to perceive.
  1868. //
  1869. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1870. // Take care about compile options (e.g., GGML_USE_xxx).
  1871. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1872. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1873. static void ggml_setup_op_has_task_pass(void) {
  1874. { // INIT
  1875. bool * p = GGML_OP_HAS_INIT;
  1876. p[GGML_OP_ACC ] = true;
  1877. p[GGML_OP_MUL_MAT ] = true;
  1878. p[GGML_OP_MUL_MAT_ID ] = true;
  1879. p[GGML_OP_OUT_PROD ] = true;
  1880. p[GGML_OP_SET ] = true;
  1881. p[GGML_OP_GET_ROWS_BACK ] = true;
  1882. p[GGML_OP_DIAG_MASK_INF ] = true;
  1883. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1884. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1885. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1886. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1887. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1888. p[GGML_OP_ADD_REL_POS ] = true;
  1889. }
  1890. { // FINALIZE
  1891. bool * p = GGML_OP_HAS_FINALIZE;
  1892. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1893. }
  1894. }
  1895. //
  1896. // ggml context
  1897. //
  1898. struct ggml_context {
  1899. size_t mem_size;
  1900. void * mem_buffer;
  1901. bool mem_buffer_owned;
  1902. bool no_alloc;
  1903. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1904. int n_objects;
  1905. struct ggml_object * objects_begin;
  1906. struct ggml_object * objects_end;
  1907. struct ggml_scratch scratch;
  1908. struct ggml_scratch scratch_save;
  1909. };
  1910. struct ggml_context_container {
  1911. bool used;
  1912. struct ggml_context context;
  1913. };
  1914. //
  1915. // NUMA support
  1916. //
  1917. #define GGML_NUMA_MAX_NODES 8
  1918. #define GGML_NUMA_MAX_CPUS 512
  1919. struct ggml_numa_node {
  1920. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1921. uint32_t n_cpus;
  1922. };
  1923. struct ggml_numa_nodes {
  1924. enum ggml_numa_strategy numa_strategy;
  1925. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1926. uint32_t n_nodes;
  1927. uint32_t total_cpus; // hardware threads on system
  1928. uint32_t current_node; // node on which main process is execting
  1929. #if defined(__gnu_linux__)
  1930. cpu_set_t cpuset; // cpuset from numactl
  1931. #else
  1932. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1933. #endif
  1934. };
  1935. //
  1936. // ggml state
  1937. //
  1938. struct ggml_state {
  1939. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1940. struct ggml_numa_nodes numa;
  1941. };
  1942. // global state
  1943. static struct ggml_state g_state;
  1944. static atomic_int g_state_barrier = 0;
  1945. // barrier via spin lock
  1946. inline static void ggml_critical_section_start(void) {
  1947. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1948. while (processing > 0) {
  1949. // wait for other threads to finish
  1950. atomic_fetch_sub(&g_state_barrier, 1);
  1951. sched_yield(); // TODO: reconsider this
  1952. processing = atomic_fetch_add(&g_state_barrier, 1);
  1953. }
  1954. }
  1955. // TODO: make this somehow automatically executed
  1956. // some sort of "sentry" mechanism
  1957. inline static void ggml_critical_section_end(void) {
  1958. atomic_fetch_sub(&g_state_barrier, 1);
  1959. }
  1960. #if defined(__gnu_linux__)
  1961. static cpu_set_t ggml_get_numa_affinity(void) {
  1962. cpu_set_t cpuset;
  1963. pthread_t thread;
  1964. thread = pthread_self();
  1965. CPU_ZERO(&cpuset);
  1966. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1967. return cpuset;
  1968. }
  1969. #else
  1970. static uint32_t ggml_get_numa_affinity(void) {
  1971. return 0; // no NUMA support
  1972. }
  1973. #endif
  1974. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1975. if (g_state.numa.n_nodes > 0) {
  1976. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1977. return;
  1978. }
  1979. #if defined(__gnu_linux__)
  1980. struct stat st;
  1981. char path[256];
  1982. int rv;
  1983. // set numa scheme
  1984. g_state.numa.numa_strategy = numa_flag;
  1985. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1986. g_state.numa.cpuset = ggml_get_numa_affinity();
  1987. // enumerate nodes
  1988. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1989. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1990. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1991. if (stat(path, &st) != 0) { break; }
  1992. ++g_state.numa.n_nodes;
  1993. }
  1994. // enumerate CPUs
  1995. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1996. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1997. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1998. if (stat(path, &st) != 0) { break; }
  1999. ++g_state.numa.total_cpus;
  2000. }
  2001. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2002. // figure out which node we're on
  2003. uint current_cpu;
  2004. int getcpu_ret = 0;
  2005. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2006. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2007. #else
  2008. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2009. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2010. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2011. # endif
  2012. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2013. #endif
  2014. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2015. g_state.numa.n_nodes = 0;
  2016. return;
  2017. }
  2018. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2019. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2020. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2021. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2022. node->n_cpus = 0;
  2023. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2024. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2025. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2026. if (stat(path, &st) == 0) {
  2027. node->cpus[node->n_cpus++] = c;
  2028. GGML_PRINT_DEBUG(" %u", c);
  2029. }
  2030. }
  2031. GGML_PRINT_DEBUG("\n");
  2032. }
  2033. if (ggml_is_numa()) {
  2034. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2035. if (fptr != NULL) {
  2036. char buf[42];
  2037. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2038. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2039. }
  2040. fclose(fptr);
  2041. }
  2042. }
  2043. #else
  2044. GGML_UNUSED(numa_flag);
  2045. // TODO
  2046. #endif
  2047. }
  2048. bool ggml_is_numa(void) {
  2049. return g_state.numa.n_nodes > 1;
  2050. }
  2051. ////////////////////////////////////////////////////////////////////////////////
  2052. void ggml_print_object(const struct ggml_object * obj) {
  2053. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2054. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2055. }
  2056. void ggml_print_objects(const struct ggml_context * ctx) {
  2057. struct ggml_object * obj = ctx->objects_begin;
  2058. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2059. while (obj != NULL) {
  2060. ggml_print_object(obj);
  2061. obj = obj->next;
  2062. }
  2063. GGML_PRINT("%s: --- end ---\n", __func__);
  2064. }
  2065. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2066. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2067. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2068. }
  2069. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2070. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2071. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2072. }
  2073. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2074. size_t nbytes;
  2075. size_t blck_size = ggml_blck_size(tensor->type);
  2076. if (blck_size == 1) {
  2077. nbytes = ggml_type_size(tensor->type);
  2078. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2079. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2080. }
  2081. }
  2082. else {
  2083. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2084. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2085. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2086. }
  2087. }
  2088. return nbytes;
  2089. }
  2090. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2091. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2092. }
  2093. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2094. return type_traits[type].blck_size;
  2095. }
  2096. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2097. return type_traits[type].type_size;
  2098. }
  2099. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2100. assert(ne % ggml_blck_size(type) == 0);
  2101. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2102. }
  2103. double ggml_type_sizef(enum ggml_type type) {
  2104. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2107. return type_traits[type].type_name;
  2108. }
  2109. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2110. return type_traits[type].is_quantized;
  2111. }
  2112. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2113. return GGML_OP_NAME[op];
  2114. }
  2115. const char * ggml_op_symbol(enum ggml_op op) {
  2116. return GGML_OP_SYMBOL[op];
  2117. }
  2118. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2119. return GGML_UNARY_OP_NAME[op];
  2120. }
  2121. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2122. if (t->op == GGML_OP_UNARY) {
  2123. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2124. return ggml_unary_op_name(uop);
  2125. }
  2126. else {
  2127. return ggml_op_name(t->op);
  2128. }
  2129. }
  2130. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2131. return ggml_type_size(tensor->type);
  2132. }
  2133. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2134. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2135. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2136. }
  2137. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2138. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2139. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2140. }
  2141. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2142. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2143. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2144. }
  2145. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2146. return tensor->ne[3] == 1;
  2147. }
  2148. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2149. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2150. if (tensor->ne[i] > 1) {
  2151. return i + 1;
  2152. }
  2153. }
  2154. return 1;
  2155. }
  2156. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2157. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2158. return (t0->ne[0] == t1->ne[0]) &&
  2159. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2160. (t1->ne[3]%t0->ne[3] == 0);
  2161. }
  2162. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2163. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2164. return (t0->ne[1] == t1->ne[1]) &&
  2165. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2166. (t1->ne[3]%t0->ne[3] == 0);
  2167. }
  2168. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2169. enum ggml_type wtype = GGML_TYPE_COUNT;
  2170. switch (ftype) {
  2171. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2172. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2173. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2174. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2175. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2176. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2177. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2178. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2179. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2180. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2181. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2182. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2183. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2184. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2185. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2186. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2187. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2188. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2189. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2190. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2191. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2192. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2193. }
  2194. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2195. return wtype;
  2196. }
  2197. size_t ggml_tensor_overhead(void) {
  2198. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2199. }
  2200. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2201. return tensor->nb[0] > tensor->nb[1];
  2202. }
  2203. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2204. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2205. return
  2206. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2207. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2208. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2209. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2210. }
  2211. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2212. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2213. return
  2214. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2215. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2216. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2217. }
  2218. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2219. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2220. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2221. }
  2222. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return
  2232. (t0->ne[0] == t1->ne[0] ) &&
  2233. (t0->ne[1] == t1->ne[1] ) &&
  2234. (t0->ne[2] == t1->ne[2] ) &&
  2235. (t0->ne[3] == t1->ne[3] );
  2236. }
  2237. // check if t1 can be represented as a repeatition of t0
  2238. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2239. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2240. return
  2241. (t1->ne[0]%t0->ne[0] == 0) &&
  2242. (t1->ne[1]%t0->ne[1] == 0) &&
  2243. (t1->ne[2]%t0->ne[2] == 0) &&
  2244. (t1->ne[3]%t0->ne[3] == 0);
  2245. }
  2246. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2247. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2248. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2249. }
  2250. static inline int ggml_up32(int n) {
  2251. return (n + 31) & ~31;
  2252. }
  2253. //static inline int ggml_up64(int n) {
  2254. // return (n + 63) & ~63;
  2255. //}
  2256. static inline int ggml_up(int n, int m) {
  2257. // assert m is a power of 2
  2258. GGML_ASSERT((m & (m - 1)) == 0);
  2259. return (n + m - 1) & ~(m - 1);
  2260. }
  2261. // assert that pointer is aligned to GGML_MEM_ALIGN
  2262. #define ggml_assert_aligned(ptr) \
  2263. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2264. ////////////////////////////////////////////////////////////////////////////////
  2265. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2266. // make this function thread safe
  2267. ggml_critical_section_start();
  2268. static bool is_first_call = true;
  2269. if (is_first_call) {
  2270. // initialize time system (required on Windows)
  2271. ggml_time_init();
  2272. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2273. {
  2274. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2275. ggml_fp16_t ii;
  2276. for (int i = 0; i < (1 << 16); ++i) {
  2277. uint16_t ui = i;
  2278. memcpy(&ii, &ui, sizeof(ii));
  2279. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2280. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2281. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2282. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2283. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2284. }
  2285. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2286. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2287. }
  2288. // initialize g_state
  2289. {
  2290. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2291. g_state = (struct ggml_state) {
  2292. /*.contexts =*/ { { 0 } },
  2293. /*.numa =*/ {
  2294. .n_nodes = 0,
  2295. .total_cpus = 0,
  2296. },
  2297. };
  2298. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2299. g_state.contexts[i].used = false;
  2300. }
  2301. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2302. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2303. }
  2304. #if defined(GGML_USE_CLBLAST)
  2305. ggml_cl_init();
  2306. #elif defined(GGML_USE_VULKAN)
  2307. ggml_vk_init_cpu_assist();
  2308. #elif defined(GGML_USE_SYCL)
  2309. ggml_init_sycl();
  2310. #endif
  2311. ggml_setup_op_has_task_pass();
  2312. is_first_call = false;
  2313. }
  2314. // find non-used context in g_state
  2315. struct ggml_context * ctx = NULL;
  2316. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2317. if (!g_state.contexts[i].used) {
  2318. g_state.contexts[i].used = true;
  2319. ctx = &g_state.contexts[i].context;
  2320. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2321. break;
  2322. }
  2323. }
  2324. if (ctx == NULL) {
  2325. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2326. ggml_critical_section_end();
  2327. return NULL;
  2328. }
  2329. // allow to call ggml_init with 0 size
  2330. if (params.mem_size == 0) {
  2331. params.mem_size = GGML_MEM_ALIGN;
  2332. }
  2333. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2334. *ctx = (struct ggml_context) {
  2335. /*.mem_size =*/ mem_size,
  2336. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2337. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2338. /*.no_alloc =*/ params.no_alloc,
  2339. /*.no_alloc_save =*/ params.no_alloc,
  2340. /*.n_objects =*/ 0,
  2341. /*.objects_begin =*/ NULL,
  2342. /*.objects_end =*/ NULL,
  2343. /*.scratch =*/ { 0, 0, NULL, },
  2344. /*.scratch_save =*/ { 0, 0, NULL, },
  2345. };
  2346. GGML_ASSERT(ctx->mem_buffer != NULL);
  2347. ggml_assert_aligned(ctx->mem_buffer);
  2348. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2349. ggml_critical_section_end();
  2350. return ctx;
  2351. }
  2352. void ggml_free(struct ggml_context * ctx) {
  2353. if (ctx == NULL) {
  2354. return;
  2355. }
  2356. // make this function thread safe
  2357. ggml_critical_section_start();
  2358. bool found = false;
  2359. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2360. if (&g_state.contexts[i].context == ctx) {
  2361. g_state.contexts[i].used = false;
  2362. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2363. __func__, i, ggml_used_mem(ctx));
  2364. if (ctx->mem_buffer_owned) {
  2365. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2366. }
  2367. found = true;
  2368. break;
  2369. }
  2370. }
  2371. if (!found) {
  2372. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2373. }
  2374. ggml_critical_section_end();
  2375. }
  2376. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2377. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2378. }
  2379. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2380. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2381. ctx->scratch = scratch;
  2382. return result;
  2383. }
  2384. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2385. return ctx->no_alloc;
  2386. }
  2387. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2388. ctx->no_alloc = no_alloc;
  2389. }
  2390. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2391. return ctx->mem_buffer;
  2392. }
  2393. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2394. return ctx->mem_size;
  2395. }
  2396. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2397. size_t max_size = 0;
  2398. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2399. size_t bytes = ggml_nbytes(tensor);
  2400. max_size = MAX(max_size, bytes);
  2401. }
  2402. return max_size;
  2403. }
  2404. // IMPORTANT:
  2405. // when creating "opt" tensors, always save and load the scratch buffer
  2406. // this is an error prone process, but it is necessary to support inplace
  2407. // operators when using scratch buffers
  2408. // TODO: implement a better way
  2409. static void ggml_scratch_save(struct ggml_context * ctx) {
  2410. // this is needed to allow opt tensors to store their data
  2411. // TODO: again, need to find a better way
  2412. ctx->no_alloc_save = ctx->no_alloc;
  2413. ctx->no_alloc = false;
  2414. ctx->scratch_save = ctx->scratch;
  2415. ctx->scratch.data = NULL;
  2416. }
  2417. static void ggml_scratch_load(struct ggml_context * ctx) {
  2418. ctx->no_alloc = ctx->no_alloc_save;
  2419. ctx->scratch = ctx->scratch_save;
  2420. }
  2421. ////////////////////////////////////////////////////////////////////////////////
  2422. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2423. // always insert objects at the end of the context's memory pool
  2424. struct ggml_object * obj_cur = ctx->objects_end;
  2425. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2426. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2427. const size_t cur_end = cur_offs + cur_size;
  2428. // align to GGML_MEM_ALIGN
  2429. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2430. char * const mem_buffer = ctx->mem_buffer;
  2431. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2432. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2433. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2434. __func__, cur_end + size_needed, ctx->mem_size);
  2435. assert(false);
  2436. return NULL;
  2437. }
  2438. *obj_new = (struct ggml_object) {
  2439. .offs = cur_end + GGML_OBJECT_SIZE,
  2440. .size = size_needed,
  2441. .next = NULL,
  2442. .type = type,
  2443. };
  2444. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2445. if (obj_cur != NULL) {
  2446. obj_cur->next = obj_new;
  2447. } else {
  2448. // this is the first object in this context
  2449. ctx->objects_begin = obj_new;
  2450. }
  2451. ctx->objects_end = obj_new;
  2452. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2453. return obj_new;
  2454. }
  2455. static struct ggml_tensor * ggml_new_tensor_impl(
  2456. struct ggml_context * ctx,
  2457. enum ggml_type type,
  2458. int n_dims,
  2459. const int64_t * ne,
  2460. struct ggml_tensor * view_src,
  2461. size_t view_offs) {
  2462. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2463. // find the base tensor and absolute offset
  2464. if (view_src != NULL && view_src->view_src != NULL) {
  2465. view_offs += view_src->view_offs;
  2466. view_src = view_src->view_src;
  2467. }
  2468. size_t data_size = ggml_row_size(type, ne[0]);
  2469. for (int i = 1; i < n_dims; i++) {
  2470. data_size *= ne[i];
  2471. }
  2472. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2473. void * data = view_src != NULL ? view_src->data : NULL;
  2474. if (data != NULL) {
  2475. data = (char *) data + view_offs;
  2476. }
  2477. size_t obj_alloc_size = 0;
  2478. if (view_src == NULL && !ctx->no_alloc) {
  2479. if (ctx->scratch.data != NULL) {
  2480. // allocate tensor data in the scratch buffer
  2481. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2482. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2483. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2484. assert(false);
  2485. return NULL;
  2486. }
  2487. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2488. ctx->scratch.offs += data_size;
  2489. } else {
  2490. // allocate tensor data in the context's memory pool
  2491. obj_alloc_size = data_size;
  2492. }
  2493. }
  2494. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2495. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2496. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2497. *result = (struct ggml_tensor) {
  2498. /*.type =*/ type,
  2499. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2500. /*.buffer =*/ NULL,
  2501. /*.ne =*/ { 1, 1, 1, 1 },
  2502. /*.nb =*/ { 0, 0, 0, 0 },
  2503. /*.op =*/ GGML_OP_NONE,
  2504. /*.op_params =*/ { 0 },
  2505. /*.flags =*/ 0,
  2506. /*.grad =*/ NULL,
  2507. /*.src =*/ { NULL },
  2508. /*.perf_runs =*/ 0,
  2509. /*.perf_cycles =*/ 0,
  2510. /*.perf_time_us =*/ 0,
  2511. /*.view_src =*/ view_src,
  2512. /*.view_offs =*/ view_offs,
  2513. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2514. /*.name =*/ { 0 },
  2515. /*.extra =*/ NULL,
  2516. /*.padding =*/ { 0 },
  2517. };
  2518. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2519. //ggml_assert_aligned(result->data);
  2520. for (int i = 0; i < n_dims; i++) {
  2521. result->ne[i] = ne[i];
  2522. }
  2523. result->nb[0] = ggml_type_size(type);
  2524. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2525. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2526. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2527. }
  2528. ctx->n_objects++;
  2529. return result;
  2530. }
  2531. struct ggml_tensor * ggml_new_tensor(
  2532. struct ggml_context * ctx,
  2533. enum ggml_type type,
  2534. int n_dims,
  2535. const int64_t * ne) {
  2536. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2537. }
  2538. struct ggml_tensor * ggml_new_tensor_1d(
  2539. struct ggml_context * ctx,
  2540. enum ggml_type type,
  2541. int64_t ne0) {
  2542. return ggml_new_tensor(ctx, type, 1, &ne0);
  2543. }
  2544. struct ggml_tensor * ggml_new_tensor_2d(
  2545. struct ggml_context * ctx,
  2546. enum ggml_type type,
  2547. int64_t ne0,
  2548. int64_t ne1) {
  2549. const int64_t ne[2] = { ne0, ne1 };
  2550. return ggml_new_tensor(ctx, type, 2, ne);
  2551. }
  2552. struct ggml_tensor * ggml_new_tensor_3d(
  2553. struct ggml_context * ctx,
  2554. enum ggml_type type,
  2555. int64_t ne0,
  2556. int64_t ne1,
  2557. int64_t ne2) {
  2558. const int64_t ne[3] = { ne0, ne1, ne2 };
  2559. return ggml_new_tensor(ctx, type, 3, ne);
  2560. }
  2561. struct ggml_tensor * ggml_new_tensor_4d(
  2562. struct ggml_context * ctx,
  2563. enum ggml_type type,
  2564. int64_t ne0,
  2565. int64_t ne1,
  2566. int64_t ne2,
  2567. int64_t ne3) {
  2568. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2569. return ggml_new_tensor(ctx, type, 4, ne);
  2570. }
  2571. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2572. ggml_scratch_save(ctx);
  2573. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2574. ggml_scratch_load(ctx);
  2575. ggml_set_i32(result, value);
  2576. return result;
  2577. }
  2578. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2579. ggml_scratch_save(ctx);
  2580. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2581. ggml_scratch_load(ctx);
  2582. ggml_set_f32(result, value);
  2583. return result;
  2584. }
  2585. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2586. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2587. }
  2588. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2589. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2590. assert(params_size <= GGML_MAX_OP_PARAMS);
  2591. memcpy(tensor->op_params, params, params_size);
  2592. }
  2593. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2594. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2595. return ((const int32_t *)(tensor->op_params))[i];
  2596. }
  2597. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2598. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2599. return ((const float *)(tensor->op_params))[i];
  2600. }
  2601. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2602. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2603. ((int32_t *)(tensor->op_params))[i] = value;
  2604. }
  2605. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2606. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2607. ((float *)(tensor->op_params))[i] = value;
  2608. }
  2609. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2610. memset(tensor->data, 0, ggml_nbytes(tensor));
  2611. return tensor;
  2612. }
  2613. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2614. const int n = ggml_nrows(tensor);
  2615. const int nc = tensor->ne[0];
  2616. const size_t n1 = tensor->nb[1];
  2617. char * const data = tensor->data;
  2618. switch (tensor->type) {
  2619. case GGML_TYPE_I8:
  2620. {
  2621. assert(tensor->nb[0] == sizeof(int8_t));
  2622. for (int i = 0; i < n; i++) {
  2623. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2624. }
  2625. } break;
  2626. case GGML_TYPE_I16:
  2627. {
  2628. assert(tensor->nb[0] == sizeof(int16_t));
  2629. for (int i = 0; i < n; i++) {
  2630. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2631. }
  2632. } break;
  2633. case GGML_TYPE_I32:
  2634. {
  2635. assert(tensor->nb[0] == sizeof(int32_t));
  2636. for (int i = 0; i < n; i++) {
  2637. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2638. }
  2639. } break;
  2640. case GGML_TYPE_F16:
  2641. {
  2642. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2643. for (int i = 0; i < n; i++) {
  2644. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2645. }
  2646. } break;
  2647. case GGML_TYPE_F32:
  2648. {
  2649. assert(tensor->nb[0] == sizeof(float));
  2650. for (int i = 0; i < n; i++) {
  2651. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2652. }
  2653. } break;
  2654. default:
  2655. {
  2656. GGML_ASSERT(false);
  2657. } break;
  2658. }
  2659. return tensor;
  2660. }
  2661. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2662. const int n = ggml_nrows(tensor);
  2663. const int nc = tensor->ne[0];
  2664. const size_t n1 = tensor->nb[1];
  2665. char * const data = tensor->data;
  2666. switch (tensor->type) {
  2667. case GGML_TYPE_I8:
  2668. {
  2669. assert(tensor->nb[0] == sizeof(int8_t));
  2670. for (int i = 0; i < n; i++) {
  2671. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2672. }
  2673. } break;
  2674. case GGML_TYPE_I16:
  2675. {
  2676. assert(tensor->nb[0] == sizeof(int16_t));
  2677. for (int i = 0; i < n; i++) {
  2678. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2679. }
  2680. } break;
  2681. case GGML_TYPE_I32:
  2682. {
  2683. assert(tensor->nb[0] == sizeof(int32_t));
  2684. for (int i = 0; i < n; i++) {
  2685. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2686. }
  2687. } break;
  2688. case GGML_TYPE_F16:
  2689. {
  2690. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2691. for (int i = 0; i < n; i++) {
  2692. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2693. }
  2694. } break;
  2695. case GGML_TYPE_F32:
  2696. {
  2697. assert(tensor->nb[0] == sizeof(float));
  2698. for (int i = 0; i < n; i++) {
  2699. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2700. }
  2701. } break;
  2702. default:
  2703. {
  2704. GGML_ASSERT(false);
  2705. } break;
  2706. }
  2707. return tensor;
  2708. }
  2709. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2710. const int64_t ne2 = tensor->ne[2];
  2711. const int64_t ne1 = tensor->ne[1];
  2712. const int64_t ne0 = tensor->ne[0];
  2713. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2714. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2715. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2716. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2717. if (i0) {
  2718. * i0 = i0_;
  2719. }
  2720. if (i1) {
  2721. * i1 = i1_;
  2722. }
  2723. if (i2) {
  2724. * i2 = i2_;
  2725. }
  2726. if (i3) {
  2727. * i3 = i3_;
  2728. }
  2729. }
  2730. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2731. if (!ggml_is_contiguous(tensor)) {
  2732. int64_t id[4] = { 0, 0, 0, 0 };
  2733. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2734. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2735. }
  2736. switch (tensor->type) {
  2737. case GGML_TYPE_I8:
  2738. {
  2739. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2740. return ((int8_t *)(tensor->data))[i];
  2741. }
  2742. case GGML_TYPE_I16:
  2743. {
  2744. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2745. return ((int16_t *)(tensor->data))[i];
  2746. }
  2747. case GGML_TYPE_I32:
  2748. {
  2749. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2750. return ((int32_t *)(tensor->data))[i];
  2751. }
  2752. case GGML_TYPE_F16:
  2753. {
  2754. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2755. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2756. }
  2757. case GGML_TYPE_F32:
  2758. {
  2759. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2760. return ((float *)(tensor->data))[i];
  2761. }
  2762. default:
  2763. {
  2764. GGML_ASSERT(false);
  2765. }
  2766. }
  2767. return 0.0f;
  2768. }
  2769. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2770. if (!ggml_is_contiguous(tensor)) {
  2771. int64_t id[4] = { 0, 0, 0, 0 };
  2772. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2773. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2774. return;
  2775. }
  2776. switch (tensor->type) {
  2777. case GGML_TYPE_I8:
  2778. {
  2779. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2780. ((int8_t *)(tensor->data))[i] = value;
  2781. } break;
  2782. case GGML_TYPE_I16:
  2783. {
  2784. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2785. ((int16_t *)(tensor->data))[i] = value;
  2786. } break;
  2787. case GGML_TYPE_I32:
  2788. {
  2789. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2790. ((int32_t *)(tensor->data))[i] = value;
  2791. } break;
  2792. case GGML_TYPE_F16:
  2793. {
  2794. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2795. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2796. } break;
  2797. case GGML_TYPE_F32:
  2798. {
  2799. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2800. ((float *)(tensor->data))[i] = value;
  2801. } break;
  2802. default:
  2803. {
  2804. GGML_ASSERT(false);
  2805. } break;
  2806. }
  2807. }
  2808. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2809. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2810. switch (tensor->type) {
  2811. case GGML_TYPE_I8:
  2812. return ((int8_t *) data)[0];
  2813. case GGML_TYPE_I16:
  2814. return ((int16_t *) data)[0];
  2815. case GGML_TYPE_I32:
  2816. return ((int32_t *) data)[0];
  2817. case GGML_TYPE_F16:
  2818. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2819. case GGML_TYPE_F32:
  2820. return ((float *) data)[0];
  2821. default:
  2822. GGML_ASSERT(false);
  2823. }
  2824. return 0.0f;
  2825. }
  2826. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2827. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2828. switch (tensor->type) {
  2829. case GGML_TYPE_I8:
  2830. {
  2831. ((int8_t *)(data))[0] = value;
  2832. } break;
  2833. case GGML_TYPE_I16:
  2834. {
  2835. ((int16_t *)(data))[0] = value;
  2836. } break;
  2837. case GGML_TYPE_I32:
  2838. {
  2839. ((int32_t *)(data))[0] = value;
  2840. } break;
  2841. case GGML_TYPE_F16:
  2842. {
  2843. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2844. } break;
  2845. case GGML_TYPE_F32:
  2846. {
  2847. ((float *)(data))[0] = value;
  2848. } break;
  2849. default:
  2850. {
  2851. GGML_ASSERT(false);
  2852. } break;
  2853. }
  2854. }
  2855. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2856. if (!ggml_is_contiguous(tensor)) {
  2857. int64_t id[4] = { 0, 0, 0, 0 };
  2858. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2859. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2860. }
  2861. switch (tensor->type) {
  2862. case GGML_TYPE_I8:
  2863. {
  2864. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2865. return ((int8_t *)(tensor->data))[i];
  2866. }
  2867. case GGML_TYPE_I16:
  2868. {
  2869. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2870. return ((int16_t *)(tensor->data))[i];
  2871. }
  2872. case GGML_TYPE_I32:
  2873. {
  2874. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2875. return ((int32_t *)(tensor->data))[i];
  2876. }
  2877. case GGML_TYPE_F16:
  2878. {
  2879. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2880. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2881. }
  2882. case GGML_TYPE_F32:
  2883. {
  2884. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2885. return ((float *)(tensor->data))[i];
  2886. }
  2887. default:
  2888. {
  2889. GGML_ASSERT(false);
  2890. }
  2891. }
  2892. return 0.0f;
  2893. }
  2894. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2895. if (!ggml_is_contiguous(tensor)) {
  2896. int64_t id[4] = { 0, 0, 0, 0 };
  2897. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2898. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2899. return;
  2900. }
  2901. switch (tensor->type) {
  2902. case GGML_TYPE_I8:
  2903. {
  2904. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2905. ((int8_t *)(tensor->data))[i] = value;
  2906. } break;
  2907. case GGML_TYPE_I16:
  2908. {
  2909. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2910. ((int16_t *)(tensor->data))[i] = value;
  2911. } break;
  2912. case GGML_TYPE_I32:
  2913. {
  2914. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2915. ((int32_t *)(tensor->data))[i] = value;
  2916. } break;
  2917. case GGML_TYPE_F16:
  2918. {
  2919. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2920. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2921. } break;
  2922. case GGML_TYPE_F32:
  2923. {
  2924. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2925. ((float *)(tensor->data))[i] = value;
  2926. } break;
  2927. default:
  2928. {
  2929. GGML_ASSERT(false);
  2930. } break;
  2931. }
  2932. }
  2933. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2934. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2935. switch (tensor->type) {
  2936. case GGML_TYPE_I8:
  2937. return ((int8_t *) data)[0];
  2938. case GGML_TYPE_I16:
  2939. return ((int16_t *) data)[0];
  2940. case GGML_TYPE_I32:
  2941. return ((int32_t *) data)[0];
  2942. case GGML_TYPE_F16:
  2943. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2944. case GGML_TYPE_F32:
  2945. return ((float *) data)[0];
  2946. default:
  2947. GGML_ASSERT(false);
  2948. }
  2949. return 0.0f;
  2950. }
  2951. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2952. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2953. switch (tensor->type) {
  2954. case GGML_TYPE_I8:
  2955. {
  2956. ((int8_t *)(data))[0] = value;
  2957. } break;
  2958. case GGML_TYPE_I16:
  2959. {
  2960. ((int16_t *)(data))[0] = value;
  2961. } break;
  2962. case GGML_TYPE_I32:
  2963. {
  2964. ((int32_t *)(data))[0] = value;
  2965. } break;
  2966. case GGML_TYPE_F16:
  2967. {
  2968. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2969. } break;
  2970. case GGML_TYPE_F32:
  2971. {
  2972. ((float *)(data))[0] = value;
  2973. } break;
  2974. default:
  2975. {
  2976. GGML_ASSERT(false);
  2977. } break;
  2978. }
  2979. }
  2980. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2981. return tensor->data;
  2982. }
  2983. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2984. assert(tensor->type == GGML_TYPE_F32);
  2985. return (float *)(tensor->data);
  2986. }
  2987. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2988. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2989. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2990. }
  2991. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2992. return tensor->name;
  2993. }
  2994. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2995. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2996. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2997. return tensor;
  2998. }
  2999. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3000. va_list args;
  3001. va_start(args, fmt);
  3002. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3003. va_end(args);
  3004. return tensor;
  3005. }
  3006. struct ggml_tensor * ggml_view_tensor(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * src) {
  3009. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3010. ggml_format_name(result, "%s (view)", src->name);
  3011. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3012. result->nb[i] = src->nb[i];
  3013. }
  3014. return result;
  3015. }
  3016. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3017. struct ggml_object * obj = ctx->objects_begin;
  3018. char * const mem_buffer = ctx->mem_buffer;
  3019. while (obj != NULL) {
  3020. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3021. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3022. }
  3023. obj = obj->next;
  3024. }
  3025. return NULL;
  3026. }
  3027. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3028. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3029. obj = obj->next;
  3030. char * const mem_buffer = ctx->mem_buffer;
  3031. while (obj != NULL) {
  3032. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3033. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3034. }
  3035. obj = obj->next;
  3036. }
  3037. return NULL;
  3038. }
  3039. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3040. struct ggml_object * obj = ctx->objects_begin;
  3041. char * const mem_buffer = ctx->mem_buffer;
  3042. while (obj != NULL) {
  3043. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3044. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3045. if (strcmp(cur->name, name) == 0) {
  3046. return cur;
  3047. }
  3048. }
  3049. obj = obj->next;
  3050. }
  3051. return NULL;
  3052. }
  3053. ////////////////////////////////////////////////////////////////////////////////
  3054. // ggml_dup
  3055. static struct ggml_tensor * ggml_dup_impl(
  3056. struct ggml_context * ctx,
  3057. struct ggml_tensor * a,
  3058. bool inplace) {
  3059. bool is_node = false;
  3060. if (!inplace && (a->grad)) {
  3061. is_node = true;
  3062. }
  3063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3064. result->op = GGML_OP_DUP;
  3065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3066. result->src[0] = a;
  3067. return result;
  3068. }
  3069. struct ggml_tensor * ggml_dup(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a) {
  3072. return ggml_dup_impl(ctx, a, false);
  3073. }
  3074. struct ggml_tensor * ggml_dup_inplace(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a) {
  3077. return ggml_dup_impl(ctx, a, true);
  3078. }
  3079. // ggml_add
  3080. static struct ggml_tensor * ggml_add_impl(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. struct ggml_tensor * b,
  3084. bool inplace) {
  3085. GGML_ASSERT(ggml_can_repeat(b, a));
  3086. bool is_node = false;
  3087. if (!inplace && (a->grad || b->grad)) {
  3088. // TODO: support backward pass for broadcasting
  3089. GGML_ASSERT(ggml_are_same_shape(a, b));
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3093. result->op = GGML_OP_ADD;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src[0] = a;
  3096. result->src[1] = b;
  3097. return result;
  3098. }
  3099. struct ggml_tensor * ggml_add(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a,
  3102. struct ggml_tensor * b) {
  3103. return ggml_add_impl(ctx, a, b, false);
  3104. }
  3105. struct ggml_tensor * ggml_add_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a,
  3108. struct ggml_tensor * b) {
  3109. return ggml_add_impl(ctx, a, b, true);
  3110. }
  3111. // ggml_add_cast
  3112. static struct ggml_tensor * ggml_add_cast_impl(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a,
  3115. struct ggml_tensor * b,
  3116. enum ggml_type type) {
  3117. // TODO: support less-strict constraint
  3118. // GGML_ASSERT(ggml_can_repeat(b, a));
  3119. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3120. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3121. bool is_node = false;
  3122. if (a->grad || b->grad) {
  3123. // TODO: support backward pass for broadcasting
  3124. GGML_ASSERT(ggml_are_same_shape(a, b));
  3125. is_node = true;
  3126. }
  3127. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3128. result->op = GGML_OP_ADD;
  3129. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3130. result->src[0] = a;
  3131. result->src[1] = b;
  3132. return result;
  3133. }
  3134. struct ggml_tensor * ggml_add_cast(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a,
  3137. struct ggml_tensor * b,
  3138. enum ggml_type type) {
  3139. return ggml_add_cast_impl(ctx, a, b, type);
  3140. }
  3141. // ggml_add1
  3142. static struct ggml_tensor * ggml_add1_impl(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b,
  3146. bool inplace) {
  3147. GGML_ASSERT(ggml_is_scalar(b));
  3148. GGML_ASSERT(ggml_is_padded_1d(a));
  3149. bool is_node = false;
  3150. if (a->grad || b->grad) {
  3151. is_node = true;
  3152. }
  3153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3154. result->op = GGML_OP_ADD1;
  3155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3156. result->src[0] = a;
  3157. result->src[1] = b;
  3158. return result;
  3159. }
  3160. struct ggml_tensor * ggml_add1(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a,
  3163. struct ggml_tensor * b) {
  3164. return ggml_add1_impl(ctx, a, b, false);
  3165. }
  3166. struct ggml_tensor * ggml_add1_inplace(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a,
  3169. struct ggml_tensor * b) {
  3170. return ggml_add1_impl(ctx, a, b, true);
  3171. }
  3172. // ggml_acc
  3173. static struct ggml_tensor * ggml_acc_impl(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a,
  3176. struct ggml_tensor * b,
  3177. size_t nb1,
  3178. size_t nb2,
  3179. size_t nb3,
  3180. size_t offset,
  3181. bool inplace) {
  3182. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3183. GGML_ASSERT(ggml_is_contiguous(a));
  3184. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3185. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3186. bool is_node = false;
  3187. if (!inplace && (a->grad || b->grad)) {
  3188. is_node = true;
  3189. }
  3190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3191. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3192. ggml_set_op_params(result, params, sizeof(params));
  3193. result->op = GGML_OP_ACC;
  3194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3195. result->src[0] = a;
  3196. result->src[1] = b;
  3197. return result;
  3198. }
  3199. struct ggml_tensor * ggml_acc(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a,
  3202. struct ggml_tensor * b,
  3203. size_t nb1,
  3204. size_t nb2,
  3205. size_t nb3,
  3206. size_t offset) {
  3207. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3208. }
  3209. struct ggml_tensor * ggml_acc_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a,
  3212. struct ggml_tensor * b,
  3213. size_t nb1,
  3214. size_t nb2,
  3215. size_t nb3,
  3216. size_t offset) {
  3217. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3218. }
  3219. // ggml_sub
  3220. static struct ggml_tensor * ggml_sub_impl(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a,
  3223. struct ggml_tensor * b,
  3224. bool inplace) {
  3225. GGML_ASSERT(ggml_are_same_shape(a, b));
  3226. bool is_node = false;
  3227. if (!inplace && (a->grad || b->grad)) {
  3228. is_node = true;
  3229. }
  3230. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3231. result->op = GGML_OP_SUB;
  3232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3233. result->src[0] = a;
  3234. result->src[1] = b;
  3235. return result;
  3236. }
  3237. struct ggml_tensor * ggml_sub(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b) {
  3241. return ggml_sub_impl(ctx, a, b, false);
  3242. }
  3243. struct ggml_tensor * ggml_sub_inplace(
  3244. struct ggml_context * ctx,
  3245. struct ggml_tensor * a,
  3246. struct ggml_tensor * b) {
  3247. return ggml_sub_impl(ctx, a, b, true);
  3248. }
  3249. // ggml_mul
  3250. static struct ggml_tensor * ggml_mul_impl(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a,
  3253. struct ggml_tensor * b,
  3254. bool inplace) {
  3255. GGML_ASSERT(ggml_can_repeat(b, a));
  3256. bool is_node = false;
  3257. if (!inplace && (a->grad || b->grad)) {
  3258. // TODO: support backward pass for broadcasting
  3259. GGML_ASSERT(ggml_are_same_shape(a, b));
  3260. is_node = true;
  3261. }
  3262. if (inplace) {
  3263. GGML_ASSERT(!is_node);
  3264. }
  3265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3266. result->op = GGML_OP_MUL;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. result->src[1] = b;
  3270. return result;
  3271. }
  3272. struct ggml_tensor * ggml_mul(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a,
  3275. struct ggml_tensor * b) {
  3276. return ggml_mul_impl(ctx, a, b, false);
  3277. }
  3278. struct ggml_tensor * ggml_mul_inplace(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a,
  3281. struct ggml_tensor * b) {
  3282. return ggml_mul_impl(ctx, a, b, true);
  3283. }
  3284. // ggml_div
  3285. static struct ggml_tensor * ggml_div_impl(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a,
  3288. struct ggml_tensor * b,
  3289. bool inplace) {
  3290. GGML_ASSERT(ggml_can_repeat(b, a));
  3291. bool is_node = false;
  3292. if (!inplace && (a->grad || b->grad)) {
  3293. is_node = true;
  3294. }
  3295. if (inplace) {
  3296. GGML_ASSERT(!is_node);
  3297. }
  3298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3299. result->op = GGML_OP_DIV;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. result->src[1] = b;
  3303. return result;
  3304. }
  3305. struct ggml_tensor * ggml_div(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. struct ggml_tensor * b) {
  3309. return ggml_div_impl(ctx, a, b, false);
  3310. }
  3311. struct ggml_tensor * ggml_div_inplace(
  3312. struct ggml_context * ctx,
  3313. struct ggml_tensor * a,
  3314. struct ggml_tensor * b) {
  3315. return ggml_div_impl(ctx, a, b, true);
  3316. }
  3317. // ggml_sqr
  3318. static struct ggml_tensor * ggml_sqr_impl(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a,
  3321. bool inplace) {
  3322. bool is_node = false;
  3323. if (!inplace && (a->grad)) {
  3324. is_node = true;
  3325. }
  3326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3327. result->op = GGML_OP_SQR;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src[0] = a;
  3330. return result;
  3331. }
  3332. struct ggml_tensor * ggml_sqr(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a) {
  3335. return ggml_sqr_impl(ctx, a, false);
  3336. }
  3337. struct ggml_tensor * ggml_sqr_inplace(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a) {
  3340. return ggml_sqr_impl(ctx, a, true);
  3341. }
  3342. // ggml_sqrt
  3343. static struct ggml_tensor * ggml_sqrt_impl(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. bool inplace) {
  3347. bool is_node = false;
  3348. if (!inplace && (a->grad)) {
  3349. is_node = true;
  3350. }
  3351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3352. result->op = GGML_OP_SQRT;
  3353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3354. result->src[0] = a;
  3355. return result;
  3356. }
  3357. struct ggml_tensor * ggml_sqrt(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a) {
  3360. return ggml_sqrt_impl(ctx, a, false);
  3361. }
  3362. struct ggml_tensor * ggml_sqrt_inplace(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a) {
  3365. return ggml_sqrt_impl(ctx, a, true);
  3366. }
  3367. // ggml_log
  3368. static struct ggml_tensor * ggml_log_impl(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. bool inplace) {
  3372. bool is_node = false;
  3373. if (!inplace && (a->grad)) {
  3374. is_node = true;
  3375. }
  3376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3377. result->op = GGML_OP_LOG;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. return result;
  3381. }
  3382. struct ggml_tensor * ggml_log(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_log_impl(ctx, a, false);
  3386. }
  3387. struct ggml_tensor * ggml_log_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a) {
  3390. return ggml_log_impl(ctx, a, true);
  3391. }
  3392. // ggml_sum
  3393. struct ggml_tensor * ggml_sum(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a) {
  3396. bool is_node = false;
  3397. if (a->grad) {
  3398. is_node = true;
  3399. }
  3400. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3401. result->op = GGML_OP_SUM;
  3402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3403. result->src[0] = a;
  3404. return result;
  3405. }
  3406. // ggml_sum_rows
  3407. struct ggml_tensor * ggml_sum_rows(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a) {
  3410. bool is_node = false;
  3411. if (a->grad) {
  3412. is_node = true;
  3413. }
  3414. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3415. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3416. ne[i] = a->ne[i];
  3417. }
  3418. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3419. result->op = GGML_OP_SUM_ROWS;
  3420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3421. result->src[0] = a;
  3422. return result;
  3423. }
  3424. // ggml_mean
  3425. struct ggml_tensor * ggml_mean(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a) {
  3428. bool is_node = false;
  3429. if (a->grad) {
  3430. GGML_ASSERT(false); // TODO: implement
  3431. is_node = true;
  3432. }
  3433. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3435. result->op = GGML_OP_MEAN;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. return result;
  3439. }
  3440. // ggml_argmax
  3441. struct ggml_tensor * ggml_argmax(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a) {
  3444. GGML_ASSERT(ggml_is_matrix(a));
  3445. bool is_node = false;
  3446. if (a->grad) {
  3447. GGML_ASSERT(false);
  3448. is_node = true;
  3449. }
  3450. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3451. result->op = GGML_OP_ARGMAX;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src[0] = a;
  3454. return result;
  3455. }
  3456. // ggml_repeat
  3457. struct ggml_tensor * ggml_repeat(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. struct ggml_tensor * b) {
  3461. GGML_ASSERT(ggml_can_repeat(a, b));
  3462. bool is_node = false;
  3463. if (a->grad) {
  3464. is_node = true;
  3465. }
  3466. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3467. result->op = GGML_OP_REPEAT;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. return result;
  3471. }
  3472. // ggml_repeat_back
  3473. struct ggml_tensor * ggml_repeat_back(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. GGML_ASSERT(ggml_can_repeat(b, a));
  3478. bool is_node = false;
  3479. if (a->grad) {
  3480. is_node = true;
  3481. }
  3482. if (ggml_are_same_shape(a, b) && !is_node) {
  3483. return a;
  3484. }
  3485. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3486. result->op = GGML_OP_REPEAT_BACK;
  3487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3488. result->src[0] = a;
  3489. return result;
  3490. }
  3491. // ggml_concat
  3492. struct ggml_tensor * ggml_concat(
  3493. struct ggml_context* ctx,
  3494. struct ggml_tensor* a,
  3495. struct ggml_tensor* b) {
  3496. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3497. bool is_node = false;
  3498. if (a->grad || b->grad) {
  3499. is_node = true;
  3500. }
  3501. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3502. result->op = GGML_OP_CONCAT;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. result->src[1] = b;
  3506. return result;
  3507. }
  3508. // ggml_abs
  3509. struct ggml_tensor * ggml_abs(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a) {
  3512. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3513. }
  3514. struct ggml_tensor * ggml_abs_inplace(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a) {
  3517. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3518. }
  3519. // ggml_sgn
  3520. struct ggml_tensor * ggml_sgn(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a) {
  3523. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3524. }
  3525. struct ggml_tensor * ggml_sgn_inplace(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a) {
  3528. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3529. }
  3530. // ggml_neg
  3531. struct ggml_tensor * ggml_neg(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a) {
  3534. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3535. }
  3536. struct ggml_tensor * ggml_neg_inplace(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a) {
  3539. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3540. }
  3541. // ggml_step
  3542. struct ggml_tensor * ggml_step(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a) {
  3545. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3546. }
  3547. struct ggml_tensor * ggml_step_inplace(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a) {
  3550. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3551. }
  3552. // ggml_tanh
  3553. struct ggml_tensor * ggml_tanh(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a) {
  3556. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3557. }
  3558. struct ggml_tensor * ggml_tanh_inplace(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3562. }
  3563. // ggml_elu
  3564. struct ggml_tensor * ggml_elu(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a) {
  3567. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3568. }
  3569. struct ggml_tensor * ggml_elu_inplace(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3573. }
  3574. // ggml_relu
  3575. struct ggml_tensor * ggml_relu(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a) {
  3578. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3579. }
  3580. struct ggml_tensor * ggml_relu_inplace(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3584. }
  3585. // ggml_leaky_relu
  3586. struct ggml_tensor * ggml_leaky_relu(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3589. bool is_node = false;
  3590. if (!inplace && (a->grad)) {
  3591. is_node = true;
  3592. }
  3593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3594. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3595. result->op = GGML_OP_LEAKY_RELU;
  3596. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3597. result->src[0] = a;
  3598. return result;
  3599. }
  3600. // ggml_gelu
  3601. struct ggml_tensor * ggml_gelu(
  3602. struct ggml_context * ctx,
  3603. struct ggml_tensor * a) {
  3604. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3605. }
  3606. struct ggml_tensor * ggml_gelu_inplace(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a) {
  3609. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3610. }
  3611. // ggml_gelu_quick
  3612. struct ggml_tensor * ggml_gelu_quick(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a) {
  3615. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3616. }
  3617. struct ggml_tensor * ggml_gelu_quick_inplace(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3621. }
  3622. // ggml_silu
  3623. struct ggml_tensor * ggml_silu(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a) {
  3626. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3627. }
  3628. struct ggml_tensor * ggml_silu_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3632. }
  3633. // ggml_silu_back
  3634. struct ggml_tensor * ggml_silu_back(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. struct ggml_tensor * b) {
  3638. bool is_node = false;
  3639. if (a->grad || b->grad) {
  3640. // TODO: implement backward
  3641. is_node = true;
  3642. }
  3643. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3644. result->op = GGML_OP_SILU_BACK;
  3645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3646. result->src[0] = a;
  3647. result->src[1] = b;
  3648. return result;
  3649. }
  3650. // ggml hardswish
  3651. struct ggml_tensor * ggml_hardswish(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a) {
  3654. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3655. }
  3656. // ggml hardsigmoid
  3657. struct ggml_tensor * ggml_hardsigmoid(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a) {
  3660. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3661. }
  3662. // ggml_norm
  3663. static struct ggml_tensor * ggml_norm_impl(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. float eps,
  3667. bool inplace) {
  3668. bool is_node = false;
  3669. if (!inplace && (a->grad)) {
  3670. GGML_ASSERT(false); // TODO: implement backward
  3671. is_node = true;
  3672. }
  3673. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3674. ggml_set_op_params(result, &eps, sizeof(eps));
  3675. result->op = GGML_OP_NORM;
  3676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3677. result->src[0] = a;
  3678. return result;
  3679. }
  3680. struct ggml_tensor * ggml_norm(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. float eps) {
  3684. return ggml_norm_impl(ctx, a, eps, false);
  3685. }
  3686. struct ggml_tensor * ggml_norm_inplace(
  3687. struct ggml_context * ctx,
  3688. struct ggml_tensor * a,
  3689. float eps) {
  3690. return ggml_norm_impl(ctx, a, eps, true);
  3691. }
  3692. // ggml_rms_norm
  3693. static struct ggml_tensor * ggml_rms_norm_impl(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. float eps,
  3697. bool inplace) {
  3698. bool is_node = false;
  3699. if (!inplace && (a->grad)) {
  3700. is_node = true;
  3701. }
  3702. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3703. ggml_set_op_params(result, &eps, sizeof(eps));
  3704. result->op = GGML_OP_RMS_NORM;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src[0] = a;
  3707. return result;
  3708. }
  3709. struct ggml_tensor * ggml_rms_norm(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. float eps) {
  3713. return ggml_rms_norm_impl(ctx, a, eps, false);
  3714. }
  3715. struct ggml_tensor * ggml_rms_norm_inplace(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. float eps) {
  3719. return ggml_rms_norm_impl(ctx, a, eps, true);
  3720. }
  3721. // ggml_rms_norm_back
  3722. struct ggml_tensor * ggml_rms_norm_back(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. struct ggml_tensor * b,
  3726. float eps) {
  3727. bool is_node = false;
  3728. if (a->grad) {
  3729. // TODO: implement backward
  3730. is_node = true;
  3731. }
  3732. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3733. ggml_set_op_params(result, &eps, sizeof(eps));
  3734. result->op = GGML_OP_RMS_NORM_BACK;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src[0] = a;
  3737. result->src[1] = b;
  3738. return result;
  3739. }
  3740. // ggml_group_norm
  3741. static struct ggml_tensor * ggml_group_norm_impl(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. int n_groups,
  3745. bool inplace) {
  3746. bool is_node = false;
  3747. if (!inplace && (a->grad)) {
  3748. GGML_ASSERT(false); // TODO: implement backward
  3749. is_node = true;
  3750. }
  3751. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3752. result->op_params[0] = n_groups;
  3753. result->op = GGML_OP_GROUP_NORM;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src[0] = a;
  3756. return result;
  3757. }
  3758. struct ggml_tensor * ggml_group_norm(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. int n_groups) {
  3762. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3763. }
  3764. struct ggml_tensor * ggml_group_norm_inplace(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a,
  3767. int n_groups) {
  3768. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3769. }
  3770. // ggml_mul_mat
  3771. struct ggml_tensor * ggml_mul_mat(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. struct ggml_tensor * b) {
  3775. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3776. GGML_ASSERT(!ggml_is_transposed(a));
  3777. bool is_node = false;
  3778. if (a->grad || b->grad) {
  3779. is_node = true;
  3780. }
  3781. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3782. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3783. result->op = GGML_OP_MUL_MAT;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src[0] = a;
  3786. result->src[1] = b;
  3787. return result;
  3788. }
  3789. void ggml_mul_mat_set_prec(
  3790. struct ggml_tensor * a,
  3791. enum ggml_prec prec) {
  3792. const int32_t prec_i32 = (int32_t) prec;
  3793. ggml_set_op_params_i32(a, 0, prec_i32);
  3794. }
  3795. // ggml_mul_mat_id
  3796. struct ggml_tensor * ggml_mul_mat_id(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * const as[],
  3799. int n_as,
  3800. struct ggml_tensor * ids,
  3801. int id,
  3802. struct ggml_tensor * b) {
  3803. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3804. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3805. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3806. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3807. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3808. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3809. bool is_node = false;
  3810. if (as[0]->grad || b->grad) {
  3811. is_node = true;
  3812. }
  3813. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3814. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3815. ggml_set_op_params_i32(result, 0, id);
  3816. ggml_set_op_params_i32(result, 1, n_as);
  3817. result->op = GGML_OP_MUL_MAT_ID;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src[0] = ids;
  3820. result->src[1] = b;
  3821. for (int i = 0; i < n_as; i++) {
  3822. struct ggml_tensor * a = as[i];
  3823. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3824. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3825. GGML_ASSERT(!ggml_is_transposed(a));
  3826. result->src[i + 2] = a;
  3827. }
  3828. return result;
  3829. }
  3830. // ggml_out_prod
  3831. struct ggml_tensor * ggml_out_prod(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. struct ggml_tensor * b) {
  3835. GGML_ASSERT(ggml_can_out_prod(a, b));
  3836. GGML_ASSERT(!ggml_is_transposed(a));
  3837. bool is_node = false;
  3838. if (a->grad || b->grad) {
  3839. is_node = true;
  3840. }
  3841. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3842. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3843. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3844. result->op = GGML_OP_OUT_PROD;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. result->src[1] = b;
  3848. return result;
  3849. }
  3850. // ggml_scale
  3851. static struct ggml_tensor * ggml_scale_impl(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. float s,
  3855. bool inplace) {
  3856. GGML_ASSERT(ggml_is_padded_1d(a));
  3857. bool is_node = false;
  3858. if (a->grad) {
  3859. is_node = true;
  3860. }
  3861. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3862. ggml_set_op_params(result, &s, sizeof(s));
  3863. result->op = GGML_OP_SCALE;
  3864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3865. result->src[0] = a;
  3866. return result;
  3867. }
  3868. struct ggml_tensor * ggml_scale(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. float s) {
  3872. return ggml_scale_impl(ctx, a, s, false);
  3873. }
  3874. struct ggml_tensor * ggml_scale_inplace(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. float s) {
  3878. return ggml_scale_impl(ctx, a, s, true);
  3879. }
  3880. // ggml_set
  3881. static struct ggml_tensor * ggml_set_impl(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a,
  3884. struct ggml_tensor * b,
  3885. size_t nb1,
  3886. size_t nb2,
  3887. size_t nb3,
  3888. size_t offset,
  3889. bool inplace) {
  3890. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3891. bool is_node = false;
  3892. if (a->grad || b->grad) {
  3893. is_node = true;
  3894. }
  3895. // make a view of the destination
  3896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3897. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3898. ggml_set_op_params(result, params, sizeof(params));
  3899. result->op = GGML_OP_SET;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src[0] = a;
  3902. result->src[1] = b;
  3903. return result;
  3904. }
  3905. struct ggml_tensor * ggml_set(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a,
  3908. struct ggml_tensor * b,
  3909. size_t nb1,
  3910. size_t nb2,
  3911. size_t nb3,
  3912. size_t offset) {
  3913. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3914. }
  3915. struct ggml_tensor * ggml_set_inplace(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. struct ggml_tensor * b,
  3919. size_t nb1,
  3920. size_t nb2,
  3921. size_t nb3,
  3922. size_t offset) {
  3923. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3924. }
  3925. struct ggml_tensor * ggml_set_1d(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b,
  3929. size_t offset) {
  3930. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3931. }
  3932. struct ggml_tensor * ggml_set_1d_inplace(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b,
  3936. size_t offset) {
  3937. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3938. }
  3939. struct ggml_tensor * ggml_set_2d(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. struct ggml_tensor * b,
  3943. size_t nb1,
  3944. size_t offset) {
  3945. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3946. }
  3947. struct ggml_tensor * ggml_set_2d_inplace(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b,
  3951. size_t nb1,
  3952. size_t offset) {
  3953. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3954. }
  3955. // ggml_cpy
  3956. static struct ggml_tensor * ggml_cpy_impl(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b) {
  3960. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3961. bool is_node = false;
  3962. if (a->grad || b->grad) {
  3963. // inplace is false and either one have a grad
  3964. is_node = true;
  3965. }
  3966. // make a view of the destination
  3967. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3968. if (strlen(b->name) > 0) {
  3969. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3970. } else {
  3971. ggml_format_name(result, "%s (copy)", a->name);
  3972. }
  3973. result->op = GGML_OP_CPY;
  3974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3975. result->src[0] = a;
  3976. result->src[1] = b;
  3977. return result;
  3978. }
  3979. struct ggml_tensor * ggml_cpy(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b) {
  3983. return ggml_cpy_impl(ctx, a, b);
  3984. }
  3985. struct ggml_tensor * ggml_cast(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. enum ggml_type type) {
  3989. bool is_node = false;
  3990. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3991. ggml_format_name(result, "%s (copy)", a->name);
  3992. result->op = GGML_OP_CPY;
  3993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3994. result->src[0] = a;
  3995. result->src[1] = result;
  3996. return result;
  3997. }
  3998. // ggml_cont
  3999. static struct ggml_tensor * ggml_cont_impl(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a) {
  4002. bool is_node = false;
  4003. if (a->grad) {
  4004. is_node = true;
  4005. }
  4006. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4007. ggml_format_name(result, "%s (cont)", a->name);
  4008. result->op = GGML_OP_CONT;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src[0] = a;
  4011. return result;
  4012. }
  4013. struct ggml_tensor * ggml_cont(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a) {
  4016. return ggml_cont_impl(ctx, a);
  4017. }
  4018. // make contiguous, with new shape
  4019. GGML_API struct ggml_tensor * ggml_cont_1d(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. int64_t ne0) {
  4023. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4024. }
  4025. GGML_API struct ggml_tensor * ggml_cont_2d(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. int64_t ne0,
  4029. int64_t ne1) {
  4030. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4031. }
  4032. GGML_API struct ggml_tensor * ggml_cont_3d(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. int64_t ne0,
  4036. int64_t ne1,
  4037. int64_t ne2) {
  4038. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4039. }
  4040. struct ggml_tensor * ggml_cont_4d(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. int64_t ne0,
  4044. int64_t ne1,
  4045. int64_t ne2,
  4046. int64_t ne3) {
  4047. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4048. bool is_node = false;
  4049. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4050. ggml_format_name(result, "%s (cont)", a->name);
  4051. result->op = GGML_OP_CONT;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src[0] = a;
  4054. return result;
  4055. }
  4056. // ggml_reshape
  4057. struct ggml_tensor * ggml_reshape(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. struct ggml_tensor * b) {
  4061. GGML_ASSERT(ggml_is_contiguous(a));
  4062. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4063. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4064. bool is_node = false;
  4065. if (a->grad) {
  4066. is_node = true;
  4067. }
  4068. if (b->grad) {
  4069. // gradient propagation is not supported
  4070. //GGML_ASSERT(false);
  4071. }
  4072. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4073. ggml_format_name(result, "%s (reshaped)", a->name);
  4074. result->op = GGML_OP_RESHAPE;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src[0] = a;
  4077. return result;
  4078. }
  4079. struct ggml_tensor * ggml_reshape_1d(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. int64_t ne0) {
  4083. GGML_ASSERT(ggml_is_contiguous(a));
