steps.py 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. import asyncio
  2. import collections
  3. import json
  4. import os
  5. import re
  6. import socket
  7. import subprocess
  8. import time
  9. from contextlib import closing
  10. from re import RegexFlag
  11. import aiohttp
  12. import numpy as np
  13. import openai
  14. from behave import step
  15. from behave.api.async_step import async_run_until_complete
  16. from huggingface_hub import hf_hub_download
  17. from prometheus_client import parser
  18. @step(u"a server listening on {server_fqdn}:{server_port}")
  19. def step_server_config(context, server_fqdn, server_port):
  20. context.server_fqdn = server_fqdn
  21. context.server_port = int(server_port)
  22. if 'PORT' in os.environ:
  23. context.server_port = int(os.environ['PORT'])
  24. print(f"$PORT set, overriding server port with to {context.server_port}")
  25. if 'FQDN' in os.environ:
  26. context.server_fqdn = os.environ['FQDN']
  27. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  28. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  29. context.model_alias = None
  30. context.n_batch = None
  31. context.n_ctx = None
  32. context.n_ga = None
  33. context.n_ga_w = None
  34. context.n_gpu_layer = None
  35. context.n_predict = None
  36. context.n_prompts = 0
  37. context.n_server_predict = None
  38. context.n_slots = None
  39. context.prompt_prefix = None
  40. context.prompt_suffix = None
  41. context.server_api_key = None
  42. context.server_continuous_batching = False
  43. context.server_embeddings = False
  44. context.server_metrics = False
  45. context.server_process = None
  46. context.seed = None
  47. context.server_seed = None
  48. context.user_api_key = None
  49. context.tasks_result = []
  50. context.concurrent_tasks = []
  51. context.prompts = []
  52. @step(u'a model file {hf_file} from HF repo {hf_repo}')
  53. def step_download_hf_model(context, hf_file, hf_repo):
  54. context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
  55. if context.debug:
  56. print(f"model file: {context.model_file}\n")
  57. @step(u'a model alias {model_alias}')
  58. def step_model_alias(context, model_alias):
  59. context.model_alias = model_alias
  60. @step(u'{seed:d} as server seed')
  61. def step_seed(context, seed):
  62. context.server_seed = seed
  63. @step(u'{ngl:d} GPU offloaded layers')
  64. def step_n_gpu_layer(context, ngl):
  65. if 'N_GPU_LAYERS' in os.environ:
  66. new_ngl = int(os.environ['N_GPU_LAYERS'])
  67. if context.debug:
  68. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  69. ngl = new_ngl
  70. context.n_gpu_layer = ngl
  71. @step(u'{n_ctx:d} KV cache size')
  72. def step_n_ctx(context, n_ctx):
  73. context.n_ctx = n_ctx
  74. @step(u'{n_slots:d} slots')
  75. def step_n_slots(context, n_slots):
  76. context.n_slots = n_slots
  77. @step(u'{n_predict:d} server max tokens to predict')
  78. def step_server_n_predict(context, n_predict):
  79. context.n_server_predict = n_predict
  80. @step(u'continuous batching')
  81. def step_server_continuous_batching(context):
  82. context.server_continuous_batching = True
  83. @step(u'embeddings extraction')
  84. def step_server_embeddings(context):
  85. context.server_embeddings = True
  86. @step(u'prometheus compatible metrics exposed')
  87. def step_server_metrics(context):
  88. context.server_metrics = True
  89. @step(u"the server is starting")
  90. def step_start_server(context):
  91. start_server_background(context)
  92. attempts = 0
  93. while True:
  94. with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
  95. result = sock.connect_ex((context.server_fqdn, context.server_port))
  96. if result == 0:
  97. print("\x1b[33;46mserver started!\x1b[0m")
  98. return
  99. attempts += 1
  100. if attempts > 20:
  101. assert False, "server not started"
  102. print(f"waiting for server to start, connect error code = {result}...")
