1
0

ggml.c 697 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. const char * ggml_status_to_string(enum ggml_status status) {
  271. switch (status) {
  272. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  273. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  274. case GGML_STATUS_SUCCESS: return "GGML status: success";
  275. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  276. }
  277. return "GGML status: unknown";
  278. }
  279. // note: do not use these inside ggml.c
  280. // these are meant to be used via the ggml.h API
  281. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. return GGML_FP32_TO_FP16(x);
  286. }
  287. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  288. for (int i = 0; i < n; i++) {
  289. y[i] = GGML_FP16_TO_FP32(x[i]);
  290. }
  291. }
  292. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  293. int i = 0;
  294. #if defined(__F16C__)
  295. for (; i + 7 < n; i += 8) {
  296. __m256 x_vec = _mm256_loadu_ps(x + i);
  297. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  298. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  299. }
  300. for(; i + 3 < n; i += 4) {
  301. __m128 x_vec = _mm_loadu_ps(x + i);
  302. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  304. }
  305. #endif
  306. for (; i < n; i++) {
  307. y[i] = GGML_FP32_TO_FP16(x[i]);
  308. }
  309. }
  310. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  311. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  312. }
  313. //
  314. // timing
  315. //
  316. #if defined(_MSC_VER) || defined(__MINGW32__)
  317. static int64_t timer_freq, timer_start;
  318. void ggml_time_init(void) {
  319. LARGE_INTEGER t;
  320. QueryPerformanceFrequency(&t);
  321. timer_freq = t.QuadPart;
  322. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  323. // and the uptime is high enough.
  324. // We subtract the program start time to reduce the likelihood of that happening.
  325. QueryPerformanceCounter(&t);
  326. timer_start = t.QuadPart;
  327. }
  328. int64_t ggml_time_ms(void) {
  329. LARGE_INTEGER t;
  330. QueryPerformanceCounter(&t);
  331. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  332. }
  333. int64_t ggml_time_us(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  337. }
  338. #else
  339. void ggml_time_init(void) {}
  340. int64_t ggml_time_ms(void) {
  341. struct timespec ts;
  342. clock_gettime(CLOCK_MONOTONIC, &ts);
  343. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  344. }
  345. int64_t ggml_time_us(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  349. }
  350. #endif
  351. int64_t ggml_cycles(void) {
  352. return clock();
  353. }
  354. int64_t ggml_cycles_per_ms(void) {
  355. return CLOCKS_PER_SEC/1000;
  356. }
  357. #ifdef GGML_PERF
  358. #define ggml_perf_time_ms() ggml_time_ms()
  359. #define ggml_perf_time_us() ggml_time_us()
  360. #define ggml_perf_cycles() ggml_cycles()
  361. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  362. #else
  363. #define ggml_perf_time_ms() 0
  364. #define ggml_perf_time_us() 0
  365. #define ggml_perf_cycles() 0
  366. #define ggml_perf_cycles_per_ms() 0
  367. #endif
  368. //
  369. // cache line
  370. //
  371. #if defined(__cpp_lib_hardware_interference_size)
  372. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  373. #else
  374. #if defined(__POWER9_VECTOR__)
  375. #define CACHE_LINE_SIZE 128
  376. #else
  377. #define CACHE_LINE_SIZE 64
  378. #endif
  379. #endif
  380. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  381. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  382. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  383. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  384. [GGML_TYPE_I8] = {
  385. .type_name = "i8",
  386. .blck_size = 1,
  387. .type_size = sizeof(int8_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_I16] = {
  391. .type_name = "i16",
  392. .blck_size = 1,
  393. .type_size = sizeof(int16_t),
  394. .is_quantized = false,
  395. },
  396. [GGML_TYPE_I32] = {
  397. .type_name = "i32",
  398. .blck_size = 1,
  399. .type_size = sizeof(int32_t),
  400. .is_quantized = false,
  401. },
  402. [GGML_TYPE_F32] = {
  403. .type_name = "f32",
  404. .blck_size = 1,
  405. .type_size = sizeof(float),
  406. .is_quantized = false,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  408. .vec_dot_type = GGML_TYPE_F32,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_F16] = {
  412. .type_name = "f16",
  413. .blck_size = 1,
  414. .type_size = sizeof(ggml_fp16_t),
  415. .is_quantized = false,
  416. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  417. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  418. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  419. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  420. .vec_dot_type = GGML_TYPE_F16,
  421. .nrows = 1,
  422. },
  423. [GGML_TYPE_Q4_0] = {
  424. .type_name = "q4_0",
  425. .blck_size = QK4_0,
  426. .type_size = sizeof(block_q4_0),
  427. .is_quantized = true,
  428. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  429. .from_float = quantize_row_q4_0,
  430. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  431. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  432. .vec_dot_type = GGML_TYPE_Q8_0,
  433. #if defined (__ARM_FEATURE_MATMUL_INT8)
  434. .nrows = 2,
  435. #else
  436. .nrows = 1,
  437. #endif
  438. },
  439. [GGML_TYPE_Q4_1] = {
  440. .type_name = "q4_1",
  441. .blck_size = QK4_1,
  442. .type_size = sizeof(block_q4_1),
  443. .is_quantized = true,
  444. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  445. .from_float = quantize_row_q4_1,
  446. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  447. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  448. .vec_dot_type = GGML_TYPE_Q8_1,
  449. #if defined (__ARM_FEATURE_MATMUL_INT8)
  450. .nrows = 2,
  451. #else
  452. .nrows = 1,
  453. #endif
  454. },
  455. [4] = { // GGML_TYPE_Q4_2
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [5] = { // GGML_TYPE_Q4_3
  468. .type_name = "DEPRECATED",
  469. .blck_size = 0,
  470. .type_size = 0,
  471. .is_quantized = false,
  472. .to_float = NULL,
  473. .from_float = NULL,
  474. .from_float_reference = NULL,
  475. .vec_dot = NULL,
  476. .vec_dot_type = GGML_TYPE_COUNT,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_0] = {
  480. .type_name = "q5_0",
  481. .blck_size = QK5_0,
  482. .type_size = sizeof(block_q5_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  485. .from_float = quantize_row_q5_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  487. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q5_1] = {
  492. .type_name = "q5_1",
  493. .blck_size = QK5_1,
  494. .type_size = sizeof(block_q5_1),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  497. .from_float = quantize_row_q5_1,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  499. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  500. .vec_dot_type = GGML_TYPE_Q8_1,
  501. .nrows = 1,
  502. },
  503. [GGML_TYPE_Q8_0] = {
  504. .type_name = "q8_0",
  505. .blck_size = QK8_0,
  506. .type_size = sizeof(block_q8_0),
  507. .is_quantized = true,
  508. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  509. .from_float = quantize_row_q8_0,
  510. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  511. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  512. .vec_dot_type = GGML_TYPE_Q8_0,
  513. #if defined (__ARM_FEATURE_MATMUL_INT8)
  514. .nrows = 2,
  515. #else
  516. .nrows = 1,
  517. #endif
  518. },
  519. [GGML_TYPE_Q8_1] = {
  520. .type_name = "q8_1",
  521. .blck_size = QK8_1,
  522. .type_size = sizeof(block_q8_1),
  523. .is_quantized = true,
  524. .from_float = quantize_row_q8_1,
  525. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  526. .vec_dot_type = GGML_TYPE_Q8_1,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q2_K] = {
  530. .type_name = "q2_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q2_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  535. .from_float = quantize_row_q2_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  537. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q3_K] = {
  542. .type_name = "q3_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q3_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  547. .from_float = quantize_row_q3_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  549. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q4_K] = {
  554. .type_name = "q4_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q4_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  559. .from_float = quantize_row_q4_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  561. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q5_K] = {
  566. .type_name = "q5_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q5_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  571. .from_float = quantize_row_q5_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  573. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_Q6_K] = {
  578. .type_name = "q6_K",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_q6_K),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  583. .from_float = quantize_row_q6_K,
  584. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  585. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XXS] = {
  590. .type_name = "iq2_xxs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xxs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ2_XS] = {
  602. .type_name = "iq2_xs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq2_xs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  607. .from_float = NULL,
  608. .from_float_reference = NULL,
  609. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_XXS] = {
  614. .type_name = "iq3_xxs",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_xxs),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  619. .from_float = quantize_row_iq3_xxs,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  621. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ3_S] = {
  626. .type_name = "iq3_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq3_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  631. .from_float = quantize_row_iq3_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  633. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ2_S] = {
  638. .type_name = "iq2_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq2_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  643. .from_float = quantize_row_iq2_s,
  644. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  645. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ1_S] = {
  650. .type_name = "iq1_s",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_iq1_s),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  655. .from_float = NULL,
  656. .from_float_reference = NULL,
  657. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ4_NL] = {
  662. .type_name = "iq4_nl",
  663. .blck_size = QK4_NL,
  664. .type_size = sizeof(block_iq4_nl),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  667. .from_float = quantize_row_iq4_nl,
  668. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  669. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  670. .vec_dot_type = GGML_TYPE_Q8_0,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_IQ4_XS] = {
  674. .type_name = "iq4_xs",
  675. #if QK_K == 64
  676. .blck_size = QK4_NL,
  677. #else
  678. .blck_size = QK_K,
  679. #endif
  680. .type_size = sizeof(block_iq4_xs),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  683. .from_float = quantize_row_iq4_xs,
  684. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  685. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  686. #if QK_K == 64
  687. .vec_dot_type = GGML_TYPE_Q8_0,
  688. #else
  689. .vec_dot_type = GGML_TYPE_Q8_K,
  690. #endif
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_Q8_K] = {
  694. .type_name = "q8_K",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_q8_K),
  697. .is_quantized = true,
  698. .from_float = quantize_row_q8_K,
  699. }
  700. };
  701. // For internal test use
  702. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  703. GGML_ASSERT(type < GGML_TYPE_COUNT);
  704. return type_traits[type];
  705. }
  706. //
  707. // simd mappings
  708. //
  709. #if defined(__ARM_NEON)
  710. #if !defined(__aarch64__)
  711. // 64-bit compatibility
  712. inline static float vaddvq_f32(float32x4_t v) {
  713. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  714. }
  715. #endif
  716. #endif
  717. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  718. // we then implement the fundamental computation operations below using only these macros
  719. // adding support for new architectures requires to define the corresponding SIMD macros
  720. //
  721. // GGML_F32_STEP / GGML_F16_STEP
  722. // number of elements to process in a single step
  723. //
  724. // GGML_F32_EPR / GGML_F16_EPR
  725. // number of elements to fit in a single register
  726. //
  727. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  728. #define GGML_SIMD
  729. // F32 NEON
  730. #define GGML_F32_STEP 16
  731. #define GGML_F32_EPR 4
  732. #define GGML_F32x4 float32x4_t
  733. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  734. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  735. #define GGML_F32x4_LOAD vld1q_f32
  736. #define GGML_F32x4_STORE vst1q_f32
  737. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  738. #define GGML_F32x4_ADD vaddq_f32
  739. #define GGML_F32x4_MUL vmulq_f32
  740. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  741. #define GGML_F32x4_REDUCE(res, x) \
  742. { \
  743. int offset = GGML_F32_ARR >> 1; \
  744. for (int i = 0; i < offset; ++i) { \
  745. x[i] = vaddq_f32(x[i], x[offset+i]); \
  746. } \
  747. offset >>= 1; \
  748. for (int i = 0; i < offset; ++i) { \
  749. x[i] = vaddq_f32(x[i], x[offset+i]); \
  750. } \
  751. offset >>= 1; \
  752. for (int i = 0; i < offset; ++i) { \
  753. x[i] = vaddq_f32(x[i], x[offset+i]); \
  754. } \
  755. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  756. }
  757. #define GGML_F32_VEC GGML_F32x4
  758. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  759. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  760. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  761. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  762. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  763. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  764. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  765. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  766. // F16 NEON
  767. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  768. #define GGML_F16_STEP 32
  769. #define GGML_F16_EPR 8
  770. #define GGML_F16x8 float16x8_t
  771. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  772. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  773. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  774. #define GGML_F16x8_STORE vst1q_f16
  775. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  776. #define GGML_F16x8_ADD vaddq_f16
  777. #define GGML_F16x8_MUL vmulq_f16
  778. #define GGML_F16x8_REDUCE(res, x) \
  779. do { \
  780. int offset = GGML_F16_ARR >> 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vaddq_f16(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vaddq_f16(x[i], x[offset+i]); \
  787. } \
  788. offset >>= 1; \
  789. for (int i = 0; i < offset; ++i) { \
  790. x[i] = vaddq_f16(x[i], x[offset+i]); \
  791. } \
  792. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  793. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  794. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  795. } while (0)
  796. #define GGML_F16_VEC GGML_F16x8
  797. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  798. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  799. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  800. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  801. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  802. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  803. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  804. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  805. #else
  806. // if FP16 vector arithmetic is not supported, we use FP32 instead
  807. // and take advantage of the vcvt_ functions to convert to/from FP16
  808. #define GGML_F16_STEP 16
  809. #define GGML_F16_EPR 4
  810. #define GGML_F32Cx4 float32x4_t
  811. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  812. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  813. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  814. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  815. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  816. #define GGML_F32Cx4_ADD vaddq_f32
  817. #define GGML_F32Cx4_MUL vmulq_f32
  818. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  819. #define GGML_F16_VEC GGML_F32Cx4
  820. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  821. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  822. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  823. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  824. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  825. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  826. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  827. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  828. #endif
  829. #elif defined(__AVX__)
  830. #define GGML_SIMD
  831. // F32 AVX
  832. #define GGML_F32_STEP 32
  833. #define GGML_F32_EPR 8
  834. #define GGML_F32x8 __m256
  835. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  836. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  837. #define GGML_F32x8_LOAD _mm256_loadu_ps
  838. #define GGML_F32x8_STORE _mm256_storeu_ps
  839. #if defined(__FMA__)
  840. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  841. #else
  842. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  843. #endif
  844. #define GGML_F32x8_ADD _mm256_add_ps
  845. #define GGML_F32x8_MUL _mm256_mul_ps
  846. #define GGML_F32x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F32_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  859. } \
  860. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  861. _mm256_extractf128_ps(x[0], 1)); \
  862. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  863. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  864. } while (0)
  865. // TODO: is this optimal ?
  866. #define GGML_F32_VEC GGML_F32x8
  867. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  868. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  869. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  870. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  871. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  872. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  873. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  874. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  875. // F16 AVX
  876. #define GGML_F16_STEP 32
  877. #define GGML_F16_EPR 8
  878. // F16 arithmetic is not supported by AVX, so we use F32 instead
  879. #define GGML_F32Cx8 __m256
  880. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  881. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  882. #if defined(__F16C__)
  883. // the _mm256_cvt intrinsics require F16C
  884. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  885. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  886. #else
  887. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  888. float tmp[8];
  889. for (int i = 0; i < 8; i++) {
  890. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  891. }
  892. return _mm256_loadu_ps(tmp);
  893. }
  894. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  895. float arr[8];
  896. _mm256_storeu_ps(arr, y);
  897. for (int i = 0; i < 8; i++)
  898. x[i] = GGML_FP32_TO_FP16(arr[i]);
  899. }
  900. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  901. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  902. #endif
  903. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  904. #define GGML_F32Cx8_ADD _mm256_add_ps
  905. #define GGML_F32Cx8_MUL _mm256_mul_ps
  906. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  907. #define GGML_F16_VEC GGML_F32Cx8
  908. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  913. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  914. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  916. #elif defined(__POWER9_VECTOR__)
  917. #define GGML_SIMD
  918. // F32 POWER9
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 vector float
  922. #define GGML_F32x4_ZERO 0.0f
  923. #define GGML_F32x4_SET1 vec_splats
  924. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  925. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  926. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  927. #define GGML_F32x4_ADD vec_add
  928. #define GGML_F32x4_MUL vec_mul
  929. #define GGML_F32x4_REDUCE(res, x) \
  930. { \
  931. int offset = GGML_F32_ARR >> 1; \
  932. for (int i = 0; i < offset; ++i) { \
  933. x[i] = vec_add(x[i], x[offset+i]); \
  934. } \
  935. offset >>= 1; \
  936. for (int i = 0; i < offset; ++i) { \
  937. x[i] = vec_add(x[i], x[offset+i]); \
  938. } \
  939. offset >>= 1; \
  940. for (int i = 0; i < offset; ++i) { \
  941. x[i] = vec_add(x[i], x[offset+i]); \
  942. } \
  943. res = vec_extract(x[0], 0) + \
  944. vec_extract(x[0], 1) + \
  945. vec_extract(x[0], 2) + \
  946. vec_extract(x[0], 3); \
  947. }
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 POWER9
  958. #define GGML_F16_STEP GGML_F32_STEP
  959. #define GGML_F16_EPR GGML_F32_EPR
  960. #define GGML_F16_VEC GGML_F32x4
  961. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  962. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  963. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  964. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  965. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  966. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  967. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  968. vec_extract_fp32_from_shortl(vec_xl(0, p))
  969. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  970. #define GGML_F16_VEC_STORE(p, r, i) \
  971. if (i & 0x1) \
  972. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  973. r[i - GGML_ENDIAN_BYTE(0)]), \
  974. 0, p - GGML_F16_EPR)
  975. #elif defined(__wasm_simd128__)
  976. #define GGML_SIMD
  977. // F32 WASM
  978. #define GGML_F32_STEP 16
  979. #define GGML_F32_EPR 4
  980. #define GGML_F32x4 v128_t
  981. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  982. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  983. #define GGML_F32x4_LOAD wasm_v128_load
  984. #define GGML_F32x4_STORE wasm_v128_store
  985. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  986. #define GGML_F32x4_ADD wasm_f32x4_add
  987. #define GGML_F32x4_MUL wasm_f32x4_mul
  988. #define GGML_F32x4_REDUCE(res, x) \
  989. { \
  990. int offset = GGML_F32_ARR >> 1; \
  991. for (int i = 0; i < offset; ++i) { \
  992. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  993. } \
  994. offset >>= 1; \
  995. for (int i = 0; i < offset; ++i) { \
  996. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  997. } \
  998. offset >>= 1; \
  999. for (int i = 0; i < offset; ++i) { \
  1000. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1001. } \
  1002. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1003. wasm_f32x4_extract_lane(x[0], 1) + \
  1004. wasm_f32x4_extract_lane(x[0], 2) + \
  1005. wasm_f32x4_extract_lane(x[0], 3); \
  1006. }
  1007. #define GGML_F32_VEC GGML_F32x4
  1008. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1009. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1010. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1011. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1012. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1013. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1014. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1015. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1016. // F16 WASM
  1017. #define GGML_F16_STEP 16
  1018. #define GGML_F16_EPR 4
  1019. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1020. float tmp[4];
  1021. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1022. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1023. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1024. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1025. return wasm_v128_load(tmp);
  1026. }
  1027. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1028. float tmp[4];
  1029. wasm_v128_store(tmp, x);
  1030. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1031. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1032. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1033. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1034. }
  1035. #define GGML_F16x4 v128_t
  1036. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1037. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1038. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1039. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1040. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1041. #define GGML_F16x4_ADD wasm_f32x4_add
  1042. #define GGML_F16x4_MUL wasm_f32x4_mul
  1043. #define GGML_F16x4_REDUCE(res, x) \
  1044. { \
  1045. int offset = GGML_F16_ARR >> 1; \
  1046. for (int i = 0; i < offset; ++i) { \
  1047. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1048. } \
  1049. offset >>= 1; \
  1050. for (int i = 0; i < offset; ++i) { \
  1051. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1052. } \
  1053. offset >>= 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1056. } \
  1057. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1058. wasm_f32x4_extract_lane(x[0], 1) + \
  1059. wasm_f32x4_extract_lane(x[0], 2) + \
  1060. wasm_f32x4_extract_lane(x[0], 3); \
  1061. }
  1062. #define GGML_F16_VEC GGML_F16x4
  1063. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1071. #elif defined(__SSE3__)
  1072. #define GGML_SIMD
  1073. // F32 SSE
  1074. #define GGML_F32_STEP 32
  1075. #define GGML_F32_EPR 4
  1076. #define GGML_F32x4 __m128
  1077. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1078. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1079. #define GGML_F32x4_LOAD _mm_loadu_ps
  1080. #define GGML_F32x4_STORE _mm_storeu_ps
  1081. #if defined(__FMA__)
  1082. // TODO: Does this work?
  1083. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1084. #else
  1085. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1086. #endif
  1087. #define GGML_F32x4_ADD _mm_add_ps
  1088. #define GGML_F32x4_MUL _mm_mul_ps
  1089. #define GGML_F32x4_REDUCE(res, x) \
  1090. { \
  1091. int offset = GGML_F32_ARR >> 1; \
  1092. for (int i = 0; i < offset; ++i) { \
  1093. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1094. } \
  1095. offset >>= 1; \
  1096. for (int i = 0; i < offset; ++i) { \
  1097. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1098. } \
  1099. offset >>= 1; \
  1100. for (int i = 0; i < offset; ++i) { \
  1101. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1102. } \
  1103. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1104. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1105. }
  1106. // TODO: is this optimal ?
  1107. #define GGML_F32_VEC GGML_F32x4
  1108. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1109. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1110. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1111. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1112. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1113. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1114. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1115. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1116. // F16 SSE
  1117. #define GGML_F16_STEP 32
  1118. #define GGML_F16_EPR 4
  1119. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1120. float tmp[4];
  1121. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1122. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1123. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1124. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1125. return _mm_loadu_ps(tmp);
  1126. }
  1127. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1128. float arr[4];
  1129. _mm_storeu_ps(arr, y);
  1130. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1131. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1132. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1133. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1134. }
  1135. #define GGML_F32Cx4 __m128
  1136. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1137. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1138. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1139. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1140. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1141. #define GGML_F32Cx4_ADD _mm_add_ps
  1142. #define GGML_F32Cx4_MUL _mm_mul_ps
  1143. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1144. #define GGML_F16_VEC GGML_F32Cx4
  1145. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1146. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1147. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1148. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1149. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1150. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1151. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1152. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1153. #endif
  1154. // GGML_F32_ARR / GGML_F16_ARR
  1155. // number of registers to use per step
  1156. #ifdef GGML_SIMD
  1157. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1158. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1159. #endif
  1160. //
  1161. // fundamental operations
  1162. //
  1163. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1166. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1167. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1168. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1169. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1170. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1171. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1172. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1173. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1174. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1175. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1176. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1177. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1178. assert(nrc == 1);
  1179. UNUSED(nrc);
  1180. UNUSED(bx);
  1181. UNUSED(by);
  1182. UNUSED(bs);
  1183. #ifdef GGML_SIMD
  1184. float sumf = 0.0f;
  1185. const int np = (n & ~(GGML_F32_STEP - 1));
  1186. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1187. GGML_F32_VEC ax[GGML_F32_ARR];
  1188. GGML_F32_VEC ay[GGML_F32_ARR];
  1189. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1190. for (int j = 0; j < GGML_F32_ARR; j++) {
  1191. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1192. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1193. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1194. }
  1195. }
  1196. // reduce sum0..sum3 to sum0
  1197. GGML_F32_VEC_REDUCE(sumf, sum);
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. sumf += x[i]*y[i];
  1201. }
  1202. #else
  1203. // scalar
  1204. ggml_float sumf = 0.0;
  1205. for (int i = 0; i < n; ++i) {
  1206. sumf += (ggml_float)(x[i]*y[i]);
  1207. }
  1208. #endif
  1209. *s = sumf;
  1210. }
  1211. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1212. assert(nrc == 1);
  1213. UNUSED(nrc);
  1214. UNUSED(bx);
  1215. UNUSED(by);
  1216. UNUSED(bs);
  1217. ggml_float sumf = 0.0;
  1218. #if defined(GGML_SIMD)
  1219. const int np = (n & ~(GGML_F16_STEP - 1));
  1220. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1221. GGML_F16_VEC ax[GGML_F16_ARR];
  1222. GGML_F16_VEC ay[GGML_F16_ARR];
  1223. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1224. for (int j = 0; j < GGML_F16_ARR; j++) {
  1225. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1226. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1227. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1228. }
  1229. }
  1230. // reduce sum0..sum3 to sum0
  1231. GGML_F16_VEC_REDUCE(sumf, sum);
  1232. // leftovers
  1233. for (int i = np; i < n; ++i) {
  1234. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1235. }
  1236. #else
  1237. for (int i = 0; i < n; ++i) {
  1238. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1239. }
  1240. #endif
  1241. *s = sumf;
  1242. }
  1243. // compute GGML_VEC_DOT_UNROLL dot products at once
  1244. // xs - x row stride in bytes
  1245. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1246. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1247. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1248. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1249. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1250. }
  1251. #if defined(GGML_SIMD)
  1252. const int np = (n & ~(GGML_F16_STEP - 1));
  1253. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1254. GGML_F16_VEC ax[GGML_F16_ARR];
  1255. GGML_F16_VEC ay[GGML_F16_ARR];
  1256. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1257. for (int j = 0; j < GGML_F16_ARR; j++) {
  1258. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1259. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1260. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1261. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1262. }
  1263. }
  1264. }
  1265. // reduce sum0..sum3 to sum0
  1266. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1267. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1268. }
  1269. // leftovers
  1270. for (int i = np; i < n; ++i) {
  1271. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1272. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1273. }
  1274. }
  1275. #else
  1276. for (int i = 0; i < n; ++i) {
  1277. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1278. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1279. }
  1280. }
  1281. #endif
  1282. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1283. s[i] = sumf[i];
  1284. }
  1285. }
  1286. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1287. #if defined(GGML_SIMD)
  1288. const int np = (n & ~(GGML_F32_STEP - 1));
  1289. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1290. GGML_F32_VEC ax[GGML_F32_ARR];
  1291. GGML_F32_VEC ay[GGML_F32_ARR];
  1292. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1293. for (int j = 0; j < GGML_F32_ARR; j++) {
  1294. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1295. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1296. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1297. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1298. }
  1299. }
  1300. // leftovers
  1301. for (int i = np; i < n; ++i) {
  1302. y[i] += x[i]*v;
  1303. }
  1304. #else
  1305. // scalar
  1306. for (int i = 0; i < n; ++i) {
  1307. y[i] += x[i]*v;
  1308. }
  1309. #endif
  1310. }
  1311. // xs and vs are byte strides of x and v
  1312. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1313. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1314. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1315. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1316. x[i] = (const float *) ((const char *) xv + i*xs);
  1317. v[i] = (const float *) ((const char *) vv + i*vs);
  1318. }
  1319. #if defined(GGML_SIMD)
  1320. const int np = (n & ~(GGML_F32_STEP - 1));
  1321. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1322. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1323. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1324. }
  1325. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1326. GGML_F32_VEC ay[GGML_F32_ARR];
  1327. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1328. for (int j = 0; j < GGML_F32_ARR; j++) {
  1329. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1330. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1331. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1332. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1333. }
  1334. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1335. }
  1336. }
  1337. // leftovers
  1338. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1339. for (int i = np; i < n; ++i) {
  1340. y[i] += x[k][i]*v[k][0];
  1341. }
  1342. }
  1343. #else
  1344. // scalar
  1345. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1346. for (int i = 0; i < n; ++i) {
  1347. y[i] += x[k][i]*v[k][0];
  1348. }
  1349. }
  1350. #endif
  1351. }
  1352. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1353. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1354. #if defined(GGML_USE_ACCELERATE)
  1355. vDSP_vsmul(y, 1, &v, y, 1, n);
  1356. #elif defined(GGML_SIMD)
  1357. const int np = (n & ~(GGML_F32_STEP - 1));
  1358. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1359. GGML_F32_VEC ay[GGML_F32_ARR];
  1360. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1361. for (int j = 0; j < GGML_F32_ARR; j++) {
  1362. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1363. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1364. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1365. }
  1366. }
  1367. // leftovers
  1368. for (int i = np; i < n; ++i) {
  1369. y[i] *= v;
  1370. }
  1371. #else
  1372. // scalar
  1373. for (int i = 0; i < n; ++i) {
  1374. y[i] *= v;
  1375. }
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1379. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1380. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1381. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1382. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1383. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1384. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1385. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1386. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1387. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1388. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1389. // TODO: optimize performance
  1390. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1391. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1392. static const float GELU_COEF_A = 0.044715f;
  1393. static const float GELU_QUICK_COEF = -1.702f;
  1394. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1395. inline static float ggml_gelu_f32(float x) {
  1396. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1397. }
  1398. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1399. const uint16_t * i16 = (const uint16_t *) x;
  1400. for (int i = 0; i < n; ++i) {
  1401. y[i] = ggml_table_gelu_f16[i16[i]];
  1402. }
  1403. }
  1404. #ifdef GGML_GELU_FP16
  1405. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1406. uint16_t t;
  1407. for (int i = 0; i < n; ++i) {
  1408. if (x[i] <= -10.0f) {
  1409. y[i] = 0.0f;
  1410. } else if (x[i] >= 10.0f) {
  1411. y[i] = x[i];
  1412. } else {
  1413. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1414. memcpy(&t, &fp16, sizeof(uint16_t));
  1415. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1416. }
  1417. }
  1418. }
  1419. #else
  1420. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1421. for (int i = 0; i < n; ++i) {
  1422. y[i] = ggml_gelu_f32(x[i]);
  1423. }
  1424. }
  1425. #endif
  1426. inline static float ggml_gelu_quick_f32(float x) {
  1427. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1428. }
  1429. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1430. // const uint16_t * i16 = (const uint16_t *) x;
  1431. // for (int i = 0; i < n; ++i) {
  1432. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1433. // }
  1434. //}
  1435. #ifdef GGML_GELU_QUICK_FP16
  1436. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1437. uint16_t t;
  1438. for (int i = 0; i < n; ++i) {
  1439. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1440. memcpy(&t, &fp16, sizeof(uint16_t));
  1441. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1442. }
  1443. }
  1444. #else
  1445. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] = ggml_gelu_quick_f32(x[i]);
  1448. }
  1449. }
  1450. #endif
  1451. // Sigmoid Linear Unit (SiLU) function
  1452. inline static float ggml_silu_f32(float x) {
  1453. return x/(1.0f + expf(-x));
  1454. }
  1455. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1456. // const uint16_t * i16 = (const uint16_t *) x;
  1457. // for (int i = 0; i < n; ++i) {
  1458. // y[i] = ggml_table_silu_f16[i16[i]];
  1459. // }
  1460. //}
  1461. #ifdef GGML_SILU_FP16
  1462. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1463. uint16_t t;
  1464. for (int i = 0; i < n; ++i) {
  1465. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1466. memcpy(&t, &fp16, sizeof(uint16_t));
  1467. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1468. }
  1469. }
  1470. #else
  1471. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1472. for (int i = 0; i < n; ++i) {
  1473. y[i] = ggml_silu_f32(x[i]);
  1474. }
  1475. }
  1476. #endif
  1477. inline static float ggml_silu_backward_f32(float x, float dy) {
  1478. const float s = 1.0f/(1.0f + expf(-x));
  1479. return dy*s*(1.0f + x*(1.0f - s));
  1480. }
  1481. #ifdef GGML_SILU_FP16
  1482. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1483. for (int i = 0; i < n; ++i) {
  1484. // we did not use x[i] to compute forward silu but its f16 equivalent
  1485. // take derivative at f16 of x[i]:
  1486. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1487. float usedx = GGML_FP16_TO_FP32(fp16);
  1488. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1489. }
  1490. }
  1491. #else
  1492. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1493. for (int i = 0; i < n; ++i) {
  1494. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1495. }
  1496. }
  1497. #endif
  1498. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1499. #ifndef GGML_USE_ACCELERATE
  1500. ggml_float sum = 0.0;
  1501. for (int i = 0; i < n; ++i) {
  1502. sum += (ggml_float)x[i];
  1503. }
  1504. *s = sum;
  1505. #else
  1506. vDSP_sve(x, 1, s, n);
  1507. #endif
  1508. }
  1509. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1510. ggml_float sum = 0.0;
  1511. for (int i = 0; i < n; ++i) {
  1512. sum += (ggml_float)x[i];
  1513. }
  1514. *s = sum;
  1515. }
  1516. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1517. float sum = 0.0f;
  1518. for (int i = 0; i < n; ++i) {
  1519. sum += GGML_FP16_TO_FP32(x[i]);
  1520. }
  1521. *s = sum;
  1522. }
  1523. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1524. #ifndef GGML_USE_ACCELERATE
  1525. float max = -INFINITY;
  1526. for (int i = 0; i < n; ++i) {
  1527. max = MAX(max, x[i]);
  1528. }
  1529. *s = max;
  1530. #else
  1531. vDSP_maxv(x, 1, s, n);
  1532. #endif
  1533. }
  1534. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1535. ggml_vec_norm_f32(n, s, x);
  1536. *s = 1.f/(*s);
  1537. }
  1538. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1539. float max = -INFINITY;
  1540. int idx = 0;
  1541. for (int i = 0; i < n; ++i) {
  1542. max = MAX(max, x[i]);
  1543. if (max == x[i]) { idx = i; }
  1544. }
  1545. *s = idx;
  1546. }
  1547. //
  1548. // data types
  1549. //
  1550. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1551. "NONE",
  1552. "DUP",
  1553. "ADD",
  1554. "ADD1",
  1555. "ACC",
  1556. "SUB",
  1557. "MUL",
  1558. "DIV",
  1559. "SQR",
  1560. "SQRT",
  1561. "LOG",
  1562. "SUM",
  1563. "SUM_ROWS",
  1564. "MEAN",
  1565. "ARGMAX",
  1566. "REPEAT",
  1567. "REPEAT_BACK",
  1568. "CONCAT",
  1569. "SILU_BACK",
  1570. "NORM",
  1571. "RMS_NORM",
  1572. "RMS_NORM_BACK",
  1573. "GROUP_NORM",
  1574. "MUL_MAT",
  1575. "MUL_MAT_ID",
  1576. "OUT_PROD",
  1577. "SCALE",
  1578. "SET",
  1579. "CPY",
  1580. "CONT",
  1581. "RESHAPE",
  1582. "VIEW",
  1583. "PERMUTE",
  1584. "TRANSPOSE",
  1585. "GET_ROWS",
  1586. "GET_ROWS_BACK",
  1587. "DIAG",
  1588. "DIAG_MASK_INF",
  1589. "DIAG_MASK_ZERO",
  1590. "SOFT_MAX",
  1591. "SOFT_MAX_BACK",
  1592. "ROPE",
  1593. "ROPE_BACK",
  1594. "ALIBI",
  1595. "CLAMP",
  1596. "CONV_TRANSPOSE_1D",
  1597. "IM2COL",
  1598. "CONV_TRANSPOSE_2D",
  1599. "POOL_1D",
  1600. "POOL_2D",
  1601. "UPSCALE",
  1602. "PAD",
  1603. "ARANGE",
  1604. "TIMESTEP_EMBEDDING",
  1605. "ARGSORT",
  1606. "LEAKY_RELU",
  1607. "FLASH_ATTN",
  1608. "FLASH_FF",
  1609. "FLASH_ATTN_BACK",
  1610. "SSM_CONV",
  1611. "SSM_SCAN",
  1612. "WIN_PART",
  1613. "WIN_UNPART",
  1614. "GET_REL_POS",
  1615. "ADD_REL_POS",
  1616. "UNARY",
  1617. "MAP_UNARY",
  1618. "MAP_BINARY",
  1619. "MAP_CUSTOM1_F32",
  1620. "MAP_CUSTOM2_F32",
  1621. "MAP_CUSTOM3_F32",
  1622. "MAP_CUSTOM1",
  1623. "MAP_CUSTOM2",
  1624. "MAP_CUSTOM3",
  1625. "CROSS_ENTROPY_LOSS",
  1626. "CROSS_ENTROPY_LOSS_BACK",
  1627. };
  1628. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1629. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1630. "none",
  1631. "x",
  1632. "x+y",
  1633. "x+y",
  1634. "view(x,nb,offset)+=y->x",
  1635. "x-y",
  1636. "x*y",
  1637. "x/y",
  1638. "x^2",
  1639. "√x",
  1640. "log(x)",
  1641. "Σx",
  1642. "Σx_k",
  1643. "Σx/n",
  1644. "argmax(x)",
  1645. "repeat(x)",
  1646. "repeat_back(x)",
  1647. "concat(x, y)",
  1648. "silu_back(x)",
  1649. "norm(x)",
  1650. "rms_norm(x)",
  1651. "rms_norm_back(x)",
  1652. "group_norm(x)",
  1653. "X*Y",
  1654. "X[i]*Y",
  1655. "X*Y",
  1656. "x*v",
  1657. "y-\\>view(x)",
  1658. "x-\\>y",
  1659. "cont(x)",
  1660. "reshape(x)",
  1661. "view(x)",
  1662. "permute(x)",
  1663. "transpose(x)",
  1664. "get_rows(x)",
  1665. "get_rows_back(x)",
  1666. "diag(x)",
  1667. "diag_mask_inf(x)",
  1668. "diag_mask_zero(x)",
  1669. "soft_max(x)",
  1670. "soft_max_back(x)",
  1671. "rope(x)",
  1672. "rope_back(x)",
  1673. "alibi(x)",
  1674. "clamp(x)",
  1675. "conv_transpose_1d(x)",
  1676. "im2col(x)",
  1677. "conv_transpose_2d(x)",
  1678. "pool_1d(x)",
  1679. "pool_2d(x)",
  1680. "upscale(x)",
  1681. "pad(x)",
  1682. "arange(start, stop, step)",
  1683. "timestep_embedding(timesteps, dim, max_period)",
  1684. "argsort(x)",
  1685. "leaky_relu(x)",
  1686. "flash_attn(x)",
  1687. "flash_ff(x)",
  1688. "flash_attn_back(x)",
  1689. "ssm_conv(x)",
  1690. "ssm_scan(x)",
  1691. "win_part(x)",
  1692. "win_unpart(x)",
  1693. "get_rel_pos(x)",
  1694. "add_rel_pos(x)",
  1695. "unary(x)",
  1696. "f(x)",
  1697. "f(x,y)",
  1698. "custom_f32(x)",
  1699. "custom_f32(x,y)",
  1700. "custom_f32(x,y,z)",
  1701. "custom(x)",
  1702. "custom(x,y)",
  1703. "custom(x,y,z)",
  1704. "cross_entropy_loss(x,y)",
  1705. "cross_entropy_loss_back(x,y)",
  1706. };
  1707. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1708. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1709. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1710. "ABS",
  1711. "SGN",
  1712. "NEG",
  1713. "STEP",
  1714. "TANH",
  1715. "ELU",
  1716. "RELU",
  1717. "GELU",
  1718. "GELU_QUICK",
  1719. "SILU",
  1720. "HARDSWISH",
  1721. "HARDSIGMOID",
  1722. };
  1723. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1724. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1725. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1726. // WARN:
  1727. // Mis-configuration can lead to problem that's hard to reason about:
  1728. // * At best it crash or talks nosense.
  1729. // * At worst it talks slightly difference but hard to perceive.
  1730. //
  1731. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1732. // Take care about compile options (e.g., GGML_USE_xxx).