  4084. GGML_ASSERT(ggml_nelements(a) == ne0);
  4085. bool is_node = false;
  4086. if (a->grad) {
  4087. is_node = true;
  4088. }
  4089. const int64_t ne[1] = { ne0 };
  4090. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4091. ggml_format_name(result, "%s (reshaped)", a->name);
  4092. result->op = GGML_OP_RESHAPE;
  4093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4094. result->src[0] = a;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_reshape_2d(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. int64_t ne0,
  4101. int64_t ne1) {
  4102. GGML_ASSERT(ggml_is_contiguous(a));
  4103. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4104. bool is_node = false;
  4105. if (a->grad) {
  4106. is_node = true;
  4107. }
  4108. const int64_t ne[2] = { ne0, ne1 };
  4109. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4110. ggml_format_name(result, "%s (reshaped)", a->name);
  4111. result->op = GGML_OP_RESHAPE;
  4112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4113. result->src[0] = a;
  4114. return result;
  4115. }
  4116. struct ggml_tensor * ggml_reshape_3d(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. int64_t ne0,
  4120. int64_t ne1,
  4121. int64_t ne2) {
  4122. GGML_ASSERT(ggml_is_contiguous(a));
  4123. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. is_node = true;
  4127. }
  4128. const int64_t ne[3] = { ne0, ne1, ne2 };
  4129. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4130. ggml_format_name(result, "%s (reshaped)", a->name);
  4131. result->op = GGML_OP_RESHAPE;
  4132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4133. result->src[0] = a;
  4134. return result;
  4135. }
  4136. struct ggml_tensor * ggml_reshape_4d(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. int64_t ne0,
  4140. int64_t ne1,
  4141. int64_t ne2,
  4142. int64_t ne3) {
  4143. GGML_ASSERT(ggml_is_contiguous(a));
  4144. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4145. bool is_node = false;
  4146. if (a->grad) {
  4147. is_node = true;
  4148. }
  4149. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4150. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4151. ggml_format_name(result, "%s (reshaped)", a->name);
  4152. result->op = GGML_OP_RESHAPE;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. return result;
  4156. }
  4157. static struct ggml_tensor * ggml_view_impl(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. int n_dims,
  4161. const int64_t * ne,
  4162. size_t offset) {
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4168. ggml_format_name(result, "%s (view)", a->name);
  4169. ggml_set_op_params(result, &offset, sizeof(offset));
  4170. result->op = GGML_OP_VIEW;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src[0] = a;
  4173. return result;
  4174. }
  4175. // ggml_view_1d
  4176. struct ggml_tensor * ggml_view_1d(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. int64_t ne0,
  4180. size_t offset) {
  4181. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4182. return result;
  4183. }
  4184. // ggml_view_2d
  4185. struct ggml_tensor * ggml_view_2d(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. int64_t ne0,
  4189. int64_t ne1,
  4190. size_t nb1,
  4191. size_t offset) {
  4192. const int64_t ne[2] = { ne0, ne1 };
  4193. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4194. result->nb[1] = nb1;
  4195. result->nb[2] = result->nb[1]*ne1;
  4196. result->nb[3] = result->nb[2];
  4197. return result;
  4198. }
  4199. // ggml_view_3d
  4200. struct ggml_tensor * ggml_view_3d(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a,
  4203. int64_t ne0,
  4204. int64_t ne1,
  4205. int64_t ne2,
  4206. size_t nb1,
  4207. size_t nb2,
  4208. size_t offset) {
  4209. const int64_t ne[3] = { ne0, ne1, ne2 };
  4210. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4211. result->nb[1] = nb1;
  4212. result->nb[2] = nb2;
  4213. result->nb[3] = result->nb[2]*ne2;
  4214. return result;
  4215. }
  4216. // ggml_view_4d
  4217. struct ggml_tensor * ggml_view_4d(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. int64_t ne0,
  4221. int64_t ne1,
  4222. int64_t ne2,
  4223. int64_t ne3,
  4224. size_t nb1,
  4225. size_t nb2,
  4226. size_t nb3,
  4227. size_t offset) {
  4228. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4229. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4230. result->nb[1] = nb1;
  4231. result->nb[2] = nb2;
  4232. result->nb[3] = nb3;
  4233. return result;
  4234. }
  4235. // ggml_permute
  4236. struct ggml_tensor * ggml_permute(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. int axis0,
  4240. int axis1,
  4241. int axis2,
  4242. int axis3) {
  4243. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4244. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4245. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4246. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4247. GGML_ASSERT(axis0 != axis1);
  4248. GGML_ASSERT(axis0 != axis2);
  4249. GGML_ASSERT(axis0 != axis3);
  4250. GGML_ASSERT(axis1 != axis2);
  4251. GGML_ASSERT(axis1 != axis3);
  4252. GGML_ASSERT(axis2 != axis3);
  4253. bool is_node = false;
  4254. if (a->grad) {
  4255. is_node = true;
  4256. }
  4257. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4258. ggml_format_name(result, "%s (permuted)", a->name);
  4259. int ne[GGML_MAX_DIMS];
  4260. int nb[GGML_MAX_DIMS];
  4261. ne[axis0] = a->ne[0];
  4262. ne[axis1] = a->ne[1];
  4263. ne[axis2] = a->ne[2];
  4264. ne[axis3] = a->ne[3];
  4265. nb[axis0] = a->nb[0];
  4266. nb[axis1] = a->nb[1];
  4267. nb[axis2] = a->nb[2];
  4268. nb[axis3] = a->nb[3];
  4269. result->ne[0] = ne[0];
  4270. result->ne[1] = ne[1];
  4271. result->ne[2] = ne[2];
  4272. result->ne[3] = ne[3];
  4273. result->nb[0] = nb[0];
  4274. result->nb[1] = nb[1];
  4275. result->nb[2] = nb[2];
  4276. result->nb[3] = nb[3];
  4277. result->op = GGML_OP_PERMUTE;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src[0] = a;
  4280. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4281. ggml_set_op_params(result, params, sizeof(params));
  4282. return result;
  4283. }
  4284. // ggml_transpose
  4285. struct ggml_tensor * ggml_transpose(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. bool is_node = false;
  4289. if (a->grad) {
  4290. is_node = true;
  4291. }
  4292. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4293. ggml_format_name(result, "%s (transposed)", a->name);
  4294. result->ne[0] = a->ne[1];
  4295. result->ne[1] = a->ne[0];
  4296. result->nb[0] = a->nb[1];
  4297. result->nb[1] = a->nb[0];
  4298. result->op = GGML_OP_TRANSPOSE;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src[0] = a;
  4301. return result;
  4302. }
  4303. // ggml_get_rows
  4304. struct ggml_tensor * ggml_get_rows(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4309. GGML_ASSERT(b->ne[3] == 1);
  4310. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4311. bool is_node = false;
  4312. if (a->grad || b->grad) {
  4313. is_node = true;
  4314. }
  4315. // TODO: implement non F32 return
  4316. enum ggml_type type = GGML_TYPE_F32;
  4317. if (a->type == GGML_TYPE_I32) {
  4318. type = a->type;
  4319. }
  4320. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4321. result->op = GGML_OP_GET_ROWS;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src[0] = a;
  4324. result->src[1] = b;
  4325. return result;
  4326. }
  4327. // ggml_get_rows_back
  4328. struct ggml_tensor * ggml_get_rows_back(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b,
  4332. struct ggml_tensor * c) {
  4333. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4334. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4335. bool is_node = false;
  4336. if (a->grad || b->grad) {
  4337. is_node = true;
  4338. }
  4339. // TODO: implement non F32 return
  4340. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4341. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4342. result->op = GGML_OP_GET_ROWS_BACK;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. result->src[1] = b;
  4346. return result;
  4347. }
  4348. // ggml_diag
  4349. struct ggml_tensor * ggml_diag(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a) {
  4352. GGML_ASSERT(a->ne[1] == 1);
  4353. bool is_node = false;
  4354. if (a->grad) {
  4355. is_node = true;
  4356. }
  4357. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4358. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4359. result->op = GGML_OP_DIAG;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. return result;
  4363. }
  4364. // ggml_diag_mask_inf
  4365. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. int n_past,
  4369. bool inplace) {
  4370. bool is_node = false;
  4371. if (a->grad) {
  4372. is_node = true;
  4373. }
  4374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4375. int32_t params[] = { n_past };
  4376. ggml_set_op_params(result, params, sizeof(params));
  4377. result->op = GGML_OP_DIAG_MASK_INF;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src[0] = a;
  4380. return result;
  4381. }
  4382. struct ggml_tensor * ggml_diag_mask_inf(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. int n_past) {
  4386. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4387. }
  4388. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. int n_past) {
  4392. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4393. }
  4394. // ggml_diag_mask_zero
  4395. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. int n_past,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (a->grad) {
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4405. int32_t params[] = { n_past };
  4406. ggml_set_op_params(result, params, sizeof(params));
  4407. result->op = GGML_OP_DIAG_MASK_ZERO;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_diag_mask_zero(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_past) {
  4416. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4417. }
  4418. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_past) {
  4422. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4423. }
  4424. // ggml_soft_max
  4425. static struct ggml_tensor * ggml_soft_max_impl(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. struct ggml_tensor * mask,
  4429. struct ggml_tensor * pos,
  4430. float scale,
  4431. float max_bias,
  4432. bool inplace) {
  4433. GGML_ASSERT(ggml_is_contiguous(a));
  4434. if (mask) {
  4435. GGML_ASSERT(ggml_is_contiguous(mask));
  4436. GGML_ASSERT(ggml_is_matrix(mask));
  4437. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4438. }
  4439. if (pos) {
  4440. GGML_ASSERT(ggml_is_vector(pos));
  4441. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4442. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4443. }
  4444. if (max_bias > 0.0f) {
  4445. GGML_ASSERT(pos);
  4446. }
  4447. bool is_node = false;
  4448. if (a->grad) {
  4449. is_node = true;
  4450. }
  4451. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4452. float params[] = { scale, max_bias };
  4453. ggml_set_op_params(result, params, sizeof(params));
  4454. result->op = GGML_OP_SOFT_MAX;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src[0] = a;
  4457. result->src[1] = mask;
  4458. result->src[2] = pos;
  4459. return result;
  4460. }
  4461. struct ggml_tensor * ggml_soft_max(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a) {
  4464. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4465. }
  4466. struct ggml_tensor * ggml_soft_max_inplace(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a) {
  4469. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4470. }
  4471. struct ggml_tensor * ggml_soft_max_ext(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. struct ggml_tensor * mask,
  4475. struct ggml_tensor * pos,
  4476. float scale,
  4477. float max_bias) {
  4478. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4479. }
  4480. // ggml_soft_max_back
  4481. static struct ggml_tensor * ggml_soft_max_back_impl(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b,
  4485. bool inplace) {
  4486. bool is_node = false;
  4487. if (a->grad || b->grad) {
  4488. is_node = true; // TODO : implement backward pass
  4489. }
  4490. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4491. result->op = GGML_OP_SOFT_MAX_BACK;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src[0] = a;
  4494. result->src[1] = b;
  4495. return result;
  4496. }
  4497. struct ggml_tensor * ggml_soft_max_back(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b) {
  4501. return ggml_soft_max_back_impl(ctx, a, b, false);
  4502. }
  4503. struct ggml_tensor * ggml_soft_max_back_inplace(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. return ggml_soft_max_back_impl(ctx, a, b, true);
  4508. }
  4509. // ggml_rope
  4510. static struct ggml_tensor * ggml_rope_impl(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b,
  4514. int n_dims,
  4515. int mode,
  4516. int n_ctx,
  4517. int n_orig_ctx,
  4518. float freq_base,
  4519. float freq_scale,
  4520. float ext_factor,
  4521. float attn_factor,
  4522. float beta_fast,
  4523. float beta_slow,
  4524. float xpos_base,
  4525. bool xpos_down,
  4526. bool inplace) {
  4527. GGML_ASSERT(ggml_is_vector(b));
  4528. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4529. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4530. bool is_node = false;
  4531. if (a->grad) {
  4532. is_node = true;
  4533. }
  4534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4535. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4536. memcpy(params + 5, &freq_base, sizeof(float));
  4537. memcpy(params + 6, &freq_scale, sizeof(float));
  4538. memcpy(params + 7, &ext_factor, sizeof(float));
  4539. memcpy(params + 8, &attn_factor, sizeof(float));
  4540. memcpy(params + 9, &beta_fast, sizeof(float));
  4541. memcpy(params + 10, &beta_slow, sizeof(float));
  4542. memcpy(params + 11, &xpos_base, sizeof(float));
  4543. memcpy(params + 12, &xpos_down, sizeof(bool));
  4544. ggml_set_op_params(result, params, sizeof(params));
  4545. result->op = GGML_OP_ROPE;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. result->src[1] = b;
  4549. return result;
  4550. }
  4551. struct ggml_tensor * ggml_rope(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. struct ggml_tensor * b,
  4555. int n_dims,
  4556. int mode,
  4557. int n_ctx) {
  4558. return ggml_rope_impl(
  4559. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4560. );
  4561. }
  4562. struct ggml_tensor * ggml_rope_inplace(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b,
  4566. int n_dims,
  4567. int mode,
  4568. int n_ctx) {
  4569. return ggml_rope_impl(
  4570. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4571. );
  4572. }
  4573. struct ggml_tensor * ggml_rope_custom(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. struct ggml_tensor * b,
  4577. int n_dims,
  4578. int mode,
  4579. int n_ctx,
  4580. int n_orig_ctx,
  4581. float freq_base,
  4582. float freq_scale,
  4583. float ext_factor,
  4584. float attn_factor,
  4585. float beta_fast,
  4586. float beta_slow) {
  4587. return ggml_rope_impl(
  4588. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4589. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4590. );
  4591. }
  4592. struct ggml_tensor * ggml_rope_custom_inplace(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a,
  4595. struct ggml_tensor * b,
  4596. int n_dims,
  4597. int mode,
  4598. int n_ctx,
  4599. int n_orig_ctx,
  4600. float freq_base,
  4601. float freq_scale,
  4602. float ext_factor,
  4603. float attn_factor,
  4604. float beta_fast,
  4605. float beta_slow) {
  4606. return ggml_rope_impl(
  4607. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4608. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4609. );
  4610. }
  4611. struct ggml_tensor * ggml_rope_xpos_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. struct ggml_tensor * b,
  4615. int n_dims,
  4616. float base,
  4617. bool down) {
  4618. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4619. }
  4620. // ggml_rope_back
  4621. struct ggml_tensor * ggml_rope_back(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b,
  4625. int n_dims,
  4626. int mode,
  4627. int n_ctx,
  4628. int n_orig_ctx,
  4629. float freq_base,
  4630. float freq_scale,
  4631. float ext_factor,
  4632. float attn_factor,
  4633. float beta_fast,
  4634. float beta_slow,
  4635. float xpos_base,
  4636. bool xpos_down) {
  4637. GGML_ASSERT(ggml_is_vector(b));
  4638. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4639. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4640. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4641. bool is_node = false;
  4642. if (a->grad) {
  4643. is_node = false; // TODO: implement backward
  4644. }
  4645. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4646. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4647. memcpy(params + 5, &freq_base, sizeof(float));
  4648. memcpy(params + 6, &freq_scale, sizeof(float));
  4649. memcpy(params + 7, &ext_factor, sizeof(float));
  4650. memcpy(params + 8, &attn_factor, sizeof(float));
  4651. memcpy(params + 9, &beta_fast, sizeof(float));
  4652. memcpy(params + 10, &beta_slow, sizeof(float));
  4653. memcpy(params + 11, &xpos_base, sizeof(float));
  4654. memcpy(params + 12, &xpos_down, sizeof(bool));
  4655. ggml_set_op_params(result, params, sizeof(params));
  4656. result->op = GGML_OP_ROPE_BACK;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src[0] = a;
  4659. result->src[1] = b;
  4660. return result;
  4661. }
  4662. // ggml_alibi
  4663. struct ggml_tensor * ggml_alibi(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. int n_past,
  4667. int n_head,
  4668. float bias_max) {
  4669. GGML_ASSERT(n_past >= 0);
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. GGML_ASSERT(false); // TODO: implement backward
  4673. is_node = true;
  4674. }
  4675. // TODO: when implement backward, fix this:
  4676. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4677. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4678. int32_t op_params[3] = { n_past, n_head };
  4679. memcpy(op_params + 2, &bias_max, sizeof(float));
  4680. ggml_set_op_params(result, op_params, sizeof(op_params));
  4681. result->op = GGML_OP_ALIBI;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src[0] = a;
  4684. return result;
  4685. }
  4686. // ggml_clamp
  4687. struct ggml_tensor * ggml_clamp(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. float min,
  4691. float max) {
  4692. bool is_node = false;
  4693. if (a->grad) {
  4694. GGML_ASSERT(false); // TODO: implement backward
  4695. is_node = true;
  4696. }
  4697. // TODO: when implement backward, fix this:
  4698. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4699. float params[] = { min, max };
  4700. ggml_set_op_params(result, params, sizeof(params));
  4701. result->op = GGML_OP_CLAMP;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src[0] = a;
  4704. return result;
  4705. }
  4706. // ggml_conv_1d
  4707. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4708. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4709. }
  4710. GGML_API struct ggml_tensor * ggml_conv_1d(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. struct ggml_tensor * b,
  4714. int s0,
  4715. int p0,
  4716. int d0) {
  4717. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4718. struct ggml_tensor * result =
  4719. ggml_mul_mat(ctx,
  4720. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4721. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4722. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4723. return result;
  4724. }
  4725. // ggml_conv_1d_ph
  4726. struct ggml_tensor* ggml_conv_1d_ph(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b,
  4730. int s,
  4731. int d) {
  4732. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4733. }
  4734. // ggml_conv_transpose_1d
  4735. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4736. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4737. }
  4738. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. struct ggml_tensor * b,
  4742. int s0,
  4743. int p0,
  4744. int d0) {
  4745. GGML_ASSERT(ggml_is_matrix(b));
  4746. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4747. GGML_ASSERT(a->ne[3] == 1);
  4748. GGML_ASSERT(p0 == 0);
  4749. GGML_ASSERT(d0 == 1);
  4750. bool is_node = false;
  4751. if (a->grad || b->grad) {
  4752. GGML_ASSERT(false); // TODO: implement backward
  4753. is_node = true;
  4754. }
  4755. const int64_t ne[4] = {
  4756. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4757. a->ne[1], b->ne[2], 1,
  4758. };
  4759. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4760. int32_t params[] = { s0, p0, d0 };
  4761. ggml_set_op_params(result, params, sizeof(params));
  4762. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src[0] = a;
  4765. result->src[1] = b;
  4766. return result;
  4767. }
  4768. // ggml_conv_depthwise
  4769. struct ggml_tensor * ggml_conv_depthwise_2d(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. struct ggml_tensor * b,
  4773. int s0,
  4774. int s1,
  4775. int p0,
  4776. int p1,
  4777. int d0,
  4778. int d1) {
  4779. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4780. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4781. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4782. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4783. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4784. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4785. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4786. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4787. return result;
  4788. }
  4789. // ggml_conv_2d
  4790. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4791. // a: [OC,IC, KH, KW]
  4792. // b: [N, IC, IH, IW]
  4793. // result: [N, OH, OW, IC*KH*KW]
  4794. struct ggml_tensor * ggml_im2col(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. struct ggml_tensor * b,
  4798. int s0,
  4799. int s1,
  4800. int p0,
  4801. int p1,
  4802. int d0,
  4803. int d1,
  4804. bool is_2D,
  4805. enum ggml_type dst_type) {
  4806. if(is_2D) {
  4807. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4808. } else {
  4809. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4810. }
  4811. bool is_node = false;
  4812. if (a->grad || b->grad) {
  4813. GGML_ASSERT(false); // TODO: implement backward
  4814. is_node = true;
  4815. }
  4816. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4817. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4818. const int64_t ne[4] = {
  4819. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4820. OW,
  4821. is_2D ? OH : b->ne[2],
  4822. is_2D ? b->ne[3] : 1,
  4823. };
  4824. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4825. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4826. ggml_set_op_params(result, params, sizeof(params));
  4827. result->op = GGML_OP_IM2COL;
  4828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4829. result->src[0] = a;
  4830. result->src[1] = b;
  4831. return result;
  4832. }
  4833. // a: [OC,IC, KH, KW]
  4834. // b: [N, IC, IH, IW]
  4835. // result: [N, OC, OH, OW]
  4836. struct ggml_tensor * ggml_conv_2d(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. int s0,
  4841. int s1,
  4842. int p0,
  4843. int p1,
  4844. int d0,
  4845. int d1) {
  4846. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4847. struct ggml_tensor * result =
  4848. ggml_mul_mat(ctx,
  4849. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4850. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4851. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4852. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4853. return result;
  4854. }
  4855. // ggml_conv_2d_sk_p0
  4856. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. struct ggml_tensor * b) {
  4860. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4861. }
  4862. // ggml_conv_2d_s1_ph
  4863. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b) {
  4867. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4868. }
  4869. // ggml_conv_transpose_2d_p0
  4870. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4871. return (ins - 1) * s - 2 * p + ks;
  4872. }
  4873. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b,
  4877. int stride) {
  4878. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4879. bool is_node = false;
  4880. if (a->grad || b->grad) {
  4881. GGML_ASSERT(false); // TODO: implement backward
  4882. is_node = true;
  4883. }
  4884. const int64_t ne[4] = {
  4885. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4886. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4887. a->ne[2], b->ne[3],
  4888. };
  4889. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4890. ggml_set_op_params_i32(result, 0, stride);
  4891. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src[0] = a;
  4894. result->src[1] = b;
  4895. return result;
  4896. }
  4897. // ggml_pool_*
  4898. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4899. return (ins + 2 * p - ks) / s + 1;
  4900. }
  4901. // ggml_pool_1d
  4902. struct ggml_tensor * ggml_pool_1d(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. enum ggml_op_pool op,
  4906. int k0,
  4907. int s0,
  4908. int p0) {
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. GGML_ASSERT(false); // TODO: implement backward
  4912. is_node = true;
  4913. }
  4914. const int64_t ne[4] = {
  4915. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4916. a->ne[1],
  4917. a->ne[2],
  4918. a->ne[3],
  4919. };
  4920. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4921. int32_t params[] = { op, k0, s0, p0 };
  4922. ggml_set_op_params(result, params, sizeof(params));
  4923. result->op = GGML_OP_POOL_1D;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src[0] = a;
  4926. return result;
  4927. }
  4928. // ggml_pool_2d
  4929. struct ggml_tensor * ggml_pool_2d(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. enum ggml_op_pool op,
  4933. int k0,
  4934. int k1,
  4935. int s0,
  4936. int s1,
  4937. float p0,
  4938. float p1) {
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. GGML_ASSERT(false); // TODO: implement backward
  4942. is_node = true;
  4943. }
  4944. struct ggml_tensor * result;
  4945. const int64_t ne[3] = {
  4946. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4947. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4948. a->ne[2],
  4949. };
  4950. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4951. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4952. ggml_set_op_params(result, params, sizeof(params));
  4953. result->op = GGML_OP_POOL_2D;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src[0] = a;
  4956. return result;
  4957. }
  4958. // ggml_upscale
  4959. static struct ggml_tensor * ggml_upscale_impl(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. int scale_factor) {
  4963. bool is_node = false;
  4964. if (a->grad) {
  4965. GGML_ASSERT(false); // TODO: implement backward
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4969. a->ne[0] * scale_factor,
  4970. a->ne[1] * scale_factor,
  4971. a->ne[2], a->ne[3]);
  4972. result->op = GGML_OP_UPSCALE;
  4973. result->op_params[0] = scale_factor;
  4974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4975. result->src[0] = a;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_pad(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int p0, int p1, int p2, int p3) {
  4982. bool is_node = false;
  4983. if (a->grad) {
  4984. GGML_ASSERT(false); // TODO: implement backward
  4985. is_node = true;
  4986. }
  4987. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4988. a->ne[0] + p0,
  4989. a->ne[1] + p1,
  4990. a->ne[2] + p2,
  4991. a->ne[3] + p3);
  4992. result->op = GGML_OP_PAD;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. return result;
  4996. }
  4997. struct ggml_tensor * ggml_upscale(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. int scale_factor) {
  5001. return ggml_upscale_impl(ctx, a, scale_factor);
  5002. }
  5003. struct ggml_tensor * ggml_arange(
  5004. struct ggml_context * ctx,
  5005. float start,
  5006. float stop,
  5007. float step) {
  5008. GGML_ASSERT(stop > start);
  5009. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5010. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5011. result->op = GGML_OP_ARANGE;
  5012. ggml_set_op_params_f32(result, 0, start);
  5013. ggml_set_op_params_f32(result, 1, stop);
  5014. ggml_set_op_params_f32(result, 2, step);
  5015. return result;
  5016. }
  5017. struct ggml_tensor * ggml_timestep_embedding(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * timesteps,
  5020. int dim,
  5021. int max_period) {
  5022. bool is_node = false;
  5023. if (timesteps->grad) {
  5024. GGML_ASSERT(false); // TODO: implement backward
  5025. is_node = true;
  5026. }
  5027. int actual_dim = dim;
  5028. if (dim % 2 != 0) {
  5029. actual_dim = dim + 1;
  5030. }
  5031. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5032. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5033. ggml_set_op_params_i32(result, 0, dim);
  5034. ggml_set_op_params_i32(result, 1, max_period);
  5035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5036. result->src[0] = timesteps;
  5037. return result;
  5038. }
  5039. // ggml_argsort
  5040. struct ggml_tensor * ggml_argsort(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. enum ggml_sort_order order) {
  5044. bool is_node = false;
  5045. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5046. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5047. result->op = GGML_OP_ARGSORT;
  5048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5049. result->src[0] = a;
  5050. return result;
  5051. }
  5052. // ggml_top_k
  5053. struct ggml_tensor * ggml_top_k(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. int k) {
  5057. GGML_ASSERT(a->ne[0] >= k);
  5058. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5059. result = ggml_view_4d(ctx, result,
  5060. k, result->ne[1], result->ne[2], result->ne[3],
  5061. result->nb[1], result->nb[2], result->nb[3],
  5062. 0);
  5063. return result;
  5064. }
  5065. // ggml_flash_attn
  5066. struct ggml_tensor * ggml_flash_attn(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * q,
  5069. struct ggml_tensor * k,
  5070. struct ggml_tensor * v,
  5071. bool masked) {
  5072. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5073. // TODO: check if vT can be multiplied by (k*qT)
  5074. bool is_node = false;
  5075. if (q->grad || k->grad || v->grad) {
  5076. is_node = true;
  5077. }
  5078. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5079. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5080. int32_t t = masked ? 1 : 0;
  5081. ggml_set_op_params(result, &t, sizeof(t));
  5082. result->op = GGML_OP_FLASH_ATTN;
  5083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5084. result->src[0] = q;
  5085. result->src[1] = k;
  5086. result->src[2] = v;
  5087. return result;
  5088. }
  5089. // ggml_flash_ff
  5090. struct ggml_tensor * ggml_flash_ff(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. struct ggml_tensor * b0,
  5094. struct ggml_tensor * b1,
  5095. struct ggml_tensor * c0,
  5096. struct ggml_tensor * c1) {
  5097. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5098. // TODO: more checks
  5099. bool is_node = false;
  5100. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5101. is_node = true;
  5102. }
  5103. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5104. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5105. result->op = GGML_OP_FLASH_FF;
  5106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5107. result->src[0] = a;
  5108. result->src[1] = b0;
  5109. result->src[2] = b1;
  5110. result->src[3] = c0;
  5111. result->src[4] = c1;
  5112. return result;
  5113. }
  5114. // ggml_flash_attn_back
  5115. struct ggml_tensor * ggml_flash_attn_back(
  5116. struct ggml_context * ctx,
  5117. struct ggml_tensor * q,
  5118. struct ggml_tensor * k,
  5119. struct ggml_tensor * v,
  5120. struct ggml_tensor * d,
  5121. bool masked) {
  5122. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5123. // TODO: check if vT can be multiplied by (k*qT)
  5124. // d shape [D,N,ne2,ne3]
  5125. // q shape [D,N,ne2,ne3]
  5126. // k shape [D,M,kvne2,ne3]
  5127. // v shape [M,D,kvne2,ne3]
  5128. const int64_t D = q->ne[0];
  5129. const int64_t N = q->ne[1];
  5130. const int64_t M = k->ne[1];
  5131. const int64_t ne2 = q->ne[2];
  5132. const int64_t ne3 = q->ne[3];
  5133. const int64_t kvne2 = k->ne[2];
  5134. GGML_ASSERT(k->ne[0] == D);
  5135. GGML_ASSERT(v->ne[0] == M);
  5136. GGML_ASSERT(v->ne[1] == D);
  5137. GGML_ASSERT(d->ne[0] == D);
  5138. GGML_ASSERT(d->ne[1] == N);
  5139. GGML_ASSERT(k->ne[2] == kvne2);
  5140. GGML_ASSERT(k->ne[3] == ne3);
  5141. GGML_ASSERT(v->ne[2] == kvne2);
  5142. GGML_ASSERT(v->ne[3] == ne3);
  5143. GGML_ASSERT(d->ne[2] == ne2);
  5144. GGML_ASSERT(d->ne[3] == ne3);
  5145. GGML_ASSERT(ne2 % kvne2 == 0);
  5146. bool is_node = false;
  5147. if (q->grad || k->grad || v->grad) {
  5148. // when using this operation (in backwards pass) these grads are set.
  5149. // we don't want to create (big) grad of our result, so is_node is false.
  5150. is_node = false;
  5151. }
  5152. // store gradients of q, k and v as continuous tensors concatenated in result.
  5153. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5154. const int64_t elem_q = ggml_nelements(q);
  5155. const int64_t elem_k = ggml_nelements(k);
  5156. const int64_t elem_v = ggml_nelements(v);
  5157. enum ggml_type result_type = GGML_TYPE_F32;
  5158. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5159. const size_t tsize = ggml_type_size(result_type);
  5160. const size_t offs_q = 0;
  5161. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5162. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5163. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5164. const size_t nelements = (end + tsize - 1)/tsize;
  5165. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5166. int32_t masked_i = masked ? 1 : 0;
  5167. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5168. result->op = GGML_OP_FLASH_ATTN_BACK;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = q;
  5171. result->src[1] = k;
  5172. result->src[2] = v;
  5173. result->src[3] = d;
  5174. return result;
  5175. }
  5176. // ggml_ssm_conv
  5177. struct ggml_tensor * ggml_ssm_conv(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * s,
  5180. struct ggml_tensor * x,
  5181. struct ggml_tensor * c,
  5182. struct ggml_tensor * sq) {
  5183. GGML_ASSERT(ggml_is_3d(s));
  5184. GGML_ASSERT(ggml_is_matrix(x));
  5185. GGML_ASSERT(ggml_is_matrix(c));
  5186. GGML_ASSERT(ggml_is_matrix(sq));
  5187. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5188. const int64_t d_conv = c->ne[0];
  5189. const int64_t d_inner = c->ne[1];
  5190. const int64_t n_tokens = x->ne[1];
  5191. const int64_t n_kv = s->ne[2];
  5192. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5193. GGML_ASSERT( s->ne[1] == d_inner);
  5194. GGML_ASSERT( x->ne[0] == d_inner);
  5195. GGML_ASSERT(sq->ne[0] == n_kv);
  5196. GGML_ASSERT(sq->ne[1] == n_tokens);
  5197. bool is_node = false;
  5198. if (s->grad || x->grad || c->grad || sq->grad) {
  5199. GGML_ASSERT(false); // TODO: implement
  5200. is_node = true;
  5201. }
  5202. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5203. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5204. result->op = GGML_OP_SSM_CONV;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = s;
  5207. result->src[1] = x;
  5208. result->src[2] = c;
  5209. result->src[3] = sq;
  5210. return result;
  5211. }
  5212. // ggml_ssm_scan
  5213. struct ggml_tensor * ggml_ssm_scan(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * s,
  5216. struct ggml_tensor * x,
  5217. struct ggml_tensor * dt,
  5218. struct ggml_tensor * A,
  5219. struct ggml_tensor * B,
  5220. struct ggml_tensor * C,
  5221. struct ggml_tensor * sq) {
  5222. GGML_ASSERT(ggml_is_contiguous(s));
  5223. GGML_ASSERT(ggml_is_contiguous(x));
  5224. GGML_ASSERT(ggml_is_contiguous(dt));
  5225. GGML_ASSERT(ggml_is_contiguous(A));
  5226. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5227. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5228. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5229. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5230. {
  5231. const int64_t d_state = s->ne[0];
  5232. const int64_t d_inner = s->ne[1];
  5233. const int64_t n_tokens = x->ne[1];
  5234. GGML_ASSERT(x->ne[0] == d_inner);
  5235. GGML_ASSERT(A->ne[0] == d_state);
  5236. GGML_ASSERT(A->ne[1] == d_inner);
  5237. GGML_ASSERT(B->ne[0] == d_state);
  5238. GGML_ASSERT(B->ne[1] == n_tokens);
  5239. GGML_ASSERT(C->ne[0] == d_state);
  5240. GGML_ASSERT(C->ne[1] == n_tokens);
  5241. }
  5242. bool is_node = false;
  5243. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5244. GGML_ASSERT(false); // TODO: implement
  5245. is_node = true;
  5246. }
  5247. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5248. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5249. result->op = GGML_OP_SSM_SCAN;
  5250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5251. result->src[0] = s;
  5252. result->src[1] = x;
  5253. result->src[2] = dt;
  5254. result->src[3] = A;
  5255. result->src[4] = B;
  5256. result->src[5] = C;
  5257. result->src[6] = sq;
  5258. return result;
  5259. }
  5260. // ggml_win_part
  5261. struct ggml_tensor * ggml_win_part(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. int w) {
  5265. GGML_ASSERT(a->ne[3] == 1);
  5266. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5267. bool is_node = false;
  5268. if (a->grad) {
  5269. GGML_ASSERT(false); // TODO: implement backward
  5270. is_node = true;
  5271. }
  5272. // padding
  5273. const int px = (w - a->ne[1]%w)%w;
  5274. const int py = (w - a->ne[2]%w)%w;
  5275. const int npx = (px + a->ne[1])/w;
  5276. const int npy = (py + a->ne[2])/w;
  5277. const int np = npx*npy;
  5278. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5279. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5280. int32_t params[] = { npx, npy, w };
  5281. ggml_set_op_params(result, params, sizeof(params));
  5282. result->op = GGML_OP_WIN_PART;
  5283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5284. result->src[0] = a;
  5285. return result;
  5286. }
  5287. // ggml_win_unpart
  5288. struct ggml_tensor * ggml_win_unpart(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. int w0,
  5292. int h0,
  5293. int w) {
  5294. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5295. bool is_node = false;
  5296. if (a->grad) {
  5297. GGML_ASSERT(false); // TODO: implement backward
  5298. is_node = true;
  5299. }
  5300. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5301. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5302. int32_t params[] = { w };
  5303. ggml_set_op_params(result, params, sizeof(params));
  5304. result->op = GGML_OP_WIN_UNPART;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. return result;
  5308. }
  5309. // ggml_get_rel_pos
  5310. struct ggml_tensor * ggml_get_rel_pos(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. int qh,
  5314. int kh) {
  5315. GGML_ASSERT(qh == kh);
  5316. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5317. bool is_node = false;
  5318. if (a->grad) {
  5319. GGML_ASSERT(false); // TODO: implement backward
  5320. is_node = true;
  5321. }
  5322. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5323. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5324. result->op = GGML_OP_GET_REL_POS;
  5325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5326. result->src[0] = a;
  5327. return result;
  5328. }
  5329. // ggml_add_rel_pos
  5330. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5331. struct ggml_context * ctx,
  5332. struct ggml_tensor * a,
  5333. struct ggml_tensor * pw,
  5334. struct ggml_tensor * ph,
  5335. bool inplace) {
  5336. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5337. GGML_ASSERT(ggml_is_contiguous(a));
  5338. GGML_ASSERT(ggml_is_contiguous(pw));
  5339. GGML_ASSERT(ggml_is_contiguous(ph));
  5340. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5341. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5342. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5343. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5344. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5345. bool is_node = false;
  5346. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5347. is_node = true;
  5348. }
  5349. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5350. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5351. result->op = GGML_OP_ADD_REL_POS;
  5352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5353. result->src[0] = a;
  5354. result->src[1] = pw;
  5355. result->src[2] = ph;
  5356. return result;
  5357. }
  5358. struct ggml_tensor * ggml_add_rel_pos(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * pw,
  5362. struct ggml_tensor * ph) {
  5363. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5364. }
  5365. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a,
  5368. struct ggml_tensor * pw,
  5369. struct ggml_tensor * ph) {
  5370. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5371. }
  5372. // gmml_unary
  5373. static struct ggml_tensor * ggml_unary_impl(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. enum ggml_unary_op op,
  5377. bool inplace) {
  5378. bool is_node = false;
  5379. if (!inplace && (a->grad)) {
  5380. is_node = true;
  5381. }
  5382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5383. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5384. result->op = GGML_OP_UNARY;
  5385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5386. result->src[0] = a;
  5387. return result;
  5388. }
  5389. struct ggml_tensor * ggml_unary(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. enum ggml_unary_op op) {
  5393. return ggml_unary_impl(ctx, a, op, false);
  5394. }
  5395. struct ggml_tensor * ggml_unary_inplace(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. enum ggml_unary_op op) {
  5399. return ggml_unary_impl(ctx, a, op, true);
  5400. }
  5401. // ggml_map_unary
  5402. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. const ggml_unary_op_f32_t fun,
  5406. bool inplace) {
  5407. bool is_node = false;
  5408. if (!inplace && a->grad) {
  5409. is_node = true;
  5410. }
  5411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5412. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5413. result->op = GGML_OP_MAP_UNARY;
  5414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5415. result->src[0] = a;
  5416. return result;
  5417. }
  5418. struct ggml_tensor * ggml_map_unary_f32(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. const ggml_unary_op_f32_t fun) {
  5422. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5423. }
  5424. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. const ggml_unary_op_f32_t fun) {
  5428. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5429. }
  5430. // ggml_map_binary
  5431. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5432. struct ggml_context * ctx,
  5433. struct ggml_tensor * a,
  5434. struct ggml_tensor * b,
  5435. const ggml_binary_op_f32_t fun,
  5436. bool inplace) {
  5437. GGML_ASSERT(ggml_are_same_shape(a, b));
  5438. bool is_node = false;
  5439. if (!inplace && (a->grad || b->grad)) {
  5440. is_node = true;
  5441. }
  5442. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5443. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5444. result->op = GGML_OP_MAP_BINARY;
  5445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5446. result->src[0] = a;
  5447. result->src[1] = b;
  5448. return result;
  5449. }
  5450. struct ggml_tensor * ggml_map_binary_f32(
  5451. struct ggml_context * ctx,
  5452. struct ggml_tensor * a,
  5453. struct ggml_tensor * b,
  5454. const ggml_binary_op_f32_t fun) {
  5455. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5456. }
  5457. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. struct ggml_tensor * b,
  5461. const ggml_binary_op_f32_t fun) {
  5462. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5463. }
  5464. // ggml_map_custom1_f32
  5465. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. const ggml_custom1_op_f32_t fun,
  5469. bool inplace) {
  5470. bool is_node = false;
  5471. if (!inplace && a->grad) {
  5472. is_node = true;
  5473. }
  5474. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5475. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5476. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5478. result->src[0] = a;
  5479. return result;
  5480. }
  5481. struct ggml_tensor * ggml_map_custom1_f32(
  5482. struct ggml_context * ctx,
  5483. struct ggml_tensor * a,
  5484. const ggml_custom1_op_f32_t fun) {
  5485. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5486. }
  5487. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. const ggml_custom1_op_f32_t fun) {
  5491. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5492. }
  5493. // ggml_map_custom2_f32
  5494. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5495. struct ggml_context * ctx,
  5496. struct ggml_tensor * a,
  5497. struct ggml_tensor * b,
  5498. const ggml_custom2_op_f32_t fun,
  5499. bool inplace) {
  5500. bool is_node = false;
  5501. if (!inplace && (a->grad || b->grad)) {
  5502. is_node = true;
  5503. }
  5504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5505. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5506. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5508. result->src[0] = a;
  5509. result->src[1] = b;
  5510. return result;
  5511. }
  5512. struct ggml_tensor * ggml_map_custom2_f32(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. const ggml_custom2_op_f32_t fun) {
  5517. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5518. }
  5519. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. struct ggml_tensor * b,
  5523. const ggml_custom2_op_f32_t fun) {
  5524. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5525. }
  5526. // ggml_map_custom3_f32
  5527. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. struct ggml_tensor * c,
  5532. const ggml_custom3_op_f32_t fun,
  5533. bool inplace) {
  5534. bool is_node = false;
  5535. if (!inplace && (a->grad || b->grad || c->grad)) {
  5536. is_node = true;
  5537. }
  5538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5539. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5540. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5542. result->src[0] = a;
  5543. result->src[1] = b;
  5544. result->src[2] = c;
  5545. return result;
  5546. }
  5547. struct ggml_tensor * ggml_map_custom3_f32(
  5548. struct ggml_context * ctx,
  5549. struct ggml_tensor * a,
  5550. struct ggml_tensor * b,
  5551. struct ggml_tensor * c,
  5552. const ggml_custom3_op_f32_t fun) {
  5553. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5554. }
  5555. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b,
  5559. struct ggml_tensor * c,
  5560. const ggml_custom3_op_f32_t fun) {
  5561. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5562. }
  5563. // ggml_map_custom1
  5564. struct ggml_map_custom1_op_params {
  5565. ggml_custom1_op_t fun;
  5566. int n_tasks;
  5567. void * userdata;
  5568. };
  5569. static struct ggml_tensor * ggml_map_custom1_impl(
  5570. struct ggml_context * ctx,
  5571. struct ggml_tensor * a,
  5572. const ggml_custom1_op_t fun,
  5573. int n_tasks,
  5574. void * userdata,
  5575. bool inplace) {
  5576. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5577. bool is_node = false;
  5578. if (!inplace && a->grad) {
  5579. is_node = true;
  5580. }
  5581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5582. struct ggml_map_custom1_op_params params = {
  5583. /*.fun =*/ fun,
  5584. /*.n_tasks =*/ n_tasks,
  5585. /*.userdata =*/ userdata
  5586. };
  5587. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5588. result->op = GGML_OP_MAP_CUSTOM1;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. return result;
  5592. }
  5593. struct ggml_tensor * ggml_map_custom1(
  5594. struct ggml_context * ctx,
  5595. struct ggml_tensor * a,
  5596. const ggml_custom1_op_t fun,
  5597. int n_tasks,
  5598. void * userdata) {
  5599. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5600. }
  5601. struct ggml_tensor * ggml_map_custom1_inplace(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. const ggml_custom1_op_t fun,
  5605. int n_tasks,
  5606. void * userdata) {
  5607. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5608. }
  5609. // ggml_map_custom2
  5610. struct ggml_map_custom2_op_params {
  5611. ggml_custom2_op_t fun;
  5612. int n_tasks;
  5613. void * userdata;
  5614. };
  5615. static struct ggml_tensor * ggml_map_custom2_impl(
  5616. struct ggml_context * ctx,
  5617. struct ggml_tensor * a,
  5618. struct ggml_tensor * b,
  5619. const ggml_custom2_op_t fun,
  5620. int n_tasks,
  5621. void * userdata,
  5622. bool inplace) {
  5623. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5624. bool is_node = false;
  5625. if (!inplace && (a->grad || b->grad)) {
  5626. is_node = true;
  5627. }
  5628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5629. struct ggml_map_custom2_op_params params = {
  5630. /*.fun =*/ fun,
  5631. /*.n_tasks =*/ n_tasks,
  5632. /*.userdata =*/ userdata
  5633. };
  5634. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5635. result->op = GGML_OP_MAP_CUSTOM2;
  5636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5637. result->src[0] = a;
  5638. result->src[1] = b;
  5639. return result;
  5640. }
  5641. struct ggml_tensor * ggml_map_custom2(
  5642. struct ggml_context * ctx,
  5643. struct ggml_tensor * a,
  5644. struct ggml_tensor * b,
  5645. const ggml_custom2_op_t fun,
  5646. int n_tasks,
  5647. void * userdata) {
  5648. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5649. }
  5650. struct ggml_tensor * ggml_map_custom2_inplace(
  5651. struct ggml_context * ctx,
  5652. struct ggml_tensor * a,
  5653. struct ggml_tensor * b,
  5654. const ggml_custom2_op_t fun,
  5655. int n_tasks,
  5656. void * userdata) {
  5657. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5658. }
  5659. // ggml_map_custom3
  5660. struct ggml_map_custom3_op_params {
  5661. ggml_custom3_op_t fun;
  5662. int n_tasks;
  5663. void * userdata;
  5664. };
  5665. static struct ggml_tensor * ggml_map_custom3_impl(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. struct ggml_tensor * b,
  5669. struct ggml_tensor * c,
  5670. const ggml_custom3_op_t fun,
  5671. int n_tasks,
  5672. void * userdata,
  5673. bool inplace) {
  5674. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5675. bool is_node = false;
  5676. if (!inplace && (a->grad || b->grad || c->grad)) {
  5677. is_node = true;
  5678. }
  5679. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5680. struct ggml_map_custom3_op_params params = {
  5681. /*.fun =*/ fun,
  5682. /*.n_tasks =*/ n_tasks,
  5683. /*.userdata =*/ userdata
  5684. };
  5685. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5686. result->op = GGML_OP_MAP_CUSTOM3;
  5687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5688. result->src[0] = a;
  5689. result->src[1] = b;
  5690. result->src[2] = c;
  5691. return result;
  5692. }
  5693. struct ggml_tensor * ggml_map_custom3(
  5694. struct ggml_context * ctx,
  5695. struct ggml_tensor * a,
  5696. struct ggml_tensor * b,
  5697. struct ggml_tensor * c,
  5698. const ggml_custom3_op_t fun,
  5699. int n_tasks,
  5700. void * userdata) {
  5701. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5702. }
  5703. struct ggml_tensor * ggml_map_custom3_inplace(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * a,
  5706. struct ggml_tensor * b,
  5707. struct ggml_tensor * c,
  5708. const ggml_custom3_op_t fun,
  5709. int n_tasks,
  5710. void * userdata) {
  5711. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5712. }
  5713. // ggml_cross_entropy_loss
  5714. struct ggml_tensor * ggml_cross_entropy_loss(
  5715. struct ggml_context * ctx,
  5716. struct ggml_tensor * a,
  5717. struct ggml_tensor * b) {
  5718. GGML_ASSERT(ggml_are_same_shape(a, b));
  5719. bool is_node = false;
  5720. if (a->grad || b->grad) {
  5721. is_node = true;
  5722. }
  5723. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5724. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5726. result->src[0] = a;
  5727. result->src[1] = b;
  5728. return result;
  5729. }
  5730. // ggml_cross_entropy_loss_back
  5731. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. struct ggml_tensor * b,
  5735. struct ggml_tensor * c) {
  5736. GGML_ASSERT(ggml_are_same_shape(a, b));
  5737. GGML_ASSERT(ggml_is_scalar(c));
  5738. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5739. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5740. result->grad = NULL;
  5741. result->src[0] = a;
  5742. result->src[1] = b;
  5743. result->src[2] = c;
  5744. return result;
  5745. }
  5746. ////////////////////////////////////////////////////////////////////////////////
  5747. void ggml_set_param(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * tensor) {
  5750. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5751. GGML_ASSERT(tensor->grad == NULL);
  5752. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5753. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5754. }
  5755. // ggml_compute_forward_dup
  5756. static void ggml_compute_forward_dup_same_cont(
  5757. const struct ggml_compute_params * params,
  5758. struct ggml_tensor * dst) {
  5759. const struct ggml_tensor * src0 = dst->src[0];
  5760. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5761. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5762. GGML_ASSERT(src0->type == dst->type);
  5763. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5764. return;
  5765. }
  5766. const size_t nb00 = src0->nb[0];
  5767. const size_t nb0 = dst->nb[0];
  5768. const int ith = params->ith; // thread index
  5769. const int nth = params->nth; // number of threads
  5770. // parallelize by elements
  5771. const int ne = ggml_nelements(dst);
  5772. const int dr = (ne + nth - 1) / nth;
  5773. const int ie0 = dr * ith;
  5774. const int ie1 = MIN(ie0 + dr, ne);
  5775. if (ie0 < ie1) {
  5776. memcpy(
  5777. ((char *) dst->data + ie0*nb0),
  5778. ((char *) src0->data + ie0*nb00),
  5779. (ie1 - ie0) * ggml_type_size(src0->type));
  5780. }
  5781. }
  5782. static void ggml_compute_forward_dup_f16(
  5783. const struct ggml_compute_params * params,
  5784. struct ggml_tensor * dst) {
  5785. const struct ggml_tensor * src0 = dst->src[0];
  5786. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5787. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5788. return;
  5789. }
  5790. GGML_TENSOR_UNARY_OP_LOCALS
  5791. const int ith = params->ith; // thread index
  5792. const int nth = params->nth; // number of threads
  5793. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5794. ggml_compute_forward_dup_same_cont(params, dst);
  5795. return;
  5796. }
  5797. // parallelize by rows
  5798. const int nr = ne01;
  5799. // number of rows per thread
  5800. const int dr = (nr + nth - 1) / nth;
  5801. // row range for this thread
  5802. const int ir0 = dr * ith;
  5803. const int ir1 = MIN(ir0 + dr, nr);
  5804. if (src0->type == dst->type &&
  5805. ne00 == ne0 &&
  5806. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5807. // copy by rows
  5808. const size_t rs = ne00*nb00;
  5809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5811. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5812. memcpy(
  5813. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5814. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5815. rs);
  5816. }
  5817. }
  5818. }
  5819. return;
  5820. }
  5821. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5822. if (ggml_is_contiguous(dst)) {
  5823. if (nb00 == sizeof(ggml_fp16_t)) {
  5824. if (dst->type == GGML_TYPE_F16) {
  5825. size_t id = 0;
  5826. const size_t rs = ne00 * nb00;
  5827. char * dst_ptr = (char *) dst->data;
  5828. for (int i03 = 0; i03 < ne03; i03++) {
  5829. for (int i02 = 0; i02 < ne02; i02++) {
  5830. id += rs * ir0;
  5831. for (int i01 = ir0; i01 < ir1; i01++) {
  5832. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5833. memcpy(dst_ptr + id, src0_ptr, rs);
  5834. id += rs;
  5835. }
  5836. id += rs * (ne01 - ir1);
  5837. }
  5838. }
  5839. } else if (dst->type == GGML_TYPE_F32) {
  5840. size_t id = 0;
  5841. float * dst_ptr = (float *) dst->data;
  5842. for (int i03 = 0; i03 < ne03; i03++) {
  5843. for (int i02 = 0; i02 < ne02; i02++) {
  5844. id += ne00 * ir0;
  5845. for (int i01 = ir0; i01 < ir1; i01++) {
  5846. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5847. for (int i00 = 0; i00 < ne00; i00++) {
  5848. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5849. id++;
  5850. }
  5851. }
  5852. id += ne00 * (ne01 - ir1);
  5853. }
  5854. }
  5855. } else if (type_traits[dst->type].from_float) {
  5856. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5857. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5858. size_t id = 0;
  5859. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5860. char * dst_ptr = (char *) dst->data;
  5861. for (int i03 = 0; i03 < ne03; i03++) {
  5862. for (int i02 = 0; i02 < ne02; i02++) {
  5863. id += rs * ir0;
  5864. for (int i01 = ir0; i01 < ir1; i01++) {
  5865. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5866. for (int i00 = 0; i00 < ne00; i00++) {
  5867. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5868. }
  5869. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5870. id += rs;
  5871. }
  5872. id += rs * (ne01 - ir1);
  5873. }
  5874. }
  5875. } else {
  5876. GGML_ASSERT(false); // TODO: implement
  5877. }
  5878. } else {
  5879. //printf("%s: this is not optimal - fix me\n", __func__);
  5880. if (dst->type == GGML_TYPE_F32) {
  5881. size_t id = 0;
  5882. float * dst_ptr = (float *) dst->data;
  5883. for (int i03 = 0; i03 < ne03; i03++) {
  5884. for (int i02 = 0; i02 < ne02; i02++) {
  5885. id += ne00 * ir0;
  5886. for (int i01 = ir0; i01 < ir1; i01++) {
  5887. for (int i00 = 0; i00 < ne00; i00++) {
  5888. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5889. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5890. id++;
  5891. }
  5892. }
  5893. id += ne00 * (ne01 - ir1);
  5894. }
  5895. }
  5896. } else if (dst->type == GGML_TYPE_F16) {
  5897. size_t id = 0;
  5898. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5899. for (int i03 = 0; i03 < ne03; i03++) {
  5900. for (int i02 = 0; i02 < ne02; i02++) {
  5901. id += ne00 * ir0;
  5902. for (int i01 = ir0; i01 < ir1; i01++) {
  5903. for (int i00 = 0; i00 < ne00; i00++) {
  5904. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5905. dst_ptr[id] = *src0_ptr;
  5906. id++;
  5907. }
  5908. }
  5909. id += ne00 * (ne01 - ir1);
  5910. }
  5911. }
  5912. } else {
  5913. GGML_ASSERT(false); // TODO: implement
  5914. }
  5915. }
  5916. return;
  5917. }
  5918. // dst counters
  5919. int64_t i10 = 0;
  5920. int64_t i11 = 0;
  5921. int64_t i12 = 0;
  5922. int64_t i13 = 0;
  5923. if (dst->type == GGML_TYPE_F16) {
  5924. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5926. i10 += ne00 * ir0;
  5927. while (i10 >= ne0) {
  5928. i10 -= ne0;
  5929. if (++i11 == ne1) {
  5930. i11 = 0;
  5931. if (++i12 == ne2) {
  5932. i12 = 0;
  5933. if (++i13 == ne3) {
  5934. i13 = 0;
  5935. }
  5936. }
  5937. }
  5938. }
  5939. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5940. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5941. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5942. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5943. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5944. if (++i10 == ne00) {
  5945. i10 = 0;
  5946. if (++i11 == ne01) {
  5947. i11 = 0;
  5948. if (++i12 == ne02) {
  5949. i12 = 0;
  5950. if (++i13 == ne03) {
  5951. i13 = 0;
  5952. }
  5953. }
  5954. }
  5955. }
  5956. }
  5957. }
  5958. i10 += ne00 * (ne01 - ir1);
  5959. while (i10 >= ne0) {
  5960. i10 -= ne0;
  5961. if (++i11 == ne1) {
  5962. i11 = 0;
  5963. if (++i12 == ne2) {
  5964. i12 = 0;
  5965. if (++i13 == ne3) {
  5966. i13 = 0;
  5967. }
  5968. }
  5969. }
  5970. }
  5971. }
  5972. }
  5973. } else if (dst->type == GGML_TYPE_F32) {
  5974. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5975. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5976. i10 += ne00 * ir0;
  5977. while (i10 >= ne0) {
  5978. i10 -= ne0;
  5979. if (++i11 == ne1) {
  5980. i11 = 0;
  5981. if (++i12 == ne2) {
  5982. i12 = 0;
  5983. if (++i13 == ne3) {
  5984. i13 = 0;
  5985. }
  5986. }
  5987. }
  5988. }
  5989. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5990. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5991. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5992. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5993. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5994. if (++i10 == ne0) {
  5995. i10 = 0;
  5996. if (++i11 == ne1) {
  5997. i11 = 0;
  5998. if (++i12 == ne2) {
  5999. i12 = 0;
  6000. if (++i13 == ne3) {
  6001. i13 = 0;
  6002. }
  6003. }
  6004. }
  6005. }
  6006. }
  6007. }
  6008. i10 += ne00 * (ne01 - ir1);
  6009. while (i10 >= ne0) {
  6010. i10 -= ne0;
  6011. if (++i11 == ne1) {
  6012. i11 = 0;
  6013. if (++i12 == ne2) {
  6014. i12 = 0;
  6015. if (++i13 == ne3) {
  6016. i13 = 0;
  6017. }
  6018. }
  6019. }
  6020. }
  6021. }
  6022. }
  6023. } else {
  6024. GGML_ASSERT(false); // TODO: implement
  6025. }
  6026. }
  6027. static void ggml_compute_forward_dup_f32(
  6028. const struct ggml_compute_params * params,
  6029. struct ggml_tensor * dst) {
  6030. const struct ggml_tensor * src0 = dst->src[0];
  6031. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6032. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6033. return;
  6034. }
  6035. GGML_TENSOR_UNARY_OP_LOCALS
  6036. const int ith = params->ith; // thread index
  6037. const int nth = params->nth; // number of threads
  6038. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6039. ggml_compute_forward_dup_same_cont(params, dst);
  6040. return;
  6041. }
  6042. // parallelize by rows
  6043. const int nr = ne01;
  6044. // number of rows per thread
  6045. const int dr = (nr + nth - 1) / nth;
  6046. // row range for this thread
  6047. const int ir0 = dr * ith;
  6048. const int ir1 = MIN(ir0 + dr, nr);
  6049. if (src0->type == dst->type &&
  6050. ne00 == ne0 &&
  6051. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6052. // copy by rows
  6053. const size_t rs = ne00*nb00;
  6054. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6055. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6056. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6057. memcpy(
  6058. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6059. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6060. rs);
  6061. }
  6062. }
  6063. }
  6064. return;
  6065. }
  6066. if (ggml_is_contiguous(dst)) {
  6067. // TODO: simplify
  6068. if (nb00 == sizeof(float)) {
  6069. if (dst->type == GGML_TYPE_F32) {
  6070. size_t id = 0;
  6071. const size_t rs = ne00 * nb00;
  6072. char * dst_ptr = (char *) dst->data;
  6073. for (int i03 = 0; i03 < ne03; i03++) {
  6074. for (int i02 = 0; i02 < ne02; i02++) {
  6075. id += rs * ir0;
  6076. for (int i01 = ir0; i01 < ir1; i01++) {
  6077. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6078. memcpy(dst_ptr + id, src0_ptr, rs);
  6079. id += rs;
  6080. }
  6081. id += rs * (ne01 - ir1);
  6082. }
  6083. }
  6084. } else if (type_traits[dst->type].from_float) {
  6085. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6086. size_t id = 0;
  6087. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6088. char * dst_ptr = (char *) dst->data;
  6089. for (int i03 = 0; i03 < ne03; i03++) {
  6090. for (int i02 = 0; i02 < ne02; i02++) {
  6091. id += rs * ir0;
  6092. for (int i01 = ir0; i01 < ir1; i01++) {
  6093. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6094. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6095. id += rs;
  6096. }
  6097. id += rs * (ne01 - ir1);
  6098. }
  6099. }
  6100. } else {
  6101. GGML_ASSERT(false); // TODO: implement
  6102. }
  6103. } else {
  6104. //printf("%s: this is not optimal - fix me\n", __func__);
  6105. if (dst->type == GGML_TYPE_F32) {
  6106. size_t id = 0;
  6107. float * dst_ptr = (float *) dst->data;
  6108. for (int i03 = 0; i03 < ne03; i03++) {
  6109. for (int i02 = 0; i02 < ne02; i02++) {
  6110. id += ne00 * ir0;
  6111. for (int i01 = ir0; i01 < ir1; i01++) {
  6112. for (int i00 = 0; i00 < ne00; i00++) {
  6113. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6114. dst_ptr[id] = *src0_ptr;
  6115. id++;
  6116. }
  6117. }
  6118. id += ne00 * (ne01 - ir1);
  6119. }
  6120. }
  6121. } else if (dst->type == GGML_TYPE_F16) {
  6122. size_t id = 0;
  6123. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6124. for (int i03 = 0; i03 < ne03; i03++) {
  6125. for (int i02 = 0; i02 < ne02; i02++) {
  6126. id += ne00 * ir0;
  6127. for (int i01 = ir0; i01 < ir1; i01++) {
  6128. for (int i00 = 0; i00 < ne00; i00++) {
  6129. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6130. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6131. id++;
  6132. }
  6133. }
  6134. id += ne00 * (ne01 - ir1);
  6135. }
  6136. }
  6137. } else {
  6138. GGML_ASSERT(false); // TODO: implement
  6139. }
  6140. }
  6141. return;
  6142. }
  6143. // dst counters
  6144. int64_t i10 = 0;
  6145. int64_t i11 = 0;
  6146. int64_t i12 = 0;
  6147. int64_t i13 = 0;
  6148. if (dst->type == GGML_TYPE_F32) {
  6149. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6150. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6151. i10 += ne00 * ir0;
  6152. while (i10 >= ne0) {
  6153. i10 -= ne0;
  6154. if (++i11 == ne1) {
  6155. i11 = 0;
  6156. if (++i12 == ne2) {
  6157. i12 = 0;
  6158. if (++i13 == ne3) {
  6159. i13 = 0;
  6160. }
  6161. }
  6162. }
  6163. }
  6164. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6165. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6166. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6167. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6168. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6169. if (++i10 == ne0) {
  6170. i10 = 0;
  6171. if (++i11 == ne1) {
  6172. i11 = 0;
  6173. if (++i12 == ne2) {
  6174. i12 = 0;
  6175. if (++i13 == ne3) {
  6176. i13 = 0;
  6177. }
  6178. }
  6179. }
  6180. }
  6181. }
  6182. }
  6183. i10 += ne00 * (ne01 - ir1);
  6184. while (i10 >= ne0) {
  6185. i10 -= ne0;
  6186. if (++i11 == ne1) {
  6187. i11 = 0;
  6188. if (++i12 == ne2) {
  6189. i12 = 0;
  6190. if (++i13 == ne3) {
  6191. i13 = 0;
  6192. }
  6193. }
  6194. }
  6195. }
  6196. }
  6197. }
  6198. } else if (dst->type == GGML_TYPE_F16) {
  6199. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6201. i10 += ne00 * ir0;
  6202. while (i10 >= ne0) {
  6203. i10 -= ne0;
  6204. if (++i11 == ne1) {
  6205. i11 = 0;
  6206. if (++i12 == ne2) {
  6207. i12 = 0;
  6208. if (++i13 == ne3) {
  6209. i13 = 0;
  6210. }
  6211. }
  6212. }
  6213. }
  6214. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6215. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6216. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6217. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6218. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6219. if (++i10 == ne0) {
  6220. i10 = 0;
  6221. if (++i11 == ne1) {
  6222. i11 = 0;
  6223. if (++i12 == ne2) {
  6224. i12 = 0;
  6225. if (++i13 == ne3) {
  6226. i13 = 0;
  6227. }
  6228. }
  6229. }
  6230. }
  6231. }
  6232. }
  6233. i10 += ne00 * (ne01 - ir1);
  6234. while (i10 >= ne0) {
  6235. i10 -= ne0;
  6236. if (++i11 == ne1) {
  6237. i11 = 0;
  6238. if (++i12 == ne2) {
  6239. i12 = 0;
  6240. if (++i13 == ne3) {
  6241. i13 = 0;
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. }
  6248. } else {
  6249. GGML_ASSERT(false); // TODO: implement
  6250. }
  6251. }
  6252. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6253. static void ggml_compute_forward_dup_bytes(
  6254. const struct ggml_compute_params * params,
  6255. struct ggml_tensor * dst) {
  6256. const struct ggml_tensor * src0 = dst->src[0];
  6257. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6258. GGML_ASSERT(src0->type == dst->type);
  6259. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6260. return;
  6261. }
  6262. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6263. ggml_compute_forward_dup_same_cont(params, dst);
  6264. return;
  6265. }
  6266. GGML_TENSOR_UNARY_OP_LOCALS;
  6267. const size_t type_size = ggml_type_size(src0->type);
  6268. const int ith = params->ith; // thread index
  6269. const int nth = params->nth; // number of threads
  6270. // parallelize by rows
  6271. const int nr = ne01;
  6272. // number of rows per thread
  6273. const int dr = (nr + nth - 1) / nth;
  6274. // row range for this thread
  6275. const int ir0 = dr * ith;
  6276. const int ir1 = MIN(ir0 + dr, nr);
  6277. if (src0->type == dst->type &&
  6278. ne00 == ne0 &&
  6279. nb00 == type_size && nb0 == type_size) {
  6280. // copy by rows
  6281. const size_t rs = ne00 * type_size;
  6282. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6283. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6284. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6285. memcpy(
  6286. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6287. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6288. rs);
  6289. }
  6290. }
  6291. }
  6292. return;
  6293. }
  6294. if (ggml_is_contiguous(dst)) {
  6295. size_t id = 0;
  6296. char * dst_ptr = (char *) dst->data;
  6297. const size_t rs = ne00 * type_size;
  6298. if (nb00 == type_size) {
  6299. // src0 is contigous on first dimension, copy by rows
  6300. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6301. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6302. id += rs * ir0;
  6303. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6304. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6305. memcpy(dst_ptr + id, src0_ptr, rs);
  6306. id += rs;
  6307. }
  6308. id += rs * (ne01 - ir1);
  6309. }
  6310. }
  6311. } else {
  6312. //printf("%s: this is not optimal - fix me\n", __func__);
  6313. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6314. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6315. id += rs * ir0;
  6316. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6317. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6318. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6319. memcpy(dst_ptr + id, src0_ptr, type_size);
  6320. id += type_size;
  6321. }
  6322. }
  6323. id += rs * (ne01 - ir1);
  6324. }
  6325. }
  6326. }
  6327. return;
  6328. }
  6329. // dst counters
  6330. int64_t i10 = 0;
  6331. int64_t i11 = 0;
  6332. int64_t i12 = 0;
  6333. int64_t i13 = 0;
  6334. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6336. i10 += ne00 * ir0;
  6337. while (i10 >= ne0) {
  6338. i10 -= ne0;
  6339. if (++i11 == ne1) {
  6340. i11 = 0;
  6341. if (++i12 == ne2) {
  6342. i12 = 0;
  6343. if (++i13 == ne3) {
  6344. i13 = 0;
  6345. }
  6346. }
  6347. }
  6348. }
  6349. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6350. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6351. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6352. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6353. memcpy(dst_ptr, src0_ptr, type_size);
  6354. if (++i10 == ne0) {
  6355. i10 = 0;
  6356. if (++i11 == ne1) {
  6357. i11 = 0;
  6358. if (++i12 == ne2) {
  6359. i12 = 0;
  6360. if (++i13 == ne3) {
  6361. i13 = 0;
  6362. }
  6363. }
  6364. }
  6365. }
  6366. }
  6367. }
  6368. i10 += ne00 * (ne01 - ir1);
  6369. while (i10 >= ne0) {
  6370. i10 -= ne0;
  6371. if (++i11 == ne1) {
  6372. i11 = 0;
  6373. if (++i12 == ne2) {
  6374. i12 = 0;
  6375. if (++i13 == ne3) {
  6376. i13 = 0;
  6377. }
  6378. }
  6379. }
  6380. }
  6381. }
  6382. }
  6383. }
  6384. static void ggml_compute_forward_dup(
  6385. const struct ggml_compute_params * params,
  6386. struct ggml_tensor * dst) {
  6387. const struct ggml_tensor * src0 = dst->src[0];
  6388. if (src0->type == dst->type) {
  6389. ggml_compute_forward_dup_bytes(params, dst);
  6390. return;
  6391. }
  6392. switch (src0->type) {
  6393. case GGML_TYPE_F16:
  6394. {
  6395. ggml_compute_forward_dup_f16(params, dst);
  6396. } break;
  6397. case GGML_TYPE_F32:
  6398. {