  103. time.sleep(0.1)
  104. @step(u"the server is {expecting_status}")
  105. @async_run_until_complete
  106. async def step_wait_for_the_server_to_be_started(context, expecting_status):
  107. match expecting_status:
  108. case 'healthy':
  109. await wait_for_health_status(context, context.base_url, 200, 'ok')
  110. case 'ready' | 'idle':
  111. await wait_for_health_status(context, context.base_url, 200, 'ok',
  112. timeout=10,
  113. params={'fail_on_no_slot': 0, 'include_slots': 0},
  114. slots_idle=context.n_slots,
  115. slots_processing=0,
  116. expected_slots=[{'id': slot_id, 'state': 0}
  117. for slot_id in
  118. range(context.n_slots if context.n_slots else 1)])
  119. case 'busy':
  120. await wait_for_health_status(context, context.base_url, 503,
  121. 'no slot available',
  122. params={'fail_on_no_slot': 0, 'include_slots': 0},
  123. slots_idle=0,
  124. slots_processing=context.n_slots,
  125. expected_slots=[{'id': slot_id, 'state': 1}
  126. for slot_id in
  127. range(context.n_slots if context.n_slots else 1)])
  128. case _:
  129. assert False, "unknown status"
  130. @step(u'all slots are {expected_slot_status_string}')
  131. @async_run_until_complete
  132. async def step_all_slots_status(context, expected_slot_status_string):
  133. match expected_slot_status_string:
  134. case 'idle':
  135. expected_slot_status = 0
  136. case 'busy':
  137. expected_slot_status = 1
  138. case _:
  139. assert False, "unknown status"
  140. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  141. for slot_id in range(context.n_slots)]
  142. await request_slots_status(context, expected_slots)
  143. @step(u'a completion request with {api_error} api error')
  144. @async_run_until_complete
  145. async def step_request_completion(context, api_error):
  146. expect_api_error = api_error == 'raised'
  147. completion = await request_completion(context.prompts.pop(),
  148. context.base_url,
  149. debug=context.debug,
  150. n_predict=context.n_predict,
  151. seed=await completions_seed(context),
  152. expect_api_error=expect_api_error,
  153. user_api_key=context.user_api_key)
  154. context.tasks_result.append(completion)
  155. if context.debug:
  156. print(f"Completion response: {completion}\n")
  157. if expect_api_error:
  158. assert completion == 401, f"completion must be an 401 status code: {completion}"
  159. @step(u'{predicted_n:d} tokens are predicted matching {re_content}')
  160. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  161. context.completion = context.tasks_result.pop()
  162. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  163. @step(u'{predicted_n:d} tokens are predicted')
  164. def step_n_tokens_predicted(context, predicted_n):
  165. context.completion = context.tasks_result.pop()
  166. assert_n_tokens_predicted(context.completion, predicted_n)
  167. @step(u'the completion is truncated')
  168. def step_assert_completion_truncated(context):
  169. step_assert_completion_truncated(context, '')
  170. @step(u'the completion is {truncated} truncated')
  171. def step_assert_completion_truncated(context, truncated):
  172. truncated = truncated != "not"
  173. assert context.completion['truncated'] == truncated, f'{context.completion}'
  174. @step(u'{n_prompt:d} prompt tokens are processed')
  175. def step_impl(context, n_prompt):
  176. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  177. @step(u'a user prompt {user_prompt}')
  178. def step_user_prompt(context, user_prompt):
  179. context.prompts.append(user_prompt)
  180. context.n_prompts = len(context.prompts)
  181. @step(u'a system prompt {system_prompt}')
  182. def step_system_prompt(context, system_prompt):
  183. context.system_prompt = system_prompt
  184. @step(u'a model {model}')
  185. def step_model(context, model):
  186. context.model = model
  187. @step(u'{max_tokens:d} max tokens to predict')
  188. def step_max_tokens(context, max_tokens):
  189. context.n_predict = max_tokens
  190. @step(u'streaming is {enable_streaming}')
  191. def step_streaming(context, enable_streaming):
  192. context.enable_streaming = enable_streaming == 'enabled'
  193. @step(u'a user api key {user_api_key}')
  194. def step_user_api_key(context, user_api_key):
  195. context.user_api_key = user_api_key
  196. @step(u'no user api key')
  197. def step_no_user_api_key(context):
  198. context.user_api_key = None
  199. @step(u'a user api key ')
  200. def step_no_user_api_key_space(context):
  201. context.user_api_key = None
  202. @step(u'a server api key {server_api_key}')
  203. def step_server_api_key(context, server_api_key):
  204. context.server_api_key = server_api_key