  1733. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1734. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1735. static void ggml_setup_op_has_task_pass(void) {
  1736. { // INIT
  1737. bool * p = GGML_OP_HAS_INIT;
  1738. p[GGML_OP_ACC ] = true;
  1739. p[GGML_OP_MUL_MAT ] = true;
  1740. p[GGML_OP_MUL_MAT_ID ] = true;
  1741. p[GGML_OP_OUT_PROD ] = true;
  1742. p[GGML_OP_SET ] = true;
  1743. p[GGML_OP_GET_ROWS_BACK ] = true;
  1744. p[GGML_OP_DIAG_MASK_INF ] = true;
  1745. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1746. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1747. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1748. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1749. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1750. p[GGML_OP_ADD_REL_POS ] = true;
  1751. }
  1752. { // FINALIZE
  1753. bool * p = GGML_OP_HAS_FINALIZE;
  1754. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1755. }
  1756. }
  1757. //
  1758. // ggml context
  1759. //
  1760. struct ggml_context {
  1761. size_t mem_size;
  1762. void * mem_buffer;
  1763. bool mem_buffer_owned;
  1764. bool no_alloc;
  1765. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1766. int n_objects;
  1767. struct ggml_object * objects_begin;
  1768. struct ggml_object * objects_end;
  1769. struct ggml_scratch scratch;
  1770. struct ggml_scratch scratch_save;
  1771. };
  1772. struct ggml_context_container {
  1773. bool used;
  1774. struct ggml_context context;
  1775. };
  1776. //
  1777. // NUMA support
  1778. //
  1779. #define GGML_NUMA_MAX_NODES 8
  1780. #define GGML_NUMA_MAX_CPUS 512
  1781. struct ggml_numa_node {
  1782. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1783. uint32_t n_cpus;
  1784. };
  1785. struct ggml_numa_nodes {
  1786. enum ggml_numa_strategy numa_strategy;
  1787. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1788. uint32_t n_nodes;
  1789. uint32_t total_cpus; // hardware threads on system
  1790. uint32_t current_node; // node on which main process is execting
  1791. #if defined(__gnu_linux__)
  1792. cpu_set_t cpuset; // cpuset from numactl
  1793. #else
  1794. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1795. #endif
  1796. };
  1797. //
  1798. // ggml state
  1799. //
  1800. struct ggml_state {
  1801. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1802. struct ggml_numa_nodes numa;
  1803. };
  1804. // global state
  1805. static struct ggml_state g_state;
  1806. static atomic_int g_state_barrier = 0;
  1807. // barrier via spin lock
  1808. inline static void ggml_critical_section_start(void) {
  1809. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1810. while (processing > 0) {
  1811. // wait for other threads to finish
  1812. atomic_fetch_sub(&g_state_barrier, 1);
  1813. sched_yield(); // TODO: reconsider this
  1814. processing = atomic_fetch_add(&g_state_barrier, 1);
  1815. }
  1816. }
  1817. // TODO: make this somehow automatically executed
  1818. // some sort of "sentry" mechanism
  1819. inline static void ggml_critical_section_end(void) {
  1820. atomic_fetch_sub(&g_state_barrier, 1);
  1821. }
  1822. #if defined(__gnu_linux__)
  1823. static cpu_set_t ggml_get_numa_affinity(void) {
  1824. cpu_set_t cpuset;
  1825. pthread_t thread;
  1826. thread = pthread_self();
  1827. CPU_ZERO(&cpuset);
  1828. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1829. return cpuset;
  1830. }
  1831. #else
  1832. static uint32_t ggml_get_numa_affinity(void) {
  1833. return 0; // no NUMA support
  1834. }
  1835. #endif
  1836. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1837. if (g_state.numa.n_nodes > 0) {
  1838. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1839. return;
  1840. }
  1841. #if defined(__gnu_linux__)
  1842. struct stat st;
  1843. char path[256];
  1844. int rv;
  1845. // set numa scheme
  1846. g_state.numa.numa_strategy = numa_flag;
  1847. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1848. g_state.numa.cpuset = ggml_get_numa_affinity();
  1849. // enumerate nodes
  1850. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1851. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1852. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1853. if (stat(path, &st) != 0) { break; }
  1854. ++g_state.numa.n_nodes;
  1855. }
  1856. // enumerate CPUs
  1857. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1858. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1859. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1860. if (stat(path, &st) != 0) { break; }
  1861. ++g_state.numa.total_cpus;
  1862. }
  1863. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1864. // figure out which node we're on
  1865. uint current_cpu;
  1866. int getcpu_ret = 0;
  1867. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1868. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1869. #else
  1870. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1871. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  1872. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  1873. # endif
  1874. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  1875. #endif
  1876. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1877. g_state.numa.n_nodes = 0;
  1878. return;
  1879. }
  1880. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1881. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1882. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1883. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1884. node->n_cpus = 0;
  1885. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1886. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1887. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1888. if (stat(path, &st) == 0) {
  1889. node->cpus[node->n_cpus++] = c;
  1890. GGML_PRINT_DEBUG(" %u", c);
  1891. }
  1892. }
  1893. GGML_PRINT_DEBUG("\n");
  1894. }
  1895. if (ggml_is_numa()) {
  1896. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1897. if (fptr != NULL) {
  1898. char buf[42];
  1899. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1900. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1901. }
  1902. fclose(fptr);
  1903. }
  1904. }
  1905. #else
  1906. GGML_UNUSED(numa_flag);
  1907. // TODO
  1908. #endif
  1909. }
  1910. bool ggml_is_numa(void) {
  1911. return g_state.numa.n_nodes > 1;
  1912. }
  1913. ////////////////////////////////////////////////////////////////////////////////
  1914. void ggml_print_object(const struct ggml_object * obj) {
  1915. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1916. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1917. }
  1918. void ggml_print_objects(const struct ggml_context * ctx) {
  1919. struct ggml_object * obj = ctx->objects_begin;
  1920. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1921. while (obj != NULL) {
  1922. ggml_print_object(obj);
  1923. obj = obj->next;
  1924. }
  1925. GGML_PRINT("%s: --- end ---\n", __func__);
  1926. }
  1927. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1928. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1929. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1930. }
  1931. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1932. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1933. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1934. }
  1935. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1936. size_t nbytes;
  1937. size_t blck_size = ggml_blck_size(tensor->type);
  1938. if (blck_size == 1) {
  1939. nbytes = ggml_type_size(tensor->type);
  1940. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1941. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1942. }
  1943. }
  1944. else {
  1945. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1946. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1947. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1948. }
  1949. }
  1950. return nbytes;
  1951. }
  1952. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1953. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1954. }
  1955. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1956. return type_traits[type].blck_size;
  1957. }
  1958. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1959. return type_traits[type].type_size;
  1960. }
  1961. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1962. assert(ne % ggml_blck_size(type) == 0);
  1963. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1964. }
  1965. double ggml_type_sizef(enum ggml_type type) {
  1966. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1967. }
  1968. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1969. return type_traits[type].type_name;
  1970. }
  1971. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1972. return type_traits[type].is_quantized;
  1973. }
  1974. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1975. return GGML_OP_NAME[op];
  1976. }
  1977. const char * ggml_op_symbol(enum ggml_op op) {
  1978. return GGML_OP_SYMBOL[op];
  1979. }
  1980. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1981. return GGML_UNARY_OP_NAME[op];
  1982. }
  1983. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1984. if (t->op == GGML_OP_UNARY) {
  1985. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1986. return ggml_unary_op_name(uop);
  1987. }
  1988. else {
  1989. return ggml_op_name(t->op);
  1990. }
  1991. }
  1992. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1993. return ggml_type_size(tensor->type);
  1994. }
  1995. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1998. }
  1999. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2000. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2001. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2002. }
  2003. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2004. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2005. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2006. }
  2007. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2008. return tensor->ne[3] == 1;
  2009. }
  2010. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2011. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2012. if (tensor->ne[i] > 1) {
  2013. return i + 1;
  2014. }
  2015. }
  2016. return 1;
  2017. }
  2018. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2020. return (t0->ne[0] == t1->ne[0]) &&
  2021. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2022. (t1->ne[3]%t0->ne[3] == 0);
  2023. }
  2024. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2026. return (t0->ne[1] == t1->ne[1]) &&
  2027. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2028. (t1->ne[3]%t0->ne[3] == 0);
  2029. }
  2030. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2031. enum ggml_type wtype = GGML_TYPE_COUNT;
  2032. switch (ftype) {
  2033. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2034. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2035. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2036. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2037. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2038. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2039. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2040. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2041. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2042. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2043. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2044. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2045. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2046. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2047. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2048. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2049. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2050. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2051. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2052. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2053. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2054. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2055. }
  2056. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2057. return wtype;
  2058. }
  2059. size_t ggml_tensor_overhead(void) {
  2060. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2061. }
  2062. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2063. return tensor->nb[0] > tensor->nb[1];
  2064. }
  2065. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2066. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2067. return
  2068. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2069. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2070. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2071. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2072. }
  2073. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2074. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2075. return
  2076. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2077. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2078. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2079. }
  2080. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2081. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2082. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2083. }
  2084. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2085. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2086. return
  2087. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2088. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2089. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2090. }
  2091. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2092. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2093. return
  2094. (t0->ne[0] == t1->ne[0] ) &&
  2095. (t0->ne[1] == t1->ne[1] ) &&
  2096. (t0->ne[2] == t1->ne[2] ) &&
  2097. (t0->ne[3] == t1->ne[3] );
  2098. }
  2099. // check if t1 can be represented as a repeatition of t0
  2100. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2101. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2102. return
  2103. (t1->ne[0]%t0->ne[0] == 0) &&
  2104. (t1->ne[1]%t0->ne[1] == 0) &&
  2105. (t1->ne[2]%t0->ne[2] == 0) &&
  2106. (t1->ne[3]%t0->ne[3] == 0);
  2107. }
  2108. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2109. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2110. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2111. }
  2112. static inline int ggml_up32(int n) {
  2113. return (n + 31) & ~31;
  2114. }
  2115. //static inline int ggml_up64(int n) {
  2116. // return (n + 63) & ~63;
  2117. //}
  2118. static inline int ggml_up(int n, int m) {
  2119. // assert m is a power of 2
  2120. GGML_ASSERT((m & (m - 1)) == 0);
  2121. return (n + m - 1) & ~(m - 1);
  2122. }
  2123. // assert that pointer is aligned to GGML_MEM_ALIGN
  2124. #define ggml_assert_aligned(ptr) \
  2125. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2126. ////////////////////////////////////////////////////////////////////////////////
  2127. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2128. // make this function thread safe
  2129. ggml_critical_section_start();
  2130. static bool is_first_call = true;
  2131. if (is_first_call) {
  2132. // initialize time system (required on Windows)
  2133. ggml_time_init();
  2134. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2135. {
  2136. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2137. ggml_fp16_t ii;
  2138. for (int i = 0; i < (1 << 16); ++i) {
  2139. uint16_t ui = i;
  2140. memcpy(&ii, &ui, sizeof(ii));
  2141. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2142. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2143. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2144. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2145. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2146. }
  2147. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2148. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2149. }
  2150. // initialize g_state
  2151. {
  2152. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2153. g_state = (struct ggml_state) {
  2154. /*.contexts =*/ { { 0 } },
  2155. /*.numa =*/ {
  2156. .n_nodes = 0,
  2157. .total_cpus = 0,
  2158. },
  2159. };
  2160. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2161. g_state.contexts[i].used = false;
  2162. }
  2163. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2164. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2165. }
  2166. #if defined(GGML_USE_CUBLAS)
  2167. ggml_init_cublas();
  2168. #elif defined(GGML_USE_CLBLAST)
  2169. ggml_cl_init();
  2170. #elif defined(GGML_USE_VULKAN)
  2171. ggml_vk_init_cpu_assist();
  2172. #elif defined(GGML_USE_SYCL)
  2173. ggml_init_sycl();
  2174. #endif
  2175. ggml_setup_op_has_task_pass();
  2176. is_first_call = false;
  2177. }
  2178. // find non-used context in g_state
  2179. struct ggml_context * ctx = NULL;
  2180. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2181. if (!g_state.contexts[i].used) {
  2182. g_state.contexts[i].used = true;
  2183. ctx = &g_state.contexts[i].context;
  2184. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2185. break;
  2186. }
  2187. }
  2188. if (ctx == NULL) {
  2189. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2190. ggml_critical_section_end();
  2191. return NULL;
  2192. }
  2193. // allow to call ggml_init with 0 size
  2194. if (params.mem_size == 0) {
  2195. params.mem_size = GGML_MEM_ALIGN;
  2196. }
  2197. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2198. *ctx = (struct ggml_context) {
  2199. /*.mem_size =*/ mem_size,
  2200. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2201. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2202. /*.no_alloc =*/ params.no_alloc,
  2203. /*.no_alloc_save =*/ params.no_alloc,
  2204. /*.n_objects =*/ 0,
  2205. /*.objects_begin =*/ NULL,
  2206. /*.objects_end =*/ NULL,
  2207. /*.scratch =*/ { 0, 0, NULL, },
  2208. /*.scratch_save =*/ { 0, 0, NULL, },
  2209. };
  2210. GGML_ASSERT(ctx->mem_buffer != NULL);
  2211. ggml_assert_aligned(ctx->mem_buffer);
  2212. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2213. ggml_critical_section_end();
  2214. return ctx;
  2215. }
  2216. void ggml_free(struct ggml_context * ctx) {
  2217. if (ctx == NULL) {
  2218. return;
  2219. }
  2220. // make this function thread safe
  2221. ggml_critical_section_start();
  2222. bool found = false;
  2223. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2224. if (&g_state.contexts[i].context == ctx) {
  2225. g_state.contexts[i].used = false;
  2226. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2227. __func__, i, ggml_used_mem(ctx));
  2228. if (ctx->mem_buffer_owned) {
  2229. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2230. }
  2231. found = true;
  2232. break;
  2233. }
  2234. }
  2235. if (!found) {
  2236. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2237. }
  2238. ggml_critical_section_end();
  2239. }
  2240. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2241. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2242. }
  2243. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2244. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2245. ctx->scratch = scratch;
  2246. return result;
  2247. }
  2248. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2249. return ctx->no_alloc;
  2250. }
  2251. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2252. ctx->no_alloc = no_alloc;
  2253. }
  2254. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2255. return ctx->mem_buffer;
  2256. }
  2257. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2258. return ctx->mem_size;
  2259. }
  2260. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2261. size_t max_size = 0;
  2262. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2263. size_t bytes = ggml_nbytes(tensor);
  2264. max_size = MAX(max_size, bytes);
  2265. }
  2266. return max_size;
  2267. }
  2268. // IMPORTANT:
  2269. // when creating "opt" tensors, always save and load the scratch buffer
  2270. // this is an error prone process, but it is necessary to support inplace
  2271. // operators when using scratch buffers
  2272. // TODO: implement a better way
  2273. static void ggml_scratch_save(struct ggml_context * ctx) {
  2274. // this is needed to allow opt tensors to store their data
  2275. // TODO: again, need to find a better way
  2276. ctx->no_alloc_save = ctx->no_alloc;
  2277. ctx->no_alloc = false;
  2278. ctx->scratch_save = ctx->scratch;
  2279. ctx->scratch.data = NULL;
  2280. }
  2281. static void ggml_scratch_load(struct ggml_context * ctx) {
  2282. ctx->no_alloc = ctx->no_alloc_save;
  2283. ctx->scratch = ctx->scratch_save;
  2284. }
  2285. ////////////////////////////////////////////////////////////////////////////////
  2286. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2287. // always insert objects at the end of the context's memory pool
  2288. struct ggml_object * obj_cur = ctx->objects_end;
  2289. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2290. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2291. const size_t cur_end = cur_offs + cur_size;
  2292. // align to GGML_MEM_ALIGN
  2293. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2294. char * const mem_buffer = ctx->mem_buffer;
  2295. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2296. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2297. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2298. __func__, cur_end + size_needed, ctx->mem_size);
  2299. assert(false);
  2300. return NULL;
  2301. }
  2302. *obj_new = (struct ggml_object) {
  2303. .offs = cur_end + GGML_OBJECT_SIZE,
  2304. .size = size_needed,
  2305. .next = NULL,
  2306. .type = type,
  2307. };
  2308. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2309. if (obj_cur != NULL) {
  2310. obj_cur->next = obj_new;
  2311. } else {
  2312. // this is the first object in this context
  2313. ctx->objects_begin = obj_new;
  2314. }
  2315. ctx->objects_end = obj_new;
  2316. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2317. return obj_new;
  2318. }
  2319. static struct ggml_tensor * ggml_new_tensor_impl(
  2320. struct ggml_context * ctx,
  2321. enum ggml_type type,
  2322. int n_dims,
  2323. const int64_t * ne,
  2324. struct ggml_tensor * view_src,
  2325. size_t view_offs) {
  2326. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2327. // find the base tensor and absolute offset
  2328. if (view_src != NULL && view_src->view_src != NULL) {
  2329. view_offs += view_src->view_offs;
  2330. view_src = view_src->view_src;
  2331. }
  2332. size_t data_size = ggml_row_size(type, ne[0]);
  2333. for (int i = 1; i < n_dims; i++) {
  2334. data_size *= ne[i];
  2335. }
  2336. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2337. void * data = view_src != NULL ? view_src->data : NULL;
  2338. if (data != NULL) {
  2339. data = (char *) data + view_offs;
  2340. }
  2341. size_t obj_alloc_size = 0;
  2342. if (view_src == NULL && !ctx->no_alloc) {
  2343. if (ctx->scratch.data != NULL) {
  2344. // allocate tensor data in the scratch buffer
  2345. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2346. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2347. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2348. assert(false);
  2349. return NULL;
  2350. }
  2351. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2352. ctx->scratch.offs += data_size;
  2353. } else {
  2354. // allocate tensor data in the context's memory pool
  2355. obj_alloc_size = data_size;
  2356. }
  2357. }
  2358. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2359. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2360. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2361. *result = (struct ggml_tensor) {
  2362. /*.type =*/ type,
  2363. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2364. /*.buffer =*/ NULL,
  2365. /*.ne =*/ { 1, 1, 1, 1 },
  2366. /*.nb =*/ { 0, 0, 0, 0 },
  2367. /*.op =*/ GGML_OP_NONE,
  2368. /*.op_params =*/ { 0 },
  2369. /*.flags =*/ 0,
  2370. /*.grad =*/ NULL,
  2371. /*.src =*/ { NULL },
  2372. /*.perf_runs =*/ 0,
  2373. /*.perf_cycles =*/ 0,
  2374. /*.perf_time_us =*/ 0,
  2375. /*.view_src =*/ view_src,
  2376. /*.view_offs =*/ view_offs,
  2377. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2378. /*.name =*/ { 0 },
  2379. /*.extra =*/ NULL,
  2380. /*.padding =*/ { 0 },
  2381. };
  2382. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2383. //ggml_assert_aligned(result->data);
  2384. for (int i = 0; i < n_dims; i++) {
  2385. result->ne[i] = ne[i];
  2386. }
  2387. result->nb[0] = ggml_type_size(type);
  2388. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2389. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2390. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2391. }
  2392. ctx->n_objects++;
  2393. return result;
  2394. }
  2395. struct ggml_tensor * ggml_new_tensor(
  2396. struct ggml_context * ctx,
  2397. enum ggml_type type,
  2398. int n_dims,
  2399. const int64_t * ne) {
  2400. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2401. }
  2402. struct ggml_tensor * ggml_new_tensor_1d(
  2403. struct ggml_context * ctx,
  2404. enum ggml_type type,
  2405. int64_t ne0) {
  2406. return ggml_new_tensor(ctx, type, 1, &ne0);
  2407. }
  2408. struct ggml_tensor * ggml_new_tensor_2d(
  2409. struct ggml_context * ctx,
  2410. enum ggml_type type,
  2411. int64_t ne0,
  2412. int64_t ne1) {
  2413. const int64_t ne[2] = { ne0, ne1 };
  2414. return ggml_new_tensor(ctx, type, 2, ne);
  2415. }
  2416. struct ggml_tensor * ggml_new_tensor_3d(
  2417. struct ggml_context * ctx,
  2418. enum ggml_type type,
  2419. int64_t ne0,
  2420. int64_t ne1,
  2421. int64_t ne2) {
  2422. const int64_t ne[3] = { ne0, ne1, ne2 };
  2423. return ggml_new_tensor(ctx, type, 3, ne);
  2424. }
  2425. struct ggml_tensor * ggml_new_tensor_4d(
  2426. struct ggml_context * ctx,
  2427. enum ggml_type type,
  2428. int64_t ne0,
  2429. int64_t ne1,
  2430. int64_t ne2,
  2431. int64_t ne3) {
  2432. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2433. return ggml_new_tensor(ctx, type, 4, ne);
  2434. }
  2435. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2436. ggml_scratch_save(ctx);
  2437. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2438. ggml_scratch_load(ctx);
  2439. ggml_set_i32(result, value);
  2440. return result;
  2441. }
  2442. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2443. ggml_scratch_save(ctx);
  2444. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2445. ggml_scratch_load(ctx);
  2446. ggml_set_f32(result, value);
  2447. return result;
  2448. }
  2449. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2450. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2451. }
  2452. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2453. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2454. assert(params_size <= GGML_MAX_OP_PARAMS);
  2455. memcpy(tensor->op_params, params, params_size);
  2456. }
  2457. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2458. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2459. return ((const int32_t *)(tensor->op_params))[i];
  2460. }
  2461. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2462. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2463. return ((const float *)(tensor->op_params))[i];
  2464. }
  2465. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2466. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2467. ((int32_t *)(tensor->op_params))[i] = value;
  2468. }
  2469. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2470. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2471. ((float *)(tensor->op_params))[i] = value;
  2472. }
  2473. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2474. memset(tensor->data, 0, ggml_nbytes(tensor));
  2475. return tensor;
  2476. }
  2477. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2478. const int n = ggml_nrows(tensor);
  2479. const int nc = tensor->ne[0];
  2480. const size_t n1 = tensor->nb[1];
  2481. char * const data = tensor->data;
  2482. switch (tensor->type) {
  2483. case GGML_TYPE_I8:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(int8_t));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. case GGML_TYPE_I16:
  2491. {
  2492. assert(tensor->nb[0] == sizeof(int16_t));
  2493. for (int i = 0; i < n; i++) {
  2494. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2495. }
  2496. } break;
  2497. case GGML_TYPE_I32:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(int32_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2502. }
  2503. } break;
  2504. case GGML_TYPE_F16:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2509. }
  2510. } break;
  2511. case GGML_TYPE_F32:
  2512. {
  2513. assert(tensor->nb[0] == sizeof(float));
  2514. for (int i = 0; i < n; i++) {
  2515. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2516. }
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. }
  2523. return tensor;
  2524. }
  2525. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2526. const int n = ggml_nrows(tensor);
  2527. const int nc = tensor->ne[0];
  2528. const size_t n1 = tensor->nb[1];
  2529. char * const data = tensor->data;
  2530. switch (tensor->type) {
  2531. case GGML_TYPE_I8:
  2532. {
  2533. assert(tensor->nb[0] == sizeof(int8_t));
  2534. for (int i = 0; i < n; i++) {
  2535. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2536. }
  2537. } break;
  2538. case GGML_TYPE_I16:
  2539. {
  2540. assert(tensor->nb[0] == sizeof(int16_t));
  2541. for (int i = 0; i < n; i++) {
  2542. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2543. }
  2544. } break;
  2545. case GGML_TYPE_I32:
  2546. {
  2547. assert(tensor->nb[0] == sizeof(int32_t));
  2548. for (int i = 0; i < n; i++) {
  2549. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2550. }
  2551. } break;
  2552. case GGML_TYPE_F16:
  2553. {
  2554. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2555. for (int i = 0; i < n; i++) {
  2556. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2557. }
  2558. } break;
  2559. case GGML_TYPE_F32:
  2560. {
  2561. assert(tensor->nb[0] == sizeof(float));
  2562. for (int i = 0; i < n; i++) {
  2563. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2564. }
  2565. } break;
  2566. default:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. }
  2571. return tensor;
  2572. }
  2573. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2574. const int64_t ne2 = tensor->ne[2];
  2575. const int64_t ne1 = tensor->ne[1];
  2576. const int64_t ne0 = tensor->ne[0];
  2577. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2578. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2579. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2580. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2581. if (i0) {
  2582. * i0 = i0_;
  2583. }
  2584. if (i1) {
  2585. * i1 = i1_;
  2586. }
  2587. if (i2) {
  2588. * i2 = i2_;
  2589. }
  2590. if (i3) {
  2591. * i3 = i3_;
  2592. }
  2593. }
  2594. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2595. if (!ggml_is_contiguous(tensor)) {
  2596. int64_t id[4] = { 0, 0, 0, 0 };
  2597. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2598. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2599. }
  2600. switch (tensor->type) {
  2601. case GGML_TYPE_I8:
  2602. {
  2603. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2604. return ((int8_t *)(tensor->data))[i];
  2605. }
  2606. case GGML_TYPE_I16:
  2607. {
  2608. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2609. return ((int16_t *)(tensor->data))[i];
  2610. }
  2611. case GGML_TYPE_I32:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2614. return ((int32_t *)(tensor->data))[i];
  2615. }
  2616. case GGML_TYPE_F16:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2619. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2620. }
  2621. case GGML_TYPE_F32:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2624. return ((float *)(tensor->data))[i];
  2625. }
  2626. default:
  2627. {
  2628. GGML_ASSERT(false);
  2629. }
  2630. }
  2631. return 0.0f;
  2632. }
  2633. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2634. if (!ggml_is_contiguous(tensor)) {
  2635. int64_t id[4] = { 0, 0, 0, 0 };
  2636. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2637. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2638. return;
  2639. }
  2640. switch (tensor->type) {
  2641. case GGML_TYPE_I8:
  2642. {
  2643. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2644. ((int8_t *)(tensor->data))[i] = value;
  2645. } break;
  2646. case GGML_TYPE_I16:
  2647. {
  2648. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2649. ((int16_t *)(tensor->data))[i] = value;
  2650. } break;
  2651. case GGML_TYPE_I32:
  2652. {
  2653. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2654. ((int32_t *)(tensor->data))[i] = value;
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2660. } break;
  2661. case GGML_TYPE_F32:
  2662. {
  2663. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2664. ((float *)(tensor->data))[i] = value;
  2665. } break;
  2666. default:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. }
  2672. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2673. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2674. switch (tensor->type) {
  2675. case GGML_TYPE_I8:
  2676. return ((int8_t *) data)[0];
  2677. case GGML_TYPE_I16:
  2678. return ((int16_t *) data)[0];
  2679. case GGML_TYPE_I32:
  2680. return ((int32_t *) data)[0];
  2681. case GGML_TYPE_F16:
  2682. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2683. case GGML_TYPE_F32:
  2684. return ((float *) data)[0];
  2685. default:
  2686. GGML_ASSERT(false);
  2687. }
  2688. return 0.0f;
  2689. }
  2690. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2691. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2692. switch (tensor->type) {
  2693. case GGML_TYPE_I8:
  2694. {
  2695. ((int8_t *)(data))[0] = value;
  2696. } break;
  2697. case GGML_TYPE_I16:
  2698. {
  2699. ((int16_t *)(data))[0] = value;
  2700. } break;
  2701. case GGML_TYPE_I32:
  2702. {
  2703. ((int32_t *)(data))[0] = value;
  2704. } break;
  2705. case GGML_TYPE_F16:
  2706. {
  2707. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2708. } break;
  2709. case GGML_TYPE_F32:
  2710. {
  2711. ((float *)(data))[0] = value;
  2712. } break;
  2713. default:
  2714. {
  2715. GGML_ASSERT(false);
  2716. } break;
  2717. }
  2718. }
  2719. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2720. if (!ggml_is_contiguous(tensor)) {
  2721. int64_t id[4] = { 0, 0, 0, 0 };
  2722. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2723. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2724. }
  2725. switch (tensor->type) {
  2726. case GGML_TYPE_I8:
  2727. {
  2728. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2729. return ((int8_t *)(tensor->data))[i];
  2730. }
  2731. case GGML_TYPE_I16:
  2732. {
  2733. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2734. return ((int16_t *)(tensor->data))[i];
  2735. }
  2736. case GGML_TYPE_I32:
  2737. {
  2738. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2739. return ((int32_t *)(tensor->data))[i];
  2740. }
  2741. case GGML_TYPE_F16:
  2742. {
  2743. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2744. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2745. }
  2746. case GGML_TYPE_F32:
  2747. {
  2748. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2749. return ((float *)(tensor->data))[i];
  2750. }
  2751. default:
  2752. {
  2753. GGML_ASSERT(false);
  2754. }
  2755. }
  2756. return 0.0f;
  2757. }
  2758. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2759. if (!ggml_is_contiguous(tensor)) {
  2760. int64_t id[4] = { 0, 0, 0, 0 };
  2761. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2762. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2763. return;
  2764. }
  2765. switch (tensor->type) {
  2766. case GGML_TYPE_I8:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2769. ((int8_t *)(tensor->data))[i] = value;
  2770. } break;
  2771. case GGML_TYPE_I16:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2774. ((int16_t *)(tensor->data))[i] = value;
  2775. } break;
  2776. case GGML_TYPE_I32:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2779. ((int32_t *)(tensor->data))[i] = value;
  2780. } break;
  2781. case GGML_TYPE_F16:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2784. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2785. } break;
  2786. case GGML_TYPE_F32:
  2787. {
  2788. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2789. ((float *)(tensor->data))[i] = value;
  2790. } break;
  2791. default:
  2792. {
  2793. GGML_ASSERT(false);
  2794. } break;
  2795. }
  2796. }
  2797. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2798. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2799. switch (tensor->type) {
  2800. case GGML_TYPE_I8:
  2801. return ((int8_t *) data)[0];
  2802. case GGML_TYPE_I16:
  2803. return ((int16_t *) data)[0];
  2804. case GGML_TYPE_I32:
  2805. return ((int32_t *) data)[0];
  2806. case GGML_TYPE_F16:
  2807. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2808. case GGML_TYPE_F32:
  2809. return ((float *) data)[0];
  2810. default:
  2811. GGML_ASSERT(false);
  2812. }
  2813. return 0.0f;
  2814. }
  2815. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2816. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2817. switch (tensor->type) {
  2818. case GGML_TYPE_I8:
  2819. {
  2820. ((int8_t *)(data))[0] = value;
  2821. } break;
  2822. case GGML_TYPE_I16:
  2823. {
  2824. ((int16_t *)(data))[0] = value;
  2825. } break;
  2826. case GGML_TYPE_I32:
  2827. {
  2828. ((int32_t *)(data))[0] = value;
  2829. } break;
  2830. case GGML_TYPE_F16:
  2831. {
  2832. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2833. } break;
  2834. case GGML_TYPE_F32:
  2835. {
  2836. ((float *)(data))[0] = value;
  2837. } break;
  2838. default:
  2839. {
  2840. GGML_ASSERT(false);
  2841. } break;
  2842. }
  2843. }
  2844. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2845. return tensor->data;
  2846. }
  2847. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2848. assert(tensor->type == GGML_TYPE_F32);
  2849. return (float *)(tensor->data);
  2850. }
  2851. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2852. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2853. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2854. }
  2855. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2856. return tensor->name;
  2857. }
  2858. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2859. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2860. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2861. return tensor;
  2862. }
  2863. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2864. va_list args;
  2865. va_start(args, fmt);
  2866. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2867. va_end(args);
  2868. return tensor;
  2869. }
  2870. struct ggml_tensor * ggml_view_tensor(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * src) {
  2873. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2874. ggml_format_name(result, "%s (view)", src->name);
  2875. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2876. result->nb[i] = src->nb[i];
  2877. }
  2878. return result;
  2879. }
  2880. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2881. struct ggml_object * obj = ctx->objects_begin;
  2882. char * const mem_buffer = ctx->mem_buffer;
  2883. while (obj != NULL) {
  2884. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2885. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2886. }
  2887. obj = obj->next;
  2888. }
  2889. return NULL;
  2890. }
  2891. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2892. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2893. obj = obj->next;
  2894. char * const mem_buffer = ctx->mem_buffer;
  2895. while (obj != NULL) {
  2896. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2897. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2898. }
  2899. obj = obj->next;
  2900. }
  2901. return NULL;
  2902. }
  2903. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2904. struct ggml_object * obj = ctx->objects_begin;
  2905. char * const mem_buffer = ctx->mem_buffer;
  2906. while (obj != NULL) {
  2907. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2908. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2909. if (strcmp(cur->name, name) == 0) {
  2910. return cur;
  2911. }
  2912. }
  2913. obj = obj->next;
  2914. }
  2915. return NULL;
  2916. }
  2917. ////////////////////////////////////////////////////////////////////////////////
  2918. // ggml_dup
  2919. static struct ggml_tensor * ggml_dup_impl(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a,
  2922. bool inplace) {
  2923. bool is_node = false;
  2924. if (!inplace && (a->grad)) {
  2925. is_node = true;
  2926. }
  2927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2928. result->op = GGML_OP_DUP;
  2929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2930. result->src[0] = a;
  2931. return result;
  2932. }
  2933. struct ggml_tensor * ggml_dup(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a) {
  2936. return ggml_dup_impl(ctx, a, false);
  2937. }
  2938. struct ggml_tensor * ggml_dup_inplace(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a) {
  2941. return ggml_dup_impl(ctx, a, true);
  2942. }
  2943. // ggml_add
  2944. static struct ggml_tensor * ggml_add_impl(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b,
  2948. bool inplace) {
  2949. GGML_ASSERT(ggml_can_repeat(b, a));
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad || b->grad)) {
  2952. // TODO: support backward pass for broadcasting
  2953. GGML_ASSERT(ggml_are_same_shape(a, b));
  2954. is_node = true;
  2955. }
  2956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2957. result->op = GGML_OP_ADD;
  2958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2959. result->src[0] = a;
  2960. result->src[1] = b;
  2961. return result;
  2962. }
  2963. struct ggml_tensor * ggml_add(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b) {
  2967. return ggml_add_impl(ctx, a, b, false);
  2968. }
  2969. struct ggml_tensor * ggml_add_inplace(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a,
  2972. struct ggml_tensor * b) {
  2973. return ggml_add_impl(ctx, a, b, true);
  2974. }
  2975. // ggml_add_cast
  2976. static struct ggml_tensor * ggml_add_cast_impl(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b,
  2980. enum ggml_type type) {
  2981. // TODO: support less-strict constraint
  2982. // GGML_ASSERT(ggml_can_repeat(b, a));
  2983. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2984. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2985. bool is_node = false;
  2986. if (a->grad || b->grad) {
  2987. // TODO: support backward pass for broadcasting
  2988. GGML_ASSERT(ggml_are_same_shape(a, b));
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2992. result->op = GGML_OP_ADD;
  2993. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2994. result->src[0] = a;
  2995. result->src[1] = b;
  2996. return result;
  2997. }
  2998. struct ggml_tensor * ggml_add_cast(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a,
  3001. struct ggml_tensor * b,
  3002. enum ggml_type type) {
  3003. return ggml_add_cast_impl(ctx, a, b, type);
  3004. }
  3005. // ggml_add1
  3006. static struct ggml_tensor * ggml_add1_impl(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. struct ggml_tensor * b,
  3010. bool inplace) {
  3011. GGML_ASSERT(ggml_is_scalar(b));
  3012. GGML_ASSERT(ggml_is_padded_1d(a));
  3013. bool is_node = false;
  3014. if (a->grad || b->grad) {
  3015. is_node = true;
  3016. }
  3017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3018. result->op = GGML_OP_ADD1;
  3019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3020. result->src[0] = a;
  3021. result->src[1] = b;
  3022. return result;
  3023. }
  3024. struct ggml_tensor * ggml_add1(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * a,
  3027. struct ggml_tensor * b) {
  3028. return ggml_add1_impl(ctx, a, b, false);
  3029. }
  3030. struct ggml_tensor * ggml_add1_inplace(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a,
  3033. struct ggml_tensor * b) {
  3034. return ggml_add1_impl(ctx, a, b, true);
  3035. }
  3036. // ggml_acc
  3037. static struct ggml_tensor * ggml_acc_impl(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b,
  3041. size_t nb1,
  3042. size_t nb2,
  3043. size_t nb3,
  3044. size_t offset,
  3045. bool inplace) {
  3046. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3047. GGML_ASSERT(ggml_is_contiguous(a));
  3048. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3049. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3050. bool is_node = false;
  3051. if (!inplace && (a->grad || b->grad)) {
  3052. is_node = true;
  3053. }
  3054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3055. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3056. ggml_set_op_params(result, params, sizeof(params));
  3057. result->op = GGML_OP_ACC;
  3058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3059. result->src[0] = a;
  3060. result->src[1] = b;
  3061. return result;
  3062. }
  3063. struct ggml_tensor * ggml_acc(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a,
  3066. struct ggml_tensor * b,
  3067. size_t nb1,
  3068. size_t nb2,
  3069. size_t nb3,
  3070. size_t offset) {
  3071. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3072. }
  3073. struct ggml_tensor * ggml_acc_inplace(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. struct ggml_tensor * b,
  3077. size_t nb1,
  3078. size_t nb2,
  3079. size_t nb3,
  3080. size_t offset) {
  3081. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3082. }
  3083. // ggml_sub
  3084. static struct ggml_tensor * ggml_sub_impl(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. struct ggml_tensor * b,
  3088. bool inplace) {
  3089. GGML_ASSERT(ggml_are_same_shape(a, b));
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad || b->grad)) {
  3092. is_node = true;
  3093. }
  3094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3095. result->op = GGML_OP_SUB;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src[0] = a;
  3098. result->src[1] = b;
  3099. return result;
  3100. }
  3101. struct ggml_tensor * ggml_sub(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a,
  3104. struct ggml_tensor * b) {
  3105. return ggml_sub_impl(ctx, a, b, false);
  3106. }
  3107. struct ggml_tensor * ggml_sub_inplace(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a,
  3110. struct ggml_tensor * b) {
  3111. return ggml_sub_impl(ctx, a, b, true);
  3112. }
  3113. // ggml_mul
  3114. static struct ggml_tensor * ggml_mul_impl(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b,
  3118. bool inplace) {
  3119. GGML_ASSERT(ggml_can_repeat(b, a));
  3120. bool is_node = false;
  3121. if (!inplace && (a->grad || b->grad)) {
  3122. // TODO: support backward pass for broadcasting
  3123. GGML_ASSERT(ggml_are_same_shape(a, b));
  3124. is_node = true;
  3125. }
  3126. if (inplace) {
  3127. GGML_ASSERT(!is_node);
  3128. }
  3129. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3130. result->op = GGML_OP_MUL;
  3131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3132. result->src[0] = a;
  3133. result->src[1] = b;
  3134. return result;
  3135. }
  3136. struct ggml_tensor * ggml_mul(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. struct ggml_tensor * b) {
  3140. return ggml_mul_impl(ctx, a, b, false);
  3141. }
  3142. struct ggml_tensor * ggml_mul_inplace(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b) {
  3146. return ggml_mul_impl(ctx, a, b, true);
  3147. }
  3148. // ggml_div
  3149. static struct ggml_tensor * ggml_div_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. struct ggml_tensor * b,
  3153. bool inplace) {
  3154. GGML_ASSERT(ggml_can_repeat(b, a));
  3155. bool is_node = false;
  3156. if (!inplace && (a->grad || b->grad)) {
  3157. is_node = true;
  3158. }
  3159. if (inplace) {
  3160. GGML_ASSERT(!is_node);
  3161. }
  3162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3163. result->op = GGML_OP_DIV;
  3164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3165. result->src[0] = a;
  3166. result->src[1] = b;
  3167. return result;
  3168. }
  3169. struct ggml_tensor * ggml_div(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a,
  3172. struct ggml_tensor * b) {
  3173. return ggml_div_impl(ctx, a, b, false);
  3174. }
  3175. struct ggml_tensor * ggml_div_inplace(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. struct ggml_tensor * b) {
  3179. return ggml_div_impl(ctx, a, b, true);
  3180. }
  3181. // ggml_sqr
  3182. static struct ggml_tensor * ggml_sqr_impl(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. bool inplace) {
  3186. bool is_node = false;
  3187. if (!inplace && (a->grad)) {
  3188. is_node = true;
  3189. }
  3190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3191. result->op = GGML_OP_SQR;
  3192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3193. result->src[0] = a;
  3194. return result;
  3195. }
  3196. struct ggml_tensor * ggml_sqr(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a) {
  3199. return ggml_sqr_impl(ctx, a, false);
  3200. }
  3201. struct ggml_tensor * ggml_sqr_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_sqr_impl(ctx, a, true);
  3205. }
  3206. // ggml_sqrt
  3207. static struct ggml_tensor * ggml_sqrt_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. bool inplace) {
  3211. bool is_node = false;
  3212. if (!inplace && (a->grad)) {
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3216. result->op = GGML_OP_SQRT;
  3217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3218. result->src[0] = a;
  3219. return result;
  3220. }
  3221. struct ggml_tensor * ggml_sqrt(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a) {
  3224. return ggml_sqrt_impl(ctx, a, false);
  3225. }
  3226. struct ggml_tensor * ggml_sqrt_inplace(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_sqrt_impl(ctx, a, true);
  3230. }
  3231. // ggml_log
  3232. static struct ggml_tensor * ggml_log_impl(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a,
  3235. bool inplace) {
  3236. bool is_node = false;
  3237. if (!inplace && (a->grad)) {
  3238. is_node = true;
  3239. }
  3240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3241. result->op = GGML_OP_LOG;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src[0] = a;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_log(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_log_impl(ctx, a, false);
  3250. }
  3251. struct ggml_tensor * ggml_log_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_log_impl(ctx, a, true);
  3255. }
  3256. // ggml_sum
  3257. struct ggml_tensor * ggml_sum(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a) {
  3260. bool is_node = false;
  3261. if (a->grad) {
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3265. result->op = GGML_OP_SUM;
  3266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3267. result->src[0] = a;
  3268. return result;
  3269. }
  3270. // ggml_sum_rows
  3271. struct ggml_tensor * ggml_sum_rows(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. bool is_node = false;
  3275. if (a->grad) {
  3276. is_node = true;
  3277. }
  3278. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3279. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3280. ne[i] = a->ne[i];
  3281. }
  3282. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3283. result->op = GGML_OP_SUM_ROWS;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. // ggml_mean
  3289. struct ggml_tensor * ggml_mean(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. bool is_node = false;
  3293. if (a->grad) {
  3294. GGML_ASSERT(false); // TODO: implement
  3295. is_node = true;
  3296. }
  3297. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3299. result->op = GGML_OP_MEAN;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. return result;
  3303. }
  3304. // ggml_argmax
  3305. struct ggml_tensor * ggml_argmax(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a) {
  3308. GGML_ASSERT(ggml_is_matrix(a));
  3309. bool is_node = false;
  3310. if (a->grad) {
  3311. GGML_ASSERT(false);
  3312. is_node = true;
  3313. }
  3314. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3315. result->op = GGML_OP_ARGMAX;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. return result;
  3319. }
  3320. // ggml_repeat
  3321. struct ggml_tensor * ggml_repeat(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. GGML_ASSERT(ggml_can_repeat(a, b));
  3326. bool is_node = false;
  3327. if (a->grad) {
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3331. result->op = GGML_OP_REPEAT;
  3332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3333. result->src[0] = a;
  3334. return result;
  3335. }
  3336. // ggml_repeat_back
  3337. struct ggml_tensor * ggml_repeat_back(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. struct ggml_tensor * b) {
  3341. GGML_ASSERT(ggml_can_repeat(b, a));
  3342. bool is_node = false;
  3343. if (a->grad) {
  3344. is_node = true;
  3345. }
  3346. if (ggml_are_same_shape(a, b) && !is_node) {
  3347. return a;
  3348. }
  3349. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3350. result->op = GGML_OP_REPEAT_BACK;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src[0] = a;
  3353. return result;
  3354. }
  3355. // ggml_concat
  3356. struct ggml_tensor * ggml_concat(
  3357. struct ggml_context* ctx,
  3358. struct ggml_tensor* a,
  3359. struct ggml_tensor* b) {
  3360. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3361. bool is_node = false;
  3362. if (a->grad || b->grad) {
  3363. is_node = true;
  3364. }
  3365. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3366. result->op = GGML_OP_CONCAT;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src[0] = a;
  3369. result->src[1] = b;
  3370. return result;
  3371. }
  3372. // ggml_abs
  3373. struct ggml_tensor * ggml_abs(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3377. }
  3378. struct ggml_tensor * ggml_abs_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3382. }
  3383. // ggml_sgn
  3384. struct ggml_tensor * ggml_sgn(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3388. }
  3389. struct ggml_tensor * ggml_sgn_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a) {
  3392. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3393. }
  3394. // ggml_neg
  3395. struct ggml_tensor * ggml_neg(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3399. }
  3400. struct ggml_tensor * ggml_neg_inplace(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3404. }
  3405. // ggml_step
  3406. struct ggml_tensor * ggml_step(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a) {
  3409. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3410. }
  3411. struct ggml_tensor * ggml_step_inplace(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a) {
  3414. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3415. }
  3416. // ggml_tanh
  3417. struct ggml_tensor * ggml_tanh(
  3418. struct ggml_context * ctx,
  3419. struct ggml_tensor * a) {
  3420. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3421. }
  3422. struct ggml_tensor * ggml_tanh_inplace(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a) {
  3425. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3426. }
  3427. // ggml_elu
  3428. struct ggml_tensor * ggml_elu(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a) {
  3431. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3432. }
  3433. struct ggml_tensor * ggml_elu_inplace(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a) {
  3436. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3437. }
  3438. // ggml_relu
  3439. struct ggml_tensor * ggml_relu(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a) {
  3442. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3443. }
  3444. struct ggml_tensor * ggml_relu_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a) {
  3447. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3448. }
  3449. // ggml_leaky_relu
  3450. struct ggml_tensor * ggml_leaky_relu(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3453. bool is_node = false;
  3454. if (!inplace && (a->grad)) {
  3455. is_node = true;
  3456. }
  3457. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3458. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3459. result->op = GGML_OP_LEAKY_RELU;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src[0] = a;
  3462. return result;
  3463. }
  3464. // ggml_gelu
  3465. struct ggml_tensor * ggml_gelu(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a) {
  3468. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3469. }
  3470. struct ggml_tensor * ggml_gelu_inplace(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a) {
  3473. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3474. }
  3475. // ggml_gelu_quick
  3476. struct ggml_tensor * ggml_gelu_quick(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a) {
  3479. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3480. }
  3481. struct ggml_tensor * ggml_gelu_quick_inplace(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a) {
  3484. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3485. }
  3486. // ggml_silu
  3487. struct ggml_tensor * ggml_silu(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3491. }
  3492. struct ggml_tensor * ggml_silu_inplace(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a) {
  3495. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3496. }
  3497. // ggml_silu_back
  3498. struct ggml_tensor * ggml_silu_back(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b) {
  3502. bool is_node = false;
  3503. if (a->grad || b->grad) {
  3504. // TODO: implement backward
  3505. is_node = true;
  3506. }
  3507. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3508. result->op = GGML_OP_SILU_BACK;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src[0] = a;
  3511. result->src[1] = b;
  3512. return result;
  3513. }
  3514. // ggml hardswish
  3515. struct ggml_tensor * ggml_hardswish(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a) {
  3518. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3519. }
  3520. // ggml hardsigmoid
  3521. struct ggml_tensor * ggml_hardsigmoid(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3525. }
  3526. // ggml_norm
  3527. static struct ggml_tensor * ggml_norm_impl(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a,
  3530. float eps,
  3531. bool inplace) {
  3532. bool is_node = false;
  3533. if (!inplace && (a->grad)) {
  3534. GGML_ASSERT(false); // TODO: implement backward
  3535. is_node = true;
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. ggml_set_op_params(result, &eps, sizeof(eps));
  3539. result->op = GGML_OP_NORM;
  3540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3541. result->src[0] = a;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_norm(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. float eps) {
  3548. return ggml_norm_impl(ctx, a, eps, false);
  3549. }
  3550. struct ggml_tensor * ggml_norm_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. float eps) {
  3554. return ggml_norm_impl(ctx, a, eps, true);
  3555. }
  3556. // ggml_rms_norm
  3557. static struct ggml_tensor * ggml_rms_norm_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. float eps,
  3561. bool inplace) {
  3562. bool is_node = false;
  3563. if (!inplace && (a->grad)) {
  3564. is_node = true;
  3565. }
  3566. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3567. ggml_set_op_params(result, &eps, sizeof(eps));
  3568. result->op = GGML_OP_RMS_NORM;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src[0] = a;
  3571. return result;
  3572. }
  3573. struct ggml_tensor * ggml_rms_norm(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. float eps) {
  3577. return ggml_rms_norm_impl(ctx, a, eps, false);
  3578. }
  3579. struct ggml_tensor * ggml_rms_norm_inplace(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. float eps) {
  3583. return ggml_rms_norm_impl(ctx, a, eps, true);
  3584. }
  3585. // ggml_rms_norm_back
  3586. struct ggml_tensor * ggml_rms_norm_back(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. struct ggml_tensor * b,
  3590. float eps) {
  3591. bool is_node = false;
  3592. if (a->grad) {
  3593. // TODO: implement backward
  3594. is_node = true;
  3595. }
  3596. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3597. ggml_set_op_params(result, &eps, sizeof(eps));
  3598. result->op = GGML_OP_RMS_NORM_BACK;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src[0] = a;
  3601. result->src[1] = b;
  3602. return result;
  3603. }
  3604. // ggml_group_norm
  3605. static struct ggml_tensor * ggml_group_norm_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. int n_groups,
  3609. bool inplace) {
  3610. bool is_node = false;
  3611. if (!inplace && (a->grad)) {
  3612. GGML_ASSERT(false); // TODO: implement backward
  3613. is_node = true;
  3614. }
  3615. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3616. result->op_params[0] = n_groups;
  3617. result->op = GGML_OP_GROUP_NORM;
  3618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3619. result->src[0] = a;
  3620. return result;
  3621. }
  3622. struct ggml_tensor * ggml_group_norm(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. int n_groups) {
  3626. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3627. }
  3628. struct ggml_tensor * ggml_group_norm_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. int n_groups) {
  3632. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3633. }
  3634. // ggml_mul_mat
  3635. struct ggml_tensor * ggml_mul_mat(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3640. GGML_ASSERT(!ggml_is_transposed(a));
  3641. bool is_node = false;
  3642. if (a->grad || b->grad) {
  3643. is_node = true;
  3644. }
  3645. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3646. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3647. result->op = GGML_OP_MUL_MAT;
  3648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3649. result->src[0] = a;
  3650. result->src[1] = b;
  3651. return result;
  3652. }
  3653. void ggml_mul_mat_set_prec(
  3654. struct ggml_tensor * a,
  3655. enum ggml_prec prec) {
  3656. const int32_t prec_i32 = (int32_t) prec;
  3657. ggml_set_op_params_i32(a, 0, prec_i32);
  3658. }
  3659. // ggml_mul_mat_id
  3660. struct ggml_tensor * ggml_mul_mat_id(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * const as[],
  3663. int n_as,
  3664. struct ggml_tensor * ids,
  3665. int id,
  3666. struct ggml_tensor * b) {
  3667. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3668. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3669. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3670. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3671. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3672. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3673. bool is_node = false;
  3674. if (as[0]->grad || b->grad) {
  3675. is_node = true;
  3676. }
  3677. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3678. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3679. ggml_set_op_params_i32(result, 0, id);
  3680. ggml_set_op_params_i32(result, 1, n_as);
  3681. result->op = GGML_OP_MUL_MAT_ID;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src[0] = ids;
  3684. result->src[1] = b;
  3685. for (int i = 0; i < n_as; i++) {
  3686. struct ggml_tensor * a = as[i];
  3687. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3688. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3689. GGML_ASSERT(!ggml_is_transposed(a));
  3690. result->src[i + 2] = a;
  3691. }
  3692. return result;
  3693. }
  3694. // ggml_out_prod
  3695. struct ggml_tensor * ggml_out_prod(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. struct ggml_tensor * b) {
  3699. GGML_ASSERT(ggml_can_out_prod(a, b));
  3700. GGML_ASSERT(!ggml_is_transposed(a));
  3701. bool is_node = false;
  3702. if (a->grad || b->grad) {
  3703. is_node = true;
  3704. }
  3705. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3706. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3707. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3708. result->op = GGML_OP_OUT_PROD;
  3709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3710. result->src[0] = a;
  3711. result->src[1] = b;
  3712. return result;
  3713. }
  3714. // ggml_scale
  3715. static struct ggml_tensor * ggml_scale_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. float s,
  3719. bool inplace) {
  3720. GGML_ASSERT(ggml_is_padded_1d(a));
  3721. bool is_node = false;
  3722. if (a->grad) {
  3723. is_node = true;
  3724. }
  3725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3726. ggml_set_op_params(result, &s, sizeof(s));
  3727. result->op = GGML_OP_SCALE;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src[0] = a;
  3730. return result;
  3731. }
  3732. struct ggml_tensor * ggml_scale(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. float s) {
  3736. return ggml_scale_impl(ctx, a, s, false);
  3737. }
  3738. struct ggml_tensor * ggml_scale_inplace(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. float s) {
  3742. return ggml_scale_impl(ctx, a, s, true);
  3743. }
  3744. // ggml_set
  3745. static struct ggml_tensor * ggml_set_impl(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b,
  3749. size_t nb1,
  3750. size_t nb2,
  3751. size_t nb3,
  3752. size_t offset,
  3753. bool inplace) {
  3754. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3755. bool is_node = false;
  3756. if (a->grad || b->grad) {
  3757. is_node = true;
  3758. }
  3759. // make a view of the destination
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3762. ggml_set_op_params(result, params, sizeof(params));
  3763. result->op = GGML_OP_SET;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src[0] = a;
  3766. result->src[1] = b;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_set(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b,
  3773. size_t nb1,
  3774. size_t nb2,
  3775. size_t nb3,
  3776. size_t offset) {
  3777. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3778. }
  3779. struct ggml_tensor * ggml_set_inplace(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b,
  3783. size_t nb1,
  3784. size_t nb2,
  3785. size_t nb3,
  3786. size_t offset) {
  3787. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3788. }
  3789. struct ggml_tensor * ggml_set_1d(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. struct ggml_tensor * b,
  3793. size_t offset) {
  3794. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3795. }
  3796. struct ggml_tensor * ggml_set_1d_inplace(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a,
  3799. struct ggml_tensor * b,
  3800. size_t offset) {
  3801. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3802. }
  3803. struct ggml_tensor * ggml_set_2d(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. struct ggml_tensor * b,
  3807. size_t nb1,
  3808. size_t offset) {
  3809. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3810. }
  3811. struct ggml_tensor * ggml_set_2d_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b,
  3815. size_t nb1,
  3816. size_t offset) {
  3817. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3818. }
  3819. // ggml_cpy
  3820. static struct ggml_tensor * ggml_cpy_impl(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a,
  3823. struct ggml_tensor * b) {
  3824. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3825. bool is_node = false;
  3826. if (a->grad || b->grad) {
  3827. // inplace is false and either one have a grad
  3828. is_node = true;
  3829. }
  3830. // make a view of the destination
  3831. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3832. if (strlen(b->name) > 0) {
  3833. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3834. } else {
  3835. ggml_format_name(result, "%s (copy)", a->name);
  3836. }
  3837. result->op = GGML_OP_CPY;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src[0] = a;
  3840. result->src[1] = b;
  3841. return result;
  3842. }
  3843. struct ggml_tensor * ggml_cpy(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b) {
  3847. return ggml_cpy_impl(ctx, a, b);
  3848. }
  3849. struct ggml_tensor * ggml_cast(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. enum ggml_type type) {
  3853. bool is_node = false;
  3854. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3855. ggml_format_name(result, "%s (copy)", a->name);
  3856. result->op = GGML_OP_CPY;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. result->src[1] = result;
  3860. return result;
  3861. }
  3862. // ggml_cont
  3863. static struct ggml_tensor * ggml_cont_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3871. ggml_format_name(result, "%s (cont)", a->name);
  3872. result->op = GGML_OP_CONT;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src[0] = a;
  3875. return result;
  3876. }
  3877. struct ggml_tensor * ggml_cont(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a) {
  3880. return ggml_cont_impl(ctx, a);
  3881. }
  3882. // make contiguous, with new shape
  3883. GGML_API struct ggml_tensor * ggml_cont_1d(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. int64_t ne0) {
  3887. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3888. }
  3889. GGML_API struct ggml_tensor * ggml_cont_2d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. int64_t ne1) {
  3894. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3895. }
  3896. GGML_API struct ggml_tensor * ggml_cont_3d(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. int64_t ne0,
  3900. int64_t ne1,
  3901. int64_t ne2) {
  3902. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3903. }
  3904. struct ggml_tensor * ggml_cont_4d(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. int64_t ne0,
  3908. int64_t ne1,
  3909. int64_t ne2,
  3910. int64_t ne3) {
  3911. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3912. bool is_node = false;
  3913. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3914. ggml_format_name(result, "%s (cont)", a->name);
  3915. result->op = GGML_OP_CONT;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src[0] = a;
  3918. return result;
  3919. }
  3920. // ggml_reshape
  3921. struct ggml_tensor * ggml_reshape(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b) {
  3925. GGML_ASSERT(ggml_is_contiguous(a));
  3926. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3927. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3928. bool is_node = false;
  3929. if (a->grad) {
  3930. is_node = true;
  3931. }
  3932. if (b->grad) {
  3933. // gradient propagation is not supported
  3934. //GGML_ASSERT(false);
  3935. }
  3936. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3937. ggml_format_name(result, "%s (reshaped)", a->name);
  3938. result->op = GGML_OP_RESHAPE;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_reshape_1d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0) {
  3947. GGML_ASSERT(ggml_is_contiguous(a));
  3948. GGML_ASSERT(ggml_nelements(a) == ne0);
  3949. bool is_node = false;
  3950. if (a->grad) {
  3951. is_node = true;
  3952. }
  3953. const int64_t ne[1] = { ne0 };
  3954. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3955. ggml_format_name(result, "%s (reshaped)", a->name);
  3956. result->op = GGML_OP_RESHAPE;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src[0] = a;
  3959. return result;
  3960. }
  3961. struct ggml_tensor * ggml_reshape_2d(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. int64_t ne0,
  3965. int64_t ne1) {
  3966. GGML_ASSERT(ggml_is_contiguous(a));
  3967. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3968. bool is_node = false;
  3969. if (a->grad) {
  3970. is_node = true;
  3971. }
  3972. const int64_t ne[2] = { ne0, ne1 };
  3973. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3974. ggml_format_name(result, "%s (reshaped)", a->name);
  3975. result->op = GGML_OP_RESHAPE;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_reshape_3d(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a,
  3983. int64_t ne0,
  3984. int64_t ne1,
  3985. int64_t ne2) {
  3986. GGML_ASSERT(ggml_is_contiguous(a));
  3987. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3988. bool is_node = false;
  3989. if (a->grad) {
  3990. is_node = true;
  3991. }
  3992. const int64_t ne[3] = { ne0, ne1, ne2 };
  3993. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3994. ggml_format_name(result, "%s (reshaped)", a->name);
  3995. result->op = GGML_OP_RESHAPE;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src[0] = a;
  3998. return result;
  3999. }
  4000. struct ggml_tensor * ggml_reshape_4d(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. int64_t ne0,
  4004. int64_t ne1,
  4005. int64_t ne2,
  4006. int64_t ne3) {
  4007. GGML_ASSERT(ggml_is_contiguous(a));
  4008. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4009. bool is_node = false;
  4010. if (a->grad) {
  4011. is_node = true;
  4012. }
  4013. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4014. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4015. ggml_format_name(result, "%s (reshaped)", a->name);
  4016. result->op = GGML_OP_RESHAPE;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src[0] = a;
  4019. return result;
  4020. }
  4021. static struct ggml_tensor * ggml_view_impl(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. int n_dims,
  4025. const int64_t * ne,
  4026. size_t offset) {
  4027. bool is_node = false;
  4028. if (a->grad) {
  4029. is_node = true;
  4030. }
  4031. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4032. ggml_format_name(result, "%s (view)", a->name);
  4033. ggml_set_op_params(result, &offset, sizeof(offset));
  4034. result->op = GGML_OP_VIEW;
  4035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4036. result->src[0] = a;
  4037. return result;
  4038. }
  4039. // ggml_view_1d
  4040. struct ggml_tensor * ggml_view_1d(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. int64_t ne0,
  4044. size_t offset) {
  4045. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4046. return result;
  4047. }
  4048. // ggml_view_2d
  4049. struct ggml_tensor * ggml_view_2d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. size_t nb1,
  4055. size_t offset) {
  4056. const int64_t ne[2] = { ne0, ne1 };
  4057. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4058. result->nb[1] = nb1;
  4059. result->nb[2] = result->nb[1]*ne1;
  4060. result->nb[3] = result->nb[2];
  4061. return result;
  4062. }
  4063. // ggml_view_3d
  4064. struct ggml_tensor * ggml_view_3d(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. int64_t ne0,
  4068. int64_t ne1,
  4069. int64_t ne2,
  4070. size_t nb1,
  4071. size_t nb2,
  4072. size_t offset) {
  4073. const int64_t ne[3] = { ne0, ne1, ne2 };
  4074. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4075. result->nb[1] = nb1;
  4076. result->nb[2] = nb2;
  4077. result->nb[3] = result->nb[2]*ne2;
  4078. return result;
  4079. }
  4080. // ggml_view_4d
  4081. struct ggml_tensor * ggml_view_4d(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. int64_t ne0,
  4085. int64_t ne1,
  4086. int64_t ne2,
  4087. int64_t ne3,
  4088. size_t nb1,
  4089. size_t nb2,
  4090. size_t nb3,
  4091. size_t offset) {
  4092. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4093. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4094. result->nb[1] = nb1;
  4095. result->nb[2] = nb2;
  4096. result->nb[3] = nb3;
  4097. return result;
  4098. }
  4099. // ggml_permute
  4100. struct ggml_tensor * ggml_permute(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. int axis0,
  4104. int axis1,
  4105. int axis2,
  4106. int axis3) {
  4107. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4108. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4109. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4110. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4111. GGML_ASSERT(axis0 != axis1);
  4112. GGML_ASSERT(axis0 != axis2);
  4113. GGML_ASSERT(axis0 != axis3);
  4114. GGML_ASSERT(axis1 != axis2);
  4115. GGML_ASSERT(axis1 != axis3);
  4116. GGML_ASSERT(axis2 != axis3);
  4117. bool is_node = false;
  4118. if (a->grad) {
  4119. is_node = true;
  4120. }
  4121. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4122. ggml_format_name(result, "%s (permuted)", a->name);
  4123. int ne[GGML_MAX_DIMS];
  4124. int nb[GGML_MAX_DIMS];
  4125. ne[axis0] = a->ne[0];
  4126. ne[axis1] = a->ne[1];
  4127. ne[axis2] = a->ne[2];
  4128. ne[axis3] = a->ne[3];
  4129. nb[axis0] = a->nb[0];
  4130. nb[axis1] = a->nb[1];
  4131. nb[axis2] = a->nb[2];
  4132. nb[axis3] = a->nb[3];
  4133. result->ne[0] = ne[0];
  4134. result->ne[1] = ne[1];
  4135. result->ne[2] = ne[2];
  4136. result->ne[3] = ne[3];
  4137. result->nb[0] = nb[0];
  4138. result->nb[1] = nb[1];
  4139. result->nb[2] = nb[2];
  4140. result->nb[3] = nb[3];
  4141. result->op = GGML_OP_PERMUTE;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4145. ggml_set_op_params(result, params, sizeof(params));
  4146. return result;
  4147. }
  4148. // ggml_transpose
  4149. struct ggml_tensor * ggml_transpose(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. bool is_node = false;
  4153. if (a->grad) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4157. ggml_format_name(result, "%s (transposed)", a->name);
  4158. result->ne[0] = a->ne[1];
  4159. result->ne[1] = a->ne[0];
  4160. result->nb[0] = a->nb[1];
  4161. result->nb[1] = a->nb[0];
  4162. result->op = GGML_OP_TRANSPOSE;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src[0] = a;
  4165. return result;
  4166. }
  4167. // ggml_get_rows
  4168. struct ggml_tensor * ggml_get_rows(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b) {
  4172. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4173. GGML_ASSERT(b->ne[3] == 1);
  4174. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4175. bool is_node = false;
  4176. if (a->grad || b->grad) {
  4177. is_node = true;
  4178. }
  4179. // TODO: implement non F32 return
  4180. enum ggml_type type = GGML_TYPE_F32;
  4181. if (a->type == GGML_TYPE_I32) {
  4182. type = a->type;
  4183. }
  4184. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4185. result->op = GGML_OP_GET_ROWS;
  4186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4187. result->src[0] = a;
  4188. result->src[1] = b;
  4189. return result;
  4190. }
  4191. // ggml_get_rows_back
  4192. struct ggml_tensor * ggml_get_rows_back(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b,
  4196. struct ggml_tensor * c) {
  4197. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4198. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4199. bool is_node = false;
  4200. if (a->grad || b->grad) {
  4201. is_node = true;
  4202. }
  4203. // TODO: implement non F32 return
  4204. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4205. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4206. result->op = GGML_OP_GET_ROWS_BACK;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src[0] = a;
  4209. result->src[1] = b;
  4210. return result;
  4211. }
  4212. // ggml_diag
  4213. struct ggml_tensor * ggml_diag(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. GGML_ASSERT(a->ne[1] == 1);
  4217. bool is_node = false;
  4218. if (a->grad) {
  4219. is_node = true;
  4220. }
  4221. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4222. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4223. result->op = GGML_OP_DIAG;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src[0] = a;
  4226. return result;
  4227. }
  4228. // ggml_diag_mask_inf
  4229. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. int n_past,
  4233. bool inplace) {
  4234. bool is_node = false;
  4235. if (a->grad) {
  4236. is_node = true;
  4237. }
  4238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4239. int32_t params[] = { n_past };
  4240. ggml_set_op_params(result, params, sizeof(params));
  4241. result->op = GGML_OP_DIAG_MASK_INF;
  4242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4243. result->src[0] = a;
  4244. return result;
  4245. }
  4246. struct ggml_tensor * ggml_diag_mask_inf(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. int n_past) {
  4250. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4251. }
  4252. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. int n_past) {
  4256. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4257. }
  4258. // ggml_diag_mask_zero
  4259. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. int n_past,
  4263. bool inplace) {
  4264. bool is_node = false;
  4265. if (a->grad) {
  4266. is_node = true;
  4267. }
  4268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. int32_t params[] = { n_past };
  4270. ggml_set_op_params(result, params, sizeof(params));
  4271. result->op = GGML_OP_DIAG_MASK_ZERO;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src[0] = a;
  4274. return result;
  4275. }
  4276. struct ggml_tensor * ggml_diag_mask_zero(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. int n_past) {
  4280. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4281. }
  4282. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. int n_past) {
  4286. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4287. }
  4288. // ggml_soft_max
  4289. static struct ggml_tensor * ggml_soft_max_impl(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * mask,
  4293. struct ggml_tensor * pos,
  4294. float scale,
  4295. float max_bias,
  4296. bool inplace) {
  4297. GGML_ASSERT(ggml_is_contiguous(a));
  4298. if (mask) {
  4299. GGML_ASSERT(ggml_is_contiguous(mask));
  4300. GGML_ASSERT(ggml_is_matrix(mask));
  4301. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4302. }
  4303. if (pos) {
  4304. GGML_ASSERT(ggml_is_vector(pos));
  4305. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4306. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4307. }
  4308. if (max_bias > 0.0f) {
  4309. GGML_ASSERT(pos);
  4310. }
  4311. bool is_node = false;
  4312. if (a->grad) {
  4313. is_node = true;
  4314. }
  4315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4316. float params[] = { scale, max_bias };
  4317. ggml_set_op_params(result, params, sizeof(params));
  4318. result->op = GGML_OP_SOFT_MAX;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = mask;
  4322. result->src[2] = pos;
  4323. return result;
  4324. }
  4325. struct ggml_tensor * ggml_soft_max(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4329. }
  4330. struct ggml_tensor * ggml_soft_max_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4334. }
  4335. struct ggml_tensor * ggml_soft_max_ext(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * mask,
  4339. struct ggml_tensor * pos,
  4340. float scale,
  4341. float max_bias) {
  4342. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4343. }
  4344. // ggml_soft_max_back
  4345. static struct ggml_tensor * ggml_soft_max_back_impl(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b,
  4349. bool inplace) {
  4350. bool is_node = false;
  4351. if (a->grad || b->grad) {
  4352. is_node = true; // TODO : implement backward pass
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_SOFT_MAX_BACK;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src[0] = a;
  4358. result->src[1] = b;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_soft_max_back(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. return ggml_soft_max_back_impl(ctx, a, b, false);
  4366. }
  4367. struct ggml_tensor * ggml_soft_max_back_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b) {
  4371. return ggml_soft_max_back_impl(ctx, a, b, true);
  4372. }
  4373. // ggml_rope
  4374. static struct ggml_tensor * ggml_rope_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b,
  4378. int n_dims,
  4379. int mode,
  4380. int n_ctx,
  4381. int n_orig_ctx,
  4382. float freq_base,
  4383. float freq_scale,
  4384. float ext_factor,
  4385. float attn_factor,
  4386. float beta_fast,
  4387. float beta_slow,
  4388. float xpos_base,
  4389. bool xpos_down,
  4390. bool inplace) {
  4391. GGML_ASSERT(ggml_is_vector(b));
  4392. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4393. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4394. bool is_node = false;
  4395. if (a->grad) {
  4396. is_node = true;
  4397. }
  4398. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4399. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4400. memcpy(params + 5, &freq_base, sizeof(float));
  4401. memcpy(params + 6, &freq_scale, sizeof(float));
  4402. memcpy(params + 7, &ext_factor, sizeof(float));
  4403. memcpy(params + 8, &attn_factor, sizeof(float));
  4404. memcpy(params + 9, &beta_fast, sizeof(float));
  4405. memcpy(params + 10, &beta_slow, sizeof(float));
  4406. memcpy(params + 11, &xpos_base, sizeof(float));
  4407. memcpy(params + 12, &xpos_down, sizeof(bool));
  4408. ggml_set_op_params(result, params, sizeof(params));
  4409. result->op = GGML_OP_ROPE;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. result->src[1] = b;
  4413. return result;
  4414. }
  4415. struct ggml_tensor * ggml_rope(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. int n_dims,
  4420. int mode,
  4421. int n_ctx) {
  4422. return ggml_rope_impl(
  4423. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4424. );
  4425. }
  4426. struct ggml_tensor * ggml_rope_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. struct ggml_tensor * b,
  4430. int n_dims,
  4431. int mode,
  4432. int n_ctx) {
  4433. return ggml_rope_impl(
  4434. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4435. );
  4436. }
  4437. struct ggml_tensor * ggml_rope_custom(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b,
  4441. int n_dims,
  4442. int mode,
  4443. int n_ctx,
  4444. int n_orig_ctx,
  4445. float freq_base,
  4446. float freq_scale,
  4447. float ext_factor,
  4448. float attn_factor,
  4449. float beta_fast,
  4450. float beta_slow) {
  4451. return ggml_rope_impl(
  4452. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4453. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4454. );
  4455. }
  4456. struct ggml_tensor * ggml_rope_custom_inplace(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. struct ggml_tensor * b,
  4460. int n_dims,
  4461. int mode,
  4462. int n_ctx,
  4463. int n_orig_ctx,
  4464. float freq_base,
  4465. float freq_scale,
  4466. float ext_factor,
  4467. float attn_factor,
  4468. float beta_fast,
  4469. float beta_slow) {
  4470. return ggml_rope_impl(
  4471. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4472. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4473. );
  4474. }
  4475. struct ggml_tensor * ggml_rope_xpos_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. int n_dims,
  4480. float base,
  4481. bool down) {
  4482. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4483. }
  4484. // ggml_rope_back
  4485. struct ggml_tensor * ggml_rope_back(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b,
  4489. int n_dims,
  4490. int mode,
  4491. int n_ctx,
  4492. int n_orig_ctx,
  4493. float freq_base,
  4494. float freq_scale,
  4495. float ext_factor,
  4496. float attn_factor,
  4497. float beta_fast,
  4498. float beta_slow,
  4499. float xpos_base,
  4500. bool xpos_down) {
  4501. GGML_ASSERT(ggml_is_vector(b));
  4502. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4503. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4504. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4505. bool is_node = false;
  4506. if (a->grad) {
  4507. is_node = false; // TODO: implement backward
  4508. }
  4509. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4510. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4511. memcpy(params + 5, &freq_base, sizeof(float));
  4512. memcpy(params + 6, &freq_scale, sizeof(float));
  4513. memcpy(params + 7, &ext_factor, sizeof(float));
  4514. memcpy(params + 8, &attn_factor, sizeof(float));
  4515. memcpy(params + 9, &beta_fast, sizeof(float));
  4516. memcpy(params + 10, &beta_slow, sizeof(float));
  4517. memcpy(params + 11, &xpos_base, sizeof(float));
  4518. memcpy(params + 12, &xpos_down, sizeof(bool));
  4519. ggml_set_op_params(result, params, sizeof(params));
  4520. result->op = GGML_OP_ROPE_BACK;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. // ggml_alibi
  4527. struct ggml_tensor * ggml_alibi(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int n_past,
  4531. int n_head,
  4532. float bias_max) {
  4533. GGML_ASSERT(n_past >= 0);
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. // TODO: when implement backward, fix this:
  4540. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4541. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4542. int32_t op_params[3] = { n_past, n_head };
  4543. memcpy(op_params + 2, &bias_max, sizeof(float));
  4544. ggml_set_op_params(result, op_params, sizeof(op_params));
  4545. result->op = GGML_OP_ALIBI;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. return result;
  4549. }
  4550. // ggml_clamp
  4551. struct ggml_tensor * ggml_clamp(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. float min,
  4555. float max) {
  4556. bool is_node = false;
  4557. if (a->grad) {
  4558. GGML_ASSERT(false); // TODO: implement backward
  4559. is_node = true;
  4560. }
  4561. // TODO: when implement backward, fix this:
  4562. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4563. float params[] = { min, max };
  4564. ggml_set_op_params(result, params, sizeof(params));
  4565. result->op = GGML_OP_CLAMP;
  4566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4567. result->src[0] = a;
  4568. return result;
  4569. }
  4570. // ggml_conv_1d
  4571. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4572. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4573. }
  4574. GGML_API struct ggml_tensor * ggml_conv_1d(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int s0,
  4579. int p0,
  4580. int d0) {
  4581. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4582. struct ggml_tensor * result =
  4583. ggml_mul_mat(ctx,
  4584. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4585. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4586. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4587. return result;
  4588. }
  4589. // ggml_conv_1d_ph
  4590. struct ggml_tensor* ggml_conv_1d_ph(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b,
  4594. int s,
  4595. int d) {
  4596. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4597. }
  4598. // ggml_conv_transpose_1d
  4599. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4600. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4601. }
  4602. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. int s0,
  4607. int p0,
  4608. int d0) {
  4609. GGML_ASSERT(ggml_is_matrix(b));
  4610. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4611. GGML_ASSERT(a->ne[3] == 1);
  4612. GGML_ASSERT(p0 == 0);
  4613. GGML_ASSERT(d0 == 1);
  4614. bool is_node = false;
  4615. if (a->grad || b->grad) {
  4616. GGML_ASSERT(false); // TODO: implement backward
  4617. is_node = true;
  4618. }
  4619. const int64_t ne[4] = {
  4620. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4621. a->ne[1], b->ne[2], 1,
  4622. };
  4623. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4624. int32_t params[] = { s0, p0, d0 };
  4625. ggml_set_op_params(result, params, sizeof(params));
  4626. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4628. result->src[0] = a;
  4629. result->src[1] = b;
  4630. return result;
  4631. }
  4632. // ggml_conv_depthwise
  4633. struct ggml_tensor * ggml_conv_depthwise_2d(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a,
  4636. struct ggml_tensor * b,
  4637. int s0,
  4638. int s1,
  4639. int p0,
  4640. int p1,
  4641. int d0,
  4642. int d1) {
  4643. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4644. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4645. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4646. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4647. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4648. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4649. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4650. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4651. return result;
  4652. }
  4653. // ggml_conv_2d
  4654. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4655. // a: [OC,IC, KH, KW]
  4656. // b: [N, IC, IH, IW]
  4657. // result: [N, OH, OW, IC*KH*KW]
  4658. struct ggml_tensor * ggml_im2col(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. struct ggml_tensor * b,
  4662. int s0,
  4663. int s1,
  4664. int p0,
  4665. int p1,
  4666. int d0,
  4667. int d1,
  4668. bool is_2D,
  4669. enum ggml_type dst_type) {
  4670. if(is_2D) {
  4671. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4672. } else {
  4673. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4674. }
  4675. bool is_node = false;
  4676. if (a->grad || b->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4681. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4682. const int64_t ne[4] = {
  4683. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4684. OW,
  4685. is_2D ? OH : b->ne[2],
  4686. is_2D ? b->ne[3] : 1,
  4687. };
  4688. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4689. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4690. ggml_set_op_params(result, params, sizeof(params));
  4691. result->op = GGML_OP_IM2COL;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src[0] = a;
  4694. result->src[1] = b;
  4695. return result;
  4696. }
  4697. // a: [OC,IC, KH, KW]
  4698. // b: [N, IC, IH, IW]
  4699. // result: [N, OC, OH, OW]
  4700. struct ggml_tensor * ggml_conv_2d(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. struct ggml_tensor * b,
  4704. int s0,
  4705. int s1,
  4706. int p0,
  4707. int p1,
  4708. int d0,
  4709. int d1) {
  4710. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4711. struct ggml_tensor * result =
  4712. ggml_mul_mat(ctx,
  4713. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4714. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4715. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4716. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4717. return result;
  4718. }
  4719. // ggml_conv_2d_sk_p0
  4720. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4725. }
  4726. // ggml_conv_2d_s1_ph
  4727. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b) {
  4731. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4732. }
  4733. // ggml_conv_transpose_2d_p0
  4734. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4735. return (ins - 1) * s - 2 * p + ks;
  4736. }
  4737. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. struct ggml_tensor * b,
  4741. int stride) {
  4742. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4743. bool is_node = false;
  4744. if (a->grad || b->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. const int64_t ne[4] = {
  4749. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4750. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4751. a->ne[2], b->ne[3],
  4752. };
  4753. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4754. ggml_set_op_params_i32(result, 0, stride);
  4755. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. result->src[1] = b;
  4759. return result;
  4760. }
  4761. // ggml_pool_*
  4762. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4763. return (ins + 2 * p - ks) / s + 1;
  4764. }
  4765. // ggml_pool_1d
  4766. struct ggml_tensor * ggml_pool_1d(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. enum ggml_op_pool op,
  4770. int k0,
  4771. int s0,
  4772. int p0) {
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. const int64_t ne[4] = {
  4779. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4780. a->ne[1],
  4781. a->ne[2],
  4782. a->ne[3],
  4783. };
  4784. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4785. int32_t params[] = { op, k0, s0, p0 };
  4786. ggml_set_op_params(result, params, sizeof(params));
  4787. result->op = GGML_OP_POOL_1D;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. // ggml_pool_2d
  4793. struct ggml_tensor * ggml_pool_2d(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. enum ggml_op_pool op,
  4797. int k0,
  4798. int k1,
  4799. int s0,
  4800. int s1,
  4801. float p0,
  4802. float p1) {
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. GGML_ASSERT(false); // TODO: implement backward
  4806. is_node = true;
  4807. }
  4808. struct ggml_tensor * result;
  4809. const int64_t ne[3] = {
  4810. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4811. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4812. a->ne[2],
  4813. };
  4814. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4815. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4816. ggml_set_op_params(result, params, sizeof(params));
  4817. result->op = GGML_OP_POOL_2D;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src[0] = a;
  4820. return result;
  4821. }
  4822. // ggml_upscale
  4823. static struct ggml_tensor * ggml_upscale_impl(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. int scale_factor) {
  4827. bool is_node = false;
  4828. if (a->grad) {
  4829. GGML_ASSERT(false); // TODO: implement backward
  4830. is_node = true;
  4831. }
  4832. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4833. a->ne[0] * scale_factor,
  4834. a->ne[1] * scale_factor,
  4835. a->ne[2], a->ne[3]);
  4836. result->op = GGML_OP_UPSCALE;
  4837. result->op_params[0] = scale_factor;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = a;
  4840. return result;
  4841. }
  4842. struct ggml_tensor * ggml_pad(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. int p0, int p1, int p2, int p3) {
  4846. bool is_node = false;
  4847. if (a->grad) {
  4848. GGML_ASSERT(false); // TODO: implement backward
  4849. is_node = true;
  4850. }
  4851. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4852. a->ne[0] + p0,
  4853. a->ne[1] + p1,
  4854. a->ne[2] + p2,
  4855. a->ne[3] + p3);
  4856. result->op = GGML_OP_PAD;
  4857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4858. result->src[0] = a;
  4859. return result;
  4860. }
  4861. struct ggml_tensor * ggml_upscale(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. int scale_factor) {
  4865. return ggml_upscale_impl(ctx, a, scale_factor);
  4866. }
  4867. struct ggml_tensor * ggml_arange(
  4868. struct ggml_context * ctx,
  4869. float start,
  4870. float stop,
  4871. float step) {
  4872. GGML_ASSERT(stop > start);
  4873. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4874. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4875. result->op = GGML_OP_ARANGE;
  4876. ggml_set_op_params_f32(result, 0, start);
  4877. ggml_set_op_params_f32(result, 1, stop);
  4878. ggml_set_op_params_f32(result, 2, step);
  4879. return result;
  4880. }
  4881. struct ggml_tensor * ggml_timestep_embedding(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * timesteps,
  4884. int dim,
  4885. int max_period) {
  4886. bool is_node = false;
  4887. if (timesteps->grad) {
  4888. GGML_ASSERT(false); // TODO: implement backward
  4889. is_node = true;
  4890. }
  4891. int actual_dim = dim;
  4892. if (dim % 2 != 0) {
  4893. actual_dim = dim + 1;
  4894. }
  4895. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4896. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4897. ggml_set_op_params_i32(result, 0, dim);
  4898. ggml_set_op_params_i32(result, 1, max_period);
  4899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4900. result->src[0] = timesteps;
  4901. return result;
  4902. }
  4903. // ggml_argsort
  4904. struct ggml_tensor * ggml_argsort(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. enum ggml_sort_order order) {
  4908. bool is_node = false;
  4909. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4910. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4911. result->op = GGML_OP_ARGSORT;
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = a;
  4914. return result;
  4915. }
  4916. // ggml_top_k
  4917. struct ggml_tensor * ggml_top_k(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. int k) {
  4921. GGML_ASSERT(a->ne[0] >= k);
  4922. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4923. result = ggml_view_4d(ctx, result,
  4924. k, result->ne[1], result->ne[2], result->ne[3],
  4925. result->nb[1], result->nb[2], result->nb[3],
  4926. 0);
  4927. return result;
  4928. }
  4929. // ggml_flash_attn
  4930. struct ggml_tensor * ggml_flash_attn(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * q,
  4933. struct ggml_tensor * k,
  4934. struct ggml_tensor * v,
  4935. bool masked) {
  4936. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4937. // TODO: check if vT can be multiplied by (k*qT)
  4938. bool is_node = false;
  4939. if (q->grad || k->grad || v->grad) {
  4940. is_node = true;
  4941. }
  4942. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4944. int32_t t = masked ? 1 : 0;
  4945. ggml_set_op_params(result, &t, sizeof(t));
  4946. result->op = GGML_OP_FLASH_ATTN;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = q;
  4949. result->src[1] = k;
  4950. result->src[2] = v;
  4951. return result;
  4952. }
  4953. // ggml_flash_ff
  4954. struct ggml_tensor * ggml_flash_ff(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b0,
  4958. struct ggml_tensor * b1,
  4959. struct ggml_tensor * c0,
  4960. struct ggml_tensor * c1) {
  4961. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4962. // TODO: more checks
  4963. bool is_node = false;
  4964. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4965. is_node = true;
  4966. }
  4967. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4968. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4969. result->op = GGML_OP_FLASH_FF;
  4970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4971. result->src[0] = a;
  4972. result->src[1] = b0;
  4973. result->src[2] = b1;
  4974. result->src[3] = c0;
  4975. result->src[4] = c1;
  4976. return result;
  4977. }
  4978. // ggml_flash_attn_back
  4979. struct ggml_tensor * ggml_flash_attn_back(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * q,
  4982. struct ggml_tensor * k,
  4983. struct ggml_tensor * v,
  4984. struct ggml_tensor * d,
  4985. bool masked) {
  4986. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4987. // TODO: check if vT can be multiplied by (k*qT)
  4988. // d shape [D,N,ne2,ne3]
  4989. // q shape [D,N,ne2,ne3]
  4990. // k shape [D,M,kvne2,ne3]
  4991. // v shape [M,D,kvne2,ne3]
  4992. const int64_t D = q->ne[0];
  4993. const int64_t N = q->ne[1];
  4994. const int64_t M = k->ne[1];
  4995. const int64_t ne2 = q->ne[2];
  4996. const int64_t ne3 = q->ne[3];
  4997. const int64_t kvne2 = k->ne[2];
  4998. GGML_ASSERT(k->ne[0] == D);
  4999. GGML_ASSERT(v->ne[0] == M);
  5000. GGML_ASSERT(v->ne[1] == D);
  5001. GGML_ASSERT(d->ne[0] == D);
  5002. GGML_ASSERT(d->ne[1] == N);
  5003. GGML_ASSERT(k->ne[2] == kvne2);
  5004. GGML_ASSERT(k->ne[3] == ne3);
  5005. GGML_ASSERT(v->ne[2] == kvne2);
  5006. GGML_ASSERT(v->ne[3] == ne3);
  5007. GGML_ASSERT(d->ne[2] == ne2);
  5008. GGML_ASSERT(d->ne[3] == ne3);
  5009. GGML_ASSERT(ne2 % kvne2 == 0);
  5010. bool is_node = false;
  5011. if (q->grad || k->grad || v->grad) {
  5012. // when using this operation (in backwards pass) these grads are set.