  6399. ggml_compute_forward_dup_f32(params, dst);
  6400. } break;
  6401. default:
  6402. {
  6403. GGML_ASSERT(false);
  6404. } break;
  6405. }
  6406. }
  6407. // ggml_compute_forward_add
  6408. static void ggml_compute_forward_add_f32(
  6409. const struct ggml_compute_params * params,
  6410. struct ggml_tensor * dst) {
  6411. const struct ggml_tensor * src0 = dst->src[0];
  6412. const struct ggml_tensor * src1 = dst->src[1];
  6413. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6414. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6415. return;
  6416. }
  6417. const int ith = params->ith;
  6418. const int nth = params->nth;
  6419. #ifdef GGML_USE_CLBLAST
  6420. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6421. // TODO: OpenCL kernel support full broadcast
  6422. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6423. if (ith == 0) {
  6424. ggml_cl_add(src0, src1, dst);
  6425. }
  6426. return;
  6427. }
  6428. #endif
  6429. const int nr = ggml_nrows(src0);
  6430. GGML_TENSOR_BINARY_OP_LOCALS
  6431. GGML_ASSERT( nb0 == sizeof(float));
  6432. GGML_ASSERT(nb00 == sizeof(float));
  6433. // rows per thread
  6434. const int dr = (nr + nth - 1)/nth;
  6435. // row range for this thread
  6436. const int ir0 = dr*ith;
  6437. const int ir1 = MIN(ir0 + dr, nr);
  6438. if (nb10 == sizeof(float)) {
  6439. for (int ir = ir0; ir < ir1; ++ir) {
  6440. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6441. const int64_t i03 = ir/(ne02*ne01);
  6442. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6443. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6444. const int64_t i13 = i03 % ne13;
  6445. const int64_t i12 = i02 % ne12;
  6446. const int64_t i11 = i01 % ne11;
  6447. const int64_t nr0 = ne00 / ne10;
  6448. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6449. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6450. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6451. for (int64_t r = 0; r < nr0; ++r) {
  6452. #ifdef GGML_USE_ACCELERATE
  6453. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6454. #else
  6455. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6456. #endif
  6457. }
  6458. }
  6459. } else {
  6460. // src1 is not contiguous
  6461. for (int ir = ir0; ir < ir1; ++ir) {
  6462. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6463. const int64_t i03 = ir/(ne02*ne01);
  6464. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6465. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6466. const int64_t i13 = i03 % ne13;
  6467. const int64_t i12 = i02 % ne12;
  6468. const int64_t i11 = i01 % ne11;
  6469. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6470. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6471. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6472. const int64_t i10 = i0 % ne10;
  6473. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6474. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6475. }
  6476. }
  6477. }
  6478. }
  6479. static void ggml_compute_forward_add_f16_f32(
  6480. const struct ggml_compute_params * params,
  6481. struct ggml_tensor * dst) {
  6482. const struct ggml_tensor * src0 = dst->src[0];
  6483. const struct ggml_tensor * src1 = dst->src[1];
  6484. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6486. return;
  6487. }
  6488. const int ith = params->ith;
  6489. const int nth = params->nth;
  6490. const int nr = ggml_nrows(src0);
  6491. GGML_TENSOR_BINARY_OP_LOCALS
  6492. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6493. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6494. if (dst->type == GGML_TYPE_F32) {
  6495. GGML_ASSERT( nb0 == sizeof(float));
  6496. }
  6497. else {
  6498. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6499. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6500. }
  6501. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6502. // rows per thread
  6503. const int dr = (nr + nth - 1)/nth;
  6504. // row range for this thread
  6505. const int ir0 = dr*ith;
  6506. const int ir1 = MIN(ir0 + dr, nr);
  6507. if (nb10 == sizeof(float)) {
  6508. if (dst->type == GGML_TYPE_F16) {
  6509. for (int ir = ir0; ir < ir1; ++ir) {
  6510. // src0, src1 and dst are same shape => same indices
  6511. const int i3 = ir/(ne2*ne1);
  6512. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6513. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6514. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6515. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6516. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6517. for (int i = 0; i < ne0; i++) {
  6518. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6519. }
  6520. }
  6521. } else {
  6522. for (int ir = ir0; ir < ir1; ++ir) {
  6523. // src0, src1 and dst are same shape => same indices
  6524. const int i3 = ir/(ne2*ne1);
  6525. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6526. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6527. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6528. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6529. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6530. for (int i = 0; i < ne0; i++) {
  6531. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6532. }
  6533. }
  6534. }
  6535. }
  6536. else {
  6537. // src1 is not contiguous
  6538. GGML_ASSERT(false);
  6539. }
  6540. }
  6541. static void ggml_compute_forward_add_f16_f16(
  6542. const struct ggml_compute_params * params,
  6543. struct ggml_tensor * dst) {
  6544. const struct ggml_tensor * src0 = dst->src[0];
  6545. const struct ggml_tensor * src1 = dst->src[1];
  6546. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6548. return;
  6549. }
  6550. const int ith = params->ith;
  6551. const int nth = params->nth;
  6552. const int nr = ggml_nrows(src0);
  6553. GGML_TENSOR_BINARY_OP_LOCALS
  6554. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6555. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6556. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6557. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6558. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6559. // rows per thread
  6560. const int dr = (nr + nth - 1)/nth;
  6561. // row range for this thread
  6562. const int ir0 = dr*ith;
  6563. const int ir1 = MIN(ir0 + dr, nr);
  6564. if (nb10 == sizeof(ggml_fp16_t)) {
  6565. for (int ir = ir0; ir < ir1; ++ir) {
  6566. // src0, src1 and dst are same shape => same indices
  6567. const int i3 = ir/(ne2*ne1);
  6568. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6569. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6570. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6571. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6572. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6573. for (int i = 0; i < ne0; i++) {
  6574. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6575. }
  6576. }
  6577. }
  6578. else {
  6579. // src1 is not contiguous
  6580. GGML_ASSERT(false);
  6581. }
  6582. }
  6583. static void ggml_compute_forward_add_q_f32(
  6584. const struct ggml_compute_params * params,
  6585. struct ggml_tensor * dst) {
  6586. const struct ggml_tensor * src0 = dst->src[0];
  6587. const struct ggml_tensor * src1 = dst->src[1];
  6588. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6590. return;
  6591. }
  6592. const int nr = ggml_nrows(src0);
  6593. GGML_TENSOR_BINARY_OP_LOCALS
  6594. const int ith = params->ith;
  6595. const int nth = params->nth;
  6596. const enum ggml_type type = src0->type;
  6597. const enum ggml_type dtype = dst->type;
  6598. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6599. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6600. // we don't support permuted src0 or src1
  6601. GGML_ASSERT(nb00 == ggml_type_size(type));
  6602. GGML_ASSERT(nb10 == sizeof(float));
  6603. // dst cannot be transposed or permuted
  6604. GGML_ASSERT(nb0 <= nb1);
  6605. GGML_ASSERT(nb1 <= nb2);
  6606. GGML_ASSERT(nb2 <= nb3);
  6607. GGML_ASSERT(ggml_is_quantized(src0->type));
  6608. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6609. // rows per thread
  6610. const int dr = (nr + nth - 1)/nth;
  6611. // row range for this thread
  6612. const int ir0 = dr*ith;
  6613. const int ir1 = MIN(ir0 + dr, nr);
  6614. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6615. for (int ir = ir0; ir < ir1; ++ir) {
  6616. // src0 indices
  6617. const int i03 = ir/(ne02*ne01);
  6618. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6619. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6620. // src1 and dst are same shape as src0 => same indices
  6621. const int i13 = i03;
  6622. const int i12 = i02;
  6623. const int i11 = i01;
  6624. const int i3 = i03;
  6625. const int i2 = i02;
  6626. const int i1 = i01;
  6627. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6628. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6629. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6630. assert(ne00 % 32 == 0);
  6631. // unquantize row from src0 to temp buffer
  6632. dequantize_row_q(src0_row, wdata, ne00);
  6633. // add src1
  6634. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6635. // quantize row to dst
  6636. if (quantize_row_q != NULL) {
  6637. quantize_row_q(wdata, dst_row, ne00);
  6638. } else {
  6639. memcpy(dst_row, wdata, ne0*nb0);
  6640. }
  6641. }
  6642. }
  6643. static void ggml_compute_forward_add(
  6644. const struct ggml_compute_params * params,
  6645. struct ggml_tensor * dst) {
  6646. const struct ggml_tensor * src0 = dst->src[0];
  6647. const struct ggml_tensor * src1 = dst->src[1];
  6648. switch (src0->type) {
  6649. case GGML_TYPE_F32:
  6650. {
  6651. if (src1->type == GGML_TYPE_F32) {
  6652. ggml_compute_forward_add_f32(params, dst);
  6653. }
  6654. else {
  6655. GGML_ASSERT(false);
  6656. }
  6657. } break;
  6658. case GGML_TYPE_F16:
  6659. {
  6660. if (src1->type == GGML_TYPE_F16) {
  6661. ggml_compute_forward_add_f16_f16(params, dst);
  6662. }
  6663. else if (src1->type == GGML_TYPE_F32) {
  6664. ggml_compute_forward_add_f16_f32(params, dst);
  6665. }
  6666. else {
  6667. GGML_ASSERT(false);
  6668. }
  6669. } break;
  6670. case GGML_TYPE_Q4_0:
  6671. case GGML_TYPE_Q4_1:
  6672. case GGML_TYPE_Q5_0:
  6673. case GGML_TYPE_Q5_1:
  6674. case GGML_TYPE_Q8_0:
  6675. case GGML_TYPE_Q2_K:
  6676. case GGML_TYPE_Q3_K:
  6677. case GGML_TYPE_Q4_K:
  6678. case GGML_TYPE_Q5_K:
  6679. case GGML_TYPE_Q6_K:
  6680. case GGML_TYPE_IQ2_XXS:
  6681. case GGML_TYPE_IQ2_XS:
  6682. case GGML_TYPE_IQ3_XXS:
  6683. case GGML_TYPE_IQ1_S:
  6684. case GGML_TYPE_IQ4_NL:
  6685. case GGML_TYPE_IQ4_XS:
  6686. case GGML_TYPE_IQ3_S:
  6687. case GGML_TYPE_IQ2_S:
  6688. {
  6689. ggml_compute_forward_add_q_f32(params, dst);
  6690. } break;
  6691. default:
  6692. {
  6693. GGML_ASSERT(false);
  6694. } break;
  6695. }
  6696. }
  6697. // ggml_compute_forward_add1
  6698. static void ggml_compute_forward_add1_f32(
  6699. const struct ggml_compute_params * params,
  6700. struct ggml_tensor * dst) {
  6701. const struct ggml_tensor * src0 = dst->src[0];
  6702. const struct ggml_tensor * src1 = dst->src[1];
  6703. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6704. GGML_ASSERT(ggml_is_scalar(src1));
  6705. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6706. return;
  6707. }
  6708. const int ith = params->ith;
  6709. const int nth = params->nth;
  6710. const int nr = ggml_nrows(src0);
  6711. GGML_TENSOR_UNARY_OP_LOCALS
  6712. GGML_ASSERT( nb0 == sizeof(float));
  6713. GGML_ASSERT(nb00 == sizeof(float));
  6714. // rows per thread
  6715. const int dr = (nr + nth - 1)/nth;
  6716. // row range for this thread
  6717. const int ir0 = dr*ith;
  6718. const int ir1 = MIN(ir0 + dr, nr);
  6719. for (int ir = ir0; ir < ir1; ++ir) {
  6720. // src0 and dst are same shape => same indices
  6721. const int i3 = ir/(ne2*ne1);
  6722. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6723. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6724. #ifdef GGML_USE_ACCELERATE
  6725. UNUSED(ggml_vec_add1_f32);
  6726. vDSP_vadd(
  6727. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6728. (float *) ((char *) src1->data), 0,
  6729. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6730. ne0);
  6731. #else
  6732. ggml_vec_add1_f32(ne0,
  6733. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6734. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6735. *(float *) src1->data);
  6736. #endif
  6737. }
  6738. }
  6739. static void ggml_compute_forward_add1_f16_f32(
  6740. const struct ggml_compute_params * params,
  6741. struct ggml_tensor * dst) {
  6742. const struct ggml_tensor * src0 = dst->src[0];
  6743. const struct ggml_tensor * src1 = dst->src[1];
  6744. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6745. GGML_ASSERT(ggml_is_scalar(src1));
  6746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6747. return;
  6748. }
  6749. // scalar to add
  6750. const float v = *(float *) src1->data;
  6751. const int ith = params->ith;
  6752. const int nth = params->nth;
  6753. const int nr = ggml_nrows(src0);
  6754. GGML_TENSOR_UNARY_OP_LOCALS
  6755. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6756. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6757. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6758. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6759. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6760. // rows per thread
  6761. const int dr = (nr + nth - 1)/nth;
  6762. // row range for this thread
  6763. const int ir0 = dr*ith;
  6764. const int ir1 = MIN(ir0 + dr, nr);
  6765. for (int ir = ir0; ir < ir1; ++ir) {
  6766. // src0 and dst are same shape => same indices
  6767. const int i3 = ir/(ne2*ne1);
  6768. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6769. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6770. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6771. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6772. for (int i = 0; i < ne0; i++) {
  6773. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6774. }
  6775. }
  6776. }
  6777. static void ggml_compute_forward_add1_f16_f16(
  6778. const struct ggml_compute_params * params,
  6779. struct ggml_tensor * dst) {
  6780. const struct ggml_tensor * src0 = dst->src[0];
  6781. const struct ggml_tensor * src1 = dst->src[1];
  6782. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6783. GGML_ASSERT(ggml_is_scalar(src1));
  6784. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6785. return;
  6786. }
  6787. // scalar to add
  6788. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6789. const int ith = params->ith;
  6790. const int nth = params->nth;
  6791. const int nr = ggml_nrows(src0);
  6792. GGML_TENSOR_UNARY_OP_LOCALS
  6793. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6794. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6795. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6796. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6797. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6798. // rows per thread
  6799. const int dr = (nr + nth - 1)/nth;
  6800. // row range for this thread
  6801. const int ir0 = dr*ith;
  6802. const int ir1 = MIN(ir0 + dr, nr);
  6803. for (int ir = ir0; ir < ir1; ++ir) {
  6804. // src0 and dst are same shape => same indices
  6805. const int i3 = ir/(ne2*ne1);
  6806. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6807. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6808. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6809. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6810. for (int i = 0; i < ne0; i++) {
  6811. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6812. }
  6813. }
  6814. }
  6815. static void ggml_compute_forward_add1_q_f32(
  6816. const struct ggml_compute_params * params,
  6817. struct ggml_tensor * dst) {
  6818. const struct ggml_tensor * src0 = dst->src[0];
  6819. const struct ggml_tensor * src1 = dst->src[1];
  6820. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6821. GGML_ASSERT(ggml_is_scalar(src1));
  6822. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6823. return;
  6824. }
  6825. // scalar to add
  6826. const float v = *(float *) src1->data;
  6827. const int ith = params->ith;
  6828. const int nth = params->nth;
  6829. const int nr = ggml_nrows(src0);
  6830. GGML_TENSOR_UNARY_OP_LOCALS
  6831. const enum ggml_type type = src0->type;
  6832. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6833. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6834. // we don't support permuted src0
  6835. GGML_ASSERT(nb00 == ggml_type_size(type));
  6836. // dst cannot be transposed or permuted
  6837. GGML_ASSERT(nb0 <= nb1);
  6838. GGML_ASSERT(nb1 <= nb2);
  6839. GGML_ASSERT(nb2 <= nb3);
  6840. GGML_ASSERT(ggml_is_quantized(src0->type));
  6841. GGML_ASSERT(dst->type == src0->type);
  6842. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6843. // rows per thread
  6844. const int dr = (nr + nth - 1)/nth;
  6845. // row range for this thread
  6846. const int ir0 = dr*ith;
  6847. const int ir1 = MIN(ir0 + dr, nr);
  6848. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6849. for (int ir = ir0; ir < ir1; ++ir) {
  6850. // src0 and dst are same shape => same indices
  6851. const int i3 = ir/(ne2*ne1);
  6852. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6853. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6854. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6855. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6856. assert(ne0 % 32 == 0);
  6857. // unquantize row from src0 to temp buffer
  6858. dequantize_row_q(src0_row, wdata, ne0);
  6859. // add src1
  6860. ggml_vec_acc1_f32(ne0, wdata, v);
  6861. // quantize row to dst
  6862. quantize_row_q(wdata, dst_row, ne0);
  6863. }
  6864. }
  6865. static void ggml_compute_forward_add1(
  6866. const struct ggml_compute_params * params,
  6867. struct ggml_tensor * dst) {
  6868. const struct ggml_tensor * src0 = dst->src[0];
  6869. const struct ggml_tensor * src1 = dst->src[1];
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_add1_f32(params, dst);
  6874. } break;
  6875. case GGML_TYPE_F16:
  6876. {
  6877. if (src1->type == GGML_TYPE_F16) {
  6878. ggml_compute_forward_add1_f16_f16(params, dst);
  6879. }
  6880. else if (src1->type == GGML_TYPE_F32) {
  6881. ggml_compute_forward_add1_f16_f32(params, dst);
  6882. }
  6883. else {
  6884. GGML_ASSERT(false);
  6885. }
  6886. } break;
  6887. case GGML_TYPE_Q4_0:
  6888. case GGML_TYPE_Q4_1:
  6889. case GGML_TYPE_Q5_0:
  6890. case GGML_TYPE_Q5_1:
  6891. case GGML_TYPE_Q8_0:
  6892. case GGML_TYPE_Q8_1:
  6893. case GGML_TYPE_Q2_K:
  6894. case GGML_TYPE_Q3_K:
  6895. case GGML_TYPE_Q4_K:
  6896. case GGML_TYPE_Q5_K:
  6897. case GGML_TYPE_Q6_K:
  6898. case GGML_TYPE_IQ2_XXS:
  6899. case GGML_TYPE_IQ2_XS:
  6900. case GGML_TYPE_IQ3_XXS:
  6901. case GGML_TYPE_IQ1_S:
  6902. case GGML_TYPE_IQ4_NL:
  6903. case GGML_TYPE_IQ4_XS:
  6904. case GGML_TYPE_IQ3_S:
  6905. case GGML_TYPE_IQ2_S:
  6906. {
  6907. ggml_compute_forward_add1_q_f32(params, dst);
  6908. } break;
  6909. default:
  6910. {
  6911. GGML_ASSERT(false);
  6912. } break;
  6913. }
  6914. }
  6915. // ggml_compute_forward_acc
  6916. static void ggml_compute_forward_acc_f32(
  6917. const struct ggml_compute_params * params,
  6918. struct ggml_tensor * dst) {
  6919. const struct ggml_tensor * src0 = dst->src[0];
  6920. const struct ggml_tensor * src1 = dst->src[1];
  6921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6922. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6923. // view src0 and dst with these strides and data offset inbytes during acc
  6924. // nb0 is implicitly element_size because src0 and dst are contiguous
  6925. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6926. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6927. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6928. size_t offset = ((int32_t *) dst->op_params)[3];
  6929. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6930. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6931. if (params->ith != 0) {
  6932. return;
  6933. }
  6934. // memcpy needs to be synchronized across threads to avoid race conditions.
  6935. // => do it in INIT phase
  6936. memcpy(
  6937. ((char *) dst->data),
  6938. ((char *) src0->data),
  6939. ggml_nbytes(dst));
  6940. }
  6941. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6942. return;
  6943. }
  6944. const int ith = params->ith;
  6945. const int nth = params->nth;
  6946. const int nr = ggml_nrows(src1);
  6947. const int nc = src1->ne[0];
  6948. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6949. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6950. // src0 and dst as viewed during acc
  6951. const size_t nb0 = ggml_element_size(src0);
  6952. const size_t nb00 = nb0;
  6953. const size_t nb01 = nb1;
  6954. const size_t nb02 = nb2;
  6955. const size_t nb03 = nb3;
  6956. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6957. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6958. GGML_ASSERT(nb10 == sizeof(float));
  6959. // rows per thread
  6960. const int dr = (nr + nth - 1)/nth;
  6961. // row range for this thread
  6962. const int ir0 = dr*ith;
  6963. const int ir1 = MIN(ir0 + dr, nr);
  6964. for (int ir = ir0; ir < ir1; ++ir) {
  6965. // src0 and dst are viewed with shape of src1 and offset
  6966. // => same indices
  6967. const int i3 = ir/(ne12*ne11);
  6968. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6969. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6970. #ifdef GGML_USE_ACCELERATE
  6971. vDSP_vadd(
  6972. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6973. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6974. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6975. #else
  6976. ggml_vec_add_f32(nc,
  6977. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6978. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6979. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6980. #endif
  6981. }
  6982. }
  6983. static void ggml_compute_forward_acc(
  6984. const struct ggml_compute_params * params,
  6985. struct ggml_tensor * dst) {
  6986. const struct ggml_tensor * src0 = dst->src[0];
  6987. switch (src0->type) {
  6988. case GGML_TYPE_F32:
  6989. {
  6990. ggml_compute_forward_acc_f32(params, dst);
  6991. } break;
  6992. case GGML_TYPE_F16:
  6993. case GGML_TYPE_Q4_0:
  6994. case GGML_TYPE_Q4_1:
  6995. case GGML_TYPE_Q5_0:
  6996. case GGML_TYPE_Q5_1:
  6997. case GGML_TYPE_Q8_0:
  6998. case GGML_TYPE_Q8_1:
  6999. case GGML_TYPE_Q2_K:
  7000. case GGML_TYPE_Q3_K:
  7001. case GGML_TYPE_Q4_K:
  7002. case GGML_TYPE_Q5_K:
  7003. case GGML_TYPE_Q6_K:
  7004. case GGML_TYPE_IQ2_XXS:
  7005. case GGML_TYPE_IQ2_XS:
  7006. case GGML_TYPE_IQ3_XXS:
  7007. case GGML_TYPE_IQ1_S:
  7008. case GGML_TYPE_IQ4_NL:
  7009. case GGML_TYPE_IQ4_XS:
  7010. case GGML_TYPE_IQ3_S:
  7011. case GGML_TYPE_IQ2_S:
  7012. default:
  7013. {
  7014. GGML_ASSERT(false);
  7015. } break;
  7016. }
  7017. }
  7018. // ggml_compute_forward_sub
  7019. static void ggml_compute_forward_sub_f32(
  7020. const struct ggml_compute_params * params,
  7021. struct ggml_tensor * dst) {
  7022. const struct ggml_tensor * src0 = dst->src[0];
  7023. const struct ggml_tensor * src1 = dst->src[1];
  7024. assert(params->ith == 0);
  7025. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7026. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7027. return;
  7028. }
  7029. const int nr = ggml_nrows(src0);
  7030. GGML_TENSOR_BINARY_OP_LOCALS
  7031. GGML_ASSERT( nb0 == sizeof(float));
  7032. GGML_ASSERT(nb00 == sizeof(float));
  7033. if (nb10 == sizeof(float)) {
  7034. for (int ir = 0; ir < nr; ++ir) {
  7035. // src0, src1 and dst are same shape => same indices
  7036. const int i3 = ir/(ne2*ne1);
  7037. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7038. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7039. #ifdef GGML_USE_ACCELERATE
  7040. vDSP_vsub(
  7041. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7042. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7043. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7044. ne0);
  7045. #else
  7046. ggml_vec_sub_f32(ne0,
  7047. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7048. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7049. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7050. #endif
  7051. // }
  7052. // }
  7053. }
  7054. } else {
  7055. // src1 is not contiguous
  7056. for (int ir = 0; ir < nr; ++ir) {
  7057. // src0, src1 and dst are same shape => same indices
  7058. const int i3 = ir/(ne2*ne1);
  7059. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7060. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7061. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7062. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7063. for (int i0 = 0; i0 < ne0; i0++) {
  7064. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7065. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7066. }
  7067. }
  7068. }
  7069. }
  7070. static void ggml_compute_forward_sub(
  7071. const struct ggml_compute_params * params,
  7072. struct ggml_tensor * dst) {
  7073. const struct ggml_tensor * src0 = dst->src[0];
  7074. switch (src0->type) {
  7075. case GGML_TYPE_F32:
  7076. {
  7077. ggml_compute_forward_sub_f32(params, dst);
  7078. } break;
  7079. default:
  7080. {
  7081. GGML_ASSERT(false);
  7082. } break;
  7083. }
  7084. }
  7085. // ggml_compute_forward_mul
  7086. static void ggml_compute_forward_mul_f32(
  7087. const struct ggml_compute_params * params,
  7088. struct ggml_tensor * dst) {
  7089. const struct ggml_tensor * src0 = dst->src[0];
  7090. const struct ggml_tensor * src1 = dst->src[1];
  7091. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7092. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7093. return;
  7094. }
  7095. const int ith = params->ith;
  7096. const int nth = params->nth;
  7097. #if defined(GGML_USE_CLBLAST)
  7098. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7099. // TODO: OpenCL kernel support full broadcast
  7100. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7101. if (ith == 0) {
  7102. ggml_cl_mul(src0, src1, dst);
  7103. }
  7104. return;
  7105. }
  7106. #endif
  7107. const int64_t nr = ggml_nrows(src0);
  7108. GGML_TENSOR_BINARY_OP_LOCALS
  7109. GGML_ASSERT( nb0 == sizeof(float));
  7110. GGML_ASSERT(nb00 == sizeof(float));
  7111. if (nb10 == sizeof(float)) {
  7112. for (int64_t ir = ith; ir < nr; ir += nth) {
  7113. // src0 and dst are same shape => same indices
  7114. const int64_t i03 = ir/(ne02*ne01);
  7115. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7116. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7117. const int64_t i13 = i03 % ne13;
  7118. const int64_t i12 = i02 % ne12;
  7119. const int64_t i11 = i01 % ne11;
  7120. const int64_t nr0 = ne00 / ne10;
  7121. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7122. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7123. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7124. for (int64_t r = 0 ; r < nr0; ++r) {
  7125. #ifdef GGML_USE_ACCELERATE
  7126. UNUSED(ggml_vec_mul_f32);
  7127. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7128. #else
  7129. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7130. #endif
  7131. }
  7132. }
  7133. } else {
  7134. // src1 is not contiguous
  7135. for (int64_t ir = ith; ir < nr; ir += nth) {
  7136. // src0 and dst are same shape => same indices
  7137. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7138. const int64_t i03 = ir/(ne02*ne01);
  7139. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7140. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7141. const int64_t i13 = i03 % ne13;
  7142. const int64_t i12 = i02 % ne12;
  7143. const int64_t i11 = i01 % ne11;
  7144. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7145. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7146. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7147. const int64_t i10 = i0 % ne10;
  7148. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7149. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7150. }
  7151. }
  7152. }
  7153. }
  7154. static void ggml_compute_forward_mul(
  7155. const struct ggml_compute_params * params,
  7156. struct ggml_tensor * dst) {
  7157. const struct ggml_tensor * src0 = dst->src[0];
  7158. const struct ggml_tensor * src1 = dst->src[1];
  7159. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_mul_f32(params, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_div
  7172. static void ggml_compute_forward_div_f32(
  7173. const struct ggml_compute_params * params,
  7174. struct ggml_tensor * dst) {
  7175. const struct ggml_tensor * src0 = dst->src[0];
  7176. const struct ggml_tensor * src1 = dst->src[1];
  7177. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7179. return;
  7180. }
  7181. const int ith = params->ith;
  7182. const int nth = params->nth;
  7183. const int64_t nr = ggml_nrows(src0);
  7184. GGML_TENSOR_BINARY_OP_LOCALS
  7185. GGML_ASSERT( nb0 == sizeof(float));
  7186. GGML_ASSERT(nb00 == sizeof(float));
  7187. if (nb10 == sizeof(float)) {
  7188. for (int64_t ir = ith; ir < nr; ir += nth) {
  7189. // src0 and dst are same shape => same indices
  7190. const int64_t i03 = ir/(ne02*ne01);
  7191. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7192. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7193. const int64_t i13 = i03 % ne13;
  7194. const int64_t i12 = i02 % ne12;
  7195. const int64_t i11 = i01 % ne11;
  7196. const int64_t nr0 = ne00 / ne10;
  7197. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7198. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7199. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7200. for (int64_t r = 0; r < nr0; ++r) {
  7201. #ifdef GGML_USE_ACCELERATE
  7202. UNUSED(ggml_vec_div_f32);
  7203. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7204. #else
  7205. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7206. #endif
  7207. }
  7208. }
  7209. } else {
  7210. // src1 is not contiguous
  7211. for (int64_t ir = ith; ir < nr; ir += nth) {
  7212. // src0 and dst are same shape => same indices
  7213. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7214. const int64_t i03 = ir/(ne02*ne01);
  7215. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7216. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7217. const int64_t i13 = i03 % ne13;
  7218. const int64_t i12 = i02 % ne12;
  7219. const int64_t i11 = i01 % ne11;
  7220. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7221. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7222. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7223. const int64_t i10 = i0 % ne10;
  7224. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7225. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7226. }
  7227. }
  7228. }
  7229. }
  7230. static void ggml_compute_forward_div(
  7231. const struct ggml_compute_params * params,
  7232. struct ggml_tensor * dst) {
  7233. const struct ggml_tensor * src0 = dst->src[0];
  7234. switch (src0->type) {
  7235. case GGML_TYPE_F32:
  7236. {
  7237. ggml_compute_forward_div_f32(params, dst);
  7238. } break;
  7239. default:
  7240. {
  7241. GGML_ASSERT(false);
  7242. } break;
  7243. }
  7244. }
  7245. // ggml_compute_forward_sqr
  7246. static void ggml_compute_forward_sqr_f32(
  7247. const struct ggml_compute_params * params,
  7248. struct ggml_tensor * dst) {
  7249. const struct ggml_tensor * src0 = dst->src[0];
  7250. assert(params->ith == 0);
  7251. assert(ggml_are_same_shape(src0, dst));
  7252. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7253. return;
  7254. }
  7255. const int n = ggml_nrows(src0);
  7256. const int nc = src0->ne[0];
  7257. assert( dst->nb[0] == sizeof(float));
  7258. assert(src0->nb[0] == sizeof(float));
  7259. for (int i = 0; i < n; i++) {
  7260. ggml_vec_sqr_f32(nc,
  7261. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7262. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7263. }
  7264. }
  7265. static void ggml_compute_forward_sqr(
  7266. const struct ggml_compute_params * params,
  7267. struct ggml_tensor * dst) {
  7268. const struct ggml_tensor * src0 = dst->src[0];
  7269. switch (src0->type) {
  7270. case GGML_TYPE_F32:
  7271. {
  7272. ggml_compute_forward_sqr_f32(params, dst);
  7273. } break;
  7274. default:
  7275. {
  7276. GGML_ASSERT(false);
  7277. } break;
  7278. }
  7279. }
  7280. // ggml_compute_forward_sqrt
  7281. static void ggml_compute_forward_sqrt_f32(
  7282. const struct ggml_compute_params * params,
  7283. struct ggml_tensor * dst) {
  7284. const struct ggml_tensor * src0 = dst->src[0];
  7285. assert(params->ith == 0);
  7286. assert(ggml_are_same_shape(src0, dst));
  7287. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7288. return;
  7289. }
  7290. const int n = ggml_nrows(src0);
  7291. const int nc = src0->ne[0];
  7292. assert( dst->nb[0] == sizeof(float));
  7293. assert(src0->nb[0] == sizeof(float));
  7294. for (int i = 0; i < n; i++) {
  7295. ggml_vec_sqrt_f32(nc,
  7296. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7297. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7298. }
  7299. }
  7300. static void ggml_compute_forward_sqrt(
  7301. const struct ggml_compute_params * params,
  7302. struct ggml_tensor * dst) {
  7303. const struct ggml_tensor * src0 = dst->src[0];
  7304. switch (src0->type) {
  7305. case GGML_TYPE_F32:
  7306. {
  7307. ggml_compute_forward_sqrt_f32(params, dst);
  7308. } break;
  7309. default:
  7310. {
  7311. GGML_ASSERT(false);
  7312. } break;
  7313. }
  7314. }
  7315. // ggml_compute_forward_log
  7316. static void ggml_compute_forward_log_f32(
  7317. const struct ggml_compute_params * params,
  7318. struct ggml_tensor * dst) {
  7319. const struct ggml_tensor * src0 = dst->src[0];
  7320. GGML_ASSERT(params->ith == 0);
  7321. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7323. return;
  7324. }
  7325. const int n = ggml_nrows(src0);
  7326. const int nc = src0->ne[0];
  7327. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7328. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7329. for (int i = 0; i < n; i++) {
  7330. ggml_vec_log_f32(nc,
  7331. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7332. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7333. }
  7334. }
  7335. static void ggml_compute_forward_log(
  7336. const struct ggml_compute_params * params,
  7337. struct ggml_tensor * dst) {
  7338. const struct ggml_tensor * src0 = dst->src[0];
  7339. switch (src0->type) {
  7340. case GGML_TYPE_F32:
  7341. {
  7342. ggml_compute_forward_log_f32(params, dst);
  7343. } break;
  7344. default:
  7345. {
  7346. GGML_ASSERT(false);
  7347. } break;
  7348. }
  7349. }
  7350. // ggml_compute_forward_sum
  7351. static void ggml_compute_forward_sum_f32(
  7352. const struct ggml_compute_params * params,
  7353. struct ggml_tensor * dst) {
  7354. const struct ggml_tensor * src0 = dst->src[0];
  7355. assert(params->ith == 0);
  7356. assert(ggml_is_scalar(dst));
  7357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7358. return;
  7359. }
  7360. assert(ggml_is_scalar(dst));
  7361. assert(src0->nb[0] == sizeof(float));
  7362. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7363. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7364. ggml_float sum = 0;
  7365. ggml_float row_sum = 0;
  7366. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7367. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7368. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7369. ggml_vec_sum_f32_ggf(ne00,
  7370. &row_sum,
  7371. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7372. sum += row_sum;
  7373. }
  7374. }
  7375. }
  7376. ((float *) dst->data)[0] = sum;
  7377. }
  7378. static void ggml_compute_forward_sum_f16(
  7379. const struct ggml_compute_params * params,
  7380. struct ggml_tensor * dst) {
  7381. const struct ggml_tensor * src0 = dst->src[0];
  7382. assert(params->ith == 0);
  7383. assert(ggml_is_scalar(dst));
  7384. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7385. return;
  7386. }
  7387. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7388. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7389. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7390. float sum = 0;
  7391. float row_sum = 0;
  7392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7394. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7395. ggml_vec_sum_f16_ggf(ne00,
  7396. &row_sum,
  7397. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7398. sum += row_sum;
  7399. }
  7400. }
  7401. }
  7402. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7403. }
  7404. static void ggml_compute_forward_sum(
  7405. const struct ggml_compute_params * params,
  7406. struct ggml_tensor * dst) {
  7407. const struct ggml_tensor * src0 = dst->src[0];
  7408. switch (src0->type) {
  7409. case GGML_TYPE_F32:
  7410. {
  7411. ggml_compute_forward_sum_f32(params, dst);
  7412. } break;
  7413. case GGML_TYPE_F16:
  7414. {
  7415. ggml_compute_forward_sum_f16(params, dst);
  7416. } break;
  7417. default:
  7418. {
  7419. GGML_ASSERT(false);
  7420. } break;
  7421. }
  7422. }
  7423. // ggml_compute_forward_sum_rows
  7424. static void ggml_compute_forward_sum_rows_f32(
  7425. const struct ggml_compute_params * params,
  7426. struct ggml_tensor * dst) {
  7427. const struct ggml_tensor * src0 = dst->src[0];
  7428. GGML_ASSERT(params->ith == 0);
  7429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7430. return;
  7431. }
  7432. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7433. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7434. GGML_TENSOR_UNARY_OP_LOCALS
  7435. GGML_ASSERT(ne0 == 1);
  7436. GGML_ASSERT(ne1 == ne01);
  7437. GGML_ASSERT(ne2 == ne02);
  7438. GGML_ASSERT(ne3 == ne03);
  7439. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7440. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7441. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7442. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7443. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7444. float row_sum = 0;
  7445. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7446. dst_row[0] = row_sum;
  7447. }
  7448. }
  7449. }
  7450. }
  7451. static void ggml_compute_forward_sum_rows(
  7452. const struct ggml_compute_params * params,
  7453. struct ggml_tensor * dst) {
  7454. const struct ggml_tensor * src0 = dst->src[0];
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. ggml_compute_forward_sum_rows_f32(params, dst);
  7459. } break;
  7460. default:
  7461. {
  7462. GGML_ASSERT(false);
  7463. } break;
  7464. }
  7465. }
  7466. // ggml_compute_forward_mean
  7467. static void ggml_compute_forward_mean_f32(
  7468. const struct ggml_compute_params * params,
  7469. struct ggml_tensor * dst) {
  7470. const struct ggml_tensor * src0 = dst->src[0];
  7471. assert(params->ith == 0);
  7472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7473. return;
  7474. }
  7475. assert(src0->nb[0] == sizeof(float));
  7476. GGML_TENSOR_UNARY_OP_LOCALS
  7477. assert(ne0 == 1);
  7478. assert(ne1 == ne01);
  7479. assert(ne2 == ne02);
  7480. assert(ne3 == ne03);
  7481. UNUSED(ne0);
  7482. UNUSED(ne1);
  7483. UNUSED(ne2);
  7484. UNUSED(ne3);
  7485. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7487. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7488. ggml_vec_sum_f32(ne00,
  7489. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7490. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7491. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7492. }
  7493. }
  7494. }
  7495. }
  7496. static void ggml_compute_forward_mean(
  7497. const struct ggml_compute_params * params,
  7498. struct ggml_tensor * dst) {
  7499. const struct ggml_tensor * src0 = dst->src[0];
  7500. switch (src0->type) {
  7501. case GGML_TYPE_F32:
  7502. {
  7503. ggml_compute_forward_mean_f32(params, dst);
  7504. } break;
  7505. default:
  7506. {
  7507. GGML_ASSERT(false);
  7508. } break;
  7509. }
  7510. }
  7511. // ggml_compute_forward_argmax
  7512. static void ggml_compute_forward_argmax_f32(
  7513. const struct ggml_compute_params * params,
  7514. struct ggml_tensor * dst) {
  7515. const struct ggml_tensor * src0 = dst->src[0];
  7516. assert(params->ith == 0);
  7517. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7518. return;
  7519. }
  7520. assert(src0->nb[0] == sizeof(float));
  7521. assert(dst->nb[0] == sizeof(float));
  7522. const int64_t ne00 = src0->ne[0];
  7523. const int64_t ne01 = src0->ne[1];
  7524. const size_t nb01 = src0->nb[1];
  7525. const size_t nb0 = dst->nb[0];
  7526. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7527. float * src = (float *) ((char *) src0->data + i1*nb01);
  7528. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7529. int v = 0;
  7530. ggml_vec_argmax_f32(ne00, &v, src);
  7531. dst_[0] = v;
  7532. }
  7533. }
  7534. static void ggml_compute_forward_argmax(
  7535. const struct ggml_compute_params * params,
  7536. struct ggml_tensor * dst) {
  7537. const struct ggml_tensor * src0 = dst->src[0];
  7538. switch (src0->type) {
  7539. case GGML_TYPE_F32:
  7540. {
  7541. ggml_compute_forward_argmax_f32(params, dst);
  7542. } break;
  7543. default:
  7544. {
  7545. GGML_ASSERT(false);
  7546. } break;
  7547. }
  7548. }
  7549. // ggml_compute_forward_repeat
  7550. static void ggml_compute_forward_repeat_f32(
  7551. const struct ggml_compute_params * params,
  7552. struct ggml_tensor * dst) {
  7553. const struct ggml_tensor * src0 = dst->src[0];
  7554. GGML_ASSERT(params->ith == 0);
  7555. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7557. return;
  7558. }
  7559. GGML_TENSOR_UNARY_OP_LOCALS
  7560. // guaranteed to be an integer due to the check in ggml_can_repeat
  7561. const int nr0 = (int)(ne0/ne00);
  7562. const int nr1 = (int)(ne1/ne01);
  7563. const int nr2 = (int)(ne2/ne02);
  7564. const int nr3 = (int)(ne3/ne03);
  7565. // TODO: support for transposed / permuted tensors
  7566. GGML_ASSERT(nb0 == sizeof(float));
  7567. GGML_ASSERT(nb00 == sizeof(float));
  7568. // TODO: maybe this is not optimal?
  7569. for (int i3 = 0; i3 < nr3; i3++) {
  7570. for (int k3 = 0; k3 < ne03; k3++) {
  7571. for (int i2 = 0; i2 < nr2; i2++) {
  7572. for (int k2 = 0; k2 < ne02; k2++) {
  7573. for (int i1 = 0; i1 < nr1; i1++) {
  7574. for (int k1 = 0; k1 < ne01; k1++) {
  7575. for (int i0 = 0; i0 < nr0; i0++) {
  7576. ggml_vec_cpy_f32(ne00,
  7577. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7578. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7579. }
  7580. }
  7581. }
  7582. }
  7583. }
  7584. }
  7585. }
  7586. }
  7587. static void ggml_compute_forward_repeat_f16(
  7588. const struct ggml_compute_params * params,
  7589. struct ggml_tensor * dst) {
  7590. const struct ggml_tensor * src0 = dst->src[0];
  7591. GGML_ASSERT(params->ith == 0);
  7592. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7593. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7594. return;
  7595. }
  7596. GGML_TENSOR_UNARY_OP_LOCALS
  7597. // guaranteed to be an integer due to the check in ggml_can_repeat
  7598. const int nr0 = (int)(ne0/ne00);
  7599. const int nr1 = (int)(ne1/ne01);
  7600. const int nr2 = (int)(ne2/ne02);
  7601. const int nr3 = (int)(ne3/ne03);
  7602. // TODO: support for transposed / permuted tensors
  7603. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7604. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7605. // TODO: maybe this is not optimal?
  7606. for (int i3 = 0; i3 < nr3; i3++) {
  7607. for (int k3 = 0; k3 < ne03; k3++) {
  7608. for (int i2 = 0; i2 < nr2; i2++) {
  7609. for (int k2 = 0; k2 < ne02; k2++) {
  7610. for (int i1 = 0; i1 < nr1; i1++) {
  7611. for (int k1 = 0; k1 < ne01; k1++) {
  7612. for (int i0 = 0; i0 < nr0; i0++) {
  7613. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7614. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7615. // ggml_vec_cpy_f16(ne00, y, x)
  7616. for (int i = 0; i < ne00; ++i) {
  7617. y[i] = x[i];
  7618. }
  7619. }
  7620. }
  7621. }
  7622. }
  7623. }
  7624. }
  7625. }
  7626. }
  7627. static void ggml_compute_forward_repeat(
  7628. const struct ggml_compute_params * params,
  7629. struct ggml_tensor * dst) {
  7630. const struct ggml_tensor * src0 = dst->src[0];
  7631. switch (src0->type) {
  7632. case GGML_TYPE_F16:
  7633. case GGML_TYPE_I16:
  7634. {
  7635. ggml_compute_forward_repeat_f16(params, dst);
  7636. } break;
  7637. case GGML_TYPE_F32:
  7638. case GGML_TYPE_I32:
  7639. {
  7640. ggml_compute_forward_repeat_f32(params, dst);
  7641. } break;
  7642. default:
  7643. {
  7644. GGML_ASSERT(false);
  7645. } break;
  7646. }
  7647. }
  7648. // ggml_compute_forward_repeat_back
  7649. static void ggml_compute_forward_repeat_back_f32(
  7650. const struct ggml_compute_params * params,
  7651. struct ggml_tensor * dst) {
  7652. const struct ggml_tensor * src0 = dst->src[0];
  7653. GGML_ASSERT(params->ith == 0);
  7654. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7655. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7656. return;
  7657. }
  7658. GGML_TENSOR_UNARY_OP_LOCALS
  7659. // guaranteed to be an integer due to the check in ggml_can_repeat
  7660. const int nr0 = (int)(ne00/ne0);
  7661. const int nr1 = (int)(ne01/ne1);
  7662. const int nr2 = (int)(ne02/ne2);
  7663. const int nr3 = (int)(ne03/ne3);
  7664. // TODO: support for transposed / permuted tensors
  7665. GGML_ASSERT(nb0 == sizeof(float));
  7666. GGML_ASSERT(nb00 == sizeof(float));
  7667. if (ggml_is_contiguous(dst)) {
  7668. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7669. } else {
  7670. for (int k3 = 0; k3 < ne3; k3++) {
  7671. for (int k2 = 0; k2 < ne2; k2++) {
  7672. for (int k1 = 0; k1 < ne1; k1++) {
  7673. ggml_vec_set_f32(ne0,
  7674. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7675. 0);
  7676. }
  7677. }
  7678. }
  7679. }
  7680. // TODO: maybe this is not optimal?
  7681. for (int i3 = 0; i3 < nr3; i3++) {
  7682. for (int k3 = 0; k3 < ne3; k3++) {
  7683. for (int i2 = 0; i2 < nr2; i2++) {
  7684. for (int k2 = 0; k2 < ne2; k2++) {
  7685. for (int i1 = 0; i1 < nr1; i1++) {
  7686. for (int k1 = 0; k1 < ne1; k1++) {
  7687. for (int i0 = 0; i0 < nr0; i0++) {
  7688. ggml_vec_acc_f32(ne0,
  7689. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7690. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7691. }
  7692. }
  7693. }
  7694. }
  7695. }
  7696. }
  7697. }
  7698. }
  7699. static void ggml_compute_forward_repeat_back(
  7700. const struct ggml_compute_params * params,
  7701. struct ggml_tensor * dst) {
  7702. const struct ggml_tensor * src0 = dst->src[0];
  7703. switch (src0->type) {
  7704. case GGML_TYPE_F32:
  7705. {
  7706. ggml_compute_forward_repeat_back_f32(params, dst);
  7707. } break;
  7708. default:
  7709. {
  7710. GGML_ASSERT(false);
  7711. } break;
  7712. }
  7713. }
  7714. // ggml_compute_forward_concat
  7715. static void ggml_compute_forward_concat_f32(
  7716. const struct ggml_compute_params * params,
  7717. struct ggml_tensor * dst) {
  7718. const struct ggml_tensor * src0 = dst->src[0];
  7719. const struct ggml_tensor * src1 = dst->src[1];
  7720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7721. return;
  7722. }
  7723. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7724. const int ith = params->ith;
  7725. const int nth = params->nth;
  7726. GGML_TENSOR_BINARY_OP_LOCALS
  7727. // TODO: support for transposed / permuted tensors
  7728. GGML_ASSERT(nb0 == sizeof(float));
  7729. GGML_ASSERT(nb00 == sizeof(float));
  7730. GGML_ASSERT(nb10 == sizeof(float));
  7731. for (int i3 = 0; i3 < ne3; i3++) {
  7732. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7733. if (i2 < ne02) { // src0
  7734. for (int i1 = 0; i1 < ne1; i1++) {
  7735. for (int i0 = 0; i0 < ne0; i0++) {
  7736. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7737. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7738. *y = *x;
  7739. }
  7740. }
  7741. } // src1
  7742. else {
  7743. for (int i1 = 0; i1 < ne1; i1++) {
  7744. for (int i0 = 0; i0 < ne0; i0++) {
  7745. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7746. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7747. *y = *x;
  7748. }
  7749. }
  7750. }
  7751. }
  7752. }
  7753. }
  7754. static void ggml_compute_forward_concat(
  7755. const struct ggml_compute_params* params,
  7756. struct ggml_tensor* dst) {
  7757. const struct ggml_tensor * src0 = dst->src[0];
  7758. switch (src0->type) {
  7759. case GGML_TYPE_F32:
  7760. case GGML_TYPE_I32:
  7761. {
  7762. ggml_compute_forward_concat_f32(params, dst);
  7763. } break;
  7764. default:
  7765. {
  7766. GGML_ASSERT(false);
  7767. } break;
  7768. }
  7769. }
  7770. // ggml_compute_forward_abs
  7771. static void ggml_compute_forward_abs_f32(
  7772. const struct ggml_compute_params * params,
  7773. struct ggml_tensor * dst) {
  7774. const struct ggml_tensor * src0 = dst->src[0];
  7775. assert(params->ith == 0);
  7776. assert(ggml_are_same_shape(src0, dst));
  7777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7778. return;
  7779. }
  7780. const int n = ggml_nrows(src0);
  7781. const int nc = src0->ne[0];
  7782. assert(dst->nb[0] == sizeof(float));
  7783. assert(src0->nb[0] == sizeof(float));
  7784. for (int i = 0; i < n; i++) {
  7785. ggml_vec_abs_f32(nc,
  7786. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7787. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7788. }
  7789. }
  7790. static void ggml_compute_forward_abs(
  7791. const struct ggml_compute_params * params,
  7792. struct ggml_tensor * dst) {
  7793. const struct ggml_tensor * src0 = dst->src[0];
  7794. switch (src0->type) {
  7795. case GGML_TYPE_F32:
  7796. {
  7797. ggml_compute_forward_abs_f32(params, dst);
  7798. } break;
  7799. default:
  7800. {
  7801. GGML_ASSERT(false);
  7802. } break;
  7803. }
  7804. }
  7805. // ggml_compute_forward_sgn
  7806. static void ggml_compute_forward_sgn_f32(
  7807. const struct ggml_compute_params * params,
  7808. struct ggml_tensor * dst) {
  7809. const struct ggml_tensor * src0 = dst->src[0];
  7810. assert(params->ith == 0);
  7811. assert(ggml_are_same_shape(src0, dst));
  7812. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7813. return;
  7814. }
  7815. const int n = ggml_nrows(src0);
  7816. const int nc = src0->ne[0];
  7817. assert(dst->nb[0] == sizeof(float));
  7818. assert(src0->nb[0] == sizeof(float));
  7819. for (int i = 0; i < n; i++) {
  7820. ggml_vec_sgn_f32(nc,
  7821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7822. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7823. }
  7824. }
  7825. static void ggml_compute_forward_sgn(
  7826. const struct ggml_compute_params * params,
  7827. struct ggml_tensor * dst) {
  7828. const struct ggml_tensor * src0 = dst->src[0];
  7829. switch (src0->type) {
  7830. case GGML_TYPE_F32:
  7831. {
  7832. ggml_compute_forward_sgn_f32(params, dst);
  7833. } break;
  7834. default:
  7835. {
  7836. GGML_ASSERT(false);
  7837. } break;
  7838. }
  7839. }
  7840. // ggml_compute_forward_neg
  7841. static void ggml_compute_forward_neg_f32(
  7842. const struct ggml_compute_params * params,
  7843. struct ggml_tensor * dst) {
  7844. const struct ggml_tensor * src0 = dst->src[0];
  7845. assert(params->ith == 0);
  7846. assert(ggml_are_same_shape(src0, dst));
  7847. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7848. return;
  7849. }
  7850. const int n = ggml_nrows(src0);
  7851. const int nc = src0->ne[0];
  7852. assert(dst->nb[0] == sizeof(float));
  7853. assert(src0->nb[0] == sizeof(float));
  7854. for (int i = 0; i < n; i++) {
  7855. ggml_vec_neg_f32(nc,
  7856. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7857. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7858. }
  7859. }
  7860. static void ggml_compute_forward_neg(
  7861. const struct ggml_compute_params * params,
  7862. struct ggml_tensor * dst) {
  7863. const struct ggml_tensor * src0 = dst->src[0];
  7864. switch (src0->type) {
  7865. case GGML_TYPE_F32:
  7866. {
  7867. ggml_compute_forward_neg_f32(params, dst);
  7868. } break;
  7869. default:
  7870. {
  7871. GGML_ASSERT(false);
  7872. } break;
  7873. }
  7874. }
  7875. // ggml_compute_forward_step
  7876. static void ggml_compute_forward_step_f32(
  7877. const struct ggml_compute_params * params,
  7878. struct ggml_tensor * dst) {
  7879. const struct ggml_tensor * src0 = dst->src[0];
  7880. assert(params->ith == 0);
  7881. assert(ggml_are_same_shape(src0, dst));
  7882. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7883. return;
  7884. }
  7885. const int n = ggml_nrows(src0);
  7886. const int nc = src0->ne[0];
  7887. assert(dst->nb[0] == sizeof(float));
  7888. assert(src0->nb[0] == sizeof(float));
  7889. for (int i = 0; i < n; i++) {
  7890. ggml_vec_step_f32(nc,
  7891. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7892. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7893. }
  7894. }
  7895. static void ggml_compute_forward_step(
  7896. const struct ggml_compute_params * params,
  7897. struct ggml_tensor * dst) {
  7898. const struct ggml_tensor * src0 = dst->src[0];
  7899. switch (src0->type) {
  7900. case GGML_TYPE_F32:
  7901. {
  7902. ggml_compute_forward_step_f32(params, dst);
  7903. } break;
  7904. default:
  7905. {
  7906. GGML_ASSERT(false);
  7907. } break;
  7908. }
  7909. }
  7910. // ggml_compute_forward_tanh
  7911. static void ggml_compute_forward_tanh_f32(
  7912. const struct ggml_compute_params * params,
  7913. struct ggml_tensor * dst) {
  7914. const struct ggml_tensor * src0 = dst->src[0];
  7915. assert(params->ith == 0);
  7916. assert(ggml_are_same_shape(src0, dst));
  7917. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7918. return;
  7919. }
  7920. const int n = ggml_nrows(src0);
  7921. const int nc = src0->ne[0];
  7922. assert(dst->nb[0] == sizeof(float));
  7923. assert(src0->nb[0] == sizeof(float));
  7924. for (int i = 0; i < n; i++) {
  7925. ggml_vec_tanh_f32(nc,
  7926. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7927. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7928. }
  7929. }
  7930. static void ggml_compute_forward_tanh(
  7931. const struct ggml_compute_params * params,
  7932. struct ggml_tensor * dst) {
  7933. const struct ggml_tensor * src0 = dst->src[0];
  7934. switch (src0->type) {
  7935. case GGML_TYPE_F32:
  7936. {
  7937. ggml_compute_forward_tanh_f32(params, dst);
  7938. } break;
  7939. default:
  7940. {
  7941. GGML_ASSERT(false);
  7942. } break;
  7943. }
  7944. }
  7945. // ggml_compute_forward_elu
  7946. static void ggml_compute_forward_elu_f32(
  7947. const struct ggml_compute_params * params,
  7948. struct ggml_tensor * dst) {
  7949. const struct ggml_tensor * src0 = dst->src[0];
  7950. assert(params->ith == 0);
  7951. assert(ggml_are_same_shape(src0, dst));
  7952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7953. return;
  7954. }
  7955. const int n = ggml_nrows(src0);
  7956. const int nc = src0->ne[0];
  7957. assert(dst->nb[0] == sizeof(float));
  7958. assert(src0->nb[0] == sizeof(float));
  7959. for (int i = 0; i < n; i++) {
  7960. ggml_vec_elu_f32(nc,
  7961. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7962. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7963. }
  7964. }
  7965. static void ggml_compute_forward_elu(
  7966. const struct ggml_compute_params * params,
  7967. struct ggml_tensor * dst) {
  7968. const struct ggml_tensor * src0 = dst->src[0];
  7969. switch (src0->type) {
  7970. case GGML_TYPE_F32:
  7971. {
  7972. ggml_compute_forward_elu_f32(params, dst);
  7973. } break;
  7974. default:
  7975. {
  7976. GGML_ASSERT(false);
  7977. } break;
  7978. }
  7979. }
  7980. // ggml_compute_forward_relu
  7981. static void ggml_compute_forward_relu_f32(
  7982. const struct ggml_compute_params * params,
  7983. struct ggml_tensor * dst) {
  7984. const struct ggml_tensor * src0 = dst->src[0];
  7985. assert(params->ith == 0);
  7986. assert(ggml_are_same_shape(src0, dst));
  7987. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7988. return;
  7989. }
  7990. const int n = ggml_nrows(src0);
  7991. const int nc = src0->ne[0];
  7992. assert(dst->nb[0] == sizeof(float));
  7993. assert(src0->nb[0] == sizeof(float));
  7994. for (int i = 0; i < n; i++) {
  7995. ggml_vec_relu_f32(nc,
  7996. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7997. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7998. }
  7999. }
  8000. static void ggml_compute_forward_relu(
  8001. const struct ggml_compute_params * params,
  8002. struct ggml_tensor * dst) {
  8003. const struct ggml_tensor * src0 = dst->src[0];
  8004. switch (src0->type) {
  8005. case GGML_TYPE_F32:
  8006. {
  8007. ggml_compute_forward_relu_f32(params, dst);
  8008. } break;
  8009. default:
  8010. {
  8011. GGML_ASSERT(false);
  8012. } break;
  8013. }
  8014. }
  8015. // ggml_compute_forward_gelu
  8016. static void ggml_compute_forward_gelu_f32(
  8017. const struct ggml_compute_params * params,
  8018. struct ggml_tensor * dst) {
  8019. const struct ggml_tensor * src0 = dst->src[0];
  8020. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8021. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8024. return;
  8025. }
  8026. const int ith = params->ith;
  8027. const int nth = params->nth;
  8028. const int nc = src0->ne[0];
  8029. const int nr = ggml_nrows(src0);
  8030. // rows per thread
  8031. const int dr = (nr + nth - 1)/nth;
  8032. // row range for this thread
  8033. const int ir0 = dr*ith;
  8034. const int ir1 = MIN(ir0 + dr, nr);
  8035. for (int i1 = ir0; i1 < ir1; i1++) {
  8036. ggml_vec_gelu_f32(nc,
  8037. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8038. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8039. #ifndef NDEBUG
  8040. for (int k = 0; k < nc; k++) {
  8041. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8042. UNUSED(x);
  8043. assert(!isnan(x));
  8044. assert(!isinf(x));
  8045. }
  8046. #endif
  8047. }
  8048. }
  8049. static void ggml_compute_forward_gelu(
  8050. const struct ggml_compute_params * params,
  8051. struct ggml_tensor * dst) {
  8052. const struct ggml_tensor * src0 = dst->src[0];
  8053. switch (src0->type) {
  8054. case GGML_TYPE_F32:
  8055. {
  8056. ggml_compute_forward_gelu_f32(params, dst);
  8057. } break;
  8058. default:
  8059. {
  8060. GGML_ASSERT(false);
  8061. } break;
  8062. }
  8063. }
  8064. // ggml_compute_forward_gelu_quick
  8065. static void ggml_compute_forward_gelu_quick_f32(
  8066. const struct ggml_compute_params * params,
  8067. struct ggml_tensor * dst) {
  8068. const struct ggml_tensor * src0 = dst->src[0];
  8069. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8070. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8071. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8072. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8073. return;
  8074. }
  8075. const int ith = params->ith;
  8076. const int nth = params->nth;
  8077. const int nc = src0->ne[0];
  8078. const int nr = ggml_nrows(src0);
  8079. // rows per thread
  8080. const int dr = (nr + nth - 1)/nth;
  8081. // row range for this thread
  8082. const int ir0 = dr*ith;
  8083. const int ir1 = MIN(ir0 + dr, nr);
  8084. for (int i1 = ir0; i1 < ir1; i1++) {
  8085. ggml_vec_gelu_quick_f32(nc,
  8086. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8087. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8088. #ifndef NDEBUG
  8089. for (int k = 0; k < nc; k++) {
  8090. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8091. UNUSED(x);
  8092. assert(!isnan(x));
  8093. assert(!isinf(x));
  8094. }
  8095. #endif
  8096. }
  8097. }
  8098. static void ggml_compute_forward_gelu_quick(
  8099. const struct ggml_compute_params * params,
  8100. struct ggml_tensor * dst) {
  8101. const struct ggml_tensor * src0 = dst->src[0];
  8102. switch (src0->type) {
  8103. case GGML_TYPE_F32:
  8104. {
  8105. ggml_compute_forward_gelu_quick_f32(params, dst);
  8106. } break;
  8107. default:
  8108. {
  8109. GGML_ASSERT(false);
  8110. } break;
  8111. }
  8112. }
  8113. // ggml_compute_forward_silu
  8114. static void ggml_compute_forward_silu_f32(
  8115. const struct ggml_compute_params * params,
  8116. struct ggml_tensor * dst) {
  8117. const struct ggml_tensor * src0 = dst->src[0];
  8118. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8119. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8120. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8121. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8122. return;
  8123. }
  8124. const int ith = params->ith;
  8125. const int nth = params->nth;
  8126. const int nc = src0->ne[0];
  8127. const int nr = ggml_nrows(src0);
  8128. // rows per thread
  8129. const int dr = (nr + nth - 1)/nth;
  8130. // row range for this thread
  8131. const int ir0 = dr*ith;
  8132. const int ir1 = MIN(ir0 + dr, nr);
  8133. for (int i1 = ir0; i1 < ir1; i1++) {
  8134. ggml_vec_silu_f32(nc,
  8135. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8136. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8137. #ifndef NDEBUG
  8138. for (int k = 0; k < nc; k++) {
  8139. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8140. UNUSED(x);
  8141. assert(!isnan(x));
  8142. assert(!isinf(x));
  8143. }
  8144. #endif
  8145. }
  8146. }
  8147. static void ggml_compute_forward_silu(
  8148. const struct ggml_compute_params * params,
  8149. struct ggml_tensor * dst) {
  8150. const struct ggml_tensor * src0 = dst->src[0];
  8151. switch (src0->type) {
  8152. case GGML_TYPE_F32:
  8153. {
  8154. ggml_compute_forward_silu_f32(params, dst);
  8155. } break;
  8156. default:
  8157. {
  8158. GGML_ASSERT(false);
  8159. } break;
  8160. }
  8161. }
  8162. // ggml_compute_forward_leaky_relu
  8163. static void ggml_compute_forward_leaky_relu_f32(
  8164. const struct ggml_compute_params * params,
  8165. struct ggml_tensor * dst) {
  8166. const struct ggml_tensor * src0 = dst->src[0];
  8167. assert(params->ith == 0);
  8168. assert(ggml_are_same_shape(src0, dst));
  8169. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8170. return;
  8171. }
  8172. const int n = ggml_nrows(src0);
  8173. const int nc = src0->ne[0];
  8174. float negative_slope;
  8175. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8176. assert(dst->nb[0] == sizeof(float));
  8177. assert(src0->nb[0] == sizeof(float));
  8178. for (int i = 0; i < n; i++) {
  8179. ggml_vec_leaky_relu_f32(nc,
  8180. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8181. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8182. }
  8183. }
  8184. static void ggml_compute_forward_leaky_relu(
  8185. const struct ggml_compute_params * params,
  8186. struct ggml_tensor * dst) {
  8187. const struct ggml_tensor * src0 = dst->src[0];
  8188. switch (src0->type) {
  8189. case GGML_TYPE_F32:
  8190. {
  8191. ggml_compute_forward_leaky_relu_f32(params, dst);
  8192. } break;
  8193. default:
  8194. {
  8195. GGML_ASSERT(false);
  8196. } break;
  8197. }
  8198. }
  8199. // ggml_compute_forward_silu_back
  8200. static void ggml_compute_forward_silu_back_f32(
  8201. const struct ggml_compute_params * params,
  8202. struct ggml_tensor * dst) {
  8203. const struct ggml_tensor * src0 = dst->src[0];
  8204. const struct ggml_tensor * grad = dst->src[1];
  8205. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8206. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8207. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8208. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8209. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8211. return;
  8212. }
  8213. const int ith = params->ith;
  8214. const int nth = params->nth;
  8215. const int nc = src0->ne[0];
  8216. const int nr = ggml_nrows(src0);
  8217. // rows per thread
  8218. const int dr = (nr + nth - 1)/nth;
  8219. // row range for this thread
  8220. const int ir0 = dr*ith;
  8221. const int ir1 = MIN(ir0 + dr, nr);
  8222. for (int i1 = ir0; i1 < ir1; i1++) {
  8223. ggml_vec_silu_backward_f32(nc,
  8224. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8225. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8226. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8227. #ifndef NDEBUG
  8228. for (int k = 0; k < nc; k++) {
  8229. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8230. UNUSED(x);
  8231. assert(!isnan(x));
  8232. assert(!isinf(x));
  8233. }
  8234. #endif
  8235. }
  8236. }
  8237. static void ggml_compute_forward_silu_back(
  8238. const struct ggml_compute_params * params,
  8239. struct ggml_tensor * dst) {
  8240. const struct ggml_tensor * src0 = dst->src[0];
  8241. switch (src0->type) {
  8242. case GGML_TYPE_F32:
  8243. {
  8244. ggml_compute_forward_silu_back_f32(params, dst);
  8245. } break;
  8246. default:
  8247. {
  8248. GGML_ASSERT(false);
  8249. } break;
  8250. }
  8251. }
  8252. static void ggml_compute_forward_hardswish_f32(
  8253. const struct ggml_compute_params * params,
  8254. struct ggml_tensor * dst) {
  8255. const struct ggml_tensor * src0 = dst->src[0];
  8256. assert(params->ith == 0);
  8257. assert(ggml_are_same_shape(src0, dst));
  8258. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8259. return;
  8260. }
  8261. const int n = ggml_nrows(src0);
  8262. const int nc = src0->ne[0];
  8263. assert(dst->nb[0] == sizeof(float));
  8264. assert(src0->nb[0] == sizeof(float));
  8265. for (int i = 0; i < n; i++) {
  8266. ggml_vec_hardswish_f32(nc,
  8267. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8268. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8269. }
  8270. }
  8271. static void ggml_compute_forward_hardswish(
  8272. const struct ggml_compute_params * params,
  8273. struct ggml_tensor * dst) {
  8274. const struct ggml_tensor * src0 = dst->src[0];
  8275. switch (src0->type) {
  8276. case GGML_TYPE_F32:
  8277. {
  8278. ggml_compute_forward_hardswish_f32(params, dst);
  8279. } break;
  8280. default:
  8281. {
  8282. GGML_ASSERT(false);
  8283. } break;
  8284. }
  8285. }
  8286. static void ggml_compute_forward_hardsigmoid_f32(
  8287. const struct ggml_compute_params * params,
  8288. struct ggml_tensor * dst) {
  8289. const struct ggml_tensor * src0 = dst->src[0];
  8290. assert(params->ith == 0);
  8291. assert(ggml_are_same_shape(src0, dst));
  8292. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8293. return;
  8294. }
  8295. const int n = ggml_nrows(src0);
  8296. const int nc = src0->ne[0];
  8297. assert(dst->nb[0] == sizeof(float));
  8298. assert(src0->nb[0] == sizeof(float));
  8299. for (int i = 0; i < n; i++) {
  8300. ggml_vec_hardsigmoid_f32(nc,
  8301. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8302. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8303. }
  8304. }
  8305. static void ggml_compute_forward_hardsigmoid(
  8306. const struct ggml_compute_params * params,
  8307. struct ggml_tensor * dst) {
  8308. const struct ggml_tensor * src0 = dst->src[0];
  8309. switch (src0->type) {
  8310. case GGML_TYPE_F32:
  8311. {
  8312. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8313. } break;
  8314. default:
  8315. {
  8316. GGML_ASSERT(false);
  8317. } break;
  8318. }
  8319. }
  8320. // ggml_compute_forward_norm
  8321. static void ggml_compute_forward_norm_f32(
  8322. const struct ggml_compute_params * params,
  8323. struct ggml_tensor * dst) {
  8324. const struct ggml_tensor * src0 = dst->src[0];
  8325. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8326. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8327. return;
  8328. }
  8329. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8330. const int ith = params->ith;
  8331. const int nth = params->nth;
  8332. GGML_TENSOR_UNARY_OP_LOCALS
  8333. float eps;
  8334. memcpy(&eps, dst->op_params, sizeof(float));
  8335. GGML_ASSERT(eps > 0.0f);
  8336. // TODO: optimize
  8337. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8338. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8339. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8340. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8341. ggml_float sum = 0.0;
  8342. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8343. sum += (ggml_float)x[i00];
  8344. }
  8345. float mean = sum/ne00;
  8346. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8347. ggml_float sum2 = 0.0;
  8348. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8349. float v = x[i00] - mean;
  8350. y[i00] = v;
  8351. sum2 += (ggml_float)(v*v);
  8352. }
  8353. float variance = sum2/ne00;
  8354. const float scale = 1.0f/sqrtf(variance + eps);
  8355. ggml_vec_scale_f32(ne00, y, scale);
  8356. }
  8357. }
  8358. }
  8359. }
  8360. static void ggml_compute_forward_norm(
  8361. const struct ggml_compute_params * params,
  8362. struct ggml_tensor * dst) {
  8363. const struct ggml_tensor * src0 = dst->src[0];
  8364. switch (src0->type) {
  8365. case GGML_TYPE_F32:
  8366. {
  8367. ggml_compute_forward_norm_f32(params, dst);
  8368. } break;
  8369. default:
  8370. {
  8371. GGML_ASSERT(false);
  8372. } break;
  8373. }
  8374. }
  8375. // ggml_compute_forward_group_rms_norm
  8376. static void ggml_compute_forward_rms_norm_f32(
  8377. const struct ggml_compute_params * params,
  8378. struct ggml_tensor * dst) {
  8379. const struct ggml_tensor * src0 = dst->src[0];
  8380. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8381. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8382. return;
  8383. }
  8384. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8385. const int ith = params->ith;
  8386. const int nth = params->nth;
  8387. GGML_TENSOR_UNARY_OP_LOCALS
  8388. float eps;
  8389. memcpy(&eps, dst->op_params, sizeof(float));
  8390. GGML_ASSERT(eps > 0.0f);
  8391. // TODO: optimize
  8392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8394. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8395. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8396. ggml_float sum = 0.0;
  8397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8398. sum += (ggml_float)(x[i00] * x[i00]);
  8399. }
  8400. const float mean = sum/ne00;
  8401. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8402. memcpy(y, x, ne00 * sizeof(float));
  8403. // for (int i00 = 0; i00 < ne00; i00++) {
  8404. // y[i00] = x[i00];
  8405. // }
  8406. const float scale = 1.0f/sqrtf(mean + eps);
  8407. ggml_vec_scale_f32(ne00, y, scale);
  8408. }
  8409. }
  8410. }
  8411. }
  8412. static void ggml_compute_forward_rms_norm(
  8413. const struct ggml_compute_params * params,
  8414. struct ggml_tensor * dst) {
  8415. const struct ggml_tensor * src0 = dst->src[0];
  8416. switch (src0->type) {
  8417. case GGML_TYPE_F32:
  8418. {
  8419. ggml_compute_forward_rms_norm_f32(params, dst);
  8420. } break;
  8421. default:
  8422. {
  8423. GGML_ASSERT(false);
  8424. } break;
  8425. }
  8426. }
  8427. static void ggml_compute_forward_rms_norm_back_f32(
  8428. const struct ggml_compute_params * params,
  8429. struct ggml_tensor * dst) {
  8430. const struct ggml_tensor * src0 = dst->src[0];
  8431. const struct ggml_tensor * src1 = dst->src[1];
  8432. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8433. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8434. return;
  8435. }
  8436. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8437. const int ith = params->ith;
  8438. const int nth = params->nth;
  8439. GGML_TENSOR_BINARY_OP_LOCALS
  8440. float eps;
  8441. memcpy(&eps, dst->op_params, sizeof(float));
  8442. // TODO: optimize
  8443. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8444. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8445. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8446. // src1 is same shape as src0 => same indices
  8447. const int64_t i11 = i01;
  8448. const int64_t i12 = i02;
  8449. const int64_t i13 = i03;
  8450. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8451. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8452. ggml_float sum_xx = 0.0;
  8453. ggml_float sum_xdz = 0.0;
  8454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8455. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8456. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8457. }
  8458. //const float mean = (float)(sum_xx)/ne00;
  8459. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8460. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8461. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8462. // we could cache rms from forward pass to improve performance.