  205. @step(u'{n_junk:d} as number of junk')
  206. def step_n_junk(context, n_junk):
  207. context.n_junk = n_junk
  208. @step(u'{n_batch:d} as batch size')
  209. def step_n_batch(context, n_batch):
  210. context.n_batch = n_batch
  211. @step(u'{seed:d} as seed')
  212. def step_seed(context, seed):
  213. context.seed = seed
  214. @step(u'a prefix prompt')
  215. def step_prompt_prefix(context):
  216. context.prompt_prefix = context.text
  217. @step(u'a junk suffix prompt')
  218. def step_prompt_junk_suffix(context):
  219. context.prompt_junk_suffix = context.text
  220. @step(u'a suffix prompt')
  221. def step_prompt_suffix(context):
  222. context.prompt_suffix = context.text
  223. @step(u'{n_ga:d} group attention factor'
  224. u' to extend context size through self-extend')
  225. def step_impl(context, n_ga):
  226. context.n_ga = n_ga
  227. @step(u'{n_ga_w:d} group attention width to extend context size through self-extend')
  228. def step_impl(context, n_ga_w):
  229. context.n_ga_w = n_ga_w
  230. @step(u'a passkey prompt template')
  231. def step_prompt_passkey(context):
  232. context.prompt_passkey = context.text
  233. @step(u'{n_prompts:d} fixed prompts')
  234. def step_fixed_prompts(context, n_prompts):
  235. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  236. context.n_prompts = n_prompts
  237. @step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  238. def step_prompt_passkey(context, passkey, i_pos):
  239. prompt = ""
  240. for i in range(context.n_junk):
  241. if i % context.n_junk == i_pos:
  242. prompt += context.prompt_passkey # the passkey is already substituted
  243. prompt += context.prompt_junk_suffix
  244. if context.debug:
  245. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  246. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
  247. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  248. context.n_prompts = len(context.prompts)
  249. @step(u'an OAI compatible chat completions request with {api_error} api error')
  250. @async_run_until_complete
  251. async def step_oai_chat_completions(context, api_error):
  252. if context.debug:
  253. print(f"Submitting OAI compatible completions request...\n")
  254. expect_api_error = api_error == 'raised'
  255. completion = await oai_chat_completions(context.prompts.pop(),
  256. context.system_prompt,
  257. context.base_url,
  258. '/v1/chat',
  259. False,
  260. model=context.model if hasattr(context, 'model') else None,
  261. n_predict=context.n_predict
  262. if hasattr(context, 'n_predict') else None,
  263. enable_streaming=context.enable_streaming
  264. if hasattr(context, 'enable_streaming') else None,
  265. seed=await completions_seed(context),
  266. user_api_key=context.user_api_key
  267. if hasattr(context, 'user_api_key') else None,
  268. expect_api_error=expect_api_error)
  269. context.tasks_result.append(completion)
  270. if context.debug:
  271. print(f"Completion response: {completion}")
  272. if expect_api_error:
  273. assert completion == 401, f"completion must be an 401 status code: {completion}"
  274. if context.debug:
  275. print(f"Completion response: {completion}")
  276. @step(u'a prompt')
  277. def step_a_prompt(context):
  278. context.prompts.append(context.text)
  279. context.n_prompts = len(context.prompts)
  280. @step(u'a prompt {prompt}')
  281. def step_a_prompt_prompt(context, prompt):
  282. context.prompts.append(prompt)
  283. context.n_prompts = len(context.prompts)
  284. @step(u'concurrent completion requests')
  285. @async_run_until_complete()
  286. async def step_concurrent_completion_requests(context):
  287. await concurrent_requests(context,
  288. request_completion,
  289. # prompt is inserted automatically
  290. context.base_url,
  291. debug=context.debug,
  292. prompt_prefix=context.prompt_prefix,
  293. prompt_suffix=context.prompt_suffix,
  294. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  295. seed=await completions_seed(context),
  296. user_api_key=context.user_api_key if hasattr(context,
  297. 'user_api_key') else None)
  298. @step(u'concurrent OAI completions requests')
  299. @async_run_until_complete
  300. async def step_oai_chat_completions(context):
  301. await concurrent_requests(context, oai_chat_completions,
  302. # user_prompt is inserted automatically
  303. context.system_prompt,
  304. context.base_url,
  305. '/v1/chat/completions',
  306. True, # async_client
  307. model=context.model
  308. if hasattr(context, 'model') else None,
  309. n_predict=context.n_predict
  310. if hasattr(context, 'n_predict') else None,
  311. enable_streaming=context.enable_streaming