  5013. // we don't want to create (big) grad of our result, so is_node is false.
  5014. is_node = false;
  5015. }
  5016. // store gradients of q, k and v as continuous tensors concatenated in result.
  5017. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5018. const int64_t elem_q = ggml_nelements(q);
  5019. const int64_t elem_k = ggml_nelements(k);
  5020. const int64_t elem_v = ggml_nelements(v);
  5021. enum ggml_type result_type = GGML_TYPE_F32;
  5022. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5023. const size_t tsize = ggml_type_size(result_type);
  5024. const size_t offs_q = 0;
  5025. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5026. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5027. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5028. const size_t nelements = (end + tsize - 1)/tsize;
  5029. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5030. int32_t masked_i = masked ? 1 : 0;
  5031. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5032. result->op = GGML_OP_FLASH_ATTN_BACK;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = q;
  5035. result->src[1] = k;
  5036. result->src[2] = v;
  5037. result->src[3] = d;
  5038. return result;
  5039. }
  5040. // ggml_ssm_conv
  5041. struct ggml_tensor * ggml_ssm_conv(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * s,
  5044. struct ggml_tensor * x,
  5045. struct ggml_tensor * c,
  5046. struct ggml_tensor * sq) {
  5047. GGML_ASSERT(ggml_is_3d(s));
  5048. GGML_ASSERT(ggml_is_matrix(x));
  5049. GGML_ASSERT(ggml_is_matrix(c));
  5050. GGML_ASSERT(ggml_is_matrix(sq));
  5051. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5052. const int64_t d_conv = c->ne[0];
  5053. const int64_t d_inner = c->ne[1];
  5054. const int64_t n_tokens = x->ne[1];
  5055. const int64_t n_kv = s->ne[2];
  5056. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5057. GGML_ASSERT( s->ne[1] == d_inner);
  5058. GGML_ASSERT( x->ne[0] == d_inner);
  5059. GGML_ASSERT(sq->ne[0] == n_kv);
  5060. GGML_ASSERT(sq->ne[1] == n_tokens);
  5061. bool is_node = false;
  5062. if (s->grad || x->grad || c->grad || sq->grad) {
  5063. GGML_ASSERT(false); // TODO: implement
  5064. is_node = true;
  5065. }
  5066. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5067. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5068. result->op = GGML_OP_SSM_CONV;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src[0] = s;
  5071. result->src[1] = x;
  5072. result->src[2] = c;
  5073. result->src[3] = sq;
  5074. return result;
  5075. }
  5076. // ggml_ssm_scan
  5077. struct ggml_tensor * ggml_ssm_scan(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * s,
  5080. struct ggml_tensor * x,
  5081. struct ggml_tensor * dt,
  5082. struct ggml_tensor * A,
  5083. struct ggml_tensor * B,
  5084. struct ggml_tensor * C,
  5085. struct ggml_tensor * sq) {
  5086. GGML_ASSERT(ggml_is_contiguous(s));
  5087. GGML_ASSERT(ggml_is_contiguous(x));
  5088. GGML_ASSERT(ggml_is_contiguous(dt));
  5089. GGML_ASSERT(ggml_is_contiguous(A));
  5090. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5091. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5092. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5093. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5094. {
  5095. const int64_t d_state = s->ne[0];
  5096. const int64_t d_inner = s->ne[1];
  5097. const int64_t n_tokens = x->ne[1];
  5098. GGML_ASSERT(x->ne[0] == d_inner);
  5099. GGML_ASSERT(A->ne[0] == d_state);
  5100. GGML_ASSERT(A->ne[1] == d_inner);
  5101. GGML_ASSERT(B->ne[0] == d_state);
  5102. GGML_ASSERT(B->ne[1] == n_tokens);
  5103. GGML_ASSERT(C->ne[0] == d_state);
  5104. GGML_ASSERT(C->ne[1] == n_tokens);
  5105. }
  5106. bool is_node = false;
  5107. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5108. GGML_ASSERT(false); // TODO: implement
  5109. is_node = true;
  5110. }
  5111. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5112. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5113. result->op = GGML_OP_SSM_SCAN;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = s;
  5116. result->src[1] = x;
  5117. result->src[2] = dt;
  5118. result->src[3] = A;
  5119. result->src[4] = B;
  5120. result->src[5] = C;
  5121. result->src[6] = sq;
  5122. return result;
  5123. }
  5124. // ggml_win_part
  5125. struct ggml_tensor * ggml_win_part(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int w) {
  5129. GGML_ASSERT(a->ne[3] == 1);
  5130. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5131. bool is_node = false;
  5132. if (a->grad) {
  5133. GGML_ASSERT(false); // TODO: implement backward
  5134. is_node = true;
  5135. }
  5136. // padding
  5137. const int px = (w - a->ne[1]%w)%w;
  5138. const int py = (w - a->ne[2]%w)%w;
  5139. const int npx = (px + a->ne[1])/w;
  5140. const int npy = (py + a->ne[2])/w;
  5141. const int np = npx*npy;
  5142. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5143. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5144. int32_t params[] = { npx, npy, w };
  5145. ggml_set_op_params(result, params, sizeof(params));
  5146. result->op = GGML_OP_WIN_PART;
  5147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5148. result->src[0] = a;
  5149. return result;
  5150. }
  5151. // ggml_win_unpart
  5152. struct ggml_tensor * ggml_win_unpart(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. int w0,
  5156. int h0,
  5157. int w) {
  5158. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5159. bool is_node = false;
  5160. if (a->grad) {
  5161. GGML_ASSERT(false); // TODO: implement backward
  5162. is_node = true;
  5163. }
  5164. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5165. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5166. int32_t params[] = { w };
  5167. ggml_set_op_params(result, params, sizeof(params));
  5168. result->op = GGML_OP_WIN_UNPART;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. return result;
  5172. }
  5173. // ggml_get_rel_pos
  5174. struct ggml_tensor * ggml_get_rel_pos(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. int qh,
  5178. int kh) {
  5179. GGML_ASSERT(qh == kh);
  5180. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. GGML_ASSERT(false); // TODO: implement backward
  5184. is_node = true;
  5185. }
  5186. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5187. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5188. result->op = GGML_OP_GET_REL_POS;
  5189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5190. result->src[0] = a;
  5191. return result;
  5192. }
  5193. // ggml_add_rel_pos
  5194. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * a,
  5197. struct ggml_tensor * pw,
  5198. struct ggml_tensor * ph,
  5199. bool inplace) {
  5200. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5201. GGML_ASSERT(ggml_is_contiguous(a));
  5202. GGML_ASSERT(ggml_is_contiguous(pw));
  5203. GGML_ASSERT(ggml_is_contiguous(ph));
  5204. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5205. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5206. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5207. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5208. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5209. bool is_node = false;
  5210. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5211. is_node = true;
  5212. }
  5213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5214. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5215. result->op = GGML_OP_ADD_REL_POS;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src[0] = a;
  5218. result->src[1] = pw;
  5219. result->src[2] = ph;
  5220. return result;
  5221. }
  5222. struct ggml_tensor * ggml_add_rel_pos(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * a,
  5225. struct ggml_tensor * pw,
  5226. struct ggml_tensor * ph) {
  5227. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5228. }
  5229. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * pw,
  5233. struct ggml_tensor * ph) {
  5234. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5235. }
  5236. // gmml_unary
  5237. static struct ggml_tensor * ggml_unary_impl(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. enum ggml_unary_op op,
  5241. bool inplace) {
  5242. bool is_node = false;
  5243. if (!inplace && (a->grad)) {
  5244. is_node = true;
  5245. }
  5246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5247. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5248. result->op = GGML_OP_UNARY;
  5249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5250. result->src[0] = a;
  5251. return result;
  5252. }
  5253. struct ggml_tensor * ggml_unary(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a,
  5256. enum ggml_unary_op op) {
  5257. return ggml_unary_impl(ctx, a, op, false);
  5258. }
  5259. struct ggml_tensor * ggml_unary_inplace(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * a,
  5262. enum ggml_unary_op op) {
  5263. return ggml_unary_impl(ctx, a, op, true);
  5264. }
  5265. // ggml_map_unary
  5266. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. const ggml_unary_op_f32_t fun,
  5270. bool inplace) {
  5271. bool is_node = false;
  5272. if (!inplace && a->grad) {
  5273. is_node = true;
  5274. }
  5275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5276. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5277. result->op = GGML_OP_MAP_UNARY;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. return result;
  5281. }
  5282. struct ggml_tensor * ggml_map_unary_f32(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a,
  5285. const ggml_unary_op_f32_t fun) {
  5286. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5287. }
  5288. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. const ggml_unary_op_f32_t fun) {
  5292. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5293. }
  5294. // ggml_map_binary
  5295. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. struct ggml_tensor * b,
  5299. const ggml_binary_op_f32_t fun,
  5300. bool inplace) {
  5301. GGML_ASSERT(ggml_are_same_shape(a, b));
  5302. bool is_node = false;
  5303. if (!inplace && (a->grad || b->grad)) {
  5304. is_node = true;
  5305. }
  5306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5307. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5308. result->op = GGML_OP_MAP_BINARY;
  5309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5310. result->src[0] = a;
  5311. result->src[1] = b;
  5312. return result;
  5313. }
  5314. struct ggml_tensor * ggml_map_binary_f32(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. struct ggml_tensor * b,
  5318. const ggml_binary_op_f32_t fun) {
  5319. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5320. }
  5321. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. struct ggml_tensor * b,
  5325. const ggml_binary_op_f32_t fun) {
  5326. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5327. }
  5328. // ggml_map_custom1_f32
  5329. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5330. struct ggml_context * ctx,
  5331. struct ggml_tensor * a,
  5332. const ggml_custom1_op_f32_t fun,
  5333. bool inplace) {
  5334. bool is_node = false;
  5335. if (!inplace && a->grad) {
  5336. is_node = true;
  5337. }
  5338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5339. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5340. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5342. result->src[0] = a;
  5343. return result;
  5344. }
  5345. struct ggml_tensor * ggml_map_custom1_f32(
  5346. struct ggml_context * ctx,
  5347. struct ggml_tensor * a,
  5348. const ggml_custom1_op_f32_t fun) {
  5349. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5350. }
  5351. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. const ggml_custom1_op_f32_t fun) {
  5355. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5356. }
  5357. // ggml_map_custom2_f32
  5358. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b,
  5362. const ggml_custom2_op_f32_t fun,
  5363. bool inplace) {
  5364. bool is_node = false;
  5365. if (!inplace && (a->grad || b->grad)) {
  5366. is_node = true;
  5367. }
  5368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5369. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5370. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5372. result->src[0] = a;
  5373. result->src[1] = b;
  5374. return result;
  5375. }
  5376. struct ggml_tensor * ggml_map_custom2_f32(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b,
  5380. const ggml_custom2_op_f32_t fun) {
  5381. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5382. }
  5383. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b,
  5387. const ggml_custom2_op_f32_t fun) {
  5388. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5389. }
  5390. // ggml_map_custom3_f32
  5391. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. struct ggml_tensor * b,
  5395. struct ggml_tensor * c,
  5396. const ggml_custom3_op_f32_t fun,
  5397. bool inplace) {
  5398. bool is_node = false;
  5399. if (!inplace && (a->grad || b->grad || c->grad)) {
  5400. is_node = true;
  5401. }
  5402. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5403. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5404. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5406. result->src[0] = a;
  5407. result->src[1] = b;
  5408. result->src[2] = c;
  5409. return result;
  5410. }
  5411. struct ggml_tensor * ggml_map_custom3_f32(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. struct ggml_tensor * c,
  5416. const ggml_custom3_op_f32_t fun) {
  5417. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5418. }
  5419. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. struct ggml_tensor * b,
  5423. struct ggml_tensor * c,
  5424. const ggml_custom3_op_f32_t fun) {
  5425. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5426. }
  5427. // ggml_map_custom1
  5428. struct ggml_map_custom1_op_params {
  5429. ggml_custom1_op_t fun;
  5430. int n_tasks;
  5431. void * userdata;
  5432. };
  5433. static struct ggml_tensor * ggml_map_custom1_impl(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. const ggml_custom1_op_t fun,
  5437. int n_tasks,
  5438. void * userdata,
  5439. bool inplace) {
  5440. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5441. bool is_node = false;
  5442. if (!inplace && a->grad) {
  5443. is_node = true;
  5444. }
  5445. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5446. struct ggml_map_custom1_op_params params = {
  5447. /*.fun =*/ fun,
  5448. /*.n_tasks =*/ n_tasks,
  5449. /*.userdata =*/ userdata
  5450. };
  5451. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5452. result->op = GGML_OP_MAP_CUSTOM1;
  5453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5454. result->src[0] = a;
  5455. return result;
  5456. }
  5457. struct ggml_tensor * ggml_map_custom1(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. const ggml_custom1_op_t fun,
  5461. int n_tasks,
  5462. void * userdata) {
  5463. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5464. }
  5465. struct ggml_tensor * ggml_map_custom1_inplace(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. const ggml_custom1_op_t fun,
  5469. int n_tasks,
  5470. void * userdata) {
  5471. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5472. }
  5473. // ggml_map_custom2
  5474. struct ggml_map_custom2_op_params {
  5475. ggml_custom2_op_t fun;
  5476. int n_tasks;
  5477. void * userdata;
  5478. };
  5479. static struct ggml_tensor * ggml_map_custom2_impl(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * a,
  5482. struct ggml_tensor * b,
  5483. const ggml_custom2_op_t fun,
  5484. int n_tasks,
  5485. void * userdata,
  5486. bool inplace) {
  5487. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5488. bool is_node = false;
  5489. if (!inplace && (a->grad || b->grad)) {
  5490. is_node = true;
  5491. }
  5492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5493. struct ggml_map_custom2_op_params params = {
  5494. /*.fun =*/ fun,
  5495. /*.n_tasks =*/ n_tasks,
  5496. /*.userdata =*/ userdata
  5497. };
  5498. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5499. result->op = GGML_OP_MAP_CUSTOM2;
  5500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5501. result->src[0] = a;
  5502. result->src[1] = b;
  5503. return result;
  5504. }
  5505. struct ggml_tensor * ggml_map_custom2(
  5506. struct ggml_context * ctx,
  5507. struct ggml_tensor * a,
  5508. struct ggml_tensor * b,
  5509. const ggml_custom2_op_t fun,
  5510. int n_tasks,
  5511. void * userdata) {
  5512. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5513. }
  5514. struct ggml_tensor * ggml_map_custom2_inplace(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. struct ggml_tensor * b,
  5518. const ggml_custom2_op_t fun,
  5519. int n_tasks,
  5520. void * userdata) {
  5521. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5522. }
  5523. // ggml_map_custom3
  5524. struct ggml_map_custom3_op_params {
  5525. ggml_custom3_op_t fun;
  5526. int n_tasks;
  5527. void * userdata;
  5528. };
  5529. static struct ggml_tensor * ggml_map_custom3_impl(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. struct ggml_tensor * c,
  5534. const ggml_custom3_op_t fun,
  5535. int n_tasks,
  5536. void * userdata,
  5537. bool inplace) {
  5538. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5539. bool is_node = false;
  5540. if (!inplace && (a->grad || b->grad || c->grad)) {
  5541. is_node = true;
  5542. }
  5543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5544. struct ggml_map_custom3_op_params params = {
  5545. /*.fun =*/ fun,
  5546. /*.n_tasks =*/ n_tasks,
  5547. /*.userdata =*/ userdata
  5548. };
  5549. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5550. result->op = GGML_OP_MAP_CUSTOM3;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. result->src[1] = b;
  5554. result->src[2] = c;
  5555. return result;
  5556. }
  5557. struct ggml_tensor * ggml_map_custom3(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. struct ggml_tensor * b,
  5561. struct ggml_tensor * c,
  5562. const ggml_custom3_op_t fun,
  5563. int n_tasks,
  5564. void * userdata) {
  5565. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5566. }
  5567. struct ggml_tensor * ggml_map_custom3_inplace(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. struct ggml_tensor * b,
  5571. struct ggml_tensor * c,
  5572. const ggml_custom3_op_t fun,
  5573. int n_tasks,
  5574. void * userdata) {
  5575. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5576. }
  5577. // ggml_cross_entropy_loss
  5578. struct ggml_tensor * ggml_cross_entropy_loss(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. struct ggml_tensor * b) {
  5582. GGML_ASSERT(ggml_are_same_shape(a, b));
  5583. bool is_node = false;
  5584. if (a->grad || b->grad) {
  5585. is_node = true;
  5586. }
  5587. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5588. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. result->src[1] = b;
  5592. return result;
  5593. }
  5594. // ggml_cross_entropy_loss_back
  5595. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. struct ggml_tensor * b,
  5599. struct ggml_tensor * c) {
  5600. GGML_ASSERT(ggml_are_same_shape(a, b));
  5601. GGML_ASSERT(ggml_is_scalar(c));
  5602. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5603. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5604. result->grad = NULL;
  5605. result->src[0] = a;
  5606. result->src[1] = b;
  5607. result->src[2] = c;
  5608. return result;
  5609. }
  5610. ////////////////////////////////////////////////////////////////////////////////
  5611. void ggml_set_param(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * tensor) {
  5614. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5615. GGML_ASSERT(tensor->grad == NULL);
  5616. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5617. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5618. }
  5619. // ggml_compute_forward_dup
  5620. static void ggml_compute_forward_dup_same_cont(
  5621. const struct ggml_compute_params * params,
  5622. struct ggml_tensor * dst) {
  5623. const struct ggml_tensor * src0 = dst->src[0];
  5624. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5625. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5626. GGML_ASSERT(src0->type == dst->type);
  5627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5628. return;
  5629. }
  5630. const size_t nb00 = src0->nb[0];
  5631. const size_t nb0 = dst->nb[0];
  5632. const int ith = params->ith; // thread index
  5633. const int nth = params->nth; // number of threads
  5634. // parallelize by elements
  5635. const int ne = ggml_nelements(dst);
  5636. const int dr = (ne + nth - 1) / nth;
  5637. const int ie0 = dr * ith;
  5638. const int ie1 = MIN(ie0 + dr, ne);
  5639. if (ie0 < ie1) {
  5640. memcpy(
  5641. ((char *) dst->data + ie0*nb0),
  5642. ((char *) src0->data + ie0*nb00),
  5643. (ie1 - ie0) * ggml_type_size(src0->type));
  5644. }
  5645. }
  5646. static void ggml_compute_forward_dup_f16(
  5647. const struct ggml_compute_params * params,
  5648. struct ggml_tensor * dst) {
  5649. const struct ggml_tensor * src0 = dst->src[0];
  5650. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5652. return;
  5653. }
  5654. GGML_TENSOR_UNARY_OP_LOCALS
  5655. const int ith = params->ith; // thread index
  5656. const int nth = params->nth; // number of threads
  5657. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5658. ggml_compute_forward_dup_same_cont(params, dst);
  5659. return;
  5660. }
  5661. // parallelize by rows
  5662. const int nr = ne01;
  5663. // number of rows per thread
  5664. const int dr = (nr + nth - 1) / nth;
  5665. // row range for this thread
  5666. const int ir0 = dr * ith;
  5667. const int ir1 = MIN(ir0 + dr, nr);
  5668. if (src0->type == dst->type &&
  5669. ne00 == ne0 &&
  5670. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5671. // copy by rows
  5672. const size_t rs = ne00*nb00;
  5673. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5674. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5675. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5676. memcpy(
  5677. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5678. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5679. rs);
  5680. }
  5681. }
  5682. }
  5683. return;
  5684. }
  5685. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5686. if (ggml_is_contiguous(dst)) {
  5687. if (nb00 == sizeof(ggml_fp16_t)) {
  5688. if (dst->type == GGML_TYPE_F16) {
  5689. size_t id = 0;
  5690. const size_t rs = ne00 * nb00;
  5691. char * dst_ptr = (char *) dst->data;
  5692. for (int i03 = 0; i03 < ne03; i03++) {
  5693. for (int i02 = 0; i02 < ne02; i02++) {
  5694. id += rs * ir0;
  5695. for (int i01 = ir0; i01 < ir1; i01++) {
  5696. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5697. memcpy(dst_ptr + id, src0_ptr, rs);
  5698. id += rs;
  5699. }
  5700. id += rs * (ne01 - ir1);
  5701. }
  5702. }
  5703. } else if (dst->type == GGML_TYPE_F32) {
  5704. size_t id = 0;
  5705. float * dst_ptr = (float *) dst->data;
  5706. for (int i03 = 0; i03 < ne03; i03++) {
  5707. for (int i02 = 0; i02 < ne02; i02++) {
  5708. id += ne00 * ir0;
  5709. for (int i01 = ir0; i01 < ir1; i01++) {
  5710. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5711. for (int i00 = 0; i00 < ne00; i00++) {
  5712. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5713. id++;
  5714. }
  5715. }
  5716. id += ne00 * (ne01 - ir1);
  5717. }
  5718. }
  5719. } else if (type_traits[dst->type].from_float) {
  5720. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5721. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5722. size_t id = 0;
  5723. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5724. char * dst_ptr = (char *) dst->data;
  5725. for (int i03 = 0; i03 < ne03; i03++) {
  5726. for (int i02 = 0; i02 < ne02; i02++) {
  5727. id += rs * ir0;
  5728. for (int i01 = ir0; i01 < ir1; i01++) {
  5729. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5730. for (int i00 = 0; i00 < ne00; i00++) {
  5731. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5732. }
  5733. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5734. id += rs;
  5735. }
  5736. id += rs * (ne01 - ir1);
  5737. }
  5738. }
  5739. } else {
  5740. GGML_ASSERT(false); // TODO: implement
  5741. }
  5742. } else {
  5743. //printf("%s: this is not optimal - fix me\n", __func__);
  5744. if (dst->type == GGML_TYPE_F32) {
  5745. size_t id = 0;
  5746. float * dst_ptr = (float *) dst->data;
  5747. for (int i03 = 0; i03 < ne03; i03++) {
  5748. for (int i02 = 0; i02 < ne02; i02++) {
  5749. id += ne00 * ir0;
  5750. for (int i01 = ir0; i01 < ir1; i01++) {
  5751. for (int i00 = 0; i00 < ne00; i00++) {
  5752. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5753. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5754. id++;
  5755. }
  5756. }
  5757. id += ne00 * (ne01 - ir1);
  5758. }
  5759. }
  5760. } else if (dst->type == GGML_TYPE_F16) {
  5761. size_t id = 0;
  5762. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5763. for (int i03 = 0; i03 < ne03; i03++) {
  5764. for (int i02 = 0; i02 < ne02; i02++) {
  5765. id += ne00 * ir0;
  5766. for (int i01 = ir0; i01 < ir1; i01++) {
  5767. for (int i00 = 0; i00 < ne00; i00++) {
  5768. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5769. dst_ptr[id] = *src0_ptr;
  5770. id++;
  5771. }
  5772. }
  5773. id += ne00 * (ne01 - ir1);
  5774. }
  5775. }
  5776. } else {
  5777. GGML_ASSERT(false); // TODO: implement
  5778. }
  5779. }
  5780. return;
  5781. }
  5782. // dst counters
  5783. int64_t i10 = 0;
  5784. int64_t i11 = 0;
  5785. int64_t i12 = 0;
  5786. int64_t i13 = 0;
  5787. if (dst->type == GGML_TYPE_F16) {
  5788. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5789. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5790. i10 += ne00 * ir0;
  5791. while (i10 >= ne0) {
  5792. i10 -= ne0;
  5793. if (++i11 == ne1) {
  5794. i11 = 0;
  5795. if (++i12 == ne2) {
  5796. i12 = 0;
  5797. if (++i13 == ne3) {
  5798. i13 = 0;
  5799. }
  5800. }
  5801. }
  5802. }
  5803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5805. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5806. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5807. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5808. if (++i10 == ne00) {
  5809. i10 = 0;
  5810. if (++i11 == ne01) {
  5811. i11 = 0;
  5812. if (++i12 == ne02) {
  5813. i12 = 0;
  5814. if (++i13 == ne03) {
  5815. i13 = 0;
  5816. }
  5817. }
  5818. }
  5819. }
  5820. }
  5821. }
  5822. i10 += ne00 * (ne01 - ir1);
  5823. while (i10 >= ne0) {
  5824. i10 -= ne0;
  5825. if (++i11 == ne1) {
  5826. i11 = 0;
  5827. if (++i12 == ne2) {
  5828. i12 = 0;
  5829. if (++i13 == ne3) {
  5830. i13 = 0;
  5831. }
  5832. }
  5833. }
  5834. }
  5835. }
  5836. }
  5837. } else if (dst->type == GGML_TYPE_F32) {
  5838. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5839. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5840. i10 += ne00 * ir0;
  5841. while (i10 >= ne0) {
  5842. i10 -= ne0;
  5843. if (++i11 == ne1) {
  5844. i11 = 0;
  5845. if (++i12 == ne2) {
  5846. i12 = 0;
  5847. if (++i13 == ne3) {
  5848. i13 = 0;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5854. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5855. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5856. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5857. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5858. if (++i10 == ne0) {
  5859. i10 = 0;
  5860. if (++i11 == ne1) {
  5861. i11 = 0;
  5862. if (++i12 == ne2) {
  5863. i12 = 0;
  5864. if (++i13 == ne3) {
  5865. i13 = 0;
  5866. }
  5867. }
  5868. }
  5869. }
  5870. }
  5871. }
  5872. i10 += ne00 * (ne01 - ir1);
  5873. while (i10 >= ne0) {
  5874. i10 -= ne0;
  5875. if (++i11 == ne1) {
  5876. i11 = 0;
  5877. if (++i12 == ne2) {
  5878. i12 = 0;
  5879. if (++i13 == ne3) {
  5880. i13 = 0;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. }
  5886. }
  5887. } else {
  5888. GGML_ASSERT(false); // TODO: implement
  5889. }
  5890. }
  5891. static void ggml_compute_forward_dup_f32(
  5892. const struct ggml_compute_params * params,
  5893. struct ggml_tensor * dst) {
  5894. const struct ggml_tensor * src0 = dst->src[0];
  5895. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5896. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5897. return;
  5898. }
  5899. GGML_TENSOR_UNARY_OP_LOCALS
  5900. const int ith = params->ith; // thread index
  5901. const int nth = params->nth; // number of threads
  5902. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5903. ggml_compute_forward_dup_same_cont(params, dst);
  5904. return;
  5905. }
  5906. // parallelize by rows
  5907. const int nr = ne01;
  5908. // number of rows per thread
  5909. const int dr = (nr + nth - 1) / nth;
  5910. // row range for this thread
  5911. const int ir0 = dr * ith;
  5912. const int ir1 = MIN(ir0 + dr, nr);
  5913. if (src0->type == dst->type &&
  5914. ne00 == ne0 &&
  5915. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5916. // copy by rows
  5917. const size_t rs = ne00*nb00;
  5918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5920. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5921. memcpy(
  5922. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5923. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5924. rs);
  5925. }
  5926. }
  5927. }
  5928. return;
  5929. }
  5930. if (ggml_is_contiguous(dst)) {
  5931. // TODO: simplify
  5932. if (nb00 == sizeof(float)) {
  5933. if (dst->type == GGML_TYPE_F32) {
  5934. size_t id = 0;
  5935. const size_t rs = ne00 * nb00;
  5936. char * dst_ptr = (char *) dst->data;
  5937. for (int i03 = 0; i03 < ne03; i03++) {
  5938. for (int i02 = 0; i02 < ne02; i02++) {
  5939. id += rs * ir0;
  5940. for (int i01 = ir0; i01 < ir1; i01++) {
  5941. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5942. memcpy(dst_ptr + id, src0_ptr, rs);
  5943. id += rs;
  5944. }
  5945. id += rs * (ne01 - ir1);
  5946. }
  5947. }
  5948. } else if (type_traits[dst->type].from_float) {
  5949. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5950. size_t id = 0;
  5951. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5952. char * dst_ptr = (char *) dst->data;
  5953. for (int i03 = 0; i03 < ne03; i03++) {
  5954. for (int i02 = 0; i02 < ne02; i02++) {
  5955. id += rs * ir0;
  5956. for (int i01 = ir0; i01 < ir1; i01++) {
  5957. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5958. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5959. id += rs;
  5960. }
  5961. id += rs * (ne01 - ir1);
  5962. }
  5963. }
  5964. } else {
  5965. GGML_ASSERT(false); // TODO: implement
  5966. }
  5967. } else {
  5968. //printf("%s: this is not optimal - fix me\n", __func__);
  5969. if (dst->type == GGML_TYPE_F32) {
  5970. size_t id = 0;
  5971. float * dst_ptr = (float *) dst->data;
  5972. for (int i03 = 0; i03 < ne03; i03++) {
  5973. for (int i02 = 0; i02 < ne02; i02++) {
  5974. id += ne00 * ir0;
  5975. for (int i01 = ir0; i01 < ir1; i01++) {
  5976. for (int i00 = 0; i00 < ne00; i00++) {
  5977. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5978. dst_ptr[id] = *src0_ptr;
  5979. id++;
  5980. }
  5981. }
  5982. id += ne00 * (ne01 - ir1);
  5983. }
  5984. }
  5985. } else if (dst->type == GGML_TYPE_F16) {
  5986. size_t id = 0;
  5987. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5988. for (int i03 = 0; i03 < ne03; i03++) {
  5989. for (int i02 = 0; i02 < ne02; i02++) {
  5990. id += ne00 * ir0;
  5991. for (int i01 = ir0; i01 < ir1; i01++) {
  5992. for (int i00 = 0; i00 < ne00; i00++) {
  5993. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5994. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5995. id++;
  5996. }
  5997. }
  5998. id += ne00 * (ne01 - ir1);
  5999. }
  6000. }
  6001. } else {
  6002. GGML_ASSERT(false); // TODO: implement
  6003. }
  6004. }
  6005. return;
  6006. }
  6007. // dst counters
  6008. int64_t i10 = 0;
  6009. int64_t i11 = 0;
  6010. int64_t i12 = 0;
  6011. int64_t i13 = 0;
  6012. if (dst->type == GGML_TYPE_F32) {
  6013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6015. i10 += ne00 * ir0;
  6016. while (i10 >= ne0) {
  6017. i10 -= ne0;
  6018. if (++i11 == ne1) {
  6019. i11 = 0;
  6020. if (++i12 == ne2) {
  6021. i12 = 0;
  6022. if (++i13 == ne3) {
  6023. i13 = 0;
  6024. }
  6025. }
  6026. }
  6027. }
  6028. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6029. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6030. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6031. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6032. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6033. if (++i10 == ne0) {
  6034. i10 = 0;
  6035. if (++i11 == ne1) {
  6036. i11 = 0;
  6037. if (++i12 == ne2) {
  6038. i12 = 0;
  6039. if (++i13 == ne3) {
  6040. i13 = 0;
  6041. }
  6042. }
  6043. }
  6044. }
  6045. }
  6046. }
  6047. i10 += ne00 * (ne01 - ir1);
  6048. while (i10 >= ne0) {
  6049. i10 -= ne0;
  6050. if (++i11 == ne1) {
  6051. i11 = 0;
  6052. if (++i12 == ne2) {
  6053. i12 = 0;
  6054. if (++i13 == ne3) {
  6055. i13 = 0;
  6056. }
  6057. }
  6058. }
  6059. }
  6060. }
  6061. }
  6062. } else if (dst->type == GGML_TYPE_F16) {
  6063. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6065. i10 += ne00 * ir0;
  6066. while (i10 >= ne0) {
  6067. i10 -= ne0;
  6068. if (++i11 == ne1) {
  6069. i11 = 0;
  6070. if (++i12 == ne2) {
  6071. i12 = 0;
  6072. if (++i13 == ne3) {
  6073. i13 = 0;
  6074. }
  6075. }
  6076. }
  6077. }
  6078. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6079. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6080. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6081. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6082. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6083. if (++i10 == ne0) {
  6084. i10 = 0;
  6085. if (++i11 == ne1) {
  6086. i11 = 0;
  6087. if (++i12 == ne2) {
  6088. i12 = 0;
  6089. if (++i13 == ne3) {
  6090. i13 = 0;
  6091. }
  6092. }
  6093. }
  6094. }
  6095. }
  6096. }
  6097. i10 += ne00 * (ne01 - ir1);
  6098. while (i10 >= ne0) {
  6099. i10 -= ne0;
  6100. if (++i11 == ne1) {
  6101. i11 = 0;
  6102. if (++i12 == ne2) {
  6103. i12 = 0;
  6104. if (++i13 == ne3) {
  6105. i13 = 0;
  6106. }
  6107. }
  6108. }
  6109. }
  6110. }
  6111. }
  6112. } else {
  6113. GGML_ASSERT(false); // TODO: implement
  6114. }
  6115. }
  6116. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6117. static void ggml_compute_forward_dup_bytes(
  6118. const struct ggml_compute_params * params,
  6119. struct ggml_tensor * dst) {
  6120. const struct ggml_tensor * src0 = dst->src[0];
  6121. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6122. GGML_ASSERT(src0->type == dst->type);
  6123. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6124. return;
  6125. }
  6126. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6127. ggml_compute_forward_dup_same_cont(params, dst);
  6128. return;
  6129. }
  6130. GGML_TENSOR_UNARY_OP_LOCALS;
  6131. const size_t type_size = ggml_type_size(src0->type);
  6132. const int ith = params->ith; // thread index
  6133. const int nth = params->nth; // number of threads
  6134. // parallelize by rows
  6135. const int nr = ne01;
  6136. // number of rows per thread
  6137. const int dr = (nr + nth - 1) / nth;
  6138. // row range for this thread
  6139. const int ir0 = dr * ith;
  6140. const int ir1 = MIN(ir0 + dr, nr);
  6141. if (src0->type == dst->type &&
  6142. ne00 == ne0 &&
  6143. nb00 == type_size && nb0 == type_size) {
  6144. // copy by rows
  6145. const size_t rs = ne00 * type_size;
  6146. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6148. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6149. memcpy(
  6150. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6151. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6152. rs);
  6153. }
  6154. }
  6155. }
  6156. return;
  6157. }
  6158. if (ggml_is_contiguous(dst)) {
  6159. size_t id = 0;
  6160. char * dst_ptr = (char *) dst->data;
  6161. const size_t rs = ne00 * type_size;
  6162. if (nb00 == type_size) {
  6163. // src0 is contigous on first dimension, copy by rows
  6164. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6165. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6166. id += rs * ir0;
  6167. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6168. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6169. memcpy(dst_ptr + id, src0_ptr, rs);
  6170. id += rs;
  6171. }
  6172. id += rs * (ne01 - ir1);
  6173. }
  6174. }
  6175. } else {
  6176. //printf("%s: this is not optimal - fix me\n", __func__);
  6177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6179. id += rs * ir0;
  6180. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6181. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6182. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6183. memcpy(dst_ptr + id, src0_ptr, type_size);
  6184. id += type_size;
  6185. }
  6186. }
  6187. id += rs * (ne01 - ir1);
  6188. }
  6189. }
  6190. }
  6191. return;
  6192. }
  6193. // dst counters
  6194. int64_t i10 = 0;
  6195. int64_t i11 = 0;
  6196. int64_t i12 = 0;
  6197. int64_t i13 = 0;
  6198. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6199. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6200. i10 += ne00 * ir0;
  6201. while (i10 >= ne0) {
  6202. i10 -= ne0;
  6203. if (++i11 == ne1) {
  6204. i11 = 0;
  6205. if (++i12 == ne2) {
  6206. i12 = 0;
  6207. if (++i13 == ne3) {
  6208. i13 = 0;
  6209. }
  6210. }
  6211. }
  6212. }
  6213. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6214. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6215. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6216. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6217. memcpy(dst_ptr, src0_ptr, type_size);
  6218. if (++i10 == ne0) {
  6219. i10 = 0;
  6220. if (++i11 == ne1) {
  6221. i11 = 0;
  6222. if (++i12 == ne2) {
  6223. i12 = 0;
  6224. if (++i13 == ne3) {
  6225. i13 = 0;
  6226. }
  6227. }
  6228. }
  6229. }
  6230. }
  6231. }
  6232. i10 += ne00 * (ne01 - ir1);
  6233. while (i10 >= ne0) {
  6234. i10 -= ne0;
  6235. if (++i11 == ne1) {
  6236. i11 = 0;
  6237. if (++i12 == ne2) {
  6238. i12 = 0;
  6239. if (++i13 == ne3) {
  6240. i13 = 0;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. }
  6248. static void ggml_compute_forward_dup(
  6249. const struct ggml_compute_params * params,
  6250. struct ggml_tensor * dst) {
  6251. const struct ggml_tensor * src0 = dst->src[0];
  6252. if (src0->type == dst->type) {
  6253. ggml_compute_forward_dup_bytes(params, dst);
  6254. return;
  6255. }
  6256. switch (src0->type) {
  6257. case GGML_TYPE_F16:
  6258. {
  6259. ggml_compute_forward_dup_f16(params, dst);
  6260. } break;
  6261. case GGML_TYPE_F32:
  6262. {
  6263. ggml_compute_forward_dup_f32(params, dst);
  6264. } break;
  6265. default:
  6266. {
  6267. GGML_ASSERT(false);
  6268. } break;
  6269. }
  6270. }
  6271. // ggml_compute_forward_add
  6272. static void ggml_compute_forward_add_f32(
  6273. const struct ggml_compute_params * params,
  6274. struct ggml_tensor * dst) {
  6275. const struct ggml_tensor * src0 = dst->src[0];
  6276. const struct ggml_tensor * src1 = dst->src[1];
  6277. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6279. return;
  6280. }
  6281. const int ith = params->ith;
  6282. const int nth = params->nth;
  6283. #ifdef GGML_USE_CLBLAST
  6284. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6285. // TODO: OpenCL kernel support full broadcast
  6286. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6287. if (ith == 0) {
  6288. ggml_cl_add(src0, src1, dst);
  6289. }
  6290. return;
  6291. }
  6292. #endif
  6293. const int nr = ggml_nrows(src0);
  6294. GGML_TENSOR_BINARY_OP_LOCALS
  6295. GGML_ASSERT( nb0 == sizeof(float));
  6296. GGML_ASSERT(nb00 == sizeof(float));
  6297. // rows per thread
  6298. const int dr = (nr + nth - 1)/nth;
  6299. // row range for this thread
  6300. const int ir0 = dr*ith;
  6301. const int ir1 = MIN(ir0 + dr, nr);
  6302. if (nb10 == sizeof(float)) {
  6303. for (int ir = ir0; ir < ir1; ++ir) {
  6304. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6305. const int64_t i03 = ir/(ne02*ne01);
  6306. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6307. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6308. const int64_t i13 = i03 % ne13;
  6309. const int64_t i12 = i02 % ne12;
  6310. const int64_t i11 = i01 % ne11;
  6311. const int64_t nr0 = ne00 / ne10;
  6312. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6313. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6314. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6315. for (int64_t r = 0; r < nr0; ++r) {
  6316. #ifdef GGML_USE_ACCELERATE
  6317. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6318. #else
  6319. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6320. #endif
  6321. }
  6322. }
  6323. } else {
  6324. // src1 is not contiguous
  6325. for (int ir = ir0; ir < ir1; ++ir) {
  6326. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6327. const int64_t i03 = ir/(ne02*ne01);
  6328. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6329. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6330. const int64_t i13 = i03 % ne13;
  6331. const int64_t i12 = i02 % ne12;
  6332. const int64_t i11 = i01 % ne11;
  6333. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6334. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6335. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6336. const int64_t i10 = i0 % ne10;
  6337. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6338. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6339. }
  6340. }
  6341. }
  6342. }
  6343. static void ggml_compute_forward_add_f16_f32(
  6344. const struct ggml_compute_params * params,
  6345. struct ggml_tensor * dst) {
  6346. const struct ggml_tensor * src0 = dst->src[0];
  6347. const struct ggml_tensor * src1 = dst->src[1];
  6348. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6349. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6350. return;
  6351. }
  6352. const int ith = params->ith;
  6353. const int nth = params->nth;
  6354. const int nr = ggml_nrows(src0);
  6355. GGML_TENSOR_BINARY_OP_LOCALS
  6356. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6357. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6358. if (dst->type == GGML_TYPE_F32) {
  6359. GGML_ASSERT( nb0 == sizeof(float));
  6360. }
  6361. else {
  6362. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6363. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6364. }
  6365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6366. // rows per thread
  6367. const int dr = (nr + nth - 1)/nth;
  6368. // row range for this thread
  6369. const int ir0 = dr*ith;
  6370. const int ir1 = MIN(ir0 + dr, nr);
  6371. if (nb10 == sizeof(float)) {
  6372. if (dst->type == GGML_TYPE_F16) {
  6373. for (int ir = ir0; ir < ir1; ++ir) {
  6374. // src0, src1 and dst are same shape => same indices
  6375. const int i3 = ir/(ne2*ne1);
  6376. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6377. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6378. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6379. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6380. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6381. for (int i = 0; i < ne0; i++) {
  6382. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6383. }
  6384. }
  6385. } else {
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0, src1 and dst are same shape => same indices
  6388. const int i3 = ir/(ne2*ne1);
  6389. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6390. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6391. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6392. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6393. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6394. for (int i = 0; i < ne0; i++) {
  6395. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6396. }
  6397. }
  6398. }
  6399. }
  6400. else {
  6401. // src1 is not contiguous
  6402. GGML_ASSERT(false);
  6403. }
  6404. }
  6405. static void ggml_compute_forward_add_f16_f16(
  6406. const struct ggml_compute_params * params,
  6407. struct ggml_tensor * dst) {
  6408. const struct ggml_tensor * src0 = dst->src[0];
  6409. const struct ggml_tensor * src1 = dst->src[1];
  6410. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6411. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6412. return;
  6413. }
  6414. const int ith = params->ith;
  6415. const int nth = params->nth;
  6416. const int nr = ggml_nrows(src0);
  6417. GGML_TENSOR_BINARY_OP_LOCALS
  6418. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6419. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6420. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6421. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6422. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6423. // rows per thread
  6424. const int dr = (nr + nth - 1)/nth;
  6425. // row range for this thread
  6426. const int ir0 = dr*ith;
  6427. const int ir1 = MIN(ir0 + dr, nr);
  6428. if (nb10 == sizeof(ggml_fp16_t)) {
  6429. for (int ir = ir0; ir < ir1; ++ir) {
  6430. // src0, src1 and dst are same shape => same indices
  6431. const int i3 = ir/(ne2*ne1);
  6432. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6433. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6434. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6435. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6436. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6437. for (int i = 0; i < ne0; i++) {
  6438. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6439. }
  6440. }
  6441. }
  6442. else {
  6443. // src1 is not contiguous
  6444. GGML_ASSERT(false);
  6445. }
  6446. }
  6447. static void ggml_compute_forward_add_q_f32(
  6448. const struct ggml_compute_params * params,
  6449. struct ggml_tensor * dst) {
  6450. const struct ggml_tensor * src0 = dst->src[0];
  6451. const struct ggml_tensor * src1 = dst->src[1];
  6452. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6454. return;
  6455. }
  6456. const int nr = ggml_nrows(src0);
  6457. GGML_TENSOR_BINARY_OP_LOCALS
  6458. const int ith = params->ith;
  6459. const int nth = params->nth;
  6460. const enum ggml_type type = src0->type;
  6461. const enum ggml_type dtype = dst->type;
  6462. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6463. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6464. // we don't support permuted src0 or src1
  6465. GGML_ASSERT(nb00 == ggml_type_size(type));
  6466. GGML_ASSERT(nb10 == sizeof(float));
  6467. // dst cannot be transposed or permuted
  6468. GGML_ASSERT(nb0 <= nb1);
  6469. GGML_ASSERT(nb1 <= nb2);
  6470. GGML_ASSERT(nb2 <= nb3);
  6471. GGML_ASSERT(ggml_is_quantized(src0->type));
  6472. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6473. // rows per thread
  6474. const int dr = (nr + nth - 1)/nth;
  6475. // row range for this thread
  6476. const int ir0 = dr*ith;
  6477. const int ir1 = MIN(ir0 + dr, nr);
  6478. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6479. for (int ir = ir0; ir < ir1; ++ir) {
  6480. // src0 indices
  6481. const int i03 = ir/(ne02*ne01);
  6482. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6483. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6484. // src1 and dst are same shape as src0 => same indices
  6485. const int i13 = i03;
  6486. const int i12 = i02;
  6487. const int i11 = i01;
  6488. const int i3 = i03;
  6489. const int i2 = i02;
  6490. const int i1 = i01;
  6491. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6492. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6493. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6494. assert(ne00 % 32 == 0);
  6495. // unquantize row from src0 to temp buffer
  6496. dequantize_row_q(src0_row, wdata, ne00);
  6497. // add src1
  6498. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6499. // quantize row to dst
  6500. if (quantize_row_q != NULL) {
  6501. quantize_row_q(wdata, dst_row, ne00);
  6502. } else {
  6503. memcpy(dst_row, wdata, ne0*nb0);
  6504. }
  6505. }
  6506. }
  6507. static void ggml_compute_forward_add(
  6508. const struct ggml_compute_params * params,
  6509. struct ggml_tensor * dst) {
  6510. const struct ggml_tensor * src0 = dst->src[0];
  6511. const struct ggml_tensor * src1 = dst->src[1];
  6512. switch (src0->type) {
  6513. case GGML_TYPE_F32:
  6514. {
  6515. if (src1->type == GGML_TYPE_F32) {
  6516. ggml_compute_forward_add_f32(params, dst);
  6517. }
  6518. else {
  6519. GGML_ASSERT(false);
  6520. }
  6521. } break;
  6522. case GGML_TYPE_F16:
  6523. {
  6524. if (src1->type == GGML_TYPE_F16) {
  6525. ggml_compute_forward_add_f16_f16(params, dst);
  6526. }
  6527. else if (src1->type == GGML_TYPE_F32) {
  6528. ggml_compute_forward_add_f16_f32(params, dst);
  6529. }
  6530. else {
  6531. GGML_ASSERT(false);
  6532. }
  6533. } break;
  6534. case GGML_TYPE_Q4_0:
  6535. case GGML_TYPE_Q4_1:
  6536. case GGML_TYPE_Q5_0:
  6537. case GGML_TYPE_Q5_1:
  6538. case GGML_TYPE_Q8_0:
  6539. case GGML_TYPE_Q2_K:
  6540. case GGML_TYPE_Q3_K:
  6541. case GGML_TYPE_Q4_K:
  6542. case GGML_TYPE_Q5_K:
  6543. case GGML_TYPE_Q6_K:
  6544. case GGML_TYPE_IQ2_XXS:
  6545. case GGML_TYPE_IQ2_XS:
  6546. case GGML_TYPE_IQ3_XXS:
  6547. case GGML_TYPE_IQ1_S:
  6548. case GGML_TYPE_IQ4_NL:
  6549. case GGML_TYPE_IQ4_XS:
  6550. case GGML_TYPE_IQ3_S:
  6551. case GGML_TYPE_IQ2_S:
  6552. {
  6553. ggml_compute_forward_add_q_f32(params, dst);
  6554. } break;
  6555. default:
  6556. {
  6557. GGML_ASSERT(false);
  6558. } break;
  6559. }
  6560. }
  6561. // ggml_compute_forward_add1
  6562. static void ggml_compute_forward_add1_f32(
  6563. const struct ggml_compute_params * params,
  6564. struct ggml_tensor * dst) {
  6565. const struct ggml_tensor * src0 = dst->src[0];
  6566. const struct ggml_tensor * src1 = dst->src[1];
  6567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6568. GGML_ASSERT(ggml_is_scalar(src1));
  6569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6570. return;
  6571. }
  6572. const int ith = params->ith;
  6573. const int nth = params->nth;
  6574. const int nr = ggml_nrows(src0);
  6575. GGML_TENSOR_UNARY_OP_LOCALS
  6576. GGML_ASSERT( nb0 == sizeof(float));
  6577. GGML_ASSERT(nb00 == sizeof(float));
  6578. // rows per thread
  6579. const int dr = (nr + nth - 1)/nth;
  6580. // row range for this thread
  6581. const int ir0 = dr*ith;
  6582. const int ir1 = MIN(ir0 + dr, nr);
  6583. for (int ir = ir0; ir < ir1; ++ir) {
  6584. // src0 and dst are same shape => same indices
  6585. const int i3 = ir/(ne2*ne1);
  6586. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6587. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6588. #ifdef GGML_USE_ACCELERATE
  6589. UNUSED(ggml_vec_add1_f32);
  6590. vDSP_vadd(
  6591. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6592. (float *) ((char *) src1->data), 0,
  6593. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6594. ne0);
  6595. #else
  6596. ggml_vec_add1_f32(ne0,
  6597. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6598. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6599. *(float *) src1->data);
  6600. #endif
  6601. }
  6602. }
  6603. static void ggml_compute_forward_add1_f16_f32(
  6604. const struct ggml_compute_params * params,
  6605. struct ggml_tensor * dst) {
  6606. const struct ggml_tensor * src0 = dst->src[0];
  6607. const struct ggml_tensor * src1 = dst->src[1];
  6608. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6609. GGML_ASSERT(ggml_is_scalar(src1));
  6610. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6611. return;
  6612. }
  6613. // scalar to add
  6614. const float v = *(float *) src1->data;
  6615. const int ith = params->ith;
  6616. const int nth = params->nth;
  6617. const int nr = ggml_nrows(src0);
  6618. GGML_TENSOR_UNARY_OP_LOCALS
  6619. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6620. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6621. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6622. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6623. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6624. // rows per thread
  6625. const int dr = (nr + nth - 1)/nth;
  6626. // row range for this thread
  6627. const int ir0 = dr*ith;
  6628. const int ir1 = MIN(ir0 + dr, nr);
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // src0 and dst are same shape => same indices
  6631. const int i3 = ir/(ne2*ne1);
  6632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6634. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6635. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6636. for (int i = 0; i < ne0; i++) {
  6637. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6638. }
  6639. }
  6640. }
  6641. static void ggml_compute_forward_add1_f16_f16(
  6642. const struct ggml_compute_params * params,
  6643. struct ggml_tensor * dst) {
  6644. const struct ggml_tensor * src0 = dst->src[0];
  6645. const struct ggml_tensor * src1 = dst->src[1];
  6646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6647. GGML_ASSERT(ggml_is_scalar(src1));
  6648. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6649. return;
  6650. }
  6651. // scalar to add
  6652. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6653. const int ith = params->ith;
  6654. const int nth = params->nth;
  6655. const int nr = ggml_nrows(src0);
  6656. GGML_TENSOR_UNARY_OP_LOCALS
  6657. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6658. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6659. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6660. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6661. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6662. // rows per thread
  6663. const int dr = (nr + nth - 1)/nth;
  6664. // row range for this thread
  6665. const int ir0 = dr*ith;
  6666. const int ir1 = MIN(ir0 + dr, nr);
  6667. for (int ir = ir0; ir < ir1; ++ir) {
  6668. // src0 and dst are same shape => same indices
  6669. const int i3 = ir/(ne2*ne1);
  6670. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6671. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6672. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6673. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6674. for (int i = 0; i < ne0; i++) {
  6675. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6676. }
  6677. }
  6678. }
  6679. static void ggml_compute_forward_add1_q_f32(
  6680. const struct ggml_compute_params * params,
  6681. struct ggml_tensor * dst) {
  6682. const struct ggml_tensor * src0 = dst->src[0];
  6683. const struct ggml_tensor * src1 = dst->src[1];
  6684. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6685. GGML_ASSERT(ggml_is_scalar(src1));
  6686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6687. return;
  6688. }
  6689. // scalar to add
  6690. const float v = *(float *) src1->data;
  6691. const int ith = params->ith;
  6692. const int nth = params->nth;
  6693. const int nr = ggml_nrows(src0);
  6694. GGML_TENSOR_UNARY_OP_LOCALS
  6695. const enum ggml_type type = src0->type;
  6696. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6697. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6698. // we don't support permuted src0
  6699. GGML_ASSERT(nb00 == ggml_type_size(type));
  6700. // dst cannot be transposed or permuted
  6701. GGML_ASSERT(nb0 <= nb1);
  6702. GGML_ASSERT(nb1 <= nb2);
  6703. GGML_ASSERT(nb2 <= nb3);
  6704. GGML_ASSERT(ggml_is_quantized(src0->type));
  6705. GGML_ASSERT(dst->type == src0->type);
  6706. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6707. // rows per thread
  6708. const int dr = (nr + nth - 1)/nth;
  6709. // row range for this thread
  6710. const int ir0 = dr*ith;
  6711. const int ir1 = MIN(ir0 + dr, nr);
  6712. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6713. for (int ir = ir0; ir < ir1; ++ir) {
  6714. // src0 and dst are same shape => same indices
  6715. const int i3 = ir/(ne2*ne1);
  6716. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6717. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6718. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6719. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6720. assert(ne0 % 32 == 0);
  6721. // unquantize row from src0 to temp buffer
  6722. dequantize_row_q(src0_row, wdata, ne0);
  6723. // add src1
  6724. ggml_vec_acc1_f32(ne0, wdata, v);
  6725. // quantize row to dst
  6726. quantize_row_q(wdata, dst_row, ne0);
  6727. }
  6728. }
  6729. static void ggml_compute_forward_add1(
  6730. const struct ggml_compute_params * params,
  6731. struct ggml_tensor * dst) {
  6732. const struct ggml_tensor * src0 = dst->src[0];
  6733. const struct ggml_tensor * src1 = dst->src[1];
  6734. switch (src0->type) {
  6735. case GGML_TYPE_F32:
  6736. {
  6737. ggml_compute_forward_add1_f32(params, dst);
  6738. } break;
  6739. case GGML_TYPE_F16:
  6740. {
  6741. if (src1->type == GGML_TYPE_F16) {
  6742. ggml_compute_forward_add1_f16_f16(params, dst);
  6743. }
  6744. else if (src1->type == GGML_TYPE_F32) {
  6745. ggml_compute_forward_add1_f16_f32(params, dst);
  6746. }
  6747. else {
  6748. GGML_ASSERT(false);
  6749. }
  6750. } break;
  6751. case GGML_TYPE_Q4_0:
  6752. case GGML_TYPE_Q4_1:
  6753. case GGML_TYPE_Q5_0:
  6754. case GGML_TYPE_Q5_1:
  6755. case GGML_TYPE_Q8_0:
  6756. case GGML_TYPE_Q8_1:
  6757. case GGML_TYPE_Q2_K:
  6758. case GGML_TYPE_Q3_K:
  6759. case GGML_TYPE_Q4_K:
  6760. case GGML_TYPE_Q5_K:
  6761. case GGML_TYPE_Q6_K:
  6762. case GGML_TYPE_IQ2_XXS:
  6763. case GGML_TYPE_IQ2_XS:
  6764. case GGML_TYPE_IQ3_XXS:
  6765. case GGML_TYPE_IQ1_S:
  6766. case GGML_TYPE_IQ4_NL:
  6767. case GGML_TYPE_IQ4_XS:
  6768. case GGML_TYPE_IQ3_S:
  6769. case GGML_TYPE_IQ2_S:
  6770. {
  6771. ggml_compute_forward_add1_q_f32(params, dst);
  6772. } break;
  6773. default:
  6774. {
  6775. GGML_ASSERT(false);
  6776. } break;
  6777. }
  6778. }
  6779. // ggml_compute_forward_acc
  6780. static void ggml_compute_forward_acc_f32(
  6781. const struct ggml_compute_params * params,
  6782. struct ggml_tensor * dst) {
  6783. const struct ggml_tensor * src0 = dst->src[0];
  6784. const struct ggml_tensor * src1 = dst->src[1];
  6785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6786. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6787. // view src0 and dst with these strides and data offset inbytes during acc
  6788. // nb0 is implicitly element_size because src0 and dst are contiguous
  6789. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6790. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6791. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6792. size_t offset = ((int32_t *) dst->op_params)[3];
  6793. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6794. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6795. if (params->ith != 0) {
  6796. return;
  6797. }
  6798. // memcpy needs to be synchronized across threads to avoid race conditions.