  8463. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8464. //const float rms = sqrtf(mean_eps);
  8465. const float rrms = 1.0f / sqrtf(mean_eps);
  8466. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8467. {
  8468. // z = rms_norm(x)
  8469. //
  8470. // rms_norm(src0) =
  8471. // scale(
  8472. // src0,
  8473. // div(
  8474. // 1,
  8475. // sqrt(
  8476. // add(
  8477. // scale(
  8478. // sum(
  8479. // sqr(
  8480. // src0)),
  8481. // (1.0/N)),
  8482. // eps))));
  8483. // postorder:
  8484. // ## op args grad
  8485. // 00 param src0 grad[#00]
  8486. // 01 const 1
  8487. // 02 sqr (#00) grad[#02]
  8488. // 03 sum (#02) grad[#03]
  8489. // 04 const 1/N
  8490. // 05 scale (#03, #04) grad[#05]
  8491. // 06 const eps
  8492. // 07 add (#05, #06) grad[#07]
  8493. // 08 sqrt (#07) grad[#08]
  8494. // 09 div (#01,#08) grad[#09]
  8495. // 10 scale (#00,#09) grad[#10]
  8496. //
  8497. // backward pass, given grad[#10]
  8498. // #10: scale
  8499. // grad[#00] += scale(grad[#10],#09)
  8500. // grad[#09] += sum(mul(grad[#10],#00))
  8501. // #09: div
  8502. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8503. // #08: sqrt
  8504. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8505. // #07: add
  8506. // grad[#05] += grad[#07]
  8507. // #05: scale
  8508. // grad[#03] += scale(grad[#05],#04)
  8509. // #03: sum
  8510. // grad[#02] += repeat(grad[#03], #02)
  8511. // #02:
  8512. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8513. //
  8514. // substitute and simplify:
  8515. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8516. // grad[#02] = repeat(grad[#03], #02)
  8517. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8518. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8519. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8520. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8521. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8522. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8523. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8524. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8525. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8526. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8527. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8528. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8529. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8532. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8533. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8534. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8535. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8536. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8537. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8538. // a = b*c + d*e
  8539. // a = b*c*f/f + d*e*f/f
  8540. // a = (b*c*f + d*e*f)*(1/f)
  8541. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8542. // a = (b + d*e/c)*c
  8543. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8544. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8545. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8546. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8547. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8548. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8549. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8550. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8551. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8552. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8553. }
  8554. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8555. // post-order:
  8556. // dx := x
  8557. // dx := scale(dx,-mean_xdz/mean_eps)
  8558. // dx := add(dx, dz)
  8559. // dx := scale(dx, rrms)
  8560. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8561. ggml_vec_cpy_f32 (ne00, dx, x);
  8562. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8563. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8564. ggml_vec_acc_f32 (ne00, dx, dz);
  8565. ggml_vec_scale_f32(ne00, dx, rrms);
  8566. }
  8567. }
  8568. }
  8569. }
  8570. static void ggml_compute_forward_rms_norm_back(
  8571. const struct ggml_compute_params * params,
  8572. struct ggml_tensor * dst) {
  8573. const struct ggml_tensor * src0 = dst->src[0];
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. // ggml_compute_forward_group_norm
  8586. static void ggml_compute_forward_group_norm_f32(
  8587. const struct ggml_compute_params * params,
  8588. struct ggml_tensor * dst) {
  8589. const struct ggml_tensor * src0 = dst->src[0];
  8590. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8592. return;
  8593. }
  8594. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8595. const int ith = params->ith;
  8596. const int nth = params->nth;
  8597. GGML_TENSOR_UNARY_OP_LOCALS
  8598. const float eps = 1e-6f; // TODO: make this a parameter
  8599. // TODO: optimize
  8600. int n_channels = src0->ne[2];
  8601. int n_groups = dst->op_params[0];
  8602. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8603. for (int i = ith; i < n_groups; i += nth) {
  8604. int start = i * n_channels_per_group;
  8605. int end = start + n_channels_per_group;
  8606. if (end > n_channels) {
  8607. end = n_channels;
  8608. }
  8609. int step = end - start;
  8610. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8611. ggml_float sum = 0.0;
  8612. for (int64_t i02 = start; i02 < end; i02++) {
  8613. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8614. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8615. ggml_float sumr = 0.0;
  8616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8617. sumr += (ggml_float)x[i00];
  8618. }
  8619. sum += sumr;
  8620. }
  8621. }
  8622. const float mean = sum / (ne00 * ne01 * step);
  8623. ggml_float sum2 = 0.0;
  8624. for (int64_t i02 = start; i02 < end; i02++) {
  8625. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8626. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8627. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8628. ggml_float sumr = 0.0;
  8629. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8630. float v = x[i00] - mean;
  8631. y[i00] = v;
  8632. sumr += (ggml_float)(v * v);
  8633. }
  8634. sum2 += sumr;
  8635. }
  8636. }
  8637. const float variance = sum2 / (ne00 * ne01 * step);
  8638. const float scale = 1.0f / sqrtf(variance + eps);
  8639. for (int64_t i02 = start; i02 < end; i02++) {
  8640. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8641. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8642. ggml_vec_scale_f32(ne00, y, scale);
  8643. }
  8644. }
  8645. }
  8646. }
  8647. }
  8648. static void ggml_compute_forward_group_norm(
  8649. const struct ggml_compute_params * params,
  8650. struct ggml_tensor * dst) {
  8651. const struct ggml_tensor * src0 = dst->src[0];
  8652. switch (src0->type) {
  8653. case GGML_TYPE_F32:
  8654. {
  8655. ggml_compute_forward_group_norm_f32(params, dst);
  8656. } break;
  8657. default:
  8658. {
  8659. GGML_ASSERT(false);
  8660. } break;
  8661. }
  8662. }
  8663. // ggml_compute_forward_mul_mat
  8664. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8665. // helper function to determine if it is better to use BLAS or not
  8666. // for large matrices, BLAS is faster
  8667. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8668. const struct ggml_tensor * src0 = dst->src[0];
  8669. const struct ggml_tensor * src1 = dst->src[1];
  8670. //const int64_t ne00 = src0->ne[0];
  8671. //const int64_t ne01 = src0->ne[1];
  8672. const int64_t ne10 = src1->ne[0];
  8673. const int64_t ne0 = dst->ne[0];
  8674. const int64_t ne1 = dst->ne[1];
  8675. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8676. // all the experts for each batch element and the processing would become incredibly slow
  8677. // TODO: find the optimal values for these
  8678. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8679. ggml_is_contiguous(src0) &&
  8680. ggml_is_contiguous(src1) &&
  8681. //src0->type == GGML_TYPE_F32 &&
  8682. src1->type == GGML_TYPE_F32 &&
  8683. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8684. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8685. return true;
  8686. }
  8687. return false;
  8688. }
  8689. #endif
  8690. static void ggml_compute_forward_mul_mat(
  8691. const struct ggml_compute_params * params,
  8692. struct ggml_tensor * dst) {
  8693. const struct ggml_tensor * src0 = dst->src[0];
  8694. const struct ggml_tensor * src1 = dst->src[1];
  8695. int64_t t0 = ggml_perf_time_us();
  8696. UNUSED(t0);
  8697. GGML_TENSOR_BINARY_OP_LOCALS
  8698. const int ith = params->ith;
  8699. const int nth = params->nth;
  8700. const enum ggml_type type = src0->type;
  8701. const bool src1_cont = ggml_is_contiguous(src1);
  8702. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8703. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8704. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8705. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8706. GGML_ASSERT(ne0 == ne01);
  8707. GGML_ASSERT(ne1 == ne11);
  8708. GGML_ASSERT(ne2 == ne12);
  8709. GGML_ASSERT(ne3 == ne13);
  8710. // we don't support permuted src0 or src1
  8711. GGML_ASSERT(nb00 == ggml_type_size(type));
  8712. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8713. // dst cannot be transposed or permuted
  8714. GGML_ASSERT(nb0 == sizeof(float));
  8715. GGML_ASSERT(nb0 <= nb1);
  8716. GGML_ASSERT(nb1 <= nb2);
  8717. GGML_ASSERT(nb2 <= nb3);
  8718. // broadcast factors
  8719. const int64_t r2 = ne12/ne02;
  8720. const int64_t r3 = ne13/ne03;
  8721. // nb01 >= nb00 - src0 is not transposed
  8722. // compute by src0 rows
  8723. #if defined(GGML_USE_CLBLAST)
  8724. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8725. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8726. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8727. }
  8728. return;
  8729. }
  8730. #endif
  8731. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8732. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8733. const int64_t ne_plane = ne01*ne00;
  8734. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8735. UNUSED(desired_wsize);
  8736. if (params->type == GGML_TASK_TYPE_INIT) {
  8737. if (type != GGML_TYPE_F32) {
  8738. assert(params->wsize >= desired_wsize);
  8739. // parallelize by src0 rows
  8740. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8741. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8742. // broadcast src0 into src1 across 2nd,3rd dimension
  8743. const int64_t i03 = i13/r3;
  8744. const int64_t i02 = i12/r2;
  8745. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8746. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8747. ggml_to_float_t const to_float = type_traits[type].to_float;
  8748. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8749. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8750. }
  8751. }
  8752. }
  8753. }
  8754. return;
  8755. }
  8756. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8757. return;
  8758. }
  8759. // perform sgemm, parallelization controlled by blas lib
  8760. if (ith != 0) {
  8761. return;
  8762. }
  8763. //const int64_t tgemm0 = ggml_perf_time_us();
  8764. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8765. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8766. const int64_t i03 = i13/r3;
  8767. const int64_t i02 = i12/r2;
  8768. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8769. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8770. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8771. if (type != GGML_TYPE_F32) {
  8772. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8773. }
  8774. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8775. ne1, ne01, ne10,
  8776. 1.0f, y, ne10,
  8777. x, ne00,
  8778. 0.0f, d, ne01);
  8779. }
  8780. }
  8781. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8782. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8783. return;
  8784. }
  8785. #endif
  8786. if (params->type == GGML_TASK_TYPE_INIT) {
  8787. if (ith != 0) {
  8788. return;
  8789. }
  8790. if (src1->type != vec_dot_type) {
  8791. char * wdata = params->wdata;
  8792. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8793. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8794. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8795. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8796. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8797. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8798. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8799. wdata += row_size;
  8800. }
  8801. }
  8802. }
  8803. }
  8804. return;
  8805. }
  8806. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8807. return;
  8808. }
  8809. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8810. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8811. const int64_t nr0 = ne01; // src0 rows
  8812. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8813. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8814. // distribute the thread work across the inner or outer loop based on which one is larger
  8815. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8816. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8817. const int64_t ith0 = ith % nth0;
  8818. const int64_t ith1 = ith / nth0;
  8819. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8820. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8821. const int64_t ir010 = dr0*ith0;
  8822. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8823. const int64_t ir110 = dr1*ith1;
  8824. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8825. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8826. // threads with no work simply yield (not sure if it helps)
  8827. if (ir010 >= ir011 || ir110 >= ir111) {
  8828. sched_yield();
  8829. return;
  8830. }
  8831. assert(ne12 % ne02 == 0);
  8832. assert(ne13 % ne03 == 0);
  8833. // block-tiling attempt
  8834. const int64_t blck_0 = 16;
  8835. const int64_t blck_1 = 16;
  8836. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8837. int64_t nrc = vec_dot_num_rows;
  8838. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8839. // this check can be removed once they are extended to support odd numbered rows/cols too
  8840. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8841. nrc = 1;
  8842. }
  8843. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8844. // attempt to reduce false-sharing (does not seem to make a difference)
  8845. // 16 * 2, accounting for mmla kernels
  8846. float tmp[32];
  8847. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8848. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8849. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8850. const int64_t i13 = (ir1/(ne12*ne1));
  8851. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8852. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8853. // broadcast src0 into src1
  8854. const int64_t i03 = i13/r3;
  8855. const int64_t i02 = i12/r2;
  8856. const int64_t i1 = i11;
  8857. const int64_t i2 = i12;
  8858. const int64_t i3 = i13;
  8859. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8860. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8861. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8862. // the original src1 data pointer, so we should index using the indices directly
  8863. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8864. const char * src1_col = (const char *) wdata +
  8865. (src1_cont || src1->type != vec_dot_type
  8866. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8867. : (i11*nb11 + i12*nb12 + i13*nb13));
  8868. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8869. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8870. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8871. //}
  8872. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8873. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8874. }
  8875. for (int cn = 0; cn < nrc; ++cn) {
  8876. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8877. }
  8878. }
  8879. }
  8880. }
  8881. }
  8882. // ggml_compute_forward_mul_mat_id
  8883. static void ggml_compute_forward_mul_mat_id(
  8884. const struct ggml_compute_params * params,
  8885. struct ggml_tensor * dst) {
  8886. const struct ggml_tensor * ids = dst->src[0];
  8887. const struct ggml_tensor * src1 = dst->src[1];
  8888. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8889. GGML_TENSOR_BINARY_OP_LOCALS
  8890. const int ith = params->ith;
  8891. const int nth = params->nth;
  8892. const enum ggml_type type = src0->type;
  8893. const bool src1_cont = ggml_is_contiguous(src1);
  8894. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8895. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8896. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8897. GGML_ASSERT(ne0 == ne01);
  8898. GGML_ASSERT(ne1 == ne11);
  8899. GGML_ASSERT(ne2 == ne12);
  8900. GGML_ASSERT(ne3 == ne13);
  8901. // we don't support permuted src0 or src1
  8902. GGML_ASSERT(nb00 == ggml_type_size(type));
  8903. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8904. // dst cannot be transposed or permuted
  8905. GGML_ASSERT(nb0 == sizeof(float));
  8906. GGML_ASSERT(nb0 <= nb1);
  8907. GGML_ASSERT(nb1 <= nb2);
  8908. GGML_ASSERT(nb2 <= nb3);
  8909. // broadcast factors
  8910. const int64_t r2 = ne12/ne02;
  8911. const int64_t r3 = ne13/ne03;
  8912. // row groups
  8913. const int id = ggml_get_op_params_i32(dst, 0);
  8914. const int n_as = ggml_get_op_params_i32(dst, 1);
  8915. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8916. (char *) params->wdata :
  8917. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8918. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8919. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8920. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8921. if (params->type == GGML_TASK_TYPE_INIT) {
  8922. if (ith != 0) {
  8923. return;
  8924. }
  8925. char * wdata = params->wdata;
  8926. if (src1->type != vec_dot_type) {
  8927. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8928. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8929. assert(src1->type == GGML_TYPE_F32);
  8930. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8931. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8932. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8933. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8934. wdata += row_size;
  8935. }
  8936. }
  8937. }
  8938. }
  8939. // initialize matrix_row_counts
  8940. GGML_ASSERT(wdata == wdata_src1_end);
  8941. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8942. // group rows by src0 matrix
  8943. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8944. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8945. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8946. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8947. matrix_row_counts[row_id] += 1;
  8948. }
  8949. return;
  8950. }
  8951. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8952. return;
  8953. }
  8954. // compute each matrix multiplication in sequence
  8955. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8956. const int64_t cne1 = matrix_row_counts[cur_a];
  8957. if (cne1 == 0) {
  8958. continue;
  8959. }
  8960. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8961. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8962. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8963. const int64_t nr0 = ne01; // src0 rows
  8964. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8965. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8966. // distribute the thread work across the inner or outer loop based on which one is larger
  8967. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8968. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8969. const int64_t ith0 = ith % nth0;
  8970. const int64_t ith1 = ith / nth0;
  8971. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8972. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8973. const int64_t ir010 = dr0*ith0;
  8974. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8975. const int64_t ir110 = dr1*ith1;
  8976. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8977. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8978. // threads with no work simply yield (not sure if it helps)
  8979. if (ir010 >= ir011 || ir110 >= ir111) {
  8980. sched_yield();
  8981. continue;
  8982. }
  8983. assert(ne12 % ne02 == 0);
  8984. assert(ne13 % ne03 == 0);
  8985. // block-tiling attempt
  8986. const int64_t blck_0 = 16;
  8987. const int64_t blck_1 = 16;
  8988. // attempt to reduce false-sharing (does not seem to make a difference)
  8989. float tmp[16];
  8990. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8991. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8992. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8993. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8994. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8995. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8996. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8997. // broadcast src0 into src1
  8998. const int64_t i03 = i13/r3;
  8999. const int64_t i02 = i12/r2;
  9000. const int64_t i1 = i11;
  9001. const int64_t i2 = i12;
  9002. const int64_t i3 = i13;
  9003. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  9004. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9005. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9006. // the original src1 data pointer, so we should index using the indices directly
  9007. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9008. const char * src1_col = (const char *) wdata +
  9009. (src1_cont || src1->type != vec_dot_type
  9010. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9011. : (i11*nb11 + i12*nb12 + i13*nb13));
  9012. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9013. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9014. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9015. //}
  9016. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9017. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9018. }
  9019. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9020. }
  9021. }
  9022. }
  9023. }
  9024. #undef MMID_MATRIX_ROW
  9025. }
  9026. // ggml_compute_forward_out_prod
  9027. static void ggml_compute_forward_out_prod_f32(
  9028. const struct ggml_compute_params * params,
  9029. struct ggml_tensor * dst) {
  9030. const struct ggml_tensor * src0 = dst->src[0];
  9031. const struct ggml_tensor * src1 = dst->src[1];
  9032. // int64_t t0 = ggml_perf_time_us();
  9033. // UNUSED(t0);
  9034. GGML_TENSOR_BINARY_OP_LOCALS
  9035. const int ith = params->ith;
  9036. const int nth = params->nth;
  9037. GGML_ASSERT(ne0 == ne00);
  9038. GGML_ASSERT(ne1 == ne10);
  9039. GGML_ASSERT(ne2 == ne02);
  9040. GGML_ASSERT(ne02 == ne12);
  9041. GGML_ASSERT(ne3 == ne13);
  9042. GGML_ASSERT(ne03 == ne13);
  9043. // we don't support permuted src0 or src1
  9044. GGML_ASSERT(nb00 == sizeof(float));
  9045. // dst cannot be transposed or permuted
  9046. GGML_ASSERT(nb0 == sizeof(float));
  9047. // GGML_ASSERT(nb0 <= nb1);
  9048. // GGML_ASSERT(nb1 <= nb2);
  9049. // GGML_ASSERT(nb2 <= nb3);
  9050. // nb01 >= nb00 - src0 is not transposed
  9051. // compute by src0 rows
  9052. // TODO: #if defined(GGML_USE_CLBLAST)
  9053. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9054. bool use_blas = ggml_is_matrix(src0) &&
  9055. ggml_is_matrix(src1) &&
  9056. ggml_is_contiguous(src0) &&
  9057. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9058. #endif
  9059. if (params->type == GGML_TASK_TYPE_INIT) {
  9060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9061. if (use_blas) {
  9062. return;
  9063. }
  9064. #endif
  9065. if (ith != 0) {
  9066. return;
  9067. }
  9068. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9069. return;
  9070. }
  9071. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9072. return;
  9073. }
  9074. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9075. if (use_blas) {
  9076. if (params->ith != 0) { // All threads other than the first do no work.
  9077. return;
  9078. }
  9079. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9080. // src0: (k,n)
  9081. // src1: (k,m)
  9082. // dst: (m,n)
  9083. //
  9084. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9085. // Also expressed as (major,minor)
  9086. // a: (m,k): so src1 transposed
  9087. // b: (k,n): so src0
  9088. // c: (m,n)
  9089. //
  9090. // However, if ggml_is_transposed(src1) is true, then
  9091. // src1->data already contains a transposed version, so sgemm mustn't
  9092. // transpose it further.
  9093. int n = src0->ne[0];
  9094. int k = src0->ne[1];
  9095. int m = src1->ne[0];
  9096. int transposeA, lda;
  9097. if (!ggml_is_transposed(src1)) {
  9098. transposeA = CblasTrans;
  9099. lda = m;
  9100. } else {
  9101. transposeA = CblasNoTrans;
  9102. lda = k;
  9103. }
  9104. float * a = (float *) ((char *) src1->data);
  9105. float * b = (float *) ((char *) src0->data);
  9106. float * c = (float *) ((char *) dst->data);
  9107. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9108. return;
  9109. }
  9110. #endif
  9111. // dst[:,:,:,:] = 0
  9112. // for i2,i3:
  9113. // for i1:
  9114. // for i01:
  9115. // for i0:
  9116. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9117. // parallelize by last three dimensions
  9118. // total rows in dst
  9119. const int64_t nr = ne1*ne2*ne3;
  9120. // rows per thread
  9121. const int64_t dr = (nr + nth - 1)/nth;
  9122. // row range for this thread
  9123. const int64_t ir0 = dr*ith;
  9124. const int64_t ir1 = MIN(ir0 + dr, nr);
  9125. // block-tiling attempt
  9126. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9127. const int64_t blck_1 = 16;
  9128. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9129. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9130. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9131. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9132. for (int64_t ir = bir; ir < bir1; ++ir) {
  9133. // dst indices
  9134. const int64_t i3 = ir/(ne2*ne1);
  9135. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9136. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9137. const int64_t i02 = i2;
  9138. const int64_t i03 = i3;
  9139. //const int64_t i10 = i1;
  9140. const int64_t i12 = i2;
  9141. const int64_t i13 = i3;
  9142. #if GGML_VEC_MAD_UNROLL > 2
  9143. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9144. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9145. const int64_t i11 = i01;
  9146. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9147. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9148. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9149. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9150. }
  9151. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9152. const int64_t i11 = i01;
  9153. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9154. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9155. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9156. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9157. }
  9158. #else
  9159. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9160. const int64_t i11 = i01;
  9161. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9162. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9163. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9164. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9165. }
  9166. #endif
  9167. }
  9168. }
  9169. }
  9170. //int64_t t1 = ggml_perf_time_us();
  9171. //static int64_t acc = 0;
  9172. //acc += t1 - t0;
  9173. //if (t1 - t0 > 10) {
  9174. // printf("\n");
  9175. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9176. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9177. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9178. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9179. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9180. //}
  9181. }
  9182. static void ggml_compute_forward_out_prod_q_f32(
  9183. const struct ggml_compute_params * params,
  9184. struct ggml_tensor * dst) {
  9185. const struct ggml_tensor * src0 = dst->src[0];
  9186. const struct ggml_tensor * src1 = dst->src[1];
  9187. // int64_t t0 = ggml_perf_time_us();
  9188. // UNUSED(t0);
  9189. GGML_TENSOR_BINARY_OP_LOCALS;
  9190. const int ith = params->ith;
  9191. const int nth = params->nth;
  9192. const enum ggml_type type = src0->type;
  9193. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9194. GGML_ASSERT(ne02 == ne12);
  9195. GGML_ASSERT(ne03 == ne13);
  9196. GGML_ASSERT(ne2 == ne12);
  9197. GGML_ASSERT(ne3 == ne13);
  9198. // we don't support permuted src0 dim0
  9199. GGML_ASSERT(nb00 == ggml_type_size(type));
  9200. // dst dim0 cannot be transposed or permuted
  9201. GGML_ASSERT(nb0 == sizeof(float));
  9202. // GGML_ASSERT(nb0 <= nb1);
  9203. // GGML_ASSERT(nb1 <= nb2);
  9204. // GGML_ASSERT(nb2 <= nb3);
  9205. GGML_ASSERT(ne0 == ne00);
  9206. GGML_ASSERT(ne1 == ne10);
  9207. GGML_ASSERT(ne2 == ne02);
  9208. GGML_ASSERT(ne3 == ne03);
  9209. // nb01 >= nb00 - src0 is not transposed
  9210. // compute by src0 rows
  9211. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9212. if (params->type == GGML_TASK_TYPE_INIT) {
  9213. if (ith != 0) {
  9214. return;
  9215. }
  9216. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9217. return;
  9218. }
  9219. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9220. return;
  9221. }
  9222. // parallelize by last three dimensions
  9223. // total rows in dst
  9224. const int64_t nr = ne1*ne2*ne3;
  9225. // rows per thread
  9226. const int64_t dr = (nr + nth - 1)/nth;
  9227. // row range for this thread
  9228. const int64_t ir0 = dr*ith;
  9229. const int64_t ir1 = MIN(ir0 + dr, nr);
  9230. // dst[:,:,:,:] = 0
  9231. // for i2,i3:
  9232. // for i1:
  9233. // for i01:
  9234. // for i0:
  9235. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9236. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9237. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9238. // dst indices
  9239. const int64_t i3 = ir/(ne2*ne1);
  9240. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9241. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9242. const int64_t i02 = i2;
  9243. const int64_t i03 = i3;
  9244. //const int64_t i10 = i1;
  9245. const int64_t i12 = i2;
  9246. const int64_t i13 = i3;
  9247. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9248. const int64_t i11 = i01;
  9249. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9250. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9251. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9252. dequantize_row_q(s0, wdata, ne0);
  9253. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9254. }
  9255. }
  9256. //int64_t t1 = ggml_perf_time_us();
  9257. //static int64_t acc = 0;
  9258. //acc += t1 - t0;
  9259. //if (t1 - t0 > 10) {
  9260. // printf("\n");
  9261. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9262. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9263. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9264. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9265. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9266. //}
  9267. }
  9268. static void ggml_compute_forward_out_prod(
  9269. const struct ggml_compute_params * params,
  9270. struct ggml_tensor * dst) {
  9271. const struct ggml_tensor * src0 = dst->src[0];
  9272. switch (src0->type) {
  9273. case GGML_TYPE_Q4_0:
  9274. case GGML_TYPE_Q4_1:
  9275. case GGML_TYPE_Q5_0:
  9276. case GGML_TYPE_Q5_1:
  9277. case GGML_TYPE_Q8_0:
  9278. case GGML_TYPE_Q2_K:
  9279. case GGML_TYPE_Q3_K:
  9280. case GGML_TYPE_Q4_K:
  9281. case GGML_TYPE_Q5_K:
  9282. case GGML_TYPE_Q6_K:
  9283. case GGML_TYPE_IQ2_XXS:
  9284. case GGML_TYPE_IQ2_XS:
  9285. case GGML_TYPE_IQ3_XXS:
  9286. case GGML_TYPE_IQ1_S:
  9287. case GGML_TYPE_IQ4_NL:
  9288. case GGML_TYPE_IQ4_XS:
  9289. case GGML_TYPE_IQ3_S:
  9290. case GGML_TYPE_IQ2_S:
  9291. {
  9292. ggml_compute_forward_out_prod_q_f32(params, dst);
  9293. } break;
  9294. case GGML_TYPE_F16:
  9295. {
  9296. GGML_ASSERT(false); // todo
  9297. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9298. } break;
  9299. case GGML_TYPE_F32:
  9300. {
  9301. ggml_compute_forward_out_prod_f32(params, dst);
  9302. } break;
  9303. default:
  9304. {
  9305. GGML_ASSERT(false);
  9306. } break;
  9307. }
  9308. }
  9309. // ggml_compute_forward_scale
  9310. static void ggml_compute_forward_scale_f32(
  9311. const struct ggml_compute_params * params,
  9312. struct ggml_tensor * dst) {
  9313. const struct ggml_tensor * src0 = dst->src[0];
  9314. GGML_ASSERT(ggml_is_contiguous(src0));
  9315. GGML_ASSERT(ggml_is_contiguous(dst));
  9316. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9317. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9318. return;
  9319. }
  9320. // scale factor
  9321. float v;
  9322. memcpy(&v, dst->op_params, sizeof(float));
  9323. const int ith = params->ith;
  9324. const int nth = params->nth;
  9325. const int nc = src0->ne[0];
  9326. const int nr = ggml_nrows(src0);
  9327. // rows per thread
  9328. const int dr = (nr + nth - 1)/nth;
  9329. // row range for this thread
  9330. const int ir0 = dr*ith;
  9331. const int ir1 = MIN(ir0 + dr, nr);
  9332. const size_t nb01 = src0->nb[1];
  9333. const size_t nb1 = dst->nb[1];
  9334. for (int i1 = ir0; i1 < ir1; i1++) {
  9335. if (dst->data != src0->data) {
  9336. // src0 is same shape as dst => same indices
  9337. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9338. }
  9339. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9340. }
  9341. }
  9342. static void ggml_compute_forward_scale(
  9343. const struct ggml_compute_params * params,
  9344. struct ggml_tensor * dst) {
  9345. const struct ggml_tensor * src0 = dst->src[0];
  9346. switch (src0->type) {
  9347. case GGML_TYPE_F32:
  9348. {
  9349. ggml_compute_forward_scale_f32(params, dst);
  9350. } break;
  9351. default:
  9352. {
  9353. GGML_ASSERT(false);
  9354. } break;
  9355. }
  9356. }
  9357. // ggml_compute_forward_set
  9358. static void ggml_compute_forward_set_f32(
  9359. const struct ggml_compute_params * params,
  9360. struct ggml_tensor * dst) {
  9361. const struct ggml_tensor * src0 = dst->src[0];
  9362. const struct ggml_tensor * src1 = dst->src[1];
  9363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9364. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9365. // view src0 and dst with these strides and data offset inbytes during set
  9366. // nb0 is implicitly element_size because src0 and dst are contiguous
  9367. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9368. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9369. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9370. size_t offset = ((int32_t *) dst->op_params)[3];
  9371. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9372. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9373. if (params->ith != 0) {
  9374. return;
  9375. }
  9376. // memcpy needs to be synchronized across threads to avoid race conditions.
  9377. // => do it in INIT phase
  9378. memcpy(
  9379. ((char *) dst->data),
  9380. ((char *) src0->data),
  9381. ggml_nbytes(dst));
  9382. }
  9383. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9384. return;
  9385. }
  9386. const int ith = params->ith;
  9387. const int nth = params->nth;
  9388. const int nr = ggml_nrows(src1);
  9389. const int nc = src1->ne[0];
  9390. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9391. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9392. // src0 and dst as viewed during set
  9393. const size_t nb0 = ggml_element_size(src0);
  9394. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9395. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9396. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9397. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9398. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9399. GGML_ASSERT(nb10 == sizeof(float));
  9400. // rows per thread
  9401. const int dr = (nr + nth - 1)/nth;
  9402. // row range for this thread
  9403. const int ir0 = dr*ith;
  9404. const int ir1 = MIN(ir0 + dr, nr);
  9405. for (int ir = ir0; ir < ir1; ++ir) {
  9406. // src0 and dst are viewed with shape of src1 and offset
  9407. // => same indices
  9408. const int i3 = ir/(ne12*ne11);
  9409. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9410. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9411. ggml_vec_cpy_f32(nc,
  9412. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9413. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9414. }
  9415. }
  9416. static void ggml_compute_forward_set(
  9417. const struct ggml_compute_params * params,
  9418. struct ggml_tensor * dst) {
  9419. const struct ggml_tensor * src0 = dst->src[0];
  9420. switch (src0->type) {
  9421. case GGML_TYPE_F32:
  9422. {
  9423. ggml_compute_forward_set_f32(params, dst);
  9424. } break;
  9425. case GGML_TYPE_F16:
  9426. case GGML_TYPE_Q4_0:
  9427. case GGML_TYPE_Q4_1:
  9428. case GGML_TYPE_Q5_0:
  9429. case GGML_TYPE_Q5_1:
  9430. case GGML_TYPE_Q8_0:
  9431. case GGML_TYPE_Q8_1:
  9432. case GGML_TYPE_Q2_K:
  9433. case GGML_TYPE_Q3_K:
  9434. case GGML_TYPE_Q4_K:
  9435. case GGML_TYPE_Q5_K:
  9436. case GGML_TYPE_Q6_K:
  9437. case GGML_TYPE_IQ2_XXS:
  9438. case GGML_TYPE_IQ2_XS:
  9439. case GGML_TYPE_IQ3_XXS:
  9440. case GGML_TYPE_IQ1_S:
  9441. case GGML_TYPE_IQ4_NL:
  9442. case GGML_TYPE_IQ4_XS:
  9443. case GGML_TYPE_IQ3_S:
  9444. case GGML_TYPE_IQ2_S:
  9445. default:
  9446. {
  9447. GGML_ASSERT(false);
  9448. } break;
  9449. }
  9450. }
  9451. // ggml_compute_forward_cpy
  9452. static void ggml_compute_forward_cpy(
  9453. const struct ggml_compute_params * params,
  9454. struct ggml_tensor * dst) {
  9455. ggml_compute_forward_dup(params, dst);
  9456. }
  9457. // ggml_compute_forward_cont
  9458. static void ggml_compute_forward_cont(
  9459. const struct ggml_compute_params * params,
  9460. struct ggml_tensor * dst) {
  9461. ggml_compute_forward_dup(params, dst);
  9462. }
  9463. // ggml_compute_forward_reshape
  9464. static void ggml_compute_forward_reshape(
  9465. const struct ggml_compute_params * params,
  9466. struct ggml_tensor * dst) {
  9467. // NOP
  9468. UNUSED(params);
  9469. UNUSED(dst);
  9470. }
  9471. // ggml_compute_forward_view
  9472. static void ggml_compute_forward_view(
  9473. const struct ggml_compute_params * params,
  9474. const struct ggml_tensor * dst) {
  9475. // NOP
  9476. UNUSED(params);
  9477. UNUSED(dst);
  9478. }
  9479. // ggml_compute_forward_permute
  9480. static void ggml_compute_forward_permute(
  9481. const struct ggml_compute_params * params,
  9482. const struct ggml_tensor * dst) {
  9483. // NOP
  9484. UNUSED(params);
  9485. UNUSED(dst);
  9486. }
  9487. // ggml_compute_forward_transpose
  9488. static void ggml_compute_forward_transpose(
  9489. const struct ggml_compute_params * params,
  9490. const struct ggml_tensor * dst) {
  9491. // NOP
  9492. UNUSED(params);
  9493. UNUSED(dst);
  9494. }
  9495. // ggml_compute_forward_get_rows
  9496. static void ggml_compute_forward_get_rows_q(
  9497. const struct ggml_compute_params * params,
  9498. struct ggml_tensor * dst) {
  9499. const struct ggml_tensor * src0 = dst->src[0];
  9500. const struct ggml_tensor * src1 = dst->src[1];
  9501. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9502. return;
  9503. }
  9504. GGML_TENSOR_BINARY_OP_LOCALS
  9505. const int64_t nc = ne00;
  9506. const int64_t nr = ggml_nelements(src1);
  9507. const enum ggml_type type = src0->type;
  9508. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9509. assert(ne0 == nc);
  9510. assert(ne02 == ne11);
  9511. assert(nb00 == ggml_type_size(type));
  9512. assert(ggml_nrows(dst) == nr);
  9513. const int ith = params->ith;
  9514. const int nth = params->nth;
  9515. // rows per thread
  9516. const int dr = (nr + nth - 1)/nth;
  9517. // row range for this thread
  9518. const int ir0 = dr*ith;
  9519. const int ir1 = MIN(ir0 + dr, nr);
  9520. for (int64_t i = ir0; i < ir1; ++i) {
  9521. const int64_t i12 = i/(ne11*ne10);
  9522. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9523. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9524. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9525. dequantize_row_q(
  9526. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9527. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9528. }
  9529. }
  9530. static void ggml_compute_forward_get_rows_f16(
  9531. const struct ggml_compute_params * params,
  9532. struct ggml_tensor * dst) {
  9533. const struct ggml_tensor * src0 = dst->src[0];
  9534. const struct ggml_tensor * src1 = dst->src[1];
  9535. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9536. return;
  9537. }
  9538. GGML_TENSOR_BINARY_OP_LOCALS
  9539. const int64_t nc = ne00;
  9540. const int64_t nr = ggml_nelements(src1);
  9541. assert(ne0 == nc);
  9542. assert(ne02 == ne11);
  9543. assert(nb00 == sizeof(ggml_fp16_t));
  9544. assert(ggml_nrows(dst) == nr);
  9545. const int ith = params->ith;
  9546. const int nth = params->nth;
  9547. // rows per thread
  9548. const int dr = (nr + nth - 1)/nth;
  9549. // row range for this thread
  9550. const int ir0 = dr*ith;
  9551. const int ir1 = MIN(ir0 + dr, nr);
  9552. for (int64_t i = ir0; i < ir1; ++i) {
  9553. const int64_t i12 = i/(ne11*ne10);
  9554. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9555. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9556. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9557. ggml_fp16_to_fp32_row(
  9558. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9559. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9560. }
  9561. }
  9562. static void ggml_compute_forward_get_rows_f32(
  9563. const struct ggml_compute_params * params,
  9564. struct ggml_tensor * dst) {
  9565. const struct ggml_tensor * src0 = dst->src[0];
  9566. const struct ggml_tensor * src1 = dst->src[1];
  9567. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9568. return;
  9569. }
  9570. GGML_TENSOR_BINARY_OP_LOCALS
  9571. const int64_t nc = ne00;
  9572. const int64_t nr = ggml_nelements(src1);
  9573. assert(ne0 == nc);
  9574. assert(ne02 == ne11);
  9575. assert(nb00 == sizeof(float));
  9576. assert(ggml_nrows(dst) == nr);
  9577. const int ith = params->ith;
  9578. const int nth = params->nth;
  9579. // rows per thread
  9580. const int dr = (nr + nth - 1)/nth;
  9581. // row range for this thread
  9582. const int ir0 = dr*ith;
  9583. const int ir1 = MIN(ir0 + dr, nr);
  9584. for (int64_t i = ir0; i < ir1; ++i) {
  9585. const int64_t i12 = i/(ne11*ne10);
  9586. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9587. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9588. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9589. ggml_vec_cpy_f32(nc,
  9590. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9591. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9592. }
  9593. }
  9594. static void ggml_compute_forward_get_rows(
  9595. const struct ggml_compute_params * params,
  9596. struct ggml_tensor * dst) {
  9597. const struct ggml_tensor * src0 = dst->src[0];
  9598. switch (src0->type) {
  9599. case GGML_TYPE_Q4_0:
  9600. case GGML_TYPE_Q4_1:
  9601. case GGML_TYPE_Q5_0:
  9602. case GGML_TYPE_Q5_1:
  9603. case GGML_TYPE_Q8_0:
  9604. case GGML_TYPE_Q8_1:
  9605. case GGML_TYPE_Q2_K:
  9606. case GGML_TYPE_Q3_K:
  9607. case GGML_TYPE_Q4_K:
  9608. case GGML_TYPE_Q5_K:
  9609. case GGML_TYPE_Q6_K:
  9610. case GGML_TYPE_IQ2_XXS:
  9611. case GGML_TYPE_IQ2_XS:
  9612. case GGML_TYPE_IQ3_XXS:
  9613. case GGML_TYPE_IQ1_S:
  9614. case GGML_TYPE_IQ4_NL:
  9615. case GGML_TYPE_IQ4_XS:
  9616. case GGML_TYPE_IQ3_S:
  9617. case GGML_TYPE_IQ2_S:
  9618. {
  9619. ggml_compute_forward_get_rows_q(params, dst);
  9620. } break;
  9621. case GGML_TYPE_F16:
  9622. {
  9623. ggml_compute_forward_get_rows_f16(params, dst);
  9624. } break;
  9625. case GGML_TYPE_F32:
  9626. case GGML_TYPE_I32:
  9627. {
  9628. ggml_compute_forward_get_rows_f32(params, dst);
  9629. } break;
  9630. default:
  9631. {
  9632. GGML_ASSERT(false);
  9633. } break;
  9634. }
  9635. //static bool first = true;
  9636. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9637. //if (first) {
  9638. // first = false;
  9639. //} else {
  9640. // for (int k = 0; k < dst->ne[1]; ++k) {
  9641. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9642. // for (int i = 0; i < 16; ++i) {
  9643. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9644. // }
  9645. // printf("\n");
  9646. // }
  9647. // printf("\n");
  9648. // }
  9649. // printf("\n");
  9650. // exit(0);
  9651. //}
  9652. }
  9653. // ggml_compute_forward_get_rows_back
  9654. static void ggml_compute_forward_get_rows_back_f32_f16(
  9655. const struct ggml_compute_params * params,
  9656. struct ggml_tensor * dst) {
  9657. const struct ggml_tensor * src0 = dst->src[0];
  9658. const struct ggml_tensor * src1 = dst->src[1];
  9659. GGML_ASSERT(params->ith == 0);
  9660. GGML_ASSERT(ggml_is_contiguous(dst));
  9661. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9662. if (params->type == GGML_TASK_TYPE_INIT) {
  9663. if (params->ith != 0) {
  9664. return;
  9665. }
  9666. memset(dst->data, 0, ggml_nbytes(dst));
  9667. }
  9668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9669. return;
  9670. }
  9671. const int nc = src0->ne[0];
  9672. const int nr = ggml_nelements(src1);
  9673. GGML_ASSERT( dst->ne[0] == nc);
  9674. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9675. for (int i = 0; i < nr; ++i) {
  9676. const int r = ((int32_t *) src1->data)[i];
  9677. for (int j = 0; j < nc; ++j) {
  9678. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9679. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9680. }
  9681. }
  9682. }
  9683. static void ggml_compute_forward_get_rows_back_f32(
  9684. const struct ggml_compute_params * params,
  9685. struct ggml_tensor * dst) {
  9686. const struct ggml_tensor * src0 = dst->src[0];
  9687. const struct ggml_tensor * src1 = dst->src[1];
  9688. GGML_ASSERT(params->ith == 0);
  9689. GGML_ASSERT(ggml_is_contiguous(dst));
  9690. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9691. if (params->type == GGML_TASK_TYPE_INIT) {
  9692. if (params->ith != 0) {
  9693. return;
  9694. }
  9695. memset(dst->data, 0, ggml_nbytes(dst));
  9696. }
  9697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9698. return;
  9699. }
  9700. const int nc = src0->ne[0];
  9701. const int nr = ggml_nelements(src1);
  9702. GGML_ASSERT( dst->ne[0] == nc);
  9703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9704. for (int i = 0; i < nr; ++i) {
  9705. const int r = ((int32_t *) src1->data)[i];
  9706. ggml_vec_add_f32(nc,
  9707. (float *) ((char *) dst->data + r*dst->nb[1]),
  9708. (float *) ((char *) dst->data + r*dst->nb[1]),
  9709. (float *) ((char *) src0->data + i*src0->nb[1]));
  9710. }
  9711. }
  9712. static void ggml_compute_forward_get_rows_back(
  9713. const struct ggml_compute_params * params,
  9714. struct ggml_tensor * dst) {
  9715. const struct ggml_tensor * src0 = dst->src[0];
  9716. switch (src0->type) {
  9717. case GGML_TYPE_F16:
  9718. {
  9719. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9720. } break;
  9721. case GGML_TYPE_F32:
  9722. {
  9723. ggml_compute_forward_get_rows_back_f32(params, dst);
  9724. } break;
  9725. default:
  9726. {
  9727. GGML_ASSERT(false);
  9728. } break;
  9729. }
  9730. //static bool first = true;
  9731. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9732. //if (first) {
  9733. // first = false;
  9734. //} else {
  9735. // for (int k = 0; k < dst->ne[1]; ++k) {
  9736. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9737. // for (int i = 0; i < 16; ++i) {
  9738. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9739. // }
  9740. // printf("\n");
  9741. // }
  9742. // printf("\n");
  9743. // }
  9744. // printf("\n");
  9745. // exit(0);
  9746. //}
  9747. }
  9748. // ggml_compute_forward_diag
  9749. static void ggml_compute_forward_diag_f32(
  9750. const struct ggml_compute_params * params,
  9751. struct ggml_tensor * dst) {
  9752. const struct ggml_tensor * src0 = dst->src[0];
  9753. GGML_ASSERT(params->ith == 0);
  9754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9755. return;
  9756. }
  9757. // TODO: handle transposed/permuted matrices
  9758. GGML_TENSOR_UNARY_OP_LOCALS
  9759. GGML_ASSERT(ne00 == ne0);
  9760. GGML_ASSERT(ne00 == ne1);
  9761. GGML_ASSERT(ne01 == 1);
  9762. GGML_ASSERT(ne02 == ne2);
  9763. GGML_ASSERT(ne03 == ne3);
  9764. GGML_ASSERT(nb00 == sizeof(float));
  9765. GGML_ASSERT(nb0 == sizeof(float));
  9766. for (int i3 = 0; i3 < ne3; i3++) {
  9767. for (int i2 = 0; i2 < ne2; i2++) {
  9768. for (int i1 = 0; i1 < ne1; i1++) {
  9769. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9770. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9771. for (int i0 = 0; i0 < i1; i0++) {
  9772. d[i0] = 0;
  9773. }
  9774. d[i1] = s[i1];
  9775. for (int i0 = i1+1; i0 < ne0; i0++) {
  9776. d[i0] = 0;
  9777. }
  9778. }
  9779. }
  9780. }
  9781. }
  9782. static void ggml_compute_forward_diag(
  9783. const struct ggml_compute_params * params,
  9784. struct ggml_tensor * dst) {
  9785. const struct ggml_tensor * src0 = dst->src[0];
  9786. switch (src0->type) {
  9787. case GGML_TYPE_F32:
  9788. {
  9789. ggml_compute_forward_diag_f32(params, dst);
  9790. } break;
  9791. default:
  9792. {
  9793. GGML_ASSERT(false);
  9794. } break;
  9795. }
  9796. }
  9797. // ggml_compute_forward_diag_mask_inf
  9798. static void ggml_compute_forward_diag_mask_f32(
  9799. const struct ggml_compute_params * params,
  9800. struct ggml_tensor * dst,
  9801. const float value) {
  9802. const struct ggml_tensor * src0 = dst->src[0];
  9803. const int ith = params->ith;
  9804. const int nth = params->nth;
  9805. const int n_past = ((int32_t *) dst->op_params)[0];
  9806. const bool inplace = src0->data == dst->data;
  9807. GGML_ASSERT(n_past >= 0);
  9808. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9809. if (ith != 0) {
  9810. return;
  9811. }
  9812. // memcpy needs to be synchronized across threads to avoid race conditions.
  9813. // => do it in INIT phase
  9814. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9815. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9816. memcpy(
  9817. ((char *) dst->data),
  9818. ((char *) src0->data),
  9819. ggml_nbytes(dst));
  9820. }
  9821. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9822. return;
  9823. }
  9824. // TODO: handle transposed/permuted matrices
  9825. const int n = ggml_nrows(src0);
  9826. const int nc = src0->ne[0];
  9827. const int nr = src0->ne[1];
  9828. const int nz = n/nr;
  9829. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9830. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9831. for (int k = 0; k < nz; k++) {
  9832. for (int j = ith; j < nr; j += nth) {
  9833. for (int i = n_past; i < nc; i++) {
  9834. if (i > n_past + j) {
  9835. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9836. }
  9837. }
  9838. }
  9839. }
  9840. }
  9841. static void ggml_compute_forward_diag_mask_inf(
  9842. const struct ggml_compute_params * params,
  9843. struct ggml_tensor * dst) {
  9844. const struct ggml_tensor * src0 = dst->src[0];
  9845. switch (src0->type) {
  9846. case GGML_TYPE_F32:
  9847. {
  9848. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9849. } break;
  9850. default:
  9851. {
  9852. GGML_ASSERT(false);
  9853. } break;
  9854. }
  9855. }
  9856. static void ggml_compute_forward_diag_mask_zero(
  9857. const struct ggml_compute_params * params,
  9858. struct ggml_tensor * dst) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. switch (src0->type) {
  9861. case GGML_TYPE_F32:
  9862. {
  9863. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9864. } break;
  9865. default:
  9866. {
  9867. GGML_ASSERT(false);
  9868. } break;
  9869. }
  9870. }
  9871. // ggml_compute_forward_soft_max
  9872. static void ggml_compute_forward_soft_max_f32(
  9873. const struct ggml_compute_params * params,
  9874. struct ggml_tensor * dst) {
  9875. const struct ggml_tensor * src0 = dst->src[0];
  9876. const struct ggml_tensor * src1 = dst->src[1];
  9877. const struct ggml_tensor * src2 = dst->src[2];
  9878. assert(ggml_is_contiguous(dst));
  9879. assert(ggml_are_same_shape(src0, dst));
  9880. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9881. return;
  9882. }
  9883. float scale = 1.0f;
  9884. float max_bias = 0.0f;
  9885. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9886. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9887. // TODO: handle transposed/permuted matrices
  9888. const int ith = params->ith;
  9889. const int nth = params->nth;
  9890. GGML_TENSOR_UNARY_OP_LOCALS
  9891. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9892. // TODO: is this supposed to be ceil instead of floor?