  312. if hasattr(context, 'enable_streaming') else None,
  313. seed=await completions_seed(context),
  314. user_api_key=context.user_api_key
  315. if hasattr(context, 'user_api_key') else None)
  316. @step(u'concurrent OAI completions requests no v1')
  317. @async_run_until_complete
  318. async def step_oai_chat_completions(context):
  319. await concurrent_requests(context, oai_chat_completions,
  320. # user_prompt is inserted automatically
  321. context.system_prompt,
  322. context.base_url,
  323. '/chat/completions',
  324. True, # async_client
  325. model=context.model
  326. if hasattr(context, 'model') else None,
  327. n_predict=context.n_predict
  328. if hasattr(context, 'n_predict') else None,
  329. enable_streaming=context.enable_streaming
  330. if hasattr(context, 'enable_streaming') else None,
  331. seed=context.seed
  332. if hasattr(context, 'seed') else
  333. context.server_seed
  334. if hasattr(context, 'server_seed') else None,
  335. user_api_key=context.user_api_key
  336. if hasattr(context, 'user_api_key') else None)
  337. @step(u'all prompts are predicted')
  338. @async_run_until_complete
  339. async def step_all_prompts_are_predicted(context):
  340. await all_prompts_are_predicted(context)
  341. @step(u'all prompts are predicted with {n_expected_predicted:d} tokens')
  342. @async_run_until_complete
  343. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  344. await all_prompts_are_predicted(context, n_expected_predicted)
  345. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  346. n_completions = await gather_tasks_results(context)
  347. assert n_completions > 0
  348. for i in range(n_completions):
  349. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  350. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  351. @step(u'embeddings are computed for')
  352. @async_run_until_complete
  353. async def step_compute_embedding(context):
  354. context.n_prompts = 1
  355. context.embeddings = await request_embedding(context.text, base_url=context.base_url)
  356. @step(u'all embeddings are the same')
  357. @async_run_until_complete
  358. async def step_all_embeddings_are_the_same(context):
  359. n_embedding_requests = await gather_tasks_results(context)
  360. assert n_embedding_requests > 0
  361. embeddings = []
  362. for i in range(n_embedding_requests):
  363. embedding = context.tasks_result.pop().pop()
  364. embeddings.append(embedding)
  365. assert_embeddings(embedding)
  366. n = len(embeddings)
  367. for i in range(n-1):
  368. for j in range(i+1, n):
  369. embedding1 = np.array(embeddings[i])
  370. embedding2 = np.array(embeddings[j])
  371. if context.debug:
  372. print(f"embedding1: {embedding1[-8:]}\n")
  373. print(f"embedding2: {embedding2[-8:]}\n")
  374. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  375. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  376. if context.debug:
  377. print(f"{msg}\n")
  378. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  379. @step(u'embeddings are generated')
  380. def step_assert_embeddings(context):
  381. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  382. f"context.n_prompts={context.n_prompts}\n"
  383. f"context.embeddings={context.embeddings}")
  384. for embedding in context.embeddings:
  385. assert_embeddings(embedding)
  386. @step(u'an OAI compatible embeddings computation request for')
  387. @async_run_until_complete
  388. async def step_oai_compute_embeddings(context):
  389. context.n_prompts = 1
  390. context.embeddings = await request_oai_embeddings(context.text,
  391. base_url=context.base_url,
  392. user_api_key=context.user_api_key,
  393. model=context.model)
  394. @step(u'an OAI compatible embeddings computation request for multiple inputs')
  395. @async_run_until_complete
  396. async def step_oai_compute_embeddings_multiple_inputs(context):
  397. context.embeddings = await request_oai_embeddings(context.prompts,
  398. base_url=context.base_url,
  399. user_api_key=context.user_api_key,
  400. model=context.model)
  401. context.prompts.clear()
  402. @step(u'concurrent embedding requests')
  403. @async_run_until_complete()
  404. async def step_concurrent_embedding_requests(context):
  405. await concurrent_requests(context,
  406. request_embedding,
  407. # prompt is inserted automatically
  408. base_url=context.base_url)
  409. @step(u'concurrent OAI embedding requests')
  410. @async_run_until_complete()
  411. async def step_concurrent_oai_embedding_requests(context):
  412. await concurrent_requests(context,
  413. request_oai_embeddings,
  414. # prompt is inserted automatically
  415. base_url=context.base_url,