  6799. // => do it in INIT phase
  6800. memcpy(
  6801. ((char *) dst->data),
  6802. ((char *) src0->data),
  6803. ggml_nbytes(dst));
  6804. }
  6805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6806. return;
  6807. }
  6808. const int ith = params->ith;
  6809. const int nth = params->nth;
  6810. const int nr = ggml_nrows(src1);
  6811. const int nc = src1->ne[0];
  6812. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6813. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6814. // src0 and dst as viewed during acc
  6815. const size_t nb0 = ggml_element_size(src0);
  6816. const size_t nb00 = nb0;
  6817. const size_t nb01 = nb1;
  6818. const size_t nb02 = nb2;
  6819. const size_t nb03 = nb3;
  6820. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6821. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6822. GGML_ASSERT(nb10 == sizeof(float));
  6823. // rows per thread
  6824. const int dr = (nr + nth - 1)/nth;
  6825. // row range for this thread
  6826. const int ir0 = dr*ith;
  6827. const int ir1 = MIN(ir0 + dr, nr);
  6828. for (int ir = ir0; ir < ir1; ++ir) {
  6829. // src0 and dst are viewed with shape of src1 and offset
  6830. // => same indices
  6831. const int i3 = ir/(ne12*ne11);
  6832. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6833. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6834. #ifdef GGML_USE_ACCELERATE
  6835. vDSP_vadd(
  6836. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6837. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6838. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6839. #else
  6840. ggml_vec_add_f32(nc,
  6841. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6842. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6843. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6844. #endif
  6845. }
  6846. }
  6847. static void ggml_compute_forward_acc(
  6848. const struct ggml_compute_params * params,
  6849. struct ggml_tensor * dst) {
  6850. const struct ggml_tensor * src0 = dst->src[0];
  6851. switch (src0->type) {
  6852. case GGML_TYPE_F32:
  6853. {
  6854. ggml_compute_forward_acc_f32(params, dst);
  6855. } break;
  6856. case GGML_TYPE_F16:
  6857. case GGML_TYPE_Q4_0:
  6858. case GGML_TYPE_Q4_1:
  6859. case GGML_TYPE_Q5_0:
  6860. case GGML_TYPE_Q5_1:
  6861. case GGML_TYPE_Q8_0:
  6862. case GGML_TYPE_Q8_1:
  6863. case GGML_TYPE_Q2_K:
  6864. case GGML_TYPE_Q3_K:
  6865. case GGML_TYPE_Q4_K:
  6866. case GGML_TYPE_Q5_K:
  6867. case GGML_TYPE_Q6_K:
  6868. case GGML_TYPE_IQ2_XXS:
  6869. case GGML_TYPE_IQ2_XS:
  6870. case GGML_TYPE_IQ3_XXS:
  6871. case GGML_TYPE_IQ1_S:
  6872. case GGML_TYPE_IQ4_NL:
  6873. case GGML_TYPE_IQ4_XS:
  6874. case GGML_TYPE_IQ3_S:
  6875. case GGML_TYPE_IQ2_S:
  6876. default:
  6877. {
  6878. GGML_ASSERT(false);
  6879. } break;
  6880. }
  6881. }
  6882. // ggml_compute_forward_sub
  6883. static void ggml_compute_forward_sub_f32(
  6884. const struct ggml_compute_params * params,
  6885. struct ggml_tensor * dst) {
  6886. const struct ggml_tensor * src0 = dst->src[0];
  6887. const struct ggml_tensor * src1 = dst->src[1];
  6888. assert(params->ith == 0);
  6889. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6891. return;
  6892. }
  6893. const int nr = ggml_nrows(src0);
  6894. GGML_TENSOR_BINARY_OP_LOCALS
  6895. GGML_ASSERT( nb0 == sizeof(float));
  6896. GGML_ASSERT(nb00 == sizeof(float));
  6897. if (nb10 == sizeof(float)) {
  6898. for (int ir = 0; ir < nr; ++ir) {
  6899. // src0, src1 and dst are same shape => same indices
  6900. const int i3 = ir/(ne2*ne1);
  6901. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6902. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6903. #ifdef GGML_USE_ACCELERATE
  6904. vDSP_vsub(
  6905. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6906. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6908. ne0);
  6909. #else
  6910. ggml_vec_sub_f32(ne0,
  6911. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6912. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6913. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6914. #endif
  6915. // }
  6916. // }
  6917. }
  6918. } else {
  6919. // src1 is not contiguous
  6920. for (int ir = 0; ir < nr; ++ir) {
  6921. // src0, src1 and dst are same shape => same indices
  6922. const int i3 = ir/(ne2*ne1);
  6923. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6924. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6925. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6926. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6927. for (int i0 = 0; i0 < ne0; i0++) {
  6928. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6929. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6930. }
  6931. }
  6932. }
  6933. }
  6934. static void ggml_compute_forward_sub(
  6935. const struct ggml_compute_params * params,
  6936. struct ggml_tensor * dst) {
  6937. const struct ggml_tensor * src0 = dst->src[0];
  6938. switch (src0->type) {
  6939. case GGML_TYPE_F32:
  6940. {
  6941. ggml_compute_forward_sub_f32(params, dst);
  6942. } break;
  6943. default:
  6944. {
  6945. GGML_ASSERT(false);
  6946. } break;
  6947. }
  6948. }
  6949. // ggml_compute_forward_mul
  6950. static void ggml_compute_forward_mul_f32(
  6951. const struct ggml_compute_params * params,
  6952. struct ggml_tensor * dst) {
  6953. const struct ggml_tensor * src0 = dst->src[0];
  6954. const struct ggml_tensor * src1 = dst->src[1];
  6955. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6957. return;
  6958. }
  6959. const int ith = params->ith;
  6960. const int nth = params->nth;
  6961. #if defined(GGML_USE_CLBLAST)
  6962. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6963. // TODO: OpenCL kernel support full broadcast
  6964. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6965. if (ith == 0) {
  6966. ggml_cl_mul(src0, src1, dst);
  6967. }
  6968. return;
  6969. }
  6970. #endif
  6971. const int64_t nr = ggml_nrows(src0);
  6972. GGML_TENSOR_BINARY_OP_LOCALS
  6973. GGML_ASSERT( nb0 == sizeof(float));
  6974. GGML_ASSERT(nb00 == sizeof(float));
  6975. if (nb10 == sizeof(float)) {
  6976. for (int64_t ir = ith; ir < nr; ir += nth) {
  6977. // src0 and dst are same shape => same indices
  6978. const int64_t i03 = ir/(ne02*ne01);
  6979. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6980. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6981. const int64_t i13 = i03 % ne13;
  6982. const int64_t i12 = i02 % ne12;
  6983. const int64_t i11 = i01 % ne11;
  6984. const int64_t nr0 = ne00 / ne10;
  6985. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6986. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6987. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6988. for (int64_t r = 0 ; r < nr0; ++r) {
  6989. #ifdef GGML_USE_ACCELERATE
  6990. UNUSED(ggml_vec_mul_f32);
  6991. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6992. #else
  6993. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6994. #endif
  6995. }
  6996. }
  6997. } else {
  6998. // src1 is not contiguous
  6999. for (int64_t ir = ith; ir < nr; ir += nth) {
  7000. // src0 and dst are same shape => same indices
  7001. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7002. const int64_t i03 = ir/(ne02*ne01);
  7003. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7004. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7005. const int64_t i13 = i03 % ne13;
  7006. const int64_t i12 = i02 % ne12;
  7007. const int64_t i11 = i01 % ne11;
  7008. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7009. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7010. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7011. const int64_t i10 = i0 % ne10;
  7012. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7013. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7014. }
  7015. }
  7016. }
  7017. }
  7018. static void ggml_compute_forward_mul(
  7019. const struct ggml_compute_params * params,
  7020. struct ggml_tensor * dst) {
  7021. const struct ggml_tensor * src0 = dst->src[0];
  7022. const struct ggml_tensor * src1 = dst->src[1];
  7023. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7024. switch (src0->type) {
  7025. case GGML_TYPE_F32:
  7026. {
  7027. ggml_compute_forward_mul_f32(params, dst);
  7028. } break;
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_div
  7036. static void ggml_compute_forward_div_f32(
  7037. const struct ggml_compute_params * params,
  7038. struct ggml_tensor * dst) {
  7039. const struct ggml_tensor * src0 = dst->src[0];
  7040. const struct ggml_tensor * src1 = dst->src[1];
  7041. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7043. return;
  7044. }
  7045. const int ith = params->ith;
  7046. const int nth = params->nth;
  7047. const int64_t nr = ggml_nrows(src0);
  7048. GGML_TENSOR_BINARY_OP_LOCALS
  7049. GGML_ASSERT( nb0 == sizeof(float));
  7050. GGML_ASSERT(nb00 == sizeof(float));
  7051. if (nb10 == sizeof(float)) {
  7052. for (int64_t ir = ith; ir < nr; ir += nth) {
  7053. // src0 and dst are same shape => same indices
  7054. const int64_t i03 = ir/(ne02*ne01);
  7055. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7056. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7057. const int64_t i13 = i03 % ne13;
  7058. const int64_t i12 = i02 % ne12;
  7059. const int64_t i11 = i01 % ne11;
  7060. const int64_t nr0 = ne00 / ne10;
  7061. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7062. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7063. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7064. for (int64_t r = 0; r < nr0; ++r) {
  7065. #ifdef GGML_USE_ACCELERATE
  7066. UNUSED(ggml_vec_div_f32);
  7067. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7068. #else
  7069. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7070. #endif
  7071. }
  7072. }
  7073. } else {
  7074. // src1 is not contiguous
  7075. for (int64_t ir = ith; ir < nr; ir += nth) {
  7076. // src0 and dst are same shape => same indices
  7077. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7078. const int64_t i03 = ir/(ne02*ne01);
  7079. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7080. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7081. const int64_t i13 = i03 % ne13;
  7082. const int64_t i12 = i02 % ne12;
  7083. const int64_t i11 = i01 % ne11;
  7084. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7085. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7086. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7087. const int64_t i10 = i0 % ne10;
  7088. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7089. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7090. }
  7091. }
  7092. }
  7093. }
  7094. static void ggml_compute_forward_div(
  7095. const struct ggml_compute_params * params,
  7096. struct ggml_tensor * dst) {
  7097. const struct ggml_tensor * src0 = dst->src[0];
  7098. switch (src0->type) {
  7099. case GGML_TYPE_F32:
  7100. {
  7101. ggml_compute_forward_div_f32(params, dst);
  7102. } break;
  7103. default:
  7104. {
  7105. GGML_ASSERT(false);
  7106. } break;
  7107. }
  7108. }
  7109. // ggml_compute_forward_sqr
  7110. static void ggml_compute_forward_sqr_f32(
  7111. const struct ggml_compute_params * params,
  7112. struct ggml_tensor * dst) {
  7113. const struct ggml_tensor * src0 = dst->src[0];
  7114. assert(params->ith == 0);
  7115. assert(ggml_are_same_shape(src0, dst));
  7116. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7117. return;
  7118. }
  7119. const int n = ggml_nrows(src0);
  7120. const int nc = src0->ne[0];
  7121. assert( dst->nb[0] == sizeof(float));
  7122. assert(src0->nb[0] == sizeof(float));
  7123. for (int i = 0; i < n; i++) {
  7124. ggml_vec_sqr_f32(nc,
  7125. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7126. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7127. }
  7128. }
  7129. static void ggml_compute_forward_sqr(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. switch (src0->type) {
  7134. case GGML_TYPE_F32:
  7135. {
  7136. ggml_compute_forward_sqr_f32(params, dst);
  7137. } break;
  7138. default:
  7139. {
  7140. GGML_ASSERT(false);
  7141. } break;
  7142. }
  7143. }
  7144. // ggml_compute_forward_sqrt
  7145. static void ggml_compute_forward_sqrt_f32(
  7146. const struct ggml_compute_params * params,
  7147. struct ggml_tensor * dst) {
  7148. const struct ggml_tensor * src0 = dst->src[0];
  7149. assert(params->ith == 0);
  7150. assert(ggml_are_same_shape(src0, dst));
  7151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7152. return;
  7153. }
  7154. const int n = ggml_nrows(src0);
  7155. const int nc = src0->ne[0];
  7156. assert( dst->nb[0] == sizeof(float));
  7157. assert(src0->nb[0] == sizeof(float));
  7158. for (int i = 0; i < n; i++) {
  7159. ggml_vec_sqrt_f32(nc,
  7160. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7161. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7162. }
  7163. }
  7164. static void ggml_compute_forward_sqrt(
  7165. const struct ggml_compute_params * params,
  7166. struct ggml_tensor * dst) {
  7167. const struct ggml_tensor * src0 = dst->src[0];
  7168. switch (src0->type) {
  7169. case GGML_TYPE_F32:
  7170. {
  7171. ggml_compute_forward_sqrt_f32(params, dst);
  7172. } break;
  7173. default:
  7174. {
  7175. GGML_ASSERT(false);
  7176. } break;
  7177. }
  7178. }
  7179. // ggml_compute_forward_log
  7180. static void ggml_compute_forward_log_f32(
  7181. const struct ggml_compute_params * params,
  7182. struct ggml_tensor * dst) {
  7183. const struct ggml_tensor * src0 = dst->src[0];
  7184. GGML_ASSERT(params->ith == 0);
  7185. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7186. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7187. return;
  7188. }
  7189. const int n = ggml_nrows(src0);
  7190. const int nc = src0->ne[0];
  7191. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7192. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7193. for (int i = 0; i < n; i++) {
  7194. ggml_vec_log_f32(nc,
  7195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7196. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7197. }
  7198. }
  7199. static void ggml_compute_forward_log(
  7200. const struct ggml_compute_params * params,
  7201. struct ggml_tensor * dst) {
  7202. const struct ggml_tensor * src0 = dst->src[0];
  7203. switch (src0->type) {
  7204. case GGML_TYPE_F32:
  7205. {
  7206. ggml_compute_forward_log_f32(params, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_sum
  7215. static void ggml_compute_forward_sum_f32(
  7216. const struct ggml_compute_params * params,
  7217. struct ggml_tensor * dst) {
  7218. const struct ggml_tensor * src0 = dst->src[0];
  7219. assert(params->ith == 0);
  7220. assert(ggml_is_scalar(dst));
  7221. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7222. return;
  7223. }
  7224. assert(ggml_is_scalar(dst));
  7225. assert(src0->nb[0] == sizeof(float));
  7226. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7227. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7228. ggml_float sum = 0;
  7229. ggml_float row_sum = 0;
  7230. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7231. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7232. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7233. ggml_vec_sum_f32_ggf(ne00,
  7234. &row_sum,
  7235. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7236. sum += row_sum;
  7237. }
  7238. }
  7239. }
  7240. ((float *) dst->data)[0] = sum;
  7241. }
  7242. static void ggml_compute_forward_sum_f16(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. assert(params->ith == 0);
  7247. assert(ggml_is_scalar(dst));
  7248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7249. return;
  7250. }
  7251. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7252. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7253. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7254. float sum = 0;
  7255. float row_sum = 0;
  7256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7258. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7259. ggml_vec_sum_f16_ggf(ne00,
  7260. &row_sum,
  7261. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7262. sum += row_sum;
  7263. }
  7264. }
  7265. }
  7266. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7267. }
  7268. static void ggml_compute_forward_sum(
  7269. const struct ggml_compute_params * params,
  7270. struct ggml_tensor * dst) {
  7271. const struct ggml_tensor * src0 = dst->src[0];
  7272. switch (src0->type) {
  7273. case GGML_TYPE_F32:
  7274. {
  7275. ggml_compute_forward_sum_f32(params, dst);
  7276. } break;
  7277. case GGML_TYPE_F16:
  7278. {
  7279. ggml_compute_forward_sum_f16(params, dst);
  7280. } break;
  7281. default:
  7282. {
  7283. GGML_ASSERT(false);
  7284. } break;
  7285. }
  7286. }
  7287. // ggml_compute_forward_sum_rows
  7288. static void ggml_compute_forward_sum_rows_f32(
  7289. const struct ggml_compute_params * params,
  7290. struct ggml_tensor * dst) {
  7291. const struct ggml_tensor * src0 = dst->src[0];
  7292. GGML_ASSERT(params->ith == 0);
  7293. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7294. return;
  7295. }
  7296. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7297. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7298. GGML_TENSOR_UNARY_OP_LOCALS
  7299. GGML_ASSERT(ne0 == 1);
  7300. GGML_ASSERT(ne1 == ne01);
  7301. GGML_ASSERT(ne2 == ne02);
  7302. GGML_ASSERT(ne3 == ne03);
  7303. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7304. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7305. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7306. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7307. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7308. float row_sum = 0;
  7309. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7310. dst_row[0] = row_sum;
  7311. }
  7312. }
  7313. }
  7314. }
  7315. static void ggml_compute_forward_sum_rows(
  7316. const struct ggml_compute_params * params,
  7317. struct ggml_tensor * dst) {
  7318. const struct ggml_tensor * src0 = dst->src[0];
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_sum_rows_f32(params, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_mean
  7331. static void ggml_compute_forward_mean_f32(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. assert(params->ith == 0);
  7336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7337. return;
  7338. }
  7339. assert(src0->nb[0] == sizeof(float));
  7340. GGML_TENSOR_UNARY_OP_LOCALS
  7341. assert(ne0 == 1);
  7342. assert(ne1 == ne01);
  7343. assert(ne2 == ne02);
  7344. assert(ne3 == ne03);
  7345. UNUSED(ne0);
  7346. UNUSED(ne1);
  7347. UNUSED(ne2);
  7348. UNUSED(ne3);
  7349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7351. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7352. ggml_vec_sum_f32(ne00,
  7353. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7354. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7355. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7356. }
  7357. }
  7358. }
  7359. }
  7360. static void ggml_compute_forward_mean(
  7361. const struct ggml_compute_params * params,
  7362. struct ggml_tensor * dst) {
  7363. const struct ggml_tensor * src0 = dst->src[0];
  7364. switch (src0->type) {
  7365. case GGML_TYPE_F32:
  7366. {
  7367. ggml_compute_forward_mean_f32(params, dst);
  7368. } break;
  7369. default:
  7370. {
  7371. GGML_ASSERT(false);
  7372. } break;
  7373. }
  7374. }
  7375. // ggml_compute_forward_argmax
  7376. static void ggml_compute_forward_argmax_f32(
  7377. const struct ggml_compute_params * params,
  7378. struct ggml_tensor * dst) {
  7379. const struct ggml_tensor * src0 = dst->src[0];
  7380. assert(params->ith == 0);
  7381. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7382. return;
  7383. }
  7384. assert(src0->nb[0] == sizeof(float));
  7385. assert(dst->nb[0] == sizeof(float));
  7386. const int64_t ne00 = src0->ne[0];
  7387. const int64_t ne01 = src0->ne[1];
  7388. const size_t nb01 = src0->nb[1];
  7389. const size_t nb0 = dst->nb[0];
  7390. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7391. float * src = (float *) ((char *) src0->data + i1*nb01);
  7392. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7393. int v = 0;
  7394. ggml_vec_argmax_f32(ne00, &v, src);
  7395. dst_[0] = v;
  7396. }
  7397. }
  7398. static void ggml_compute_forward_argmax(
  7399. const struct ggml_compute_params * params,
  7400. struct ggml_tensor * dst) {
  7401. const struct ggml_tensor * src0 = dst->src[0];
  7402. switch (src0->type) {
  7403. case GGML_TYPE_F32:
  7404. {
  7405. ggml_compute_forward_argmax_f32(params, dst);
  7406. } break;
  7407. default:
  7408. {
  7409. GGML_ASSERT(false);
  7410. } break;
  7411. }
  7412. }
  7413. // ggml_compute_forward_repeat
  7414. static void ggml_compute_forward_repeat_f32(
  7415. const struct ggml_compute_params * params,
  7416. struct ggml_tensor * dst) {
  7417. const struct ggml_tensor * src0 = dst->src[0];
  7418. GGML_ASSERT(params->ith == 0);
  7419. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7420. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7421. return;
  7422. }
  7423. GGML_TENSOR_UNARY_OP_LOCALS
  7424. // guaranteed to be an integer due to the check in ggml_can_repeat
  7425. const int nr0 = (int)(ne0/ne00);
  7426. const int nr1 = (int)(ne1/ne01);
  7427. const int nr2 = (int)(ne2/ne02);
  7428. const int nr3 = (int)(ne3/ne03);
  7429. // TODO: support for transposed / permuted tensors
  7430. GGML_ASSERT(nb0 == sizeof(float));
  7431. GGML_ASSERT(nb00 == sizeof(float));
  7432. // TODO: maybe this is not optimal?
  7433. for (int i3 = 0; i3 < nr3; i3++) {
  7434. for (int k3 = 0; k3 < ne03; k3++) {
  7435. for (int i2 = 0; i2 < nr2; i2++) {
  7436. for (int k2 = 0; k2 < ne02; k2++) {
  7437. for (int i1 = 0; i1 < nr1; i1++) {
  7438. for (int k1 = 0; k1 < ne01; k1++) {
  7439. for (int i0 = 0; i0 < nr0; i0++) {
  7440. ggml_vec_cpy_f32(ne00,
  7441. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7442. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7443. }
  7444. }
  7445. }
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. static void ggml_compute_forward_repeat_f16(
  7452. const struct ggml_compute_params * params,
  7453. struct ggml_tensor * dst) {
  7454. const struct ggml_tensor * src0 = dst->src[0];
  7455. GGML_ASSERT(params->ith == 0);
  7456. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7457. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7458. return;
  7459. }
  7460. GGML_TENSOR_UNARY_OP_LOCALS
  7461. // guaranteed to be an integer due to the check in ggml_can_repeat
  7462. const int nr0 = (int)(ne0/ne00);
  7463. const int nr1 = (int)(ne1/ne01);
  7464. const int nr2 = (int)(ne2/ne02);
  7465. const int nr3 = (int)(ne3/ne03);
  7466. // TODO: support for transposed / permuted tensors
  7467. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7468. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7469. // TODO: maybe this is not optimal?
  7470. for (int i3 = 0; i3 < nr3; i3++) {
  7471. for (int k3 = 0; k3 < ne03; k3++) {
  7472. for (int i2 = 0; i2 < nr2; i2++) {
  7473. for (int k2 = 0; k2 < ne02; k2++) {
  7474. for (int i1 = 0; i1 < nr1; i1++) {
  7475. for (int k1 = 0; k1 < ne01; k1++) {
  7476. for (int i0 = 0; i0 < nr0; i0++) {
  7477. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7478. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7479. // ggml_vec_cpy_f16(ne00, y, x)
  7480. for (int i = 0; i < ne00; ++i) {
  7481. y[i] = x[i];
  7482. }
  7483. }
  7484. }
  7485. }
  7486. }
  7487. }
  7488. }
  7489. }
  7490. }
  7491. static void ggml_compute_forward_repeat(
  7492. const struct ggml_compute_params * params,
  7493. struct ggml_tensor * dst) {
  7494. const struct ggml_tensor * src0 = dst->src[0];
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F16:
  7497. case GGML_TYPE_I16:
  7498. {
  7499. ggml_compute_forward_repeat_f16(params, dst);
  7500. } break;
  7501. case GGML_TYPE_F32:
  7502. case GGML_TYPE_I32:
  7503. {
  7504. ggml_compute_forward_repeat_f32(params, dst);
  7505. } break;
  7506. default:
  7507. {
  7508. GGML_ASSERT(false);
  7509. } break;
  7510. }
  7511. }
  7512. // ggml_compute_forward_repeat_back
  7513. static void ggml_compute_forward_repeat_back_f32(
  7514. const struct ggml_compute_params * params,
  7515. struct ggml_tensor * dst) {
  7516. const struct ggml_tensor * src0 = dst->src[0];
  7517. GGML_ASSERT(params->ith == 0);
  7518. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7520. return;
  7521. }
  7522. GGML_TENSOR_UNARY_OP_LOCALS
  7523. // guaranteed to be an integer due to the check in ggml_can_repeat
  7524. const int nr0 = (int)(ne00/ne0);
  7525. const int nr1 = (int)(ne01/ne1);
  7526. const int nr2 = (int)(ne02/ne2);
  7527. const int nr3 = (int)(ne03/ne3);
  7528. // TODO: support for transposed / permuted tensors
  7529. GGML_ASSERT(nb0 == sizeof(float));
  7530. GGML_ASSERT(nb00 == sizeof(float));
  7531. if (ggml_is_contiguous(dst)) {
  7532. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7533. } else {
  7534. for (int k3 = 0; k3 < ne3; k3++) {
  7535. for (int k2 = 0; k2 < ne2; k2++) {
  7536. for (int k1 = 0; k1 < ne1; k1++) {
  7537. ggml_vec_set_f32(ne0,
  7538. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7539. 0);
  7540. }
  7541. }
  7542. }
  7543. }
  7544. // TODO: maybe this is not optimal?
  7545. for (int i3 = 0; i3 < nr3; i3++) {
  7546. for (int k3 = 0; k3 < ne3; k3++) {
  7547. for (int i2 = 0; i2 < nr2; i2++) {
  7548. for (int k2 = 0; k2 < ne2; k2++) {
  7549. for (int i1 = 0; i1 < nr1; i1++) {
  7550. for (int k1 = 0; k1 < ne1; k1++) {
  7551. for (int i0 = 0; i0 < nr0; i0++) {
  7552. ggml_vec_acc_f32(ne0,
  7553. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7554. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7555. }
  7556. }
  7557. }
  7558. }
  7559. }
  7560. }
  7561. }
  7562. }
  7563. static void ggml_compute_forward_repeat_back(
  7564. const struct ggml_compute_params * params,
  7565. struct ggml_tensor * dst) {
  7566. const struct ggml_tensor * src0 = dst->src[0];
  7567. switch (src0->type) {
  7568. case GGML_TYPE_F32:
  7569. {
  7570. ggml_compute_forward_repeat_back_f32(params, dst);
  7571. } break;
  7572. default:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. // ggml_compute_forward_concat
  7579. static void ggml_compute_forward_concat_f32(
  7580. const struct ggml_compute_params * params,
  7581. struct ggml_tensor * dst) {
  7582. const struct ggml_tensor * src0 = dst->src[0];
  7583. const struct ggml_tensor * src1 = dst->src[1];
  7584. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7585. return;
  7586. }
  7587. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7588. const int ith = params->ith;
  7589. const int nth = params->nth;
  7590. GGML_TENSOR_BINARY_OP_LOCALS
  7591. // TODO: support for transposed / permuted tensors
  7592. GGML_ASSERT(nb0 == sizeof(float));
  7593. GGML_ASSERT(nb00 == sizeof(float));
  7594. GGML_ASSERT(nb10 == sizeof(float));
  7595. for (int i3 = 0; i3 < ne3; i3++) {
  7596. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7597. if (i2 < ne02) { // src0
  7598. for (int i1 = 0; i1 < ne1; i1++) {
  7599. for (int i0 = 0; i0 < ne0; i0++) {
  7600. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7601. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7602. *y = *x;
  7603. }
  7604. }
  7605. } // src1
  7606. else {
  7607. for (int i1 = 0; i1 < ne1; i1++) {
  7608. for (int i0 = 0; i0 < ne0; i0++) {
  7609. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7610. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7611. *y = *x;
  7612. }
  7613. }
  7614. }
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_concat(
  7619. const struct ggml_compute_params* params,
  7620. struct ggml_tensor* dst) {
  7621. const struct ggml_tensor * src0 = dst->src[0];
  7622. switch (src0->type) {
  7623. case GGML_TYPE_F32:
  7624. case GGML_TYPE_I32:
  7625. {
  7626. ggml_compute_forward_concat_f32(params, dst);
  7627. } break;
  7628. default:
  7629. {
  7630. GGML_ASSERT(false);
  7631. } break;
  7632. }
  7633. }
  7634. // ggml_compute_forward_abs
  7635. static void ggml_compute_forward_abs_f32(
  7636. const struct ggml_compute_params * params,
  7637. struct ggml_tensor * dst) {
  7638. const struct ggml_tensor * src0 = dst->src[0];
  7639. assert(params->ith == 0);
  7640. assert(ggml_are_same_shape(src0, dst));
  7641. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7642. return;
  7643. }
  7644. const int n = ggml_nrows(src0);
  7645. const int nc = src0->ne[0];
  7646. assert(dst->nb[0] == sizeof(float));
  7647. assert(src0->nb[0] == sizeof(float));
  7648. for (int i = 0; i < n; i++) {
  7649. ggml_vec_abs_f32(nc,
  7650. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7651. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7652. }
  7653. }
  7654. static void ggml_compute_forward_abs(
  7655. const struct ggml_compute_params * params,
  7656. struct ggml_tensor * dst) {
  7657. const struct ggml_tensor * src0 = dst->src[0];
  7658. switch (src0->type) {
  7659. case GGML_TYPE_F32:
  7660. {
  7661. ggml_compute_forward_abs_f32(params, dst);
  7662. } break;
  7663. default:
  7664. {
  7665. GGML_ASSERT(false);
  7666. } break;
  7667. }
  7668. }
  7669. // ggml_compute_forward_sgn
  7670. static void ggml_compute_forward_sgn_f32(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. assert(params->ith == 0);
  7675. assert(ggml_are_same_shape(src0, dst));
  7676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7677. return;
  7678. }
  7679. const int n = ggml_nrows(src0);
  7680. const int nc = src0->ne[0];
  7681. assert(dst->nb[0] == sizeof(float));
  7682. assert(src0->nb[0] == sizeof(float));
  7683. for (int i = 0; i < n; i++) {
  7684. ggml_vec_sgn_f32(nc,
  7685. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7686. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7687. }
  7688. }
  7689. static void ggml_compute_forward_sgn(
  7690. const struct ggml_compute_params * params,
  7691. struct ggml_tensor * dst) {
  7692. const struct ggml_tensor * src0 = dst->src[0];
  7693. switch (src0->type) {
  7694. case GGML_TYPE_F32:
  7695. {
  7696. ggml_compute_forward_sgn_f32(params, dst);
  7697. } break;
  7698. default:
  7699. {
  7700. GGML_ASSERT(false);
  7701. } break;
  7702. }
  7703. }
  7704. // ggml_compute_forward_neg
  7705. static void ggml_compute_forward_neg_f32(
  7706. const struct ggml_compute_params * params,
  7707. struct ggml_tensor * dst) {
  7708. const struct ggml_tensor * src0 = dst->src[0];
  7709. assert(params->ith == 0);
  7710. assert(ggml_are_same_shape(src0, dst));
  7711. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7712. return;
  7713. }
  7714. const int n = ggml_nrows(src0);
  7715. const int nc = src0->ne[0];
  7716. assert(dst->nb[0] == sizeof(float));
  7717. assert(src0->nb[0] == sizeof(float));
  7718. for (int i = 0; i < n; i++) {
  7719. ggml_vec_neg_f32(nc,
  7720. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7721. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7722. }
  7723. }
  7724. static void ggml_compute_forward_neg(
  7725. const struct ggml_compute_params * params,
  7726. struct ggml_tensor * dst) {
  7727. const struct ggml_tensor * src0 = dst->src[0];
  7728. switch (src0->type) {
  7729. case GGML_TYPE_F32:
  7730. {
  7731. ggml_compute_forward_neg_f32(params, dst);
  7732. } break;
  7733. default:
  7734. {
  7735. GGML_ASSERT(false);
  7736. } break;
  7737. }
  7738. }
  7739. // ggml_compute_forward_step
  7740. static void ggml_compute_forward_step_f32(
  7741. const struct ggml_compute_params * params,
  7742. struct ggml_tensor * dst) {
  7743. const struct ggml_tensor * src0 = dst->src[0];
  7744. assert(params->ith == 0);
  7745. assert(ggml_are_same_shape(src0, dst));
  7746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7747. return;
  7748. }
  7749. const int n = ggml_nrows(src0);
  7750. const int nc = src0->ne[0];
  7751. assert(dst->nb[0] == sizeof(float));
  7752. assert(src0->nb[0] == sizeof(float));
  7753. for (int i = 0; i < n; i++) {
  7754. ggml_vec_step_f32(nc,
  7755. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7756. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7757. }
  7758. }
  7759. static void ggml_compute_forward_step(
  7760. const struct ggml_compute_params * params,
  7761. struct ggml_tensor * dst) {
  7762. const struct ggml_tensor * src0 = dst->src[0];
  7763. switch (src0->type) {
  7764. case GGML_TYPE_F32:
  7765. {
  7766. ggml_compute_forward_step_f32(params, dst);
  7767. } break;
  7768. default:
  7769. {
  7770. GGML_ASSERT(false);
  7771. } break;
  7772. }
  7773. }
  7774. // ggml_compute_forward_tanh
  7775. static void ggml_compute_forward_tanh_f32(
  7776. const struct ggml_compute_params * params,
  7777. struct ggml_tensor * dst) {
  7778. const struct ggml_tensor * src0 = dst->src[0];
  7779. assert(params->ith == 0);
  7780. assert(ggml_are_same_shape(src0, dst));
  7781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7782. return;
  7783. }
  7784. const int n = ggml_nrows(src0);
  7785. const int nc = src0->ne[0];
  7786. assert(dst->nb[0] == sizeof(float));
  7787. assert(src0->nb[0] == sizeof(float));
  7788. for (int i = 0; i < n; i++) {
  7789. ggml_vec_tanh_f32(nc,
  7790. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7791. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7792. }
  7793. }
  7794. static void ggml_compute_forward_tanh(
  7795. const struct ggml_compute_params * params,
  7796. struct ggml_tensor * dst) {
  7797. const struct ggml_tensor * src0 = dst->src[0];
  7798. switch (src0->type) {
  7799. case GGML_TYPE_F32:
  7800. {
  7801. ggml_compute_forward_tanh_f32(params, dst);
  7802. } break;
  7803. default:
  7804. {
  7805. GGML_ASSERT(false);
  7806. } break;
  7807. }
  7808. }
  7809. // ggml_compute_forward_elu
  7810. static void ggml_compute_forward_elu_f32(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. assert(params->ith == 0);
  7815. assert(ggml_are_same_shape(src0, dst));
  7816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7817. return;
  7818. }
  7819. const int n = ggml_nrows(src0);
  7820. const int nc = src0->ne[0];
  7821. assert(dst->nb[0] == sizeof(float));
  7822. assert(src0->nb[0] == sizeof(float));
  7823. for (int i = 0; i < n; i++) {
  7824. ggml_vec_elu_f32(nc,
  7825. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7826. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7827. }
  7828. }
  7829. static void ggml_compute_forward_elu(
  7830. const struct ggml_compute_params * params,
  7831. struct ggml_tensor * dst) {
  7832. const struct ggml_tensor * src0 = dst->src[0];
  7833. switch (src0->type) {
  7834. case GGML_TYPE_F32:
  7835. {
  7836. ggml_compute_forward_elu_f32(params, dst);
  7837. } break;
  7838. default:
  7839. {
  7840. GGML_ASSERT(false);
  7841. } break;
  7842. }
  7843. }
  7844. // ggml_compute_forward_relu
  7845. static void ggml_compute_forward_relu_f32(
  7846. const struct ggml_compute_params * params,
  7847. struct ggml_tensor * dst) {
  7848. const struct ggml_tensor * src0 = dst->src[0];
  7849. assert(params->ith == 0);
  7850. assert(ggml_are_same_shape(src0, dst));
  7851. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7852. return;
  7853. }
  7854. const int n = ggml_nrows(src0);
  7855. const int nc = src0->ne[0];
  7856. assert(dst->nb[0] == sizeof(float));
  7857. assert(src0->nb[0] == sizeof(float));
  7858. for (int i = 0; i < n; i++) {
  7859. ggml_vec_relu_f32(nc,
  7860. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7861. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7862. }
  7863. }
  7864. static void ggml_compute_forward_relu(
  7865. const struct ggml_compute_params * params,
  7866. struct ggml_tensor * dst) {
  7867. const struct ggml_tensor * src0 = dst->src[0];
  7868. switch (src0->type) {
  7869. case GGML_TYPE_F32:
  7870. {
  7871. ggml_compute_forward_relu_f32(params, dst);
  7872. } break;
  7873. default:
  7874. {
  7875. GGML_ASSERT(false);
  7876. } break;
  7877. }
  7878. }
  7879. // ggml_compute_forward_gelu
  7880. static void ggml_compute_forward_gelu_f32(
  7881. const struct ggml_compute_params * params,
  7882. struct ggml_tensor * dst) {
  7883. const struct ggml_tensor * src0 = dst->src[0];
  7884. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7885. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7886. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7887. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7888. return;
  7889. }
  7890. const int ith = params->ith;
  7891. const int nth = params->nth;
  7892. const int nc = src0->ne[0];
  7893. const int nr = ggml_nrows(src0);
  7894. // rows per thread
  7895. const int dr = (nr + nth - 1)/nth;
  7896. // row range for this thread
  7897. const int ir0 = dr*ith;
  7898. const int ir1 = MIN(ir0 + dr, nr);
  7899. for (int i1 = ir0; i1 < ir1; i1++) {
  7900. ggml_vec_gelu_f32(nc,
  7901. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7902. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7903. #ifndef NDEBUG
  7904. for (int k = 0; k < nc; k++) {
  7905. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7906. UNUSED(x);
  7907. assert(!isnan(x));
  7908. assert(!isinf(x));
  7909. }
  7910. #endif
  7911. }
  7912. }
  7913. static void ggml_compute_forward_gelu(
  7914. const struct ggml_compute_params * params,
  7915. struct ggml_tensor * dst) {
  7916. const struct ggml_tensor * src0 = dst->src[0];
  7917. switch (src0->type) {
  7918. case GGML_TYPE_F32:
  7919. {
  7920. ggml_compute_forward_gelu_f32(params, dst);
  7921. } break;
  7922. default:
  7923. {
  7924. GGML_ASSERT(false);
  7925. } break;
  7926. }
  7927. }
  7928. // ggml_compute_forward_gelu_quick
  7929. static void ggml_compute_forward_gelu_quick_f32(
  7930. const struct ggml_compute_params * params,
  7931. struct ggml_tensor * dst) {
  7932. const struct ggml_tensor * src0 = dst->src[0];
  7933. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7934. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7936. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7937. return;
  7938. }
  7939. const int ith = params->ith;
  7940. const int nth = params->nth;
  7941. const int nc = src0->ne[0];
  7942. const int nr = ggml_nrows(src0);
  7943. // rows per thread
  7944. const int dr = (nr + nth - 1)/nth;
  7945. // row range for this thread
  7946. const int ir0 = dr*ith;
  7947. const int ir1 = MIN(ir0 + dr, nr);
  7948. for (int i1 = ir0; i1 < ir1; i1++) {
  7949. ggml_vec_gelu_quick_f32(nc,
  7950. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7951. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7952. #ifndef NDEBUG
  7953. for (int k = 0; k < nc; k++) {
  7954. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7955. UNUSED(x);
  7956. assert(!isnan(x));
  7957. assert(!isinf(x));
  7958. }
  7959. #endif
  7960. }
  7961. }
  7962. static void ggml_compute_forward_gelu_quick(
  7963. const struct ggml_compute_params * params,
  7964. struct ggml_tensor * dst) {
  7965. const struct ggml_tensor * src0 = dst->src[0];
  7966. switch (src0->type) {
  7967. case GGML_TYPE_F32:
  7968. {
  7969. ggml_compute_forward_gelu_quick_f32(params, dst);
  7970. } break;
  7971. default:
  7972. {
  7973. GGML_ASSERT(false);
  7974. } break;
  7975. }
  7976. }
  7977. // ggml_compute_forward_silu
  7978. static void ggml_compute_forward_silu_f32(
  7979. const struct ggml_compute_params * params,
  7980. struct ggml_tensor * dst) {
  7981. const struct ggml_tensor * src0 = dst->src[0];
  7982. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7983. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7984. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7986. return;
  7987. }
  7988. const int ith = params->ith;
  7989. const int nth = params->nth;
  7990. const int nc = src0->ne[0];
  7991. const int nr = ggml_nrows(src0);
  7992. // rows per thread
  7993. const int dr = (nr + nth - 1)/nth;
  7994. // row range for this thread
  7995. const int ir0 = dr*ith;
  7996. const int ir1 = MIN(ir0 + dr, nr);
  7997. for (int i1 = ir0; i1 < ir1; i1++) {
  7998. ggml_vec_silu_f32(nc,
  7999. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8000. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8001. #ifndef NDEBUG
  8002. for (int k = 0; k < nc; k++) {
  8003. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8004. UNUSED(x);
  8005. assert(!isnan(x));
  8006. assert(!isinf(x));
  8007. }
  8008. #endif
  8009. }
  8010. }
  8011. static void ggml_compute_forward_silu(
  8012. const struct ggml_compute_params * params,
  8013. struct ggml_tensor * dst) {
  8014. const struct ggml_tensor * src0 = dst->src[0];
  8015. switch (src0->type) {
  8016. case GGML_TYPE_F32:
  8017. {
  8018. ggml_compute_forward_silu_f32(params, dst);
  8019. } break;
  8020. default:
  8021. {
  8022. GGML_ASSERT(false);
  8023. } break;
  8024. }
  8025. }
  8026. // ggml_compute_forward_leaky_relu
  8027. static void ggml_compute_forward_leaky_relu_f32(
  8028. const struct ggml_compute_params * params,
  8029. struct ggml_tensor * dst) {
  8030. const struct ggml_tensor * src0 = dst->src[0];
  8031. assert(params->ith == 0);
  8032. assert(ggml_are_same_shape(src0, dst));
  8033. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8034. return;
  8035. }
  8036. const int n = ggml_nrows(src0);
  8037. const int nc = src0->ne[0];
  8038. float negative_slope;
  8039. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8040. assert(dst->nb[0] == sizeof(float));
  8041. assert(src0->nb[0] == sizeof(float));
  8042. for (int i = 0; i < n; i++) {
  8043. ggml_vec_leaky_relu_f32(nc,
  8044. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8045. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8046. }
  8047. }
  8048. static void ggml_compute_forward_leaky_relu(
  8049. const struct ggml_compute_params * params,
  8050. struct ggml_tensor * dst) {
  8051. const struct ggml_tensor * src0 = dst->src[0];
  8052. switch (src0->type) {
  8053. case GGML_TYPE_F32:
  8054. {
  8055. ggml_compute_forward_leaky_relu_f32(params, dst);
  8056. } break;
  8057. default:
  8058. {
  8059. GGML_ASSERT(false);
  8060. } break;
  8061. }
  8062. }
  8063. // ggml_compute_forward_silu_back
  8064. static void ggml_compute_forward_silu_back_f32(
  8065. const struct ggml_compute_params * params,
  8066. struct ggml_tensor * dst) {
  8067. const struct ggml_tensor * src0 = dst->src[0];
  8068. const struct ggml_tensor * grad = dst->src[1];
  8069. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8070. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8071. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8072. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8073. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8074. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8075. return;
  8076. }
  8077. const int ith = params->ith;
  8078. const int nth = params->nth;
  8079. const int nc = src0->ne[0];
  8080. const int nr = ggml_nrows(src0);
  8081. // rows per thread
  8082. const int dr = (nr + nth - 1)/nth;
  8083. // row range for this thread
  8084. const int ir0 = dr*ith;
  8085. const int ir1 = MIN(ir0 + dr, nr);
  8086. for (int i1 = ir0; i1 < ir1; i1++) {
  8087. ggml_vec_silu_backward_f32(nc,
  8088. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8089. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8090. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8091. #ifndef NDEBUG
  8092. for (int k = 0; k < nc; k++) {
  8093. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8094. UNUSED(x);
  8095. assert(!isnan(x));
  8096. assert(!isinf(x));
  8097. }
  8098. #endif
  8099. }
  8100. }
  8101. static void ggml_compute_forward_silu_back(
  8102. const struct ggml_compute_params * params,
  8103. struct ggml_tensor * dst) {
  8104. const struct ggml_tensor * src0 = dst->src[0];
  8105. switch (src0->type) {
  8106. case GGML_TYPE_F32:
  8107. {
  8108. ggml_compute_forward_silu_back_f32(params, dst);
  8109. } break;
  8110. default:
  8111. {
  8112. GGML_ASSERT(false);
  8113. } break;
  8114. }
  8115. }
  8116. static void ggml_compute_forward_hardswish_f32(
  8117. const struct ggml_compute_params * params,
  8118. struct ggml_tensor * dst) {
  8119. const struct ggml_tensor * src0 = dst->src[0];
  8120. assert(params->ith == 0);
  8121. assert(ggml_are_same_shape(src0, dst));
  8122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8123. return;
  8124. }
  8125. const int n = ggml_nrows(src0);
  8126. const int nc = src0->ne[0];
  8127. assert(dst->nb[0] == sizeof(float));
  8128. assert(src0->nb[0] == sizeof(float));
  8129. for (int i = 0; i < n; i++) {
  8130. ggml_vec_hardswish_f32(nc,
  8131. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8132. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8133. }
  8134. }
  8135. static void ggml_compute_forward_hardswish(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. switch (src0->type) {
  8140. case GGML_TYPE_F32:
  8141. {
  8142. ggml_compute_forward_hardswish_f32(params, dst);
  8143. } break;
  8144. default:
  8145. {
  8146. GGML_ASSERT(false);
  8147. } break;
  8148. }
  8149. }
  8150. static void ggml_compute_forward_hardsigmoid_f32(
  8151. const struct ggml_compute_params * params,
  8152. struct ggml_tensor * dst) {
  8153. const struct ggml_tensor * src0 = dst->src[0];
  8154. assert(params->ith == 0);
  8155. assert(ggml_are_same_shape(src0, dst));
  8156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8157. return;
  8158. }
  8159. const int n = ggml_nrows(src0);
  8160. const int nc = src0->ne[0];
  8161. assert(dst->nb[0] == sizeof(float));
  8162. assert(src0->nb[0] == sizeof(float));
  8163. for (int i = 0; i < n; i++) {
  8164. ggml_vec_hardsigmoid_f32(nc,
  8165. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8166. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8167. }
  8168. }
  8169. static void ggml_compute_forward_hardsigmoid(
  8170. const struct ggml_compute_params * params,
  8171. struct ggml_tensor * dst) {
  8172. const struct ggml_tensor * src0 = dst->src[0];
  8173. switch (src0->type) {
  8174. case GGML_TYPE_F32:
  8175. {
  8176. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8177. } break;
  8178. default:
  8179. {
  8180. GGML_ASSERT(false);
  8181. } break;
  8182. }
  8183. }
  8184. // ggml_compute_forward_norm
  8185. static void ggml_compute_forward_norm_f32(
  8186. const struct ggml_compute_params * params,
  8187. struct ggml_tensor * dst) {
  8188. const struct ggml_tensor * src0 = dst->src[0];
  8189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8191. return;
  8192. }
  8193. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8194. const int ith = params->ith;
  8195. const int nth = params->nth;
  8196. GGML_TENSOR_UNARY_OP_LOCALS
  8197. float eps;
  8198. memcpy(&eps, dst->op_params, sizeof(float));
  8199. GGML_ASSERT(eps > 0.0f);
  8200. // TODO: optimize
  8201. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8202. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8203. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8204. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8205. ggml_float sum = 0.0;
  8206. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8207. sum += (ggml_float)x[i00];
  8208. }
  8209. float mean = sum/ne00;
  8210. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8211. ggml_float sum2 = 0.0;
  8212. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8213. float v = x[i00] - mean;
  8214. y[i00] = v;
  8215. sum2 += (ggml_float)(v*v);
  8216. }
  8217. float variance = sum2/ne00;
  8218. const float scale = 1.0f/sqrtf(variance + eps);
  8219. ggml_vec_scale_f32(ne00, y, scale);
  8220. }
  8221. }
  8222. }
  8223. }
  8224. static void ggml_compute_forward_norm(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. switch (src0->type) {
  8229. case GGML_TYPE_F32:
  8230. {
  8231. ggml_compute_forward_norm_f32(params, dst);
  8232. } break;
  8233. default:
  8234. {
  8235. GGML_ASSERT(false);
  8236. } break;
  8237. }
  8238. }
  8239. // ggml_compute_forward_group_rms_norm
  8240. static void ggml_compute_forward_rms_norm_f32(
  8241. const struct ggml_compute_params * params,
  8242. struct ggml_tensor * dst) {
  8243. const struct ggml_tensor * src0 = dst->src[0];
  8244. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8246. return;
  8247. }
  8248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8249. const int ith = params->ith;
  8250. const int nth = params->nth;
  8251. GGML_TENSOR_UNARY_OP_LOCALS
  8252. float eps;
  8253. memcpy(&eps, dst->op_params, sizeof(float));
  8254. GGML_ASSERT(eps > 0.0f);
  8255. // TODO: optimize
  8256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8258. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8259. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8260. ggml_float sum = 0.0;
  8261. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8262. sum += (ggml_float)(x[i00] * x[i00]);
  8263. }
  8264. const float mean = sum/ne00;
  8265. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8266. memcpy(y, x, ne00 * sizeof(float));
  8267. // for (int i00 = 0; i00 < ne00; i00++) {
  8268. // y[i00] = x[i00];
  8269. // }
  8270. const float scale = 1.0f/sqrtf(mean + eps);
  8271. ggml_vec_scale_f32(ne00, y, scale);
  8272. }
  8273. }
  8274. }
  8275. }
  8276. static void ggml_compute_forward_rms_norm(
  8277. const struct ggml_compute_params * params,
  8278. struct ggml_tensor * dst) {
  8279. const struct ggml_tensor * src0 = dst->src[0];
  8280. switch (src0->type) {
  8281. case GGML_TYPE_F32:
  8282. {
  8283. ggml_compute_forward_rms_norm_f32(params, dst);
  8284. } break;
  8285. default:
  8286. {
  8287. GGML_ASSERT(false);
  8288. } break;
  8289. }
  8290. }
  8291. static void ggml_compute_forward_rms_norm_back_f32(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. const struct ggml_tensor * src1 = dst->src[1];
  8296. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8297. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8298. return;
  8299. }
  8300. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8301. const int ith = params->ith;
  8302. const int nth = params->nth;
  8303. GGML_TENSOR_BINARY_OP_LOCALS
  8304. float eps;
  8305. memcpy(&eps, dst->op_params, sizeof(float));
  8306. // TODO: optimize
  8307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8309. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8310. // src1 is same shape as src0 => same indices
  8311. const int64_t i11 = i01;
  8312. const int64_t i12 = i02;
  8313. const int64_t i13 = i03;
  8314. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8315. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8316. ggml_float sum_xx = 0.0;
  8317. ggml_float sum_xdz = 0.0;
  8318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8319. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8320. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8321. }
  8322. //const float mean = (float)(sum_xx)/ne00;
  8323. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8324. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8325. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8326. // we could cache rms from forward pass to improve performance.