  9893. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9894. const uint32_t n_head_kv = ne02;
  9895. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9896. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9897. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9898. const int nc = src0->ne[0];
  9899. const int nr = ggml_nrows(src0);
  9900. // rows per thread
  9901. const int dr = (nr + nth - 1)/nth;
  9902. // row range for this thread
  9903. const int ir0 = dr*ith;
  9904. const int ir1 = MIN(ir0 + dr, nr);
  9905. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9906. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9907. float * pos = src2 ? (float *) src2->data : src0->data;
  9908. for (int i1 = ir0; i1 < ir1; i1++) {
  9909. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9910. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9911. // broadcast the mask across rows
  9912. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9913. ggml_vec_cpy_f32 (nc, wp, sp);
  9914. ggml_vec_scale_f32(nc, wp, scale);
  9915. if (mp) {
  9916. ggml_vec_acc_f32(nc, wp, mp);
  9917. }
  9918. // ALiBi bias
  9919. if (max_bias > 0.0f) {
  9920. const uint32_t h = (i1/ne01)%ne02; // head
  9921. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9922. for (int i = 0; i < nc; i++) {
  9923. wp[i] = wp[i] + slope*pos[i];
  9924. }
  9925. }
  9926. #ifndef NDEBUG
  9927. for (int i = 0; i < nc; ++i) {
  9928. //printf("p[%d] = %f\n", i, p[i]);
  9929. assert(!isnan(wp[i]));
  9930. }
  9931. #endif
  9932. float max = -INFINITY;
  9933. ggml_vec_max_f32(nc, &max, wp);
  9934. ggml_float sum = 0.0;
  9935. uint16_t scvt;
  9936. for (int i = 0; i < nc; i++) {
  9937. if (wp[i] == -INFINITY) {
  9938. dp[i] = 0.0f;
  9939. } else {
  9940. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9941. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9942. memcpy(&scvt, &s, sizeof(scvt));
  9943. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9944. sum += (ggml_float)val;
  9945. dp[i] = val;
  9946. }
  9947. }
  9948. assert(sum > 0.0);
  9949. sum = 1.0/sum;
  9950. ggml_vec_scale_f32(nc, dp, sum);
  9951. #ifndef NDEBUG
  9952. for (int i = 0; i < nc; ++i) {
  9953. assert(!isnan(dp[i]));
  9954. assert(!isinf(dp[i]));
  9955. }
  9956. #endif
  9957. }
  9958. }
  9959. static void ggml_compute_forward_soft_max(
  9960. const struct ggml_compute_params * params,
  9961. struct ggml_tensor * dst) {
  9962. const struct ggml_tensor * src0 = dst->src[0];
  9963. switch (src0->type) {
  9964. case GGML_TYPE_F32:
  9965. {
  9966. ggml_compute_forward_soft_max_f32(params, dst);
  9967. } break;
  9968. default:
  9969. {
  9970. GGML_ASSERT(false);
  9971. } break;
  9972. }
  9973. }
  9974. // ggml_compute_forward_soft_max_back
  9975. static void ggml_compute_forward_soft_max_back_f32(
  9976. const struct ggml_compute_params * params,
  9977. struct ggml_tensor * dst) {
  9978. const struct ggml_tensor * src0 = dst->src[0];
  9979. const struct ggml_tensor * src1 = dst->src[1];
  9980. GGML_ASSERT(ggml_is_contiguous(src0));
  9981. GGML_ASSERT(ggml_is_contiguous(src1));
  9982. GGML_ASSERT(ggml_is_contiguous(dst));
  9983. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9984. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9986. return;
  9987. }
  9988. // TODO: handle transposed/permuted matrices
  9989. const int ith = params->ith;
  9990. const int nth = params->nth;
  9991. const int nc = src0->ne[0];
  9992. const int nr = ggml_nrows(src0);
  9993. // rows per thread
  9994. const int dr = (nr + nth - 1)/nth;
  9995. // row range for this thread
  9996. const int ir0 = dr*ith;
  9997. const int ir1 = MIN(ir0 + dr, nr);
  9998. for (int i1 = ir0; i1 < ir1; i1++) {
  9999. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10000. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10001. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10002. #ifndef NDEBUG
  10003. for (int i = 0; i < nc; ++i) {
  10004. //printf("p[%d] = %f\n", i, p[i]);
  10005. assert(!isnan(dy[i]));
  10006. assert(!isnan(y[i]));
  10007. }
  10008. #endif
  10009. // Jii = yi - yi*yi
  10010. // Jij = -yi*yj
  10011. // J = diag(y)-y.T*y
  10012. // dx = J * dy
  10013. // dxk = sum_i(Jki * dyi)
  10014. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10015. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10016. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10017. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10018. // dxk = -yk * dot(y, dy) + yk*dyk
  10019. // dxk = yk * (- dot(y, dy) + dyk)
  10020. // dxk = yk * (dyk - dot(y, dy))
  10021. //
  10022. // post-order:
  10023. // dot_y_dy := dot(y, dy)
  10024. // dx := dy
  10025. // dx := dx - dot_y_dy
  10026. // dx := dx * y
  10027. // linear runtime, no additional memory
  10028. float dot_y_dy = 0;
  10029. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10030. ggml_vec_cpy_f32 (nc, dx, dy);
  10031. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10032. ggml_vec_mul_f32 (nc, dx, dx, y);
  10033. #ifndef NDEBUG
  10034. for (int i = 0; i < nc; ++i) {
  10035. assert(!isnan(dx[i]));
  10036. assert(!isinf(dx[i]));
  10037. }
  10038. #endif
  10039. }
  10040. }
  10041. static void ggml_compute_forward_soft_max_back(
  10042. const struct ggml_compute_params * params,
  10043. struct ggml_tensor * dst) {
  10044. const struct ggml_tensor * src0 = dst->src[0];
  10045. switch (src0->type) {
  10046. case GGML_TYPE_F32:
  10047. {
  10048. ggml_compute_forward_soft_max_back_f32(params, dst);
  10049. } break;
  10050. default:
  10051. {
  10052. GGML_ASSERT(false);
  10053. } break;
  10054. }
  10055. }
  10056. // ggml_compute_forward_alibi
  10057. static void ggml_compute_forward_alibi_f32(
  10058. const struct ggml_compute_params * params,
  10059. struct ggml_tensor * dst) {
  10060. const struct ggml_tensor * src0 = dst->src[0];
  10061. assert(params->ith == 0);
  10062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10063. return;
  10064. }
  10065. //const int n_past = ((int32_t *) dst->op_params)[0];
  10066. const int n_head = ((int32_t *) dst->op_params)[1];
  10067. float max_bias;
  10068. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10069. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10070. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10071. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10072. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10073. const int64_t n = ggml_nrows(src0);
  10074. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10075. const size_t nb0 = src0->nb[0];
  10076. const size_t nb1 = src0->nb[1];
  10077. const size_t nb2 = src0->nb[2];
  10078. //const int nb3 = src0->nb[3];
  10079. GGML_ASSERT(nb0 == sizeof(float));
  10080. GGML_ASSERT(n_head == ne2);
  10081. // add alibi to src0 (KQ_scaled)
  10082. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10083. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10084. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10085. for (int64_t k = 0; k < ne2_ne3; k++) {
  10086. // TODO: k*nb2 or k*nb3
  10087. float m_k;
  10088. if (k < n_heads_log2_floor) {
  10089. m_k = powf(m0, k + 1);
  10090. } else {
  10091. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10092. }
  10093. for (int64_t i = 0; i < ne0; i++) {
  10094. for (int64_t j = 0; j < ne1; j++) {
  10095. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10096. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10097. pdst[0] = i * m_k + src[0];
  10098. }
  10099. }
  10100. }
  10101. }
  10102. static void ggml_compute_forward_alibi_f16(
  10103. const struct ggml_compute_params * params,
  10104. struct ggml_tensor * dst) {
  10105. const struct ggml_tensor * src0 = dst->src[0];
  10106. assert(params->ith == 0);
  10107. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10108. return;
  10109. }
  10110. //const int n_past = ((int32_t *) dst->op_params)[0];
  10111. const int n_head = ((int32_t *) dst->op_params)[1];
  10112. float max_bias;
  10113. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10114. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10115. const int ne1 = src0->ne[1]; // seq_len_without_past
  10116. const int ne2 = src0->ne[2]; // n_head -> this is k
  10117. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10118. const int n = ggml_nrows(src0);
  10119. const int ne2_ne3 = n/ne1; // ne2*ne3
  10120. const int nb0 = src0->nb[0];
  10121. const int nb1 = src0->nb[1];
  10122. const int nb2 = src0->nb[2];
  10123. //const int nb3 = src0->nb[3];
  10124. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10125. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10126. GGML_ASSERT(n_head == ne2);
  10127. // add alibi to src0 (KQ_scaled)
  10128. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10129. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10130. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10131. for (int k = 0; k < ne2_ne3; k++) {
  10132. // TODO: k*nb2 or k*nb3
  10133. float m_k;
  10134. if (k < n_heads_log2_floor) {
  10135. m_k = powf(m0, k + 1);
  10136. } else {
  10137. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10138. }
  10139. for (int i = 0; i < ne0; i++) {
  10140. for (int j = 0; j < ne1; j++) {
  10141. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10142. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10143. // we return F32
  10144. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10145. }
  10146. }
  10147. }
  10148. }
  10149. static void ggml_compute_forward_alibi(
  10150. const struct ggml_compute_params * params,
  10151. struct ggml_tensor * dst) {
  10152. const struct ggml_tensor * src0 = dst->src[0];
  10153. switch (src0->type) {
  10154. case GGML_TYPE_F16:
  10155. {
  10156. ggml_compute_forward_alibi_f16(params, dst);
  10157. } break;
  10158. case GGML_TYPE_F32:
  10159. {
  10160. ggml_compute_forward_alibi_f32(params, dst);
  10161. } break;
  10162. case GGML_TYPE_Q4_0:
  10163. case GGML_TYPE_Q4_1:
  10164. case GGML_TYPE_Q5_0:
  10165. case GGML_TYPE_Q5_1:
  10166. case GGML_TYPE_Q8_0:
  10167. case GGML_TYPE_Q8_1:
  10168. case GGML_TYPE_Q2_K:
  10169. case GGML_TYPE_Q3_K:
  10170. case GGML_TYPE_Q4_K:
  10171. case GGML_TYPE_Q5_K:
  10172. case GGML_TYPE_Q6_K:
  10173. case GGML_TYPE_IQ2_XXS:
  10174. case GGML_TYPE_IQ2_XS:
  10175. case GGML_TYPE_IQ3_XXS:
  10176. case GGML_TYPE_IQ1_S:
  10177. case GGML_TYPE_IQ4_NL:
  10178. case GGML_TYPE_IQ4_XS:
  10179. case GGML_TYPE_IQ3_S:
  10180. case GGML_TYPE_IQ2_S:
  10181. case GGML_TYPE_Q8_K:
  10182. case GGML_TYPE_I8:
  10183. case GGML_TYPE_I16:
  10184. case GGML_TYPE_I32:
  10185. case GGML_TYPE_I64:
  10186. case GGML_TYPE_F64:
  10187. case GGML_TYPE_COUNT:
  10188. {
  10189. GGML_ASSERT(false);
  10190. } break;
  10191. }
  10192. }
  10193. // ggml_compute_forward_clamp
  10194. static void ggml_compute_forward_clamp_f32(
  10195. const struct ggml_compute_params * params,
  10196. struct ggml_tensor * dst) {
  10197. const struct ggml_tensor * src0 = dst->src[0];
  10198. assert(params->ith == 0);
  10199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10200. return;
  10201. }
  10202. float min;
  10203. float max;
  10204. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10205. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10206. const int ith = params->ith;
  10207. const int nth = params->nth;
  10208. const int n = ggml_nrows(src0);
  10209. const int nc = src0->ne[0];
  10210. const size_t nb00 = src0->nb[0];
  10211. const size_t nb01 = src0->nb[1];
  10212. const size_t nb0 = dst->nb[0];
  10213. const size_t nb1 = dst->nb[1];
  10214. GGML_ASSERT( nb0 == sizeof(float));
  10215. GGML_ASSERT(nb00 == sizeof(float));
  10216. for (int j = ith; j < n; j += nth) {
  10217. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10218. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10219. for (int i = 0; i < nc; i++) {
  10220. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10221. }
  10222. }
  10223. }
  10224. static void ggml_compute_forward_clamp(
  10225. const struct ggml_compute_params * params,
  10226. struct ggml_tensor * dst) {
  10227. const struct ggml_tensor * src0 = dst->src[0];
  10228. switch (src0->type) {
  10229. case GGML_TYPE_F32:
  10230. {
  10231. ggml_compute_forward_clamp_f32(params, dst);
  10232. } break;
  10233. case GGML_TYPE_F16:
  10234. case GGML_TYPE_Q4_0:
  10235. case GGML_TYPE_Q4_1:
  10236. case GGML_TYPE_Q5_0:
  10237. case GGML_TYPE_Q5_1:
  10238. case GGML_TYPE_Q8_0:
  10239. case GGML_TYPE_Q8_1:
  10240. case GGML_TYPE_Q2_K:
  10241. case GGML_TYPE_Q3_K:
  10242. case GGML_TYPE_Q4_K:
  10243. case GGML_TYPE_Q5_K:
  10244. case GGML_TYPE_Q6_K:
  10245. case GGML_TYPE_IQ2_XXS:
  10246. case GGML_TYPE_IQ2_XS:
  10247. case GGML_TYPE_IQ3_XXS:
  10248. case GGML_TYPE_IQ1_S:
  10249. case GGML_TYPE_IQ4_NL:
  10250. case GGML_TYPE_IQ4_XS:
  10251. case GGML_TYPE_IQ3_S:
  10252. case GGML_TYPE_IQ2_S:
  10253. case GGML_TYPE_Q8_K:
  10254. case GGML_TYPE_I8:
  10255. case GGML_TYPE_I16:
  10256. case GGML_TYPE_I32:
  10257. case GGML_TYPE_I64:
  10258. case GGML_TYPE_F64:
  10259. case GGML_TYPE_COUNT:
  10260. {
  10261. GGML_ASSERT(false);
  10262. } break;
  10263. }
  10264. }
  10265. // ggml_compute_forward_rope
  10266. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10267. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10268. return 1 - MIN(1, MAX(0, y));
  10269. }
  10270. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10271. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10272. static void rope_yarn(
  10273. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10274. float * cos_theta, float * sin_theta
  10275. ) {
  10276. // Get n-d rotational scaling corrected for extrapolation
  10277. float theta_interp = freq_scale * theta_extrap;
  10278. float theta = theta_interp;
  10279. if (ext_factor != 0.0f) {
  10280. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10281. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10282. // Get n-d magnitude scaling corrected for interpolation
  10283. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10284. }
  10285. *cos_theta = cosf(theta) * mscale;
  10286. *sin_theta = sinf(theta) * mscale;
  10287. }
  10288. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10289. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10290. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10291. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10292. }
  10293. static void ggml_rope_cache_init(
  10294. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10295. float * cache, float sin_sign, float theta_scale
  10296. ) {
  10297. float theta = theta_base;
  10298. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10299. rope_yarn(
  10300. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10301. );
  10302. cache[i0 + 1] *= sin_sign;
  10303. theta *= theta_scale;
  10304. }
  10305. }
  10306. GGML_CALL void ggml_rope_yarn_corr_dims(
  10307. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10308. ) {
  10309. // start and end correction dims
  10310. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10311. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10312. dims[0] = MAX(0, start);
  10313. dims[1] = MIN(n_dims - 1, end);
  10314. }
  10315. static void ggml_compute_forward_rope_f32(
  10316. const struct ggml_compute_params * params,
  10317. struct ggml_tensor * dst,
  10318. const bool forward) {
  10319. const struct ggml_tensor * src0 = dst->src[0];
  10320. const struct ggml_tensor * src1 = dst->src[1];
  10321. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10322. return;
  10323. }
  10324. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10325. // these two only relevant for xPos RoPE:
  10326. float xpos_base;
  10327. bool xpos_down;
  10328. //const int n_past = ((int32_t *) dst->op_params)[0];
  10329. const int n_dims = ((int32_t *) dst->op_params)[1];
  10330. const int mode = ((int32_t *) dst->op_params)[2];
  10331. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10332. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10333. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10334. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10335. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10336. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10337. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10338. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10339. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10340. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10341. GGML_TENSOR_UNARY_OP_LOCALS
  10342. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10343. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10344. GGML_ASSERT(nb00 == sizeof(float));
  10345. const int ith = params->ith;
  10346. const int nth = params->nth;
  10347. const int nr = ggml_nrows(dst);
  10348. GGML_ASSERT(n_dims <= ne0);
  10349. GGML_ASSERT(n_dims % 2 == 0);
  10350. // rows per thread
  10351. const int dr = (nr + nth - 1)/nth;
  10352. // row range for this thread
  10353. const int ir0 = dr*ith;
  10354. const int ir1 = MIN(ir0 + dr, nr);
  10355. // row index used to determine which thread to use
  10356. int ir = 0;
  10357. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10358. const float inv_ndims = -1.f/n_dims;
  10359. float corr_dims[2];
  10360. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10361. const bool is_neox = mode & 2;
  10362. const bool is_glm = mode & 4;
  10363. // backward process uses inverse rotation by cos and sin.
  10364. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10365. // this essentially just switches the sign of sin.
  10366. const float sin_sign = forward ? 1.0f : -1.0f;
  10367. const int32_t * pos = (const int32_t *) src1->data;
  10368. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10369. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10370. const int64_t p = pos[i2];
  10371. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10372. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10373. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10374. }
  10375. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10376. if (ir++ < ir0) continue;
  10377. if (ir > ir1) break;
  10378. float theta_base = (float)p;
  10379. if (is_glm) {
  10380. theta_base = MIN(p, n_ctx - 2);
  10381. float block_theta = MAX(p - (n_ctx - 2), 0);
  10382. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10383. const float cos_theta = cosf(theta_base);
  10384. const float sin_theta = sinf(theta_base) * sin_sign;
  10385. const float cos_block_theta = cosf(block_theta);
  10386. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10387. theta_base *= theta_scale;
  10388. block_theta *= theta_scale;
  10389. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10390. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10391. const float x0 = src[0];
  10392. const float x1 = src[n_dims/2];
  10393. const float x2 = src[n_dims];
  10394. const float x3 = src[n_dims/2*3];
  10395. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10396. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10397. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10398. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10399. }
  10400. } else if (!is_neox) {
  10401. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10402. const float cos_theta = cache[i0 + 0];
  10403. const float sin_theta = cache[i0 + 1];
  10404. // zeta scaling for xPos only:
  10405. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10406. if (xpos_down) zeta = 1.0f / zeta;
  10407. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10408. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10409. const float x0 = src[0];
  10410. const float x1 = src[1];
  10411. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10412. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10413. }
  10414. } else {
  10415. // TODO: this might be wrong for ne0 != n_dims - need double check
  10416. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10417. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10418. theta_base *= freq_scale;
  10419. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10420. if (ic < n_dims) {
  10421. const int64_t ib = 0;
  10422. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10423. float cur_rot = inv_ndims * ic - ib;
  10424. float cos_theta, sin_theta;
  10425. rope_yarn(
  10426. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10427. &cos_theta, &sin_theta
  10428. );
  10429. sin_theta *= sin_sign;
  10430. theta_base *= theta_scale;
  10431. const int64_t i0 = ib*n_dims + ic/2;
  10432. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10433. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10434. const float x0 = src[0];
  10435. const float x1 = src[n_dims/2];
  10436. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10437. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10438. } else {
  10439. const int64_t i0 = ic;
  10440. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10441. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10442. dst_data[0] = src[0];
  10443. dst_data[1] = src[1];
  10444. }
  10445. }
  10446. }
  10447. }
  10448. }
  10449. }
  10450. }
  10451. static void ggml_compute_forward_rope_f16(
  10452. const struct ggml_compute_params * params,
  10453. struct ggml_tensor * dst,
  10454. const bool forward) {
  10455. const struct ggml_tensor * src0 = dst->src[0];
  10456. const struct ggml_tensor * src1 = dst->src[1];
  10457. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10458. return;
  10459. }
  10460. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10461. //const int n_past = ((int32_t *) dst->op_params)[0];
  10462. const int n_dims = ((int32_t *) dst->op_params)[1];
  10463. const int mode = ((int32_t *) dst->op_params)[2];
  10464. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10465. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10466. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10467. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10468. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10469. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10470. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10471. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10472. GGML_TENSOR_UNARY_OP_LOCALS
  10473. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10474. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10475. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10476. const int ith = params->ith;
  10477. const int nth = params->nth;
  10478. const int nr = ggml_nrows(dst);
  10479. GGML_ASSERT(n_dims <= ne0);
  10480. GGML_ASSERT(n_dims % 2 == 0);
  10481. // rows per thread
  10482. const int dr = (nr + nth - 1)/nth;
  10483. // row range for this thread
  10484. const int ir0 = dr*ith;
  10485. const int ir1 = MIN(ir0 + dr, nr);
  10486. // row index used to determine which thread to use
  10487. int ir = 0;
  10488. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10489. const float inv_ndims = -1.f/n_dims;
  10490. float corr_dims[2];
  10491. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10492. const bool is_neox = mode & 2;
  10493. const bool is_glm = mode & 4;
  10494. // backward process uses inverse rotation by cos and sin.
  10495. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10496. // this essentially just switches the sign of sin.
  10497. const float sin_sign = forward ? 1.0f : -1.0f;
  10498. const int32_t * pos = (const int32_t *) src1->data;
  10499. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10500. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10501. const int64_t p = pos[i2];
  10502. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10503. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10504. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10505. }
  10506. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10507. if (ir++ < ir0) continue;
  10508. if (ir > ir1) break;
  10509. float theta_base = (float)p;
  10510. if (is_glm) {
  10511. theta_base = MIN(p, n_ctx - 2);
  10512. float block_theta = MAX(p - (n_ctx - 2), 0);
  10513. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10514. const float cos_theta = cosf(theta_base);
  10515. const float sin_theta = sinf(theta_base) * sin_sign;
  10516. const float cos_block_theta = cosf(block_theta);
  10517. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10518. theta_base *= theta_scale;
  10519. block_theta *= theta_scale;
  10520. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10521. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10522. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10523. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10524. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10525. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10526. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10527. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10528. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10529. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10530. }
  10531. } else if (!is_neox) {
  10532. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10533. const float cos_theta = cache[i0 + 0];
  10534. const float sin_theta = cache[i0 + 1];
  10535. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10536. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10537. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10538. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10539. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10540. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10541. }
  10542. } else {
  10543. // TODO: this might be wrong for ne0 != n_dims - need double check
  10544. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10545. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10546. theta_base *= freq_scale;
  10547. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10548. if (ic < n_dims) {
  10549. const int64_t ib = 0;
  10550. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10551. float cur_rot = inv_ndims * ic - ib;
  10552. float cos_theta, sin_theta;
  10553. rope_yarn(
  10554. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10555. &cos_theta, &sin_theta
  10556. );
  10557. sin_theta *= sin_sign;
  10558. theta_base *= theta_scale;
  10559. const int64_t i0 = ib*n_dims + ic/2;
  10560. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10561. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10562. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10563. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10564. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10565. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10566. } else {
  10567. const int64_t i0 = ic;
  10568. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10569. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10570. dst_data[0] = src[0];
  10571. dst_data[1] = src[1];
  10572. }
  10573. }
  10574. }
  10575. }
  10576. }
  10577. }
  10578. }
  10579. static void ggml_compute_forward_rope(
  10580. const struct ggml_compute_params * params,
  10581. struct ggml_tensor * dst) {
  10582. const struct ggml_tensor * src0 = dst->src[0];
  10583. switch (src0->type) {
  10584. case GGML_TYPE_F16:
  10585. {
  10586. ggml_compute_forward_rope_f16(params, dst, true);
  10587. } break;
  10588. case GGML_TYPE_F32:
  10589. {
  10590. ggml_compute_forward_rope_f32(params, dst, true);
  10591. } break;
  10592. default:
  10593. {
  10594. GGML_ASSERT(false);
  10595. } break;
  10596. }
  10597. }
  10598. // ggml_compute_forward_rope_back
  10599. static void ggml_compute_forward_rope_back(
  10600. const struct ggml_compute_params * params,
  10601. struct ggml_tensor * dst) {
  10602. const struct ggml_tensor * src0 = dst->src[0];
  10603. switch (src0->type) {
  10604. case GGML_TYPE_F16:
  10605. {
  10606. ggml_compute_forward_rope_f16(params, dst, false);
  10607. } break;
  10608. case GGML_TYPE_F32:
  10609. {
  10610. ggml_compute_forward_rope_f32(params, dst, false);
  10611. } break;
  10612. default:
  10613. {
  10614. GGML_ASSERT(false);
  10615. } break;
  10616. }
  10617. }
  10618. // ggml_compute_forward_conv_transpose_1d
  10619. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10620. const struct ggml_compute_params * params,
  10621. struct ggml_tensor * dst) {
  10622. const struct ggml_tensor * src0 = dst->src[0];
  10623. const struct ggml_tensor * src1 = dst->src[1];
  10624. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10625. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10626. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10627. int64_t t0 = ggml_perf_time_us();
  10628. UNUSED(t0);
  10629. GGML_TENSOR_BINARY_OP_LOCALS
  10630. const int ith = params->ith;
  10631. const int nth = params->nth;
  10632. const int nk = ne00*ne01*ne02;
  10633. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10634. GGML_ASSERT(nb10 == sizeof(float));
  10635. if (params->type == GGML_TASK_TYPE_INIT) {
  10636. if (ith != 0) {
  10637. return;
  10638. }
  10639. memset(params->wdata, 0, params->wsize);
  10640. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10641. {
  10642. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10645. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10646. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10648. dst_data[i00*ne02 + i02] = src[i00];
  10649. }
  10650. }
  10651. }
  10652. }
  10653. // permute source data (src1) from (L x Cin) to (Cin x L)
  10654. {
  10655. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10656. ggml_fp16_t * dst_data = wdata;
  10657. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10658. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10659. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10660. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10661. }
  10662. }
  10663. }
  10664. // need to zero dst since we are accumulating into it
  10665. memset(dst->data, 0, ggml_nbytes(dst));
  10666. return;
  10667. }
  10668. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10669. return;
  10670. }
  10671. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10672. // total rows in dst
  10673. const int nr = ne1;
  10674. // rows per thread
  10675. const int dr = (nr + nth - 1)/nth;
  10676. // row range for this thread
  10677. const int ir0 = dr*ith;
  10678. const int ir1 = MIN(ir0 + dr, nr);
  10679. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10680. ggml_fp16_t * const wdata_src = wdata + nk;
  10681. for (int i1 = ir0; i1 < ir1; i1++) {
  10682. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10683. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10684. for (int i10 = 0; i10 < ne10; i10++) {
  10685. const int i1n = i10*ne11;
  10686. for (int i00 = 0; i00 < ne00; i00++) {
  10687. float v = 0;
  10688. ggml_vec_dot_f16(ne02, &v, 0,
  10689. (ggml_fp16_t *) wdata_src + i1n, 0,
  10690. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10691. dst_data[i10*s0 + i00] += v;
  10692. }
  10693. }
  10694. }
  10695. }
  10696. static void ggml_compute_forward_conv_transpose_1d_f32(
  10697. const struct ggml_compute_params * params,
  10698. struct ggml_tensor * dst) {
  10699. const struct ggml_tensor * src0 = dst->src[0];
  10700. const struct ggml_tensor * src1 = dst->src[1];
  10701. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10702. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10703. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10704. int64_t t0 = ggml_perf_time_us();
  10705. UNUSED(t0);
  10706. GGML_TENSOR_BINARY_OP_LOCALS
  10707. const int ith = params->ith;
  10708. const int nth = params->nth;
  10709. const int nk = ne00*ne01*ne02;
  10710. GGML_ASSERT(nb00 == sizeof(float));
  10711. GGML_ASSERT(nb10 == sizeof(float));
  10712. if (params->type == GGML_TASK_TYPE_INIT) {
  10713. if (ith != 0) {
  10714. return;
  10715. }
  10716. memset(params->wdata, 0, params->wsize);
  10717. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10718. {
  10719. float * const wdata = (float *) params->wdata + 0;
  10720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10721. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10722. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10723. float * dst_data = wdata + i01*ne00*ne02;
  10724. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10725. dst_data[i00*ne02 + i02] = src[i00];
  10726. }
  10727. }
  10728. }
  10729. }
  10730. // prepare source data (src1)
  10731. {
  10732. float * const wdata = (float *) params->wdata + nk;
  10733. float * dst_data = wdata;
  10734. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10735. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10736. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10737. dst_data[i10*ne11 + i11] = src[i10];
  10738. }
  10739. }
  10740. }
  10741. // need to zero dst since we are accumulating into it
  10742. memset(dst->data, 0, ggml_nbytes(dst));
  10743. return;
  10744. }
  10745. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10746. return;
  10747. }
  10748. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10749. // total rows in dst
  10750. const int nr = ne1;
  10751. // rows per thread
  10752. const int dr = (nr + nth - 1)/nth;
  10753. // row range for this thread
  10754. const int ir0 = dr*ith;
  10755. const int ir1 = MIN(ir0 + dr, nr);
  10756. float * const wdata = (float *) params->wdata + 0;
  10757. float * const wdata_src = wdata + nk;
  10758. for (int i1 = ir0; i1 < ir1; i1++) {
  10759. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10760. float * wdata_kernel = wdata + i1*ne02*ne00;
  10761. for (int i10 = 0; i10 < ne10; i10++) {
  10762. const int i1n = i10*ne11;
  10763. for (int i00 = 0; i00 < ne00; i00++) {
  10764. float v = 0;
  10765. ggml_vec_dot_f32(ne02, &v, 0,
  10766. wdata_src + i1n, 0,
  10767. wdata_kernel + i00*ne02, 0, 1);
  10768. dst_data[i10*s0 + i00] += v;
  10769. }
  10770. }
  10771. }
  10772. }
  10773. static void ggml_compute_forward_conv_transpose_1d(
  10774. const struct ggml_compute_params * params,
  10775. struct ggml_tensor * dst) {
  10776. const struct ggml_tensor * src0 = dst->src[0];
  10777. switch (src0->type) {
  10778. case GGML_TYPE_F16:
  10779. {
  10780. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10781. } break;
  10782. case GGML_TYPE_F32:
  10783. {
  10784. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10785. } break;
  10786. default:
  10787. {
  10788. GGML_ASSERT(false);
  10789. } break;
  10790. }
  10791. }
  10792. // src0: kernel [OC, IC, KH, KW]
  10793. // src1: image [N, IC, IH, IW]
  10794. // dst: result [N, OH, OW, IC*KH*KW]
  10795. static void ggml_compute_forward_im2col_f32(
  10796. const struct ggml_compute_params * params,
  10797. struct ggml_tensor * dst) {
  10798. const struct ggml_tensor * src0 = dst->src[0];
  10799. const struct ggml_tensor * src1 = dst->src[1];
  10800. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10801. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10802. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10803. int64_t t0 = ggml_perf_time_us();
  10804. UNUSED(t0);
  10805. GGML_TENSOR_BINARY_OP_LOCALS;
  10806. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10807. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10808. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10809. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10810. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10811. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10812. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10813. const int ith = params->ith;
  10814. const int nth = params->nth;
  10815. const int64_t N = is_2D ? ne13 : ne12;
  10816. const int64_t IC = is_2D ? ne12 : ne11;
  10817. const int64_t IH = is_2D ? ne11 : 1;
  10818. const int64_t IW = ne10;
  10819. const int64_t KH = is_2D ? ne01 : 1;
  10820. const int64_t KW = ne00;
  10821. const int64_t OH = is_2D ? ne2 : 1;
  10822. const int64_t OW = ne1;
  10823. int ofs0 = is_2D ? nb13 : nb12;
  10824. int ofs1 = is_2D ? nb12 : nb11;
  10825. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10826. GGML_ASSERT(nb10 == sizeof(float));
  10827. if (params->type == GGML_TASK_TYPE_INIT) {
  10828. return;
  10829. }
  10830. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10831. return;
  10832. }
  10833. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10834. {
  10835. float * const wdata = (float *) dst->data;
  10836. for (int64_t in = 0; in < N; in++) {
  10837. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10838. for (int64_t iow = 0; iow < OW; iow++) {
  10839. for (int64_t iic = ith; iic < IC; iic += nth) {
  10840. // micro kernel
  10841. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10842. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10843. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10844. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10845. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10846. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10847. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10848. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10849. } else {
  10850. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10851. }
  10852. }
  10853. }
  10854. }
  10855. }
  10856. }
  10857. }
  10858. }
  10859. }
  10860. // src0: kernel [OC, IC, KH, KW]
  10861. // src1: image [N, IC, IH, IW]
  10862. // dst: result [N, OH, OW, IC*KH*KW]
  10863. static void ggml_compute_forward_im2col_f16(
  10864. const struct ggml_compute_params * params,
  10865. struct ggml_tensor * dst) {
  10866. const struct ggml_tensor * src0 = dst->src[0];
  10867. const struct ggml_tensor * src1 = dst->src[1];
  10868. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10869. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10870. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10871. int64_t t0 = ggml_perf_time_us();
  10872. UNUSED(t0);
  10873. GGML_TENSOR_BINARY_OP_LOCALS;
  10874. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10875. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10876. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10877. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10878. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10879. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10880. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10881. const int ith = params->ith;
  10882. const int nth = params->nth;
  10883. const int64_t N = is_2D ? ne13 : ne12;
  10884. const int64_t IC = is_2D ? ne12 : ne11;
  10885. const int64_t IH = is_2D ? ne11 : 1;
  10886. const int64_t IW = ne10;
  10887. const int64_t KH = is_2D ? ne01 : 1;
  10888. const int64_t KW = ne00;
  10889. const int64_t OH = is_2D ? ne2 : 1;
  10890. const int64_t OW = ne1;
  10891. int ofs0 = is_2D ? nb13 : nb12;
  10892. int ofs1 = is_2D ? nb12 : nb11;
  10893. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10894. GGML_ASSERT(nb10 == sizeof(float));
  10895. if (params->type == GGML_TASK_TYPE_INIT) {
  10896. return;
  10897. }
  10898. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10899. return;
  10900. }
  10901. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10902. {
  10903. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10904. for (int64_t in = 0; in < N; in++) {
  10905. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10906. for (int64_t iow = 0; iow < OW; iow++) {
  10907. for (int64_t iic = ith; iic < IC; iic += nth) {
  10908. // micro kernel
  10909. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10910. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10911. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10912. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10913. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10914. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10915. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10916. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10917. } else {
  10918. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10919. }
  10920. }
  10921. }
  10922. }
  10923. }
  10924. }
  10925. }
  10926. }
  10927. }
  10928. static void ggml_compute_forward_im2col(
  10929. const struct ggml_compute_params * params,
  10930. struct ggml_tensor * dst) {
  10931. switch (dst->type) {
  10932. case GGML_TYPE_F16:
  10933. {
  10934. ggml_compute_forward_im2col_f16(params, dst);
  10935. } break;
  10936. case GGML_TYPE_F32:
  10937. {
  10938. ggml_compute_forward_im2col_f32(params, dst);
  10939. } break;
  10940. default:
  10941. {
  10942. GGML_ASSERT(false);
  10943. } break;
  10944. }
  10945. }
  10946. // ggml_compute_forward_conv_transpose_2d
  10947. static void ggml_compute_forward_conv_transpose_2d(
  10948. const struct ggml_compute_params * params,
  10949. struct ggml_tensor * dst) {
  10950. const struct ggml_tensor * src0 = dst->src[0];
  10951. const struct ggml_tensor * src1 = dst->src[1];
  10952. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10953. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10954. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10955. int64_t t0 = ggml_perf_time_us();
  10956. UNUSED(t0);
  10957. GGML_TENSOR_BINARY_OP_LOCALS
  10958. const int ith = params->ith;
  10959. const int nth = params->nth;
  10960. const int nk = ne00*ne01*ne02*ne03;
  10961. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10962. GGML_ASSERT(nb10 == sizeof(float));
  10963. if (params->type == GGML_TASK_TYPE_INIT) {
  10964. if (ith != 0) {
  10965. return;
  10966. }
  10967. memset(params->wdata, 0, params->wsize);
  10968. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10969. {
  10970. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10973. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10974. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10975. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10976. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10977. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10984. {
  10985. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10986. for (int i12 = 0; i12 < ne12; i12++) {
  10987. for (int i11 = 0; i11 < ne11; i11++) {
  10988. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10989. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10990. for (int i10 = 0; i10 < ne10; i10++) {
  10991. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10992. }
  10993. }
  10994. }
  10995. }
  10996. memset(dst->data, 0, ggml_nbytes(dst));
  10997. return;
  10998. }
  10999. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11000. return;
  11001. }
  11002. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11003. // total patches in dst
  11004. const int np = ne2;
  11005. // patches per thread
  11006. const int dp = (np + nth - 1)/nth;
  11007. // patch range for this thread
  11008. const int ip0 = dp*ith;
  11009. const int ip1 = MIN(ip0 + dp, np);
  11010. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11011. ggml_fp16_t * const wdata_src = wdata + nk;
  11012. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11013. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11014. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11015. for (int i11 = 0; i11 < ne11; i11++) {
  11016. for (int i10 = 0; i10 < ne10; i10++) {
  11017. const int i1n = i11*ne10*ne12 + i10*ne12;
  11018. for (int i01 = 0; i01 < ne01; i01++) {
  11019. for (int i00 = 0; i00 < ne00; i00++) {
  11020. float v = 0;
  11021. ggml_vec_dot_f16(ne03, &v, 0,
  11022. wdata_src + i1n, 0,
  11023. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11024. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11025. }
  11026. }
  11027. }
  11028. }
  11029. }
  11030. }
  11031. // ggml_compute_forward_pool_1d_sk_p0
  11032. static void ggml_compute_forward_pool_1d_sk_p0(
  11033. const struct ggml_compute_params * params,
  11034. const enum ggml_op_pool op,
  11035. const int k,
  11036. struct ggml_tensor * dst) {
  11037. const struct ggml_tensor * src = dst->src[0];
  11038. assert(src->type == GGML_TYPE_F32);
  11039. assert(params->ith == 0);
  11040. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11041. return;
  11042. }
  11043. const char * cdata = (const char *)src->data;
  11044. const char * const data_end = cdata + ggml_nbytes(src);
  11045. float * drow = (float *)dst->data;
  11046. const int64_t rs = dst->ne[0];
  11047. while (cdata < data_end) {
  11048. const float * const srow = (const float *)cdata;
  11049. int j = 0;
  11050. for (int64_t i = 0; i < rs; ++i) {
  11051. switch (op) {
  11052. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11053. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11054. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11055. }
  11056. for (int ki = 0; ki < k; ++ki) {
  11057. switch (op) {
  11058. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11059. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11060. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11061. }
  11062. ++j;
  11063. }
  11064. switch (op) {
  11065. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11066. case GGML_OP_POOL_MAX: break;
  11067. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11068. }
  11069. }
  11070. cdata += src->nb[1];
  11071. drow += rs;
  11072. }
  11073. }
  11074. // ggml_compute_forward_pool_1d
  11075. static void ggml_compute_forward_pool_1d(
  11076. const struct ggml_compute_params * params,
  11077. struct ggml_tensor * dst) {
  11078. const int32_t * opts = (const int32_t *)dst->op_params;
  11079. enum ggml_op_pool op = opts[0];
  11080. const int k0 = opts[1];
  11081. const int s0 = opts[2];
  11082. const int p0 = opts[3];
  11083. GGML_ASSERT(p0 == 0); // padding not supported
  11084. GGML_ASSERT(k0 == s0); // only s = k supported
  11085. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11086. }
  11087. // ggml_compute_forward_pool_2d
  11088. static void ggml_compute_forward_pool_2d(
  11089. const struct ggml_compute_params * params,
  11090. struct ggml_tensor * dst) {
  11091. const struct ggml_tensor * src = dst->src[0];
  11092. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11093. GGML_ASSERT(params->ith == 0);
  11094. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11095. return;
  11096. }
  11097. const int32_t * opts = (const int32_t *)dst->op_params;
  11098. enum ggml_op_pool op = opts[0];
  11099. const int k0 = opts[1];
  11100. const int k1 = opts[2];
  11101. const int s0 = opts[3];
  11102. const int s1 = opts[4];
  11103. const int p0 = opts[5];
  11104. const int p1 = opts[6];
  11105. const char * cdata = (const char*)src->data;
  11106. const char * const data_end = cdata + ggml_nbytes(src);
  11107. const int64_t px = dst->ne[0];
  11108. const int64_t py = dst->ne[1];
  11109. const int64_t pa = px * py;
  11110. float * dplane = (float *)dst->data;
  11111. const int ka = k0 * k1;
  11112. const int offset0 = -p0;
  11113. const int offset1 = -p1;
  11114. while (cdata < data_end) {
  11115. for (int oy = 0; oy < py; ++oy) {
  11116. float * const drow = dplane + oy * px;
  11117. for (int ox = 0; ox < px; ++ox) {
  11118. float * const out = drow + ox;
  11119. switch (op) {
  11120. case GGML_OP_POOL_AVG: *out = 0; break;
  11121. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11122. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11123. }
  11124. const int ix = offset0 + ox * s0;
  11125. const int iy = offset1 + oy * s1;
  11126. for (int ky = 0; ky < k1; ++ky) {
  11127. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11128. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11129. for (int kx = 0; kx < k0; ++kx) {
  11130. int j = ix + kx;
  11131. if (j < 0 || j >= src->ne[0]) continue;
  11132. switch (op) {
  11133. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11134. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11135. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11136. }
  11137. }
  11138. }
  11139. switch (op) {
  11140. case GGML_OP_POOL_AVG: *out /= ka; break;
  11141. case GGML_OP_POOL_MAX: break;
  11142. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11143. }
  11144. }
  11145. }
  11146. cdata += src->nb[2];
  11147. dplane += pa;
  11148. }
  11149. }
  11150. // ggml_compute_forward_upscale
  11151. static void ggml_compute_forward_upscale_f32(
  11152. const struct ggml_compute_params * params,
  11153. struct ggml_tensor * dst) {
  11154. const struct ggml_tensor * src0 = dst->src[0];
  11155. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11156. return;
  11157. }
  11158. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11159. const int ith = params->ith;
  11160. const int nth = params->nth;
  11161. GGML_TENSOR_UNARY_OP_LOCALS
  11162. const int scale_factor = dst->op_params[0];
  11163. // TODO: optimize
  11164. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11165. const int64_t i03 = i3;
  11166. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11167. const int64_t i02 = i2;
  11168. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11169. const int64_t i01 = i1 / scale_factor;
  11170. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11171. const int64_t i00 = i0 / scale_factor;
  11172. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11173. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11174. *y = *x;
  11175. }
  11176. }
  11177. }
  11178. }
  11179. }
  11180. static void ggml_compute_forward_upscale(
  11181. const struct ggml_compute_params * params,
  11182. struct ggml_tensor * dst) {
  11183. const struct ggml_tensor * src0 = dst->src[0];
  11184. switch (src0->type) {
  11185. case GGML_TYPE_F32:
  11186. {
  11187. ggml_compute_forward_upscale_f32(params, dst);
  11188. } break;
  11189. default:
  11190. {
  11191. GGML_ASSERT(false);
  11192. } break;
  11193. }
  11194. }
  11195. // ggml_compute_forward_pad
  11196. static void ggml_compute_forward_pad_f32(
  11197. const struct ggml_compute_params * params,
  11198. struct ggml_tensor * dst) {
  11199. const struct ggml_tensor * src0 = dst->src[0];
  11200. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11201. return;
  11202. }
  11203. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11204. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11205. const int ith = params->ith;
  11206. const int nth = params->nth;
  11207. GGML_TENSOR_UNARY_OP_LOCALS
  11208. float * dst_ptr = (float *) dst->data;
  11209. // TODO: optimize
  11210. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11211. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11212. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11213. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11214. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11215. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11216. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11217. dst_ptr[dst_idx] = *src_ptr;
  11218. } else {
  11219. dst_ptr[dst_idx] = 0;
  11220. }
  11221. }
  11222. }
  11223. }
  11224. }
  11225. }
  11226. static void ggml_compute_forward_pad(
  11227. const struct ggml_compute_params * params,
  11228. struct ggml_tensor * dst) {
  11229. const struct ggml_tensor * src0 = dst->src[0];
  11230. switch (src0->type) {
  11231. case GGML_TYPE_F32:
  11232. {
  11233. ggml_compute_forward_pad_f32(params, dst);
  11234. } break;
  11235. default:
  11236. {
  11237. GGML_ASSERT(false);
  11238. } break;
  11239. }
  11240. }
  11241. // ggml_compute_forward_arange
  11242. static void ggml_compute_forward_arange_f32(
  11243. const struct ggml_compute_params * params,
  11244. struct ggml_tensor * dst) {
  11245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11246. return;
  11247. }
  11248. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11249. const int ith = params->ith;
  11250. const int nth = params->nth;
  11251. const float start = ggml_get_op_params_f32(dst, 0);
  11252. const float stop = ggml_get_op_params_f32(dst, 1);
  11253. const float step = ggml_get_op_params_f32(dst, 2);
  11254. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11255. GGML_ASSERT(ggml_nelements(dst) == steps);
  11256. for (int64_t i = ith; i < steps; i+= nth) {
  11257. float value = start + step * i;
  11258. ((float *)dst->data)[i] = value;
  11259. }
  11260. }
  11261. static void ggml_compute_forward_arange(
  11262. const struct ggml_compute_params * params,
  11263. struct ggml_tensor * dst) {
  11264. switch (dst->type) {
  11265. case GGML_TYPE_F32:
  11266. {
  11267. ggml_compute_forward_arange_f32(params, dst);
  11268. } break;
  11269. default:
  11270. {
  11271. GGML_ASSERT(false);
  11272. } break;
  11273. }
  11274. }
  11275. static void ggml_compute_forward_timestep_embedding_f32(
  11276. const struct ggml_compute_params * params,
  11277. struct ggml_tensor * dst) {
  11278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11279. return;
  11280. }
  11281. const struct ggml_tensor * src0 = dst->src[0];
  11282. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11283. const int ith = params->ith;
  11284. const int nth = params->nth;
  11285. GGML_TENSOR_UNARY_OP_LOCALS
  11286. const int dim = ggml_get_op_params_i32(dst, 0);
  11287. const int max_period = ggml_get_op_params_i32(dst, 1);
  11288. int half = dim / 2;
  11289. for (int64_t i = 0; i < ne00; i++) {
  11290. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11291. for (int64_t j = ith; j < half; j += nth) {
  11292. float timestep = ((float *)src0->data)[i];
  11293. float freq = (float)expf(-logf(max_period) * j / half);
  11294. float arg = timestep * freq;
  11295. embed_data[j] = cosf(arg);
  11296. embed_data[j + half] = sinf(arg);
  11297. }
  11298. if (dim % 2 != 0 && ith == 0) {
  11299. embed_data[dim] = 0.f;
  11300. }
  11301. }
  11302. }
  11303. static void ggml_compute_forward_timestep_embedding(
  11304. const struct ggml_compute_params * params,
  11305. struct ggml_tensor * dst) {
  11306. const struct ggml_tensor * src0 = dst->src[0];
  11307. switch (src0->type) {
  11308. case GGML_TYPE_F32:
  11309. {
  11310. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11311. } break;
  11312. default:
  11313. {
  11314. GGML_ASSERT(false);
  11315. } break;
  11316. }
  11317. }
  11318. // ggml_compute_forward_argsort
  11319. static void ggml_compute_forward_argsort_f32(
  11320. const struct ggml_compute_params * params,
  11321. struct ggml_tensor * dst) {
  11322. const struct ggml_tensor * src0 = dst->src[0];
  11323. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11324. return;
  11325. }
  11326. GGML_TENSOR_UNARY_OP_LOCALS
  11327. GGML_ASSERT(nb0 == sizeof(float));
  11328. const int ith = params->ith;
  11329. const int nth = params->nth;
  11330. const int64_t nr = ggml_nrows(src0);
  11331. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11332. for (int64_t i = ith; i < nr; i += nth) {
  11333. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11334. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11335. for (int64_t j = 0; j < ne0; j++) {
  11336. dst_data[j] = j;
  11337. }
  11338. // C doesn't have a functional sort, so we do a bubble sort instead
  11339. for (int64_t j = 0; j < ne0; j++) {
  11340. for (int64_t k = j + 1; k < ne0; k++) {
  11341. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11342. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11343. int32_t tmp = dst_data[j];
  11344. dst_data[j] = dst_data[k];
  11345. dst_data[k] = tmp;
  11346. }
  11347. }
  11348. }
  11349. }
  11350. }
  11351. static void ggml_compute_forward_argsort(
  11352. const struct ggml_compute_params * params,
  11353. struct ggml_tensor * dst) {
  11354. const struct ggml_tensor * src0 = dst->src[0];
  11355. switch (src0->type) {
  11356. case GGML_TYPE_F32:
  11357. {
  11358. ggml_compute_forward_argsort_f32(params, dst);
  11359. } break;
  11360. default:
  11361. {
  11362. GGML_ASSERT(false);
  11363. } break;
  11364. }
  11365. }
  11366. // ggml_compute_forward_flash_attn
  11367. static void ggml_compute_forward_flash_attn_f32(
  11368. const struct ggml_compute_params * params,
  11369. const bool masked,
  11370. struct ggml_tensor * dst) {
  11371. const struct ggml_tensor * q = dst->src[0];
  11372. const struct ggml_tensor * k = dst->src[1];
  11373. const struct ggml_tensor * v = dst->src[2];
  11374. int64_t t0 = ggml_perf_time_us();
  11375. UNUSED(t0);
  11376. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11377. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11378. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11379. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11380. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11381. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11382. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11383. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11384. const int ith = params->ith;
  11385. const int nth = params->nth;
  11386. const int64_t D = neq0;
  11387. const int64_t N = neq1;
  11388. const int64_t P = nek1 - N;
  11389. const int64_t M = P + N;
  11390. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11391. GGML_ASSERT(ne0 == D);
  11392. GGML_ASSERT(ne1 == N);
  11393. GGML_ASSERT(P >= 0);
  11394. GGML_ASSERT(nbq0 == sizeof(float));
  11395. GGML_ASSERT(nbk0 == sizeof(float));
  11396. GGML_ASSERT(nbv0 == sizeof(float));
  11397. GGML_ASSERT(neq0 == D);
  11398. GGML_ASSERT(nek0 == D);
  11399. GGML_ASSERT(nev1 == D);
  11400. GGML_ASSERT(neq1 == N);
  11401. GGML_ASSERT(nek1 == N + P);
  11402. GGML_ASSERT(nev1 == D);
  11403. // dst cannot be transposed or permuted
  11404. GGML_ASSERT(nb0 == sizeof(float));
  11405. GGML_ASSERT(nb0 <= nb1);
  11406. GGML_ASSERT(nb1 <= nb2);
  11407. GGML_ASSERT(nb2 <= nb3);
  11408. if (params->type == GGML_TASK_TYPE_INIT) {
  11409. return;
  11410. }
  11411. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11412. return;
  11413. }
  11414. // parallelize by q rows using ggml_vec_dot_f32
  11415. // total rows in q
  11416. const int nr = neq1*neq2*neq3;
  11417. // rows per thread
  11418. const int dr = (nr + nth - 1)/nth;
  11419. // row range for this thread
  11420. const int ir0 = dr*ith;
  11421. const int ir1 = MIN(ir0 + dr, nr);
  11422. const float scale = 1.0f/sqrtf(D);
  11423. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11424. for (int ir = ir0; ir < ir1; ++ir) {
  11425. // q indices
  11426. const int iq3 = ir/(neq2*neq1);
  11427. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11428. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11429. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11430. for (int i = M; i < Mup; ++i) {
  11431. S[i] = -INFINITY;
  11432. }
  11433. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11434. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11435. // k indices
  11436. const int ik3 = iq3;
  11437. const int ik2 = iq2 % nek2;
  11438. const int ik1 = ic;
  11439. // S indices
  11440. const int i1 = ik1;
  11441. ggml_vec_dot_f32(neq0,
  11442. S + i1, 0,
  11443. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11444. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11445. }
  11446. // scale
  11447. ggml_vec_scale_f32(masked_begin, S, scale);
  11448. for (int64_t i = masked_begin; i < M; i++) {
  11449. S[i] = -INFINITY;
  11450. }
  11451. // softmax
  11452. // exclude known -INF S[..] values from max and loop
  11453. // dont forget to set their SW values to zero
  11454. {
  11455. float max = -INFINITY;
  11456. ggml_vec_max_f32(masked_begin, &max, S);
  11457. ggml_float sum = 0.0;
  11458. {
  11459. #ifdef GGML_SOFT_MAX_ACCELERATE
  11460. max = -max;
  11461. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11462. vvexpf(S, S, &Mup);
  11463. ggml_vec_sum_f32(Mup, &sum, S);
  11464. #else
  11465. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11466. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11467. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11468. if (i >= masked_begin) {
  11469. break;
  11470. }
  11471. float * SS = S + i;
  11472. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11473. if (i + j >= masked_begin) {
  11474. break;
  11475. } else if (SS[j] == -INFINITY) {
  11476. SS[j] = 0.0f;
  11477. } else {
  11478. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11479. const float val = expf(SS[j] - max);
  11480. #else
  11481. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11482. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11483. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11484. #endif
  11485. sump[j] += (ggml_float)val;
  11486. SS[j] = val;
  11487. }
  11488. }
  11489. }
  11490. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11491. sum += sump[i];
  11492. }
  11493. #endif
  11494. }
  11495. assert(sum > 0.0);
  11496. sum = 1.0/sum;
  11497. ggml_vec_scale_f32(masked_begin, S, sum);
  11498. #ifndef NDEBUG
  11499. for (int i = 0; i < masked_begin; ++i) {
  11500. assert(!isnan(S[i]));
  11501. assert(!isinf(S[i]));
  11502. }
  11503. #endif
  11504. }
  11505. for (int64_t ic = 0; ic < nev1; ++ic) {
  11506. // dst indices
  11507. const int i1 = iq1;
  11508. const int i2 = iq2;
  11509. const int i3 = iq3;
  11510. // v indices
  11511. const int iv2 = iq2 % nev2;
  11512. const int iv3 = iq3;
  11513. ggml_vec_dot_f32(masked_begin,
  11514. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11515. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11516. S, 0, 1);
  11517. }
  11518. }
  11519. }
  11520. static void ggml_compute_forward_flash_attn_f16(
  11521. const struct ggml_compute_params * params,
  11522. const bool masked,
  11523. struct ggml_tensor * dst) {
  11524. const struct ggml_tensor * q = dst->src[0];
  11525. const struct ggml_tensor * k = dst->src[1];
  11526. const struct ggml_tensor * v = dst->src[2];
  11527. int64_t t0 = ggml_perf_time_us();
  11528. UNUSED(t0);
  11529. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11530. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11531. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11532. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11533. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11534. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11535. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11536. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11537. const int ith = params->ith;
  11538. const int nth = params->nth;
  11539. const int64_t D = neq0;
  11540. const int64_t N = neq1;
  11541. const int64_t P = nek1 - N;
  11542. const int64_t M = P + N;
  11543. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11544. GGML_ASSERT(ne0 == D);
  11545. GGML_ASSERT(ne1 == N);
  11546. GGML_ASSERT(P >= 0);
  11547. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11548. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11549. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11550. GGML_ASSERT(neq0 == D);
  11551. GGML_ASSERT(nek0 == D);
  11552. GGML_ASSERT(nev1 == D);
  11553. GGML_ASSERT(neq1 == N);
  11554. GGML_ASSERT(nek1 == N + P);
  11555. GGML_ASSERT(nev1 == D);
  11556. // dst cannot be transposed or permuted
  11557. GGML_ASSERT(nb0 == sizeof(float));
  11558. GGML_ASSERT(nb0 <= nb1);
  11559. GGML_ASSERT(nb1 <= nb2);
  11560. GGML_ASSERT(nb2 <= nb3);
  11561. if (params->type == GGML_TASK_TYPE_INIT) {
  11562. return;
  11563. }
  11564. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11565. return;
  11566. }
  11567. // parallelize by q rows using ggml_vec_dot_f32
  11568. // total rows in q
  11569. const int nr = neq1*neq2*neq3;
  11570. // rows per thread
  11571. const int dr = (nr + nth - 1)/nth;
  11572. // row range for this thread
  11573. const int ir0 = dr*ith;
  11574. const int ir1 = MIN(ir0 + dr, nr);
  11575. const float scale = 1.0f/sqrtf(D);
  11576. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11577. for (int ir = ir0; ir < ir1; ++ir) {
  11578. // q indices
  11579. const int iq3 = ir/(neq2*neq1);
  11580. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11581. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11582. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11583. for (int i = M; i < Mup; ++i) {
  11584. S[i] = -INFINITY;
  11585. }
  11586. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11587. for (int64_t ic = 0; ic < nek1; ++ic) {
  11588. // k indices
  11589. const int ik3 = iq3;
  11590. const int ik2 = iq2 % nek2;
  11591. const int ik1 = ic;
  11592. // S indices
  11593. const int i1 = ik1;
  11594. ggml_vec_dot_f16(neq0,
  11595. S + i1, 0,
  11596. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11597. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11598. }
  11599. } else {
  11600. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11601. // k indices
  11602. const int ik3 = iq3;
  11603. const int ik2 = iq2 % nek2;
  11604. const int ik1 = ic;
  11605. // S indices
  11606. const int i1 = ik1;
  11607. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11608. S + i1,
  11609. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11610. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11611. }
  11612. }
  11613. // scale
  11614. ggml_vec_scale_f32(nek1, S, scale);
  11615. if (masked) {
  11616. for (int64_t i = P; i < M; i++) {
  11617. if (i > P + iq1) {
  11618. S[i] = -INFINITY;
  11619. }
  11620. }
  11621. }
  11622. // softmax
  11623. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11624. // dont forget to set their S values to zero
  11625. {
  11626. float max = -INFINITY;
  11627. ggml_vec_max_f32(M, &max, S);
  11628. ggml_float sum = 0.0;
  11629. {
  11630. #ifdef GGML_SOFT_MAX_ACCELERATE
  11631. max = -max;
  11632. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11633. vvexpf(S, S, &Mup);
  11634. ggml_vec_sum_f32(Mup, &sum, S);
  11635. #else
  11636. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11637. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11638. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11639. float * SS = S + i;
  11640. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11641. if (SS[j] == -INFINITY) {
  11642. SS[j] = 0.0f;
  11643. } else {
  11644. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11645. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11646. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11647. sump[j] += (ggml_float)val;
  11648. SS[j] = val;
  11649. }
  11650. }
  11651. }
  11652. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11653. sum += sump[i];
  11654. }
  11655. #endif
  11656. }
  11657. assert(sum > 0.0);
  11658. sum = 1.0/sum;
  11659. ggml_vec_scale_f32(M, S, sum);
  11660. #ifndef NDEBUG
  11661. for (int i = 0; i < M; ++i) {
  11662. assert(!isnan(S[i]));
  11663. assert(!isinf(S[i]));
  11664. }
  11665. #endif
  11666. }
  11667. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11668. for (int64_t i = 0; i < M; i++) {
  11669. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11670. }
  11671. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11672. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11673. for (int64_t ic = 0; ic < nev1; ++ic) {
  11674. // dst indices
  11675. const int i1 = iq1;
  11676. const int i2 = iq2;
  11677. const int i3 = iq3;
  11678. // v indices
  11679. const int iv2 = iq2 % nev2;
  11680. const int iv3 = iq3;
  11681. ggml_vec_dot_f16(nev0,
  11682. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11683. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11684. S16, 0, 1);
  11685. }
  11686. } else {
  11687. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11688. // dst indices
  11689. const int i1 = iq1;
  11690. const int i2 = iq2;
  11691. const int i3 = iq3;
  11692. // v indices
  11693. const int iv2 = iq2 % nev2;
  11694. const int iv3 = iq3;
  11695. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11696. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11697. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11698. S16);
  11699. }
  11700. }
  11701. }
  11702. }
  11703. static void ggml_compute_forward_flash_attn(
  11704. const struct ggml_compute_params * params,
  11705. const bool masked,
  11706. struct ggml_tensor * dst) {
  11707. const struct ggml_tensor * q = dst->src[0];
  11708. switch (q->type) {
  11709. case GGML_TYPE_F16:
  11710. {
  11711. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11712. } break;
  11713. case GGML_TYPE_F32:
  11714. {
  11715. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11716. } break;
  11717. default:
  11718. {
  11719. GGML_ASSERT(false);
  11720. } break;
  11721. }
  11722. }
  11723. // ggml_compute_forward_flash_ff
  11724. static void ggml_compute_forward_flash_ff_f16(
  11725. const struct ggml_compute_params * params,
  11726. struct ggml_tensor * dst) {
  11727. const struct ggml_tensor * a = dst->src[0]; // F16
  11728. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11729. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11730. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11731. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11732. int64_t t0 = ggml_perf_time_us();
  11733. UNUSED(t0);
  11734. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11735. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11736. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11737. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11738. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11739. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11740. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11741. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11742. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11743. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11744. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11745. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11746. const int ith = params->ith;
  11747. const int nth = params->nth;
  11748. const int64_t D = nea0;
  11749. //const int64_t N = nea1;
  11750. const int64_t M = neb01;
  11751. GGML_ASSERT(ne0 == nea0);
  11752. GGML_ASSERT(ne1 == nea1);
  11753. GGML_ASSERT(ne2 == nea2);
  11754. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11755. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11756. GGML_ASSERT(nbb10 == sizeof(float));
  11757. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11758. GGML_ASSERT(nbc10 == sizeof(float));
  11759. GGML_ASSERT(neb00 == D);
  11760. GGML_ASSERT(neb01 == M);
  11761. GGML_ASSERT(neb10 == M);
  11762. GGML_ASSERT(neb11 == 1);
  11763. GGML_ASSERT(nec00 == M);
  11764. GGML_ASSERT(nec01 == D);
  11765. GGML_ASSERT(nec10 == D);
  11766. GGML_ASSERT(nec11 == 1);
  11767. // dst cannot be transposed or permuted
  11768. GGML_ASSERT(nb0 == sizeof(float));
  11769. GGML_ASSERT(nb0 <= nb1);
  11770. GGML_ASSERT(nb1 <= nb2);
  11771. GGML_ASSERT(nb2 <= nb3);
  11772. if (params->type == GGML_TASK_TYPE_INIT) {
  11773. return;
  11774. }
  11775. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11776. return;
  11777. }
  11778. // parallelize by a rows using ggml_vec_dot_f32
  11779. // total rows in a
  11780. const int nr = nea1*nea2*nea3;
  11781. // rows per thread
  11782. const int dr = (nr + nth - 1)/nth;
  11783. // row range for this thread
  11784. const int ir0 = dr*ith;
  11785. const int ir1 = MIN(ir0 + dr, nr);
  11786. for (int ir = ir0; ir < ir1; ++ir) {
  11787. // a indices
  11788. const int ia3 = ir/(nea2*nea1);
  11789. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11790. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11791. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11792. for (int64_t ic = 0; ic < neb01; ++ic) {
  11793. // b0 indices
  11794. const int ib03 = ia3;
  11795. const int ib02 = ia2;
  11796. const int ib01 = ic;
  11797. // S indices
  11798. const int i1 = ib01;
  11799. ggml_vec_dot_f16(nea0,
  11800. S + i1, 0,
  11801. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11802. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11803. }
  11804. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11805. //ggml_vec_gelu_f32(neb01, S, S);
  11806. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11807. for (int64_t i = 0; i < M; i++) {
  11808. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11809. }
  11810. ggml_vec_gelu_f16(neb01, S16, S16);
  11811. {
  11812. // dst indices
  11813. const int i1 = ia1;
  11814. const int i2 = ia2;
  11815. const int i3 = ia3;
  11816. for (int64_t ic = 0; ic < nec01; ++ic) {
  11817. ggml_vec_dot_f16(neb01,
  11818. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11819. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11820. S16, 0, 1);
  11821. }
  11822. ggml_vec_add_f32(nec01,
  11823. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11824. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11825. (float *) c1->data);
  11826. }
  11827. }
  11828. }
  11829. static void ggml_compute_forward_flash_ff(
  11830. const struct ggml_compute_params * params,
  11831. struct ggml_tensor * dst) {
  11832. const struct ggml_tensor * b0 = dst->src[1];
  11833. switch (b0->type) {
  11834. case GGML_TYPE_F16:
  11835. {
  11836. ggml_compute_forward_flash_ff_f16(params, dst);
  11837. } break;
  11838. case GGML_TYPE_F32:
  11839. {
  11840. GGML_ASSERT(false); // TODO
  11841. } break;
  11842. default:
  11843. {
  11844. GGML_ASSERT(false);
  11845. } break;
  11846. }
  11847. }
  11848. // ggml_compute_forward_flash_attn_back
  11849. static void ggml_compute_forward_flash_attn_back_f32(
  11850. const struct ggml_compute_params * params,
  11851. const bool masked,
  11852. struct ggml_tensor * dst) {
  11853. const struct ggml_tensor * q = dst->src[0];
  11854. const struct ggml_tensor * k = dst->src[1];
  11855. const struct ggml_tensor * v = dst->src[2];
  11856. const struct ggml_tensor * d = dst->src[3];
  11857. int64_t t0 = ggml_perf_time_us();
  11858. UNUSED(t0);
  11859. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11860. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11861. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11862. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11863. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11864. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11865. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11866. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11867. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11868. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11869. const int ith = params->ith;
  11870. const int nth = params->nth;
  11871. const int64_t D = neq0;
  11872. const int64_t N = neq1;
  11873. const int64_t P = nek1 - N;
  11874. const int64_t M = P + N;
  11875. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11876. const int mxDM = MAX(D, Mup);
  11877. // GGML_ASSERT(ne0 == D);
  11878. // GGML_ASSERT(ne1 == N);
  11879. GGML_ASSERT(P >= 0);
  11880. GGML_ASSERT(nbq0 == sizeof(float));
  11881. GGML_ASSERT(nbk0 == sizeof(float));
  11882. GGML_ASSERT(nbv0 == sizeof(float));
  11883. GGML_ASSERT(neq0 == D);
  11884. GGML_ASSERT(nek0 == D);
  11885. GGML_ASSERT(nev1 == D);
  11886. GGML_ASSERT(ned0 == D);
  11887. GGML_ASSERT(neq1 == N);
  11888. GGML_ASSERT(nek1 == N + P);
  11889. GGML_ASSERT(nev1 == D);
  11890. GGML_ASSERT(ned1 == N);
  11891. // dst cannot be transposed or permuted
  11892. GGML_ASSERT(nb0 == sizeof(float));
  11893. GGML_ASSERT(nb0 <= nb1);
  11894. GGML_ASSERT(nb1 <= nb2);
  11895. GGML_ASSERT(nb2 <= nb3);
  11896. if (params->type == GGML_TASK_TYPE_INIT) {
  11897. if (ith == 0) {
  11898. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11899. }
  11900. return;
  11901. }
  11902. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11903. return;
  11904. }
  11905. const int64_t elem_q = ggml_nelements(q);
  11906. const int64_t elem_k = ggml_nelements(k);
  11907. enum ggml_type result_type = dst->type;
  11908. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11909. const size_t tsize = ggml_type_size(result_type);
  11910. const size_t offs_q = 0;
  11911. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11912. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11913. void * grad_q = (char *) dst->data;
  11914. void * grad_k = (char *) dst->data + offs_k;
  11915. void * grad_v = (char *) dst->data + offs_v;
  11916. const size_t nbgq1 = nb0*neq0;
  11917. const size_t nbgq2 = nb0*neq0*neq1;
  11918. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11919. const size_t nbgk1 = nb0*nek0;
  11920. const size_t nbgk2 = nb0*nek0*nek1;
  11921. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11922. const size_t nbgv1 = nb0*nev0;
  11923. const size_t nbgv2 = nb0*nev0*nev1;
  11924. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11925. // parallelize by k rows using ggml_vec_dot_f32
  11926. // total rows in k
  11927. const int nr = nek2*nek3;
  11928. // rows per thread
  11929. const int dr = (nr + nth - 1)/nth;
  11930. // row range for this thread
  11931. const int ir0 = dr*ith;
  11932. const int ir1 = MIN(ir0 + dr, nr);
  11933. const float scale = 1.0f/sqrtf(D);
  11934. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11935. // how often k2 (and v2) is repeated in q2
  11936. int nrep = neq2/nek2;
  11937. for (int ir = ir0; ir < ir1; ++ir) {
  11938. // q indices
  11939. const int ik3 = ir/(nek2);
  11940. const int ik2 = ir - ik3*nek2;
  11941. const int iq3 = ik3;
  11942. const int id3 = ik3;
  11943. const int iv3 = ik3;
  11944. const int iv2 = ik2;
  11945. for (int irep = 0; irep < nrep; ++irep) {
  11946. const int iq2 = ik2 + irep*nek2;
  11947. const int id2 = iq2;
  11948. // (ik2 + irep*nek2) % nek2 == ik2
  11949. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11950. const int id1 = iq1;
  11951. // not sure about CACHE_LINE_SIZE_F32..