  416. async_client=True,
  417. model=context.model)
  418. @step(u'all embeddings are generated')
  419. @async_run_until_complete()
  420. async def all_embeddings_are_generated(context):
  421. n_embedding_requests = await gather_tasks_results(context)
  422. assert n_embedding_requests == context.n_prompts
  423. for i in range(n_embedding_requests):
  424. assert_embeddings(context.tasks_result.pop().pop())
  425. @step(u'tokenizing')
  426. @async_run_until_complete
  427. async def step_tokenize(context):
  428. context.tokenized_text = context.text
  429. async with aiohttp.ClientSession() as session:
  430. async with session.post(f'{context.base_url}/tokenize',
  431. json={
  432. "content": context.tokenized_text,
  433. }) as response:
  434. assert response.status == 200
  435. tokenize_json = await response.json()
  436. context.tokens = tokenize_json['tokens']
  437. @step(u'tokens can be detokenize')
  438. @async_run_until_complete
  439. async def step_detokenize(context):
  440. assert len(context.tokens) > 0
  441. async with aiohttp.ClientSession() as session:
  442. async with session.post(f'{context.base_url}/detokenize',
  443. json={
  444. "tokens": context.tokens,
  445. }) as response:
  446. assert response.status == 200
  447. detokenize_json = await response.json()
  448. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  449. assert context.tokenized_text == detokenize_json['content'].strip()
  450. @step(u'an OPTIONS request is sent from {origin}')
  451. @async_run_until_complete
  452. async def step_options_request(context, origin):
  453. async with aiohttp.ClientSession() as session:
  454. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  455. async with session.options(f'{context.base_url}/v1/chat/completions',
  456. headers=headers) as response:
  457. assert response.status == 200
  458. context.options_response = response
  459. @step(u'CORS header {cors_header} is set to {cors_header_value}')
  460. def step_check_options_header_value(context, cors_header, cors_header_value):
  461. assert context.options_response.headers[cors_header] == cors_header_value
  462. @step(u'prometheus metrics are exposed')
  463. @async_run_until_complete
  464. async def step_prometheus_metrics_exported(context):
  465. async with aiohttp.ClientSession() as session:
  466. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  467. assert metrics_response.status == 200
  468. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  469. metrics_raw = await metrics_response.text()
  470. metric_exported = False
  471. if context.debug:
  472. print(f"/metrics answer:\n{metrics_raw}\n")
  473. context.metrics = {}
  474. for metric in parser.text_string_to_metric_families(metrics_raw):
  475. match metric.name:
  476. case "llamacpp:kv_cache_usage_ratio":
  477. assert len(metric.samples) > 0
  478. metric_exported = True
  479. context.metrics[metric.name] = metric
  480. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  481. assert metric_exported, "No metrics exported"
  482. @step(u'metric {metric_name} is {metric_value:d}')
  483. def step_assert_metric_value(context, metric_name, metric_value):
  484. if metric_name not in context.metrics:
  485. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  486. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  487. @step(u'available models')
  488. def step_available_models(context):
  489. # openai client always expects an api_key
  490. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  491. openai.api_base = f'{context.base_url}/v1'
  492. context.models = openai.Model.list().data
  493. @step(u'{n_model:d} models are supported')
  494. def step_supported_models(context, n_model):
  495. if context.debug:
  496. print("server models available:", context.models)
  497. assert len(context.models) == n_model
  498. @step(u'model {i_model:d} is {param} {preposition} {param_value}')
  499. def step_supported_models(context, i_model, param, preposition, param_value):
  500. assert i_model < len(context.models)
  501. model = context.models[i_model]
  502. param_value = param_value.split(' ', 1)[0]
  503. match param:
  504. case 'identified':
  505. value = model.id
  506. case 'trained':
  507. value = str(model.meta.n_ctx_train)
  508. case _:
  509. assert False, "param {param} not supported"
  510. assert param_value == value, f"model param {param} {value} != {param_value}"
  511. async def concurrent_requests(context, f_completion, *args, **kwargs):
  512. context.n_prompts = len(context.prompts)
  513. if context.debug:
  514. print(f"starting {context.n_prompts} concurrent completion requests...")