  8327. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8328. //const float rms = sqrtf(mean_eps);
  8329. const float rrms = 1.0f / sqrtf(mean_eps);
  8330. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8331. {
  8332. // z = rms_norm(x)
  8333. //
  8334. // rms_norm(src0) =
  8335. // scale(
  8336. // src0,
  8337. // div(
  8338. // 1,
  8339. // sqrt(
  8340. // add(
  8341. // scale(
  8342. // sum(
  8343. // sqr(
  8344. // src0)),
  8345. // (1.0/N)),
  8346. // eps))));
  8347. // postorder:
  8348. // ## op args grad
  8349. // 00 param src0 grad[#00]
  8350. // 01 const 1
  8351. // 02 sqr (#00) grad[#02]
  8352. // 03 sum (#02) grad[#03]
  8353. // 04 const 1/N
  8354. // 05 scale (#03, #04) grad[#05]
  8355. // 06 const eps
  8356. // 07 add (#05, #06) grad[#07]
  8357. // 08 sqrt (#07) grad[#08]
  8358. // 09 div (#01,#08) grad[#09]
  8359. // 10 scale (#00,#09) grad[#10]
  8360. //
  8361. // backward pass, given grad[#10]
  8362. // #10: scale
  8363. // grad[#00] += scale(grad[#10],#09)
  8364. // grad[#09] += sum(mul(grad[#10],#00))
  8365. // #09: div
  8366. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8367. // #08: sqrt
  8368. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8369. // #07: add
  8370. // grad[#05] += grad[#07]
  8371. // #05: scale
  8372. // grad[#03] += scale(grad[#05],#04)
  8373. // #03: sum
  8374. // grad[#02] += repeat(grad[#03], #02)
  8375. // #02:
  8376. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8377. //
  8378. // substitute and simplify:
  8379. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8380. // grad[#02] = repeat(grad[#03], #02)
  8381. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8382. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8383. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8384. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8385. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8386. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8387. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8388. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8389. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8390. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8391. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8392. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8393. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8394. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8395. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8396. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8397. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8398. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8399. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8400. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8401. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8402. // a = b*c + d*e
  8403. // a = b*c*f/f + d*e*f/f
  8404. // a = (b*c*f + d*e*f)*(1/f)
  8405. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8406. // a = (b + d*e/c)*c
  8407. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8408. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8409. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8410. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8411. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8412. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8413. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8414. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8415. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8416. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8417. }
  8418. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8419. // post-order:
  8420. // dx := x
  8421. // dx := scale(dx,-mean_xdz/mean_eps)
  8422. // dx := add(dx, dz)
  8423. // dx := scale(dx, rrms)
  8424. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8425. ggml_vec_cpy_f32 (ne00, dx, x);
  8426. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8427. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8428. ggml_vec_acc_f32 (ne00, dx, dz);
  8429. ggml_vec_scale_f32(ne00, dx, rrms);
  8430. }
  8431. }
  8432. }
  8433. }
  8434. static void ggml_compute_forward_rms_norm_back(
  8435. const struct ggml_compute_params * params,
  8436. struct ggml_tensor * dst) {
  8437. const struct ggml_tensor * src0 = dst->src[0];
  8438. switch (src0->type) {
  8439. case GGML_TYPE_F32:
  8440. {
  8441. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8442. } break;
  8443. default:
  8444. {
  8445. GGML_ASSERT(false);
  8446. } break;
  8447. }
  8448. }
  8449. // ggml_compute_forward_group_norm
  8450. static void ggml_compute_forward_group_norm_f32(
  8451. const struct ggml_compute_params * params,
  8452. struct ggml_tensor * dst) {
  8453. const struct ggml_tensor * src0 = dst->src[0];
  8454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8455. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8456. return;
  8457. }
  8458. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8459. const int ith = params->ith;
  8460. const int nth = params->nth;
  8461. GGML_TENSOR_UNARY_OP_LOCALS
  8462. const float eps = 1e-6f; // TODO: make this a parameter
  8463. // TODO: optimize
  8464. int n_channels = src0->ne[2];
  8465. int n_groups = dst->op_params[0];
  8466. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8467. for (int i = ith; i < n_groups; i += nth) {
  8468. int start = i * n_channels_per_group;
  8469. int end = start + n_channels_per_group;
  8470. if (end > n_channels) {
  8471. end = n_channels;
  8472. }
  8473. int step = end - start;
  8474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8475. ggml_float sum = 0.0;
  8476. for (int64_t i02 = start; i02 < end; i02++) {
  8477. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8478. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8479. ggml_float sumr = 0.0;
  8480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8481. sumr += (ggml_float)x[i00];
  8482. }
  8483. sum += sumr;
  8484. }
  8485. }
  8486. const float mean = sum / (ne00 * ne01 * step);
  8487. ggml_float sum2 = 0.0;
  8488. for (int64_t i02 = start; i02 < end; i02++) {
  8489. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8490. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8491. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8492. ggml_float sumr = 0.0;
  8493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8494. float v = x[i00] - mean;
  8495. y[i00] = v;
  8496. sumr += (ggml_float)(v * v);
  8497. }
  8498. sum2 += sumr;
  8499. }
  8500. }
  8501. const float variance = sum2 / (ne00 * ne01 * step);
  8502. const float scale = 1.0f / sqrtf(variance + eps);
  8503. for (int64_t i02 = start; i02 < end; i02++) {
  8504. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8505. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8506. ggml_vec_scale_f32(ne00, y, scale);
  8507. }
  8508. }
  8509. }
  8510. }
  8511. }
  8512. static void ggml_compute_forward_group_norm(
  8513. const struct ggml_compute_params * params,
  8514. struct ggml_tensor * dst) {
  8515. const struct ggml_tensor * src0 = dst->src[0];
  8516. switch (src0->type) {
  8517. case GGML_TYPE_F32:
  8518. {
  8519. ggml_compute_forward_group_norm_f32(params, dst);
  8520. } break;
  8521. default:
  8522. {
  8523. GGML_ASSERT(false);
  8524. } break;
  8525. }
  8526. }
  8527. // ggml_compute_forward_mul_mat
  8528. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8529. // helper function to determine if it is better to use BLAS or not
  8530. // for large matrices, BLAS is faster
  8531. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8532. const struct ggml_tensor * src0 = dst->src[0];
  8533. const struct ggml_tensor * src1 = dst->src[1];
  8534. //const int64_t ne00 = src0->ne[0];
  8535. //const int64_t ne01 = src0->ne[1];
  8536. const int64_t ne10 = src1->ne[0];
  8537. const int64_t ne0 = dst->ne[0];
  8538. const int64_t ne1 = dst->ne[1];
  8539. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8540. // all the experts for each batch element and the processing would become incredibly slow
  8541. // TODO: find the optimal values for these
  8542. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8543. ggml_is_contiguous(src0) &&
  8544. ggml_is_contiguous(src1) &&
  8545. //src0->type == GGML_TYPE_F32 &&
  8546. src1->type == GGML_TYPE_F32 &&
  8547. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8548. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8549. return true;
  8550. }
  8551. return false;
  8552. }
  8553. #endif
  8554. static void ggml_compute_forward_mul_mat(
  8555. const struct ggml_compute_params * params,
  8556. struct ggml_tensor * dst) {
  8557. const struct ggml_tensor * src0 = dst->src[0];
  8558. const struct ggml_tensor * src1 = dst->src[1];
  8559. int64_t t0 = ggml_perf_time_us();
  8560. UNUSED(t0);
  8561. GGML_TENSOR_BINARY_OP_LOCALS
  8562. const int ith = params->ith;
  8563. const int nth = params->nth;
  8564. const enum ggml_type type = src0->type;
  8565. const bool src1_cont = ggml_is_contiguous(src1);
  8566. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8567. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8568. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8569. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8570. GGML_ASSERT(ne0 == ne01);
  8571. GGML_ASSERT(ne1 == ne11);
  8572. GGML_ASSERT(ne2 == ne12);
  8573. GGML_ASSERT(ne3 == ne13);
  8574. // we don't support permuted src0 or src1
  8575. GGML_ASSERT(nb00 == ggml_type_size(type));
  8576. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8577. // dst cannot be transposed or permuted
  8578. GGML_ASSERT(nb0 == sizeof(float));
  8579. GGML_ASSERT(nb0 <= nb1);
  8580. GGML_ASSERT(nb1 <= nb2);
  8581. GGML_ASSERT(nb2 <= nb3);
  8582. // broadcast factors
  8583. const int64_t r2 = ne12/ne02;
  8584. const int64_t r3 = ne13/ne03;
  8585. // nb01 >= nb00 - src0 is not transposed
  8586. // compute by src0 rows
  8587. #if defined(GGML_USE_CLBLAST)
  8588. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8589. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8590. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8591. }
  8592. return;
  8593. }
  8594. #endif
  8595. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8596. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8597. const int64_t ne_plane = ne01*ne00;
  8598. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8599. UNUSED(desired_wsize);
  8600. if (params->type == GGML_TASK_TYPE_INIT) {
  8601. if (type != GGML_TYPE_F32) {
  8602. assert(params->wsize >= desired_wsize);
  8603. // parallelize by src0 rows
  8604. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8605. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8606. // broadcast src0 into src1 across 2nd,3rd dimension
  8607. const int64_t i03 = i13/r3;
  8608. const int64_t i02 = i12/r2;
  8609. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8610. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8611. ggml_to_float_t const to_float = type_traits[type].to_float;
  8612. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8613. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8614. }
  8615. }
  8616. }
  8617. }
  8618. return;
  8619. }
  8620. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8621. return;
  8622. }
  8623. // perform sgemm, parallelization controlled by blas lib
  8624. if (ith != 0) {
  8625. return;
  8626. }
  8627. //const int64_t tgemm0 = ggml_perf_time_us();
  8628. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8629. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8630. const int64_t i03 = i13/r3;
  8631. const int64_t i02 = i12/r2;
  8632. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8633. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8634. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8635. if (type != GGML_TYPE_F32) {
  8636. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8637. }
  8638. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8639. ne1, ne01, ne10,
  8640. 1.0f, y, ne10,
  8641. x, ne00,
  8642. 0.0f, d, ne01);
  8643. }
  8644. }
  8645. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8646. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8647. return;
  8648. }
  8649. #endif
  8650. if (params->type == GGML_TASK_TYPE_INIT) {
  8651. if (ith != 0) {
  8652. return;
  8653. }
  8654. if (src1->type != vec_dot_type) {
  8655. char * wdata = params->wdata;
  8656. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8657. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8658. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8659. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8660. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8661. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8662. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8663. wdata += row_size;
  8664. }
  8665. }
  8666. }
  8667. }
  8668. return;
  8669. }
  8670. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8671. return;
  8672. }
  8673. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8674. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8675. const int64_t nr0 = ne01; // src0 rows
  8676. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8677. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8678. // distribute the thread work across the inner or outer loop based on which one is larger
  8679. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8680. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8681. const int64_t ith0 = ith % nth0;
  8682. const int64_t ith1 = ith / nth0;
  8683. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8684. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8685. const int64_t ir010 = dr0*ith0;
  8686. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8687. const int64_t ir110 = dr1*ith1;
  8688. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8689. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8690. // threads with no work simply yield (not sure if it helps)
  8691. if (ir010 >= ir011 || ir110 >= ir111) {
  8692. sched_yield();
  8693. return;
  8694. }
  8695. assert(ne12 % ne02 == 0);
  8696. assert(ne13 % ne03 == 0);
  8697. // block-tiling attempt
  8698. const int64_t blck_0 = 16;
  8699. const int64_t blck_1 = 16;
  8700. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8701. int64_t nrc = vec_dot_num_rows;
  8702. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8703. // this check can be removed once they are extended to support odd numbered rows/cols too
  8704. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8705. nrc = 1;
  8706. }
  8707. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8708. // attempt to reduce false-sharing (does not seem to make a difference)
  8709. // 16 * 2, accounting for mmla kernels
  8710. float tmp[32];
  8711. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8712. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8713. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8714. const int64_t i13 = (ir1/(ne12*ne1));
  8715. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8716. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8717. // broadcast src0 into src1
  8718. const int64_t i03 = i13/r3;
  8719. const int64_t i02 = i12/r2;
  8720. const int64_t i1 = i11;
  8721. const int64_t i2 = i12;
  8722. const int64_t i3 = i13;
  8723. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8724. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8725. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8726. // the original src1 data pointer, so we should index using the indices directly
  8727. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8728. const char * src1_col = (const char *) wdata +
  8729. (src1_cont || src1->type != vec_dot_type
  8730. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8731. : (i11*nb11 + i12*nb12 + i13*nb13));
  8732. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8733. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8734. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8735. //}
  8736. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8737. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8738. }
  8739. for (int cn = 0; cn < nrc; ++cn) {
  8740. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8741. }
  8742. }
  8743. }
  8744. }
  8745. }
  8746. // ggml_compute_forward_mul_mat_id
  8747. static void ggml_compute_forward_mul_mat_id(
  8748. const struct ggml_compute_params * params,
  8749. struct ggml_tensor * dst) {
  8750. const struct ggml_tensor * ids = dst->src[0];
  8751. const struct ggml_tensor * src1 = dst->src[1];
  8752. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8753. GGML_TENSOR_BINARY_OP_LOCALS
  8754. const int ith = params->ith;
  8755. const int nth = params->nth;
  8756. const enum ggml_type type = src0->type;
  8757. const bool src1_cont = ggml_is_contiguous(src1);
  8758. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8759. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8760. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8761. GGML_ASSERT(ne0 == ne01);
  8762. GGML_ASSERT(ne1 == ne11);
  8763. GGML_ASSERT(ne2 == ne12);
  8764. GGML_ASSERT(ne3 == ne13);
  8765. // we don't support permuted src0 or src1
  8766. GGML_ASSERT(nb00 == ggml_type_size(type));
  8767. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8768. // dst cannot be transposed or permuted
  8769. GGML_ASSERT(nb0 == sizeof(float));
  8770. GGML_ASSERT(nb0 <= nb1);
  8771. GGML_ASSERT(nb1 <= nb2);
  8772. GGML_ASSERT(nb2 <= nb3);
  8773. // broadcast factors
  8774. const int64_t r2 = ne12/ne02;
  8775. const int64_t r3 = ne13/ne03;
  8776. // row groups
  8777. const int id = ggml_get_op_params_i32(dst, 0);
  8778. const int n_as = ggml_get_op_params_i32(dst, 1);
  8779. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8780. (char *) params->wdata :
  8781. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8782. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8783. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8784. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8785. if (params->type == GGML_TASK_TYPE_INIT) {
  8786. if (ith != 0) {
  8787. return;
  8788. }
  8789. char * wdata = params->wdata;
  8790. if (src1->type != vec_dot_type) {
  8791. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8792. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8793. assert(src1->type == GGML_TYPE_F32);
  8794. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8795. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8796. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8797. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8798. wdata += row_size;
  8799. }
  8800. }
  8801. }
  8802. }
  8803. // initialize matrix_row_counts
  8804. GGML_ASSERT(wdata == wdata_src1_end);
  8805. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8806. // group rows by src0 matrix
  8807. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8808. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8809. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8810. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8811. matrix_row_counts[row_id] += 1;
  8812. }
  8813. return;
  8814. }
  8815. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8816. return;
  8817. }
  8818. // compute each matrix multiplication in sequence
  8819. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8820. const int64_t cne1 = matrix_row_counts[cur_a];
  8821. if (cne1 == 0) {
  8822. continue;
  8823. }
  8824. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8825. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8826. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8827. const int64_t nr0 = ne01; // src0 rows
  8828. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8829. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8830. // distribute the thread work across the inner or outer loop based on which one is larger
  8831. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8832. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8833. const int64_t ith0 = ith % nth0;
  8834. const int64_t ith1 = ith / nth0;
  8835. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8836. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8837. const int64_t ir010 = dr0*ith0;
  8838. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8839. const int64_t ir110 = dr1*ith1;
  8840. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8841. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8842. // threads with no work simply yield (not sure if it helps)
  8843. if (ir010 >= ir011 || ir110 >= ir111) {
  8844. sched_yield();
  8845. continue;
  8846. }
  8847. assert(ne12 % ne02 == 0);
  8848. assert(ne13 % ne03 == 0);
  8849. // block-tiling attempt
  8850. const int64_t blck_0 = 16;
  8851. const int64_t blck_1 = 16;
  8852. // attempt to reduce false-sharing (does not seem to make a difference)
  8853. float tmp[16];
  8854. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8855. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8856. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8857. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8858. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8859. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8860. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8861. // broadcast src0 into src1
  8862. const int64_t i03 = i13/r3;
  8863. const int64_t i02 = i12/r2;
  8864. const int64_t i1 = i11;
  8865. const int64_t i2 = i12;
  8866. const int64_t i3 = i13;
  8867. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8868. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8869. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8870. // the original src1 data pointer, so we should index using the indices directly
  8871. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8872. const char * src1_col = (const char *) wdata +
  8873. (src1_cont || src1->type != vec_dot_type
  8874. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8875. : (i11*nb11 + i12*nb12 + i13*nb13));
  8876. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8877. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8878. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8879. //}
  8880. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8881. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8882. }
  8883. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8884. }
  8885. }
  8886. }
  8887. }
  8888. #undef MMID_MATRIX_ROW
  8889. }
  8890. // ggml_compute_forward_out_prod
  8891. static void ggml_compute_forward_out_prod_f32(
  8892. const struct ggml_compute_params * params,
  8893. struct ggml_tensor * dst) {
  8894. const struct ggml_tensor * src0 = dst->src[0];
  8895. const struct ggml_tensor * src1 = dst->src[1];
  8896. // int64_t t0 = ggml_perf_time_us();
  8897. // UNUSED(t0);
  8898. GGML_TENSOR_BINARY_OP_LOCALS
  8899. const int ith = params->ith;
  8900. const int nth = params->nth;
  8901. GGML_ASSERT(ne0 == ne00);
  8902. GGML_ASSERT(ne1 == ne10);
  8903. GGML_ASSERT(ne2 == ne02);
  8904. GGML_ASSERT(ne02 == ne12);
  8905. GGML_ASSERT(ne3 == ne13);
  8906. GGML_ASSERT(ne03 == ne13);
  8907. // we don't support permuted src0 or src1
  8908. GGML_ASSERT(nb00 == sizeof(float));
  8909. // dst cannot be transposed or permuted
  8910. GGML_ASSERT(nb0 == sizeof(float));
  8911. // GGML_ASSERT(nb0 <= nb1);
  8912. // GGML_ASSERT(nb1 <= nb2);
  8913. // GGML_ASSERT(nb2 <= nb3);
  8914. // nb01 >= nb00 - src0 is not transposed
  8915. // compute by src0 rows
  8916. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8917. // TODO: #if defined(GGML_USE_CLBLAST)
  8918. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8919. bool use_blas = ggml_is_matrix(src0) &&
  8920. ggml_is_matrix(src1) &&
  8921. ggml_is_contiguous(src0) &&
  8922. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8923. #endif
  8924. if (params->type == GGML_TASK_TYPE_INIT) {
  8925. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8926. if (use_blas) {
  8927. return;
  8928. }
  8929. #endif
  8930. if (ith != 0) {
  8931. return;
  8932. }
  8933. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8934. return;
  8935. }
  8936. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8937. return;
  8938. }
  8939. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8940. if (use_blas) {
  8941. if (params->ith != 0) { // All threads other than the first do no work.
  8942. return;
  8943. }
  8944. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8945. // src0: (k,n)
  8946. // src1: (k,m)
  8947. // dst: (m,n)
  8948. //
  8949. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8950. // Also expressed as (major,minor)
  8951. // a: (m,k): so src1 transposed
  8952. // b: (k,n): so src0
  8953. // c: (m,n)
  8954. //
  8955. // However, if ggml_is_transposed(src1) is true, then
  8956. // src1->data already contains a transposed version, so sgemm mustn't
  8957. // transpose it further.
  8958. int n = src0->ne[0];
  8959. int k = src0->ne[1];
  8960. int m = src1->ne[0];
  8961. int transposeA, lda;
  8962. if (!ggml_is_transposed(src1)) {
  8963. transposeA = CblasTrans;
  8964. lda = m;
  8965. } else {
  8966. transposeA = CblasNoTrans;
  8967. lda = k;
  8968. }
  8969. float * a = (float *) ((char *) src1->data);
  8970. float * b = (float *) ((char *) src0->data);
  8971. float * c = (float *) ((char *) dst->data);
  8972. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8973. return;
  8974. }
  8975. #endif
  8976. // dst[:,:,:,:] = 0
  8977. // for i2,i3:
  8978. // for i1:
  8979. // for i01:
  8980. // for i0:
  8981. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8982. // parallelize by last three dimensions
  8983. // total rows in dst
  8984. const int64_t nr = ne1*ne2*ne3;
  8985. // rows per thread
  8986. const int64_t dr = (nr + nth - 1)/nth;
  8987. // row range for this thread
  8988. const int64_t ir0 = dr*ith;
  8989. const int64_t ir1 = MIN(ir0 + dr, nr);
  8990. // block-tiling attempt
  8991. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8992. const int64_t blck_1 = 16;
  8993. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8994. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8995. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8996. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8997. for (int64_t ir = bir; ir < bir1; ++ir) {
  8998. // dst indices
  8999. const int64_t i3 = ir/(ne2*ne1);
  9000. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9001. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9002. const int64_t i02 = i2;
  9003. const int64_t i03 = i3;
  9004. //const int64_t i10 = i1;
  9005. const int64_t i12 = i2;
  9006. const int64_t i13 = i3;
  9007. #if GGML_VEC_MAD_UNROLL > 2
  9008. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9009. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9010. const int64_t i11 = i01;
  9011. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9012. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9013. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9014. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9015. }
  9016. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9017. const int64_t i11 = i01;
  9018. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9019. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9020. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9021. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9022. }
  9023. #else
  9024. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9025. const int64_t i11 = i01;
  9026. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9027. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9028. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9029. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9030. }
  9031. #endif
  9032. }
  9033. }
  9034. }
  9035. //int64_t t1 = ggml_perf_time_us();
  9036. //static int64_t acc = 0;
  9037. //acc += t1 - t0;
  9038. //if (t1 - t0 > 10) {
  9039. // printf("\n");
  9040. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9041. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9042. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9043. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9044. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9045. //}
  9046. }
  9047. static void ggml_compute_forward_out_prod_q_f32(
  9048. const struct ggml_compute_params * params,
  9049. struct ggml_tensor * dst) {
  9050. const struct ggml_tensor * src0 = dst->src[0];
  9051. const struct ggml_tensor * src1 = dst->src[1];
  9052. // int64_t t0 = ggml_perf_time_us();
  9053. // UNUSED(t0);
  9054. GGML_TENSOR_BINARY_OP_LOCALS;
  9055. const int ith = params->ith;
  9056. const int nth = params->nth;
  9057. const enum ggml_type type = src0->type;
  9058. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9059. GGML_ASSERT(ne02 == ne12);
  9060. GGML_ASSERT(ne03 == ne13);
  9061. GGML_ASSERT(ne2 == ne12);
  9062. GGML_ASSERT(ne3 == ne13);
  9063. // we don't support permuted src0 dim0
  9064. GGML_ASSERT(nb00 == ggml_type_size(type));
  9065. // dst dim0 cannot be transposed or permuted
  9066. GGML_ASSERT(nb0 == sizeof(float));
  9067. // GGML_ASSERT(nb0 <= nb1);
  9068. // GGML_ASSERT(nb1 <= nb2);
  9069. // GGML_ASSERT(nb2 <= nb3);
  9070. GGML_ASSERT(ne0 == ne00);
  9071. GGML_ASSERT(ne1 == ne10);
  9072. GGML_ASSERT(ne2 == ne02);
  9073. GGML_ASSERT(ne3 == ne03);
  9074. // nb01 >= nb00 - src0 is not transposed
  9075. // compute by src0 rows
  9076. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9077. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9078. if (params->type == GGML_TASK_TYPE_INIT) {
  9079. if (ith != 0) {
  9080. return;
  9081. }
  9082. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9083. return;
  9084. }
  9085. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9086. return;
  9087. }
  9088. // parallelize by last three dimensions
  9089. // total rows in dst
  9090. const int64_t nr = ne1*ne2*ne3;
  9091. // rows per thread
  9092. const int64_t dr = (nr + nth - 1)/nth;
  9093. // row range for this thread
  9094. const int64_t ir0 = dr*ith;
  9095. const int64_t ir1 = MIN(ir0 + dr, nr);
  9096. // dst[:,:,:,:] = 0
  9097. // for i2,i3:
  9098. // for i1:
  9099. // for i01:
  9100. // for i0:
  9101. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9102. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9103. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9104. // dst indices
  9105. const int64_t i3 = ir/(ne2*ne1);
  9106. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9107. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9108. const int64_t i02 = i2;
  9109. const int64_t i03 = i3;
  9110. //const int64_t i10 = i1;
  9111. const int64_t i12 = i2;
  9112. const int64_t i13 = i3;
  9113. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9114. const int64_t i11 = i01;
  9115. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9116. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9117. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9118. dequantize_row_q(s0, wdata, ne0);
  9119. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9120. }
  9121. }
  9122. //int64_t t1 = ggml_perf_time_us();
  9123. //static int64_t acc = 0;
  9124. //acc += t1 - t0;
  9125. //if (t1 - t0 > 10) {
  9126. // printf("\n");
  9127. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9128. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9129. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9130. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9131. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9132. //}
  9133. }
  9134. static void ggml_compute_forward_out_prod(
  9135. const struct ggml_compute_params * params,
  9136. struct ggml_tensor * dst) {
  9137. const struct ggml_tensor * src0 = dst->src[0];
  9138. switch (src0->type) {
  9139. case GGML_TYPE_Q4_0:
  9140. case GGML_TYPE_Q4_1:
  9141. case GGML_TYPE_Q5_0:
  9142. case GGML_TYPE_Q5_1:
  9143. case GGML_TYPE_Q8_0:
  9144. case GGML_TYPE_Q2_K:
  9145. case GGML_TYPE_Q3_K:
  9146. case GGML_TYPE_Q4_K:
  9147. case GGML_TYPE_Q5_K:
  9148. case GGML_TYPE_Q6_K:
  9149. case GGML_TYPE_IQ2_XXS:
  9150. case GGML_TYPE_IQ2_XS:
  9151. case GGML_TYPE_IQ3_XXS:
  9152. case GGML_TYPE_IQ1_S:
  9153. case GGML_TYPE_IQ4_NL:
  9154. case GGML_TYPE_IQ4_XS:
  9155. case GGML_TYPE_IQ3_S:
  9156. case GGML_TYPE_IQ2_S:
  9157. {
  9158. ggml_compute_forward_out_prod_q_f32(params, dst);
  9159. } break;
  9160. case GGML_TYPE_F16:
  9161. {
  9162. GGML_ASSERT(false); // todo
  9163. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9164. } break;
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_out_prod_f32(params, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. // ggml_compute_forward_scale
  9176. static void ggml_compute_forward_scale_f32(
  9177. const struct ggml_compute_params * params,
  9178. struct ggml_tensor * dst) {
  9179. const struct ggml_tensor * src0 = dst->src[0];
  9180. GGML_ASSERT(ggml_is_contiguous(src0));
  9181. GGML_ASSERT(ggml_is_contiguous(dst));
  9182. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9183. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9184. return;
  9185. }
  9186. // scale factor
  9187. float v;
  9188. memcpy(&v, dst->op_params, sizeof(float));
  9189. const int ith = params->ith;
  9190. const int nth = params->nth;
  9191. const int nc = src0->ne[0];
  9192. const int nr = ggml_nrows(src0);
  9193. // rows per thread
  9194. const int dr = (nr + nth - 1)/nth;
  9195. // row range for this thread
  9196. const int ir0 = dr*ith;
  9197. const int ir1 = MIN(ir0 + dr, nr);
  9198. const size_t nb01 = src0->nb[1];
  9199. const size_t nb1 = dst->nb[1];
  9200. for (int i1 = ir0; i1 < ir1; i1++) {
  9201. if (dst->data != src0->data) {
  9202. // src0 is same shape as dst => same indices
  9203. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9204. }
  9205. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9206. }
  9207. }
  9208. static void ggml_compute_forward_scale(
  9209. const struct ggml_compute_params * params,
  9210. struct ggml_tensor * dst) {
  9211. const struct ggml_tensor * src0 = dst->src[0];
  9212. switch (src0->type) {
  9213. case GGML_TYPE_F32:
  9214. {
  9215. ggml_compute_forward_scale_f32(params, dst);
  9216. } break;
  9217. default:
  9218. {
  9219. GGML_ASSERT(false);
  9220. } break;
  9221. }
  9222. }
  9223. // ggml_compute_forward_set
  9224. static void ggml_compute_forward_set_f32(
  9225. const struct ggml_compute_params * params,
  9226. struct ggml_tensor * dst) {
  9227. const struct ggml_tensor * src0 = dst->src[0];
  9228. const struct ggml_tensor * src1 = dst->src[1];
  9229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9230. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9231. // view src0 and dst with these strides and data offset inbytes during set
  9232. // nb0 is implicitly element_size because src0 and dst are contiguous
  9233. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9234. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9235. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9236. size_t offset = ((int32_t *) dst->op_params)[3];
  9237. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9238. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9239. if (params->ith != 0) {
  9240. return;
  9241. }
  9242. // memcpy needs to be synchronized across threads to avoid race conditions.
  9243. // => do it in INIT phase
  9244. memcpy(
  9245. ((char *) dst->data),
  9246. ((char *) src0->data),
  9247. ggml_nbytes(dst));
  9248. }
  9249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9250. return;
  9251. }
  9252. const int ith = params->ith;
  9253. const int nth = params->nth;
  9254. const int nr = ggml_nrows(src1);
  9255. const int nc = src1->ne[0];
  9256. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9257. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9258. // src0 and dst as viewed during set
  9259. const size_t nb0 = ggml_element_size(src0);
  9260. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9261. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9262. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9263. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9264. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9265. GGML_ASSERT(nb10 == sizeof(float));
  9266. // rows per thread
  9267. const int dr = (nr + nth - 1)/nth;
  9268. // row range for this thread
  9269. const int ir0 = dr*ith;
  9270. const int ir1 = MIN(ir0 + dr, nr);
  9271. for (int ir = ir0; ir < ir1; ++ir) {
  9272. // src0 and dst are viewed with shape of src1 and offset
  9273. // => same indices
  9274. const int i3 = ir/(ne12*ne11);
  9275. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9276. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9277. ggml_vec_cpy_f32(nc,
  9278. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9279. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9280. }
  9281. }
  9282. static void ggml_compute_forward_set(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. switch (src0->type) {
  9287. case GGML_TYPE_F32:
  9288. {
  9289. ggml_compute_forward_set_f32(params, dst);
  9290. } break;
  9291. case GGML_TYPE_F16:
  9292. case GGML_TYPE_Q4_0:
  9293. case GGML_TYPE_Q4_1:
  9294. case GGML_TYPE_Q5_0:
  9295. case GGML_TYPE_Q5_1:
  9296. case GGML_TYPE_Q8_0:
  9297. case GGML_TYPE_Q8_1:
  9298. case GGML_TYPE_Q2_K:
  9299. case GGML_TYPE_Q3_K:
  9300. case GGML_TYPE_Q4_K:
  9301. case GGML_TYPE_Q5_K:
  9302. case GGML_TYPE_Q6_K:
  9303. case GGML_TYPE_IQ2_XXS:
  9304. case GGML_TYPE_IQ2_XS:
  9305. case GGML_TYPE_IQ3_XXS:
  9306. case GGML_TYPE_IQ1_S:
  9307. case GGML_TYPE_IQ4_NL:
  9308. case GGML_TYPE_IQ4_XS:
  9309. case GGML_TYPE_IQ3_S:
  9310. case GGML_TYPE_IQ2_S:
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. }
  9317. // ggml_compute_forward_cpy
  9318. static void ggml_compute_forward_cpy(
  9319. const struct ggml_compute_params * params,
  9320. struct ggml_tensor * dst) {
  9321. ggml_compute_forward_dup(params, dst);
  9322. }
  9323. // ggml_compute_forward_cont
  9324. static void ggml_compute_forward_cont(
  9325. const struct ggml_compute_params * params,
  9326. struct ggml_tensor * dst) {
  9327. ggml_compute_forward_dup(params, dst);
  9328. }
  9329. // ggml_compute_forward_reshape
  9330. static void ggml_compute_forward_reshape(
  9331. const struct ggml_compute_params * params,
  9332. struct ggml_tensor * dst) {
  9333. // NOP
  9334. UNUSED(params);
  9335. UNUSED(dst);
  9336. }
  9337. // ggml_compute_forward_view
  9338. static void ggml_compute_forward_view(
  9339. const struct ggml_compute_params * params,
  9340. const struct ggml_tensor * dst) {
  9341. // NOP
  9342. UNUSED(params);
  9343. UNUSED(dst);
  9344. }
  9345. // ggml_compute_forward_permute
  9346. static void ggml_compute_forward_permute(
  9347. const struct ggml_compute_params * params,
  9348. const struct ggml_tensor * dst) {
  9349. // NOP
  9350. UNUSED(params);
  9351. UNUSED(dst);
  9352. }
  9353. // ggml_compute_forward_transpose
  9354. static void ggml_compute_forward_transpose(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * dst) {
  9357. // NOP
  9358. UNUSED(params);
  9359. UNUSED(dst);
  9360. }
  9361. // ggml_compute_forward_get_rows
  9362. static void ggml_compute_forward_get_rows_q(
  9363. const struct ggml_compute_params * params,
  9364. struct ggml_tensor * dst) {
  9365. const struct ggml_tensor * src0 = dst->src[0];
  9366. const struct ggml_tensor * src1 = dst->src[1];
  9367. assert(params->ith == 0);
  9368. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9369. return;
  9370. }
  9371. GGML_TENSOR_BINARY_OP_LOCALS
  9372. const int64_t nc = ne00;
  9373. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9374. const enum ggml_type type = src0->type;
  9375. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9376. assert(ne0 == nc);
  9377. assert(ne02 == ne11);
  9378. assert(nb00 == ggml_type_size(type));
  9379. assert(ggml_nrows(dst) == nr);
  9380. // TODO: multi-thread
  9381. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9382. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9383. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9384. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9385. dequantize_row_q(
  9386. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9387. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9388. }
  9389. }
  9390. }
  9391. }
  9392. static void ggml_compute_forward_get_rows_f16(
  9393. const struct ggml_compute_params * params,
  9394. struct ggml_tensor * dst) {
  9395. const struct ggml_tensor * src0 = dst->src[0];
  9396. const struct ggml_tensor * src1 = dst->src[1];
  9397. assert(params->ith == 0);
  9398. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9399. return;
  9400. }
  9401. GGML_TENSOR_BINARY_OP_LOCALS
  9402. const int64_t nc = ne00;
  9403. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9404. assert(ne0 == nc);
  9405. assert(ne02 == ne11);
  9406. assert(nb00 == sizeof(ggml_fp16_t));
  9407. assert(ggml_nrows(dst) == nr);
  9408. // TODO: multi-thread
  9409. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9410. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9411. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9412. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9413. ggml_fp16_to_fp32_row(
  9414. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9415. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9416. }
  9417. }
  9418. }
  9419. }
  9420. static void ggml_compute_forward_get_rows_f32(
  9421. const struct ggml_compute_params * params,
  9422. struct ggml_tensor * dst) {
  9423. const struct ggml_tensor * src0 = dst->src[0];
  9424. const struct ggml_tensor * src1 = dst->src[1];
  9425. assert(params->ith == 0);
  9426. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9427. return;
  9428. }
  9429. GGML_TENSOR_BINARY_OP_LOCALS
  9430. const int64_t nc = ne00;
  9431. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9432. assert(ne0 == nc);
  9433. assert(ne02 == ne11);
  9434. assert(nb00 == sizeof(float));
  9435. assert(ggml_nrows(dst) == nr);
  9436. // TODO: multi-thread
  9437. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9438. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9439. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9440. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9441. ggml_vec_cpy_f32(nc,
  9442. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9443. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9444. }
  9445. }
  9446. }
  9447. }
  9448. static void ggml_compute_forward_get_rows(
  9449. const struct ggml_compute_params * params,
  9450. struct ggml_tensor * dst) {
  9451. const struct ggml_tensor * src0 = dst->src[0];
  9452. switch (src0->type) {
  9453. case GGML_TYPE_Q4_0:
  9454. case GGML_TYPE_Q4_1:
  9455. case GGML_TYPE_Q5_0:
  9456. case GGML_TYPE_Q5_1:
  9457. case GGML_TYPE_Q8_0:
  9458. case GGML_TYPE_Q8_1:
  9459. case GGML_TYPE_Q2_K:
  9460. case GGML_TYPE_Q3_K:
  9461. case GGML_TYPE_Q4_K:
  9462. case GGML_TYPE_Q5_K:
  9463. case GGML_TYPE_Q6_K:
  9464. case GGML_TYPE_IQ2_XXS:
  9465. case GGML_TYPE_IQ2_XS:
  9466. case GGML_TYPE_IQ3_XXS:
  9467. case GGML_TYPE_IQ1_S:
  9468. case GGML_TYPE_IQ4_NL:
  9469. case GGML_TYPE_IQ4_XS:
  9470. case GGML_TYPE_IQ3_S:
  9471. case GGML_TYPE_IQ2_S:
  9472. {
  9473. ggml_compute_forward_get_rows_q(params, dst);
  9474. } break;
  9475. case GGML_TYPE_F16:
  9476. {
  9477. ggml_compute_forward_get_rows_f16(params, dst);
  9478. } break;
  9479. case GGML_TYPE_F32:
  9480. case GGML_TYPE_I32:
  9481. {
  9482. ggml_compute_forward_get_rows_f32(params, dst);
  9483. } break;
  9484. default:
  9485. {
  9486. GGML_ASSERT(false);
  9487. } break;
  9488. }
  9489. //static bool first = true;
  9490. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9491. //if (first) {
  9492. // first = false;
  9493. //} else {
  9494. // for (int k = 0; k < dst->ne[1]; ++k) {
  9495. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9496. // for (int i = 0; i < 16; ++i) {
  9497. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9498. // }
  9499. // printf("\n");
  9500. // }
  9501. // printf("\n");
  9502. // }
  9503. // printf("\n");
  9504. // exit(0);
  9505. //}
  9506. }
  9507. // ggml_compute_forward_get_rows_back
  9508. static void ggml_compute_forward_get_rows_back_f32_f16(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. const struct ggml_tensor * src0 = dst->src[0];
  9512. const struct ggml_tensor * src1 = dst->src[1];
  9513. GGML_ASSERT(params->ith == 0);
  9514. GGML_ASSERT(ggml_is_contiguous(dst));
  9515. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9516. if (params->type == GGML_TASK_TYPE_INIT) {
  9517. if (params->ith != 0) {
  9518. return;
  9519. }
  9520. memset(dst->data, 0, ggml_nbytes(dst));
  9521. }
  9522. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9523. return;
  9524. }
  9525. const int nc = src0->ne[0];
  9526. const int nr = ggml_nelements(src1);
  9527. GGML_ASSERT( dst->ne[0] == nc);
  9528. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9529. for (int i = 0; i < nr; ++i) {
  9530. const int r = ((int32_t *) src1->data)[i];
  9531. for (int j = 0; j < nc; ++j) {
  9532. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9533. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9534. }
  9535. }
  9536. }
  9537. static void ggml_compute_forward_get_rows_back_f32(
  9538. const struct ggml_compute_params * params,
  9539. struct ggml_tensor * dst) {
  9540. const struct ggml_tensor * src0 = dst->src[0];
  9541. const struct ggml_tensor * src1 = dst->src[1];
  9542. GGML_ASSERT(params->ith == 0);
  9543. GGML_ASSERT(ggml_is_contiguous(dst));
  9544. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9545. if (params->type == GGML_TASK_TYPE_INIT) {
  9546. if (params->ith != 0) {
  9547. return;
  9548. }
  9549. memset(dst->data, 0, ggml_nbytes(dst));
  9550. }
  9551. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9552. return;
  9553. }
  9554. const int nc = src0->ne[0];
  9555. const int nr = ggml_nelements(src1);
  9556. GGML_ASSERT( dst->ne[0] == nc);
  9557. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9558. for (int i = 0; i < nr; ++i) {
  9559. const int r = ((int32_t *) src1->data)[i];
  9560. ggml_vec_add_f32(nc,
  9561. (float *) ((char *) dst->data + r*dst->nb[1]),
  9562. (float *) ((char *) dst->data + r*dst->nb[1]),
  9563. (float *) ((char *) src0->data + i*src0->nb[1]));
  9564. }
  9565. }
  9566. static void ggml_compute_forward_get_rows_back(
  9567. const struct ggml_compute_params * params,
  9568. struct ggml_tensor * dst) {
  9569. const struct ggml_tensor * src0 = dst->src[0];
  9570. switch (src0->type) {
  9571. case GGML_TYPE_F16:
  9572. {
  9573. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9574. } break;
  9575. case GGML_TYPE_F32:
  9576. {
  9577. ggml_compute_forward_get_rows_back_f32(params, dst);
  9578. } break;
  9579. default:
  9580. {
  9581. GGML_ASSERT(false);
  9582. } break;
  9583. }
  9584. //static bool first = true;
  9585. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9586. //if (first) {
  9587. // first = false;
  9588. //} else {
  9589. // for (int k = 0; k < dst->ne[1]; ++k) {
  9590. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9591. // for (int i = 0; i < 16; ++i) {
  9592. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9593. // }
  9594. // printf("\n");
  9595. // }
  9596. // printf("\n");
  9597. // }
  9598. // printf("\n");
  9599. // exit(0);
  9600. //}
  9601. }
  9602. // ggml_compute_forward_diag
  9603. static void ggml_compute_forward_diag_f32(
  9604. const struct ggml_compute_params * params,
  9605. struct ggml_tensor * dst) {
  9606. const struct ggml_tensor * src0 = dst->src[0];
  9607. GGML_ASSERT(params->ith == 0);
  9608. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9609. return;
  9610. }
  9611. // TODO: handle transposed/permuted matrices
  9612. GGML_TENSOR_UNARY_OP_LOCALS
  9613. GGML_ASSERT(ne00 == ne0);
  9614. GGML_ASSERT(ne00 == ne1);
  9615. GGML_ASSERT(ne01 == 1);
  9616. GGML_ASSERT(ne02 == ne2);
  9617. GGML_ASSERT(ne03 == ne3);
  9618. GGML_ASSERT(nb00 == sizeof(float));
  9619. GGML_ASSERT(nb0 == sizeof(float));
  9620. for (int i3 = 0; i3 < ne3; i3++) {
  9621. for (int i2 = 0; i2 < ne2; i2++) {
  9622. for (int i1 = 0; i1 < ne1; i1++) {
  9623. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9624. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9625. for (int i0 = 0; i0 < i1; i0++) {
  9626. d[i0] = 0;
  9627. }
  9628. d[i1] = s[i1];
  9629. for (int i0 = i1+1; i0 < ne0; i0++) {
  9630. d[i0] = 0;
  9631. }
  9632. }
  9633. }
  9634. }
  9635. }
  9636. static void ggml_compute_forward_diag(
  9637. const struct ggml_compute_params * params,
  9638. struct ggml_tensor * dst) {
  9639. const struct ggml_tensor * src0 = dst->src[0];
  9640. switch (src0->type) {
  9641. case GGML_TYPE_F32:
  9642. {
  9643. ggml_compute_forward_diag_f32(params, dst);
  9644. } break;
  9645. default:
  9646. {
  9647. GGML_ASSERT(false);
  9648. } break;
  9649. }
  9650. }
  9651. // ggml_compute_forward_diag_mask_inf
  9652. static void ggml_compute_forward_diag_mask_f32(
  9653. const struct ggml_compute_params * params,
  9654. struct ggml_tensor * dst,
  9655. const float value) {
  9656. const struct ggml_tensor * src0 = dst->src[0];
  9657. const int ith = params->ith;
  9658. const int nth = params->nth;
  9659. const int n_past = ((int32_t *) dst->op_params)[0];
  9660. const bool inplace = src0->data == dst->data;
  9661. GGML_ASSERT(n_past >= 0);
  9662. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9663. if (ith != 0) {
  9664. return;
  9665. }
  9666. // memcpy needs to be synchronized across threads to avoid race conditions.