  11952. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11953. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11954. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11955. for (int i = M; i < Mup; ++i) {
  11956. S[i] = -INFINITY;
  11957. }
  11958. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11959. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11960. // k indices
  11961. const int ik1 = ic;
  11962. // S indices
  11963. const int i1 = ik1;
  11964. ggml_vec_dot_f32(neq0,
  11965. S + i1, 0,
  11966. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11967. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11968. }
  11969. // scale
  11970. ggml_vec_scale_f32(masked_begin, S, scale);
  11971. for (int64_t i = masked_begin; i < M; i++) {
  11972. S[i] = -INFINITY;
  11973. }
  11974. // softmax
  11975. // exclude known -INF S[..] values from max and loop
  11976. // dont forget to set their SM values to zero
  11977. {
  11978. float max = -INFINITY;
  11979. ggml_vec_max_f32(masked_begin, &max, S);
  11980. ggml_float sum = 0.0;
  11981. {
  11982. #ifdef GGML_SOFT_MAX_ACCELERATE
  11983. max = -max;
  11984. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11985. vvexpf(SM, SM, &Mup);
  11986. ggml_vec_sum_f32(Mup, &sum, SM);
  11987. #else
  11988. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11989. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11990. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11991. if (i >= masked_begin) {
  11992. break;
  11993. }
  11994. float * SR = S + i;
  11995. float * SW = SM + i;
  11996. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11997. if (i + j >= masked_begin) {
  11998. break;
  11999. } else if (SR[j] == -INFINITY) {
  12000. SW[j] = 0.0f;
  12001. } else {
  12002. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12003. const float val = expf(SR[j] - max);
  12004. #else
  12005. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12006. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12007. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12008. #endif
  12009. sump[j] += (ggml_float)val;
  12010. SW[j] = val;
  12011. }
  12012. }
  12013. }
  12014. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12015. sum += sump[i];
  12016. }
  12017. #endif
  12018. }
  12019. assert(sum > 0.0);
  12020. sum = 1.0/sum;
  12021. ggml_vec_scale_f32(masked_begin, SM, sum);
  12022. }
  12023. // step-by-step explanation
  12024. {
  12025. // forward-process shape grads from backward process
  12026. // parallel_for ik2,ik3:
  12027. // for irep:
  12028. // iq2 = ik2 + irep*nek2
  12029. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12030. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12031. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12032. // for iq1:
  12033. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12034. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12035. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12036. // S0 = -Inf [D,1,1,1]
  12037. // ~S1[i] = dot(kcur[:D,i], qcur)
  12038. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12039. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12040. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12041. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12042. // ~S5[i] = dot(vcur[:,i], S4)
  12043. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12044. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12045. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12046. // dst backward-/ grad[dst] = d
  12047. //
  12048. // output gradients with their dependencies:
  12049. //
  12050. // grad[kcur] = grad[S1].T @ qcur
  12051. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12052. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12053. // grad[S4] = grad[S5] @ vcur
  12054. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12055. // grad[qcur] = grad[S1] @ kcur
  12056. // grad[vcur] = grad[S5].T @ S4
  12057. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12058. //
  12059. // in post-order:
  12060. //
  12061. // S1 = qcur @ kcur.T
  12062. // S2 = S1 * scale
  12063. // S3 = diag_mask_inf(S2, P)
  12064. // S4 = softmax(S3)
  12065. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12066. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12067. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12068. // grad[qcur] = grad[S1] @ kcur
  12069. // grad[kcur] = grad[S1].T @ qcur
  12070. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12071. //
  12072. // using less variables (SM=S4):
  12073. //
  12074. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12075. // SM = softmax(S)
  12076. // S = d[:D,iq1,iq2,iq3] @ vcur
  12077. // dot_SM_gradSM = dot(SM, S)
  12078. // S = SM * (S - dot(SM, S))
  12079. // S = diag_mask_zero(S, P) * scale
  12080. //
  12081. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12082. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12083. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12084. }
  12085. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12086. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12087. // for ic:
  12088. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12089. // exclude known future zero S[..] values from operation
  12090. ggml_vec_set_f32(masked_begin, S, 0);
  12091. for (int64_t ic = 0; ic < D; ++ic) {
  12092. ggml_vec_mad_f32(masked_begin,
  12093. S,
  12094. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12095. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12096. }
  12097. // S = SM * (S - dot(SM, S))
  12098. float dot_SM_gradSM = 0;
  12099. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12100. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12101. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12102. // S = diag_mask_zero(S, P) * scale
  12103. // already done by above ggml_vec_set_f32
  12104. // exclude known zero S[..] values from operation
  12105. ggml_vec_scale_f32(masked_begin, S, scale);
  12106. // S shape [M,1]
  12107. // SM shape [M,1]
  12108. // kcur shape [D,M]
  12109. // qcur shape [D,1]
  12110. // vcur shape [M,D]
  12111. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12112. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12113. // for ic:
  12114. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12115. // exclude known zero S[..] values from loop
  12116. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12117. ggml_vec_mad_f32(D,
  12118. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12119. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12120. S[ic]);
  12121. }
  12122. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12123. // for ic:
  12124. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12125. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12126. // exclude known zero S[..] values from loop
  12127. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12128. ggml_vec_mad_f32(D,
  12129. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12130. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12131. S[ic]);
  12132. }
  12133. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12134. // for ic:
  12135. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12136. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12137. // exclude known zero SM[..] values from mad
  12138. for (int64_t ic = 0; ic < D; ++ic) {
  12139. ggml_vec_mad_f32(masked_begin,
  12140. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12141. SM,
  12142. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12143. }
  12144. }
  12145. }
  12146. }
  12147. }
  12148. static void ggml_compute_forward_flash_attn_back(
  12149. const struct ggml_compute_params * params,
  12150. const bool masked,
  12151. struct ggml_tensor * dst) {
  12152. const struct ggml_tensor * q = dst->src[0];
  12153. switch (q->type) {
  12154. case GGML_TYPE_F32:
  12155. {
  12156. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12157. } break;
  12158. default:
  12159. {
  12160. GGML_ASSERT(false);
  12161. } break;
  12162. }
  12163. }
  12164. // ggml_compute_forward_ssm_conv
  12165. static void ggml_compute_forward_ssm_conv_f32(
  12166. const struct ggml_compute_params * params,
  12167. struct ggml_tensor * dst) {
  12168. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12169. return;
  12170. }
  12171. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12172. const struct ggml_tensor * src1 = dst->src[1]; // x
  12173. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12174. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12175. const int ith = params->ith;
  12176. const int nth = params->nth;
  12177. const int nc = src2->ne[0]; // d_conv
  12178. const int nr = src0->ne[1]; // d_inner
  12179. const int n_t = src1->ne[1]; // n_tokens
  12180. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12181. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12182. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12183. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12184. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12185. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12186. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12187. // for use with the destination state offset between sequences
  12188. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12189. // rows per thread
  12190. const int dr = (nr + nth - 1)/nth;
  12191. // row range for this thread
  12192. const int ir0 = dr*ith;
  12193. const int ir1 = MIN(ir0 + dr, nr);
  12194. const int ir = ir1 - ir0;
  12195. if (n_kv > 1) {
  12196. // multiple sequences means it's hard to know when it's the first time a state is read,
  12197. // so copy them all over to the destination, just to be sure.
  12198. for (int i3 = 0; i3 < n_kv; ++i3) {
  12199. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12200. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12201. // can't use memcpy because of d_conv vs d_conv - 1
  12202. for (int i1 = 0; i1 < ir; ++i1) {
  12203. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12204. // copy s0 to last (d_conv - 1) columns of s
  12205. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12206. }
  12207. }
  12208. }
  12209. }
  12210. for (int i2 = 0; i2 < n_t; ++i2) {
  12211. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12212. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12213. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12214. float * s0; // {d_conv - 1, d_inner, n_kv}
  12215. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12216. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12217. int ne0s0;
  12218. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12219. // avoid needing to copy the state for the first token
  12220. if (i2 == 0) {
  12221. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12222. ne0s0 = src0->ne[0];
  12223. } else {
  12224. // the source is the last (d_conv - 1) columns of the destination
  12225. s0 = s + 1;
  12226. ne0s0 = nc;
  12227. }
  12228. // d_inner
  12229. for (int i1 = 0; i1 < ir; ++i1) {
  12230. // shift state left
  12231. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12232. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12233. }
  12234. // insert x on the last column
  12235. s[(nc - 1) + i1*nc] = x0[i1];
  12236. }
  12237. // handle copies when there are multiple output states
  12238. for (int i3 = 1; i3 < n_kv; ++i3) {
  12239. int32_t seq = sq[i3];
  12240. if (0 <= seq && seq < n_kv) {
  12241. float * s1 = s + (seq - sq[0])*nc*nr;
  12242. memcpy(s1, s, nc*ir*sizeof(float));
  12243. } else {
  12244. // stop at negative or too big seq_ids
  12245. break;
  12246. }
  12247. }
  12248. // it seems a little faster when this is separate from the state shift
  12249. for (int i1 = 0; i1 < ir; ++i1) {
  12250. // rowwise dot product
  12251. float sumf = 0.0f;
  12252. for (int i0 = 0; i0 < nc; ++i0) {
  12253. int i = i0 + i1*nc;
  12254. sumf += s[i] * c[i];
  12255. }
  12256. x[i1] = sumf;
  12257. }
  12258. }
  12259. }
  12260. static void ggml_compute_forward_ssm_conv(
  12261. const struct ggml_compute_params * params,
  12262. struct ggml_tensor * dst) {
  12263. switch (dst->src[0]->type) {
  12264. case GGML_TYPE_F32:
  12265. {
  12266. ggml_compute_forward_ssm_conv_f32(params, dst);
  12267. } break;
  12268. default:
  12269. {
  12270. GGML_ASSERT(false);
  12271. } break;
  12272. }
  12273. }
  12274. // ggml_compute_forward_ssm_scan
  12275. static void ggml_compute_forward_ssm_scan_f32(
  12276. const struct ggml_compute_params * params,
  12277. struct ggml_tensor * dst) {
  12278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12279. return;
  12280. }
  12281. const struct ggml_tensor * src0 = dst->src[0]; // s
  12282. const struct ggml_tensor * src1 = dst->src[1]; // x
  12283. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12284. const struct ggml_tensor * src3 = dst->src[3]; // A
  12285. const struct ggml_tensor * src4 = dst->src[4]; // B
  12286. const struct ggml_tensor * src5 = dst->src[5]; // C
  12287. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12288. const int ith = params->ith;
  12289. const int nth = params->nth;
  12290. const int64_t nc = src0->ne[0]; // d_state
  12291. const int64_t nr = src0->ne[1]; // d_inner
  12292. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12293. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12294. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12295. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12296. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12297. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12298. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12299. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12300. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12301. // required for the dot product between s and C, and when copying the states
  12302. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12303. // required for per-sequence offsets for states
  12304. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12305. // required to get correct offset for state destination (i.e. src1->nb[2])
  12306. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12307. // rows per thread
  12308. const int dr = (nr + nth - 1)/nth;
  12309. // row range for this thread
  12310. const int ir0 = dr*ith;
  12311. const int ir1 = MIN(ir0 + dr, nr);
  12312. const int ir = ir1 - ir0;
  12313. if (n_kv > 1) {
  12314. // it's hard to know if the source states have already been copied
  12315. // when there are multiple, so copy them already.
  12316. for (int i3 = 0; i3 < n_kv; ++i3) {
  12317. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12318. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12319. memcpy(s, s0, nc*ir*sizeof(float));
  12320. }
  12321. }
  12322. for (int i2 = 0; i2 < n_t; ++i2) {
  12323. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12324. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12325. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12326. float * s0;
  12327. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12328. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12329. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12330. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12331. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12332. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12333. // avoid needing to copy the state for the first token
  12334. if (i2 == 0) {
  12335. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12336. } else {
  12337. // otherwise the source is the same as the destination
  12338. s0 = s;
  12339. }
  12340. // d_inner
  12341. for (int i1 = 0; i1 < ir; ++i1) {
  12342. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12343. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12344. float x_dt = x[i1] * dt_soft_plus;
  12345. float sumf = 0.0f;
  12346. // d_state
  12347. for (int i0 = 0; i0 < nc; ++i0) {
  12348. int i = i0 + i1*nc;
  12349. // state = prev_state * dA + dB * x
  12350. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12351. // y = rowwise_dotprod(state, C)
  12352. sumf += state * C[i0];
  12353. s[i] = state;
  12354. }
  12355. y[i1] = sumf;
  12356. }
  12357. // handle copies when there are multiple output states
  12358. for (int i3 = 1; i3 < n_kv; ++i3) {
  12359. int32_t seq = sq[i3];
  12360. if (0 <= seq && seq < n_kv) {
  12361. float * s1 = s + (seq - sq[0])*nc*nr;
  12362. memcpy(s1, s, nc*ir*sizeof(float));
  12363. } else {
  12364. // stop at negative or too big seq_ids
  12365. break;
  12366. }
  12367. }
  12368. }
  12369. }
  12370. static void ggml_compute_forward_ssm_scan(
  12371. const struct ggml_compute_params * params,
  12372. struct ggml_tensor * dst) {
  12373. switch (dst->src[0]->type) {
  12374. case GGML_TYPE_F32:
  12375. {
  12376. ggml_compute_forward_ssm_scan_f32(params, dst);
  12377. } break;
  12378. default:
  12379. {
  12380. GGML_ASSERT(false);
  12381. } break;
  12382. }
  12383. }
  12384. // ggml_compute_forward_win_part
  12385. static void ggml_compute_forward_win_part_f32(
  12386. const struct ggml_compute_params * params,
  12387. struct ggml_tensor * dst) {
  12388. const struct ggml_tensor * src0 = dst->src[0];
  12389. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12390. return;
  12391. }
  12392. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12393. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12394. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12395. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12396. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12397. assert(ne00 == ne0);
  12398. assert(ne3 == nep0*nep1);
  12399. // TODO: optimize / multi-thread
  12400. for (int py = 0; py < nep1; ++py) {
  12401. for (int px = 0; px < nep0; ++px) {
  12402. const int64_t i3 = py*nep0 + px;
  12403. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12404. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12405. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12406. const int64_t i02 = py*w + i2;
  12407. const int64_t i01 = px*w + i1;
  12408. const int64_t i00 = i0;
  12409. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12410. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12411. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12412. ((float *) dst->data)[i] = 0.0f;
  12413. } else {
  12414. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12415. }
  12416. }
  12417. }
  12418. }
  12419. }
  12420. }
  12421. }
  12422. static void ggml_compute_forward_win_part(
  12423. const struct ggml_compute_params * params,
  12424. struct ggml_tensor * dst) {
  12425. const struct ggml_tensor * src0 = dst->src[0];
  12426. switch (src0->type) {
  12427. case GGML_TYPE_F32:
  12428. {
  12429. ggml_compute_forward_win_part_f32(params, dst);
  12430. } break;
  12431. default:
  12432. {
  12433. GGML_ASSERT(false);
  12434. } break;
  12435. }
  12436. }
  12437. // ggml_compute_forward_win_unpart
  12438. static void ggml_compute_forward_win_unpart_f32(
  12439. const struct ggml_compute_params * params,
  12440. struct ggml_tensor * dst) {
  12441. const struct ggml_tensor * src0 = dst->src[0];
  12442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12443. return;
  12444. }
  12445. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12446. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12447. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12448. // padding
  12449. const int px = (w - ne1%w)%w;
  12450. //const int py = (w - ne2%w)%w;
  12451. const int npx = (px + ne1)/w;
  12452. //const int npy = (py + ne2)/w;
  12453. assert(ne0 == ne00);
  12454. // TODO: optimize / multi-thread
  12455. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12456. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12457. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12458. const int ip2 = i2/w;
  12459. const int ip1 = i1/w;
  12460. const int64_t i02 = i2%w;
  12461. const int64_t i01 = i1%w;
  12462. const int64_t i00 = i0;
  12463. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12464. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12465. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12466. }
  12467. }
  12468. }
  12469. }
  12470. static void ggml_compute_forward_win_unpart(
  12471. const struct ggml_compute_params * params,
  12472. struct ggml_tensor * dst) {
  12473. const struct ggml_tensor * src0 = dst->src[0];
  12474. switch (src0->type) {
  12475. case GGML_TYPE_F32:
  12476. {
  12477. ggml_compute_forward_win_unpart_f32(params, dst);
  12478. } break;
  12479. default:
  12480. {
  12481. GGML_ASSERT(false);
  12482. } break;
  12483. }
  12484. }
  12485. //gmml_compute_forward_unary
  12486. static void ggml_compute_forward_unary(
  12487. const struct ggml_compute_params * params,
  12488. struct ggml_tensor * dst) {
  12489. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12490. switch (op) {
  12491. case GGML_UNARY_OP_ABS:
  12492. {
  12493. ggml_compute_forward_abs(params, dst);
  12494. } break;
  12495. case GGML_UNARY_OP_SGN:
  12496. {
  12497. ggml_compute_forward_sgn(params, dst);
  12498. } break;
  12499. case GGML_UNARY_OP_NEG:
  12500. {
  12501. ggml_compute_forward_neg(params, dst);
  12502. } break;
  12503. case GGML_UNARY_OP_STEP:
  12504. {
  12505. ggml_compute_forward_step(params, dst);
  12506. } break;
  12507. case GGML_UNARY_OP_TANH:
  12508. {
  12509. ggml_compute_forward_tanh(params, dst);
  12510. } break;
  12511. case GGML_UNARY_OP_ELU:
  12512. {
  12513. ggml_compute_forward_elu(params, dst);
  12514. } break;
  12515. case GGML_UNARY_OP_RELU:
  12516. {
  12517. ggml_compute_forward_relu(params, dst);
  12518. } break;
  12519. case GGML_UNARY_OP_GELU:
  12520. {
  12521. ggml_compute_forward_gelu(params, dst);
  12522. } break;
  12523. case GGML_UNARY_OP_GELU_QUICK:
  12524. {
  12525. ggml_compute_forward_gelu_quick(params, dst);
  12526. } break;
  12527. case GGML_UNARY_OP_SILU:
  12528. {
  12529. ggml_compute_forward_silu(params, dst);
  12530. } break;
  12531. case GGML_UNARY_OP_HARDSWISH:
  12532. {
  12533. ggml_compute_forward_hardswish(params, dst);
  12534. } break;
  12535. case GGML_UNARY_OP_HARDSIGMOID:
  12536. {
  12537. ggml_compute_forward_hardsigmoid(params, dst);
  12538. } break;
  12539. default:
  12540. {
  12541. GGML_ASSERT(false);
  12542. } break;
  12543. }
  12544. }
  12545. // ggml_compute_forward_get_rel_pos
  12546. static void ggml_compute_forward_get_rel_pos_f16(
  12547. const struct ggml_compute_params * params,
  12548. struct ggml_tensor * dst) {
  12549. const struct ggml_tensor * src0 = dst->src[0];
  12550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12551. return;
  12552. }
  12553. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12554. GGML_TENSOR_UNARY_OP_LOCALS
  12555. const int64_t w = ne1;
  12556. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12557. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12558. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12559. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12560. const int64_t pos = (w - i1 - 1) + i2;
  12561. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12562. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12563. }
  12564. }
  12565. }
  12566. }
  12567. static void ggml_compute_forward_get_rel_pos(
  12568. const struct ggml_compute_params * params,
  12569. struct ggml_tensor * dst) {
  12570. const struct ggml_tensor * src0 = dst->src[0];
  12571. switch (src0->type) {
  12572. case GGML_TYPE_F16:
  12573. {
  12574. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12575. } break;
  12576. default:
  12577. {
  12578. GGML_ASSERT(false);
  12579. } break;
  12580. }
  12581. }
  12582. // ggml_compute_forward_add_rel_pos
  12583. static void ggml_compute_forward_add_rel_pos_f32(
  12584. const struct ggml_compute_params * params,
  12585. struct ggml_tensor * dst) {
  12586. const struct ggml_tensor * src0 = dst->src[0];
  12587. const struct ggml_tensor * src1 = dst->src[1];
  12588. const struct ggml_tensor * src2 = dst->src[2];
  12589. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12590. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12591. if (params->ith != 0) {
  12592. return;
  12593. }
  12594. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12595. return;
  12596. }
  12597. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12598. return;
  12599. }
  12600. int64_t t0 = ggml_perf_time_us();
  12601. UNUSED(t0);
  12602. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12603. float * src1_data = (float *) src1->data;
  12604. float * src2_data = (float *) src2->data;
  12605. float * dst_data = (float *) dst->data;
  12606. const int64_t ne10 = src1->ne[0];
  12607. const int64_t ne11 = src1->ne[1];
  12608. const int64_t ne12 = src1->ne[2];
  12609. const int64_t ne13 = src1->ne[3];
  12610. const int ith = params->ith;
  12611. const int nth = params->nth;
  12612. // total patches in dst
  12613. const int np = ne13;
  12614. // patches per thread
  12615. const int dp = (np + nth - 1)/nth;
  12616. // patch range for this thread
  12617. const int ip0 = dp*ith;
  12618. const int ip1 = MIN(ip0 + dp, np);
  12619. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12620. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12621. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12622. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12623. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12624. const int64_t jp0 = jp1 + i10;
  12625. const float src1_e = src1_data[jp0];
  12626. const float src2_e = src2_data[jp0];
  12627. const int64_t jdh = jp0 * ne10;
  12628. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12629. for (int64_t j = 0; j < ne10; ++j) {
  12630. dst_data[jdh + j ] += src2_e;
  12631. dst_data[jdw + j*ne10] += src1_e;
  12632. }
  12633. }
  12634. }
  12635. }
  12636. }
  12637. }
  12638. static void ggml_compute_forward_add_rel_pos(
  12639. const struct ggml_compute_params * params,
  12640. struct ggml_tensor * dst) {
  12641. const struct ggml_tensor * src0 = dst->src[0];
  12642. switch (src0->type) {
  12643. case GGML_TYPE_F32:
  12644. {
  12645. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12646. } break;
  12647. default:
  12648. {
  12649. GGML_ASSERT(false);
  12650. } break;
  12651. }
  12652. }
  12653. // ggml_compute_forward_map_unary
  12654. static void ggml_compute_forward_map_unary_f32(
  12655. const struct ggml_compute_params * params,
  12656. struct ggml_tensor * dst,
  12657. const ggml_unary_op_f32_t fun) {
  12658. const struct ggml_tensor * src0 = dst->src[0];
  12659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12660. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12661. return;
  12662. }
  12663. const int n = ggml_nrows(src0);
  12664. const int nc = src0->ne[0];
  12665. assert( dst->nb[0] == sizeof(float));
  12666. assert(src0->nb[0] == sizeof(float));
  12667. for (int i = 0; i < n; i++) {
  12668. fun(nc,
  12669. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12670. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12671. }
  12672. }
  12673. static void ggml_compute_forward_map_unary(
  12674. const struct ggml_compute_params * params,
  12675. struct ggml_tensor * dst,
  12676. const ggml_unary_op_f32_t fun) {
  12677. const struct ggml_tensor * src0 = dst->src[0];
  12678. switch (src0->type) {
  12679. case GGML_TYPE_F32:
  12680. {
  12681. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12682. } break;
  12683. default:
  12684. {
  12685. GGML_ASSERT(false);
  12686. } break;
  12687. }
  12688. }
  12689. // ggml_compute_forward_map_binary
  12690. static void ggml_compute_forward_map_binary_f32(
  12691. const struct ggml_compute_params * params,
  12692. struct ggml_tensor * dst,
  12693. const ggml_binary_op_f32_t fun) {
  12694. const struct ggml_tensor * src0 = dst->src[0];
  12695. const struct ggml_tensor * src1 = dst->src[1];
  12696. assert(params->ith == 0);
  12697. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12698. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12699. return;
  12700. }
  12701. const int n = ggml_nrows(src0);
  12702. const int nc = src0->ne[0];
  12703. assert( dst->nb[0] == sizeof(float));
  12704. assert(src0->nb[0] == sizeof(float));
  12705. assert(src1->nb[0] == sizeof(float));
  12706. for (int i = 0; i < n; i++) {
  12707. fun(nc,
  12708. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12709. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12710. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12711. }
  12712. }
  12713. static void ggml_compute_forward_map_binary(
  12714. const struct ggml_compute_params * params,
  12715. struct ggml_tensor * dst,
  12716. const ggml_binary_op_f32_t fun) {
  12717. const struct ggml_tensor * src0 = dst->src[0];
  12718. switch (src0->type) {
  12719. case GGML_TYPE_F32:
  12720. {
  12721. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12722. } break;
  12723. default:
  12724. {
  12725. GGML_ASSERT(false);
  12726. } break;
  12727. }
  12728. }
  12729. // ggml_compute_forward_map_custom1
  12730. static void ggml_compute_forward_map_custom1_f32(
  12731. const struct ggml_compute_params * params,
  12732. struct ggml_tensor * dst,
  12733. const ggml_custom1_op_f32_t fun) {
  12734. const struct ggml_tensor * a = dst->src[0];
  12735. assert(params->ith == 0);
  12736. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12737. return;
  12738. }
  12739. fun(dst, a);
  12740. }
  12741. // ggml_compute_forward_map_custom2
  12742. static void ggml_compute_forward_map_custom2_f32(
  12743. const struct ggml_compute_params * params,
  12744. struct ggml_tensor * dst,
  12745. const ggml_custom2_op_f32_t fun) {
  12746. const struct ggml_tensor * a = dst->src[0];
  12747. const struct ggml_tensor * b = dst->src[1];
  12748. assert(params->ith == 0);
  12749. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12750. return;
  12751. }
  12752. fun(dst, a, b);
  12753. }
  12754. // ggml_compute_forward_map_custom3
  12755. static void ggml_compute_forward_map_custom3_f32(
  12756. const struct ggml_compute_params * params,
  12757. struct ggml_tensor * dst,
  12758. const ggml_custom3_op_f32_t fun) {
  12759. const struct ggml_tensor * a = dst->src[0];
  12760. const struct ggml_tensor * b = dst->src[1];
  12761. const struct ggml_tensor * c = dst->src[1];
  12762. assert(params->ith == 0);
  12763. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12764. return;
  12765. }
  12766. fun(dst, a, b, c);
  12767. }
  12768. // ggml_compute_forward_map_custom1
  12769. static void ggml_compute_forward_map_custom1(
  12770. const struct ggml_compute_params * params,
  12771. struct ggml_tensor * dst) {
  12772. const struct ggml_tensor * a = dst->src[0];
  12773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12774. return;
  12775. }
  12776. struct ggml_map_custom1_op_params p;
  12777. memcpy(&p, dst->op_params, sizeof(p));
  12778. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12779. }
  12780. // ggml_compute_forward_map_custom2
  12781. static void ggml_compute_forward_map_custom2(
  12782. const struct ggml_compute_params * params,
  12783. struct ggml_tensor * dst) {
  12784. const struct ggml_tensor * a = dst->src[0];
  12785. const struct ggml_tensor * b = dst->src[1];
  12786. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12787. return;
  12788. }
  12789. struct ggml_map_custom2_op_params p;
  12790. memcpy(&p, dst->op_params, sizeof(p));
  12791. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12792. }
  12793. // ggml_compute_forward_map_custom3
  12794. static void ggml_compute_forward_map_custom3(
  12795. const struct ggml_compute_params * params,
  12796. struct ggml_tensor * dst) {
  12797. const struct ggml_tensor * a = dst->src[0];
  12798. const struct ggml_tensor * b = dst->src[1];
  12799. const struct ggml_tensor * c = dst->src[2];
  12800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12801. return;
  12802. }
  12803. struct ggml_map_custom3_op_params p;
  12804. memcpy(&p, dst->op_params, sizeof(p));
  12805. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12806. }
  12807. // ggml_compute_forward_cross_entropy_loss
  12808. static void ggml_compute_forward_cross_entropy_loss_f32(
  12809. const struct ggml_compute_params * params,
  12810. struct ggml_tensor * dst) {
  12811. const struct ggml_tensor * src0 = dst->src[0];
  12812. const struct ggml_tensor * src1 = dst->src[1];
  12813. GGML_ASSERT(ggml_is_contiguous(src0));
  12814. GGML_ASSERT(ggml_is_contiguous(src1));
  12815. GGML_ASSERT(ggml_is_scalar(dst));
  12816. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12817. const int ith = params->ith;
  12818. const int nth = params->nth;
  12819. float * sums = (float *) params->wdata;
  12820. // TODO: handle transposed/permuted matrices
  12821. const int nc = src0->ne[0];
  12822. const int nr = ggml_nrows(src0);
  12823. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12824. if (params->type == GGML_TASK_TYPE_INIT) {
  12825. if (ith == 0) {
  12826. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12827. }
  12828. return;
  12829. }
  12830. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12831. if (ith == 0) {
  12832. float * dp = (float *) dst->data;
  12833. ggml_vec_sum_f32(nth, dp, sums);
  12834. dp[0] *= -1.0f / (float) nr;
  12835. }
  12836. return;
  12837. }
  12838. const double eps = 1e-9;
  12839. // rows per thread
  12840. const int dr = (nr + nth - 1)/nth;
  12841. // row range for this thread
  12842. const int ir0 = dr*ith;
  12843. const int ir1 = MIN(ir0 + dr, nr);
  12844. for (int i1 = ir0; i1 < ir1; i1++) {
  12845. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12846. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12847. float * st = ((float *) params->wdata) + nth + ith*nc;
  12848. #ifndef NDEBUG
  12849. for (int i = 0; i < nc; ++i) {
  12850. //printf("p[%d] = %f\n", i, p[i]);
  12851. assert(!isnan(s0[i]));
  12852. assert(!isnan(s1[i]));
  12853. }
  12854. #endif
  12855. // soft_max
  12856. ggml_float sum = 0.0;
  12857. {
  12858. float max = -INFINITY;
  12859. ggml_vec_max_f32(nc, &max, s0);
  12860. uint16_t scvt; UNUSED(scvt);
  12861. for (int i = 0; i < nc; i++) {
  12862. if (s0[i] == -INFINITY) {
  12863. st[i] = 0.0f;
  12864. } else {
  12865. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12866. const float s = s0[i] - max;
  12867. const float val = expf(s);
  12868. #else
  12869. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12870. memcpy(&scvt, &s, sizeof(scvt));
  12871. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12872. #endif
  12873. sum += (ggml_float)val;
  12874. st[i] = val;
  12875. }
  12876. }
  12877. assert(sum > 0.0);
  12878. // sum = 1.0/sum;
  12879. }
  12880. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12881. sum = (1.0 - eps) / sum;
  12882. ggml_vec_scale_f32(nc, st, sum);
  12883. ggml_vec_add1_f32(nc, st, st, eps);
  12884. ggml_vec_log_f32(nc, st, st);
  12885. ggml_vec_mul_f32(nc, st, st, s1);
  12886. float st_sum = 0;
  12887. ggml_vec_sum_f32(nc, &st_sum, st);
  12888. sums[ith] += st_sum;
  12889. #ifndef NDEBUG
  12890. for (int i = 0; i < nc; ++i) {
  12891. assert(!isnan(st[i]));
  12892. assert(!isinf(st[i]));
  12893. }
  12894. #endif
  12895. }
  12896. }
  12897. static void ggml_compute_forward_cross_entropy_loss(
  12898. const struct ggml_compute_params * params,
  12899. struct ggml_tensor * dst) {
  12900. const struct ggml_tensor * src0 = dst->src[0];
  12901. switch (src0->type) {
  12902. case GGML_TYPE_F32:
  12903. {
  12904. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12905. } break;
  12906. default:
  12907. {
  12908. GGML_ASSERT(false);
  12909. } break;
  12910. }
  12911. }
  12912. // ggml_compute_forward_cross_entropy_loss_back
  12913. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12914. const struct ggml_compute_params * params,
  12915. struct ggml_tensor * dst) {
  12916. const struct ggml_tensor * src0 = dst->src[0];
  12917. const struct ggml_tensor * src1 = dst->src[1];
  12918. const struct ggml_tensor * opt0 = dst->src[2];
  12919. GGML_ASSERT(ggml_is_contiguous(dst));
  12920. GGML_ASSERT(ggml_is_contiguous(src0));
  12921. GGML_ASSERT(ggml_is_contiguous(src1));
  12922. GGML_ASSERT(ggml_is_contiguous(opt0));
  12923. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12924. const int64_t ith = params->ith;
  12925. const int64_t nth = params->nth;
  12926. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12927. return;
  12928. }
  12929. const double eps = 1e-9;
  12930. // TODO: handle transposed/permuted matrices
  12931. const int64_t nc = src0->ne[0];
  12932. const int64_t nr = ggml_nrows(src0);
  12933. // rows per thread
  12934. const int64_t dr = (nr + nth - 1)/nth;
  12935. // row range for this thread
  12936. const int64_t ir0 = dr*ith;
  12937. const int64_t ir1 = MIN(ir0 + dr, nr);
  12938. float * d = (float *) opt0->data;
  12939. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12940. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12941. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12942. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12943. #ifndef NDEBUG
  12944. for (int i = 0; i < nc; ++i) {
  12945. //printf("p[%d] = %f\n", i, p[i]);
  12946. assert(!isnan(s0[i]));
  12947. assert(!isnan(s1[i]));
  12948. }
  12949. #endif
  12950. // soft_max
  12951. ggml_float sum = 0.0;
  12952. {
  12953. float max = -INFINITY;
  12954. ggml_vec_max_f32(nc, &max, s0);
  12955. uint16_t scvt; UNUSED(scvt);
  12956. for (int i = 0; i < nc; i++) {
  12957. if (s0[i] == -INFINITY) {
  12958. ds0[i] = 0.0f;
  12959. } else {
  12960. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12961. const float s = s0[i] - max;
  12962. const float val = expf(s);
  12963. #else
  12964. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12965. memcpy(&scvt, &s, sizeof(scvt));
  12966. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12967. #endif
  12968. sum += (ggml_float)val;
  12969. ds0[i] = val;
  12970. }
  12971. }
  12972. assert(sum > 0.0);
  12973. sum = (1.0 - eps)/sum;
  12974. }
  12975. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12976. ggml_vec_scale_f32(nc, ds0, sum);
  12977. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12978. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12979. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12980. #ifndef NDEBUG
  12981. for (int i = 0; i < nc; ++i) {
  12982. assert(!isnan(ds0[i]));
  12983. assert(!isinf(ds0[i]));
  12984. }
  12985. #endif
  12986. }
  12987. }
  12988. static void ggml_compute_forward_cross_entropy_loss_back(
  12989. const struct ggml_compute_params * params,
  12990. struct ggml_tensor * dst) {
  12991. const struct ggml_tensor * src0 = dst->src[0];
  12992. switch (src0->type) {
  12993. case GGML_TYPE_F32:
  12994. {
  12995. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12996. } break;
  12997. default:
  12998. {
  12999. GGML_ASSERT(false);
  13000. } break;
  13001. }
  13002. }
  13003. /////////////////////////////////
  13004. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13005. GGML_ASSERT(params);
  13006. if (tensor->op == GGML_OP_NONE) {
  13007. return;
  13008. }
  13009. #if defined(GGML_USE_VULKAN)
  13010. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  13011. #ifdef GGML_VULKAN_CHECK_RESULTS
  13012. if (skip_cpu) {
  13013. ggml_vk_check_results_1_cpu_assist(params, tensor);
  13014. }
  13015. #endif
  13016. if (skip_cpu) {
  13017. return;
  13018. }
  13019. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  13020. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  13021. #endif // GGML_USE_VULKAN
  13022. #ifdef GGML_USE_SYCL
  13023. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  13024. if (skip_cpu) {
  13025. return;
  13026. }
  13027. #endif // GGML_USE_SYCL
  13028. switch (tensor->op) {
  13029. case GGML_OP_DUP:
  13030. {
  13031. ggml_compute_forward_dup(params, tensor);
  13032. } break;
  13033. case GGML_OP_ADD:
  13034. {
  13035. ggml_compute_forward_add(params, tensor);
  13036. } break;
  13037. case GGML_OP_ADD1:
  13038. {
  13039. ggml_compute_forward_add1(params, tensor);
  13040. } break;
  13041. case GGML_OP_ACC:
  13042. {
  13043. ggml_compute_forward_acc(params, tensor);
  13044. } break;
  13045. case GGML_OP_SUB:
  13046. {
  13047. ggml_compute_forward_sub(params, tensor);
  13048. } break;
  13049. case GGML_OP_MUL:
  13050. {
  13051. ggml_compute_forward_mul(params, tensor);
  13052. } break;
  13053. case GGML_OP_DIV:
  13054. {
  13055. ggml_compute_forward_div(params, tensor);
  13056. } break;
  13057. case GGML_OP_SQR:
  13058. {
  13059. ggml_compute_forward_sqr(params, tensor);
  13060. } break;
  13061. case GGML_OP_SQRT:
  13062. {
  13063. ggml_compute_forward_sqrt(params, tensor);
  13064. } break;
  13065. case GGML_OP_LOG:
  13066. {
  13067. ggml_compute_forward_log(params, tensor);
  13068. } break;
  13069. case GGML_OP_SUM:
  13070. {
  13071. ggml_compute_forward_sum(params, tensor);
  13072. } break;
  13073. case GGML_OP_SUM_ROWS:
  13074. {
  13075. ggml_compute_forward_sum_rows(params, tensor);
  13076. } break;
  13077. case GGML_OP_MEAN:
  13078. {
  13079. ggml_compute_forward_mean(params, tensor);
  13080. } break;
  13081. case GGML_OP_ARGMAX:
  13082. {
  13083. ggml_compute_forward_argmax(params, tensor);
  13084. } break;
  13085. case GGML_OP_REPEAT:
  13086. {
  13087. ggml_compute_forward_repeat(params, tensor);
  13088. } break;
  13089. case GGML_OP_REPEAT_BACK:
  13090. {
  13091. ggml_compute_forward_repeat_back(params, tensor);
  13092. } break;
  13093. case GGML_OP_CONCAT:
  13094. {
  13095. ggml_compute_forward_concat(params, tensor);
  13096. } break;
  13097. case GGML_OP_SILU_BACK:
  13098. {
  13099. ggml_compute_forward_silu_back(params, tensor);
  13100. } break;
  13101. case GGML_OP_NORM:
  13102. {
  13103. ggml_compute_forward_norm(params, tensor);
  13104. } break;
  13105. case GGML_OP_RMS_NORM:
  13106. {
  13107. ggml_compute_forward_rms_norm(params, tensor);
  13108. } break;
  13109. case GGML_OP_RMS_NORM_BACK:
  13110. {
  13111. ggml_compute_forward_rms_norm_back(params, tensor);
  13112. } break;
  13113. case GGML_OP_GROUP_NORM:
  13114. {
  13115. ggml_compute_forward_group_norm(params, tensor);
  13116. } break;
  13117. case GGML_OP_MUL_MAT:
  13118. {
  13119. ggml_compute_forward_mul_mat(params, tensor);
  13120. } break;
  13121. case GGML_OP_MUL_MAT_ID:
  13122. {
  13123. ggml_compute_forward_mul_mat_id(params, tensor);
  13124. } break;
  13125. case GGML_OP_OUT_PROD:
  13126. {
  13127. ggml_compute_forward_out_prod(params, tensor);
  13128. } break;
  13129. case GGML_OP_SCALE:
  13130. {
  13131. ggml_compute_forward_scale(params, tensor);
  13132. } break;
  13133. case GGML_OP_SET:
  13134. {
  13135. ggml_compute_forward_set(params, tensor);
  13136. } break;
  13137. case GGML_OP_CPY:
  13138. {
  13139. ggml_compute_forward_cpy(params, tensor);
  13140. } break;
  13141. case GGML_OP_CONT:
  13142. {
  13143. ggml_compute_forward_cont(params, tensor);
  13144. } break;
  13145. case GGML_OP_RESHAPE:
  13146. {
  13147. ggml_compute_forward_reshape(params, tensor);
  13148. } break;
  13149. case GGML_OP_VIEW:
  13150. {
  13151. ggml_compute_forward_view(params, tensor);
  13152. } break;
  13153. case GGML_OP_PERMUTE:
  13154. {
  13155. ggml_compute_forward_permute(params, tensor);
  13156. } break;
  13157. case GGML_OP_TRANSPOSE:
  13158. {
  13159. ggml_compute_forward_transpose(params, tensor);
  13160. } break;
  13161. case GGML_OP_GET_ROWS:
  13162. {
  13163. ggml_compute_forward_get_rows(params, tensor);
  13164. } break;
  13165. case GGML_OP_GET_ROWS_BACK:
  13166. {
  13167. ggml_compute_forward_get_rows_back(params, tensor);
  13168. } break;
  13169. case GGML_OP_DIAG:
  13170. {
  13171. ggml_compute_forward_diag(params, tensor);
  13172. } break;
  13173. case GGML_OP_DIAG_MASK_INF:
  13174. {
  13175. ggml_compute_forward_diag_mask_inf(params, tensor);
  13176. } break;
  13177. case GGML_OP_DIAG_MASK_ZERO:
  13178. {
  13179. ggml_compute_forward_diag_mask_zero(params, tensor);
  13180. } break;
  13181. case GGML_OP_SOFT_MAX:
  13182. {
  13183. ggml_compute_forward_soft_max(params, tensor);
  13184. } break;
  13185. case GGML_OP_SOFT_MAX_BACK:
  13186. {
  13187. ggml_compute_forward_soft_max_back(params, tensor);
  13188. } break;
  13189. case GGML_OP_ROPE:
  13190. {
  13191. ggml_compute_forward_rope(params, tensor);
  13192. } break;
  13193. case GGML_OP_ROPE_BACK:
  13194. {
  13195. ggml_compute_forward_rope_back(params, tensor);
  13196. } break;
  13197. case GGML_OP_ALIBI:
  13198. {
  13199. ggml_compute_forward_alibi(params, tensor);
  13200. } break;
  13201. case GGML_OP_CLAMP:
  13202. {
  13203. ggml_compute_forward_clamp(params, tensor);
  13204. } break;
  13205. case GGML_OP_CONV_TRANSPOSE_1D:
  13206. {
  13207. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13208. } break;
  13209. case GGML_OP_IM2COL:
  13210. {
  13211. ggml_compute_forward_im2col(params, tensor);
  13212. } break;
  13213. case GGML_OP_CONV_TRANSPOSE_2D:
  13214. {
  13215. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13216. } break;
  13217. case GGML_OP_POOL_1D:
  13218. {
  13219. ggml_compute_forward_pool_1d(params, tensor);
  13220. } break;
  13221. case GGML_OP_POOL_2D:
  13222. {
  13223. ggml_compute_forward_pool_2d(params, tensor);
  13224. } break;
  13225. case GGML_OP_UPSCALE:
  13226. {
  13227. ggml_compute_forward_upscale(params, tensor);
  13228. } break;
  13229. case GGML_OP_PAD:
  13230. {
  13231. ggml_compute_forward_pad(params, tensor);
  13232. } break;
  13233. case GGML_OP_ARANGE:
  13234. {
  13235. ggml_compute_forward_arange(params, tensor);
  13236. } break;
  13237. case GGML_OP_TIMESTEP_EMBEDDING:
  13238. {
  13239. ggml_compute_forward_timestep_embedding(params, tensor);
  13240. } break;
  13241. case GGML_OP_ARGSORT:
  13242. {
  13243. ggml_compute_forward_argsort(params, tensor);
  13244. } break;
  13245. case GGML_OP_LEAKY_RELU:
  13246. {
  13247. ggml_compute_forward_leaky_relu(params, tensor);
  13248. } break;
  13249. case GGML_OP_FLASH_ATTN:
  13250. {
  13251. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13252. GGML_ASSERT(t == 0 || t == 1);
  13253. const bool masked = t != 0;
  13254. ggml_compute_forward_flash_attn(params, masked, tensor);
  13255. } break;
  13256. case GGML_OP_FLASH_FF:
  13257. {
  13258. ggml_compute_forward_flash_ff(params, tensor);
  13259. } break;
  13260. case GGML_OP_FLASH_ATTN_BACK:
  13261. {
  13262. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13263. GGML_ASSERT(t == 0 || t == 1);
  13264. bool masked = t != 0;
  13265. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13266. } break;
  13267. case GGML_OP_SSM_CONV:
  13268. {
  13269. ggml_compute_forward_ssm_conv(params, tensor);
  13270. } break;
  13271. case GGML_OP_SSM_SCAN:
  13272. {
  13273. ggml_compute_forward_ssm_scan(params, tensor);
  13274. } break;
  13275. case GGML_OP_WIN_PART:
  13276. {
  13277. ggml_compute_forward_win_part(params, tensor);
  13278. } break;
  13279. case GGML_OP_WIN_UNPART:
  13280. {
  13281. ggml_compute_forward_win_unpart(params, tensor);
  13282. } break;
  13283. case GGML_OP_UNARY:
  13284. {
  13285. ggml_compute_forward_unary(params, tensor);
  13286. } break;
  13287. case GGML_OP_GET_REL_POS:
  13288. {
  13289. ggml_compute_forward_get_rel_pos(params, tensor);
  13290. } break;
  13291. case GGML_OP_ADD_REL_POS:
  13292. {
  13293. ggml_compute_forward_add_rel_pos(params, tensor);
  13294. } break;
  13295. case GGML_OP_MAP_UNARY:
  13296. {
  13297. ggml_unary_op_f32_t fun;
  13298. memcpy(&fun, tensor->op_params, sizeof(fun));
  13299. ggml_compute_forward_map_unary(params, tensor, fun);
  13300. }
  13301. break;
  13302. case GGML_OP_MAP_BINARY:
  13303. {
  13304. ggml_binary_op_f32_t fun;
  13305. memcpy(&fun, tensor->op_params, sizeof(fun));
  13306. ggml_compute_forward_map_binary(params, tensor, fun);
  13307. }
  13308. break;
  13309. case GGML_OP_MAP_CUSTOM1_F32:
  13310. {
  13311. ggml_custom1_op_f32_t fun;
  13312. memcpy(&fun, tensor->op_params, sizeof(fun));
  13313. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13314. }
  13315. break;
  13316. case GGML_OP_MAP_CUSTOM2_F32:
  13317. {
  13318. ggml_custom2_op_f32_t fun;
  13319. memcpy(&fun, tensor->op_params, sizeof(fun));
  13320. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13321. }
  13322. break;
  13323. case GGML_OP_MAP_CUSTOM3_F32:
  13324. {
  13325. ggml_custom3_op_f32_t fun;
  13326. memcpy(&fun, tensor->op_params, sizeof(fun));
  13327. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13328. }
  13329. break;
  13330. case GGML_OP_MAP_CUSTOM1:
  13331. {
  13332. ggml_compute_forward_map_custom1(params, tensor);
  13333. }
  13334. break;
  13335. case GGML_OP_MAP_CUSTOM2:
  13336. {
  13337. ggml_compute_forward_map_custom2(params, tensor);
  13338. }
  13339. break;
  13340. case GGML_OP_MAP_CUSTOM3:
  13341. {
  13342. ggml_compute_forward_map_custom3(params, tensor);
  13343. }
  13344. break;
  13345. case GGML_OP_CROSS_ENTROPY_LOSS:
  13346. {
  13347. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13348. }
  13349. break;
  13350. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13351. {
  13352. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13353. }
  13354. break;
  13355. case GGML_OP_NONE:
  13356. {
  13357. // nop
  13358. } break;
  13359. case GGML_OP_COUNT:
  13360. {
  13361. GGML_ASSERT(false);
  13362. } break;
  13363. }
  13364. }
  13365. ////////////////////////////////////////////////////////////////////////////////
  13366. static size_t ggml_hash_size(size_t min_sz) {
  13367. // next primes after powers of two
  13368. static const size_t primes[] = {
  13369. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13370. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13371. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13372. 16777259, 33554467, 67108879, 134217757, 268435459,
  13373. 536870923, 1073741827, 2147483659
  13374. };
  13375. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13376. // find the smallest prime that is larger or equal to min_sz
  13377. size_t l = 0;
  13378. size_t r = n_primes;
  13379. while (l < r) {
  13380. size_t m = (l + r)/2;
  13381. if (primes[m] < min_sz) {
  13382. l = m + 1;
  13383. } else {
  13384. r = m;
  13385. }
  13386. }
  13387. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13388. return sz;
  13389. }
  13390. static size_t ggml_hash(const void * p) {
  13391. return (size_t)p;
  13392. }
  13393. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13394. size_t h = ggml_hash(key) % hash_set.size;
  13395. // linear probing
  13396. size_t i = h;
  13397. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13398. i = (i + 1) % hash_set.size;
  13399. if (i == h) {
  13400. // visited all hash table entries -> not found
  13401. return GGML_HASHTABLE_FULL;
  13402. }
  13403. }
  13404. return i;
  13405. }
  13406. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13407. size_t i = ggml_hash_find(hash_set, key);
  13408. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13409. }
  13410. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13411. size_t i = ggml_hash_find(hash_set, key);
  13412. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13413. if (hash_set.keys[i] == key) {
  13414. return GGML_HASHTABLE_ALREADY_EXISTS;
  13415. }
  13416. // insert
  13417. GGML_ASSERT(hash_set.keys[i] == NULL);
  13418. hash_set.keys[i] = key;
  13419. return i;
  13420. }
  13421. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13422. size_t i = ggml_hash_find(hash_set, key);
  13423. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13424. hash_set.keys[i] = key;
  13425. return i;
  13426. }
  13427. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13428. size = ggml_hash_size(size);
  13429. struct ggml_hash_set result;
  13430. result.size = size;
  13431. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13432. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13433. return result;
  13434. }
  13435. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13436. GGML_FREE(hash_set.keys);
  13437. }
  13438. struct hash_map {
  13439. struct ggml_hash_set set;
  13440. struct ggml_tensor ** vals;
  13441. };
  13442. static struct hash_map * ggml_new_hash_map(size_t size) {
  13443. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13444. result->set = ggml_hash_set_new(size);
  13445. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13446. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13447. return result;
  13448. }
  13449. static void ggml_hash_map_free(struct hash_map * map) {
  13450. ggml_hash_set_free(map->set);
  13451. GGML_FREE(map->vals);
  13452. GGML_FREE(map);
  13453. }
  13454. // gradient checkpointing
  13455. static struct ggml_tensor * ggml_recompute_graph_node(
  13456. struct ggml_context * ctx,
  13457. struct ggml_cgraph * graph,
  13458. struct hash_map * replacements,
  13459. struct ggml_tensor * node) {
  13460. if (node == NULL) {
  13461. return NULL;
  13462. }
  13463. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13464. return node;
  13465. }
  13466. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13467. return node;
  13468. }
  13469. int count_children = 0;
  13470. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13471. if (node->src[k]) {
  13472. ++count_children;
  13473. }
  13474. }
  13475. if (count_children == 0) {
  13476. return node;
  13477. }
  13478. size_t i = ggml_hash_find(replacements->set, node);
  13479. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13480. if (replacements->set.keys[i] == node) {
  13481. return replacements->vals[i];
  13482. }
  13483. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13484. // insert clone into replacements
  13485. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13486. replacements->set.keys[i] = node;
  13487. replacements->vals[i] = clone;
  13488. clone->op = node->op;
  13489. clone->grad = node->grad;
  13490. clone->flags = node->flags;
  13491. clone->extra = node->extra;
  13492. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13493. clone->nb[k] = node->nb[k];
  13494. }
  13495. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13496. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13497. }
  13498. if (node->view_src != NULL) {
  13499. clone->data = (node->view_src->data == NULL)
  13500. ? NULL // view_src not yet allocated
  13501. : (char *) node->view_src->data // view_src already allocated
  13502. + node->view_offs;
  13503. clone->view_src = node->view_src;
  13504. clone->view_offs = node->view_offs;
  13505. }
  13506. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13507. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13508. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13509. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13510. return clone;
  13511. }
  13512. void ggml_build_backward_gradient_checkpointing(
  13513. struct ggml_context * ctx,
  13514. struct ggml_cgraph * gf,
  13515. struct ggml_cgraph * gb,
  13516. struct ggml_cgraph * gb_tmp,
  13517. struct ggml_tensor * * checkpoints,
  13518. int n_checkpoints) {
  13519. ggml_graph_cpy(gf, gb_tmp);
  13520. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13521. if (n_checkpoints <= 0) {
  13522. ggml_graph_cpy(gb_tmp, gb);
  13523. return;
  13524. }
  13525. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13526. // insert checkpoints in replacements
  13527. for (int i = 0; i < n_checkpoints; ++i) {
  13528. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13529. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13530. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13531. replacements->set.keys[k] = checkpoints[i];
  13532. replacements->vals[k] = checkpoints[i];
  13533. }
  13534. ggml_graph_cpy(gf, gb);
  13535. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13536. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13537. // by recomputing them from checkpoints
  13538. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13539. struct ggml_tensor * node = gb_tmp->nodes[i];
  13540. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13541. // insert new tensors recomputing src, reusing already made replacements,
  13542. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13543. // recurse for input tensors,
  13544. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13545. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13546. }
  13547. // insert rewritten backward node with replacements made into resulting backward graph gb
  13548. ggml_build_forward_expand(gb, node);
  13549. }
  13550. ggml_hash_map_free(replacements);
  13551. }
  13552. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13553. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13554. if (ggml_hash_contains(zero_table, a)) {
  13555. return b;
  13556. } else {
  13557. return ggml_add_impl(ctx, a, b, false);
  13558. }
  13559. }
  13560. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13561. if (ggml_hash_contains(zero_table, a)) {
  13562. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13563. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13564. } else {
  13565. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13566. }
  13567. }
  13568. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13569. if (ggml_hash_contains(zero_table, a)) {
  13570. return ggml_repeat(ctx, b, a);
  13571. } else {
  13572. return ggml_add1_impl(ctx, a, b, false);
  13573. }
  13574. }
  13575. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13576. if (ggml_hash_contains(zero_table, a)) {
  13577. return ggml_neg(ctx, b);
  13578. } else {
  13579. return ggml_sub_impl(ctx, a, b, false);
  13580. }
  13581. }
  13582. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13583. struct ggml_tensor * src0 = tensor->src[0];
  13584. struct ggml_tensor * src1 = tensor->src[1];
  13585. switch (tensor->op) {
  13586. case GGML_OP_DUP:
  13587. {
  13588. if (src0->grad) {
  13589. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13590. }
  13591. } break;
  13592. case GGML_OP_ADD:
  13593. {
  13594. if (src0->grad) {
  13595. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13596. }
  13597. if (src1->grad) {
  13598. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13599. }
  13600. } break;
  13601. case GGML_OP_ADD1:
  13602. {
  13603. if (src0->grad) {
  13604. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13605. }
  13606. if (src1->grad) {
  13607. src1->grad = ggml_add_or_set(ctx,
  13608. src1->grad,
  13609. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13610. zero_table);
  13611. }
  13612. } break;
  13613. case GGML_OP_ACC:
  13614. {
  13615. if (src0->grad) {
  13616. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13617. }
  13618. if (src1->grad) {
  13619. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13620. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13621. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13622. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13623. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13624. tensor->grad,