  515. assert context.n_prompts > 0
  516. for prompt_no in range(context.n_prompts):
  517. shifted_args = [context.prompts.pop(), *args]
  518. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  519. await asyncio.sleep(0.1)
  520. async def request_completion(prompt,
  521. base_url,
  522. debug=False,
  523. prompt_prefix=None,
  524. prompt_suffix=None,
  525. n_predict=None,
  526. seed=None,
  527. expect_api_error=None,
  528. user_api_key=None):
  529. if debug:
  530. print(f"Sending completion request: {prompt}")
  531. origin = "my.super.domain"
  532. headers = {
  533. 'Origin': origin
  534. }
  535. if user_api_key is not None:
  536. if debug:
  537. print(f"Set user_api_key: {user_api_key}")
  538. headers['Authorization'] = f'Bearer {user_api_key}'
  539. async with aiohttp.ClientSession() as session:
  540. async with session.post(f'{base_url}/completion',
  541. json={
  542. "input_prefix": prompt_prefix,
  543. "prompt": prompt,
  544. "input_suffix": prompt_suffix,
  545. "n_predict": n_predict if n_predict is not None else -1,
  546. "seed": seed if seed is not None else 42
  547. },
  548. headers=headers,
  549. timeout=3600) as response:
  550. if expect_api_error is None or not expect_api_error:
  551. assert response.status == 200
  552. assert response.headers['Access-Control-Allow-Origin'] == origin
  553. return await response.json()
  554. else:
  555. return response.status
  556. async def oai_chat_completions(user_prompt,
  557. system_prompt,
  558. base_url,
  559. base_path,
  560. async_client,
  561. debug=False,
  562. model=None,
  563. n_predict=None,
  564. enable_streaming=None,
  565. seed=None,
  566. user_api_key=None,
  567. expect_api_error=None):
  568. if debug:
  569. print(f"Sending OAI Chat completions request: {user_prompt}")
  570. # openai client always expects an api key
  571. user_api_key = user_api_key if user_api_key is not None else 'nope'
  572. seed = seed if seed is not None else 42
  573. enable_streaming = enable_streaming if enable_streaming is not None else False
  574. payload = {
  575. "messages": [
  576. {
  577. "role": "system",
  578. "content": system_prompt,
  579. },
  580. {
  581. "role": "user",
  582. "content": user_prompt,
  583. }
  584. ],
  585. "model": model,
  586. "max_tokens": n_predict,
  587. "stream": enable_streaming,
  588. "seed": seed
  589. }
  590. completion_response = {
  591. 'content': '',
  592. 'timings': {
  593. 'predicted_n': 0,
  594. 'prompt_n': 0
  595. }
  596. }
  597. if async_client:
  598. origin = 'llama.cpp'
  599. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  600. async with aiohttp.ClientSession() as session:
  601. async with session.post(f'{base_url}{base_path}',
  602. json=payload,
  603. headers=headers) as response:
  604. if enable_streaming:
  605. assert response.status == 200
  606. assert response.headers['Access-Control-Allow-Origin'] == origin
  607. assert response.headers['Content-Type'] == "text/event-stream"
  608. event_received = True
  609. while event_received:
  610. event_received = False
  611. async for line_in_bytes in response.content:
  612. line = line_in_bytes.decode('utf8')
  613. line = line.rstrip('\n').rstrip('\r')
  614. if line == '':
  615. continue
  616. event_data = line.split(': ', 1)
  617. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  618. chunk_raw = event_data[1]
  619. chunk = json.loads(chunk_raw)
  620. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  621. delta = chunk['choices'][0]['delta']
  622. if 'content' in delta:
  623. completion_response['content'] += delta['content']
  624. completion_response['timings']['predicted_n'] += 1
  625. else:
  626. if expect_api_error is None or not expect_api_error:
  627. assert response.status == 200
  628. assert response.headers['Access-Control-Allow-Origin'] == origin
  629. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  630. chat_completion_raw = await response.json()
  631. completion_response = {
  632. 'content': chat_completion_raw['choices'][0]['message'],
  633. 'timings': {
  634. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  635. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  636. }
  637. }
  638. else:
  639. return response.status
  640. else:
  641. try:
  642. openai.api_key = user_api_key
  643. openai.api_base = f'{base_url}{base_path}'
  644. chat_completion = openai.Completion.create(
  645. messages=payload['messages'],
  646. model=model,
  647. max_tokens=n_predict,
  648. stream=enable_streaming,
  649. seed=seed
  650. )
  651. except openai.error.APIError as e:
  652. if expect_api_error is not None and expect_api_error:
  653. return 401
  654. else:
  655. assert False, f'error raised: {e}'