  9667. // => do it in INIT phase
  9668. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9669. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9670. memcpy(
  9671. ((char *) dst->data),
  9672. ((char *) src0->data),
  9673. ggml_nbytes(dst));
  9674. }
  9675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9676. return;
  9677. }
  9678. // TODO: handle transposed/permuted matrices
  9679. const int n = ggml_nrows(src0);
  9680. const int nc = src0->ne[0];
  9681. const int nr = src0->ne[1];
  9682. const int nz = n/nr;
  9683. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9684. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9685. for (int k = 0; k < nz; k++) {
  9686. for (int j = ith; j < nr; j += nth) {
  9687. for (int i = n_past; i < nc; i++) {
  9688. if (i > n_past + j) {
  9689. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9690. }
  9691. }
  9692. }
  9693. }
  9694. }
  9695. static void ggml_compute_forward_diag_mask_inf(
  9696. const struct ggml_compute_params * params,
  9697. struct ggml_tensor * dst) {
  9698. const struct ggml_tensor * src0 = dst->src[0];
  9699. switch (src0->type) {
  9700. case GGML_TYPE_F32:
  9701. {
  9702. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9703. } break;
  9704. default:
  9705. {
  9706. GGML_ASSERT(false);
  9707. } break;
  9708. }
  9709. }
  9710. static void ggml_compute_forward_diag_mask_zero(
  9711. const struct ggml_compute_params * params,
  9712. struct ggml_tensor * dst) {
  9713. const struct ggml_tensor * src0 = dst->src[0];
  9714. switch (src0->type) {
  9715. case GGML_TYPE_F32:
  9716. {
  9717. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9718. } break;
  9719. default:
  9720. {
  9721. GGML_ASSERT(false);
  9722. } break;
  9723. }
  9724. }
  9725. // ggml_compute_forward_soft_max
  9726. static void ggml_compute_forward_soft_max_f32(
  9727. const struct ggml_compute_params * params,
  9728. struct ggml_tensor * dst) {
  9729. const struct ggml_tensor * src0 = dst->src[0];
  9730. const struct ggml_tensor * src1 = dst->src[1];
  9731. const struct ggml_tensor * src2 = dst->src[2];
  9732. assert(ggml_is_contiguous(dst));
  9733. assert(ggml_are_same_shape(src0, dst));
  9734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9735. return;
  9736. }
  9737. float scale = 1.0f;
  9738. float max_bias = 0.0f;
  9739. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9740. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9741. // TODO: handle transposed/permuted matrices
  9742. const int ith = params->ith;
  9743. const int nth = params->nth;
  9744. GGML_TENSOR_UNARY_OP_LOCALS
  9745. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9746. // TODO: is this supposed to be ceil instead of floor?
  9747. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9748. const uint32_t n_head_kv = ne02;
  9749. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9750. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9751. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9752. const int nc = src0->ne[0];
  9753. const int nr = ggml_nrows(src0);
  9754. // rows per thread
  9755. const int dr = (nr + nth - 1)/nth;
  9756. // row range for this thread
  9757. const int ir0 = dr*ith;
  9758. const int ir1 = MIN(ir0 + dr, nr);
  9759. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9760. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9761. float * pos = src2 ? (float *) src2->data : src0->data;
  9762. for (int i1 = ir0; i1 < ir1; i1++) {
  9763. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9764. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9765. // broadcast the mask across rows
  9766. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9767. ggml_vec_cpy_f32 (nc, wp, sp);
  9768. ggml_vec_scale_f32(nc, wp, scale);
  9769. if (mp) {
  9770. ggml_vec_acc_f32(nc, wp, mp);
  9771. }
  9772. // ALiBi bias
  9773. if (max_bias > 0.0f) {
  9774. const uint32_t h = (i1/ne01)%ne02; // head
  9775. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9776. for (int i = 0; i < nc; i++) {
  9777. wp[i] = wp[i] + slope*pos[i];
  9778. }
  9779. }
  9780. #ifndef NDEBUG
  9781. for (int i = 0; i < nc; ++i) {
  9782. //printf("p[%d] = %f\n", i, p[i]);
  9783. assert(!isnan(wp[i]));
  9784. }
  9785. #endif
  9786. float max = -INFINITY;
  9787. ggml_vec_max_f32(nc, &max, wp);
  9788. ggml_float sum = 0.0;
  9789. uint16_t scvt;
  9790. for (int i = 0; i < nc; i++) {
  9791. if (wp[i] == -INFINITY) {
  9792. dp[i] = 0.0f;
  9793. } else {
  9794. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9795. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9796. memcpy(&scvt, &s, sizeof(scvt));
  9797. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9798. sum += (ggml_float)val;
  9799. dp[i] = val;
  9800. }
  9801. }
  9802. assert(sum > 0.0);
  9803. sum = 1.0/sum;
  9804. ggml_vec_scale_f32(nc, dp, sum);
  9805. #ifndef NDEBUG
  9806. for (int i = 0; i < nc; ++i) {
  9807. assert(!isnan(dp[i]));
  9808. assert(!isinf(dp[i]));
  9809. }
  9810. #endif
  9811. }
  9812. }
  9813. static void ggml_compute_forward_soft_max(
  9814. const struct ggml_compute_params * params,
  9815. struct ggml_tensor * dst) {
  9816. const struct ggml_tensor * src0 = dst->src[0];
  9817. switch (src0->type) {
  9818. case GGML_TYPE_F32:
  9819. {
  9820. ggml_compute_forward_soft_max_f32(params, dst);
  9821. } break;
  9822. default:
  9823. {
  9824. GGML_ASSERT(false);
  9825. } break;
  9826. }
  9827. }
  9828. // ggml_compute_forward_soft_max_back
  9829. static void ggml_compute_forward_soft_max_back_f32(
  9830. const struct ggml_compute_params * params,
  9831. struct ggml_tensor * dst) {
  9832. const struct ggml_tensor * src0 = dst->src[0];
  9833. const struct ggml_tensor * src1 = dst->src[1];
  9834. GGML_ASSERT(ggml_is_contiguous(src0));
  9835. GGML_ASSERT(ggml_is_contiguous(src1));
  9836. GGML_ASSERT(ggml_is_contiguous(dst));
  9837. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9838. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9840. return;
  9841. }
  9842. // TODO: handle transposed/permuted matrices
  9843. const int ith = params->ith;
  9844. const int nth = params->nth;
  9845. const int nc = src0->ne[0];
  9846. const int nr = ggml_nrows(src0);
  9847. // rows per thread
  9848. const int dr = (nr + nth - 1)/nth;
  9849. // row range for this thread
  9850. const int ir0 = dr*ith;
  9851. const int ir1 = MIN(ir0 + dr, nr);
  9852. for (int i1 = ir0; i1 < ir1; i1++) {
  9853. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9854. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9855. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9856. #ifndef NDEBUG
  9857. for (int i = 0; i < nc; ++i) {
  9858. //printf("p[%d] = %f\n", i, p[i]);
  9859. assert(!isnan(dy[i]));
  9860. assert(!isnan(y[i]));
  9861. }
  9862. #endif
  9863. // Jii = yi - yi*yi
  9864. // Jij = -yi*yj
  9865. // J = diag(y)-y.T*y
  9866. // dx = J * dy
  9867. // dxk = sum_i(Jki * dyi)
  9868. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9869. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9870. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9871. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9872. // dxk = -yk * dot(y, dy) + yk*dyk
  9873. // dxk = yk * (- dot(y, dy) + dyk)
  9874. // dxk = yk * (dyk - dot(y, dy))
  9875. //
  9876. // post-order:
  9877. // dot_y_dy := dot(y, dy)
  9878. // dx := dy
  9879. // dx := dx - dot_y_dy
  9880. // dx := dx * y
  9881. // linear runtime, no additional memory
  9882. float dot_y_dy = 0;
  9883. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9884. ggml_vec_cpy_f32 (nc, dx, dy);
  9885. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9886. ggml_vec_mul_f32 (nc, dx, dx, y);
  9887. #ifndef NDEBUG
  9888. for (int i = 0; i < nc; ++i) {
  9889. assert(!isnan(dx[i]));
  9890. assert(!isinf(dx[i]));
  9891. }
  9892. #endif
  9893. }
  9894. }
  9895. static void ggml_compute_forward_soft_max_back(
  9896. const struct ggml_compute_params * params,
  9897. struct ggml_tensor * dst) {
  9898. const struct ggml_tensor * src0 = dst->src[0];
  9899. switch (src0->type) {
  9900. case GGML_TYPE_F32:
  9901. {
  9902. ggml_compute_forward_soft_max_back_f32(params, dst);
  9903. } break;
  9904. default:
  9905. {
  9906. GGML_ASSERT(false);
  9907. } break;
  9908. }
  9909. }
  9910. // ggml_compute_forward_alibi
  9911. static void ggml_compute_forward_alibi_f32(
  9912. const struct ggml_compute_params * params,
  9913. struct ggml_tensor * dst) {
  9914. const struct ggml_tensor * src0 = dst->src[0];
  9915. assert(params->ith == 0);
  9916. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9917. return;
  9918. }
  9919. //const int n_past = ((int32_t *) dst->op_params)[0];
  9920. const int n_head = ((int32_t *) dst->op_params)[1];
  9921. float max_bias;
  9922. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9923. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9924. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9925. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9926. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9927. const int64_t n = ggml_nrows(src0);
  9928. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9929. const size_t nb0 = src0->nb[0];
  9930. const size_t nb1 = src0->nb[1];
  9931. const size_t nb2 = src0->nb[2];
  9932. //const int nb3 = src0->nb[3];
  9933. GGML_ASSERT(nb0 == sizeof(float));
  9934. GGML_ASSERT(n_head == ne2);
  9935. // add alibi to src0 (KQ_scaled)
  9936. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9937. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9938. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9939. for (int64_t k = 0; k < ne2_ne3; k++) {
  9940. // TODO: k*nb2 or k*nb3
  9941. float m_k;
  9942. if (k < n_heads_log2_floor) {
  9943. m_k = powf(m0, k + 1);
  9944. } else {
  9945. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9946. }
  9947. for (int64_t i = 0; i < ne0; i++) {
  9948. for (int64_t j = 0; j < ne1; j++) {
  9949. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9950. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9951. pdst[0] = i * m_k + src[0];
  9952. }
  9953. }
  9954. }
  9955. }
  9956. static void ggml_compute_forward_alibi_f16(
  9957. const struct ggml_compute_params * params,
  9958. struct ggml_tensor * dst) {
  9959. const struct ggml_tensor * src0 = dst->src[0];
  9960. assert(params->ith == 0);
  9961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9962. return;
  9963. }
  9964. //const int n_past = ((int32_t *) dst->op_params)[0];
  9965. const int n_head = ((int32_t *) dst->op_params)[1];
  9966. float max_bias;
  9967. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9968. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9969. const int ne1 = src0->ne[1]; // seq_len_without_past
  9970. const int ne2 = src0->ne[2]; // n_head -> this is k
  9971. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9972. const int n = ggml_nrows(src0);
  9973. const int ne2_ne3 = n/ne1; // ne2*ne3
  9974. const int nb0 = src0->nb[0];
  9975. const int nb1 = src0->nb[1];
  9976. const int nb2 = src0->nb[2];
  9977. //const int nb3 = src0->nb[3];
  9978. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9979. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9980. GGML_ASSERT(n_head == ne2);
  9981. // add alibi to src0 (KQ_scaled)
  9982. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9983. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9984. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9985. for (int k = 0; k < ne2_ne3; k++) {
  9986. // TODO: k*nb2 or k*nb3
  9987. float m_k;
  9988. if (k < n_heads_log2_floor) {
  9989. m_k = powf(m0, k + 1);
  9990. } else {
  9991. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9992. }
  9993. for (int i = 0; i < ne0; i++) {
  9994. for (int j = 0; j < ne1; j++) {
  9995. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9996. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9997. // we return F32
  9998. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9999. }
  10000. }
  10001. }
  10002. }
  10003. static void ggml_compute_forward_alibi(
  10004. const struct ggml_compute_params * params,
  10005. struct ggml_tensor * dst) {
  10006. const struct ggml_tensor * src0 = dst->src[0];
  10007. switch (src0->type) {
  10008. case GGML_TYPE_F16:
  10009. {
  10010. ggml_compute_forward_alibi_f16(params, dst);
  10011. } break;
  10012. case GGML_TYPE_F32:
  10013. {
  10014. ggml_compute_forward_alibi_f32(params, dst);
  10015. } break;
  10016. case GGML_TYPE_Q4_0:
  10017. case GGML_TYPE_Q4_1:
  10018. case GGML_TYPE_Q5_0:
  10019. case GGML_TYPE_Q5_1:
  10020. case GGML_TYPE_Q8_0:
  10021. case GGML_TYPE_Q8_1:
  10022. case GGML_TYPE_Q2_K:
  10023. case GGML_TYPE_Q3_K:
  10024. case GGML_TYPE_Q4_K:
  10025. case GGML_TYPE_Q5_K:
  10026. case GGML_TYPE_Q6_K:
  10027. case GGML_TYPE_IQ2_XXS:
  10028. case GGML_TYPE_IQ2_XS:
  10029. case GGML_TYPE_IQ3_XXS:
  10030. case GGML_TYPE_IQ1_S:
  10031. case GGML_TYPE_IQ4_NL:
  10032. case GGML_TYPE_IQ4_XS:
  10033. case GGML_TYPE_IQ3_S:
  10034. case GGML_TYPE_IQ2_S:
  10035. case GGML_TYPE_Q8_K:
  10036. case GGML_TYPE_I8:
  10037. case GGML_TYPE_I16:
  10038. case GGML_TYPE_I32:
  10039. case GGML_TYPE_COUNT:
  10040. {
  10041. GGML_ASSERT(false);
  10042. } break;
  10043. }
  10044. }
  10045. // ggml_compute_forward_clamp
  10046. static void ggml_compute_forward_clamp_f32(
  10047. const struct ggml_compute_params * params,
  10048. struct ggml_tensor * dst) {
  10049. const struct ggml_tensor * src0 = dst->src[0];
  10050. assert(params->ith == 0);
  10051. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10052. return;
  10053. }
  10054. float min;
  10055. float max;
  10056. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10057. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10058. const int ith = params->ith;
  10059. const int nth = params->nth;
  10060. const int n = ggml_nrows(src0);
  10061. const int nc = src0->ne[0];
  10062. const size_t nb00 = src0->nb[0];
  10063. const size_t nb01 = src0->nb[1];
  10064. const size_t nb0 = dst->nb[0];
  10065. const size_t nb1 = dst->nb[1];
  10066. GGML_ASSERT( nb0 == sizeof(float));
  10067. GGML_ASSERT(nb00 == sizeof(float));
  10068. for (int j = ith; j < n; j += nth) {
  10069. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10070. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10071. for (int i = 0; i < nc; i++) {
  10072. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10073. }
  10074. }
  10075. }
  10076. static void ggml_compute_forward_clamp(
  10077. const struct ggml_compute_params * params,
  10078. struct ggml_tensor * dst) {
  10079. const struct ggml_tensor * src0 = dst->src[0];
  10080. switch (src0->type) {
  10081. case GGML_TYPE_F32:
  10082. {
  10083. ggml_compute_forward_clamp_f32(params, dst);
  10084. } break;
  10085. case GGML_TYPE_F16:
  10086. case GGML_TYPE_Q4_0:
  10087. case GGML_TYPE_Q4_1:
  10088. case GGML_TYPE_Q5_0:
  10089. case GGML_TYPE_Q5_1:
  10090. case GGML_TYPE_Q8_0:
  10091. case GGML_TYPE_Q8_1:
  10092. case GGML_TYPE_Q2_K:
  10093. case GGML_TYPE_Q3_K:
  10094. case GGML_TYPE_Q4_K:
  10095. case GGML_TYPE_Q5_K:
  10096. case GGML_TYPE_Q6_K:
  10097. case GGML_TYPE_IQ2_XXS:
  10098. case GGML_TYPE_IQ2_XS:
  10099. case GGML_TYPE_IQ3_XXS:
  10100. case GGML_TYPE_IQ1_S:
  10101. case GGML_TYPE_IQ4_NL:
  10102. case GGML_TYPE_IQ4_XS:
  10103. case GGML_TYPE_IQ3_S:
  10104. case GGML_TYPE_IQ2_S:
  10105. case GGML_TYPE_Q8_K:
  10106. case GGML_TYPE_I8:
  10107. case GGML_TYPE_I16:
  10108. case GGML_TYPE_I32:
  10109. case GGML_TYPE_COUNT:
  10110. {
  10111. GGML_ASSERT(false);
  10112. } break;
  10113. }
  10114. }
  10115. // ggml_compute_forward_rope
  10116. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10117. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10118. return 1 - MIN(1, MAX(0, y));
  10119. }
  10120. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10121. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10122. static void rope_yarn(
  10123. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10124. float * cos_theta, float * sin_theta
  10125. ) {
  10126. // Get n-d rotational scaling corrected for extrapolation
  10127. float theta_interp = freq_scale * theta_extrap;
  10128. float theta = theta_interp;
  10129. if (ext_factor != 0.0f) {
  10130. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10131. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10132. // Get n-d magnitude scaling corrected for interpolation
  10133. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10134. }
  10135. *cos_theta = cosf(theta) * mscale;
  10136. *sin_theta = sinf(theta) * mscale;
  10137. }
  10138. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10139. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10140. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10141. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10142. }
  10143. static void ggml_rope_cache_init(
  10144. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10145. float * cache, float sin_sign, float theta_scale
  10146. ) {
  10147. float theta = theta_base;
  10148. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10149. rope_yarn(
  10150. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10151. );
  10152. cache[i0 + 1] *= sin_sign;
  10153. theta *= theta_scale;
  10154. }
  10155. }
  10156. GGML_CALL void ggml_rope_yarn_corr_dims(
  10157. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10158. ) {
  10159. // start and end correction dims
  10160. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10161. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10162. dims[0] = MAX(0, start);
  10163. dims[1] = MIN(n_dims - 1, end);
  10164. }
  10165. static void ggml_compute_forward_rope_f32(
  10166. const struct ggml_compute_params * params,
  10167. struct ggml_tensor * dst,
  10168. const bool forward) {
  10169. const struct ggml_tensor * src0 = dst->src[0];
  10170. const struct ggml_tensor * src1 = dst->src[1];
  10171. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10172. return;
  10173. }
  10174. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10175. // these two only relevant for xPos RoPE:
  10176. float xpos_base;
  10177. bool xpos_down;
  10178. //const int n_past = ((int32_t *) dst->op_params)[0];
  10179. const int n_dims = ((int32_t *) dst->op_params)[1];
  10180. const int mode = ((int32_t *) dst->op_params)[2];
  10181. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10182. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10183. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10184. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10185. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10186. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10187. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10188. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10189. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10190. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10191. GGML_TENSOR_UNARY_OP_LOCALS
  10192. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10193. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10194. GGML_ASSERT(nb00 == sizeof(float));
  10195. const int ith = params->ith;
  10196. const int nth = params->nth;
  10197. const int nr = ggml_nrows(dst);
  10198. GGML_ASSERT(n_dims <= ne0);
  10199. GGML_ASSERT(n_dims % 2 == 0);
  10200. // rows per thread
  10201. const int dr = (nr + nth - 1)/nth;
  10202. // row range for this thread
  10203. const int ir0 = dr*ith;
  10204. const int ir1 = MIN(ir0 + dr, nr);
  10205. // row index used to determine which thread to use
  10206. int ir = 0;
  10207. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10208. const float inv_ndims = -1.f/n_dims;
  10209. float corr_dims[2];
  10210. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10211. const bool is_neox = mode & 2;
  10212. const bool is_glm = mode & 4;
  10213. // backward process uses inverse rotation by cos and sin.
  10214. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10215. // this essentially just switches the sign of sin.
  10216. const float sin_sign = forward ? 1.0f : -1.0f;
  10217. const int32_t * pos = (const int32_t *) src1->data;
  10218. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10219. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10220. const int64_t p = pos[i2];
  10221. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10222. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10223. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10224. }
  10225. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10226. if (ir++ < ir0) continue;
  10227. if (ir > ir1) break;
  10228. float theta_base = (float)p;
  10229. if (is_glm) {
  10230. theta_base = MIN(p, n_ctx - 2);
  10231. float block_theta = MAX(p - (n_ctx - 2), 0);
  10232. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10233. const float cos_theta = cosf(theta_base);
  10234. const float sin_theta = sinf(theta_base) * sin_sign;
  10235. const float cos_block_theta = cosf(block_theta);
  10236. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10237. theta_base *= theta_scale;
  10238. block_theta *= theta_scale;
  10239. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10240. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10241. const float x0 = src[0];
  10242. const float x1 = src[n_dims/2];
  10243. const float x2 = src[n_dims];
  10244. const float x3 = src[n_dims/2*3];
  10245. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10246. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10247. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10248. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10249. }
  10250. } else if (!is_neox) {
  10251. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10252. const float cos_theta = cache[i0 + 0];
  10253. const float sin_theta = cache[i0 + 1];
  10254. // zeta scaling for xPos only:
  10255. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10256. if (xpos_down) zeta = 1.0f / zeta;
  10257. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10258. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10259. const float x0 = src[0];
  10260. const float x1 = src[1];
  10261. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10262. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10263. }
  10264. } else {
  10265. // TODO: this might be wrong for ne0 != n_dims - need double check
  10266. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10267. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10268. theta_base *= freq_scale;
  10269. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10270. if (ic < n_dims) {
  10271. const int64_t ib = 0;
  10272. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10273. float cur_rot = inv_ndims * ic - ib;
  10274. float cos_theta, sin_theta;
  10275. rope_yarn(
  10276. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10277. &cos_theta, &sin_theta
  10278. );
  10279. sin_theta *= sin_sign;
  10280. theta_base *= theta_scale;
  10281. const int64_t i0 = ib*n_dims + ic/2;
  10282. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10283. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10284. const float x0 = src[0];
  10285. const float x1 = src[n_dims/2];
  10286. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10287. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10288. } else {
  10289. const int64_t i0 = ic;
  10290. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10291. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10292. dst_data[0] = src[0];
  10293. dst_data[1] = src[1];
  10294. }
  10295. }
  10296. }
  10297. }
  10298. }
  10299. }
  10300. }
  10301. static void ggml_compute_forward_rope_f16(
  10302. const struct ggml_compute_params * params,
  10303. struct ggml_tensor * dst,
  10304. const bool forward) {
  10305. const struct ggml_tensor * src0 = dst->src[0];
  10306. const struct ggml_tensor * src1 = dst->src[1];
  10307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10308. return;
  10309. }
  10310. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10311. //const int n_past = ((int32_t *) dst->op_params)[0];
  10312. const int n_dims = ((int32_t *) dst->op_params)[1];
  10313. const int mode = ((int32_t *) dst->op_params)[2];
  10314. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10315. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10316. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10317. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10318. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10319. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10320. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10321. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10322. GGML_TENSOR_UNARY_OP_LOCALS
  10323. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10324. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10325. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10326. const int ith = params->ith;
  10327. const int nth = params->nth;
  10328. const int nr = ggml_nrows(dst);
  10329. GGML_ASSERT(n_dims <= ne0);
  10330. GGML_ASSERT(n_dims % 2 == 0);
  10331. // rows per thread
  10332. const int dr = (nr + nth - 1)/nth;
  10333. // row range for this thread
  10334. const int ir0 = dr*ith;
  10335. const int ir1 = MIN(ir0 + dr, nr);
  10336. // row index used to determine which thread to use
  10337. int ir = 0;
  10338. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10339. const float inv_ndims = -1.f/n_dims;
  10340. float corr_dims[2];
  10341. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10342. const bool is_neox = mode & 2;
  10343. const bool is_glm = mode & 4;
  10344. // backward process uses inverse rotation by cos and sin.
  10345. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10346. // this essentially just switches the sign of sin.
  10347. const float sin_sign = forward ? 1.0f : -1.0f;
  10348. const int32_t * pos = (const int32_t *) src1->data;
  10349. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10350. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10351. const int64_t p = pos[i2];
  10352. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10353. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10354. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10355. }
  10356. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10357. if (ir++ < ir0) continue;
  10358. if (ir > ir1) break;
  10359. float theta_base = (float)p;
  10360. if (is_glm) {
  10361. theta_base = MIN(p, n_ctx - 2);
  10362. float block_theta = MAX(p - (n_ctx - 2), 0);
  10363. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10364. const float cos_theta = cosf(theta_base);
  10365. const float sin_theta = sinf(theta_base) * sin_sign;
  10366. const float cos_block_theta = cosf(block_theta);
  10367. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10368. theta_base *= theta_scale;
  10369. block_theta *= theta_scale;
  10370. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10371. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10372. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10373. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10374. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10375. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10376. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10377. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10378. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10379. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10380. }
  10381. } else if (!is_neox) {
  10382. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10383. const float cos_theta = cache[i0 + 0];
  10384. const float sin_theta = cache[i0 + 1];
  10385. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10386. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10387. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10388. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10389. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10390. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10391. }
  10392. } else {
  10393. // TODO: this might be wrong for ne0 != n_dims - need double check
  10394. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10395. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10396. theta_base *= freq_scale;
  10397. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10398. if (ic < n_dims) {
  10399. const int64_t ib = 0;
  10400. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10401. float cur_rot = inv_ndims * ic - ib;
  10402. float cos_theta, sin_theta;
  10403. rope_yarn(
  10404. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10405. &cos_theta, &sin_theta
  10406. );
  10407. sin_theta *= sin_sign;
  10408. theta_base *= theta_scale;
  10409. const int64_t i0 = ib*n_dims + ic/2;
  10410. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10411. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10412. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10413. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10414. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10415. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10416. } else {
  10417. const int64_t i0 = ic;
  10418. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10419. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10420. dst_data[0] = src[0];
  10421. dst_data[1] = src[1];
  10422. }
  10423. }
  10424. }
  10425. }
  10426. }
  10427. }
  10428. }
  10429. static void ggml_compute_forward_rope(
  10430. const struct ggml_compute_params * params,
  10431. struct ggml_tensor * dst) {
  10432. const struct ggml_tensor * src0 = dst->src[0];
  10433. switch (src0->type) {
  10434. case GGML_TYPE_F16:
  10435. {
  10436. ggml_compute_forward_rope_f16(params, dst, true);
  10437. } break;
  10438. case GGML_TYPE_F32:
  10439. {
  10440. ggml_compute_forward_rope_f32(params, dst, true);
  10441. } break;
  10442. default:
  10443. {
  10444. GGML_ASSERT(false);
  10445. } break;
  10446. }
  10447. }
  10448. // ggml_compute_forward_rope_back
  10449. static void ggml_compute_forward_rope_back(
  10450. const struct ggml_compute_params * params,
  10451. struct ggml_tensor * dst) {
  10452. const struct ggml_tensor * src0 = dst->src[0];
  10453. switch (src0->type) {
  10454. case GGML_TYPE_F16:
  10455. {
  10456. ggml_compute_forward_rope_f16(params, dst, false);
  10457. } break;
  10458. case GGML_TYPE_F32:
  10459. {
  10460. ggml_compute_forward_rope_f32(params, dst, false);
  10461. } break;
  10462. default:
  10463. {
  10464. GGML_ASSERT(false);
  10465. } break;
  10466. }
  10467. }
  10468. // ggml_compute_forward_conv_transpose_1d
  10469. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10470. const struct ggml_compute_params * params,
  10471. struct ggml_tensor * dst) {
  10472. const struct ggml_tensor * src0 = dst->src[0];
  10473. const struct ggml_tensor * src1 = dst->src[1];
  10474. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10475. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10476. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10477. int64_t t0 = ggml_perf_time_us();
  10478. UNUSED(t0);
  10479. GGML_TENSOR_BINARY_OP_LOCALS
  10480. const int ith = params->ith;
  10481. const int nth = params->nth;
  10482. const int nk = ne00*ne01*ne02;
  10483. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10484. GGML_ASSERT(nb10 == sizeof(float));
  10485. if (params->type == GGML_TASK_TYPE_INIT) {
  10486. if (ith != 0) {
  10487. return;
  10488. }
  10489. memset(params->wdata, 0, params->wsize);
  10490. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10491. {
  10492. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10494. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10495. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10496. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10497. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10498. dst_data[i00*ne02 + i02] = src[i00];
  10499. }
  10500. }
  10501. }
  10502. }
  10503. // permute source data (src1) from (L x Cin) to (Cin x L)
  10504. {
  10505. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10506. ggml_fp16_t * dst_data = wdata;
  10507. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10508. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10509. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10510. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10511. }
  10512. }
  10513. }
  10514. // need to zero dst since we are accumulating into it
  10515. memset(dst->data, 0, ggml_nbytes(dst));
  10516. return;
  10517. }
  10518. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10519. return;
  10520. }
  10521. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10522. // total rows in dst
  10523. const int nr = ne1;
  10524. // rows per thread
  10525. const int dr = (nr + nth - 1)/nth;
  10526. // row range for this thread
  10527. const int ir0 = dr*ith;
  10528. const int ir1 = MIN(ir0 + dr, nr);
  10529. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10530. ggml_fp16_t * const wdata_src = wdata + nk;
  10531. for (int i1 = ir0; i1 < ir1; i1++) {
  10532. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10533. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10534. for (int i10 = 0; i10 < ne10; i10++) {
  10535. const int i1n = i10*ne11;
  10536. for (int i00 = 0; i00 < ne00; i00++) {
  10537. float v = 0;
  10538. ggml_vec_dot_f16(ne02, &v, 0,
  10539. (ggml_fp16_t *) wdata_src + i1n, 0,
  10540. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10541. dst_data[i10*s0 + i00] += v;
  10542. }
  10543. }
  10544. }
  10545. }
  10546. static void ggml_compute_forward_conv_transpose_1d_f32(
  10547. const struct ggml_compute_params * params,
  10548. struct ggml_tensor * dst) {
  10549. const struct ggml_tensor * src0 = dst->src[0];
  10550. const struct ggml_tensor * src1 = dst->src[1];
  10551. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10552. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10553. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10554. int64_t t0 = ggml_perf_time_us();
  10555. UNUSED(t0);
  10556. GGML_TENSOR_BINARY_OP_LOCALS
  10557. const int ith = params->ith;
  10558. const int nth = params->nth;
  10559. const int nk = ne00*ne01*ne02;
  10560. GGML_ASSERT(nb00 == sizeof(float));
  10561. GGML_ASSERT(nb10 == sizeof(float));
  10562. if (params->type == GGML_TASK_TYPE_INIT) {
  10563. if (ith != 0) {
  10564. return;
  10565. }
  10566. memset(params->wdata, 0, params->wsize);
  10567. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10568. {
  10569. float * const wdata = (float *) params->wdata + 0;
  10570. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10571. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10572. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10573. float * dst_data = wdata + i01*ne00*ne02;
  10574. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10575. dst_data[i00*ne02 + i02] = src[i00];
  10576. }
  10577. }
  10578. }
  10579. }
  10580. // prepare source data (src1)
  10581. {
  10582. float * const wdata = (float *) params->wdata + nk;
  10583. float * dst_data = wdata;
  10584. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10585. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10586. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10587. dst_data[i10*ne11 + i11] = src[i10];
  10588. }
  10589. }
  10590. }
  10591. // need to zero dst since we are accumulating into it
  10592. memset(dst->data, 0, ggml_nbytes(dst));
  10593. return;
  10594. }
  10595. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10596. return;
  10597. }
  10598. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10599. // total rows in dst
  10600. const int nr = ne1;
  10601. // rows per thread
  10602. const int dr = (nr + nth - 1)/nth;
  10603. // row range for this thread
  10604. const int ir0 = dr*ith;
  10605. const int ir1 = MIN(ir0 + dr, nr);
  10606. float * const wdata = (float *) params->wdata + 0;
  10607. float * const wdata_src = wdata + nk;
  10608. for (int i1 = ir0; i1 < ir1; i1++) {
  10609. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10610. float * wdata_kernel = wdata + i1*ne02*ne00;
  10611. for (int i10 = 0; i10 < ne10; i10++) {
  10612. const int i1n = i10*ne11;
  10613. for (int i00 = 0; i00 < ne00; i00++) {
  10614. float v = 0;
  10615. ggml_vec_dot_f32(ne02, &v, 0,
  10616. wdata_src + i1n, 0,
  10617. wdata_kernel + i00*ne02, 0, 1);
  10618. dst_data[i10*s0 + i00] += v;
  10619. }
  10620. }
  10621. }
  10622. }
  10623. static void ggml_compute_forward_conv_transpose_1d(
  10624. const struct ggml_compute_params * params,
  10625. struct ggml_tensor * dst) {
  10626. const struct ggml_tensor * src0 = dst->src[0];
  10627. switch (src0->type) {
  10628. case GGML_TYPE_F16:
  10629. {
  10630. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10631. } break;
  10632. case GGML_TYPE_F32:
  10633. {
  10634. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10635. } break;
  10636. default:
  10637. {
  10638. GGML_ASSERT(false);
  10639. } break;
  10640. }
  10641. }
  10642. // src0: kernel [OC, IC, KH, KW]
  10643. // src1: image [N, IC, IH, IW]
  10644. // dst: result [N, OH, OW, IC*KH*KW]
  10645. static void ggml_compute_forward_im2col_f32(
  10646. const struct ggml_compute_params * params,
  10647. struct ggml_tensor * dst) {
  10648. const struct ggml_tensor * src0 = dst->src[0];
  10649. const struct ggml_tensor * src1 = dst->src[1];
  10650. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10651. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10652. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10653. int64_t t0 = ggml_perf_time_us();
  10654. UNUSED(t0);
  10655. GGML_TENSOR_BINARY_OP_LOCALS;
  10656. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10657. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10658. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10659. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10660. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10661. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10662. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10663. const int ith = params->ith;
  10664. const int nth = params->nth;
  10665. const int64_t N = is_2D ? ne13 : ne12;
  10666. const int64_t IC = is_2D ? ne12 : ne11;
  10667. const int64_t IH = is_2D ? ne11 : 1;
  10668. const int64_t IW = ne10;
  10669. const int64_t KH = is_2D ? ne01 : 1;
  10670. const int64_t KW = ne00;
  10671. const int64_t OH = is_2D ? ne2 : 1;
  10672. const int64_t OW = ne1;
  10673. int ofs0 = is_2D ? nb13 : nb12;
  10674. int ofs1 = is_2D ? nb12 : nb11;
  10675. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10676. GGML_ASSERT(nb10 == sizeof(float));
  10677. if (params->type == GGML_TASK_TYPE_INIT) {
  10678. return;
  10679. }
  10680. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10681. return;
  10682. }
  10683. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10684. {
  10685. float * const wdata = (float *) dst->data;
  10686. for (int64_t in = 0; in < N; in++) {
  10687. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10688. for (int64_t iow = 0; iow < OW; iow++) {
  10689. for (int64_t iic = ith; iic < IC; iic += nth) {
  10690. // micro kernel
  10691. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10692. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10693. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10694. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10695. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10696. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10697. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10698. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10699. } else {
  10700. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10701. }
  10702. }
  10703. }
  10704. }
  10705. }
  10706. }
  10707. }
  10708. }
  10709. }
  10710. // src0: kernel [OC, IC, KH, KW]
  10711. // src1: image [N, IC, IH, IW]
  10712. // dst: result [N, OH, OW, IC*KH*KW]
  10713. static void ggml_compute_forward_im2col_f16(
  10714. const struct ggml_compute_params * params,
  10715. struct ggml_tensor * dst) {
  10716. const struct ggml_tensor * src0 = dst->src[0];
  10717. const struct ggml_tensor * src1 = dst->src[1];
  10718. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10719. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10720. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10721. int64_t t0 = ggml_perf_time_us();
  10722. UNUSED(t0);
  10723. GGML_TENSOR_BINARY_OP_LOCALS;
  10724. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10725. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10726. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10727. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10728. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10729. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10730. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10731. const int ith = params->ith;
  10732. const int nth = params->nth;
  10733. const int64_t N = is_2D ? ne13 : ne12;
  10734. const int64_t IC = is_2D ? ne12 : ne11;
  10735. const int64_t IH = is_2D ? ne11 : 1;
  10736. const int64_t IW = ne10;
  10737. const int64_t KH = is_2D ? ne01 : 1;
  10738. const int64_t KW = ne00;
  10739. const int64_t OH = is_2D ? ne2 : 1;
  10740. const int64_t OW = ne1;
  10741. int ofs0 = is_2D ? nb13 : nb12;
  10742. int ofs1 = is_2D ? nb12 : nb11;
  10743. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10744. GGML_ASSERT(nb10 == sizeof(float));
  10745. if (params->type == GGML_TASK_TYPE_INIT) {
  10746. return;
  10747. }
  10748. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10749. return;
  10750. }
  10751. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10752. {
  10753. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10754. for (int64_t in = 0; in < N; in++) {
  10755. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10756. for (int64_t iow = 0; iow < OW; iow++) {
  10757. for (int64_t iic = ith; iic < IC; iic += nth) {
  10758. // micro kernel
  10759. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10760. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10761. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10762. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10763. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10764. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10765. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10766. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10767. } else {
  10768. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10769. }
  10770. }
  10771. }
  10772. }
  10773. }
  10774. }
  10775. }
  10776. }
  10777. }
  10778. static void ggml_compute_forward_im2col(
  10779. const struct ggml_compute_params * params,
  10780. struct ggml_tensor * dst) {
  10781. switch (dst->type) {
  10782. case GGML_TYPE_F16:
  10783. {
  10784. ggml_compute_forward_im2col_f16(params, dst);
  10785. } break;
  10786. case GGML_TYPE_F32:
  10787. {
  10788. ggml_compute_forward_im2col_f32(params, dst);
  10789. } break;
  10790. default:
  10791. {
  10792. GGML_ASSERT(false);
  10793. } break;
  10794. }
  10795. }
  10796. // ggml_compute_forward_conv_transpose_2d
  10797. static void ggml_compute_forward_conv_transpose_2d(
  10798. const struct ggml_compute_params * params,
  10799. struct ggml_tensor * dst) {
  10800. const struct ggml_tensor * src0 = dst->src[0];
  10801. const struct ggml_tensor * src1 = dst->src[1];
  10802. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10803. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10804. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10805. int64_t t0 = ggml_perf_time_us();
  10806. UNUSED(t0);
  10807. GGML_TENSOR_BINARY_OP_LOCALS
  10808. const int ith = params->ith;
  10809. const int nth = params->nth;
  10810. const int nk = ne00*ne01*ne02*ne03;
  10811. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10812. GGML_ASSERT(nb10 == sizeof(float));
  10813. if (params->type == GGML_TASK_TYPE_INIT) {
  10814. if (ith != 0) {
  10815. return;
  10816. }
  10817. memset(params->wdata, 0, params->wsize);
  10818. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10819. {
  10820. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10821. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10822. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10823. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10824. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10825. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10826. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10827. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10828. }
  10829. }
  10830. }
  10831. }
  10832. }
  10833. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10834. {
  10835. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10836. for (int i12 = 0; i12 < ne12; i12++) {
  10837. for (int i11 = 0; i11 < ne11; i11++) {
  10838. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10839. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10840. for (int i10 = 0; i10 < ne10; i10++) {
  10841. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10842. }
  10843. }
  10844. }
  10845. }
  10846. memset(dst->data, 0, ggml_nbytes(dst));
  10847. return;
  10848. }
  10849. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10850. return;
  10851. }
  10852. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10853. // total patches in dst
  10854. const int np = ne2;
  10855. // patches per thread
  10856. const int dp = (np + nth - 1)/nth;
  10857. // patch range for this thread
  10858. const int ip0 = dp*ith;
  10859. const int ip1 = MIN(ip0 + dp, np);
  10860. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10861. ggml_fp16_t * const wdata_src = wdata + nk;
  10862. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10863. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10864. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10865. for (int i11 = 0; i11 < ne11; i11++) {
  10866. for (int i10 = 0; i10 < ne10; i10++) {
  10867. const int i1n = i11*ne10*ne12 + i10*ne12;
  10868. for (int i01 = 0; i01 < ne01; i01++) {
  10869. for (int i00 = 0; i00 < ne00; i00++) {
  10870. float v = 0;
  10871. ggml_vec_dot_f16(ne03, &v, 0,
  10872. wdata_src + i1n, 0,
  10873. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10874. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10875. }
  10876. }
  10877. }
  10878. }
  10879. }
  10880. }
  10881. // ggml_compute_forward_pool_1d_sk_p0
  10882. static void ggml_compute_forward_pool_1d_sk_p0(
  10883. const struct ggml_compute_params * params,
  10884. const enum ggml_op_pool op,
  10885. const int k,
  10886. struct ggml_tensor * dst) {
  10887. const struct ggml_tensor * src = dst->src[0];
  10888. assert(src->type == GGML_TYPE_F32);
  10889. assert(params->ith == 0);
  10890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10891. return;
  10892. }
  10893. const char * cdata = (const char *)src->data;
  10894. const char * const data_end = cdata + ggml_nbytes(src);
  10895. float * drow = (float *)dst->data;
  10896. const int64_t rs = dst->ne[0];
  10897. while (cdata < data_end) {
  10898. const float * const srow = (const float *)cdata;
  10899. int j = 0;
  10900. for (int64_t i = 0; i < rs; ++i) {
  10901. switch (op) {
  10902. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10903. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10904. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10905. }
  10906. for (int ki = 0; ki < k; ++ki) {
  10907. switch (op) {
  10908. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10909. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10910. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10911. }
  10912. ++j;
  10913. }
  10914. switch (op) {
  10915. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10916. case GGML_OP_POOL_MAX: break;
  10917. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10918. }
  10919. }
  10920. cdata += src->nb[1];
  10921. drow += rs;
  10922. }
  10923. }
  10924. // ggml_compute_forward_pool_1d
  10925. static void ggml_compute_forward_pool_1d(
  10926. const struct ggml_compute_params * params,
  10927. struct ggml_tensor * dst) {
  10928. const int32_t * opts = (const int32_t *)dst->op_params;
  10929. enum ggml_op_pool op = opts[0];
  10930. const int k0 = opts[1];
  10931. const int s0 = opts[2];
  10932. const int p0 = opts[3];
  10933. GGML_ASSERT(p0 == 0); // padding not supported
  10934. GGML_ASSERT(k0 == s0); // only s = k supported
  10935. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10936. }
  10937. // ggml_compute_forward_pool_2d
  10938. static void ggml_compute_forward_pool_2d(
  10939. const struct ggml_compute_params * params,
  10940. struct ggml_tensor * dst) {
  10941. const struct ggml_tensor * src = dst->src[0];
  10942. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10943. GGML_ASSERT(params->ith == 0);
  10944. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10945. return;
  10946. }
  10947. const int32_t * opts = (const int32_t *)dst->op_params;
  10948. enum ggml_op_pool op = opts[0];
  10949. const int k0 = opts[1];
  10950. const int k1 = opts[2];
  10951. const int s0 = opts[3];
  10952. const int s1 = opts[4];
  10953. const int p0 = opts[5];
  10954. const int p1 = opts[6];
  10955. const char * cdata = (const char*)src->data;
  10956. const char * const data_end = cdata + ggml_nbytes(src);
  10957. const int64_t px = dst->ne[0];
  10958. const int64_t py = dst->ne[1];
  10959. const int64_t pa = px * py;
  10960. float * dplane = (float *)dst->data;
  10961. const int ka = k0 * k1;
  10962. const int offset0 = -p0;
  10963. const int offset1 = -p1;
  10964. while (cdata < data_end) {
  10965. for (int oy = 0; oy < py; ++oy) {
  10966. float * const drow = dplane + oy * px;
  10967. for (int ox = 0; ox < px; ++ox) {
  10968. float * const out = drow + ox;
  10969. switch (op) {
  10970. case GGML_OP_POOL_AVG: *out = 0; break;
  10971. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10972. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10973. }
  10974. const int ix = offset0 + ox * s0;
  10975. const int iy = offset1 + oy * s1;
  10976. for (int ky = 0; ky < k1; ++ky) {
  10977. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10978. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10979. for (int kx = 0; kx < k0; ++kx) {
  10980. int j = ix + kx;
  10981. if (j < 0 || j >= src->ne[0]) continue;
  10982. switch (op) {
  10983. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10984. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10985. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10986. }
  10987. }
  10988. }
  10989. switch (op) {
  10990. case GGML_OP_POOL_AVG: *out /= ka; break;
  10991. case GGML_OP_POOL_MAX: break;
  10992. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10993. }
  10994. }
  10995. }
  10996. cdata += src->nb[2];
  10997. dplane += pa;
  10998. }
  10999. }
  11000. // ggml_compute_forward_upscale
  11001. static void ggml_compute_forward_upscale_f32(
  11002. const struct ggml_compute_params * params,
  11003. struct ggml_tensor * dst) {
  11004. const struct ggml_tensor * src0 = dst->src[0];
  11005. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11006. return;
  11007. }
  11008. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11009. const int ith = params->ith;
  11010. const int nth = params->nth;
  11011. GGML_TENSOR_UNARY_OP_LOCALS
  11012. const int scale_factor = dst->op_params[0];
  11013. // TODO: optimize
  11014. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11015. const int64_t i03 = i3;
  11016. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11017. const int64_t i02 = i2;
  11018. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11019. const int64_t i01 = i1 / scale_factor;
  11020. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11021. const int64_t i00 = i0 / scale_factor;
  11022. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11023. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11024. *y = *x;
  11025. }
  11026. }
  11027. }
  11028. }
  11029. }
  11030. static void ggml_compute_forward_upscale(
  11031. const struct ggml_compute_params * params,
  11032. struct ggml_tensor * dst) {
  11033. const struct ggml_tensor * src0 = dst->src[0];
  11034. switch (src0->type) {
  11035. case GGML_TYPE_F32:
  11036. {
  11037. ggml_compute_forward_upscale_f32(params, dst);
  11038. } break;
  11039. default:
  11040. {
  11041. GGML_ASSERT(false);
  11042. } break;
  11043. }
  11044. }
  11045. // ggml_compute_forward_pad
  11046. static void ggml_compute_forward_pad_f32(
  11047. const struct ggml_compute_params * params,
  11048. struct ggml_tensor * dst) {
  11049. const struct ggml_tensor * src0 = dst->src[0];
  11050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11051. return;
  11052. }
  11053. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11054. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11055. const int ith = params->ith;
  11056. const int nth = params->nth;
  11057. GGML_TENSOR_UNARY_OP_LOCALS
  11058. float * dst_ptr = (float *) dst->data;
  11059. // TODO: optimize
  11060. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11061. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11062. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11063. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11064. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11065. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11066. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11067. dst_ptr[dst_idx] = *src_ptr;
  11068. } else {
  11069. dst_ptr[dst_idx] = 0;
  11070. }
  11071. }
  11072. }
  11073. }
  11074. }
  11075. }
  11076. static void ggml_compute_forward_pad(
  11077. const struct ggml_compute_params * params,
  11078. struct ggml_tensor * dst) {
  11079. const struct ggml_tensor * src0 = dst->src[0];
  11080. switch (src0->type) {
  11081. case GGML_TYPE_F32:
  11082. {
  11083. ggml_compute_forward_pad_f32(params, dst);
  11084. } break;
  11085. default:
  11086. {
  11087. GGML_ASSERT(false);
  11088. } break;
  11089. }
  11090. }
  11091. // ggml_compute_forward_arange
  11092. static void ggml_compute_forward_arange_f32(
  11093. const struct ggml_compute_params * params,
  11094. struct ggml_tensor * dst) {
  11095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11096. return;
  11097. }
  11098. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11099. const int ith = params->ith;
  11100. const int nth = params->nth;
  11101. const float start = ggml_get_op_params_f32(dst, 0);
  11102. const float stop = ggml_get_op_params_f32(dst, 1);
  11103. const float step = ggml_get_op_params_f32(dst, 2);
  11104. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11105. GGML_ASSERT(ggml_nelements(dst) == steps);
  11106. for (int64_t i = ith; i < steps; i+= nth) {
  11107. float value = start + step * i;
  11108. ((float *)dst->data)[i] = value;
  11109. }
  11110. }
  11111. static void ggml_compute_forward_arange(
  11112. const struct ggml_compute_params * params,
  11113. struct ggml_tensor * dst) {
  11114. switch (dst->type) {
  11115. case GGML_TYPE_F32:
  11116. {
  11117. ggml_compute_forward_arange_f32(params, dst);
  11118. } break;
  11119. default:
  11120. {
  11121. GGML_ASSERT(false);
  11122. } break;
  11123. }
  11124. }
  11125. static void ggml_compute_forward_timestep_embedding_f32(
  11126. const struct ggml_compute_params * params,
  11127. struct ggml_tensor * dst) {
  11128. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11129. return;
  11130. }
  11131. const struct ggml_tensor * src0 = dst->src[0];
  11132. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11133. const int ith = params->ith;
  11134. const int nth = params->nth;
  11135. GGML_TENSOR_UNARY_OP_LOCALS
  11136. const int dim = ggml_get_op_params_i32(dst, 0);
  11137. const int max_period = ggml_get_op_params_i32(dst, 1);
  11138. int half = dim / 2;
  11139. for (int64_t i = 0; i < ne00; i++) {
  11140. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11141. for (int64_t j = ith; j < half; j += nth) {
  11142. float timestep = ((float *)src0->data)[i];
  11143. float freq = (float)expf(-logf(max_period) * j / half);
  11144. float arg = timestep * freq;
  11145. embed_data[j] = cosf(arg);
  11146. embed_data[j + half] = sinf(arg);
  11147. }
  11148. if (dim % 2 != 0 && ith == 0) {
  11149. embed_data[dim] = 0.f;
  11150. }
  11151. }
  11152. }
  11153. static void ggml_compute_forward_timestep_embedding(
  11154. const struct ggml_compute_params * params,
  11155. struct ggml_tensor * dst) {
  11156. const struct ggml_tensor * src0 = dst->src[0];
  11157. switch (src0->type) {
  11158. case GGML_TYPE_F32:
  11159. {
  11160. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11161. } break;
  11162. default:
  11163. {
  11164. GGML_ASSERT(false);
  11165. } break;
  11166. }
  11167. }
  11168. // ggml_compute_forward_argsort
  11169. static void ggml_compute_forward_argsort_f32(
  11170. const struct ggml_compute_params * params,
  11171. struct ggml_tensor * dst) {
  11172. const struct ggml_tensor * src0 = dst->src[0];
  11173. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11174. return;
  11175. }
  11176. GGML_TENSOR_UNARY_OP_LOCALS
  11177. GGML_ASSERT(nb0 == sizeof(float));
  11178. const int ith = params->ith;
  11179. const int nth = params->nth;
  11180. const int64_t nr = ggml_nrows(src0);
  11181. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11182. for (int64_t i = ith; i < nr; i += nth) {
  11183. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11184. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11185. for (int64_t j = 0; j < ne0; j++) {
  11186. dst_data[j] = j;
  11187. }
  11188. // C doesn't have a functional sort, so we do a bubble sort instead
  11189. for (int64_t j = 0; j < ne0; j++) {
  11190. for (int64_t k = j + 1; k < ne0; k++) {
  11191. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11192. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11193. int32_t tmp = dst_data[j];
  11194. dst_data[j] = dst_data[k];
  11195. dst_data[k] = tmp;
  11196. }
  11197. }
  11198. }
  11199. }
  11200. }
  11201. static void ggml_compute_forward_argsort(
  11202. const struct ggml_compute_params * params,
  11203. struct ggml_tensor * dst) {
  11204. const struct ggml_tensor * src0 = dst->src[0];
  11205. switch (src0->type) {
  11206. case GGML_TYPE_F32:
  11207. {
  11208. ggml_compute_forward_argsort_f32(params, dst);
  11209. } break;
  11210. default:
  11211. {
  11212. GGML_ASSERT(false);
  11213. } break;
  11214. }
  11215. }
  11216. // ggml_compute_forward_flash_attn
  11217. static void ggml_compute_forward_flash_attn_f32(
  11218. const struct ggml_compute_params * params,
  11219. const bool masked,
  11220. struct ggml_tensor * dst) {
  11221. const struct ggml_tensor * q = dst->src[0];
  11222. const struct ggml_tensor * k = dst->src[1];
  11223. const struct ggml_tensor * v = dst->src[2];
  11224. int64_t t0 = ggml_perf_time_us();
  11225. UNUSED(t0);
  11226. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11227. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11228. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11229. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11230. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11231. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11232. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11233. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11234. const int ith = params->ith;
  11235. const int nth = params->nth;
  11236. const int64_t D = neq0;
  11237. const int64_t N = neq1;
  11238. const int64_t P = nek1 - N;
  11239. const int64_t M = P + N;
  11240. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11241. GGML_ASSERT(ne0 == D);
  11242. GGML_ASSERT(ne1 == N);
  11243. GGML_ASSERT(P >= 0);
  11244. GGML_ASSERT(nbq0 == sizeof(float));
  11245. GGML_ASSERT(nbk0 == sizeof(float));
  11246. GGML_ASSERT(nbv0 == sizeof(float));
  11247. GGML_ASSERT(neq0 == D);
  11248. GGML_ASSERT(nek0 == D);
  11249. GGML_ASSERT(nev1 == D);
  11250. GGML_ASSERT(neq1 == N);
  11251. GGML_ASSERT(nek1 == N + P);
  11252. GGML_ASSERT(nev1 == D);
  11253. // dst cannot be transposed or permuted
  11254. GGML_ASSERT(nb0 == sizeof(float));
  11255. GGML_ASSERT(nb0 <= nb1);
  11256. GGML_ASSERT(nb1 <= nb2);
  11257. GGML_ASSERT(nb2 <= nb3);
  11258. if (params->type == GGML_TASK_TYPE_INIT) {
  11259. return;
  11260. }
  11261. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11262. return;
  11263. }
  11264. // parallelize by q rows using ggml_vec_dot_f32
  11265. // total rows in q
  11266. const int nr = neq1*neq2*neq3;
  11267. // rows per thread
  11268. const int dr = (nr + nth - 1)/nth;
  11269. // row range for this thread
  11270. const int ir0 = dr*ith;
  11271. const int ir1 = MIN(ir0 + dr, nr);
  11272. const float scale = 1.0f/sqrtf(D);
  11273. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11274. for (int ir = ir0; ir < ir1; ++ir) {
  11275. // q indices
  11276. const int iq3 = ir/(neq2*neq1);
  11277. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11278. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11279. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11280. for (int i = M; i < Mup; ++i) {
  11281. S[i] = -INFINITY;
  11282. }
  11283. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11284. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11285. // k indices
  11286. const int ik3 = iq3;
  11287. const int ik2 = iq2 % nek2;
  11288. const int ik1 = ic;
  11289. // S indices
  11290. const int i1 = ik1;
  11291. ggml_vec_dot_f32(neq0,
  11292. S + i1, 0,
  11293. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11294. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11295. }
  11296. // scale
  11297. ggml_vec_scale_f32(masked_begin, S, scale);
  11298. for (int64_t i = masked_begin; i < M; i++) {
  11299. S[i] = -INFINITY;
  11300. }
  11301. // softmax
  11302. // exclude known -INF S[..] values from max and loop
  11303. // dont forget to set their SW values to zero
  11304. {
  11305. float max = -INFINITY;
  11306. ggml_vec_max_f32(masked_begin, &max, S);
  11307. ggml_float sum = 0.0;
  11308. {
  11309. #ifdef GGML_SOFT_MAX_ACCELERATE
  11310. max = -max;
  11311. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11312. vvexpf(S, S, &Mup);
  11313. ggml_vec_sum_f32(Mup, &sum, S);
  11314. #else
  11315. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11316. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11317. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11318. if (i >= masked_begin) {
  11319. break;
  11320. }
  11321. float * SS = S + i;
  11322. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11323. if (i + j >= masked_begin) {
  11324. break;
  11325. } else if (SS[j] == -INFINITY) {
  11326. SS[j] = 0.0f;
  11327. } else {
  11328. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11329. const float val = expf(SS[j] - max);
  11330. #else
  11331. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11332. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11333. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11334. #endif
  11335. sump[j] += (ggml_float)val;
  11336. SS[j] = val;
  11337. }
  11338. }
  11339. }
  11340. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11341. sum += sump[i];
  11342. }
  11343. #endif
  11344. }
  11345. assert(sum > 0.0);
  11346. sum = 1.0/sum;
  11347. ggml_vec_scale_f32(masked_begin, S, sum);
  11348. #ifndef NDEBUG
  11349. for (int i = 0; i < masked_begin; ++i) {
  11350. assert(!isnan(S[i]));
  11351. assert(!isinf(S[i]));
  11352. }
  11353. #endif
  11354. }
  11355. for (int64_t ic = 0; ic < nev1; ++ic) {
  11356. // dst indices
  11357. const int i1 = iq1;
  11358. const int i2 = iq2;
  11359. const int i3 = iq3;
  11360. // v indices
  11361. const int iv2 = iq2 % nev2;
  11362. const int iv3 = iq3;
  11363. ggml_vec_dot_f32(masked_begin,
  11364. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11365. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11366. S, 0, 1);
  11367. }
  11368. }
  11369. }
  11370. static void ggml_compute_forward_flash_attn_f16(
  11371. const struct ggml_compute_params * params,
  11372. const bool masked,
  11373. struct ggml_tensor * dst) {
  11374. const struct ggml_tensor * q = dst->src[0];
  11375. const struct ggml_tensor * k = dst->src[1];
  11376. const struct ggml_tensor * v = dst->src[2];
  11377. int64_t t0 = ggml_perf_time_us();
  11378. UNUSED(t0);
  11379. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11380. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11381. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11382. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11383. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11384. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11385. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11386. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11387. const int ith = params->ith;
  11388. const int nth = params->nth;
  11389. const int64_t D = neq0;
  11390. const int64_t N = neq1;
  11391. const int64_t P = nek1 - N;
  11392. const int64_t M = P + N;
  11393. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11394. GGML_ASSERT(ne0 == D);
  11395. GGML_ASSERT(ne1 == N);
  11396. GGML_ASSERT(P >= 0);
  11397. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11398. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11399. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11400. GGML_ASSERT(neq0 == D);
  11401. GGML_ASSERT(nek0 == D);
  11402. GGML_ASSERT(nev1 == D);
  11403. GGML_ASSERT(neq1 == N);
  11404. GGML_ASSERT(nek1 == N + P);
  11405. GGML_ASSERT(nev1 == D);
  11406. // dst cannot be transposed or permuted
  11407. GGML_ASSERT(nb0 == sizeof(float));
  11408. GGML_ASSERT(nb0 <= nb1);
  11409. GGML_ASSERT(nb1 <= nb2);
  11410. GGML_ASSERT(nb2 <= nb3);
  11411. if (params->type == GGML_TASK_TYPE_INIT) {
  11412. return;
  11413. }
  11414. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11415. return;
  11416. }
  11417. // parallelize by q rows using ggml_vec_dot_f32
  11418. // total rows in q
  11419. const int nr = neq1*neq2*neq3;
  11420. // rows per thread
  11421. const int dr = (nr + nth - 1)/nth;
  11422. // row range for this thread
  11423. const int ir0 = dr*ith;
  11424. const int ir1 = MIN(ir0 + dr, nr);
  11425. const float scale = 1.0f/sqrtf(D);
  11426. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11427. for (int ir = ir0; ir < ir1; ++ir) {
  11428. // q indices
  11429. const int iq3 = ir/(neq2*neq1);
  11430. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11431. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11432. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11433. for (int i = M; i < Mup; ++i) {
  11434. S[i] = -INFINITY;
  11435. }
  11436. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11437. for (int64_t ic = 0; ic < nek1; ++ic) {
  11438. // k indices
  11439. const int ik3 = iq3;
  11440. const int ik2 = iq2 % nek2;
  11441. const int ik1 = ic;
  11442. // S indices
  11443. const int i1 = ik1;
  11444. ggml_vec_dot_f16(neq0,
  11445. S + i1, 0,
  11446. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11447. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11448. }
  11449. } else {
  11450. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11451. // k indices
  11452. const int ik3 = iq3;
  11453. const int ik2 = iq2 % nek2;
  11454. const int ik1 = ic;
  11455. // S indices
  11456. const int i1 = ik1;
  11457. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11458. S + i1,
  11459. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11460. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11461. }
  11462. }
  11463. // scale
  11464. ggml_vec_scale_f32(nek1, S, scale);
  11465. if (masked) {
  11466. for (int64_t i = P; i < M; i++) {
  11467. if (i > P + iq1) {
  11468. S[i] = -INFINITY;
  11469. }
  11470. }
  11471. }
  11472. // softmax
  11473. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11474. // dont forget to set their S values to zero
  11475. {
  11476. float max = -INFINITY;
  11477. ggml_vec_max_f32(M, &max, S);
  11478. ggml_float sum = 0.0;
  11479. {
  11480. #ifdef GGML_SOFT_MAX_ACCELERATE
  11481. max = -max;
  11482. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11483. vvexpf(S, S, &Mup);
  11484. ggml_vec_sum_f32(Mup, &sum, S);
  11485. #else
  11486. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11487. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11488. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11489. float * SS = S + i;
  11490. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11491. if (SS[j] == -INFINITY) {
  11492. SS[j] = 0.0f;
  11493. } else {
  11494. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11495. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11496. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11497. sump[j] += (ggml_float)val;
  11498. SS[j] = val;
  11499. }
  11500. }
  11501. }
  11502. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11503. sum += sump[i];
  11504. }
  11505. #endif
  11506. }
  11507. assert(sum > 0.0);
  11508. sum = 1.0/sum;
  11509. ggml_vec_scale_f32(M, S, sum);
  11510. #ifndef NDEBUG
  11511. for (int i = 0; i < M; ++i) {
  11512. assert(!isnan(S[i]));
  11513. assert(!isinf(S[i]));
  11514. }
  11515. #endif
  11516. }
  11517. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11518. for (int64_t i = 0; i < M; i++) {
  11519. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11520. }
  11521. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11522. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11523. for (int64_t ic = 0; ic < nev1; ++ic) {
  11524. // dst indices
  11525. const int i1 = iq1;
  11526. const int i2 = iq2;
  11527. const int i3 = iq3;
  11528. // v indices
  11529. const int iv2 = iq2 % nev2;
  11530. const int iv3 = iq3;
  11531. ggml_vec_dot_f16(nev0,
  11532. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11533. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11534. S16, 0, 1);
  11535. }
  11536. } else {
  11537. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11538. // dst indices
  11539. const int i1 = iq1;
  11540. const int i2 = iq2;
  11541. const int i3 = iq3;
  11542. // v indices
  11543. const int iv2 = iq2 % nev2;
  11544. const int iv3 = iq3;
  11545. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11546. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11547. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11548. S16);
  11549. }
  11550. }
  11551. }
  11552. }
  11553. static void ggml_compute_forward_flash_attn(
  11554. const struct ggml_compute_params * params,
  11555. const bool masked,
  11556. struct ggml_tensor * dst) {
  11557. const struct ggml_tensor * q = dst->src[0];
  11558. switch (q->type) {
  11559. case GGML_TYPE_F16:
  11560. {
  11561. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11562. } break;
  11563. case GGML_TYPE_F32:
  11564. {
  11565. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11566. } break;
  11567. default:
  11568. {
  11569. GGML_ASSERT(false);
  11570. } break;
  11571. }
  11572. }
  11573. // ggml_compute_forward_flash_ff
  11574. static void ggml_compute_forward_flash_ff_f16(
  11575. const struct ggml_compute_params * params,
  11576. struct ggml_tensor * dst) {
  11577. const struct ggml_tensor * a = dst->src[0]; // F16
  11578. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11579. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11580. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11581. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11582. int64_t t0 = ggml_perf_time_us();
  11583. UNUSED(t0);
  11584. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11585. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11586. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11587. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11588. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11589. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11590. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11591. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11592. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11593. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11594. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11595. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11596. const int ith = params->ith;
  11597. const int nth = params->nth;
  11598. const int64_t D = nea0;
  11599. //const int64_t N = nea1;
  11600. const int64_t M = neb01;
  11601. GGML_ASSERT(ne0 == nea0);
  11602. GGML_ASSERT(ne1 == nea1);
  11603. GGML_ASSERT(ne2 == nea2);
  11604. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11605. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11606. GGML_ASSERT(nbb10 == sizeof(float));
  11607. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11608. GGML_ASSERT(nbc10 == sizeof(float));
  11609. GGML_ASSERT(neb00 == D);
  11610. GGML_ASSERT(neb01 == M);
  11611. GGML_ASSERT(neb10 == M);
  11612. GGML_ASSERT(neb11 == 1);
  11613. GGML_ASSERT(nec00 == M);
  11614. GGML_ASSERT(nec01 == D);
  11615. GGML_ASSERT(nec10 == D);
  11616. GGML_ASSERT(nec11 == 1);
  11617. // dst cannot be transposed or permuted
  11618. GGML_ASSERT(nb0 == sizeof(float));
  11619. GGML_ASSERT(nb0 <= nb1);
  11620. GGML_ASSERT(nb1 <= nb2);
  11621. GGML_ASSERT(nb2 <= nb3);
  11622. if (params->type == GGML_TASK_TYPE_INIT) {
  11623. return;
  11624. }
  11625. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11626. return;
  11627. }
  11628. // parallelize by a rows using ggml_vec_dot_f32
  11629. // total rows in a
  11630. const int nr = nea1*nea2*nea3;
  11631. // rows per thread
  11632. const int dr = (nr + nth - 1)/nth;
  11633. // row range for this thread
  11634. const int ir0 = dr*ith;
  11635. const int ir1 = MIN(ir0 + dr, nr);
  11636. for (int ir = ir0; ir < ir1; ++ir) {
  11637. // a indices
  11638. const int ia3 = ir/(nea2*nea1);
  11639. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11640. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11641. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11642. for (int64_t ic = 0; ic < neb01; ++ic) {
  11643. // b0 indices
  11644. const int ib03 = ia3;
  11645. const int ib02 = ia2;
  11646. const int ib01 = ic;
  11647. // S indices
  11648. const int i1 = ib01;
  11649. ggml_vec_dot_f16(nea0,
  11650. S + i1, 0,
  11651. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11652. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11653. }
  11654. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11655. //ggml_vec_gelu_f32(neb01, S, S);
  11656. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11657. for (int64_t i = 0; i < M; i++) {
  11658. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11659. }
  11660. ggml_vec_gelu_f16(neb01, S16, S16);
  11661. {
  11662. // dst indices
  11663. const int i1 = ia1;
  11664. const int i2 = ia2;
  11665. const int i3 = ia3;
  11666. for (int64_t ic = 0; ic < nec01; ++ic) {
  11667. ggml_vec_dot_f16(neb01,
  11668. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11669. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11670. S16, 0, 1);
  11671. }
  11672. ggml_vec_add_f32(nec01,
  11673. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11674. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11675. (float *) c1->data);
  11676. }
  11677. }
  11678. }
  11679. static void ggml_compute_forward_flash_ff(
  11680. const struct ggml_compute_params * params,
  11681. struct ggml_tensor * dst) {
  11682. const struct ggml_tensor * b0 = dst->src[1];
  11683. switch (b0->type) {
  11684. case GGML_TYPE_F16:
  11685. {
  11686. ggml_compute_forward_flash_ff_f16(params, dst);
  11687. } break;
  11688. case GGML_TYPE_F32:
  11689. {
  11690. GGML_ASSERT(false); // TODO
  11691. } break;
  11692. default:
  11693. {
  11694. GGML_ASSERT(false);
  11695. } break;
  11696. }
  11697. }
  11698. // ggml_compute_forward_flash_attn_back
  11699. static void ggml_compute_forward_flash_attn_back_f32(
  11700. const struct ggml_compute_params * params,
  11701. const bool masked,
  11702. struct ggml_tensor * dst) {
  11703. const struct ggml_tensor * q = dst->src[0];
  11704. const struct ggml_tensor * k = dst->src[1];
  11705. const struct ggml_tensor * v = dst->src[2];
  11706. const struct ggml_tensor * d = dst->src[3];
  11707. int64_t t0 = ggml_perf_time_us();
  11708. UNUSED(t0);
  11709. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11710. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11711. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11712. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11713. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11714. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11715. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11716. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11717. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11718. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11719. const int ith = params->ith;
  11720. const int nth = params->nth;
  11721. const int64_t D = neq0;
  11722. const int64_t N = neq1;
  11723. const int64_t P = nek1 - N;
  11724. const int64_t M = P + N;
  11725. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11726. const int mxDM = MAX(D, Mup);
  11727. // GGML_ASSERT(ne0 == D);
  11728. // GGML_ASSERT(ne1 == N);
  11729. GGML_ASSERT(P >= 0);
  11730. GGML_ASSERT(nbq0 == sizeof(float));
  11731. GGML_ASSERT(nbk0 == sizeof(float));
  11732. GGML_ASSERT(nbv0 == sizeof(float));
  11733. GGML_ASSERT(neq0 == D);
  11734. GGML_ASSERT(nek0 == D);
  11735. GGML_ASSERT(nev1 == D);
  11736. GGML_ASSERT(ned0 == D);
  11737. GGML_ASSERT(neq1 == N);
  11738. GGML_ASSERT(nek1 == N + P);
  11739. GGML_ASSERT(nev1 == D);
  11740. GGML_ASSERT(ned1 == N);
  11741. // dst cannot be transposed or permuted
  11742. GGML_ASSERT(nb0 == sizeof(float));
  11743. GGML_ASSERT(nb0 <= nb1);
  11744. GGML_ASSERT(nb1 <= nb2);
  11745. GGML_ASSERT(nb2 <= nb3);
  11746. if (params->type == GGML_TASK_TYPE_INIT) {
  11747. if (ith == 0) {
  11748. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11749. }
  11750. return;
  11751. }
  11752. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11753. return;
  11754. }
  11755. const int64_t elem_q = ggml_nelements(q);
  11756. const int64_t elem_k = ggml_nelements(k);
  11757. enum ggml_type result_type = dst->type;
  11758. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11759. const size_t tsize = ggml_type_size(result_type);
  11760. const size_t offs_q = 0;
  11761. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11762. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11763. void * grad_q = (char *) dst->data;
  11764. void * grad_k = (char *) dst->data + offs_k;
  11765. void * grad_v = (char *) dst->data + offs_v;
  11766. const size_t nbgq1 = nb0*neq0;
  11767. const size_t nbgq2 = nb0*neq0*neq1;
  11768. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11769. const size_t nbgk1 = nb0*nek0;
  11770. const size_t nbgk2 = nb0*nek0*nek1;
  11771. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11772. const size_t nbgv1 = nb0*nev0;
  11773. const size_t nbgv2 = nb0*nev0*nev1;
  11774. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11775. // parallelize by k rows using ggml_vec_dot_f32
  11776. // total rows in k
  11777. const int nr = nek2*nek3;
  11778. // rows per thread
  11779. const int dr = (nr + nth - 1)/nth;
  11780. // row range for this thread
  11781. const int ir0 = dr*ith;
  11782. const int ir1 = MIN(ir0 + dr, nr);
  11783. const float scale = 1.0f/sqrtf(D);
  11784. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11785. // how often k2 (and v2) is repeated in q2
  11786. int nrep = neq2/nek2;
  11787. for (int ir = ir0; ir < ir1; ++ir) {
  11788. // q indices
  11789. const int ik3 = ir/(nek2);
  11790. const int ik2 = ir - ik3*nek2;
  11791. const int iq3 = ik3;
  11792. const int id3 = ik3;
  11793. const int iv3 = ik3;
  11794. const int iv2 = ik2;
  11795. for (int irep = 0; irep < nrep; ++irep) {
  11796. const int iq2 = ik2 + irep*nek2;
  11797. const int id2 = iq2;
  11798. // (ik2 + irep*nek2) % nek2 == ik2
  11799. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11800. const int id1 = iq1;
  11801. // not sure about CACHE_LINE_SIZE_F32..