  13625. src1->grad->ne[0],
  13626. src1->grad->ne[1],
  13627. src1->grad->ne[2],
  13628. src1->grad->ne[3],
  13629. nb1, nb2, nb3, offset);
  13630. src1->grad =
  13631. ggml_add_or_set(ctx,
  13632. src1->grad,
  13633. ggml_reshape(ctx,
  13634. ggml_cont(ctx, tensor_grad_view),
  13635. src1->grad),
  13636. zero_table);
  13637. }
  13638. } break;
  13639. case GGML_OP_SUB:
  13640. {
  13641. if (src0->grad) {
  13642. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13643. }
  13644. if (src1->grad) {
  13645. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13646. }
  13647. } break;
  13648. case GGML_OP_MUL:
  13649. {
  13650. if (src0->grad) {
  13651. src0->grad =
  13652. ggml_add_or_set(ctx,
  13653. src0->grad,
  13654. ggml_mul(ctx, src1, tensor->grad),
  13655. zero_table);
  13656. }
  13657. if (src1->grad) {
  13658. src1->grad =
  13659. ggml_add_or_set(ctx,
  13660. src1->grad,
  13661. ggml_mul(ctx, src0, tensor->grad),
  13662. zero_table);
  13663. }
  13664. } break;
  13665. case GGML_OP_DIV:
  13666. {
  13667. if (src0->grad) {
  13668. src0->grad =
  13669. ggml_add_or_set(ctx,
  13670. src0->grad,
  13671. ggml_div(ctx, tensor->grad, src1),
  13672. zero_table);
  13673. }
  13674. if (src1->grad) {
  13675. src1->grad =
  13676. ggml_sub_or_set(ctx,
  13677. src1->grad,
  13678. ggml_mul(ctx,
  13679. tensor->grad,
  13680. ggml_div(ctx, tensor, src1)),
  13681. zero_table);
  13682. }
  13683. } break;
  13684. case GGML_OP_SQR:
  13685. {
  13686. if (src0->grad) {
  13687. src0->grad =
  13688. ggml_add_or_set(ctx,
  13689. src0->grad,
  13690. ggml_scale(ctx,
  13691. ggml_mul(ctx, src0, tensor->grad),
  13692. 2.0f),
  13693. zero_table);
  13694. }
  13695. } break;
  13696. case GGML_OP_SQRT:
  13697. {
  13698. if (src0->grad) {
  13699. src0->grad =
  13700. ggml_add_or_set(ctx,
  13701. src0->grad,
  13702. ggml_scale(ctx,
  13703. ggml_div(ctx,
  13704. tensor->grad,
  13705. tensor),
  13706. 0.5f),
  13707. zero_table);
  13708. }
  13709. } break;
  13710. case GGML_OP_LOG:
  13711. {
  13712. if (src0->grad) {
  13713. src0->grad =
  13714. ggml_add_or_set(ctx,
  13715. src0->grad,
  13716. ggml_div(ctx,
  13717. tensor->grad,
  13718. src0),
  13719. zero_table);
  13720. }
  13721. } break;
  13722. case GGML_OP_SUM:
  13723. {
  13724. if (src0->grad) {
  13725. src0->grad =
  13726. ggml_add1_or_set(ctx,
  13727. src0->grad,
  13728. tensor->grad,
  13729. zero_table);
  13730. }
  13731. } break;
  13732. case GGML_OP_SUM_ROWS:
  13733. {
  13734. if (src0->grad) {
  13735. src0->grad =
  13736. ggml_add_or_set(ctx,
  13737. src0->grad,
  13738. ggml_repeat(ctx,
  13739. tensor->grad,
  13740. src0->grad),
  13741. zero_table);
  13742. }
  13743. } break;
  13744. case GGML_OP_MEAN:
  13745. case GGML_OP_ARGMAX:
  13746. {
  13747. GGML_ASSERT(false); // TODO: implement
  13748. } break;
  13749. case GGML_OP_REPEAT:
  13750. {
  13751. // necessary for llama
  13752. if (src0->grad) {
  13753. src0->grad = ggml_add_or_set(ctx,
  13754. src0->grad,
  13755. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13756. zero_table);
  13757. }
  13758. } break;
  13759. case GGML_OP_REPEAT_BACK:
  13760. {
  13761. if (src0->grad) {
  13762. // TODO: test this
  13763. src0->grad = ggml_add_or_set(ctx,
  13764. src0->grad,
  13765. ggml_repeat(ctx, tensor->grad, src0->grad),
  13766. zero_table);
  13767. }
  13768. } break;
  13769. case GGML_OP_CONCAT:
  13770. {
  13771. GGML_ASSERT(false); // TODO: implement
  13772. } break;
  13773. case GGML_OP_SILU_BACK:
  13774. {
  13775. GGML_ASSERT(false); // TODO: not implemented
  13776. } break;
  13777. case GGML_OP_NORM:
  13778. {
  13779. GGML_ASSERT(false); // TODO: not implemented
  13780. } break;
  13781. case GGML_OP_RMS_NORM:
  13782. {
  13783. // necessary for llama
  13784. if (src0->grad) {
  13785. float eps;
  13786. memcpy(&eps, tensor->op_params, sizeof(float));
  13787. src0->grad = ggml_add_or_set(ctx,
  13788. src0->grad,
  13789. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13790. zero_table);
  13791. }
  13792. } break;
  13793. case GGML_OP_RMS_NORM_BACK:
  13794. {
  13795. GGML_ASSERT(false); // TODO: not implemented
  13796. } break;
  13797. case GGML_OP_GROUP_NORM:
  13798. {
  13799. GGML_ASSERT(false); // TODO: not implemented
  13800. } break;
  13801. case GGML_OP_MUL_MAT:
  13802. {
  13803. // https://cs231n.github.io/optimization-2/#staged
  13804. // # forward pass
  13805. // s0 = np.random.randn(5, 10)
  13806. // s1 = np.random.randn(10, 3)
  13807. // t = s0.dot(s1)
  13808. // # now suppose we had the gradient on t from above in the circuit
  13809. // dt = np.random.randn(*t.shape) # same shape as t
  13810. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13811. // ds1 = t.T.dot(dt)
  13812. // tensor.shape [m,p,qq,rr]
  13813. // src0.shape [n,m,q1,r1]
  13814. // src1.shape [n,p,qq,rr]
  13815. // necessary for llama
  13816. if (src0->grad) {
  13817. struct ggml_tensor * s1_tg =
  13818. ggml_out_prod(ctx, // [n,m,qq,rr]
  13819. src1, // [n,p,qq,rr]
  13820. tensor->grad); // [m,p,qq,rr]
  13821. const int64_t qq = s1_tg->ne[2];
  13822. const int64_t rr = s1_tg->ne[3];
  13823. const int64_t q1 = src0->ne[2];
  13824. const int64_t r1 = src0->ne[3];
  13825. const bool ne2_broadcasted = qq > q1;
  13826. const bool ne3_broadcasted = rr > r1;
  13827. if (ne2_broadcasted || ne3_broadcasted) {
  13828. // sum broadcast repetitions of s1_tg into shape of src0
  13829. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13830. }
  13831. src0->grad =
  13832. ggml_add_or_set(ctx,
  13833. src0->grad, // [n,m,q1,r1]
  13834. s1_tg, // [n,m,q1,r1]
  13835. zero_table);
  13836. }
  13837. if (src1->grad) {
  13838. src1->grad =
  13839. ggml_add_or_set(ctx,
  13840. src1->grad, // [n,p,qq,rr]
  13841. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13842. // ggml_cont(ctx, // [m,n,q1,r1]
  13843. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13844. // tensor->grad), // [m,p,qq,rr]
  13845. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13846. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13847. // // and then use ggml_out_prod
  13848. ggml_out_prod(ctx, // [n,p,qq,rr]
  13849. src0, // [n,m,q1,r1]
  13850. ggml_transpose(ctx, // [p,m,qq,rr]
  13851. tensor->grad)), // [m,p,qq,rr]
  13852. zero_table);
  13853. }
  13854. } break;
  13855. case GGML_OP_MUL_MAT_ID:
  13856. {
  13857. GGML_ASSERT(false); // TODO: not implemented
  13858. } break;
  13859. case GGML_OP_OUT_PROD:
  13860. {
  13861. GGML_ASSERT(false); // TODO: not implemented
  13862. } break;
  13863. case GGML_OP_SCALE:
  13864. {
  13865. // necessary for llama
  13866. if (src0->grad) {
  13867. float s;
  13868. memcpy(&s, tensor->op_params, sizeof(float));
  13869. src0->grad =
  13870. ggml_add_or_set(ctx,
  13871. src0->grad,
  13872. ggml_scale_impl(ctx, tensor->grad, s, false),
  13873. zero_table);
  13874. }
  13875. } break;
  13876. case GGML_OP_SET:
  13877. {
  13878. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13879. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13880. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13881. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13882. struct ggml_tensor * tensor_grad_view = NULL;
  13883. if (src0->grad || src1->grad) {
  13884. GGML_ASSERT(src0->type == tensor->type);
  13885. GGML_ASSERT(tensor->grad->type == tensor->type);
  13886. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13887. tensor_grad_view = ggml_view_4d(ctx,
  13888. tensor->grad,
  13889. src1->grad->ne[0],
  13890. src1->grad->ne[1],
  13891. src1->grad->ne[2],
  13892. src1->grad->ne[3],
  13893. nb1, nb2, nb3, offset);
  13894. }
  13895. if (src0->grad) {
  13896. src0->grad = ggml_add_or_set(ctx,
  13897. src0->grad,
  13898. ggml_acc_impl(ctx,
  13899. tensor->grad,
  13900. ggml_neg(ctx, tensor_grad_view),
  13901. nb1, nb2, nb3, offset, false),
  13902. zero_table);
  13903. }
  13904. if (src1->grad) {
  13905. src1->grad =
  13906. ggml_add_or_set(ctx,
  13907. src1->grad,
  13908. ggml_reshape(ctx,
  13909. ggml_cont(ctx, tensor_grad_view),
  13910. src1->grad),
  13911. zero_table);
  13912. }
  13913. } break;
  13914. case GGML_OP_CPY:
  13915. {
  13916. // necessary for llama
  13917. // cpy overwrites value of src1 by src0 and returns view(src1)
  13918. // the overwriting is mathematically equivalent to:
  13919. // tensor = src0 * 1 + src1 * 0
  13920. if (src0->grad) {
  13921. // dsrc0 = dtensor * 1
  13922. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13923. }
  13924. if (src1->grad) {
  13925. // dsrc1 = dtensor * 0 -> noop
  13926. }
  13927. } break;
  13928. case GGML_OP_CONT:
  13929. {
  13930. // same as cpy
  13931. if (src0->grad) {
  13932. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13933. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13934. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13935. }
  13936. } break;
  13937. case GGML_OP_RESHAPE:
  13938. {
  13939. // necessary for llama
  13940. if (src0->grad) {
  13941. src0->grad =
  13942. ggml_add_or_set(ctx, src0->grad,
  13943. ggml_reshape(ctx,
  13944. ggml_is_contiguous(tensor->grad)
  13945. ? tensor->grad
  13946. : ggml_cont(ctx, tensor->grad),
  13947. src0->grad),
  13948. zero_table);
  13949. }
  13950. } break;
  13951. case GGML_OP_VIEW:
  13952. {
  13953. // necessary for llama
  13954. if (src0->grad) {
  13955. size_t offset;
  13956. memcpy(&offset, tensor->op_params, sizeof(offset));
  13957. size_t nb1 = tensor->nb[1];
  13958. size_t nb2 = tensor->nb[2];
  13959. size_t nb3 = tensor->nb[3];
  13960. if (src0->type != src0->grad->type) {
  13961. // gradient is typically F32, but src0 could be other type
  13962. size_t ng = ggml_element_size(src0->grad);
  13963. size_t n0 = ggml_element_size(src0);
  13964. GGML_ASSERT(offset % n0 == 0);
  13965. GGML_ASSERT(nb1 % n0 == 0);
  13966. GGML_ASSERT(nb2 % n0 == 0);
  13967. GGML_ASSERT(nb3 % n0 == 0);
  13968. offset = (offset / n0) * ng;
  13969. nb1 = (nb1 / n0) * ng;
  13970. nb2 = (nb2 / n0) * ng;
  13971. nb3 = (nb3 / n0) * ng;
  13972. }
  13973. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13974. }
  13975. } break;
  13976. case GGML_OP_PERMUTE:
  13977. {
  13978. // necessary for llama
  13979. if (src0->grad) {
  13980. int32_t * axes = (int32_t *) tensor->op_params;
  13981. int axis0 = axes[0] & 0x3;
  13982. int axis1 = axes[1] & 0x3;
  13983. int axis2 = axes[2] & 0x3;
  13984. int axis3 = axes[3] & 0x3;
  13985. int axes_backward[4] = {0,0,0,0};
  13986. axes_backward[axis0] = 0;
  13987. axes_backward[axis1] = 1;
  13988. axes_backward[axis2] = 2;
  13989. axes_backward[axis3] = 3;
  13990. src0->grad =
  13991. ggml_add_or_set(ctx, src0->grad,
  13992. ggml_permute(ctx,
  13993. tensor->grad,
  13994. axes_backward[0],
  13995. axes_backward[1],
  13996. axes_backward[2],
  13997. axes_backward[3]),
  13998. zero_table);
  13999. }
  14000. } break;
  14001. case GGML_OP_TRANSPOSE:
  14002. {
  14003. // necessary for llama
  14004. if (src0->grad) {
  14005. src0->grad =
  14006. ggml_add_or_set(ctx, src0->grad,
  14007. ggml_transpose(ctx, tensor->grad),
  14008. zero_table);
  14009. }
  14010. } break;
  14011. case GGML_OP_GET_ROWS:
  14012. {
  14013. // necessary for llama (only for tokenizer)
  14014. if (src0->grad) {
  14015. src0->grad =
  14016. ggml_add_or_set(ctx, src0->grad,
  14017. // last ggml_get_rows_back argument src0->grad is only
  14018. // necessary to setup correct output shape
  14019. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14020. zero_table);
  14021. }
  14022. if (src1->grad) {
  14023. // noop
  14024. }
  14025. } break;
  14026. case GGML_OP_GET_ROWS_BACK:
  14027. {
  14028. GGML_ASSERT(false); // TODO: not implemented
  14029. } break;
  14030. case GGML_OP_DIAG:
  14031. {
  14032. GGML_ASSERT(false); // TODO: not implemented
  14033. } break;
  14034. case GGML_OP_DIAG_MASK_INF:
  14035. {
  14036. // necessary for llama
  14037. if (src0->grad) {
  14038. const int n_past = ((int32_t *) tensor->op_params)[0];
  14039. src0->grad =
  14040. ggml_add_or_set(ctx, src0->grad,
  14041. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14042. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14043. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14044. zero_table);
  14045. }
  14046. } break;
  14047. case GGML_OP_DIAG_MASK_ZERO:
  14048. {
  14049. // necessary for llama
  14050. if (src0->grad) {
  14051. const int n_past = ((int32_t *) tensor->op_params)[0];
  14052. src0->grad =
  14053. ggml_add_or_set(ctx, src0->grad,
  14054. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14055. zero_table);
  14056. }
  14057. } break;
  14058. case GGML_OP_SOFT_MAX:
  14059. {
  14060. // necessary for llama
  14061. if (src0->grad) {
  14062. src0->grad =
  14063. ggml_add_or_set(ctx, src0->grad,
  14064. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14065. zero_table);
  14066. }
  14067. } break;
  14068. case GGML_OP_SOFT_MAX_BACK:
  14069. {
  14070. GGML_ASSERT(false); // TODO: not implemented
  14071. } break;
  14072. case GGML_OP_ROPE:
  14073. {
  14074. // necessary for llama
  14075. if (src0->grad) {
  14076. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14077. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14078. const int mode = ((int32_t *) tensor->op_params)[2];
  14079. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14080. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14081. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14082. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14083. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14084. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14085. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14086. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14087. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14088. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14089. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14090. src0->grad = ggml_add_or_set(ctx,
  14091. src0->grad,
  14092. ggml_rope_back(ctx,
  14093. tensor->grad,
  14094. src1,
  14095. n_dims,
  14096. mode,
  14097. n_ctx,
  14098. n_orig_ctx,
  14099. freq_base,
  14100. freq_scale,
  14101. ext_factor,
  14102. attn_factor,
  14103. beta_fast,
  14104. beta_slow,
  14105. xpos_base,
  14106. xpos_down),
  14107. zero_table);
  14108. }
  14109. } break;
  14110. case GGML_OP_ROPE_BACK:
  14111. {
  14112. if (src0->grad) {
  14113. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14114. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14115. const int mode = ((int32_t *) tensor->op_params)[2];
  14116. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14117. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14118. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14119. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14120. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14121. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14122. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14123. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14124. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14125. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14126. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14127. src0->grad = ggml_add_or_set(ctx,
  14128. src0->grad,
  14129. ggml_rope_impl(ctx,
  14130. tensor->grad,
  14131. src1,
  14132. n_dims,
  14133. mode,
  14134. n_ctx,
  14135. n_orig_ctx,
  14136. freq_base,
  14137. freq_scale,
  14138. ext_factor,
  14139. attn_factor,
  14140. beta_fast,
  14141. beta_slow,
  14142. xpos_base,
  14143. xpos_down,
  14144. false),
  14145. zero_table);
  14146. }
  14147. } break;
  14148. case GGML_OP_ALIBI:
  14149. {
  14150. GGML_ASSERT(false); // TODO: not implemented
  14151. } break;
  14152. case GGML_OP_CLAMP:
  14153. {
  14154. GGML_ASSERT(false); // TODO: not implemented
  14155. } break;
  14156. case GGML_OP_CONV_TRANSPOSE_1D:
  14157. {
  14158. GGML_ASSERT(false); // TODO: not implemented
  14159. } break;
  14160. case GGML_OP_IM2COL:
  14161. {
  14162. GGML_ASSERT(false); // TODO: not implemented
  14163. } break;
  14164. case GGML_OP_CONV_TRANSPOSE_2D:
  14165. {
  14166. GGML_ASSERT(false); // TODO: not implemented
  14167. } break;
  14168. case GGML_OP_POOL_1D:
  14169. {
  14170. GGML_ASSERT(false); // TODO: not implemented
  14171. } break;
  14172. case GGML_OP_POOL_2D:
  14173. {
  14174. GGML_ASSERT(false); // TODO: not implemented
  14175. } break;
  14176. case GGML_OP_UPSCALE:
  14177. {
  14178. GGML_ASSERT(false); // TODO: not implemented
  14179. } break;
  14180. case GGML_OP_PAD:
  14181. {
  14182. GGML_ASSERT(false); // TODO: not implemented
  14183. } break;
  14184. case GGML_OP_ARANGE:
  14185. {
  14186. GGML_ASSERT(false); // TODO: not implemented
  14187. } break;
  14188. case GGML_OP_TIMESTEP_EMBEDDING:
  14189. {
  14190. GGML_ASSERT(false); // TODO: not implemented
  14191. } break;
  14192. case GGML_OP_ARGSORT:
  14193. {
  14194. GGML_ASSERT(false); // TODO: not implemented
  14195. } break;
  14196. case GGML_OP_LEAKY_RELU:
  14197. {
  14198. GGML_ASSERT(false); // TODO: not implemented
  14199. } break;
  14200. case GGML_OP_FLASH_ATTN:
  14201. {
  14202. struct ggml_tensor * flash_grad = NULL;
  14203. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14204. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14205. GGML_ASSERT(t == 0 || t == 1);
  14206. bool masked = t != 0;
  14207. flash_grad =
  14208. ggml_flash_attn_back(ctx,
  14209. src0,
  14210. src1,
  14211. tensor->src[2],
  14212. tensor->grad,
  14213. masked);
  14214. }
  14215. struct ggml_tensor * src2 = tensor->src[2];
  14216. const int64_t elem_q = ggml_nelements(src0);
  14217. const int64_t elem_k = ggml_nelements(src1);
  14218. const int64_t elem_v = ggml_nelements(src2);
  14219. enum ggml_type result_type = flash_grad->type;
  14220. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14221. const size_t tsize = ggml_type_size(result_type);
  14222. const size_t offs_q = 0;
  14223. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14224. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14225. if (src0->grad) {
  14226. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14227. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14228. src0->grad = ggml_add_or_set(ctx,
  14229. src0->grad,
  14230. grad_q,
  14231. zero_table);
  14232. }
  14233. if (src1->grad) {
  14234. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14235. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14236. src1->grad = ggml_add_or_set(ctx,
  14237. src1->grad,
  14238. grad_k,
  14239. zero_table);
  14240. }
  14241. if (src2->grad) {
  14242. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14243. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14244. src2->grad = ggml_add_or_set(ctx,
  14245. src2->grad,
  14246. grad_v,
  14247. zero_table);
  14248. }
  14249. } break;
  14250. case GGML_OP_FLASH_FF:
  14251. {
  14252. GGML_ASSERT(false); // not supported
  14253. } break;
  14254. case GGML_OP_FLASH_ATTN_BACK:
  14255. {
  14256. GGML_ASSERT(false); // not supported
  14257. } break;
  14258. case GGML_OP_SSM_CONV:
  14259. case GGML_OP_SSM_SCAN:
  14260. {
  14261. GGML_ASSERT(false); // TODO: not implemented
  14262. } break;
  14263. case GGML_OP_WIN_PART:
  14264. case GGML_OP_WIN_UNPART:
  14265. case GGML_OP_UNARY:
  14266. {
  14267. switch (ggml_get_unary_op(tensor)) {
  14268. case GGML_UNARY_OP_ABS:
  14269. {
  14270. if (src0->grad) {
  14271. src0->grad =
  14272. ggml_add_or_set(ctx,
  14273. src0->grad,
  14274. ggml_mul(ctx,
  14275. ggml_sgn(ctx, src0),
  14276. tensor->grad),
  14277. zero_table);
  14278. }
  14279. } break;
  14280. case GGML_UNARY_OP_SGN:
  14281. {
  14282. if (src0->grad) {
  14283. // noop
  14284. }
  14285. } break;
  14286. case GGML_UNARY_OP_NEG:
  14287. {
  14288. if (src0->grad) {
  14289. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14290. }
  14291. } break;
  14292. case GGML_UNARY_OP_STEP:
  14293. {
  14294. if (src0->grad) {
  14295. // noop
  14296. }
  14297. } break;
  14298. case GGML_UNARY_OP_TANH:
  14299. {
  14300. GGML_ASSERT(false); // TODO: not implemented
  14301. } break;
  14302. case GGML_UNARY_OP_ELU:
  14303. {
  14304. GGML_ASSERT(false); // TODO: not implemented
  14305. } break;
  14306. case GGML_UNARY_OP_RELU:
  14307. {
  14308. if (src0->grad) {
  14309. src0->grad = ggml_add_or_set(ctx,
  14310. src0->grad,
  14311. ggml_mul(ctx,
  14312. ggml_step(ctx, src0),
  14313. tensor->grad),
  14314. zero_table);
  14315. }
  14316. } break;
  14317. case GGML_UNARY_OP_GELU:
  14318. {
  14319. GGML_ASSERT(false); // TODO: not implemented
  14320. } break;
  14321. case GGML_UNARY_OP_GELU_QUICK:
  14322. {
  14323. GGML_ASSERT(false); // TODO: not implemented
  14324. } break;
  14325. case GGML_UNARY_OP_SILU:
  14326. {
  14327. // necessary for llama
  14328. if (src0->grad) {
  14329. src0->grad = ggml_add_or_set(ctx,
  14330. src0->grad,
  14331. ggml_silu_back(ctx, src0, tensor->grad),
  14332. zero_table);
  14333. }
  14334. } break;
  14335. default:
  14336. GGML_ASSERT(false);
  14337. }
  14338. } break;
  14339. case GGML_OP_GET_REL_POS:
  14340. case GGML_OP_ADD_REL_POS:
  14341. case GGML_OP_MAP_UNARY:
  14342. case GGML_OP_MAP_BINARY:
  14343. case GGML_OP_MAP_CUSTOM1_F32:
  14344. case GGML_OP_MAP_CUSTOM2_F32:
  14345. case GGML_OP_MAP_CUSTOM3_F32:
  14346. case GGML_OP_MAP_CUSTOM1:
  14347. case GGML_OP_MAP_CUSTOM2:
  14348. case GGML_OP_MAP_CUSTOM3:
  14349. {
  14350. GGML_ASSERT(false); // not supported
  14351. } break;
  14352. case GGML_OP_CROSS_ENTROPY_LOSS:
  14353. {
  14354. if (src0->grad) {
  14355. src0->grad = ggml_add_or_set(ctx,
  14356. src0->grad,
  14357. ggml_cross_entropy_loss_back(ctx,
  14358. src0,
  14359. src1,
  14360. tensor->grad),
  14361. zero_table);
  14362. }
  14363. } break;
  14364. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14365. {
  14366. GGML_ASSERT(false); // not supported
  14367. } break;
  14368. case GGML_OP_NONE:
  14369. {
  14370. // nop
  14371. } break;
  14372. case GGML_OP_COUNT:
  14373. {
  14374. GGML_ASSERT(false);
  14375. } break;
  14376. }
  14377. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14378. if (tensor->src[i] && tensor->src[i]->grad) {
  14379. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14380. }
  14381. }
  14382. }
  14383. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14384. if (node->grad == NULL) {
  14385. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14386. // it can also happen during forward pass, if the user performs computations with constants
  14387. if (node->op != GGML_OP_NONE) {
  14388. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14389. }
  14390. }
  14391. // check if already visited
  14392. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14393. return;
  14394. }
  14395. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14396. const int k =
  14397. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14398. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14399. /* unknown order, just fall back to using i*/ i;
  14400. if (node->src[k]) {
  14401. ggml_visit_parents(cgraph, node->src[k]);
  14402. }
  14403. }
  14404. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14405. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14406. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14407. if (strlen(node->name) == 0) {
  14408. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14409. }
  14410. cgraph->leafs[cgraph->n_leafs] = node;
  14411. cgraph->n_leafs++;
  14412. } else {
  14413. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14414. if (strlen(node->name) == 0) {
  14415. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14416. }
  14417. cgraph->nodes[cgraph->n_nodes] = node;
  14418. if (cgraph->grads) {
  14419. cgraph->grads[cgraph->n_nodes] = node->grad;
  14420. }
  14421. cgraph->n_nodes++;
  14422. }
  14423. }
  14424. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14425. if (!expand) {
  14426. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14427. ggml_graph_clear(cgraph);
  14428. }
  14429. const int n0 = cgraph->n_nodes;
  14430. UNUSED(n0);
  14431. ggml_visit_parents(cgraph, tensor);
  14432. const int n_new = cgraph->n_nodes - n0;
  14433. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14434. if (n_new > 0) {
  14435. // the last added node should always be starting point
  14436. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14437. }
  14438. }
  14439. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14440. ggml_build_forward_impl(cgraph, tensor, true);
  14441. }
  14442. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14443. GGML_ASSERT(gf->n_nodes > 0);
  14444. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14445. if (keep) {
  14446. for (int i = 0; i < gf->n_nodes; i++) {
  14447. struct ggml_tensor * node = gf->nodes[i];
  14448. if (node->grad) {
  14449. node->grad = ggml_dup_tensor(ctx, node);
  14450. gf->grads[i] = node->grad;
  14451. }
  14452. }
  14453. }
  14454. // remember original gradients which start with zero values
  14455. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14456. for (int i = 0; i < gf->n_nodes; i++) {
  14457. if (gf->grads[i]) {
  14458. ggml_hash_insert(zero_table, gf->grads[i]);
  14459. }
  14460. }
  14461. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14462. struct ggml_tensor * node = gf->nodes[i];
  14463. // inplace operations to add gradients are not created by ggml_compute_backward
  14464. // use allocator to automatically make inplace operations
  14465. if (node->grad) {
  14466. ggml_compute_backward(ctx, node, zero_table);
  14467. }
  14468. }
  14469. for (int i = 0; i < gf->n_nodes; i++) {
  14470. struct ggml_tensor * node = gf->nodes[i];
  14471. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14472. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14473. ggml_build_forward_expand(gb, node->grad);
  14474. }
  14475. }
  14476. ggml_hash_set_free(zero_table);
  14477. }
  14478. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14479. size_t nbytes = sizeof(struct ggml_cgraph);
  14480. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14481. if (grads) {
  14482. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14483. }
  14484. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14485. return nbytes;
  14486. }
  14487. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14488. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14489. }
  14490. size_t ggml_graph_overhead(void) {
  14491. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14492. }
  14493. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14494. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14495. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14496. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14497. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14498. size_t hash_size = ggml_hash_size(size * 2);
  14499. struct ggml_tensor ** nodes_ptr = data_start;
  14500. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14501. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14502. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14503. // check that we allocated the correct amount of memory
  14504. assert(obj_size == (size_t) (
  14505. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14506. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14507. *cgraph = (struct ggml_cgraph) {
  14508. /*.size =*/ size,
  14509. /*.n_nodes =*/ 0,
  14510. /*.n_leafs =*/ 0,
  14511. /*.nodes =*/ nodes_ptr,
  14512. /*.grads =*/ grads_ptr,
  14513. /*.leafs =*/ leafs_ptr,
  14514. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14515. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14516. /*.perf_runs =*/ 0,
  14517. /*.perf_cycles =*/ 0,
  14518. /*.perf_time_us =*/ 0,
  14519. };
  14520. return cgraph;
  14521. }
  14522. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14523. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14524. }
  14525. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14526. struct ggml_cgraph cgraph = {
  14527. /*.size =*/ 0,
  14528. /*.n_nodes =*/ i1 - i0,
  14529. /*.n_leafs =*/ 0,
  14530. /*.nodes =*/ cgraph0->nodes + i0,
  14531. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14532. /*.leafs =*/ NULL,
  14533. /*.hash_table =*/ { 0, NULL },
  14534. /*.order =*/ cgraph0->order,
  14535. /*.perf_runs =*/ 0,
  14536. /*.perf_cycles =*/ 0,
  14537. /*.perf_time_us =*/ 0,
  14538. };
  14539. return cgraph;
  14540. }
  14541. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14542. GGML_ASSERT(dst->size >= src->n_leafs);
  14543. GGML_ASSERT(dst->size >= src->n_nodes);
  14544. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14545. dst->n_leafs = src->n_leafs;
  14546. dst->n_nodes = src->n_nodes;
  14547. dst->order = src->order;
  14548. for (int i = 0; i < src->n_leafs; ++i) {
  14549. dst->leafs[i] = src->leafs[i];
  14550. }
  14551. for (int i = 0; i < src->n_nodes; ++i) {
  14552. dst->nodes[i] = src->nodes[i];
  14553. }
  14554. if (src->grads) {
  14555. GGML_ASSERT(dst->grads != NULL);
  14556. for (int i = 0; i < src->n_nodes; ++i) {
  14557. dst->grads[i] = src->grads[i];
  14558. }
  14559. }
  14560. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14561. if (src->visited_hash_table.keys[i]) {
  14562. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14563. }
  14564. }
  14565. }
  14566. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14567. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14568. ggml_graph_cpy(cgraph, result);
  14569. return result;
  14570. }
  14571. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14572. GGML_ASSERT(cgraph->grads != NULL);
  14573. for (int i = 0; i < cgraph->n_nodes; i++) {
  14574. struct ggml_tensor * grad = cgraph->grads[i];
  14575. if (grad) {
  14576. ggml_set_zero(grad);
  14577. }
  14578. }
  14579. }
  14580. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14581. cgraph->n_leafs = 0;
  14582. cgraph->n_nodes = 0;
  14583. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14584. }
  14585. //
  14586. // thread data
  14587. //
  14588. // synchronization is done via busy loops
  14589. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14590. //
  14591. #ifdef __APPLE__
  14592. //#include <os/lock.h>
  14593. //
  14594. //typedef os_unfair_lock ggml_lock_t;
  14595. //
  14596. //#define ggml_lock_init(x) UNUSED(x)
  14597. //#define ggml_lock_destroy(x) UNUSED(x)
  14598. //#define ggml_lock_lock os_unfair_lock_lock
  14599. //#define ggml_lock_unlock os_unfair_lock_unlock
  14600. //
  14601. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14602. typedef int ggml_lock_t;
  14603. #define ggml_lock_init(x) UNUSED(x)
  14604. #define ggml_lock_destroy(x) UNUSED(x)
  14605. #define ggml_lock_lock(x) UNUSED(x)
  14606. #define ggml_lock_unlock(x) UNUSED(x)
  14607. #define GGML_LOCK_INITIALIZER 0
  14608. typedef pthread_t ggml_thread_t;
  14609. #define ggml_thread_create pthread_create
  14610. #define ggml_thread_join pthread_join
  14611. #else
  14612. //typedef pthread_spinlock_t ggml_lock_t;
  14613. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14614. //#define ggml_lock_destroy pthread_spin_destroy
  14615. //#define ggml_lock_lock pthread_spin_lock
  14616. //#define ggml_lock_unlock pthread_spin_unlock
  14617. typedef int ggml_lock_t;
  14618. #define ggml_lock_init(x) UNUSED(x)
  14619. #define ggml_lock_destroy(x) UNUSED(x)
  14620. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14621. #define ggml_lock_lock(x) _mm_pause()
  14622. #else
  14623. #define ggml_lock_lock(x) UNUSED(x)
  14624. #endif
  14625. #define ggml_lock_unlock(x) UNUSED(x)
  14626. #define GGML_LOCK_INITIALIZER 0
  14627. typedef pthread_t ggml_thread_t;
  14628. #define ggml_thread_create pthread_create
  14629. #define ggml_thread_join pthread_join
  14630. #endif
  14631. // Android's libc implementation "bionic" does not support setting affinity
  14632. #if defined(__gnu_linux__)
  14633. static void set_numa_thread_affinity(int thread_n) {
  14634. if (!ggml_is_numa()) {
  14635. return;
  14636. }
  14637. int node_num;
  14638. int rv;
  14639. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14640. switch(g_state.numa.numa_strategy) {
  14641. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14642. // run thread on node_num thread_n / (threads per node)
  14643. node_num = thread_n % g_state.numa.n_nodes;
  14644. break;
  14645. case GGML_NUMA_STRATEGY_ISOLATE:
  14646. // run thread on current_node
  14647. node_num = g_state.numa.current_node;
  14648. break;
  14649. case GGML_NUMA_STRATEGY_NUMACTL:
  14650. // use the cpuset that numactl gave us
  14651. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14652. if (rv) {
  14653. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14654. }
  14655. return;
  14656. default:
  14657. return;
  14658. }
  14659. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14660. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14661. CPU_ZERO_S(setsize, cpus);
  14662. for (size_t i = 0; i < node->n_cpus; ++i) {
  14663. CPU_SET_S(node->cpus[i], setsize, cpus);
  14664. }
  14665. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14666. if (rv) {
  14667. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14668. }
  14669. CPU_FREE(cpus);
  14670. }
  14671. static void clear_numa_thread_affinity(void) {
  14672. if (!ggml_is_numa()) {
  14673. return;
  14674. }
  14675. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14676. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14677. CPU_ZERO_S(setsize, cpus);
  14678. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14679. CPU_SET_S(i, setsize, cpus);
  14680. }
  14681. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14682. if (rv) {
  14683. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14684. }
  14685. CPU_FREE(cpus);
  14686. }
  14687. #else
  14688. // TODO: Windows etc.
  14689. // (the linux implementation may also work on BSD, someone should test)
  14690. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14691. static void clear_numa_thread_affinity(void) {}
  14692. #endif
  14693. struct ggml_compute_state_shared {
  14694. const struct ggml_cgraph * cgraph;
  14695. const struct ggml_cplan * cplan;
  14696. int64_t perf_node_start_cycles;
  14697. int64_t perf_node_start_time_us;
  14698. const int n_threads;
  14699. // synchronization primitives
  14700. atomic_int n_active; // num active threads
  14701. atomic_int node_n; // active graph node
  14702. atomic_int node_task; // active graph node task phase
  14703. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14704. void * abort_callback_data;
  14705. };
  14706. struct ggml_compute_state {
  14707. ggml_thread_t thrd;
  14708. int ith;
  14709. struct ggml_compute_state_shared * shared;
  14710. enum ggml_status ec;
  14711. };
  14712. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14713. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14714. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14715. node->perf_runs++;
  14716. node->perf_cycles += cycles_cur;
  14717. node->perf_time_us += time_us_cur;
  14718. }
  14719. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14720. int n_tasks = 0;
  14721. switch (node->op) {
  14722. case GGML_OP_CPY:
  14723. case GGML_OP_DUP:
  14724. case GGML_OP_ADD:
  14725. case GGML_OP_ADD1:
  14726. case GGML_OP_ACC:
  14727. {
  14728. n_tasks = n_threads;
  14729. } break;
  14730. case GGML_OP_SUB:
  14731. case GGML_OP_SQR:
  14732. case GGML_OP_SQRT:
  14733. case GGML_OP_LOG:
  14734. case GGML_OP_SUM:
  14735. case GGML_OP_SUM_ROWS:
  14736. case GGML_OP_MEAN:
  14737. case GGML_OP_ARGMAX:
  14738. case GGML_OP_REPEAT:
  14739. case GGML_OP_REPEAT_BACK:
  14740. case GGML_OP_LEAKY_RELU:
  14741. {
  14742. n_tasks = 1;
  14743. } break;
  14744. case GGML_OP_UNARY:
  14745. switch (ggml_get_unary_op(node)) {
  14746. case GGML_UNARY_OP_ABS:
  14747. case GGML_UNARY_OP_SGN:
  14748. case GGML_UNARY_OP_NEG:
  14749. case GGML_UNARY_OP_STEP:
  14750. case GGML_UNARY_OP_TANH:
  14751. case GGML_UNARY_OP_ELU:
  14752. case GGML_UNARY_OP_RELU:
  14753. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14754. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14755. {
  14756. n_tasks = 1;
  14757. } break;
  14758. case GGML_UNARY_OP_GELU:
  14759. case GGML_UNARY_OP_GELU_QUICK:
  14760. case GGML_UNARY_OP_SILU:
  14761. {
  14762. n_tasks = n_threads;
  14763. } break;
  14764. default:
  14765. GGML_ASSERT(false);
  14766. }
  14767. break;
  14768. case GGML_OP_SILU_BACK:
  14769. case GGML_OP_MUL:
  14770. case GGML_OP_DIV:
  14771. case GGML_OP_NORM:
  14772. case GGML_OP_RMS_NORM:
  14773. case GGML_OP_RMS_NORM_BACK:
  14774. case GGML_OP_GROUP_NORM:
  14775. case GGML_OP_CONCAT:
  14776. {
  14777. n_tasks = n_threads;
  14778. } break;
  14779. case GGML_OP_MUL_MAT:
  14780. {
  14781. n_tasks = n_threads;
  14782. // TODO: use different scheduling for different matrix sizes
  14783. //const int nr0 = ggml_nrows(node->src[0]);
  14784. //const int nr1 = ggml_nrows(node->src[1]);
  14785. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14786. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14787. } break;
  14788. case GGML_OP_MUL_MAT_ID:
  14789. {
  14790. n_tasks = n_threads;
  14791. } break;
  14792. case GGML_OP_OUT_PROD:
  14793. {
  14794. n_tasks = n_threads;
  14795. } break;
  14796. case GGML_OP_GET_ROWS:
  14797. {
  14798. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14799. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14800. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14801. } break;
  14802. case GGML_OP_SCALE:
  14803. case GGML_OP_SET:
  14804. case GGML_OP_CONT:
  14805. case GGML_OP_RESHAPE:
  14806. case GGML_OP_VIEW:
  14807. case GGML_OP_PERMUTE:
  14808. case GGML_OP_TRANSPOSE:
  14809. case GGML_OP_GET_ROWS_BACK:
  14810. case GGML_OP_DIAG:
  14811. {
  14812. n_tasks = 1;
  14813. } break;
  14814. case GGML_OP_DIAG_MASK_ZERO:
  14815. case GGML_OP_DIAG_MASK_INF:
  14816. case GGML_OP_SOFT_MAX_BACK:
  14817. case GGML_OP_ROPE:
  14818. case GGML_OP_ROPE_BACK:
  14819. case GGML_OP_ADD_REL_POS:
  14820. {
  14821. n_tasks = n_threads;
  14822. } break;
  14823. case GGML_OP_ALIBI:
  14824. {
  14825. n_tasks = 1; //TODO
  14826. } break;
  14827. case GGML_OP_CLAMP:
  14828. {
  14829. n_tasks = 1; //TODO
  14830. } break;
  14831. case GGML_OP_SOFT_MAX:
  14832. {
  14833. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14834. } break;
  14835. case GGML_OP_CONV_TRANSPOSE_1D:
  14836. {
  14837. n_tasks = n_threads;
  14838. } break;
  14839. case GGML_OP_IM2COL:
  14840. {
  14841. n_tasks = n_threads;
  14842. } break;
  14843. case GGML_OP_CONV_TRANSPOSE_2D:
  14844. {
  14845. n_tasks = n_threads;
  14846. } break;
  14847. case GGML_OP_POOL_1D:
  14848. case GGML_OP_POOL_2D:
  14849. {
  14850. n_tasks = 1;
  14851. } break;
  14852. case GGML_OP_UPSCALE:
  14853. {
  14854. n_tasks = n_threads;
  14855. } break;
  14856. case GGML_OP_PAD:
  14857. {
  14858. n_tasks = n_threads;
  14859. } break;
  14860. case GGML_OP_ARANGE:
  14861. {
  14862. n_tasks = n_threads;
  14863. } break;
  14864. case GGML_OP_TIMESTEP_EMBEDDING:
  14865. {
  14866. n_tasks = n_threads;
  14867. } break;
  14868. case GGML_OP_ARGSORT:
  14869. {
  14870. n_tasks = n_threads;
  14871. } break;
  14872. case GGML_OP_FLASH_ATTN:
  14873. {
  14874. n_tasks = n_threads;
  14875. } break;
  14876. case GGML_OP_FLASH_FF:
  14877. {
  14878. n_tasks = n_threads;
  14879. } break;
  14880. case GGML_OP_FLASH_ATTN_BACK:
  14881. {
  14882. n_tasks = n_threads;
  14883. } break;
  14884. case GGML_OP_SSM_CONV:
  14885. case GGML_OP_SSM_SCAN:
  14886. {
  14887. n_tasks = n_threads;
  14888. } break;
  14889. case GGML_OP_WIN_PART:
  14890. case GGML_OP_WIN_UNPART:
  14891. case GGML_OP_GET_REL_POS:
  14892. case GGML_OP_MAP_UNARY:
  14893. case GGML_OP_MAP_BINARY:
  14894. case GGML_OP_MAP_CUSTOM1_F32:
  14895. case GGML_OP_MAP_CUSTOM2_F32:
  14896. case GGML_OP_MAP_CUSTOM3_F32:
  14897. {
  14898. n_tasks = 1;
  14899. } break;
  14900. case GGML_OP_MAP_CUSTOM1:
  14901. {
  14902. struct ggml_map_custom1_op_params p;
  14903. memcpy(&p, node->op_params, sizeof(p));
  14904. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14905. n_tasks = n_threads;
  14906. } else {
  14907. n_tasks = MIN(p.n_tasks, n_threads);
  14908. }
  14909. } break;
  14910. case GGML_OP_MAP_CUSTOM2:
  14911. {
  14912. struct ggml_map_custom2_op_params p;
  14913. memcpy(&p, node->op_params, sizeof(p));
  14914. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14915. n_tasks = n_threads;
  14916. } else {
  14917. n_tasks = MIN(p.n_tasks, n_threads);
  14918. }
  14919. } break;
  14920. case GGML_OP_MAP_CUSTOM3:
  14921. {
  14922. struct ggml_map_custom3_op_params p;
  14923. memcpy(&p, node->op_params, sizeof(p));
  14924. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14925. n_tasks = n_threads;
  14926. } else {
  14927. n_tasks = MIN(p.n_tasks, n_threads);
  14928. }
  14929. } break;
  14930. case GGML_OP_CROSS_ENTROPY_LOSS:
  14931. {
  14932. n_tasks = n_threads;
  14933. } break;
  14934. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14935. {
  14936. n_tasks = n_threads;
  14937. } break;
  14938. case GGML_OP_NONE:
  14939. {
  14940. n_tasks = 1;
  14941. } break;
  14942. case GGML_OP_COUNT:
  14943. {
  14944. GGML_ASSERT(false);
  14945. } break;
  14946. default:
  14947. {
  14948. fprintf(stderr, "%s: op not implemented: ", __func__);
  14949. if (node->op < GGML_OP_COUNT) {
  14950. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14951. } else {
  14952. fprintf(stderr, "%d\n", node->op);
  14953. }
  14954. GGML_ASSERT(false);
  14955. } break;
  14956. }
  14957. assert(n_tasks > 0);
  14958. return n_tasks;
  14959. }
  14960. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14961. // wait for other threads to finish
  14962. const int last_node_n = * node_n;
  14963. while (true) {
  14964. if (do_yield) {
  14965. sched_yield();
  14966. }
  14967. * node_n = atomic_load(&state->shared->node_n);
  14968. if (* node_n != last_node_n) break;
  14969. }
  14970. }
  14971. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14972. // wait for other threads to finish
  14973. const int last_task_phase = * task_phase;
  14974. while (true) {
  14975. if (do_yield) {
  14976. sched_yield();
  14977. }
  14978. * task_phase = atomic_load(&state->shared->node_task);
  14979. if (* task_phase != last_task_phase) break;
  14980. }
  14981. }
  14982. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14983. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14984. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14985. const struct ggml_cplan * cplan = state->shared->cplan;
  14986. const int n_threads = state->shared->n_threads;
  14987. set_numa_thread_affinity(state->ith);
  14988. int node_n = -1;
  14989. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14990. while (true) {
  14991. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14992. state->shared->node_n += 1;
  14993. state->ec = GGML_STATUS_ABORTED;
  14994. return 0;
  14995. }
  14996. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14997. // all other threads are finished and spinning
  14998. // do finalize and init here so we don't have synchronize again
  14999. struct ggml_compute_params params = {
  15000. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15001. /*.ith =*/ 0,
  15002. /*.nth =*/ 0,
  15003. /*.wsize =*/ cplan->work_size,
  15004. /*.wdata =*/ cplan->work_data,
  15005. };
  15006. if (node_n != -1) {
  15007. /* FINALIZE */
  15008. struct ggml_tensor * node = cgraph->nodes[node_n];
  15009. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15010. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15011. ggml_compute_forward(&params, node);
  15012. }
  15013. ggml_graph_compute_perf_stats_node(node, state->shared);
  15014. }
  15015. // distribute new work or execute it direct if 1T
  15016. while (++node_n < cgraph->n_nodes) {
  15017. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15018. struct ggml_tensor * node = cgraph->nodes[node_n];
  15019. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15020. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15021. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15022. params.nth = n_tasks;
  15023. if (n_tasks == 1) {
  15024. /* INIT */
  15025. if (GGML_OP_HAS_INIT[node->op]) {
  15026. params.type = GGML_TASK_TYPE_INIT;
  15027. ggml_compute_forward(&params, node);
  15028. }
  15029. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15030. // they do something more efficient than spinning (?)
  15031. params.type = GGML_TASK_TYPE_COMPUTE;
  15032. ggml_compute_forward(&params, node);
  15033. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15034. params.type = GGML_TASK_TYPE_FINALIZE;
  15035. ggml_compute_forward(&params, node);
  15036. }
  15037. ggml_graph_compute_perf_stats_node(node, state->shared);
  15038. } else {
  15039. break;
  15040. }
  15041. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15042. break;
  15043. }
  15044. }
  15045. task_phase = GGML_TASK_TYPE_INIT;
  15046. atomic_store(&state->shared->n_active, n_threads);
  15047. atomic_store(&state->shared->node_n, node_n);
  15048. atomic_store(&state->shared->node_task, task_phase);
  15049. } else {
  15050. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15051. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15052. }
  15053. // check if we should stop
  15054. if (node_n >= cgraph->n_nodes) break;
  15055. /* INIT & COMPUTE */
  15056. struct ggml_tensor * node = cgraph->nodes[node_n];
  15057. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15058. struct ggml_compute_params params = {
  15059. /*.type =*/ GGML_TASK_TYPE_INIT,
  15060. /*.ith =*/ state->ith,
  15061. /*.nth =*/ n_tasks,
  15062. /*.wsize =*/ cplan->work_size,
  15063. /*.wdata =*/ cplan->work_data,
  15064. };
  15065. if (state->ith < n_tasks) {
  15066. if (GGML_OP_HAS_INIT[node->op]) {
  15067. ggml_compute_forward(&params, node);
  15068. }
  15069. }
  15070. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15071. task_phase = GGML_TASK_TYPE_COMPUTE;
  15072. atomic_store(&state->shared->n_active, n_threads);
  15073. atomic_store(&state->shared->node_task, task_phase);
  15074. }
  15075. else {
  15076. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15077. // depending on the workload and the operating system.
  15078. // since it is not clear what is the best approach, it should potentially become user-configurable
  15079. // ref: https://github.com/ggerganov/ggml/issues/291
  15080. // UPD: adding the do_yield flag seems to resolve the issue universally
  15081. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15082. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15083. }
  15084. if (state->ith < n_tasks) {
  15085. params.type = GGML_TASK_TYPE_COMPUTE;
  15086. ggml_compute_forward(&params, node);
  15087. }
  15088. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15089. task_phase = GGML_TASK_TYPE_FINALIZE;
  15090. atomic_store(&state->shared->n_active, n_threads);
  15091. atomic_store(&state->shared->node_task, task_phase);
  15092. }
  15093. else {
  15094. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15095. }
  15096. }
  15097. return 0;
  15098. }
  15099. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15100. if (n_threads <= 0) {
  15101. n_threads = GGML_DEFAULT_N_THREADS;
  15102. }
  15103. size_t work_size = 0;
  15104. struct ggml_cplan cplan;
  15105. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15106. int max_tasks = 1;
  15107. // thread scheduling for the different operations + work buffer size estimation
  15108. for (int i = 0; i < cgraph->n_nodes; i++) {
  15109. struct ggml_tensor * node = cgraph->nodes[i];
  15110. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15111. max_tasks = MAX(max_tasks, n_tasks);
  15112. size_t cur = 0;
  15113. switch (node->op) {
  15114. case GGML_OP_CPY:
  15115. case GGML_OP_DUP:
  15116. {
  15117. if (ggml_is_quantized(node->type)) {
  15118. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15119. }
  15120. } break;
  15121. case GGML_OP_ADD:
  15122. case GGML_OP_ADD1:
  15123. {
  15124. if (ggml_is_quantized(node->src[0]->type)) {
  15125. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15126. }
  15127. } break;
  15128. case GGML_OP_ACC:
  15129. {
  15130. if (ggml_is_quantized(node->src[0]->type)) {
  15131. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15132. }
  15133. } break;
  15134. case GGML_OP_MUL_MAT:
  15135. {
  15136. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15137. #if defined(GGML_USE_CLBLAST)
  15138. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15139. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15140. } else
  15141. #endif
  15142. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15143. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15144. if (node->src[0]->type != GGML_TYPE_F32) {
  15145. // here we need memory for fully dequantized matrix from src0
  15146. // take into account that src0 can be broadcasted into src1[2,3]
  15147. cur = ggml_type_size(GGML_TYPE_F32)
  15148. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15149. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15150. }
  15151. } else
  15152. #endif
  15153. if (node->src[1]->type != vec_dot_type) {
  15154. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15155. }
  15156. } break;
  15157. case GGML_OP_MUL_MAT_ID:
  15158. {
  15159. cur = 0;
  15160. const struct ggml_tensor * src0 = node->src[2];
  15161. const struct ggml_tensor * src1 = node->src[1];
  15162. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15163. if (src1->type != vec_dot_type) {
  15164. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15165. }
  15166. const int n_as = ggml_get_op_params_i32(node, 1);
  15167. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15168. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15169. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15170. } break;
  15171. case GGML_OP_OUT_PROD:
  15172. {
  15173. if (ggml_is_quantized(node->src[0]->type)) {
  15174. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15175. }
  15176. } break;
  15177. case GGML_OP_SOFT_MAX:
  15178. case GGML_OP_ROPE:
  15179. {
  15180. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15181. } break;
  15182. case GGML_OP_CONV_TRANSPOSE_1D:
  15183. {
  15184. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15185. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15186. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15187. const int64_t ne00 = node->src[0]->ne[0]; // K
  15188. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15189. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15190. const int64_t ne10 = node->src[1]->ne[0]; // L
  15191. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15192. if (node->src[0]->type == GGML_TYPE_F16 &&
  15193. node->src[1]->type == GGML_TYPE_F32) {
  15194. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15195. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15196. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15197. node->src[1]->type == GGML_TYPE_F32) {
  15198. cur += sizeof(float)*ne00*ne01*ne02;
  15199. cur += sizeof(float)*ne10*ne11;
  15200. } else {
  15201. GGML_ASSERT(false);
  15202. }
  15203. } break;
  15204. case GGML_OP_CONV_TRANSPOSE_2D:
  15205. {
  15206. const int64_t ne00 = node->src[0]->ne[0]; // W
  15207. const int64_t ne01 = node->src[0]->ne[1]; // H
  15208. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15209. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15210. const int64_t ne10 = node->src[1]->ne[0]; // W
  15211. const int64_t ne11 = node->src[1]->ne[1]; // H
  15212. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15213. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15214. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15215. } break;
  15216. case GGML_OP_FLASH_ATTN:
  15217. {
  15218. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15219. if (node->src[1]->type == GGML_TYPE_F32) {
  15220. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15221. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15222. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15223. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15224. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15225. }
  15226. } break;
  15227. case GGML_OP_FLASH_FF:
  15228. {
  15229. if (node->src[1]->type == GGML_TYPE_F32) {
  15230. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15231. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15232. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15233. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15234. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15235. }
  15236. } break;
  15237. case GGML_OP_FLASH_ATTN_BACK:
  15238. {
  15239. const int64_t D = node->src[0]->ne[0];
  15240. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15241. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15242. if (node->src[1]->type == GGML_TYPE_F32) {
  15243. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15244. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15245. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15246. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15247. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15248. }
  15249. } break;
  15250. case GGML_OP_CROSS_ENTROPY_LOSS:
  15251. {
  15252. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15253. } break;
  15254. case GGML_OP_COUNT:
  15255. {
  15256. GGML_ASSERT(false);
  15257. } break;
  15258. default:
  15259. break;
  15260. }
  15261. work_size = MAX(work_size, cur);
  15262. }
  15263. if (work_size > 0) {
  15264. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15265. }
  15266. cplan.n_threads = MIN(max_tasks, n_threads);
  15267. cplan.work_size = work_size;
  15268. cplan.work_data = NULL;
  15269. return cplan;
  15270. }
  15271. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15272. {
  15273. GGML_ASSERT(cplan);
  15274. GGML_ASSERT(cplan->n_threads > 0);
  15275. if (cplan->work_size > 0) {
  15276. GGML_ASSERT(cplan->work_data);
  15277. }
  15278. }
  15279. #ifdef GGML_USE_VULKAN
  15280. for (int i = 0; i < cgraph->n_nodes; i++) {
  15281. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15282. }
  15283. ggml_vk_preallocate_buffers_cpu_assist();
  15284. for (int i = 0; i < cgraph->n_nodes; i++) {
  15285. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15286. }
  15287. #endif
  15288. const int n_threads = cplan->n_threads;
  15289. struct ggml_compute_state_shared state_shared = {
  15290. /*.cgraph =*/ cgraph,
  15291. /*.cgraph_plan =*/ cplan,
  15292. /*.perf_node_start_cycles =*/ 0,
  15293. /*.perf_node_start_time_us =*/ 0,
  15294. /*.n_threads =*/ n_threads,
  15295. /*.n_active =*/ n_threads,
  15296. /*.node_n =*/ -1,
  15297. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15298. /*.abort_callback =*/ NULL,
  15299. /*.abort_callback_data =*/ NULL,
  15300. };
  15301. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15302. // create thread pool
  15303. if (n_threads > 1) {
  15304. for (int j = 1; j < n_threads; ++j) {
  15305. workers[j] = (struct ggml_compute_state) {
  15306. .thrd = 0,
  15307. .ith = j,
  15308. .shared = &state_shared,
  15309. .ec = GGML_STATUS_SUCCESS,
  15310. };
  15311. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15312. GGML_ASSERT(rc == 0);
  15313. UNUSED(rc);
  15314. }
  15315. }
  15316. workers[0].ith = 0;
  15317. workers[0].shared = &state_shared;
  15318. workers[0].ec = GGML_STATUS_SUCCESS;
  15319. const int64_t perf_start_cycles = ggml_perf_cycles();
  15320. const int64_t perf_start_time_us = ggml_perf_time_us();
  15321. // this is a work thread too
  15322. ggml_graph_compute_thread(&workers[0]);
  15323. enum ggml_status compute_status = workers[0].ec;
  15324. // don't leave affinity set on the main thread
  15325. clear_numa_thread_affinity();
  15326. // join or kill thread pool
  15327. if (n_threads > 1) {
  15328. for (int j = 1; j < n_threads; j++) {
  15329. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15330. GGML_ASSERT(rc == 0);
  15331. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15332. compute_status = workers[j].ec;
  15333. }
  15334. }
  15335. #ifdef GGML_USE_VULKAN
  15336. ggml_vk_graph_cleanup_cpu_assist();
  15337. #endif
  15338. // performance stats (graph)
  15339. {
  15340. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15341. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15342. cgraph->perf_runs++;
  15343. cgraph->perf_cycles += perf_cycles_cur;
  15344. cgraph->perf_time_us += perf_time_us_cur;
  15345. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15346. __func__, cgraph->perf_runs,
  15347. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15348. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15349. (double) perf_time_us_cur / 1000.0,
  15350. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15351. }
  15352. return compute_status;
  15353. }
  15354. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15355. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15356. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15357. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15358. return ggml_graph_compute(cgraph, &cplan);
  15359. }
  15360. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15361. for (int i = 0; i < cgraph->n_leafs; i++) {
  15362. struct ggml_tensor * leaf = cgraph->leafs[i];
  15363. if (strcmp(leaf->name, name) == 0) {
  15364. return leaf;
  15365. }
  15366. }
  15367. for (int i = 0; i < cgraph->n_nodes; i++) {
  15368. struct ggml_tensor * node = cgraph->nodes[i];
  15369. if (strcmp(node->name, name) == 0) {
  15370. return node;
  15371. }
  15372. }
  15373. return NULL;
  15374. }
  15375. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15376. const int64_t * ne = tensor->ne;
  15377. const size_t * nb = tensor->nb;
  15378. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15379. ggml_type_name(tensor->type),
  15380. ggml_op_name (tensor->op),
  15381. ggml_n_dims(tensor),
  15382. ne[0], ne[1], ne[2], ne[3],
  15383. nb[0], nb[1], nb[2], nb[3],
  15384. tensor->data,
  15385. tensor->name);
  15386. }
  15387. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15388. const int64_t * ne = tensor->ne;
  15389. const size_t * nb = tensor->nb;
  15390. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15391. arg,
  15392. ggml_type_name(tensor->type),
  15393. ggml_op_name (tensor->op),
  15394. ggml_n_dims(tensor),
  15395. ne[0], ne[1], ne[2], ne[3],
  15396. nb[0], nb[1], nb[2], nb[3],
  15397. tensor->data,
  15398. tensor->name);
  15399. }
  15400. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15401. uint64_t size_eval = 0;
  15402. // compute size of intermediate results
  15403. // TODO: does not take into account scratch buffers !!!!