  656. if enable_streaming:
  657. for chunk in chat_completion:
  658. assert len(chunk.choices) == 1
  659. delta = chunk.choices[0].delta
  660. if 'content' in delta:
  661. completion_response['content'] += delta['content']
  662. completion_response['timings']['predicted_n'] += 1
  663. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  664. else:
  665. assert len(chat_completion.choices) == 1
  666. completion_response = {
  667. 'content': chat_completion.choices[0].message.content,
  668. 'timings': {
  669. 'predicted_n': chat_completion.usage.completion_tokens,
  670. 'prompt_n': chat_completion.usage.prompt_tokens
  671. },
  672. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  673. }
  674. if debug:
  675. print("OAI response formatted to llama.cpp:", completion_response)
  676. return completion_response
  677. async def request_embedding(content, base_url=None):
  678. async with aiohttp.ClientSession() as session:
  679. async with session.post(f'{base_url}/embedding',
  680. json={
  681. "content": content,
  682. }) as response:
  683. assert response.status == 200
  684. response_json = await response.json()
  685. return [response_json['embedding']]
  686. async def request_oai_embeddings(input,
  687. base_url=None, user_api_key=None,
  688. model=None, async_client=False):
  689. # openai client always expects an api_key
  690. user_api_key = user_api_key if user_api_key is not None else 'nope'
  691. if async_client:
  692. origin = 'llama.cpp'
  693. headers=[]
  694. if user_api_key is not None:
  695. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  696. async with aiohttp.ClientSession() as session:
  697. async with session.post(f'{base_url}/v1/embeddings',
  698. json={
  699. "input": input,
  700. "model": model,
  701. },
  702. headers=headers,
  703. timeout=3600) as response:
  704. assert response.status == 200, f"received status code not expected: {response.status}"
  705. assert response.headers['Access-Control-Allow-Origin'] == origin
  706. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  707. response_json = await response.json()
  708. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  709. assert response_json['object'] == 'list'
  710. if isinstance(input, collections.abc.Sequence):
  711. embeddings = []
  712. for an_oai_embeddings in response_json['data']:
  713. embeddings.append(an_oai_embeddings['embedding'])
  714. else:
  715. embeddings = [response_json['data']['embedding']]
  716. return embeddings
  717. else:
  718. openai.api_key = user_api_key
  719. openai.api_base = f'{base_url}/v1'
  720. oai_embeddings = openai.Embedding.create(
  721. model=model,
  722. input=input,
  723. )
  724. if isinstance(input, collections.abc.Sequence):
  725. embeddings = []
  726. for an_oai_embeddings in oai_embeddings.data:
  727. embeddings.append(an_oai_embeddings.embedding)
  728. else:
  729. embeddings = [oai_embeddings.data.embedding]
  730. return embeddings
  731. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  732. content = completion_response['content']
  733. n_predicted = completion_response['timings']['predicted_n']
  734. assert len(content) > 0, "no token predicted"
  735. if re_content is not None:
  736. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  737. matches = p.finditer(content)
  738. last_match = 0
  739. highlighted = ''
  740. for match in matches:
  741. start, end = match.span()
  742. highlighted += content[last_match: start]
  743. highlighted += '\x1b[33m'
  744. highlighted += content[start: end]
  745. highlighted += '\x1b[0m'
  746. last_match = end
  747. highlighted += content[last_match:]
  748. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  749. print(f"Checking completion response: {highlighted}\n")
  750. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  751. if expected_predicted_n and expected_predicted_n > 0:
  752. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  753. f' {n_predicted} <> {expected_predicted_n}')
  754. async def gather_tasks_results(context):
  755. n_tasks = len(context.concurrent_tasks)
  756. if context.debug:
  757. print(f"Waiting for all {n_tasks} tasks results...\n")
  758. for task_no in range(n_tasks):
  759. context.tasks_result.append(await context.concurrent_tasks.pop())
  760. n_completions = len(context.tasks_result)
  761. return n_completions
  762. async def wait_for_health_status(context,
  763. base_url,
  764. expected_http_status_code,
  765. expected_health_status,
  766. timeout=3,
  767. params=None,
  768. slots_idle=None,
  769. slots_processing=None,
  770. expected_slots=None):
  771. if context.debug:
  772. print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
  773. interval = 0.5
  774. counter = 0