  11802. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11803. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11804. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11805. for (int i = M; i < Mup; ++i) {
  11806. S[i] = -INFINITY;
  11807. }
  11808. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11809. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11810. // k indices
  11811. const int ik1 = ic;
  11812. // S indices
  11813. const int i1 = ik1;
  11814. ggml_vec_dot_f32(neq0,
  11815. S + i1, 0,
  11816. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11817. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11818. }
  11819. // scale
  11820. ggml_vec_scale_f32(masked_begin, S, scale);
  11821. for (int64_t i = masked_begin; i < M; i++) {
  11822. S[i] = -INFINITY;
  11823. }
  11824. // softmax
  11825. // exclude known -INF S[..] values from max and loop
  11826. // dont forget to set their SM values to zero
  11827. {
  11828. float max = -INFINITY;
  11829. ggml_vec_max_f32(masked_begin, &max, S);
  11830. ggml_float sum = 0.0;
  11831. {
  11832. #ifdef GGML_SOFT_MAX_ACCELERATE
  11833. max = -max;
  11834. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11835. vvexpf(SM, SM, &Mup);
  11836. ggml_vec_sum_f32(Mup, &sum, SM);
  11837. #else
  11838. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11839. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11840. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11841. if (i >= masked_begin) {
  11842. break;
  11843. }
  11844. float * SR = S + i;
  11845. float * SW = SM + i;
  11846. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11847. if (i + j >= masked_begin) {
  11848. break;
  11849. } else if (SR[j] == -INFINITY) {
  11850. SW[j] = 0.0f;
  11851. } else {
  11852. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11853. const float val = expf(SR[j] - max);
  11854. #else
  11855. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11856. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11857. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11858. #endif
  11859. sump[j] += (ggml_float)val;
  11860. SW[j] = val;
  11861. }
  11862. }
  11863. }
  11864. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11865. sum += sump[i];
  11866. }
  11867. #endif
  11868. }
  11869. assert(sum > 0.0);
  11870. sum = 1.0/sum;
  11871. ggml_vec_scale_f32(masked_begin, SM, sum);
  11872. }
  11873. // step-by-step explanation
  11874. {
  11875. // forward-process shape grads from backward process
  11876. // parallel_for ik2,ik3:
  11877. // for irep:
  11878. // iq2 = ik2 + irep*nek2
  11879. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11880. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11881. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11882. // for iq1:
  11883. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11884. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11885. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11886. // S0 = -Inf [D,1,1,1]
  11887. // ~S1[i] = dot(kcur[:D,i], qcur)
  11888. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11889. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11890. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11891. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11892. // ~S5[i] = dot(vcur[:,i], S4)
  11893. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11894. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11895. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11896. // dst backward-/ grad[dst] = d
  11897. //
  11898. // output gradients with their dependencies:
  11899. //
  11900. // grad[kcur] = grad[S1].T @ qcur
  11901. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11902. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11903. // grad[S4] = grad[S5] @ vcur
  11904. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11905. // grad[qcur] = grad[S1] @ kcur
  11906. // grad[vcur] = grad[S5].T @ S4
  11907. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11908. //
  11909. // in post-order:
  11910. //
  11911. // S1 = qcur @ kcur.T
  11912. // S2 = S1 * scale
  11913. // S3 = diag_mask_inf(S2, P)
  11914. // S4 = softmax(S3)
  11915. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11916. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11917. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11918. // grad[qcur] = grad[S1] @ kcur
  11919. // grad[kcur] = grad[S1].T @ qcur
  11920. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11921. //
  11922. // using less variables (SM=S4):
  11923. //
  11924. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11925. // SM = softmax(S)
  11926. // S = d[:D,iq1,iq2,iq3] @ vcur
  11927. // dot_SM_gradSM = dot(SM, S)
  11928. // S = SM * (S - dot(SM, S))
  11929. // S = diag_mask_zero(S, P) * scale
  11930. //
  11931. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11932. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11933. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11934. }
  11935. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11936. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11937. // for ic:
  11938. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11939. // exclude known future zero S[..] values from operation
  11940. ggml_vec_set_f32(masked_begin, S, 0);
  11941. for (int64_t ic = 0; ic < D; ++ic) {
  11942. ggml_vec_mad_f32(masked_begin,
  11943. S,
  11944. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11945. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11946. }
  11947. // S = SM * (S - dot(SM, S))
  11948. float dot_SM_gradSM = 0;
  11949. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11950. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11951. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11952. // S = diag_mask_zero(S, P) * scale
  11953. // already done by above ggml_vec_set_f32
  11954. // exclude known zero S[..] values from operation
  11955. ggml_vec_scale_f32(masked_begin, S, scale);
  11956. // S shape [M,1]
  11957. // SM shape [M,1]
  11958. // kcur shape [D,M]
  11959. // qcur shape [D,1]
  11960. // vcur shape [M,D]
  11961. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11962. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11963. // for ic:
  11964. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11965. // exclude known zero S[..] values from loop
  11966. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11967. ggml_vec_mad_f32(D,
  11968. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11969. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11970. S[ic]);
  11971. }
  11972. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11973. // for ic:
  11974. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11975. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11976. // exclude known zero S[..] values from loop
  11977. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11978. ggml_vec_mad_f32(D,
  11979. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11980. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11981. S[ic]);
  11982. }
  11983. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11984. // for ic:
  11985. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11986. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11987. // exclude known zero SM[..] values from mad
  11988. for (int64_t ic = 0; ic < D; ++ic) {
  11989. ggml_vec_mad_f32(masked_begin,
  11990. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11991. SM,
  11992. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11993. }
  11994. }
  11995. }
  11996. }
  11997. }
  11998. static void ggml_compute_forward_flash_attn_back(
  11999. const struct ggml_compute_params * params,
  12000. const bool masked,
  12001. struct ggml_tensor * dst) {
  12002. const struct ggml_tensor * q = dst->src[0];
  12003. switch (q->type) {
  12004. case GGML_TYPE_F32:
  12005. {
  12006. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12007. } break;
  12008. default:
  12009. {
  12010. GGML_ASSERT(false);
  12011. } break;
  12012. }
  12013. }
  12014. // ggml_compute_forward_ssm_conv
  12015. static void ggml_compute_forward_ssm_conv_f32(
  12016. const struct ggml_compute_params * params,
  12017. struct ggml_tensor * dst) {
  12018. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12019. return;
  12020. }
  12021. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12022. const struct ggml_tensor * src1 = dst->src[1]; // x
  12023. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12024. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12025. const int ith = params->ith;
  12026. const int nth = params->nth;
  12027. const int nc = src2->ne[0]; // d_conv
  12028. const int nr = src0->ne[1]; // d_inner
  12029. const int n_t = src1->ne[1]; // n_tokens
  12030. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12031. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12032. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12033. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12034. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12035. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12036. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12037. // for use with the destination state offset between sequences
  12038. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12039. // rows per thread
  12040. const int dr = (nr + nth - 1)/nth;
  12041. // row range for this thread
  12042. const int ir0 = dr*ith;
  12043. const int ir1 = MIN(ir0 + dr, nr);
  12044. const int ir = ir1 - ir0;
  12045. if (n_kv > 1) {
  12046. // multiple sequences means it's hard to know when it's the first time a state is read,
  12047. // so copy them all over to the destination, just to be sure.
  12048. for (int i3 = 0; i3 < n_kv; ++i3) {
  12049. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12050. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12051. // can't use memcpy because of d_conv vs d_conv - 1
  12052. for (int i1 = 0; i1 < ir; ++i1) {
  12053. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12054. // copy s0 to last (d_conv - 1) columns of s
  12055. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12056. }
  12057. }
  12058. }
  12059. }
  12060. for (int i2 = 0; i2 < n_t; ++i2) {
  12061. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12062. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12063. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12064. float * s0; // {d_conv - 1, d_inner, n_kv}
  12065. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12066. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12067. int ne0s0;
  12068. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12069. // avoid needing to copy the state for the first token
  12070. if (i2 == 0) {
  12071. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12072. ne0s0 = src0->ne[0];
  12073. } else {
  12074. // the source is the last (d_conv - 1) columns of the destination
  12075. s0 = s + 1;
  12076. ne0s0 = nc;
  12077. }
  12078. // d_inner
  12079. for (int i1 = 0; i1 < ir; ++i1) {
  12080. // shift state left
  12081. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12082. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12083. }
  12084. // insert x on the last column
  12085. s[(nc - 1) + i1*nc] = x0[i1];
  12086. }
  12087. // handle copies when there are multiple output states
  12088. for (int i3 = 1; i3 < n_kv; ++i3) {
  12089. int32_t seq = sq[i3];
  12090. if (0 <= seq && seq < n_kv) {
  12091. float * s1 = s + (seq - sq[0])*nc*nr;
  12092. memcpy(s1, s, nc*ir*sizeof(float));
  12093. } else {
  12094. // stop at negative or too big seq_ids
  12095. break;
  12096. }
  12097. }
  12098. // it seems a little faster when this is separate from the state shift
  12099. for (int i1 = 0; i1 < ir; ++i1) {
  12100. // rowwise dot product
  12101. float sumf = 0.0f;
  12102. for (int i0 = 0; i0 < nc; ++i0) {
  12103. int i = i0 + i1*nc;
  12104. sumf += s[i] * c[i];
  12105. }
  12106. x[i1] = sumf;
  12107. }
  12108. }
  12109. }
  12110. static void ggml_compute_forward_ssm_conv(
  12111. const struct ggml_compute_params * params,
  12112. struct ggml_tensor * dst) {
  12113. switch (dst->src[0]->type) {
  12114. case GGML_TYPE_F32:
  12115. {
  12116. ggml_compute_forward_ssm_conv_f32(params, dst);
  12117. } break;
  12118. default:
  12119. {
  12120. GGML_ASSERT(false);
  12121. } break;
  12122. }
  12123. }
  12124. // ggml_compute_forward_ssm_scan
  12125. static void ggml_compute_forward_ssm_scan_f32(
  12126. const struct ggml_compute_params * params,
  12127. struct ggml_tensor * dst) {
  12128. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12129. return;
  12130. }
  12131. const struct ggml_tensor * src0 = dst->src[0]; // s
  12132. const struct ggml_tensor * src1 = dst->src[1]; // x
  12133. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12134. const struct ggml_tensor * src3 = dst->src[3]; // A
  12135. const struct ggml_tensor * src4 = dst->src[4]; // B
  12136. const struct ggml_tensor * src5 = dst->src[5]; // C
  12137. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12138. const int ith = params->ith;
  12139. const int nth = params->nth;
  12140. const int64_t nc = src0->ne[0]; // d_state
  12141. const int64_t nr = src0->ne[1]; // d_inner
  12142. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12143. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12144. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12145. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12146. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12147. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12148. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12149. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12150. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12151. // required for the dot product between s and C, and when copying the states
  12152. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12153. // required for per-sequence offsets for states
  12154. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12155. // required to get correct offset for state destination (i.e. src1->nb[2])
  12156. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12157. // rows per thread
  12158. const int dr = (nr + nth - 1)/nth;
  12159. // row range for this thread
  12160. const int ir0 = dr*ith;
  12161. const int ir1 = MIN(ir0 + dr, nr);
  12162. const int ir = ir1 - ir0;
  12163. if (n_kv > 1) {
  12164. // it's hard to know if the source states have already been copied
  12165. // when there are multiple, so copy them already.
  12166. for (int i3 = 0; i3 < n_kv; ++i3) {
  12167. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12168. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12169. memcpy(s, s0, nc*ir*sizeof(float));
  12170. }
  12171. }
  12172. for (int i2 = 0; i2 < n_t; ++i2) {
  12173. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12174. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12175. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12176. float * s0;
  12177. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12178. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12179. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12180. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12181. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12182. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12183. // avoid needing to copy the state for the first token
  12184. if (i2 == 0) {
  12185. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12186. } else {
  12187. // otherwise the source is the same as the destination
  12188. s0 = s;
  12189. }
  12190. // d_inner
  12191. for (int i1 = 0; i1 < ir; ++i1) {
  12192. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12193. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12194. float x_dt = x[i1] * dt_soft_plus;
  12195. float sumf = 0.0f;
  12196. // d_state
  12197. for (int i0 = 0; i0 < nc; ++i0) {
  12198. int i = i0 + i1*nc;
  12199. // state = prev_state * dA + dB * x
  12200. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12201. // y = rowwise_dotprod(state, C)
  12202. sumf += state * C[i0];
  12203. s[i] = state;
  12204. }
  12205. y[i1] = sumf;
  12206. }
  12207. // handle copies when there are multiple output states
  12208. for (int i3 = 1; i3 < n_kv; ++i3) {
  12209. int32_t seq = sq[i3];
  12210. if (0 <= seq && seq < n_kv) {
  12211. float * s1 = s + (seq - sq[0])*nc*nr;
  12212. memcpy(s1, s, nc*ir*sizeof(float));
  12213. } else {
  12214. // stop at negative or too big seq_ids
  12215. break;
  12216. }
  12217. }
  12218. }
  12219. }
  12220. static void ggml_compute_forward_ssm_scan(
  12221. const struct ggml_compute_params * params,
  12222. struct ggml_tensor * dst) {
  12223. switch (dst->src[0]->type) {
  12224. case GGML_TYPE_F32:
  12225. {
  12226. ggml_compute_forward_ssm_scan_f32(params, dst);
  12227. } break;
  12228. default:
  12229. {
  12230. GGML_ASSERT(false);
  12231. } break;
  12232. }
  12233. }
  12234. // ggml_compute_forward_win_part
  12235. static void ggml_compute_forward_win_part_f32(
  12236. const struct ggml_compute_params * params,
  12237. struct ggml_tensor * dst) {
  12238. const struct ggml_tensor * src0 = dst->src[0];
  12239. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12240. return;
  12241. }
  12242. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12243. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12244. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12245. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12246. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12247. assert(ne00 == ne0);
  12248. assert(ne3 == nep0*nep1);
  12249. // TODO: optimize / multi-thread
  12250. for (int py = 0; py < nep1; ++py) {
  12251. for (int px = 0; px < nep0; ++px) {
  12252. const int64_t i3 = py*nep0 + px;
  12253. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12254. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12255. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12256. const int64_t i02 = py*w + i2;
  12257. const int64_t i01 = px*w + i1;
  12258. const int64_t i00 = i0;
  12259. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12260. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12261. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12262. ((float *) dst->data)[i] = 0.0f;
  12263. } else {
  12264. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12265. }
  12266. }
  12267. }
  12268. }
  12269. }
  12270. }
  12271. }
  12272. static void ggml_compute_forward_win_part(
  12273. const struct ggml_compute_params * params,
  12274. struct ggml_tensor * dst) {
  12275. const struct ggml_tensor * src0 = dst->src[0];
  12276. switch (src0->type) {
  12277. case GGML_TYPE_F32:
  12278. {
  12279. ggml_compute_forward_win_part_f32(params, dst);
  12280. } break;
  12281. default:
  12282. {
  12283. GGML_ASSERT(false);
  12284. } break;
  12285. }
  12286. }
  12287. // ggml_compute_forward_win_unpart
  12288. static void ggml_compute_forward_win_unpart_f32(
  12289. const struct ggml_compute_params * params,
  12290. struct ggml_tensor * dst) {
  12291. const struct ggml_tensor * src0 = dst->src[0];
  12292. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12293. return;
  12294. }
  12295. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12296. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12297. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12298. // padding
  12299. const int px = (w - ne1%w)%w;
  12300. //const int py = (w - ne2%w)%w;
  12301. const int npx = (px + ne1)/w;
  12302. //const int npy = (py + ne2)/w;
  12303. assert(ne0 == ne00);
  12304. // TODO: optimize / multi-thread
  12305. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12306. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12307. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12308. const int ip2 = i2/w;
  12309. const int ip1 = i1/w;
  12310. const int64_t i02 = i2%w;
  12311. const int64_t i01 = i1%w;
  12312. const int64_t i00 = i0;
  12313. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12314. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12315. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12316. }
  12317. }
  12318. }
  12319. }
  12320. static void ggml_compute_forward_win_unpart(
  12321. const struct ggml_compute_params * params,
  12322. struct ggml_tensor * dst) {
  12323. const struct ggml_tensor * src0 = dst->src[0];
  12324. switch (src0->type) {
  12325. case GGML_TYPE_F32:
  12326. {
  12327. ggml_compute_forward_win_unpart_f32(params, dst);
  12328. } break;
  12329. default:
  12330. {
  12331. GGML_ASSERT(false);
  12332. } break;
  12333. }
  12334. }
  12335. //gmml_compute_forward_unary
  12336. static void ggml_compute_forward_unary(
  12337. const struct ggml_compute_params * params,
  12338. struct ggml_tensor * dst) {
  12339. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12340. switch (op) {
  12341. case GGML_UNARY_OP_ABS:
  12342. {
  12343. ggml_compute_forward_abs(params, dst);
  12344. } break;
  12345. case GGML_UNARY_OP_SGN:
  12346. {
  12347. ggml_compute_forward_sgn(params, dst);
  12348. } break;
  12349. case GGML_UNARY_OP_NEG:
  12350. {
  12351. ggml_compute_forward_neg(params, dst);
  12352. } break;
  12353. case GGML_UNARY_OP_STEP:
  12354. {
  12355. ggml_compute_forward_step(params, dst);
  12356. } break;
  12357. case GGML_UNARY_OP_TANH:
  12358. {
  12359. ggml_compute_forward_tanh(params, dst);
  12360. } break;
  12361. case GGML_UNARY_OP_ELU:
  12362. {
  12363. ggml_compute_forward_elu(params, dst);
  12364. } break;
  12365. case GGML_UNARY_OP_RELU:
  12366. {
  12367. ggml_compute_forward_relu(params, dst);
  12368. } break;
  12369. case GGML_UNARY_OP_GELU:
  12370. {
  12371. ggml_compute_forward_gelu(params, dst);
  12372. } break;
  12373. case GGML_UNARY_OP_GELU_QUICK:
  12374. {
  12375. ggml_compute_forward_gelu_quick(params, dst);
  12376. } break;
  12377. case GGML_UNARY_OP_SILU:
  12378. {
  12379. ggml_compute_forward_silu(params, dst);
  12380. } break;
  12381. case GGML_UNARY_OP_HARDSWISH:
  12382. {
  12383. ggml_compute_forward_hardswish(params, dst);
  12384. } break;
  12385. case GGML_UNARY_OP_HARDSIGMOID:
  12386. {
  12387. ggml_compute_forward_hardsigmoid(params, dst);
  12388. } break;
  12389. default:
  12390. {
  12391. GGML_ASSERT(false);
  12392. } break;
  12393. }
  12394. }
  12395. // ggml_compute_forward_get_rel_pos
  12396. static void ggml_compute_forward_get_rel_pos_f16(
  12397. const struct ggml_compute_params * params,
  12398. struct ggml_tensor * dst) {
  12399. const struct ggml_tensor * src0 = dst->src[0];
  12400. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12401. return;
  12402. }
  12403. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12404. GGML_TENSOR_UNARY_OP_LOCALS
  12405. const int64_t w = ne1;
  12406. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12407. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12408. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12409. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12410. const int64_t pos = (w - i1 - 1) + i2;
  12411. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12412. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12413. }
  12414. }
  12415. }
  12416. }
  12417. static void ggml_compute_forward_get_rel_pos(
  12418. const struct ggml_compute_params * params,
  12419. struct ggml_tensor * dst) {
  12420. const struct ggml_tensor * src0 = dst->src[0];
  12421. switch (src0->type) {
  12422. case GGML_TYPE_F16:
  12423. {
  12424. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12425. } break;
  12426. default:
  12427. {
  12428. GGML_ASSERT(false);
  12429. } break;
  12430. }
  12431. }
  12432. // ggml_compute_forward_add_rel_pos
  12433. static void ggml_compute_forward_add_rel_pos_f32(
  12434. const struct ggml_compute_params * params,
  12435. struct ggml_tensor * dst) {
  12436. const struct ggml_tensor * src0 = dst->src[0];
  12437. const struct ggml_tensor * src1 = dst->src[1];
  12438. const struct ggml_tensor * src2 = dst->src[2];
  12439. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12440. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12441. if (params->ith != 0) {
  12442. return;
  12443. }
  12444. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12445. return;
  12446. }
  12447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12448. return;
  12449. }
  12450. int64_t t0 = ggml_perf_time_us();
  12451. UNUSED(t0);
  12452. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12453. float * src1_data = (float *) src1->data;
  12454. float * src2_data = (float *) src2->data;
  12455. float * dst_data = (float *) dst->data;
  12456. const int64_t ne10 = src1->ne[0];
  12457. const int64_t ne11 = src1->ne[1];
  12458. const int64_t ne12 = src1->ne[2];
  12459. const int64_t ne13 = src1->ne[3];
  12460. const int ith = params->ith;
  12461. const int nth = params->nth;
  12462. // total patches in dst
  12463. const int np = ne13;
  12464. // patches per thread
  12465. const int dp = (np + nth - 1)/nth;
  12466. // patch range for this thread
  12467. const int ip0 = dp*ith;
  12468. const int ip1 = MIN(ip0 + dp, np);
  12469. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12470. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12471. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12472. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12473. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12474. const int64_t jp0 = jp1 + i10;
  12475. const float src1_e = src1_data[jp0];
  12476. const float src2_e = src2_data[jp0];
  12477. const int64_t jdh = jp0 * ne10;
  12478. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12479. for (int64_t j = 0; j < ne10; ++j) {
  12480. dst_data[jdh + j ] += src2_e;
  12481. dst_data[jdw + j*ne10] += src1_e;
  12482. }
  12483. }
  12484. }
  12485. }
  12486. }
  12487. }
  12488. static void ggml_compute_forward_add_rel_pos(
  12489. const struct ggml_compute_params * params,
  12490. struct ggml_tensor * dst) {
  12491. const struct ggml_tensor * src0 = dst->src[0];
  12492. switch (src0->type) {
  12493. case GGML_TYPE_F32:
  12494. {
  12495. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12496. } break;
  12497. default:
  12498. {
  12499. GGML_ASSERT(false);
  12500. } break;
  12501. }
  12502. }
  12503. // ggml_compute_forward_map_unary
  12504. static void ggml_compute_forward_map_unary_f32(
  12505. const struct ggml_compute_params * params,
  12506. struct ggml_tensor * dst,
  12507. const ggml_unary_op_f32_t fun) {
  12508. const struct ggml_tensor * src0 = dst->src[0];
  12509. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12510. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12511. return;
  12512. }
  12513. const int n = ggml_nrows(src0);
  12514. const int nc = src0->ne[0];
  12515. assert( dst->nb[0] == sizeof(float));
  12516. assert(src0->nb[0] == sizeof(float));
  12517. for (int i = 0; i < n; i++) {
  12518. fun(nc,
  12519. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12520. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12521. }
  12522. }
  12523. static void ggml_compute_forward_map_unary(
  12524. const struct ggml_compute_params * params,
  12525. struct ggml_tensor * dst,
  12526. const ggml_unary_op_f32_t fun) {
  12527. const struct ggml_tensor * src0 = dst->src[0];
  12528. switch (src0->type) {
  12529. case GGML_TYPE_F32:
  12530. {
  12531. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12532. } break;
  12533. default:
  12534. {
  12535. GGML_ASSERT(false);
  12536. } break;
  12537. }
  12538. }
  12539. // ggml_compute_forward_map_binary
  12540. static void ggml_compute_forward_map_binary_f32(
  12541. const struct ggml_compute_params * params,
  12542. struct ggml_tensor * dst,
  12543. const ggml_binary_op_f32_t fun) {
  12544. const struct ggml_tensor * src0 = dst->src[0];
  12545. const struct ggml_tensor * src1 = dst->src[1];
  12546. assert(params->ith == 0);
  12547. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12549. return;
  12550. }
  12551. const int n = ggml_nrows(src0);
  12552. const int nc = src0->ne[0];
  12553. assert( dst->nb[0] == sizeof(float));
  12554. assert(src0->nb[0] == sizeof(float));
  12555. assert(src1->nb[0] == sizeof(float));
  12556. for (int i = 0; i < n; i++) {
  12557. fun(nc,
  12558. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12559. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12560. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12561. }
  12562. }
  12563. static void ggml_compute_forward_map_binary(
  12564. const struct ggml_compute_params * params,
  12565. struct ggml_tensor * dst,
  12566. const ggml_binary_op_f32_t fun) {
  12567. const struct ggml_tensor * src0 = dst->src[0];
  12568. switch (src0->type) {
  12569. case GGML_TYPE_F32:
  12570. {
  12571. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12572. } break;
  12573. default:
  12574. {
  12575. GGML_ASSERT(false);
  12576. } break;
  12577. }
  12578. }
  12579. // ggml_compute_forward_map_custom1
  12580. static void ggml_compute_forward_map_custom1_f32(
  12581. const struct ggml_compute_params * params,
  12582. struct ggml_tensor * dst,
  12583. const ggml_custom1_op_f32_t fun) {
  12584. const struct ggml_tensor * a = dst->src[0];
  12585. assert(params->ith == 0);
  12586. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12587. return;
  12588. }
  12589. fun(dst, a);
  12590. }
  12591. // ggml_compute_forward_map_custom2
  12592. static void ggml_compute_forward_map_custom2_f32(
  12593. const struct ggml_compute_params * params,
  12594. struct ggml_tensor * dst,
  12595. const ggml_custom2_op_f32_t fun) {
  12596. const struct ggml_tensor * a = dst->src[0];
  12597. const struct ggml_tensor * b = dst->src[1];
  12598. assert(params->ith == 0);
  12599. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12600. return;
  12601. }
  12602. fun(dst, a, b);
  12603. }
  12604. // ggml_compute_forward_map_custom3
  12605. static void ggml_compute_forward_map_custom3_f32(
  12606. const struct ggml_compute_params * params,
  12607. struct ggml_tensor * dst,
  12608. const ggml_custom3_op_f32_t fun) {
  12609. const struct ggml_tensor * a = dst->src[0];
  12610. const struct ggml_tensor * b = dst->src[1];
  12611. const struct ggml_tensor * c = dst->src[1];
  12612. assert(params->ith == 0);
  12613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12614. return;
  12615. }
  12616. fun(dst, a, b, c);
  12617. }
  12618. // ggml_compute_forward_map_custom1
  12619. static void ggml_compute_forward_map_custom1(
  12620. const struct ggml_compute_params * params,
  12621. struct ggml_tensor * dst) {
  12622. const struct ggml_tensor * a = dst->src[0];
  12623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12624. return;
  12625. }
  12626. struct ggml_map_custom1_op_params p;
  12627. memcpy(&p, dst->op_params, sizeof(p));
  12628. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12629. }
  12630. // ggml_compute_forward_map_custom2
  12631. static void ggml_compute_forward_map_custom2(
  12632. const struct ggml_compute_params * params,
  12633. struct ggml_tensor * dst) {
  12634. const struct ggml_tensor * a = dst->src[0];
  12635. const struct ggml_tensor * b = dst->src[1];
  12636. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12637. return;
  12638. }
  12639. struct ggml_map_custom2_op_params p;
  12640. memcpy(&p, dst->op_params, sizeof(p));
  12641. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12642. }
  12643. // ggml_compute_forward_map_custom3
  12644. static void ggml_compute_forward_map_custom3(
  12645. const struct ggml_compute_params * params,
  12646. struct ggml_tensor * dst) {
  12647. const struct ggml_tensor * a = dst->src[0];
  12648. const struct ggml_tensor * b = dst->src[1];
  12649. const struct ggml_tensor * c = dst->src[2];
  12650. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12651. return;
  12652. }
  12653. struct ggml_map_custom3_op_params p;
  12654. memcpy(&p, dst->op_params, sizeof(p));
  12655. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12656. }
  12657. // ggml_compute_forward_cross_entropy_loss
  12658. static void ggml_compute_forward_cross_entropy_loss_f32(
  12659. const struct ggml_compute_params * params,
  12660. struct ggml_tensor * dst) {
  12661. const struct ggml_tensor * src0 = dst->src[0];
  12662. const struct ggml_tensor * src1 = dst->src[1];
  12663. GGML_ASSERT(ggml_is_contiguous(src0));
  12664. GGML_ASSERT(ggml_is_contiguous(src1));
  12665. GGML_ASSERT(ggml_is_scalar(dst));
  12666. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12667. const int ith = params->ith;
  12668. const int nth = params->nth;
  12669. float * sums = (float *) params->wdata;
  12670. // TODO: handle transposed/permuted matrices
  12671. const int nc = src0->ne[0];
  12672. const int nr = ggml_nrows(src0);
  12673. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12674. if (params->type == GGML_TASK_TYPE_INIT) {
  12675. if (ith == 0) {
  12676. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12677. }
  12678. return;
  12679. }
  12680. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12681. if (ith == 0) {
  12682. float * dp = (float *) dst->data;
  12683. ggml_vec_sum_f32(nth, dp, sums);
  12684. dp[0] *= -1.0f / (float) nr;
  12685. }
  12686. return;
  12687. }
  12688. const double eps = 1e-9;
  12689. // rows per thread
  12690. const int dr = (nr + nth - 1)/nth;
  12691. // row range for this thread
  12692. const int ir0 = dr*ith;
  12693. const int ir1 = MIN(ir0 + dr, nr);
  12694. for (int i1 = ir0; i1 < ir1; i1++) {
  12695. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12696. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12697. float * st = ((float *) params->wdata) + nth + ith*nc;
  12698. #ifndef NDEBUG
  12699. for (int i = 0; i < nc; ++i) {
  12700. //printf("p[%d] = %f\n", i, p[i]);
  12701. assert(!isnan(s0[i]));
  12702. assert(!isnan(s1[i]));
  12703. }
  12704. #endif
  12705. // soft_max
  12706. ggml_float sum = 0.0;
  12707. {
  12708. float max = -INFINITY;
  12709. ggml_vec_max_f32(nc, &max, s0);
  12710. uint16_t scvt; UNUSED(scvt);
  12711. for (int i = 0; i < nc; i++) {
  12712. if (s0[i] == -INFINITY) {
  12713. st[i] = 0.0f;
  12714. } else {
  12715. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12716. const float s = s0[i] - max;
  12717. const float val = expf(s);
  12718. #else
  12719. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12720. memcpy(&scvt, &s, sizeof(scvt));
  12721. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12722. #endif
  12723. sum += (ggml_float)val;
  12724. st[i] = val;
  12725. }
  12726. }
  12727. assert(sum > 0.0);
  12728. // sum = 1.0/sum;
  12729. }
  12730. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12731. sum = (1.0 - eps) / sum;
  12732. ggml_vec_scale_f32(nc, st, sum);
  12733. ggml_vec_add1_f32(nc, st, st, eps);
  12734. ggml_vec_log_f32(nc, st, st);
  12735. ggml_vec_mul_f32(nc, st, st, s1);
  12736. float st_sum = 0;
  12737. ggml_vec_sum_f32(nc, &st_sum, st);
  12738. sums[ith] += st_sum;
  12739. #ifndef NDEBUG
  12740. for (int i = 0; i < nc; ++i) {
  12741. assert(!isnan(st[i]));
  12742. assert(!isinf(st[i]));
  12743. }
  12744. #endif
  12745. }
  12746. }
  12747. static void ggml_compute_forward_cross_entropy_loss(
  12748. const struct ggml_compute_params * params,
  12749. struct ggml_tensor * dst) {
  12750. const struct ggml_tensor * src0 = dst->src[0];
  12751. switch (src0->type) {
  12752. case GGML_TYPE_F32:
  12753. {
  12754. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12755. } break;
  12756. default:
  12757. {
  12758. GGML_ASSERT(false);
  12759. } break;
  12760. }
  12761. }
  12762. // ggml_compute_forward_cross_entropy_loss_back
  12763. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12764. const struct ggml_compute_params * params,
  12765. struct ggml_tensor * dst) {
  12766. const struct ggml_tensor * src0 = dst->src[0];
  12767. const struct ggml_tensor * src1 = dst->src[1];
  12768. const struct ggml_tensor * opt0 = dst->src[2];
  12769. GGML_ASSERT(ggml_is_contiguous(dst));
  12770. GGML_ASSERT(ggml_is_contiguous(src0));
  12771. GGML_ASSERT(ggml_is_contiguous(src1));
  12772. GGML_ASSERT(ggml_is_contiguous(opt0));
  12773. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12774. const int64_t ith = params->ith;
  12775. const int64_t nth = params->nth;
  12776. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12777. return;
  12778. }
  12779. const double eps = 1e-9;
  12780. // TODO: handle transposed/permuted matrices
  12781. const int64_t nc = src0->ne[0];
  12782. const int64_t nr = ggml_nrows(src0);
  12783. // rows per thread
  12784. const int64_t dr = (nr + nth - 1)/nth;
  12785. // row range for this thread
  12786. const int64_t ir0 = dr*ith;
  12787. const int64_t ir1 = MIN(ir0 + dr, nr);
  12788. float * d = (float *) opt0->data;
  12789. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12790. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12791. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12792. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12793. #ifndef NDEBUG
  12794. for (int i = 0; i < nc; ++i) {
  12795. //printf("p[%d] = %f\n", i, p[i]);
  12796. assert(!isnan(s0[i]));
  12797. assert(!isnan(s1[i]));
  12798. }
  12799. #endif
  12800. // soft_max
  12801. ggml_float sum = 0.0;
  12802. {
  12803. float max = -INFINITY;
  12804. ggml_vec_max_f32(nc, &max, s0);
  12805. uint16_t scvt; UNUSED(scvt);
  12806. for (int i = 0; i < nc; i++) {
  12807. if (s0[i] == -INFINITY) {
  12808. ds0[i] = 0.0f;
  12809. } else {
  12810. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12811. const float s = s0[i] - max;
  12812. const float val = expf(s);
  12813. #else
  12814. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12815. memcpy(&scvt, &s, sizeof(scvt));
  12816. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12817. #endif
  12818. sum += (ggml_float)val;
  12819. ds0[i] = val;
  12820. }
  12821. }
  12822. assert(sum > 0.0);
  12823. sum = (1.0 - eps)/sum;
  12824. }
  12825. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12826. ggml_vec_scale_f32(nc, ds0, sum);
  12827. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12828. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12829. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12830. #ifndef NDEBUG
  12831. for (int i = 0; i < nc; ++i) {
  12832. assert(!isnan(ds0[i]));
  12833. assert(!isinf(ds0[i]));
  12834. }
  12835. #endif
  12836. }
  12837. }
  12838. static void ggml_compute_forward_cross_entropy_loss_back(
  12839. const struct ggml_compute_params * params,
  12840. struct ggml_tensor * dst) {
  12841. const struct ggml_tensor * src0 = dst->src[0];
  12842. switch (src0->type) {
  12843. case GGML_TYPE_F32:
  12844. {
  12845. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12846. } break;
  12847. default:
  12848. {
  12849. GGML_ASSERT(false);
  12850. } break;
  12851. }
  12852. }
  12853. /////////////////////////////////
  12854. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12855. GGML_ASSERT(params);
  12856. if (tensor->op == GGML_OP_NONE) {
  12857. return;
  12858. }
  12859. #ifdef GGML_USE_CUBLAS
  12860. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12861. if (skip_cpu) {
  12862. return;
  12863. }
  12864. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12865. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12866. #elif defined(GGML_USE_VULKAN)
  12867. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12868. #ifdef GGML_VULKAN_CHECK_RESULTS
  12869. if (skip_cpu) {
  12870. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12871. }
  12872. #endif
  12873. if (skip_cpu) {
  12874. return;
  12875. }
  12876. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12877. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12878. #endif // GGML_USE_CUBLAS
  12879. #ifdef GGML_USE_SYCL
  12880. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12881. if (skip_cpu) {
  12882. return;
  12883. }
  12884. #endif // GGML_USE_SYCL
  12885. switch (tensor->op) {
  12886. case GGML_OP_DUP:
  12887. {
  12888. ggml_compute_forward_dup(params, tensor);
  12889. } break;
  12890. case GGML_OP_ADD:
  12891. {
  12892. ggml_compute_forward_add(params, tensor);
  12893. } break;
  12894. case GGML_OP_ADD1:
  12895. {
  12896. ggml_compute_forward_add1(params, tensor);
  12897. } break;
  12898. case GGML_OP_ACC:
  12899. {
  12900. ggml_compute_forward_acc(params, tensor);
  12901. } break;
  12902. case GGML_OP_SUB:
  12903. {
  12904. ggml_compute_forward_sub(params, tensor);
  12905. } break;
  12906. case GGML_OP_MUL:
  12907. {
  12908. ggml_compute_forward_mul(params, tensor);
  12909. } break;
  12910. case GGML_OP_DIV:
  12911. {
  12912. ggml_compute_forward_div(params, tensor);
  12913. } break;
  12914. case GGML_OP_SQR:
  12915. {
  12916. ggml_compute_forward_sqr(params, tensor);
  12917. } break;
  12918. case GGML_OP_SQRT:
  12919. {
  12920. ggml_compute_forward_sqrt(params, tensor);
  12921. } break;
  12922. case GGML_OP_LOG:
  12923. {
  12924. ggml_compute_forward_log(params, tensor);
  12925. } break;
  12926. case GGML_OP_SUM:
  12927. {
  12928. ggml_compute_forward_sum(params, tensor);
  12929. } break;
  12930. case GGML_OP_SUM_ROWS:
  12931. {
  12932. ggml_compute_forward_sum_rows(params, tensor);
  12933. } break;
  12934. case GGML_OP_MEAN:
  12935. {
  12936. ggml_compute_forward_mean(params, tensor);
  12937. } break;
  12938. case GGML_OP_ARGMAX:
  12939. {
  12940. ggml_compute_forward_argmax(params, tensor);
  12941. } break;
  12942. case GGML_OP_REPEAT:
  12943. {
  12944. ggml_compute_forward_repeat(params, tensor);
  12945. } break;
  12946. case GGML_OP_REPEAT_BACK:
  12947. {
  12948. ggml_compute_forward_repeat_back(params, tensor);
  12949. } break;
  12950. case GGML_OP_CONCAT:
  12951. {
  12952. ggml_compute_forward_concat(params, tensor);
  12953. } break;
  12954. case GGML_OP_SILU_BACK:
  12955. {
  12956. ggml_compute_forward_silu_back(params, tensor);
  12957. } break;
  12958. case GGML_OP_NORM:
  12959. {
  12960. ggml_compute_forward_norm(params, tensor);
  12961. } break;
  12962. case GGML_OP_RMS_NORM:
  12963. {
  12964. ggml_compute_forward_rms_norm(params, tensor);
  12965. } break;
  12966. case GGML_OP_RMS_NORM_BACK:
  12967. {
  12968. ggml_compute_forward_rms_norm_back(params, tensor);
  12969. } break;
  12970. case GGML_OP_GROUP_NORM:
  12971. {
  12972. ggml_compute_forward_group_norm(params, tensor);
  12973. } break;
  12974. case GGML_OP_MUL_MAT:
  12975. {
  12976. ggml_compute_forward_mul_mat(params, tensor);
  12977. } break;
  12978. case GGML_OP_MUL_MAT_ID:
  12979. {
  12980. ggml_compute_forward_mul_mat_id(params, tensor);
  12981. } break;
  12982. case GGML_OP_OUT_PROD:
  12983. {
  12984. ggml_compute_forward_out_prod(params, tensor);
  12985. } break;
  12986. case GGML_OP_SCALE:
  12987. {
  12988. ggml_compute_forward_scale(params, tensor);
  12989. } break;
  12990. case GGML_OP_SET:
  12991. {
  12992. ggml_compute_forward_set(params, tensor);
  12993. } break;
  12994. case GGML_OP_CPY:
  12995. {
  12996. ggml_compute_forward_cpy(params, tensor);
  12997. } break;
  12998. case GGML_OP_CONT:
  12999. {
  13000. ggml_compute_forward_cont(params, tensor);
  13001. } break;
  13002. case GGML_OP_RESHAPE:
  13003. {
  13004. ggml_compute_forward_reshape(params, tensor);
  13005. } break;
  13006. case GGML_OP_VIEW:
  13007. {
  13008. ggml_compute_forward_view(params, tensor);
  13009. } break;
  13010. case GGML_OP_PERMUTE:
  13011. {
  13012. ggml_compute_forward_permute(params, tensor);
  13013. } break;
  13014. case GGML_OP_TRANSPOSE:
  13015. {
  13016. ggml_compute_forward_transpose(params, tensor);
  13017. } break;
  13018. case GGML_OP_GET_ROWS:
  13019. {
  13020. ggml_compute_forward_get_rows(params, tensor);
  13021. } break;
  13022. case GGML_OP_GET_ROWS_BACK:
  13023. {
  13024. ggml_compute_forward_get_rows_back(params, tensor);
  13025. } break;
  13026. case GGML_OP_DIAG:
  13027. {
  13028. ggml_compute_forward_diag(params, tensor);
  13029. } break;
  13030. case GGML_OP_DIAG_MASK_INF:
  13031. {
  13032. ggml_compute_forward_diag_mask_inf(params, tensor);
  13033. } break;
  13034. case GGML_OP_DIAG_MASK_ZERO:
  13035. {
  13036. ggml_compute_forward_diag_mask_zero(params, tensor);
  13037. } break;
  13038. case GGML_OP_SOFT_MAX:
  13039. {
  13040. ggml_compute_forward_soft_max(params, tensor);
  13041. } break;
  13042. case GGML_OP_SOFT_MAX_BACK:
  13043. {
  13044. ggml_compute_forward_soft_max_back(params, tensor);
  13045. } break;
  13046. case GGML_OP_ROPE:
  13047. {
  13048. ggml_compute_forward_rope(params, tensor);
  13049. } break;
  13050. case GGML_OP_ROPE_BACK:
  13051. {
  13052. ggml_compute_forward_rope_back(params, tensor);
  13053. } break;
  13054. case GGML_OP_ALIBI:
  13055. {
  13056. ggml_compute_forward_alibi(params, tensor);
  13057. } break;
  13058. case GGML_OP_CLAMP:
  13059. {
  13060. ggml_compute_forward_clamp(params, tensor);
  13061. } break;
  13062. case GGML_OP_CONV_TRANSPOSE_1D:
  13063. {
  13064. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13065. } break;
  13066. case GGML_OP_IM2COL:
  13067. {
  13068. ggml_compute_forward_im2col(params, tensor);
  13069. } break;
  13070. case GGML_OP_CONV_TRANSPOSE_2D:
  13071. {
  13072. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13073. } break;
  13074. case GGML_OP_POOL_1D:
  13075. {
  13076. ggml_compute_forward_pool_1d(params, tensor);
  13077. } break;
  13078. case GGML_OP_POOL_2D:
  13079. {
  13080. ggml_compute_forward_pool_2d(params, tensor);
  13081. } break;
  13082. case GGML_OP_UPSCALE:
  13083. {
  13084. ggml_compute_forward_upscale(params, tensor);
  13085. } break;
  13086. case GGML_OP_PAD:
  13087. {
  13088. ggml_compute_forward_pad(params, tensor);
  13089. } break;
  13090. case GGML_OP_ARANGE:
  13091. {
  13092. ggml_compute_forward_arange(params, tensor);
  13093. } break;
  13094. case GGML_OP_TIMESTEP_EMBEDDING:
  13095. {
  13096. ggml_compute_forward_timestep_embedding(params, tensor);
  13097. } break;
  13098. case GGML_OP_ARGSORT:
  13099. {
  13100. ggml_compute_forward_argsort(params, tensor);
  13101. } break;
  13102. case GGML_OP_LEAKY_RELU:
  13103. {
  13104. ggml_compute_forward_leaky_relu(params, tensor);
  13105. } break;
  13106. case GGML_OP_FLASH_ATTN:
  13107. {
  13108. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13109. GGML_ASSERT(t == 0 || t == 1);
  13110. const bool masked = t != 0;
  13111. ggml_compute_forward_flash_attn(params, masked, tensor);
  13112. } break;
  13113. case GGML_OP_FLASH_FF:
  13114. {
  13115. ggml_compute_forward_flash_ff(params, tensor);
  13116. } break;
  13117. case GGML_OP_FLASH_ATTN_BACK:
  13118. {
  13119. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13120. GGML_ASSERT(t == 0 || t == 1);
  13121. bool masked = t != 0;
  13122. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13123. } break;
  13124. case GGML_OP_SSM_CONV:
  13125. {
  13126. ggml_compute_forward_ssm_conv(params, tensor);
  13127. } break;
  13128. case GGML_OP_SSM_SCAN:
  13129. {
  13130. ggml_compute_forward_ssm_scan(params, tensor);
  13131. } break;
  13132. case GGML_OP_WIN_PART:
  13133. {
  13134. ggml_compute_forward_win_part(params, tensor);
  13135. } break;
  13136. case GGML_OP_WIN_UNPART:
  13137. {
  13138. ggml_compute_forward_win_unpart(params, tensor);
  13139. } break;
  13140. case GGML_OP_UNARY:
  13141. {
  13142. ggml_compute_forward_unary(params, tensor);
  13143. } break;
  13144. case GGML_OP_GET_REL_POS:
  13145. {
  13146. ggml_compute_forward_get_rel_pos(params, tensor);
  13147. } break;
  13148. case GGML_OP_ADD_REL_POS:
  13149. {
  13150. ggml_compute_forward_add_rel_pos(params, tensor);
  13151. } break;
  13152. case GGML_OP_MAP_UNARY:
  13153. {
  13154. ggml_unary_op_f32_t fun;
  13155. memcpy(&fun, tensor->op_params, sizeof(fun));
  13156. ggml_compute_forward_map_unary(params, tensor, fun);
  13157. }
  13158. break;
  13159. case GGML_OP_MAP_BINARY:
  13160. {
  13161. ggml_binary_op_f32_t fun;
  13162. memcpy(&fun, tensor->op_params, sizeof(fun));
  13163. ggml_compute_forward_map_binary(params, tensor, fun);
  13164. }
  13165. break;
  13166. case GGML_OP_MAP_CUSTOM1_F32:
  13167. {
  13168. ggml_custom1_op_f32_t fun;
  13169. memcpy(&fun, tensor->op_params, sizeof(fun));
  13170. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13171. }
  13172. break;
  13173. case GGML_OP_MAP_CUSTOM2_F32:
  13174. {
  13175. ggml_custom2_op_f32_t fun;
  13176. memcpy(&fun, tensor->op_params, sizeof(fun));
  13177. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13178. }
  13179. break;