  15404. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15405. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15406. }
  15407. // print
  15408. {
  15409. FILE * fout = stdout;
  15410. fprintf(fout, "\n");
  15411. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15412. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15413. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15414. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15415. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15416. // header
  15417. fprintf(fout, "\n");
  15418. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15419. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15420. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15421. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15422. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15423. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15424. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15425. }
  15426. // header
  15427. fprintf(fout, "\n");
  15428. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15429. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15430. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15431. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15432. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15433. if (cgraph->nodes[i]->src[j]) {
  15434. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15435. }
  15436. }
  15437. fprintf(fout, "\n");
  15438. }
  15439. fprintf(fout, "\n");
  15440. }
  15441. // write binary data
  15442. {
  15443. FILE * fout = ggml_fopen(fname, "wb");
  15444. if (!fout) {
  15445. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15446. return;
  15447. }
  15448. // header
  15449. {
  15450. const uint32_t magic = GGML_FILE_MAGIC;
  15451. const uint32_t version = GGML_FILE_VERSION;
  15452. const uint32_t n_leafs = cgraph->n_leafs;
  15453. const uint32_t n_nodes = cgraph->n_nodes;
  15454. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15455. fwrite(&version, sizeof(uint32_t), 1, fout);
  15456. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15457. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15458. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15459. }
  15460. // leafs
  15461. {
  15462. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15463. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15464. const uint32_t type = tensor->type;
  15465. const uint32_t op = tensor->op;
  15466. fwrite(&type, sizeof(uint32_t), 1, fout);
  15467. fwrite(&op, sizeof(uint32_t), 1, fout);
  15468. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15469. const uint64_t ne = tensor->ne[j];
  15470. const uint64_t nb = tensor->nb[j];
  15471. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15472. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15473. }
  15474. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15475. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15476. // dump the data
  15477. // TODO: pad this to 32 byte boundary
  15478. {
  15479. const size_t size = ggml_nbytes(tensor);
  15480. fwrite(tensor->data, sizeof(char), size, fout);
  15481. }
  15482. }
  15483. }
  15484. // nodes
  15485. {
  15486. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15487. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15488. const uint32_t type = tensor->type;
  15489. const uint32_t op = tensor->op;
  15490. fwrite(&type, sizeof(uint32_t), 1, fout);
  15491. fwrite(&op, sizeof(uint32_t), 1, fout);
  15492. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15493. const uint64_t ne = tensor->ne[j];
  15494. const uint64_t nb = tensor->nb[j];
  15495. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15496. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15497. }
  15498. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15499. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15500. // output the op arguments
  15501. {
  15502. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15503. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15504. args[j] = tensor->src[j];
  15505. }
  15506. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15507. if (args[j]) {
  15508. int32_t idx = -1;
  15509. // check if leaf
  15510. {
  15511. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15512. if (args[j] == cgraph->leafs[k]) {
  15513. idx = k;
  15514. break;
  15515. }
  15516. }
  15517. }
  15518. // check if node
  15519. if (idx == -1) {
  15520. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15521. if (args[j] == cgraph->nodes[k]) {
  15522. idx = cgraph->n_leafs + k;
  15523. break;
  15524. }
  15525. }
  15526. }
  15527. if (idx == -1) {
  15528. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15529. fclose(fout);
  15530. return;
  15531. }
  15532. fwrite(&idx, sizeof(int32_t), 1, fout);
  15533. } else {
  15534. const int32_t nul = -1;
  15535. fwrite(&nul, sizeof(int32_t), 1, fout);
  15536. }
  15537. }
  15538. }
  15539. }
  15540. }
  15541. fclose(fout);
  15542. }
  15543. }
  15544. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15545. assert(*ctx_data == NULL);
  15546. assert(*ctx_eval == NULL);
  15547. struct ggml_cgraph * result = NULL;
  15548. struct ggml_tensor * data = NULL;
  15549. // read file into data
  15550. {
  15551. FILE * fin = ggml_fopen(fname, "rb");
  15552. if (!fin) {
  15553. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15554. return result;
  15555. }
  15556. size_t fsize = 0;
  15557. fseek(fin, 0, SEEK_END);
  15558. fsize = ftell(fin);
  15559. fseek(fin, 0, SEEK_SET);
  15560. // create the data context
  15561. {
  15562. const size_t overhead = 1*ggml_tensor_overhead();
  15563. struct ggml_init_params params = {
  15564. .mem_size = fsize + overhead,
  15565. .mem_buffer = NULL,
  15566. .no_alloc = false,
  15567. };
  15568. *ctx_data = ggml_init(params);
  15569. if (!*ctx_data) {
  15570. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15571. fclose(fin);
  15572. return result;
  15573. }
  15574. }
  15575. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15576. {
  15577. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15578. if (ret != fsize) {
  15579. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15580. fclose(fin);
  15581. return result;
  15582. }
  15583. }
  15584. fclose(fin);
  15585. }
  15586. // populate result
  15587. {
  15588. char * ptr = (char *) data->data;
  15589. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15590. if (magic != GGML_FILE_MAGIC) {
  15591. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15592. return result;
  15593. }
  15594. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15595. if (version != GGML_FILE_VERSION) {
  15596. fprintf(stderr, "%s: invalid version number\n", __func__);
  15597. return result;
  15598. }
  15599. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15600. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15601. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15602. const int graph_size = MAX(n_leafs, n_nodes);
  15603. // create the data context
  15604. {
  15605. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15606. struct ggml_init_params params = {
  15607. .mem_size = size_eval + overhead,
  15608. .mem_buffer = NULL,
  15609. .no_alloc = true,
  15610. };
  15611. *ctx_eval = ggml_init(params);
  15612. if (!*ctx_eval) {
  15613. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15614. return result;
  15615. }
  15616. }
  15617. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15618. result->n_leafs = n_leafs;
  15619. result->n_nodes = n_nodes;
  15620. // leafs
  15621. {
  15622. uint32_t type;
  15623. uint32_t op;
  15624. for (uint32_t i = 0; i < n_leafs; ++i) {
  15625. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15626. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15627. int64_t ne[GGML_MAX_DIMS];
  15628. size_t nb[GGML_MAX_DIMS];
  15629. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15630. uint64_t ne_cur;
  15631. uint64_t nb_cur;
  15632. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15633. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15634. ne[j] = ne_cur;
  15635. nb[j] = nb_cur;
  15636. }
  15637. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15638. tensor->op = (enum ggml_op) op;
  15639. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15640. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15641. tensor->data = (void *) ptr;
  15642. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15643. tensor->nb[j] = nb[j];
  15644. }
  15645. result->leafs[i] = tensor;
  15646. ptr += ggml_nbytes(tensor);
  15647. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15648. }
  15649. }
  15650. ggml_set_no_alloc(*ctx_eval, false);
  15651. // nodes
  15652. {
  15653. uint32_t type;
  15654. uint32_t op;
  15655. for (uint32_t i = 0; i < n_nodes; ++i) {
  15656. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15657. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15658. enum ggml_op eop = (enum ggml_op) op;
  15659. int64_t ne[GGML_MAX_DIMS];
  15660. size_t nb[GGML_MAX_DIMS];
  15661. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15662. uint64_t ne_cur;
  15663. uint64_t nb_cur;
  15664. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15665. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15666. ne[j] = ne_cur;
  15667. nb[j] = nb_cur;
  15668. }
  15669. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15670. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15671. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15672. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15673. // parse args
  15674. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15675. const int32_t arg_idx = ptr_arg_idx[j];
  15676. if (arg_idx == -1) {
  15677. continue;
  15678. }
  15679. if (arg_idx < result->n_leafs) {
  15680. args[j] = result->leafs[arg_idx];
  15681. } else {
  15682. args[j] = result->nodes[arg_idx - result->n_leafs];
  15683. }
  15684. }
  15685. // create the tensor
  15686. // "view" operations are handled differently
  15687. // TODO: handle inplace ops - currently a copy is always made
  15688. struct ggml_tensor * tensor = NULL;
  15689. switch (eop) {
  15690. // TODO: implement other view ops
  15691. case GGML_OP_RESHAPE:
  15692. {
  15693. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15694. } break;
  15695. case GGML_OP_VIEW:
  15696. {
  15697. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15698. size_t offs;
  15699. memcpy(&offs, ptr_op_params, sizeof(offs));
  15700. tensor->data = ((char *) tensor->data) + offs;
  15701. } break;
  15702. case GGML_OP_TRANSPOSE:
  15703. {
  15704. tensor = ggml_transpose(*ctx_eval, args[0]);
  15705. } break;
  15706. case GGML_OP_PERMUTE:
  15707. {
  15708. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15709. } break;
  15710. default:
  15711. {
  15712. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15713. tensor->op = eop;
  15714. } break;
  15715. }
  15716. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15717. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15718. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15719. tensor->nb[j] = nb[j];
  15720. }
  15721. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15722. tensor->src[j] = args[j];
  15723. }
  15724. result->nodes[i] = tensor;
  15725. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15726. }
  15727. }
  15728. }
  15729. return result;
  15730. }
  15731. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15732. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15733. GGML_PRINT("=== GRAPH ===\n");
  15734. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15735. for (int i = 0; i < cgraph->n_nodes; i++) {
  15736. struct ggml_tensor * node = cgraph->nodes[i];
  15737. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15738. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15739. i,
  15740. node->ne[0], node->ne[1], node->ne[2],
  15741. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15742. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15743. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15744. (double) node->perf_time_us / 1000.0,
  15745. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15746. }
  15747. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15748. for (int i = 0; i < cgraph->n_leafs; i++) {
  15749. struct ggml_tensor * node = cgraph->leafs[i];
  15750. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15751. i,
  15752. node->ne[0], node->ne[1],
  15753. ggml_op_name(node->op),
  15754. ggml_get_name(node));
  15755. }
  15756. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15757. if (perf_total_per_op_us[i] == 0) {
  15758. continue;
  15759. }
  15760. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15761. }
  15762. GGML_PRINT("========================================\n");
  15763. }
  15764. // check if node is part of the graph
  15765. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15766. if (cgraph == NULL) {
  15767. return true;
  15768. }
  15769. for (int i = 0; i < cgraph->n_nodes; i++) {
  15770. if (cgraph->nodes[i] == node) {
  15771. return true;
  15772. }
  15773. }
  15774. return false;
  15775. }
  15776. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15777. for (int i = 0; i < cgraph->n_nodes; i++) {
  15778. struct ggml_tensor * parent = cgraph->nodes[i];
  15779. if (parent->grad == node) {
  15780. return parent;
  15781. }
  15782. }
  15783. return NULL;
  15784. }
  15785. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15786. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15787. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15788. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15789. gparent0 ? (void *) gparent0 : (void *) parent,
  15790. gparent0 ? "g" : "x",
  15791. gparent ? (void *) gparent : (void *) node,
  15792. gparent ? "g" : "x",
  15793. gparent ? "empty" : "vee",
  15794. gparent ? "dashed" : "solid",
  15795. label);
  15796. }
  15797. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15798. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15799. (void *) parent, "x",
  15800. (void *) node, "x",
  15801. label);
  15802. }
  15803. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15804. char color[16];
  15805. FILE * fp = ggml_fopen(filename, "w");
  15806. GGML_ASSERT(fp);
  15807. fprintf(fp, "digraph G {\n");
  15808. fprintf(fp, " newrank = true;\n");
  15809. fprintf(fp, " rankdir = LR;\n");
  15810. for (int i = 0; i < gb->n_nodes; i++) {
  15811. struct ggml_tensor * node = gb->nodes[i];
  15812. if (ggml_graph_get_parent(gb, node) != NULL) {
  15813. continue;
  15814. }
  15815. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15816. snprintf(color, sizeof(color), "yellow");
  15817. } else if (node->grad) {
  15818. if (ggml_graph_find(gf, node)) {
  15819. snprintf(color, sizeof(color), "green");
  15820. } else {
  15821. snprintf(color, sizeof(color), "lightblue");
  15822. }
  15823. } else {
  15824. snprintf(color, sizeof(color), "white");
  15825. }
  15826. fprintf(fp, " \"%p\" [ "
  15827. "style = filled; fillcolor = %s; shape = record; "
  15828. "label=\"",
  15829. (void *) node, color);
  15830. if (strlen(node->name) > 0) {
  15831. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15832. } else {
  15833. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15834. }
  15835. if (ggml_is_matrix(node)) {
  15836. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15837. } else {
  15838. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15839. }
  15840. if (node->grad) {
  15841. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15842. } else {
  15843. fprintf(fp, "\"; ]\n");
  15844. }
  15845. }
  15846. for (int i = 0; i < gb->n_leafs; i++) {
  15847. struct ggml_tensor * node = gb->leafs[i];
  15848. snprintf(color, sizeof(color), "pink");
  15849. fprintf(fp, " \"%p\" [ "
  15850. "style = filled; fillcolor = %s; shape = record; "
  15851. "label=\"<x>",
  15852. (void *) node, color);
  15853. if (strlen(node->name) > 0) {
  15854. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15855. } else {
  15856. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15857. }
  15858. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15859. if (ggml_nelements(node) < 5) {
  15860. fprintf(fp, " | (");
  15861. for (int j = 0; j < ggml_nelements(node); j++) {
  15862. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15863. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15864. }
  15865. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15866. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15867. }
  15868. else {
  15869. fprintf(fp, "#");
  15870. }
  15871. if (j < ggml_nelements(node) - 1) {
  15872. fprintf(fp, ", ");
  15873. }
  15874. }
  15875. fprintf(fp, ")");
  15876. }
  15877. fprintf(fp, "\"; ]\n");
  15878. }
  15879. for (int i = 0; i < gb->n_nodes; i++) {
  15880. struct ggml_tensor * node = gb->nodes[i];
  15881. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15882. if (node->src[j]) {
  15883. char label[16];
  15884. snprintf(label, sizeof(label), "src %d", j);
  15885. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15886. }
  15887. }
  15888. }
  15889. for (int i = 0; i < gb->n_leafs; i++) {
  15890. struct ggml_tensor * node = gb->leafs[i];
  15891. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15892. if (node->src[j]) {
  15893. char label[16];
  15894. snprintf(label, sizeof(label), "src %d", j);
  15895. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15896. }
  15897. }
  15898. }
  15899. fprintf(fp, "}\n");
  15900. fclose(fp);
  15901. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15902. }
  15903. ////////////////////////////////////////////////////////////////////////////////
  15904. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15905. int i = 0;
  15906. for (int p = 0; p < np; ++p) {
  15907. const int64_t ne = ggml_nelements(ps[p]) ;
  15908. // TODO: add function to set tensor from array
  15909. for (int64_t j = 0; j < ne; ++j) {
  15910. ggml_set_f32_1d(ps[p], j, x[i++]);
  15911. }
  15912. }
  15913. }
  15914. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15915. int i = 0;
  15916. for (int p = 0; p < np; ++p) {
  15917. const int64_t ne = ggml_nelements(ps[p]) ;
  15918. // TODO: add function to get all elements at once
  15919. for (int64_t j = 0; j < ne; ++j) {
  15920. x[i++] = ggml_get_f32_1d(ps[p], j);
  15921. }
  15922. }
  15923. }
  15924. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15925. int64_t i = 0;
  15926. for (int p = 0; p < np; ++p) {
  15927. const int64_t ne = ggml_nelements(ps[p]) ;
  15928. // TODO: add function to get all elements at once
  15929. for (int64_t j = 0; j < ne; ++j) {
  15930. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15931. }
  15932. }
  15933. }
  15934. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15935. int64_t i = 0;
  15936. for (int p = 0; p < np; ++p) {
  15937. const int64_t ne = ggml_nelements(ps[p]) ;
  15938. // TODO: add function to get all elements at once
  15939. for (int64_t j = 0; j < ne; ++j) {
  15940. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15941. }
  15942. }
  15943. }
  15944. //
  15945. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15946. //
  15947. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15948. //
  15949. static enum ggml_opt_result ggml_opt_adam(
  15950. struct ggml_context * ctx,
  15951. struct ggml_opt_context * opt,
  15952. struct ggml_opt_params params,
  15953. struct ggml_tensor * f,
  15954. struct ggml_cgraph * gf,
  15955. struct ggml_cgraph * gb,
  15956. ggml_opt_callback callback,
  15957. void * callback_data) {
  15958. GGML_ASSERT(ggml_is_scalar(f));
  15959. // these will store the parameters we want to optimize
  15960. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15961. int np = 0;
  15962. int64_t nx = 0;
  15963. for (int i = 0; i < gf->n_nodes; ++i) {
  15964. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15965. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15966. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15967. ps[np++] = gf->nodes[i];
  15968. nx += ggml_nelements(gf->nodes[i]);
  15969. }
  15970. }
  15971. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15972. int iter = opt->iter;
  15973. ggml_opt_init(opt->ctx, opt, params, nx);
  15974. opt->iter = iter;
  15975. }
  15976. // constants
  15977. float sched = params.adam.sched;
  15978. const float alpha = params.adam.alpha;
  15979. const float decay = params.adam.decay * alpha;
  15980. const float beta1 = params.adam.beta1;
  15981. const float beta2 = params.adam.beta2;
  15982. const float eps = params.adam.eps;
  15983. const float gclip = params.adam.gclip;
  15984. const int decay_min_ndim = params.adam.decay_min_ndim;
  15985. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15986. const float accum_norm = 1.0f / (float) n_accum;
  15987. float * g = opt->adam.g->data; // gradients
  15988. float * m = opt->adam.m->data; // first moment
  15989. float * v = opt->adam.v->data; // second moment
  15990. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15991. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15992. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15993. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15994. bool cancel = false;
  15995. // compute the function value
  15996. float fx = 0;
  15997. ggml_set_zero(opt->adam.g);
  15998. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15999. if (callback) {
  16000. callback(callback_data, accum_step, &sched, &cancel);
  16001. if (cancel) {
  16002. return GGML_OPT_RESULT_CANCEL;
  16003. }
  16004. }
  16005. // ggml_graph_reset (gf);
  16006. ggml_set_f32 (f->grad, 1.0f);
  16007. ggml_graph_compute(gb, &cplan);
  16008. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16009. fx += ggml_get_f32_1d(f, 0);
  16010. }
  16011. fx *= accum_norm;
  16012. opt->adam.fx_prev = fx;
  16013. opt->adam.fx_best = opt->adam.fx_prev;
  16014. if (pf) {
  16015. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16016. }
  16017. opt->loss_before = opt->adam.fx_prev;
  16018. opt->loss_after = opt->adam.fx_prev;
  16019. // initialize
  16020. if (opt->just_initialized) {
  16021. opt->adam.n_no_improvement = 0;
  16022. opt->just_initialized = false;
  16023. }
  16024. float * fx_best = &opt->adam.fx_best;
  16025. float * fx_prev = &opt->adam.fx_prev;
  16026. int * n_no_improvement = &opt->adam.n_no_improvement;
  16027. int iter0 = opt->iter;
  16028. // run the optimizer
  16029. for (int t = 0; t < params.adam.n_iter; ++t) {
  16030. opt->iter = iter0 + t + 1;
  16031. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16032. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16033. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16034. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16035. for (int i = 0; i < np; ++i) {
  16036. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16037. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16038. }
  16039. const int64_t t_start_wall = ggml_time_us();
  16040. const int64_t t_start_cpu = ggml_cycles();
  16041. UNUSED(t_start_wall);
  16042. UNUSED(t_start_cpu);
  16043. {
  16044. float gnorm = 1.0f;
  16045. if (gclip > 0.0f) {
  16046. // gradient clipping
  16047. ggml_float sum = 0.0;
  16048. for (int64_t i = 0; i < nx; ++i) {
  16049. sum += (ggml_float)(g[i]*g[i]);
  16050. }
  16051. ggml_float norm = sqrt(sum);
  16052. if (norm > (ggml_float) gclip) {
  16053. gnorm = (float) ((ggml_float) gclip / norm);
  16054. }
  16055. }
  16056. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16057. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16058. int64_t i = 0;
  16059. for (int p = 0; p < np; ++p) {
  16060. const int64_t ne = ggml_nelements(ps[p]);
  16061. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16062. for (int64_t j = 0; j < ne; ++j) {
  16063. float x = ggml_get_f32_1d(ps[p], j);
  16064. float g_ = g[i]*gnorm;
  16065. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16066. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16067. float mh = m[i]*beta1h;
  16068. float vh = v[i]*beta2h;
  16069. vh = sqrtf(vh) + eps;
  16070. x = x*(1.0f - p_decay) - mh/vh;
  16071. ggml_set_f32_1d(ps[p], j, x);
  16072. ++i;
  16073. }
  16074. }
  16075. }
  16076. fx = 0;
  16077. ggml_set_zero(opt->adam.g);
  16078. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16079. if (callback) {
  16080. callback(callback_data, accum_step, &sched, &cancel);
  16081. if (cancel) {
  16082. return GGML_OPT_RESULT_CANCEL;;
  16083. }
  16084. }
  16085. // ggml_graph_reset (gf);
  16086. ggml_set_f32 (f->grad, 1.0f);
  16087. ggml_graph_compute(gb, &cplan);
  16088. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16089. fx += ggml_get_f32_1d(f, 0);
  16090. }
  16091. fx *= accum_norm;
  16092. opt->loss_after = fx;
  16093. // check convergence
  16094. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16095. GGML_PRINT_DEBUG("converged\n");
  16096. return GGML_OPT_RESULT_OK;
  16097. }
  16098. // delta-based convergence test
  16099. if (pf != NULL) {
  16100. // need at least params.past iterations to start checking for convergence
  16101. if (params.past <= iter0 + t) {
  16102. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16103. if (fabsf(rate) < params.delta) {
  16104. return GGML_OPT_RESULT_OK;
  16105. }
  16106. }
  16107. pf[(iter0 + t)%params.past] = fx;
  16108. }
  16109. // check for improvement
  16110. if (params.max_no_improvement > 0) {
  16111. if (fx_best[0] > fx) {
  16112. fx_best[0] = fx;
  16113. n_no_improvement[0] = 0;
  16114. } else {
  16115. ++n_no_improvement[0];
  16116. if (n_no_improvement[0] >= params.max_no_improvement) {
  16117. return GGML_OPT_RESULT_OK;
  16118. }
  16119. }
  16120. }
  16121. fx_prev[0] = fx;
  16122. {
  16123. const int64_t t_end_cpu = ggml_cycles();
  16124. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16125. UNUSED(t_end_cpu);
  16126. const int64_t t_end_wall = ggml_time_us();
  16127. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16128. UNUSED(t_end_wall);
  16129. }
  16130. }
  16131. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16132. }
  16133. //
  16134. // L-BFGS
  16135. //
  16136. // the L-BFGS implementation below is based on the following implementation:
  16137. //
  16138. // https://github.com/chokkan/liblbfgs
  16139. //
  16140. struct ggml_lbfgs_iteration_data {
  16141. float alpha;
  16142. float ys;
  16143. float * s;
  16144. float * y;
  16145. };
  16146. static enum ggml_opt_result linesearch_backtracking(
  16147. const struct ggml_opt_params * params,
  16148. int nx,
  16149. float * x,
  16150. float * fx,
  16151. float * g,
  16152. float * d,
  16153. float * step,
  16154. const float * xp,
  16155. struct ggml_tensor * f,
  16156. struct ggml_cgraph * gb,
  16157. struct ggml_cplan * cplan,
  16158. const int np,
  16159. struct ggml_tensor * ps[],
  16160. bool * cancel,
  16161. ggml_opt_callback callback,
  16162. void * callback_data) {
  16163. int count = 0;
  16164. float width = 0.0f;
  16165. float dg = 0.0f;
  16166. float finit = 0.0f;
  16167. float dginit = 0.0f;
  16168. float dgtest = 0.0f;
  16169. const float dec = 0.5f;
  16170. const float inc = 2.1f;
  16171. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16172. const float accum_norm = 1.0f / (float) n_accum;
  16173. if (*step <= 0.f) {
  16174. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16175. }
  16176. // compute the initial gradient in the search direction
  16177. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16178. // make sure that d points to a descent direction
  16179. if (0 < dginit) {
  16180. return GGML_LINESEARCH_FAIL;
  16181. }
  16182. // initialize local variables
  16183. finit = *fx;
  16184. dgtest = params->lbfgs.ftol*dginit;
  16185. while (true) {
  16186. ggml_vec_cpy_f32(nx, x, xp);
  16187. ggml_vec_mad_f32(nx, x, d, *step);
  16188. // evaluate the function and gradient values
  16189. {
  16190. ggml_opt_set_params(np, ps, x);
  16191. *fx = 0;
  16192. memset(g, 0, sizeof(float)*nx);
  16193. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16194. if (callback) {
  16195. // LBFG-S does not support learning rate -> ignore learning schedule
  16196. float sched = 0;
  16197. callback(callback_data, accum_step, &sched, cancel);
  16198. if (*cancel) {
  16199. return GGML_OPT_RESULT_CANCEL;
  16200. }
  16201. }
  16202. // ggml_graph_reset (gf);
  16203. ggml_set_f32 (f->grad, 1.0f);
  16204. ggml_graph_compute(gb, cplan);
  16205. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16206. *fx += ggml_get_f32_1d(f, 0);
  16207. }
  16208. *fx *= accum_norm;
  16209. }
  16210. ++count;
  16211. if (*fx > finit + (*step)*dgtest) {
  16212. width = dec;
  16213. } else {
  16214. // Armijo condition is satisfied
  16215. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16216. return count;
  16217. }
  16218. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16219. // check the Wolfe condition
  16220. if (dg < params->lbfgs.wolfe * dginit) {
  16221. width = inc;
  16222. } else {
  16223. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16224. // regular Wolfe conditions
  16225. return count;
  16226. }
  16227. if(dg > -params->lbfgs.wolfe*dginit) {
  16228. width = dec;
  16229. } else {
  16230. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16231. return count;
  16232. }
  16233. }
  16234. }
  16235. if (*step < params->lbfgs.min_step) {
  16236. return GGML_LINESEARCH_MINIMUM_STEP;
  16237. }
  16238. if (*step > params->lbfgs.max_step) {
  16239. return GGML_LINESEARCH_MAXIMUM_STEP;
  16240. }
  16241. if (params->lbfgs.max_linesearch <= count) {
  16242. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16243. }
  16244. (*step) *= width;
  16245. }
  16246. GGML_ASSERT(false && "line search failed");
  16247. return GGML_LINESEARCH_FAIL;
  16248. }
  16249. static enum ggml_opt_result ggml_opt_lbfgs(
  16250. struct ggml_context * ctx,
  16251. struct ggml_opt_context * opt,
  16252. struct ggml_opt_params params,
  16253. struct ggml_tensor * f,
  16254. struct ggml_cgraph * gf,
  16255. struct ggml_cgraph * gb,
  16256. ggml_opt_callback callback,
  16257. void * callback_data) {
  16258. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16259. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16260. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16261. return GGML_OPT_RESULT_INVALID_WOLFE;
  16262. }
  16263. }
  16264. const int m = params.lbfgs.m;
  16265. // these will store the parameters we want to optimize
  16266. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16267. int np = 0;
  16268. int nx = 0;
  16269. for (int i = 0; i < gf->n_nodes; ++i) {
  16270. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16271. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16272. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16273. ps[np++] = gf->nodes[i];
  16274. nx += ggml_nelements(gf->nodes[i]);
  16275. }
  16276. }
  16277. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16278. int iter = opt->iter;
  16279. ggml_opt_init(ctx, opt, params, nx);
  16280. opt->iter = iter;
  16281. }
  16282. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16283. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16284. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16285. float * x = opt->lbfgs.x->data; // current parameters
  16286. float * xp = opt->lbfgs.xp->data; // previous parameters
  16287. float * g = opt->lbfgs.g->data; // current gradient
  16288. float * gp = opt->lbfgs.gp->data; // previous gradient
  16289. float * d = opt->lbfgs.d->data; // search direction
  16290. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16291. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16292. const float accum_norm = 1.0f / (float) n_accum;
  16293. float fx = 0.0f; // cost function value
  16294. float xnorm = 0.0f; // ||x||
  16295. float gnorm = 0.0f; // ||g||
  16296. // initialize x from the graph nodes
  16297. ggml_opt_get_params(np, ps, x);
  16298. // the L-BFGS memory
  16299. float * lm_alpha = opt->lbfgs.lmal->data;
  16300. float * lm_ys = opt->lbfgs.lmys->data;
  16301. float * lm_s = opt->lbfgs.lms->data;
  16302. float * lm_y = opt->lbfgs.lmy->data;
  16303. bool cancel = false;
  16304. // evaluate the function value and its gradient
  16305. {
  16306. ggml_opt_set_params(np, ps, x);
  16307. fx = 0;
  16308. memset(g, 0, sizeof(float)*nx);
  16309. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16310. if (callback) {
  16311. // LBFG-S does not support learning rate -> ignore learning schedule
  16312. float sched = 0;
  16313. callback(callback_data, accum_step, &sched, &cancel);
  16314. if (cancel) {
  16315. return GGML_OPT_RESULT_CANCEL;
  16316. }
  16317. }
  16318. // ggml_graph_reset (gf);
  16319. ggml_set_f32 (f->grad, 1.0f);
  16320. ggml_graph_compute(gb, &cplan);
  16321. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16322. fx += ggml_get_f32_1d(f, 0);
  16323. }
  16324. fx *= accum_norm;
  16325. opt->loss_before = fx;
  16326. opt->loss_after = fx;
  16327. }
  16328. // search direction = -gradient
  16329. ggml_vec_neg_f32(nx, d, g);
  16330. // ||x||, ||g||
  16331. ggml_vec_norm_f32(nx, &xnorm, x);
  16332. ggml_vec_norm_f32(nx, &gnorm, g);
  16333. if (xnorm < 1.0f) {
  16334. xnorm = 1.0f;
  16335. }
  16336. // already optimized
  16337. if (gnorm/xnorm <= params.lbfgs.eps) {
  16338. return GGML_OPT_RESULT_OK;
  16339. }
  16340. if (opt->just_initialized) {
  16341. if (pf) {
  16342. pf[0] = fx;
  16343. }
  16344. opt->lbfgs.fx_best = fx;
  16345. // initial step
  16346. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16347. opt->lbfgs.j = 0;
  16348. opt->lbfgs.k = 1;
  16349. opt->lbfgs.end = 0;
  16350. opt->lbfgs.n_no_improvement = 0;
  16351. opt->just_initialized = false;
  16352. }
  16353. float * fx_best = &opt->lbfgs.fx_best;
  16354. float * step = &opt->lbfgs.step;
  16355. int * j = &opt->lbfgs.j;
  16356. int * k = &opt->lbfgs.k;
  16357. int * end = &opt->lbfgs.end;
  16358. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16359. int ls = 0;
  16360. int bound = 0;
  16361. float ys = 0.0f;
  16362. float yy = 0.0f;
  16363. float beta = 0.0f;
  16364. int it = 0;
  16365. while (true) {
  16366. // store the current position and gradient vectors
  16367. ggml_vec_cpy_f32(nx, xp, x);
  16368. ggml_vec_cpy_f32(nx, gp, g);
  16369. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16370. // to determine if the optimization should be cancelled
  16371. // this is a simple change, but not doing this atm, since I don't have a nice
  16372. // way to test and don't want to break something with so many changes lined up
  16373. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16374. if (cancel) {
  16375. return GGML_OPT_RESULT_CANCEL;
  16376. }
  16377. if (ls < 0) {
  16378. // linesearch failed - go back to the previous point and return
  16379. ggml_vec_cpy_f32(nx, x, xp);
  16380. ggml_vec_cpy_f32(nx, g, gp);
  16381. return ls;
  16382. }
  16383. opt->loss_after = fx;
  16384. ggml_vec_norm_f32(nx, &xnorm, x);
  16385. ggml_vec_norm_f32(nx, &gnorm, g);
  16386. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16387. if (xnorm < 1.0f) {
  16388. xnorm = 1.0f;
  16389. }
  16390. if (gnorm/xnorm <= params.lbfgs.eps) {
  16391. // converged
  16392. return GGML_OPT_RESULT_OK;
  16393. }
  16394. // delta-based convergence test
  16395. if (pf != NULL) {
  16396. // need at least params.past iterations to start checking for convergence
  16397. if (params.past <= k[0]) {
  16398. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16399. if (fabsf(rate) < params.delta) {
  16400. return GGML_OPT_RESULT_OK;
  16401. }
  16402. }
  16403. pf[k[0]%params.past] = fx;
  16404. }
  16405. // check for improvement
  16406. if (params.max_no_improvement > 0) {
  16407. if (fx < fx_best[0]) {
  16408. fx_best[0] = fx;
  16409. n_no_improvement[0] = 0;
  16410. } else {
  16411. n_no_improvement[0]++;
  16412. if (n_no_improvement[0] >= params.max_no_improvement) {
  16413. return GGML_OPT_RESULT_OK;
  16414. }
  16415. }
  16416. }
  16417. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16418. // reached the maximum number of iterations
  16419. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16420. }
  16421. // update vectors s and y:
  16422. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16423. // y_{k+1} = g_{k+1} - g_{k}.
  16424. //
  16425. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16426. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16427. // compute scalars ys and yy:
  16428. // ys = y^t \cdot s -> 1 / \rho.
  16429. // yy = y^t \cdot y.
  16430. //
  16431. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16432. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16433. lm_ys[end[0]] = ys;
  16434. // find new search direction
  16435. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16436. bound = (m <= k[0]) ? m : k[0];
  16437. k[0]++;
  16438. it++;
  16439. end[0] = (end[0] + 1)%m;
  16440. // initialize search direction with -g
  16441. ggml_vec_neg_f32(nx, d, g);
  16442. j[0] = end[0];
  16443. for (int i = 0; i < bound; ++i) {
  16444. j[0] = (j[0] + m - 1) % m;
  16445. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16446. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16447. lm_alpha[j[0]] /= lm_ys[j[0]];
  16448. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16449. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16450. }
  16451. ggml_vec_scale_f32(nx, d, ys/yy);
  16452. for (int i = 0; i < bound; ++i) {
  16453. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16454. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16455. beta /= lm_ys[j[0]];
  16456. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16457. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16458. j[0] = (j[0] + 1)%m;
  16459. }
  16460. step[0] = 1.0;
  16461. }
  16462. GGML_ASSERT(false && "lbfgs failed");
  16463. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16464. }
  16465. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16466. struct ggml_opt_params result;
  16467. switch (type) {
  16468. case GGML_OPT_TYPE_ADAM:
  16469. {
  16470. result = (struct ggml_opt_params) {
  16471. .type = GGML_OPT_TYPE_ADAM,
  16472. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16473. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16474. .past = 0,
  16475. .delta = 1e-5f,
  16476. .max_no_improvement = 100,
  16477. .print_forward_graph = true,
  16478. .print_backward_graph = true,
  16479. .n_gradient_accumulation = 1,
  16480. .adam = {
  16481. .n_iter = 10000,
  16482. .sched = 1.000f,
  16483. .decay = 0.0f,
  16484. .decay_min_ndim = 2,
  16485. .alpha = 0.001f,
  16486. .beta1 = 0.9f,
  16487. .beta2 = 0.999f,
  16488. .eps = 1e-8f,
  16489. .eps_f = 1e-5f,
  16490. .eps_g = 1e-3f,
  16491. .gclip = 0.0f,
  16492. },
  16493. };
  16494. } break;
  16495. case GGML_OPT_TYPE_LBFGS:
  16496. {
  16497. result = (struct ggml_opt_params) {
  16498. .type = GGML_OPT_TYPE_LBFGS,
  16499. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16500. .n_threads = 1,
  16501. .past = 0,
  16502. .delta = 1e-5f,
  16503. .max_no_improvement = 0,
  16504. .print_forward_graph = true,
  16505. .print_backward_graph = true,
  16506. .n_gradient_accumulation = 1,
  16507. .lbfgs = {
  16508. .m = 6,
  16509. .n_iter = 100,
  16510. .max_linesearch = 20,
  16511. .eps = 1e-5f,
  16512. .ftol = 1e-4f,
  16513. .wolfe = 0.9f,
  16514. .min_step = 1e-20f,
  16515. .max_step = 1e+20f,
  16516. .linesearch = GGML_LINESEARCH_DEFAULT,
  16517. },
  16518. };
  16519. } break;
  16520. }
  16521. return result;
  16522. }
  16523. GGML_API void ggml_opt_init(
  16524. struct ggml_context * ctx,
  16525. struct ggml_opt_context * opt,
  16526. struct ggml_opt_params params,
  16527. int64_t nx) {
  16528. opt->ctx = ctx;
  16529. opt->params = params;
  16530. opt->iter = 0;
  16531. opt->nx = nx;
  16532. opt->just_initialized = true;
  16533. if (opt->ctx == NULL) {
  16534. struct ggml_init_params ctx_opt_params;
  16535. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16536. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16537. if (opt->params.past > 0) {
  16538. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16539. }
  16540. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16541. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16542. if (opt->params.past > 0) {
  16543. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16544. }
  16545. }
  16546. ctx_opt_params.mem_buffer = NULL;
  16547. ctx_opt_params.no_alloc = false;
  16548. opt->ctx = ggml_init(ctx_opt_params);
  16549. }
  16550. switch (opt->params.type) {
  16551. case GGML_OPT_TYPE_ADAM:
  16552. {
  16553. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16554. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16555. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16556. opt->adam.pf = params.past > 0
  16557. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16558. : NULL;
  16559. ggml_set_zero(opt->adam.m);
  16560. ggml_set_zero(opt->adam.v);
  16561. if (opt->adam.pf) {
  16562. ggml_set_zero(opt->adam.pf);
  16563. }
  16564. } break;
  16565. case GGML_OPT_TYPE_LBFGS:
  16566. {
  16567. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16568. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16569. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16570. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16571. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16572. opt->lbfgs.pf = params.past > 0
  16573. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16574. : NULL;
  16575. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16576. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16577. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16578. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16579. ggml_set_zero(opt->lbfgs.x);
  16580. ggml_set_zero(opt->lbfgs.xp);
  16581. ggml_set_zero(opt->lbfgs.g);
  16582. ggml_set_zero(opt->lbfgs.gp);
  16583. ggml_set_zero(opt->lbfgs.d);
  16584. if (opt->lbfgs.pf) {
  16585. ggml_set_zero(opt->lbfgs.pf);
  16586. }
  16587. ggml_set_zero(opt->lbfgs.lmal);
  16588. ggml_set_zero(opt->lbfgs.lmys);
  16589. ggml_set_zero(opt->lbfgs.lms);
  16590. ggml_set_zero(opt->lbfgs.lmy);
  16591. } break;
  16592. }
  16593. }
  16594. enum ggml_opt_result ggml_opt(
  16595. struct ggml_context * ctx,
  16596. struct ggml_opt_params params,
  16597. struct ggml_tensor * f) {
  16598. bool free_ctx = false;
  16599. if (ctx == NULL) {
  16600. struct ggml_init_params params_ctx = {
  16601. .mem_size = 16*1024*1024,
  16602. .mem_buffer = NULL,
  16603. .no_alloc = false,
  16604. };
  16605. ctx = ggml_init(params_ctx);
  16606. if (ctx == NULL) {
  16607. return GGML_OPT_RESULT_NO_CONTEXT;
  16608. }
  16609. free_ctx = true;
  16610. }
  16611. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16612. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16613. ggml_opt_init(ctx, opt, params, 0);
  16614. result = ggml_opt_resume(ctx, opt, f);
  16615. if (free_ctx) {
  16616. ggml_free(ctx);
  16617. }
  16618. return result;
  16619. }
  16620. enum ggml_opt_result ggml_opt_resume(
  16621. struct ggml_context * ctx,
  16622. struct ggml_opt_context * opt,
  16623. struct ggml_tensor * f) {
  16624. // build forward + backward compute graphs
  16625. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16626. ggml_build_forward_expand(gf, f);
  16627. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16628. ggml_build_backward_expand(ctx, gf, gb, true);
  16629. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16630. }
  16631. enum ggml_opt_result ggml_opt_resume_g(
  16632. struct ggml_context * ctx,
  16633. struct ggml_opt_context * opt,
  16634. struct ggml_tensor * f,
  16635. struct ggml_cgraph * gf,
  16636. struct ggml_cgraph * gb,
  16637. ggml_opt_callback callback,
  16638. void * callback_data) {
  16639. // build forward + backward compute graphs
  16640. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16641. switch (opt->params.type) {
  16642. case GGML_OPT_TYPE_ADAM:
  16643. {
  16644. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16645. } break;
  16646. case GGML_OPT_TYPE_LBFGS:
  16647. {
  16648. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16649. } break;
  16650. }
  16651. if (opt->params.print_forward_graph) {
  16652. ggml_graph_print (gf);
  16653. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16654. }
  16655. if (opt->params.print_backward_graph) {
  16656. ggml_graph_print (gb);
  16657. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16658. }
  16659. return result;
  16660. }
  16661. ////////////////////////////////////////////////////////////////////////////////
  16662. void ggml_set_input(struct ggml_tensor * tensor) {
  16663. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16664. }
  16665. void ggml_set_output(struct ggml_tensor * tensor) {
  16666. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16667. }
  16668. ////////////////////////////////////////////////////////////////////////////////
  16669. void ggml_quantize_init(enum ggml_type type) {
  16670. ggml_critical_section_start();
  16671. switch (type) {
  16672. case GGML_TYPE_IQ2_XXS:
  16673. case GGML_TYPE_IQ2_XS:
  16674. case GGML_TYPE_IQ2_S:
  16675. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16676. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16677. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16678. default: // nothing
  16679. break;
  16680. }
  16681. ggml_critical_section_end();
  16682. }
  16683. void ggml_quantize_free(void) {
  16684. ggml_critical_section_start();
  16685. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16686. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16687. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16688. iq3xs_free_impl(256);
  16689. ggml_critical_section_end();
  16690. }
  16691. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16692. return
  16693. type == GGML_TYPE_IQ2_XXS ||
  16694. type == GGML_TYPE_IQ2_XS ||
  16695. type == GGML_TYPE_IQ1_S;
  16696. }
  16697. size_t ggml_quantize_chunk(
  16698. enum ggml_type type,
  16699. const float * src,
  16700. void * dst,
  16701. int start,
  16702. int nrows,
  16703. int n_per_row,
  16704. const float * imatrix) {
  16705. const int n = nrows * n_per_row;
  16706. if (ggml_quantize_requires_imatrix(type)) {
  16707. GGML_ASSERT(imatrix != NULL);
  16708. }
  16709. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16710. GGML_ASSERT(start % n_per_row == 0);
  16711. ggml_quantize_init(type); // this is noop if already initialized
  16712. const size_t start_row = start / n_per_row;
  16713. const size_t row_size = ggml_row_size(type, n_per_row);
  16714. size_t result = 0;
  16715. switch (type) {
  16716. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16717. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16718. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16719. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16720. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16721. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16722. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16723. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16724. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16725. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16726. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16727. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16728. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16729. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16730. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16731. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16732. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16733. #if QK_K == 64
  16734. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16735. #else
  16736. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16737. #endif
  16738. case GGML_TYPE_F16:
  16739. {
  16740. size_t elemsize = sizeof(ggml_fp16_t);
  16741. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16742. result = n * elemsize;
  16743. } break;
  16744. case GGML_TYPE_F32:
  16745. {
  16746. size_t elemsize = sizeof(float);
  16747. result = n * elemsize;
  16748. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16749. } break;
  16750. default:
  16751. assert(false);
  16752. }
  16753. GGML_ASSERT(result == nrows * row_size);
  16754. return result;
  16755. }
  16756. ////////////////////////////////////////////////////////////////////////////////
  16757. struct gguf_str {
  16758. uint64_t n; // GGUFv2
  16759. char * data;
  16760. };
  16761. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16762. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16763. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16764. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16765. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16766. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16767. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16768. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16769. [GGUF_TYPE_BOOL] = sizeof(bool),
  16770. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16771. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16772. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16773. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16774. [GGUF_TYPE_ARRAY] = 0, // undefined
  16775. };
  16776. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16777. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16778. [GGUF_TYPE_UINT8] = "u8",
  16779. [GGUF_TYPE_INT8] = "i8",
  16780. [GGUF_TYPE_UINT16] = "u16",
  16781. [GGUF_TYPE_INT16] = "i16",
  16782. [GGUF_TYPE_UINT32] = "u32",
  16783. [GGUF_TYPE_INT32] = "i32",
  16784. [GGUF_TYPE_FLOAT32] = "f32",
  16785. [GGUF_TYPE_BOOL] = "bool",
  16786. [GGUF_TYPE_STRING] = "str",
  16787. [GGUF_TYPE_ARRAY] = "arr",
  16788. [GGUF_TYPE_UINT64] = "u64",
  16789. [GGUF_TYPE_INT64] = "i64",
  16790. [GGUF_TYPE_FLOAT64] = "f64",
  16791. };
  16792. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16793. union gguf_value {
  16794. uint8_t uint8;
  16795. int8_t int8;
  16796. uint16_t uint16;
  16797. int16_t int16;
  16798. uint32_t uint32;
  16799. int32_t int32;
  16800. float float32;
  16801. uint64_t uint64;
  16802. int64_t int64;
  16803. double float64;
  16804. bool bool_;
  16805. struct gguf_str str;
  16806. struct {
  16807. enum gguf_type type;
  16808. uint64_t n; // GGUFv2
  16809. void * data;
  16810. } arr;
  16811. };
  16812. struct gguf_kv {
  16813. struct gguf_str key;
  16814. enum gguf_type type;
  16815. union gguf_value value;
  16816. };
  16817. struct gguf_header {
  16818. char magic[4];
  16819. uint32_t version;
  16820. uint64_t n_tensors; // GGUFv2
  16821. uint64_t n_kv; // GGUFv2
  16822. };
  16823. struct gguf_tensor_info {
  16824. struct gguf_str name;
  16825. uint32_t n_dims;
  16826. uint64_t ne[GGML_MAX_DIMS];
  16827. enum ggml_type type;
  16828. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16829. // for writing API
  16830. const void * data;
  16831. size_t size;
  16832. };
  16833. struct gguf_context {
  16834. struct gguf_header header;
  16835. struct gguf_kv * kv;
  16836. struct gguf_tensor_info * infos;
  16837. size_t alignment;
  16838. size_t offset; // offset of `data` from beginning of file
  16839. size_t size; // size of `data` in bytes
  16840. //uint8_t * padding;
  16841. void * data;
  16842. };
  16843. static size_t gguf_type_size(enum gguf_type type) {
  16844. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16845. return GGUF_TYPE_SIZE[type];
  16846. }
  16847. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16848. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16849. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16850. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16851. GGML_ASSERT(info->ne[i] > 0);
  16852. }
  16853. // prevent overflow for total number of elements
  16854. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16855. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16856. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16857. }
  16858. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16859. const size_t n = fread(dst, 1, size, file);
  16860. *offset += n;
  16861. return n == size;
  16862. }
  16863. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16864. p->n = 0;
  16865. p->data = NULL;
  16866. bool ok = true;
  16867. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16868. // early exit if string length is invalid, prevents from integer overflow
  16869. if (p->n == SIZE_MAX) {
  16870. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16871. return false;
  16872. }
  16873. p->data = GGML_CALLOC(p->n + 1, 1);
  16874. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16875. return ok;
  16876. }
  16877. struct gguf_context * gguf_init_empty(void) {
  16878. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16879. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16880. ctx->header.version = GGUF_VERSION;
  16881. ctx->header.n_tensors = 0;
  16882. ctx->header.n_kv = 0;
  16883. ctx->kv = NULL;
  16884. ctx->infos = NULL;
  16885. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16886. ctx->offset = 0;
  16887. ctx->size = 0;
  16888. ctx->data = NULL;
  16889. return ctx;
  16890. }
  16891. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16892. FILE * file = ggml_fopen(fname, "rb");
  16893. if (!file) {
  16894. return NULL;
  16895. }
  16896. // offset from start of file
  16897. size_t offset = 0;
  16898. char magic[4];
  16899. // check the magic before making allocations
  16900. {
  16901. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16902. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16903. if (magic[i] != GGUF_MAGIC[i]) {
  16904. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16905. fclose(file);
  16906. return NULL;
  16907. }
  16908. }
  16909. }
  16910. bool ok = true;
  16911. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16912. // read the header
  16913. {
  16914. strncpy(ctx->header.magic, magic, 4);
  16915. ctx->kv = NULL;
  16916. ctx->infos = NULL;
  16917. ctx->data = NULL;
  16918. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16919. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16920. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16921. if (ctx->header.version == 1) {
  16922. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16923. fclose(file);
  16924. gguf_free(ctx);
  16925. return NULL;
  16926. }
  16927. // sanity-checks to prevent from integer/buffer overflows
  16928. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16929. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16930. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16931. if (!ok) {
  16932. fprintf(stderr, "%s: failed to read header\n", __func__);
  16933. fclose(file);
  16934. gguf_free(ctx);
  16935. return NULL;
  16936. }
  16937. }
  16938. // read the kv pairs
  16939. {
  16940. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16941. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16942. struct gguf_kv * kv = &ctx->kv[i];
  16943. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16944. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16945. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16946. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16947. switch (kv->type) {
  16948. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16949. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16950. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16951. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16952. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16953. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16954. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16955. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16956. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16957. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16958. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16959. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16960. case GGUF_TYPE_ARRAY:
  16961. {
  16962. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16963. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16964. switch (kv->value.arr.type) {
  16965. case GGUF_TYPE_UINT8:
  16966. case GGUF_TYPE_INT8:
  16967. case GGUF_TYPE_UINT16:
  16968. case GGUF_TYPE_INT16:
  16969. case GGUF_TYPE_UINT32:
  16970. case GGUF_TYPE_INT32:
  16971. case GGUF_TYPE_FLOAT32:
  16972. case GGUF_TYPE_UINT64:
  16973. case GGUF_TYPE_INT64:
  16974. case GGUF_TYPE_FLOAT64:
  16975. case GGUF_TYPE_BOOL:
  16976. {
  16977. // prevent from integer overflow in the malloc below
  16978. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16979. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16980. fclose(file);
  16981. gguf_free(ctx);
  16982. return NULL;
  16983. }
  16984. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16985. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16986. } break;
  16987. case GGUF_TYPE_STRING:
  16988. {
  16989. // prevent from integer overflow in the malloc below
  16990. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16991. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16992. fclose(file);
  16993. gguf_free(ctx);
  16994. return NULL;
  16995. }
  16996. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16997. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16998. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16999. }
  17000. } break;
  17001. case GGUF_TYPE_ARRAY:
  17002. default: GGML_ASSERT(false && "invalid type"); break;
  17003. }
  17004. } break;
  17005. default: GGML_ASSERT(false && "invalid type");
  17006. }
  17007. if (!ok) {
  17008. break;
  17009. }
  17010. }
  17011. if (!ok) {
  17012. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17013. fclose(file);
  17014. gguf_free(ctx);
  17015. return NULL;
  17016. }
  17017. }
  17018. // read the tensor infos
  17019. {
  17020. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17021. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17022. struct gguf_tensor_info * info = &ctx->infos[i];
  17023. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17024. info->ne[j] = 1;
  17025. }
  17026. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17027. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17028. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17029. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17030. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17031. }
  17032. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17033. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17034. gguf_tensor_info_sanitize(info);
  17035. if (!ok) {
  17036. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17037. fclose(file);
  17038. gguf_free(ctx);
  17039. return NULL;
  17040. }
  17041. }
  17042. }
  17043. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17044. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17045. if (alignment_idx != -1) {
  17046. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17047. }
  17048. // we require the data section to be aligned, so take into account any padding
  17049. {
  17050. const size_t offset_pad = offset % ctx->alignment;
  17051. if (offset_pad != 0) {
  17052. offset += ctx->alignment - offset_pad;
  17053. fseek(file, offset, SEEK_SET);
  17054. }
  17055. }
  17056. // store the current file offset - this is where the data section starts
  17057. ctx->offset = offset;
  17058. // compute the total size of the data section, taking into account the alignment
  17059. {
  17060. ctx->size = 0;
  17061. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17062. struct gguf_tensor_info * info = &ctx->infos[i];
  17063. const int64_t ne =
  17064. (int64_t) info->ne[0] *
  17065. (int64_t) info->ne[1] *
  17066. (int64_t) info->ne[2] *
  17067. (int64_t) info->ne[3];
  17068. if (ne % ggml_blck_size(info->type) != 0) {
  17069. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17070. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17071. fclose(file);
  17072. gguf_free(ctx);
  17073. return NULL;
  17074. }
  17075. const size_t size_cur = ggml_row_size(info->type, ne);
  17076. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17077. }
  17078. }
  17079. // load the tensor data only if requested
  17080. if (params.ctx != NULL) {
  17081. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17082. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17083. // the ggml_tensor structs to the appropriate locations in the binary blob
  17084. // compute the exact size needed for the new ggml_context
  17085. const size_t mem_size =
  17086. params.no_alloc ?
  17087. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17088. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17089. struct ggml_init_params pdata = {
  17090. .mem_size = mem_size,
  17091. .mem_buffer = NULL,
  17092. .no_alloc = params.no_alloc,
  17093. };
  17094. *params.ctx = ggml_init(pdata);
  17095. struct ggml_context * ctx_data = *params.ctx;
  17096. struct ggml_tensor * data = NULL;
  17097. if (!params.no_alloc) {
  17098. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17099. ok = ok && data != NULL;
  17100. // read the binary blob with the tensor data
  17101. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17102. if (!ok) {
  17103. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17104. fclose(file);
  17105. ggml_free(ctx_data);
  17106. gguf_free(ctx);
  17107. return NULL;
  17108. }
  17109. ctx->data = data->data;
  17110. }
  17111. ggml_set_no_alloc(ctx_data, true);
  17112. // create the tensors
  17113. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17114. const int64_t ne[GGML_MAX_DIMS] = {
  17115. ctx->infos[i].ne[0],
  17116. ctx->infos[i].ne[1],
  17117. ctx->infos[i].ne[2],
  17118. ctx->infos[i].ne[3],
  17119. };
  17120. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17121. ok = ok && cur != NULL;
  17122. ggml_set_name(cur, ctx->infos[i].name.data);
  17123. if (!ok) {
  17124. break;
  17125. }
  17126. // point the data member to the appropriate location in the binary blob using the tensor infos
  17127. if (!params.no_alloc) {
  17128. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17129. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17130. }
  17131. }
  17132. if (!ok) {
  17133. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17134. fclose(file);
  17135. ggml_free(ctx_data);
  17136. gguf_free(ctx);
  17137. return NULL;
  17138. }
  17139. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17140. }
  17141. fclose(file);
  17142. return ctx;
  17143. }
  17144. void gguf_free(struct gguf_context * ctx) {
  17145. if (ctx == NULL) {
  17146. return;
  17147. }
  17148. if (ctx->kv) {
  17149. // free string memory - not great..
  17150. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17151. struct gguf_kv * kv = &ctx->kv[i];
  17152. if (kv->key.data) {
  17153. GGML_FREE(kv->key.data);
  17154. }
  17155. if (kv->type == GGUF_TYPE_STRING) {
  17156. if (kv->value.str.data) {
  17157. GGML_FREE(kv->value.str.data);
  17158. }
  17159. }
  17160. if (kv->type == GGUF_TYPE_ARRAY) {
  17161. if (kv->value.arr.data) {
  17162. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17163. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17164. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17165. if (str->data) {
  17166. GGML_FREE(str->data);
  17167. }
  17168. }
  17169. }
  17170. GGML_FREE(kv->value.arr.data);
  17171. }
  17172. }
  17173. }
  17174. GGML_FREE(ctx->kv);
  17175. }
  17176. if (ctx->infos) {
  17177. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17178. struct gguf_tensor_info * info = &ctx->infos[i];
  17179. if (info->name.data) {
  17180. GGML_FREE(info->name.data);
  17181. }
  17182. }
  17183. GGML_FREE(ctx->infos);
  17184. }
  17185. GGML_ALIGNED_FREE(ctx);
  17186. }
  17187. const char * gguf_type_name(enum gguf_type type) {
  17188. return GGUF_TYPE_NAME[type];
  17189. }
  17190. int gguf_get_version(const struct gguf_context * ctx) {
  17191. return ctx->header.version;
  17192. }
  17193. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17194. return ctx->alignment;
  17195. }
  17196. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17197. return ctx->offset;
  17198. }
  17199. void * gguf_get_data(const struct gguf_context * ctx) {
  17200. return ctx->data;
  17201. }
  17202. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17203. return ctx->header.n_kv;
  17204. }
  17205. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17206. // return -1 if key not found
  17207. int keyfound = -1;
  17208. const int n_kv = gguf_get_n_kv(ctx);
  17209. for (int i = 0; i < n_kv; ++i) {
  17210. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17211. keyfound = i;
  17212. break;
  17213. }
  17214. }
  17215. return keyfound;
  17216. }
  17217. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17218. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17219. return ctx->kv[key_id].key.data;
  17220. }
  17221. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17222. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17223. return ctx->kv[key_id].type;
  17224. }
  17225. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17226. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17227. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17228. return ctx->kv[key_id].value.arr.type;
  17229. }
  17230. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17231. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17232. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17233. return ctx->kv[key_id].value.arr.data;
  17234. }
  17235. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17236. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17237. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17238. struct gguf_kv * kv = &ctx->kv[key_id];
  17239. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17240. return str->data;
  17241. }
  17242. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17243. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17244. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17245. return ctx->kv[key_id].value.arr.n;
  17246. }
  17247. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17248. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17249. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17250. return ctx->kv[key_id].value.uint8;
  17251. }
  17252. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17253. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17254. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17255. return ctx->kv[key_id].value.int8;
  17256. }
  17257. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17258. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17259. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17260. return ctx->kv[key_id].value.uint16;
  17261. }
  17262. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17263. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17264. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17265. return ctx->kv[key_id].value.int16;
  17266. }
  17267. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17268. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17269. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17270. return ctx->kv[key_id].value.uint32;
  17271. }
  17272. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17273. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17274. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17275. return ctx->kv[key_id].value.int32;
  17276. }
  17277. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17278. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17279. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17280. return ctx->kv[key_id].value.float32;
  17281. }
  17282. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17283. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17284. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17285. return ctx->kv[key_id].value.uint64;
  17286. }
  17287. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17288. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17289. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17290. return ctx->kv[key_id].value.int64;
  17291. }
  17292. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17293. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17294. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17295. return ctx->kv[key_id].value.float64;
  17296. }
  17297. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17298. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17299. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17300. return ctx->kv[key_id].value.bool_;
  17301. }
  17302. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17303. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17304. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17305. return ctx->kv[key_id].value.str.data;
  17306. }
  17307. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17308. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17309. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17310. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17311. return &ctx->kv[key_id].value;
  17312. }
  17313. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17314. return ctx->header.n_tensors;
  17315. }
  17316. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17317. // return -1 if tensor not found
  17318. int tensorfound = -1;
  17319. const int n_tensors = gguf_get_n_tensors(ctx);
  17320. for (int i = 0; i < n_tensors; ++i) {
  17321. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17322. tensorfound = i;
  17323. break;
  17324. }
  17325. }
  17326. return tensorfound;
  17327. }
  17328. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17329. return ctx->infos[i].offset;
  17330. }
  17331. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17332. return ctx->infos[i].name.data;
  17333. }
  17334. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17335. return ctx->infos[i].type;
  17336. }
  17337. // returns the index
  17338. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17339. const int idx = gguf_find_key(ctx, key);
  17340. if (idx >= 0) {
  17341. return idx;
  17342. }
  17343. const int n_kv = gguf_get_n_kv(ctx);
  17344. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17345. ctx->kv[n_kv].key.n = strlen(key);
  17346. ctx->kv[n_kv].key.data = strdup(key);
  17347. ctx->header.n_kv++;
  17348. return n_kv;
  17349. }
  17350. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17351. const int idx = gguf_get_or_add_key(ctx, key);
  17352. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17353. ctx->kv[idx].value.uint8 = val;
  17354. }
  17355. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17356. const int idx = gguf_get_or_add_key(ctx, key);
  17357. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17358. ctx->kv[idx].value.int8 = val;
  17359. }
  17360. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17361. const int idx = gguf_get_or_add_key(ctx, key);
  17362. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17363. ctx->kv[idx].value.uint16 = val;
  17364. }
  17365. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17366. const int idx = gguf_get_or_add_key(ctx, key);
  17367. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17368. ctx->kv[idx].value.int16 = val;
  17369. }
  17370. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17371. const int idx = gguf_get_or_add_key(ctx, key);
  17372. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17373. ctx->kv[idx].value.uint32 = val;
  17374. }
  17375. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17376. const int idx = gguf_get_or_add_key(ctx, key);
  17377. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17378. ctx->kv[idx].value.int32 = val;
  17379. }
  17380. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17381. const int idx = gguf_get_or_add_key(ctx, key);
  17382. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17383. ctx->kv[idx].value.float32 = val;
  17384. }
  17385. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17386. const int idx = gguf_get_or_add_key(ctx, key);
  17387. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17388. ctx->kv[idx].value.uint64 = val;
  17389. }
  17390. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17391. const int idx = gguf_get_or_add_key(ctx, key);
  17392. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17393. ctx->kv[idx].value.int64 = val;
  17394. }
  17395. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17396. const int idx = gguf_get_or_add_key(ctx, key);
  17397. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17398. ctx->kv[idx].value.float64 = val;
  17399. }
  17400. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17401. const int idx = gguf_get_or_add_key(ctx, key);
  17402. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17403. ctx->kv[idx].value.bool_ = val;
  17404. }
  17405. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17406. const int idx = gguf_get_or_add_key(ctx, key);
  17407. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17408. ctx->kv[idx].value.str.n = strlen(val);
  17409. ctx->kv[idx].value.str.data = strdup(val);
  17410. }
  17411. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17412. const int idx = gguf_get_or_add_key(ctx, key);
  17413. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17414. ctx->kv[idx].value.arr.type = type;
  17415. ctx->kv[idx].value.arr.n = n;
  17416. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17417. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17418. }
  17419. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17420. const int idx = gguf_get_or_add_key(ctx, key);
  17421. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17422. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17423. ctx->kv[idx].value.arr.n = n;
  17424. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17425. for (int i = 0; i < n; i++) {
  17426. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17427. str->n = strlen(data[i]);
  17428. str->data = strdup(data[i]);
  17429. }
  17430. }
  17431. // set or add KV pairs from another context
  17432. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17433. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17434. switch (src->kv[i].type) {
  17435. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17436. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17437. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17438. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17439. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17440. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17441. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17442. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17443. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17444. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17445. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17446. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17447. case GGUF_TYPE_ARRAY:
  17448. {
  17449. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17450. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17451. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17452. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17453. }
  17454. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17455. GGML_FREE((void *)data);
  17456. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17457. GGML_ASSERT(false && "nested arrays not supported");
  17458. } else {
  17459. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17460. }
  17461. } break;
  17462. default: GGML_ASSERT(false && "invalid type"); break;
  17463. }
  17464. }
  17465. }
  17466. void gguf_add_tensor(
  17467. struct gguf_context * ctx,
  17468. const struct ggml_tensor * tensor) {
  17469. const int idx = ctx->header.n_tensors;
  17470. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17471. ctx->infos[idx].name.n = strlen(tensor->name);
  17472. ctx->infos[idx].name.data = strdup(tensor->name);
  17473. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17474. ctx->infos[idx].ne[i] = 1;
  17475. }
  17476. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17477. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17478. ctx->infos[idx].ne[i] = tensor->ne[i];
  17479. }
  17480. ctx->infos[idx].type = tensor->type;
  17481. ctx->infos[idx].offset = 0;
  17482. ctx->infos[idx].data = tensor->data;
  17483. ctx->infos[idx].size = ggml_nbytes(tensor);
  17484. if (ctx->header.n_tensors > 0) {
  17485. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17486. }
  17487. ctx->header.n_tensors++;
  17488. }
  17489. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17490. const int idx = gguf_find_tensor(ctx, name);
  17491. if (idx < 0) {
  17492. GGML_ASSERT(false && "tensor not found");
  17493. }
  17494. ctx->infos[idx].type = type;
  17495. }
  17496. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17497. const int idx = gguf_find_tensor(ctx, name);
  17498. if (idx < 0) {
  17499. GGML_ASSERT(false && "tensor not found");
  17500. }
  17501. ctx->infos[idx].data = data;
  17502. ctx->infos[idx].size = size;
  17503. // update offsets
  17504. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17505. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17506. }
  17507. }
  17508. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17509. // fwrite(&val->n, sizeof(val->n), 1, file);
  17510. // fwrite(val->data, sizeof(char), val->n, file);
  17511. //}
  17512. //
  17513. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17514. // fwrite(val, sizeof(char), size, file);
  17515. //}
  17516. struct gguf_buf {
  17517. void * data;
  17518. size_t size;
  17519. size_t offset;
  17520. };
  17521. static struct gguf_buf gguf_buf_init(size_t size) {
  17522. struct gguf_buf buf = {
  17523. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17524. /*buf.size =*/ size,
  17525. /*buf.offset =*/ 0,
  17526. };
  17527. return buf;
  17528. }
  17529. static void gguf_buf_free(struct gguf_buf buf) {
  17530. if (buf.data) {
  17531. GGML_FREE(buf.data);
  17532. }
  17533. }
  17534. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17535. if (buf->offset + size > buf->size) {
  17536. buf->size = 1.5*(buf->offset + size);
  17537. if (buf->data) {
  17538. buf->data = realloc(buf->data, buf->size);
  17539. }
  17540. }
  17541. }
  17542. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17543. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17544. if (buf->data) {
  17545. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17546. }
  17547. buf->offset += sizeof(val->n);
  17548. if (buf->data) {
  17549. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17550. }
  17551. buf->offset += val->n;
  17552. }
  17553. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17554. gguf_buf_grow(buf, el_size);
  17555. if (buf->data) {
  17556. memcpy((char *) buf->data + buf->offset, val, el_size);
  17557. }
  17558. buf->offset += el_size;
  17559. }
  17560. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17561. // write header
  17562. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17563. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17564. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17565. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17566. // write key-value pairs
  17567. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17568. struct gguf_kv * kv = &ctx->kv[i];
  17569. gguf_bwrite_str(buf, &kv->key);
  17570. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17571. switch (kv->type) {
  17572. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17573. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17574. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17575. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17576. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17577. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17578. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17579. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17580. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17581. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17582. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17583. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17584. case GGUF_TYPE_ARRAY:
  17585. {
  17586. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17587. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17588. switch (kv->value.arr.type) {
  17589. case GGUF_TYPE_UINT8:
  17590. case GGUF_TYPE_INT8:
  17591. case GGUF_TYPE_UINT16:
  17592. case GGUF_TYPE_INT16:
  17593. case GGUF_TYPE_UINT32:
  17594. case GGUF_TYPE_INT32:
  17595. case GGUF_TYPE_FLOAT32:
  17596. case GGUF_TYPE_UINT64:
  17597. case GGUF_TYPE_INT64:
  17598. case GGUF_TYPE_FLOAT64:
  17599. case GGUF_TYPE_BOOL:
  17600. {
  17601. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17602. } break;
  17603. case GGUF_TYPE_STRING:
  17604. {
  17605. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17606. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17607. }
  17608. } break;
  17609. case GGUF_TYPE_ARRAY:
  17610. default: GGML_ASSERT(false && "invalid type"); break;
  17611. }
  17612. } break;
  17613. default: GGML_ASSERT(false && "invalid type");
  17614. }
  17615. }
  17616. // write tensor infos
  17617. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17618. struct gguf_tensor_info * info = &ctx->infos[i];
  17619. gguf_bwrite_str(buf, &info->name);
  17620. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17621. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17622. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17623. }
  17624. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17625. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17626. }
  17627. // we require the data section to be aligned, so take into account any padding
  17628. {
  17629. const size_t offset = buf->offset;
  17630. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17631. if (offset_pad != offset) {
  17632. uint8_t pad = 0;
  17633. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17634. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17635. }
  17636. }
  17637. }
  17638. if (only_meta) {
  17639. return;
  17640. }
  17641. size_t offset = 0;
  17642. // write tensor data
  17643. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17644. struct gguf_tensor_info * info = &ctx->infos[i];
  17645. const size_t size = info->size;
  17646. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17647. gguf_bwrite_el(buf, info->data, size);
  17648. if (size_pad != size) {
  17649. uint8_t pad = 0;
  17650. for (size_t j = 0; j < size_pad - size; ++j) {
  17651. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17652. }
  17653. }
  17654. GGML_ASSERT(offset == info->offset);
  17655. offset += size_pad;
  17656. }
  17657. }
  17658. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17659. FILE * file = ggml_fopen(fname, "wb");
  17660. if (!file) {
  17661. GGML_ASSERT(false && "failed to open file for writing");
  17662. }
  17663. struct gguf_buf buf = gguf_buf_init(16*1024);
  17664. gguf_write_to_buf(ctx, &buf, only_meta);
  17665. fwrite(buf.data, 1, buf.offset, file);
  17666. gguf_buf_free(buf);
  17667. fclose(file);
  17668. }
  17669. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17670. // no allocs - only compute size
  17671. struct gguf_buf buf = gguf_buf_init(0);
  17672. gguf_write_to_buf(ctx, &buf, true);
  17673. return buf.offset;
  17674. }
  17675. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17676. struct gguf_buf buf = gguf_buf_init(16*1024);
  17677. gguf_write_to_buf(ctx, &buf, true);
  17678. memcpy(data, buf.data, buf.offset);
  17679. gguf_buf_free(buf);
  17680. }
  17681. ////////////////////////////////////////////////////////////////////////////////
  17682. int ggml_cpu_has_avx(void) {
  17683. #if defined(__AVX__)
  17684. return 1;
  17685. #else
  17686. return 0;
  17687. #endif
  17688. }
  17689. int ggml_cpu_has_avx_vnni(void) {
  17690. #if defined(__AVXVNNI__)
  17691. return 1;
  17692. #else
  17693. return 0;
  17694. #endif
  17695. }
  17696. int ggml_cpu_has_avx2(void) {
  17697. #if defined(__AVX2__)
  17698. return 1;
  17699. #else
  17700. return 0;
  17701. #endif
  17702. }
  17703. int ggml_cpu_has_avx512(void) {
  17704. #if defined(__AVX512F__)
  17705. return 1;
  17706. #else
  17707. return 0;
  17708. #endif
  17709. }
  17710. int ggml_cpu_has_avx512_vbmi(void) {
  17711. #if defined(__AVX512VBMI__)
  17712. return 1;
  17713. #else
  17714. return 0;
  17715. #endif
  17716. }
  17717. int ggml_cpu_has_avx512_vnni(void) {
  17718. #if defined(__AVX512VNNI__)
  17719. return 1;
  17720. #else
  17721. return 0;
  17722. #endif
  17723. }
  17724. int ggml_cpu_has_fma(void) {
  17725. #if defined(__FMA__)
  17726. return 1;
  17727. #else
  17728. return 0;
  17729. #endif
  17730. }
  17731. int ggml_cpu_has_neon(void) {
  17732. #if defined(__ARM_NEON)
  17733. return 1;
  17734. #else
  17735. return 0;
  17736. #endif
  17737. }
  17738. int ggml_cpu_has_arm_fma(void) {
  17739. #if defined(__ARM_FEATURE_FMA)
  17740. return 1;
  17741. #else
  17742. return 0;
  17743. #endif
  17744. }
  17745. int ggml_cpu_has_metal(void) {
  17746. #if defined(GGML_USE_METAL)
  17747. return 1;
  17748. #else
  17749. return 0;
  17750. #endif
  17751. }
  17752. int ggml_cpu_has_f16c(void) {
  17753. #if defined(__F16C__)
  17754. return 1;
  17755. #else
  17756. return 0;
  17757. #endif
  17758. }
  17759. int ggml_cpu_has_fp16_va(void) {
  17760. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17761. return 1;
  17762. #else
  17763. return 0;
  17764. #endif
  17765. }
  17766. int ggml_cpu_has_wasm_simd(void) {
  17767. #if defined(__wasm_simd128__)
  17768. return 1;
  17769. #else
  17770. return 0;
  17771. #endif
  17772. }
  17773. int ggml_cpu_has_blas(void) {
  17774. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17775. return 1;
  17776. #else
  17777. return 0;
  17778. #endif
  17779. }
  17780. int ggml_cpu_has_cublas(void) {
  17781. #if defined(GGML_USE_CUBLAS)
  17782. return 1;
  17783. #else
  17784. return 0;
  17785. #endif
  17786. }
  17787. int ggml_cpu_has_clblast(void) {
  17788. #if defined(GGML_USE_CLBLAST)
  17789. return 1;
  17790. #else
  17791. return 0;
  17792. #endif
  17793. }
  17794. int ggml_cpu_has_vulkan(void) {
  17795. #if defined(GGML_USE_VULKAN)
  17796. return 1;
  17797. #else
  17798. return 0;
  17799. #endif
  17800. }
  17801. int ggml_cpu_has_kompute(void) {
  17802. #if defined(GGML_USE_KOMPUTE)
  17803. return 1;
  17804. #else
  17805. return 0;
  17806. #endif
  17807. }
  17808. int ggml_cpu_has_sycl(void) {
  17809. #if defined(GGML_USE_SYCL)
  17810. return 1;
  17811. #else
  17812. return 0;
  17813. #endif
  17814. }
  17815. int ggml_cpu_has_gpublas(void) {
  17816. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17817. ggml_cpu_has_sycl();
  17818. }
  17819. int ggml_cpu_has_sse3(void) {
  17820. #if defined(__SSE3__)
  17821. return 1;
  17822. #else
  17823. return 0;
  17824. #endif
  17825. }
  17826. int ggml_cpu_has_ssse3(void) {
  17827. #if defined(__SSSE3__)
  17828. return 1;
  17829. #else
  17830. return 0;
  17831. #endif
  17832. }
  17833. int ggml_cpu_has_vsx(void) {
  17834. #if defined(__POWER9_VECTOR__)
  17835. return 1;
  17836. #else
  17837. return 0;
  17838. #endif
  17839. }
  17840. int ggml_cpu_has_matmul_int8(void) {
  17841. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17842. return 1;
  17843. #else
  17844. return 0;
  17845. #endif
  17846. }
  17847. ////////////////////////////////////////////////////////////////////////////////