  775. async with aiohttp.ClientSession() as session:
  776. while True:
  777. async with await session.get(f'{base_url}/health', params=params) as health_response:
  778. status_code = health_response.status
  779. health = await health_response.json()
  780. if context.debug:
  781. print(f"HEALTH - response for expected health status='{expected_health_status}' on "
  782. f"'{base_url}/health'?{params} is {health}\n")
  783. if (status_code == expected_http_status_code
  784. and health['status'] == expected_health_status
  785. and (slots_idle is None or health['slots_idle'] == slots_idle)
  786. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  787. if expected_slots is not None:
  788. assert_slots_status(health['slots'], expected_slots)
  789. return
  790. if (status_code == expected_http_status_code
  791. and health['status'] == expected_health_status
  792. and (slots_idle is None or health['slots_idle'] == slots_idle)
  793. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  794. if expected_slots is not None:
  795. assert_slots_status(health['slots'], expected_slots)
  796. return
  797. await asyncio.sleep(interval)
  798. counter += interval
  799. if counter >= timeout:
  800. # Sometimes health requests are triggered after completions are predicted
  801. if expected_http_status_code == 503:
  802. if len(context.tasks_result) == 0:
  803. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  804. " busy health check missed, probably too fast inference\x1b[0m\n")
  805. n_completions = await gather_tasks_results(context)
  806. if n_completions > 0:
  807. return
  808. assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
  809. def assert_embeddings(embeddings):
  810. assert len(embeddings) > 0
  811. embeddings_computed = False
  812. for emb in embeddings:
  813. if not isinstance(emb, float):
  814. assert False, f"Bad embeddings: {embeddings}"
  815. if emb != 0:
  816. embeddings_computed = True
  817. assert embeddings_computed, f"Embeddings: {embeddings}"
  818. async def request_slots_status(context, expected_slots):
  819. async with aiohttp.ClientSession() as session:
  820. async with await session.get(f'{context.base_url}/slots') as slots_response:
  821. assert slots_response.status == 200
  822. slots = await slots_response.json()
  823. assert_slots_status(slots, expected_slots)
  824. def assert_slots_status(slots, expected_slots):
  825. assert len(slots) == len(expected_slots)
  826. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  827. for key in expected:
  828. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  829. f" expected[{key}] != slot[{key}]"
  830. f" = {expected[key]} != {slot[key]}")
  831. async def completions_seed(context):
  832. return context.seed if hasattr(context, 'seed') and context.seed is not None \
  833. else context.server_seed if hasattr(context, 'server_seed') else None
  834. def start_server_background(context):
  835. context.server_path = '../../../build/bin/server'
  836. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  837. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  838. server_args = [
  839. '--host', context.server_fqdn,
  840. '--port', context.server_port,
  841. '--model', context.model_file
  842. ]
  843. if context.n_batch:
  844. server_args.extend(['--batch-size', context.n_batch])
  845. if context.n_gpu_layer:
  846. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  847. if context.server_continuous_batching:
  848. server_args.append('--cont-batching')
  849. if context.server_embeddings:
  850. server_args.append('--embedding')
  851. if context.server_metrics:
  852. server_args.append('--metrics')
  853. if context.model_alias:
  854. server_args.extend(['--alias', context.model_alias])
  855. if context.n_ctx:
  856. server_args.extend(['--ctx-size', context.n_ctx])
  857. if context.n_slots:
  858. server_args.extend(['--parallel', context.n_slots])
  859. if context.n_server_predict:
  860. server_args.extend(['--n-predict', context.n_server_predict])
  861. if context.server_api_key:
  862. server_args.extend(['--api-key', context.server_api_key])
  863. if context.n_ga:
  864. server_args.extend(['--grp-attn-n', context.n_ga])
  865. if context.n_ga_w:
  866. server_args.extend(['--grp-attn-w', context.n_ga_w])
  867. if context.debug:
  868. server_args.append('--verbose')
  869. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  870. server_args.extend(['--log-format', "text"])
  871. print(f"starting server with: {context.server_path} {server_args}\n")
  872. context.server_process = subprocess.Popen(
  873. [str(arg) for arg in [context.server_path, *server_args]],
  874. close_fds=True)
  875. print(f"server pid={context.server_process.pid}")