  13180. case GGML_OP_MAP_CUSTOM3_F32:
  13181. {
  13182. ggml_custom3_op_f32_t fun;
  13183. memcpy(&fun, tensor->op_params, sizeof(fun));
  13184. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13185. }
  13186. break;
  13187. case GGML_OP_MAP_CUSTOM1:
  13188. {
  13189. ggml_compute_forward_map_custom1(params, tensor);
  13190. }
  13191. break;
  13192. case GGML_OP_MAP_CUSTOM2:
  13193. {
  13194. ggml_compute_forward_map_custom2(params, tensor);
  13195. }
  13196. break;
  13197. case GGML_OP_MAP_CUSTOM3:
  13198. {
  13199. ggml_compute_forward_map_custom3(params, tensor);
  13200. }
  13201. break;
  13202. case GGML_OP_CROSS_ENTROPY_LOSS:
  13203. {
  13204. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13205. }
  13206. break;
  13207. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13208. {
  13209. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13210. }
  13211. break;
  13212. case GGML_OP_NONE:
  13213. {
  13214. // nop
  13215. } break;
  13216. case GGML_OP_COUNT:
  13217. {
  13218. GGML_ASSERT(false);
  13219. } break;
  13220. }
  13221. }
  13222. ////////////////////////////////////////////////////////////////////////////////
  13223. static size_t ggml_hash_size(size_t min_sz) {
  13224. // next primes after powers of two
  13225. static const size_t primes[] = {
  13226. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13227. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13228. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13229. 16777259, 33554467, 67108879, 134217757, 268435459,
  13230. 536870923, 1073741827, 2147483659
  13231. };
  13232. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13233. // find the smallest prime that is larger or equal to min_sz
  13234. size_t l = 0;
  13235. size_t r = n_primes;
  13236. while (l < r) {
  13237. size_t m = (l + r)/2;
  13238. if (primes[m] < min_sz) {
  13239. l = m + 1;
  13240. } else {
  13241. r = m;
  13242. }
  13243. }
  13244. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13245. return sz;
  13246. }
  13247. static size_t ggml_hash(const void * p) {
  13248. return (size_t)p;
  13249. }
  13250. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13251. size_t h = ggml_hash(key) % hash_set.size;
  13252. // linear probing
  13253. size_t i = h;
  13254. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13255. i = (i + 1) % hash_set.size;
  13256. if (i == h) {
  13257. // visited all hash table entries -> not found
  13258. return GGML_HASHTABLE_FULL;
  13259. }
  13260. }
  13261. return i;
  13262. }
  13263. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13264. size_t i = ggml_hash_find(hash_set, key);
  13265. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13266. }
  13267. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13268. size_t i = ggml_hash_find(hash_set, key);
  13269. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13270. if (hash_set.keys[i] == key) {
  13271. return GGML_HASHTABLE_ALREADY_EXISTS;
  13272. }
  13273. // insert
  13274. GGML_ASSERT(hash_set.keys[i] == NULL);
  13275. hash_set.keys[i] = key;
  13276. return i;
  13277. }
  13278. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13279. size_t i = ggml_hash_find(hash_set, key);
  13280. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13281. hash_set.keys[i] = key;
  13282. return i;
  13283. }
  13284. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13285. size = ggml_hash_size(size);
  13286. struct ggml_hash_set result;
  13287. result.size = size;
  13288. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13289. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13290. return result;
  13291. }
  13292. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13293. GGML_FREE(hash_set.keys);
  13294. }
  13295. struct hash_map {
  13296. struct ggml_hash_set set;
  13297. struct ggml_tensor ** vals;
  13298. };
  13299. static struct hash_map * ggml_new_hash_map(size_t size) {
  13300. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13301. result->set = ggml_hash_set_new(size);
  13302. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13303. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13304. return result;
  13305. }
  13306. static void ggml_hash_map_free(struct hash_map * map) {
  13307. ggml_hash_set_free(map->set);
  13308. GGML_FREE(map->vals);
  13309. GGML_FREE(map);
  13310. }
  13311. // gradient checkpointing
  13312. static struct ggml_tensor * ggml_recompute_graph_node(
  13313. struct ggml_context * ctx,
  13314. struct ggml_cgraph * graph,
  13315. struct hash_map * replacements,
  13316. struct ggml_tensor * node) {
  13317. if (node == NULL) {
  13318. return NULL;
  13319. }
  13320. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13321. return node;
  13322. }
  13323. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13324. return node;
  13325. }
  13326. int count_children = 0;
  13327. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13328. if (node->src[k]) {
  13329. ++count_children;
  13330. }
  13331. }
  13332. if (count_children == 0) {
  13333. return node;
  13334. }
  13335. size_t i = ggml_hash_find(replacements->set, node);
  13336. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13337. if (replacements->set.keys[i] == node) {
  13338. return replacements->vals[i];
  13339. }
  13340. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13341. // insert clone into replacements
  13342. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13343. replacements->set.keys[i] = node;
  13344. replacements->vals[i] = clone;
  13345. clone->op = node->op;
  13346. clone->grad = node->grad;
  13347. clone->flags = node->flags;
  13348. clone->extra = node->extra;
  13349. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13350. clone->nb[k] = node->nb[k];
  13351. }
  13352. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13353. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13354. }
  13355. if (node->view_src != NULL) {
  13356. clone->data = (node->view_src->data == NULL)
  13357. ? NULL // view_src not yet allocated
  13358. : (char *) node->view_src->data // view_src already allocated
  13359. + node->view_offs;
  13360. clone->view_src = node->view_src;
  13361. clone->view_offs = node->view_offs;
  13362. }
  13363. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13364. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13365. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13366. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13367. return clone;
  13368. }
  13369. void ggml_build_backward_gradient_checkpointing(
  13370. struct ggml_context * ctx,
  13371. struct ggml_cgraph * gf,
  13372. struct ggml_cgraph * gb,
  13373. struct ggml_cgraph * gb_tmp,
  13374. struct ggml_tensor * * checkpoints,
  13375. int n_checkpoints) {
  13376. ggml_graph_cpy(gf, gb_tmp);
  13377. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13378. if (n_checkpoints <= 0) {
  13379. ggml_graph_cpy(gb_tmp, gb);
  13380. return;
  13381. }
  13382. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13383. // insert checkpoints in replacements
  13384. for (int i = 0; i < n_checkpoints; ++i) {
  13385. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13386. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13387. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13388. replacements->set.keys[k] = checkpoints[i];
  13389. replacements->vals[k] = checkpoints[i];
  13390. }
  13391. ggml_graph_cpy(gf, gb);
  13392. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13393. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13394. // by recomputing them from checkpoints
  13395. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13396. struct ggml_tensor * node = gb_tmp->nodes[i];
  13397. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13398. // insert new tensors recomputing src, reusing already made replacements,
  13399. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13400. // recurse for input tensors,
  13401. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13402. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13403. }
  13404. // insert rewritten backward node with replacements made into resulting backward graph gb
  13405. ggml_build_forward_expand(gb, node);
  13406. }
  13407. ggml_hash_map_free(replacements);
  13408. }
  13409. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13410. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13411. if (ggml_hash_contains(zero_table, a)) {
  13412. return b;
  13413. } else {
  13414. return ggml_add_impl(ctx, a, b, false);
  13415. }
  13416. }
  13417. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13418. if (ggml_hash_contains(zero_table, a)) {
  13419. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13420. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13421. } else {
  13422. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13423. }
  13424. }
  13425. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13426. if (ggml_hash_contains(zero_table, a)) {
  13427. return ggml_repeat(ctx, b, a);
  13428. } else {
  13429. return ggml_add1_impl(ctx, a, b, false);
  13430. }
  13431. }
  13432. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13433. if (ggml_hash_contains(zero_table, a)) {
  13434. return ggml_neg(ctx, b);
  13435. } else {
  13436. return ggml_sub_impl(ctx, a, b, false);
  13437. }
  13438. }
  13439. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13440. struct ggml_tensor * src0 = tensor->src[0];
  13441. struct ggml_tensor * src1 = tensor->src[1];
  13442. switch (tensor->op) {
  13443. case GGML_OP_DUP:
  13444. {
  13445. if (src0->grad) {
  13446. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13447. }
  13448. } break;
  13449. case GGML_OP_ADD:
  13450. {
  13451. if (src0->grad) {
  13452. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13453. }
  13454. if (src1->grad) {
  13455. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13456. }
  13457. } break;
  13458. case GGML_OP_ADD1:
  13459. {
  13460. if (src0->grad) {
  13461. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13462. }
  13463. if (src1->grad) {
  13464. src1->grad = ggml_add_or_set(ctx,
  13465. src1->grad,
  13466. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13467. zero_table);
  13468. }
  13469. } break;
  13470. case GGML_OP_ACC:
  13471. {
  13472. if (src0->grad) {
  13473. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13474. }
  13475. if (src1->grad) {
  13476. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13477. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13478. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13479. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13480. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13481. tensor->grad,
  13482. src1->grad->ne[0],
  13483. src1->grad->ne[1],
  13484. src1->grad->ne[2],
  13485. src1->grad->ne[3],
  13486. nb1, nb2, nb3, offset);
  13487. src1->grad =
  13488. ggml_add_or_set(ctx,
  13489. src1->grad,
  13490. ggml_reshape(ctx,
  13491. ggml_cont(ctx, tensor_grad_view),
  13492. src1->grad),
  13493. zero_table);
  13494. }
  13495. } break;
  13496. case GGML_OP_SUB:
  13497. {
  13498. if (src0->grad) {
  13499. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13500. }
  13501. if (src1->grad) {
  13502. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13503. }
  13504. } break;
  13505. case GGML_OP_MUL:
  13506. {
  13507. if (src0->grad) {
  13508. src0->grad =
  13509. ggml_add_or_set(ctx,
  13510. src0->grad,
  13511. ggml_mul(ctx, src1, tensor->grad),
  13512. zero_table);
  13513. }
  13514. if (src1->grad) {
  13515. src1->grad =
  13516. ggml_add_or_set(ctx,
  13517. src1->grad,
  13518. ggml_mul(ctx, src0, tensor->grad),
  13519. zero_table);
  13520. }
  13521. } break;
  13522. case GGML_OP_DIV:
  13523. {
  13524. if (src0->grad) {
  13525. src0->grad =
  13526. ggml_add_or_set(ctx,
  13527. src0->grad,
  13528. ggml_div(ctx, tensor->grad, src1),
  13529. zero_table);
  13530. }
  13531. if (src1->grad) {
  13532. src1->grad =
  13533. ggml_sub_or_set(ctx,
  13534. src1->grad,
  13535. ggml_mul(ctx,
  13536. tensor->grad,
  13537. ggml_div(ctx, tensor, src1)),
  13538. zero_table);
  13539. }
  13540. } break;
  13541. case GGML_OP_SQR:
  13542. {
  13543. if (src0->grad) {
  13544. src0->grad =
  13545. ggml_add_or_set(ctx,
  13546. src0->grad,
  13547. ggml_scale(ctx,
  13548. ggml_mul(ctx, src0, tensor->grad),
  13549. 2.0f),
  13550. zero_table);
  13551. }
  13552. } break;
  13553. case GGML_OP_SQRT:
  13554. {
  13555. if (src0->grad) {
  13556. src0->grad =
  13557. ggml_add_or_set(ctx,
  13558. src0->grad,
  13559. ggml_scale(ctx,
  13560. ggml_div(ctx,
  13561. tensor->grad,
  13562. tensor),
  13563. 0.5f),
  13564. zero_table);
  13565. }
  13566. } break;
  13567. case GGML_OP_LOG:
  13568. {
  13569. if (src0->grad) {
  13570. src0->grad =
  13571. ggml_add_or_set(ctx,
  13572. src0->grad,
  13573. ggml_div(ctx,
  13574. tensor->grad,
  13575. src0),
  13576. zero_table);
  13577. }
  13578. } break;
  13579. case GGML_OP_SUM:
  13580. {
  13581. if (src0->grad) {
  13582. src0->grad =
  13583. ggml_add1_or_set(ctx,
  13584. src0->grad,
  13585. tensor->grad,
  13586. zero_table);
  13587. }
  13588. } break;
  13589. case GGML_OP_SUM_ROWS:
  13590. {
  13591. if (src0->grad) {
  13592. src0->grad =
  13593. ggml_add_or_set(ctx,
  13594. src0->grad,
  13595. ggml_repeat(ctx,
  13596. tensor->grad,
  13597. src0->grad),
  13598. zero_table);
  13599. }
  13600. } break;
  13601. case GGML_OP_MEAN:
  13602. case GGML_OP_ARGMAX:
  13603. {
  13604. GGML_ASSERT(false); // TODO: implement
  13605. } break;
  13606. case GGML_OP_REPEAT:
  13607. {
  13608. // necessary for llama
  13609. if (src0->grad) {
  13610. src0->grad = ggml_add_or_set(ctx,
  13611. src0->grad,
  13612. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13613. zero_table);
  13614. }
  13615. } break;
  13616. case GGML_OP_REPEAT_BACK:
  13617. {
  13618. if (src0->grad) {
  13619. // TODO: test this
  13620. src0->grad = ggml_add_or_set(ctx,
  13621. src0->grad,
  13622. ggml_repeat(ctx, tensor->grad, src0->grad),
  13623. zero_table);
  13624. }
  13625. } break;
  13626. case GGML_OP_CONCAT:
  13627. {
  13628. GGML_ASSERT(false); // TODO: implement
  13629. } break;
  13630. case GGML_OP_SILU_BACK:
  13631. {
  13632. GGML_ASSERT(false); // TODO: not implemented
  13633. } break;
  13634. case GGML_OP_NORM:
  13635. {
  13636. GGML_ASSERT(false); // TODO: not implemented
  13637. } break;
  13638. case GGML_OP_RMS_NORM:
  13639. {
  13640. // necessary for llama
  13641. if (src0->grad) {
  13642. float eps;
  13643. memcpy(&eps, tensor->op_params, sizeof(float));
  13644. src0->grad = ggml_add_or_set(ctx,
  13645. src0->grad,
  13646. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13647. zero_table);
  13648. }
  13649. } break;
  13650. case GGML_OP_RMS_NORM_BACK:
  13651. {
  13652. GGML_ASSERT(false); // TODO: not implemented
  13653. } break;
  13654. case GGML_OP_GROUP_NORM:
  13655. {
  13656. GGML_ASSERT(false); // TODO: not implemented
  13657. } break;
  13658. case GGML_OP_MUL_MAT:
  13659. {
  13660. // https://cs231n.github.io/optimization-2/#staged
  13661. // # forward pass
  13662. // s0 = np.random.randn(5, 10)
  13663. // s1 = np.random.randn(10, 3)
  13664. // t = s0.dot(s1)
  13665. // # now suppose we had the gradient on t from above in the circuit
  13666. // dt = np.random.randn(*t.shape) # same shape as t
  13667. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13668. // ds1 = t.T.dot(dt)
  13669. // tensor.shape [m,p,qq,rr]
  13670. // src0.shape [n,m,q1,r1]
  13671. // src1.shape [n,p,qq,rr]
  13672. // necessary for llama
  13673. if (src0->grad) {
  13674. struct ggml_tensor * s1_tg =
  13675. ggml_out_prod(ctx, // [n,m,qq,rr]
  13676. src1, // [n,p,qq,rr]
  13677. tensor->grad); // [m,p,qq,rr]
  13678. const int64_t qq = s1_tg->ne[2];
  13679. const int64_t rr = s1_tg->ne[3];
  13680. const int64_t q1 = src0->ne[2];
  13681. const int64_t r1 = src0->ne[3];
  13682. const bool ne2_broadcasted = qq > q1;
  13683. const bool ne3_broadcasted = rr > r1;
  13684. if (ne2_broadcasted || ne3_broadcasted) {
  13685. // sum broadcast repetitions of s1_tg into shape of src0
  13686. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13687. }
  13688. src0->grad =
  13689. ggml_add_or_set(ctx,
  13690. src0->grad, // [n,m,q1,r1]
  13691. s1_tg, // [n,m,q1,r1]
  13692. zero_table);
  13693. }
  13694. if (src1->grad) {
  13695. src1->grad =
  13696. ggml_add_or_set(ctx,
  13697. src1->grad, // [n,p,qq,rr]
  13698. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13699. // ggml_cont(ctx, // [m,n,q1,r1]
  13700. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13701. // tensor->grad), // [m,p,qq,rr]
  13702. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13703. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13704. // // and then use ggml_out_prod
  13705. ggml_out_prod(ctx, // [n,p,qq,rr]
  13706. src0, // [n,m,q1,r1]
  13707. ggml_transpose(ctx, // [p,m,qq,rr]
  13708. tensor->grad)), // [m,p,qq,rr]
  13709. zero_table);
  13710. }
  13711. } break;
  13712. case GGML_OP_MUL_MAT_ID:
  13713. {
  13714. GGML_ASSERT(false); // TODO: not implemented
  13715. } break;
  13716. case GGML_OP_OUT_PROD:
  13717. {
  13718. GGML_ASSERT(false); // TODO: not implemented
  13719. } break;
  13720. case GGML_OP_SCALE:
  13721. {
  13722. // necessary for llama
  13723. if (src0->grad) {
  13724. float s;
  13725. memcpy(&s, tensor->op_params, sizeof(float));
  13726. src0->grad =
  13727. ggml_add_or_set(ctx,
  13728. src0->grad,
  13729. ggml_scale_impl(ctx, tensor->grad, s, false),
  13730. zero_table);
  13731. }
  13732. } break;
  13733. case GGML_OP_SET:
  13734. {
  13735. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13736. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13737. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13738. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13739. struct ggml_tensor * tensor_grad_view = NULL;
  13740. if (src0->grad || src1->grad) {
  13741. GGML_ASSERT(src0->type == tensor->type);
  13742. GGML_ASSERT(tensor->grad->type == tensor->type);
  13743. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13744. tensor_grad_view = ggml_view_4d(ctx,
  13745. tensor->grad,
  13746. src1->grad->ne[0],
  13747. src1->grad->ne[1],
  13748. src1->grad->ne[2],
  13749. src1->grad->ne[3],
  13750. nb1, nb2, nb3, offset);
  13751. }
  13752. if (src0->grad) {
  13753. src0->grad = ggml_add_or_set(ctx,
  13754. src0->grad,
  13755. ggml_acc_impl(ctx,
  13756. tensor->grad,
  13757. ggml_neg(ctx, tensor_grad_view),
  13758. nb1, nb2, nb3, offset, false),
  13759. zero_table);
  13760. }
  13761. if (src1->grad) {
  13762. src1->grad =
  13763. ggml_add_or_set(ctx,
  13764. src1->grad,
  13765. ggml_reshape(ctx,
  13766. ggml_cont(ctx, tensor_grad_view),
  13767. src1->grad),
  13768. zero_table);
  13769. }
  13770. } break;
  13771. case GGML_OP_CPY:
  13772. {
  13773. // necessary for llama
  13774. // cpy overwrites value of src1 by src0 and returns view(src1)
  13775. // the overwriting is mathematically equivalent to:
  13776. // tensor = src0 * 1 + src1 * 0
  13777. if (src0->grad) {
  13778. // dsrc0 = dtensor * 1
  13779. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13780. }
  13781. if (src1->grad) {
  13782. // dsrc1 = dtensor * 0 -> noop
  13783. }
  13784. } break;
  13785. case GGML_OP_CONT:
  13786. {
  13787. // same as cpy
  13788. if (src0->grad) {
  13789. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13790. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13791. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13792. }
  13793. } break;
  13794. case GGML_OP_RESHAPE:
  13795. {
  13796. // necessary for llama
  13797. if (src0->grad) {
  13798. src0->grad =
  13799. ggml_add_or_set(ctx, src0->grad,
  13800. ggml_reshape(ctx,
  13801. ggml_is_contiguous(tensor->grad)
  13802. ? tensor->grad
  13803. : ggml_cont(ctx, tensor->grad),
  13804. src0->grad),
  13805. zero_table);
  13806. }
  13807. } break;
  13808. case GGML_OP_VIEW:
  13809. {
  13810. // necessary for llama
  13811. if (src0->grad) {
  13812. size_t offset;
  13813. memcpy(&offset, tensor->op_params, sizeof(offset));
  13814. size_t nb1 = tensor->nb[1];
  13815. size_t nb2 = tensor->nb[2];
  13816. size_t nb3 = tensor->nb[3];
  13817. if (src0->type != src0->grad->type) {
  13818. // gradient is typically F32, but src0 could be other type
  13819. size_t ng = ggml_element_size(src0->grad);
  13820. size_t n0 = ggml_element_size(src0);
  13821. GGML_ASSERT(offset % n0 == 0);
  13822. GGML_ASSERT(nb1 % n0 == 0);
  13823. GGML_ASSERT(nb2 % n0 == 0);
  13824. GGML_ASSERT(nb3 % n0 == 0);
  13825. offset = (offset / n0) * ng;
  13826. nb1 = (nb1 / n0) * ng;
  13827. nb2 = (nb2 / n0) * ng;
  13828. nb3 = (nb3 / n0) * ng;
  13829. }
  13830. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13831. }
  13832. } break;
  13833. case GGML_OP_PERMUTE:
  13834. {
  13835. // necessary for llama
  13836. if (src0->grad) {
  13837. int32_t * axes = (int32_t *) tensor->op_params;
  13838. int axis0 = axes[0] & 0x3;
  13839. int axis1 = axes[1] & 0x3;
  13840. int axis2 = axes[2] & 0x3;
  13841. int axis3 = axes[3] & 0x3;
  13842. int axes_backward[4] = {0,0,0,0};
  13843. axes_backward[axis0] = 0;
  13844. axes_backward[axis1] = 1;
  13845. axes_backward[axis2] = 2;
  13846. axes_backward[axis3] = 3;
  13847. src0->grad =
  13848. ggml_add_or_set(ctx, src0->grad,
  13849. ggml_permute(ctx,
  13850. tensor->grad,
  13851. axes_backward[0],
  13852. axes_backward[1],
  13853. axes_backward[2],
  13854. axes_backward[3]),
  13855. zero_table);
  13856. }
  13857. } break;
  13858. case GGML_OP_TRANSPOSE:
  13859. {
  13860. // necessary for llama
  13861. if (src0->grad) {
  13862. src0->grad =
  13863. ggml_add_or_set(ctx, src0->grad,
  13864. ggml_transpose(ctx, tensor->grad),
  13865. zero_table);
  13866. }
  13867. } break;
  13868. case GGML_OP_GET_ROWS:
  13869. {
  13870. // necessary for llama (only for tokenizer)
  13871. if (src0->grad) {
  13872. src0->grad =
  13873. ggml_add_or_set(ctx, src0->grad,
  13874. // last ggml_get_rows_back argument src0->grad is only
  13875. // necessary to setup correct output shape
  13876. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13877. zero_table);
  13878. }
  13879. if (src1->grad) {
  13880. // noop
  13881. }
  13882. } break;
  13883. case GGML_OP_GET_ROWS_BACK:
  13884. {
  13885. GGML_ASSERT(false); // TODO: not implemented
  13886. } break;
  13887. case GGML_OP_DIAG:
  13888. {
  13889. GGML_ASSERT(false); // TODO: not implemented
  13890. } break;
  13891. case GGML_OP_DIAG_MASK_INF:
  13892. {
  13893. // necessary for llama
  13894. if (src0->grad) {
  13895. const int n_past = ((int32_t *) tensor->op_params)[0];
  13896. src0->grad =
  13897. ggml_add_or_set(ctx, src0->grad,
  13898. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13899. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13900. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13901. zero_table);
  13902. }
  13903. } break;
  13904. case GGML_OP_DIAG_MASK_ZERO:
  13905. {
  13906. // necessary for llama
  13907. if (src0->grad) {
  13908. const int n_past = ((int32_t *) tensor->op_params)[0];
  13909. src0->grad =
  13910. ggml_add_or_set(ctx, src0->grad,
  13911. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13912. zero_table);
  13913. }
  13914. } break;
  13915. case GGML_OP_SOFT_MAX:
  13916. {
  13917. // necessary for llama
  13918. if (src0->grad) {
  13919. src0->grad =
  13920. ggml_add_or_set(ctx, src0->grad,
  13921. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13922. zero_table);
  13923. }
  13924. } break;
  13925. case GGML_OP_SOFT_MAX_BACK:
  13926. {
  13927. GGML_ASSERT(false); // TODO: not implemented
  13928. } break;
  13929. case GGML_OP_ROPE:
  13930. {
  13931. // necessary for llama
  13932. if (src0->grad) {
  13933. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13934. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13935. const int mode = ((int32_t *) tensor->op_params)[2];
  13936. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13937. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13938. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13939. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13940. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13941. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13942. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13943. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13944. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13945. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13946. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13947. src0->grad = ggml_add_or_set(ctx,
  13948. src0->grad,
  13949. ggml_rope_back(ctx,
  13950. tensor->grad,
  13951. src1,
  13952. n_dims,
  13953. mode,
  13954. n_ctx,
  13955. n_orig_ctx,
  13956. freq_base,
  13957. freq_scale,
  13958. ext_factor,
  13959. attn_factor,
  13960. beta_fast,
  13961. beta_slow,
  13962. xpos_base,
  13963. xpos_down),
  13964. zero_table);
  13965. }
  13966. } break;
  13967. case GGML_OP_ROPE_BACK:
  13968. {
  13969. if (src0->grad) {
  13970. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13971. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13972. const int mode = ((int32_t *) tensor->op_params)[2];
  13973. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13974. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13975. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13976. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13977. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13978. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13979. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13980. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13981. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13982. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13983. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13984. src0->grad = ggml_add_or_set(ctx,
  13985. src0->grad,
  13986. ggml_rope_impl(ctx,
  13987. tensor->grad,
  13988. src1,
  13989. n_dims,
  13990. mode,
  13991. n_ctx,
  13992. n_orig_ctx,
  13993. freq_base,
  13994. freq_scale,
  13995. ext_factor,
  13996. attn_factor,
  13997. beta_fast,
  13998. beta_slow,
  13999. xpos_base,
  14000. xpos_down,
  14001. false),
  14002. zero_table);
  14003. }
  14004. } break;
  14005. case GGML_OP_ALIBI:
  14006. {
  14007. GGML_ASSERT(false); // TODO: not implemented
  14008. } break;
  14009. case GGML_OP_CLAMP:
  14010. {
  14011. GGML_ASSERT(false); // TODO: not implemented
  14012. } break;
  14013. case GGML_OP_CONV_TRANSPOSE_1D:
  14014. {
  14015. GGML_ASSERT(false); // TODO: not implemented
  14016. } break;
  14017. case GGML_OP_IM2COL:
  14018. {
  14019. GGML_ASSERT(false); // TODO: not implemented
  14020. } break;
  14021. case GGML_OP_CONV_TRANSPOSE_2D:
  14022. {
  14023. GGML_ASSERT(false); // TODO: not implemented
  14024. } break;
  14025. case GGML_OP_POOL_1D:
  14026. {
  14027. GGML_ASSERT(false); // TODO: not implemented
  14028. } break;
  14029. case GGML_OP_POOL_2D:
  14030. {
  14031. GGML_ASSERT(false); // TODO: not implemented
  14032. } break;
  14033. case GGML_OP_UPSCALE:
  14034. {
  14035. GGML_ASSERT(false); // TODO: not implemented
  14036. } break;
  14037. case GGML_OP_PAD:
  14038. {
  14039. GGML_ASSERT(false); // TODO: not implemented
  14040. } break;
  14041. case GGML_OP_ARANGE:
  14042. {
  14043. GGML_ASSERT(false); // TODO: not implemented
  14044. } break;
  14045. case GGML_OP_TIMESTEP_EMBEDDING:
  14046. {
  14047. GGML_ASSERT(false); // TODO: not implemented
  14048. } break;
  14049. case GGML_OP_ARGSORT:
  14050. {
  14051. GGML_ASSERT(false); // TODO: not implemented
  14052. } break;
  14053. case GGML_OP_LEAKY_RELU:
  14054. {
  14055. GGML_ASSERT(false); // TODO: not implemented
  14056. } break;
  14057. case GGML_OP_FLASH_ATTN:
  14058. {
  14059. struct ggml_tensor * flash_grad = NULL;
  14060. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14061. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14062. GGML_ASSERT(t == 0 || t == 1);
  14063. bool masked = t != 0;
  14064. flash_grad =
  14065. ggml_flash_attn_back(ctx,
  14066. src0,
  14067. src1,
  14068. tensor->src[2],
  14069. tensor->grad,
  14070. masked);
  14071. }
  14072. struct ggml_tensor * src2 = tensor->src[2];
  14073. const int64_t elem_q = ggml_nelements(src0);
  14074. const int64_t elem_k = ggml_nelements(src1);
  14075. const int64_t elem_v = ggml_nelements(src2);
  14076. enum ggml_type result_type = flash_grad->type;
  14077. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14078. const size_t tsize = ggml_type_size(result_type);
  14079. const size_t offs_q = 0;
  14080. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14081. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14082. if (src0->grad) {
  14083. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14084. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14085. src0->grad = ggml_add_or_set(ctx,
  14086. src0->grad,
  14087. grad_q,
  14088. zero_table);
  14089. }
  14090. if (src1->grad) {
  14091. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14092. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14093. src1->grad = ggml_add_or_set(ctx,
  14094. src1->grad,
  14095. grad_k,
  14096. zero_table);
  14097. }
  14098. if (src2->grad) {
  14099. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14100. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14101. src2->grad = ggml_add_or_set(ctx,
  14102. src2->grad,
  14103. grad_v,
  14104. zero_table);
  14105. }
  14106. } break;
  14107. case GGML_OP_FLASH_FF:
  14108. {
  14109. GGML_ASSERT(false); // not supported
  14110. } break;
  14111. case GGML_OP_FLASH_ATTN_BACK:
  14112. {
  14113. GGML_ASSERT(false); // not supported
  14114. } break;
  14115. case GGML_OP_SSM_CONV:
  14116. case GGML_OP_SSM_SCAN:
  14117. {
  14118. GGML_ASSERT(false); // TODO: not implemented
  14119. } break;
  14120. case GGML_OP_WIN_PART:
  14121. case GGML_OP_WIN_UNPART:
  14122. case GGML_OP_UNARY:
  14123. {
  14124. switch (ggml_get_unary_op(tensor)) {
  14125. case GGML_UNARY_OP_ABS:
  14126. {
  14127. if (src0->grad) {
  14128. src0->grad =
  14129. ggml_add_or_set(ctx,
  14130. src0->grad,
  14131. ggml_mul(ctx,
  14132. ggml_sgn(ctx, src0),
  14133. tensor->grad),
  14134. zero_table);
  14135. }
  14136. } break;
  14137. case GGML_UNARY_OP_SGN:
  14138. {
  14139. if (src0->grad) {
  14140. // noop
  14141. }
  14142. } break;
  14143. case GGML_UNARY_OP_NEG:
  14144. {
  14145. if (src0->grad) {
  14146. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14147. }
  14148. } break;
  14149. case GGML_UNARY_OP_STEP:
  14150. {
  14151. if (src0->grad) {
  14152. // noop
  14153. }
  14154. } break;
  14155. case GGML_UNARY_OP_TANH:
  14156. {
  14157. GGML_ASSERT(false); // TODO: not implemented
  14158. } break;
  14159. case GGML_UNARY_OP_ELU:
  14160. {
  14161. GGML_ASSERT(false); // TODO: not implemented
  14162. } break;
  14163. case GGML_UNARY_OP_RELU:
  14164. {
  14165. if (src0->grad) {
  14166. src0->grad = ggml_add_or_set(ctx,
  14167. src0->grad,
  14168. ggml_mul(ctx,
  14169. ggml_step(ctx, src0),
  14170. tensor->grad),
  14171. zero_table);
  14172. }
  14173. } break;
  14174. case GGML_UNARY_OP_GELU:
  14175. {
  14176. GGML_ASSERT(false); // TODO: not implemented
  14177. } break;
  14178. case GGML_UNARY_OP_GELU_QUICK:
  14179. {
  14180. GGML_ASSERT(false); // TODO: not implemented
  14181. } break;
  14182. case GGML_UNARY_OP_SILU:
  14183. {
  14184. // necessary for llama
  14185. if (src0->grad) {
  14186. src0->grad = ggml_add_or_set(ctx,
  14187. src0->grad,
  14188. ggml_silu_back(ctx, src0, tensor->grad),
  14189. zero_table);
  14190. }
  14191. } break;
  14192. default:
  14193. GGML_ASSERT(false);
  14194. }
  14195. } break;
  14196. case GGML_OP_GET_REL_POS:
  14197. case GGML_OP_ADD_REL_POS:
  14198. case GGML_OP_MAP_UNARY:
  14199. case GGML_OP_MAP_BINARY:
  14200. case GGML_OP_MAP_CUSTOM1_F32:
  14201. case GGML_OP_MAP_CUSTOM2_F32:
  14202. case GGML_OP_MAP_CUSTOM3_F32:
  14203. case GGML_OP_MAP_CUSTOM1:
  14204. case GGML_OP_MAP_CUSTOM2:
  14205. case GGML_OP_MAP_CUSTOM3:
  14206. {
  14207. GGML_ASSERT(false); // not supported
  14208. } break;
  14209. case GGML_OP_CROSS_ENTROPY_LOSS:
  14210. {
  14211. if (src0->grad) {
  14212. src0->grad = ggml_add_or_set(ctx,
  14213. src0->grad,
  14214. ggml_cross_entropy_loss_back(ctx,
  14215. src0,
  14216. src1,
  14217. tensor->grad),
  14218. zero_table);
  14219. }
  14220. } break;
  14221. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14222. {
  14223. GGML_ASSERT(false); // not supported
  14224. } break;
  14225. case GGML_OP_NONE:
  14226. {
  14227. // nop
  14228. } break;
  14229. case GGML_OP_COUNT:
  14230. {
  14231. GGML_ASSERT(false);
  14232. } break;
  14233. }
  14234. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14235. if (tensor->src[i] && tensor->src[i]->grad) {
  14236. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14237. }
  14238. }
  14239. }
  14240. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14241. if (node->grad == NULL) {
  14242. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14243. // it can also happen during forward pass, if the user performs computations with constants
  14244. if (node->op != GGML_OP_NONE) {
  14245. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14246. }
  14247. }
  14248. // check if already visited
  14249. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14250. return;
  14251. }
  14252. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14253. const int k =
  14254. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14255. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14256. /* unknown order, just fall back to using i*/ i;
  14257. if (node->src[k]) {
  14258. ggml_visit_parents(cgraph, node->src[k]);
  14259. }
  14260. }
  14261. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14262. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14263. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14264. if (strlen(node->name) == 0) {
  14265. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14266. }
  14267. cgraph->leafs[cgraph->n_leafs] = node;
  14268. cgraph->n_leafs++;
  14269. } else {
  14270. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14271. if (strlen(node->name) == 0) {
  14272. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14273. }
  14274. cgraph->nodes[cgraph->n_nodes] = node;
  14275. if (cgraph->grads) {
  14276. cgraph->grads[cgraph->n_nodes] = node->grad;
  14277. }
  14278. cgraph->n_nodes++;
  14279. }
  14280. }
  14281. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14282. if (!expand) {
  14283. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14284. ggml_graph_clear(cgraph);
  14285. }
  14286. const int n0 = cgraph->n_nodes;
  14287. UNUSED(n0);
  14288. ggml_visit_parents(cgraph, tensor);
  14289. const int n_new = cgraph->n_nodes - n0;
  14290. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14291. if (n_new > 0) {
  14292. // the last added node should always be starting point
  14293. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14294. }
  14295. }
  14296. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14297. ggml_build_forward_impl(cgraph, tensor, true);
  14298. }
  14299. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14300. GGML_ASSERT(gf->n_nodes > 0);
  14301. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14302. if (keep) {
  14303. for (int i = 0; i < gf->n_nodes; i++) {
  14304. struct ggml_tensor * node = gf->nodes[i];
  14305. if (node->grad) {
  14306. node->grad = ggml_dup_tensor(ctx, node);
  14307. gf->grads[i] = node->grad;
  14308. }
  14309. }
  14310. }
  14311. // remember original gradients which start with zero values
  14312. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14313. for (int i = 0; i < gf->n_nodes; i++) {
  14314. if (gf->grads[i]) {
  14315. ggml_hash_insert(zero_table, gf->grads[i]);
  14316. }
  14317. }
  14318. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14319. struct ggml_tensor * node = gf->nodes[i];
  14320. // inplace operations to add gradients are not created by ggml_compute_backward
  14321. // use allocator to automatically make inplace operations
  14322. if (node->grad) {
  14323. ggml_compute_backward(ctx, node, zero_table);
  14324. }
  14325. }
  14326. for (int i = 0; i < gf->n_nodes; i++) {
  14327. struct ggml_tensor * node = gf->nodes[i];
  14328. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14329. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14330. ggml_build_forward_expand(gb, node->grad);
  14331. }
  14332. }
  14333. ggml_hash_set_free(zero_table);
  14334. }
  14335. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14336. size_t nbytes = sizeof(struct ggml_cgraph);
  14337. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14338. if (grads) {
  14339. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14340. }
  14341. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14342. return nbytes;
  14343. }
  14344. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14345. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14346. }
  14347. size_t ggml_graph_overhead(void) {
  14348. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14349. }
  14350. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14351. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14352. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14353. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14354. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14355. size_t hash_size = ggml_hash_size(size * 2);
  14356. struct ggml_tensor ** nodes_ptr = data_start;
  14357. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14358. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14359. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14360. // check that we allocated the correct amount of memory
  14361. assert(obj_size == (size_t) (
  14362. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14363. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14364. *cgraph = (struct ggml_cgraph) {
  14365. /*.size =*/ size,
  14366. /*.n_nodes =*/ 0,
  14367. /*.n_leafs =*/ 0,
  14368. /*.nodes =*/ nodes_ptr,
  14369. /*.grads =*/ grads_ptr,
  14370. /*.leafs =*/ leafs_ptr,
  14371. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14372. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14373. /*.perf_runs =*/ 0,
  14374. /*.perf_cycles =*/ 0,
  14375. /*.perf_time_us =*/ 0,
  14376. };
  14377. return cgraph;
  14378. }
  14379. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14380. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14381. }
  14382. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14383. struct ggml_cgraph cgraph = {
  14384. /*.size =*/ 0,
  14385. /*.n_nodes =*/ i1 - i0,
  14386. /*.n_leafs =*/ 0,
  14387. /*.nodes =*/ cgraph0->nodes + i0,
  14388. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14389. /*.leafs =*/ NULL,
  14390. /*.hash_table =*/ { 0, NULL },
  14391. /*.order =*/ cgraph0->order,
  14392. /*.perf_runs =*/ 0,
  14393. /*.perf_cycles =*/ 0,
  14394. /*.perf_time_us =*/ 0,
  14395. };
  14396. return cgraph;
  14397. }
  14398. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14399. GGML_ASSERT(dst->size >= src->n_leafs);
  14400. GGML_ASSERT(dst->size >= src->n_nodes);
  14401. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14402. dst->n_leafs = src->n_leafs;
  14403. dst->n_nodes = src->n_nodes;
  14404. dst->order = src->order;
  14405. for (int i = 0; i < src->n_leafs; ++i) {
  14406. dst->leafs[i] = src->leafs[i];
  14407. }
  14408. for (int i = 0; i < src->n_nodes; ++i) {
  14409. dst->nodes[i] = src->nodes[i];
  14410. }
  14411. if (src->grads) {
  14412. GGML_ASSERT(dst->grads != NULL);
  14413. for (int i = 0; i < src->n_nodes; ++i) {
  14414. dst->grads[i] = src->grads[i];
  14415. }
  14416. }
  14417. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14418. if (src->visited_hash_table.keys[i]) {
  14419. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14420. }
  14421. }
  14422. }
  14423. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14424. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14425. ggml_graph_cpy(cgraph, result);
  14426. return result;
  14427. }
  14428. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14429. GGML_ASSERT(cgraph->grads != NULL);
  14430. for (int i = 0; i < cgraph->n_nodes; i++) {
  14431. struct ggml_tensor * grad = cgraph->grads[i];
  14432. if (grad) {
  14433. ggml_set_zero(grad);
  14434. }
  14435. }
  14436. }
  14437. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14438. cgraph->n_leafs = 0;
  14439. cgraph->n_nodes = 0;
  14440. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14441. }
  14442. //
  14443. // thread data
  14444. //
  14445. // synchronization is done via busy loops
  14446. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14447. //
  14448. #ifdef __APPLE__
  14449. //#include <os/lock.h>
  14450. //
  14451. //typedef os_unfair_lock ggml_lock_t;
  14452. //
  14453. //#define ggml_lock_init(x) UNUSED(x)
  14454. //#define ggml_lock_destroy(x) UNUSED(x)
  14455. //#define ggml_lock_lock os_unfair_lock_lock
  14456. //#define ggml_lock_unlock os_unfair_lock_unlock
  14457. //
  14458. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14459. typedef int ggml_lock_t;
  14460. #define ggml_lock_init(x) UNUSED(x)
  14461. #define ggml_lock_destroy(x) UNUSED(x)
  14462. #define ggml_lock_lock(x) UNUSED(x)
  14463. #define ggml_lock_unlock(x) UNUSED(x)
  14464. #define GGML_LOCK_INITIALIZER 0
  14465. typedef pthread_t ggml_thread_t;
  14466. #define ggml_thread_create pthread_create
  14467. #define ggml_thread_join pthread_join
  14468. #else
  14469. //typedef pthread_spinlock_t ggml_lock_t;
  14470. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14471. //#define ggml_lock_destroy pthread_spin_destroy
  14472. //#define ggml_lock_lock pthread_spin_lock
  14473. //#define ggml_lock_unlock pthread_spin_unlock
  14474. typedef int ggml_lock_t;
  14475. #define ggml_lock_init(x) UNUSED(x)
  14476. #define ggml_lock_destroy(x) UNUSED(x)
  14477. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14478. #define ggml_lock_lock(x) _mm_pause()
  14479. #else
  14480. #define ggml_lock_lock(x) UNUSED(x)
  14481. #endif
  14482. #define ggml_lock_unlock(x) UNUSED(x)
  14483. #define GGML_LOCK_INITIALIZER 0
  14484. typedef pthread_t ggml_thread_t;
  14485. #define ggml_thread_create pthread_create
  14486. #define ggml_thread_join pthread_join
  14487. #endif
  14488. // Android's libc implementation "bionic" does not support setting affinity
  14489. #if defined(__gnu_linux__)
  14490. static void set_numa_thread_affinity(int thread_n) {
  14491. if (!ggml_is_numa()) {
  14492. return;
  14493. }
  14494. int node_num;
  14495. int rv;
  14496. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14497. switch(g_state.numa.numa_strategy) {
  14498. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14499. // run thread on node_num thread_n / (threads per node)
  14500. node_num = thread_n % g_state.numa.n_nodes;
  14501. break;
  14502. case GGML_NUMA_STRATEGY_ISOLATE:
  14503. // run thread on current_node
  14504. node_num = g_state.numa.current_node;
  14505. break;
  14506. case GGML_NUMA_STRATEGY_NUMACTL:
  14507. // use the cpuset that numactl gave us
  14508. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14509. if (rv) {
  14510. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14511. }
  14512. return;
  14513. default:
  14514. return;
  14515. }
  14516. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14517. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14518. CPU_ZERO_S(setsize, cpus);
  14519. for (size_t i = 0; i < node->n_cpus; ++i) {
  14520. CPU_SET_S(node->cpus[i], setsize, cpus);
  14521. }
  14522. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14523. if (rv) {
  14524. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14525. }
  14526. CPU_FREE(cpus);
  14527. }
  14528. static void clear_numa_thread_affinity(void) {
  14529. if (!ggml_is_numa()) {
  14530. return;
  14531. }
  14532. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14533. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14534. CPU_ZERO_S(setsize, cpus);
  14535. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14536. CPU_SET_S(i, setsize, cpus);
  14537. }
  14538. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14539. if (rv) {
  14540. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14541. }
  14542. CPU_FREE(cpus);
  14543. }
  14544. #else
  14545. // TODO: Windows etc.
  14546. // (the linux implementation may also work on BSD, someone should test)
  14547. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14548. static void clear_numa_thread_affinity(void) {}
  14549. #endif
  14550. struct ggml_compute_state_shared {
  14551. const struct ggml_cgraph * cgraph;
  14552. const struct ggml_cplan * cplan;
  14553. int64_t perf_node_start_cycles;
  14554. int64_t perf_node_start_time_us;
  14555. const int n_threads;
  14556. // synchronization primitives
  14557. atomic_int n_active; // num active threads
  14558. atomic_int node_n; // active graph node
  14559. atomic_int node_task; // active graph node task phase
  14560. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14561. void * abort_callback_data;
  14562. };
  14563. struct ggml_compute_state {
  14564. ggml_thread_t thrd;
  14565. int ith;
  14566. struct ggml_compute_state_shared * shared;
  14567. enum ggml_status ec;
  14568. };
  14569. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14570. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14571. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14572. node->perf_runs++;
  14573. node->perf_cycles += cycles_cur;
  14574. node->perf_time_us += time_us_cur;
  14575. }
  14576. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14577. int n_tasks = 0;
  14578. switch (node->op) {
  14579. case GGML_OP_CPY:
  14580. case GGML_OP_DUP:
  14581. case GGML_OP_ADD:
  14582. case GGML_OP_ADD1:
  14583. case GGML_OP_ACC:
  14584. {
  14585. n_tasks = n_threads;
  14586. } break;
  14587. case GGML_OP_SUB:
  14588. case GGML_OP_SQR:
  14589. case GGML_OP_SQRT:
  14590. case GGML_OP_LOG:
  14591. case GGML_OP_SUM:
  14592. case GGML_OP_SUM_ROWS:
  14593. case GGML_OP_MEAN:
  14594. case GGML_OP_ARGMAX:
  14595. case GGML_OP_REPEAT:
  14596. case GGML_OP_REPEAT_BACK:
  14597. case GGML_OP_LEAKY_RELU:
  14598. {
  14599. n_tasks = 1;
  14600. } break;
  14601. case GGML_OP_UNARY:
  14602. switch (ggml_get_unary_op(node)) {
  14603. case GGML_UNARY_OP_ABS:
  14604. case GGML_UNARY_OP_SGN:
  14605. case GGML_UNARY_OP_NEG:
  14606. case GGML_UNARY_OP_STEP:
  14607. case GGML_UNARY_OP_TANH:
  14608. case GGML_UNARY_OP_ELU:
  14609. case GGML_UNARY_OP_RELU:
  14610. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14611. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14612. {
  14613. n_tasks = 1;
  14614. } break;
  14615. case GGML_UNARY_OP_GELU:
  14616. case GGML_UNARY_OP_GELU_QUICK:
  14617. case GGML_UNARY_OP_SILU:
  14618. {
  14619. n_tasks = n_threads;
  14620. } break;
  14621. default:
  14622. GGML_ASSERT(false);
  14623. }
  14624. break;
  14625. case GGML_OP_SILU_BACK:
  14626. case GGML_OP_MUL:
  14627. case GGML_OP_DIV:
  14628. case GGML_OP_NORM:
  14629. case GGML_OP_RMS_NORM:
  14630. case GGML_OP_RMS_NORM_BACK:
  14631. case GGML_OP_GROUP_NORM:
  14632. case GGML_OP_CONCAT:
  14633. {
  14634. n_tasks = n_threads;
  14635. } break;
  14636. case GGML_OP_MUL_MAT:
  14637. {
  14638. n_tasks = n_threads;
  14639. // TODO: use different scheduling for different matrix sizes
  14640. //const int nr0 = ggml_nrows(node->src[0]);
  14641. //const int nr1 = ggml_nrows(node->src[1]);
  14642. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14643. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14644. } break;
  14645. case GGML_OP_MUL_MAT_ID:
  14646. {
  14647. n_tasks = n_threads;
  14648. } break;
  14649. case GGML_OP_OUT_PROD:
  14650. {
  14651. n_tasks = n_threads;
  14652. } break;
  14653. case GGML_OP_SCALE:
  14654. case GGML_OP_SET:
  14655. case GGML_OP_CONT:
  14656. case GGML_OP_RESHAPE:
  14657. case GGML_OP_VIEW:
  14658. case GGML_OP_PERMUTE:
  14659. case GGML_OP_TRANSPOSE:
  14660. case GGML_OP_GET_ROWS:
  14661. case GGML_OP_GET_ROWS_BACK:
  14662. case GGML_OP_DIAG:
  14663. {
  14664. n_tasks = 1;
  14665. } break;
  14666. case GGML_OP_DIAG_MASK_ZERO:
  14667. case GGML_OP_DIAG_MASK_INF:
  14668. case GGML_OP_SOFT_MAX_BACK:
  14669. case GGML_OP_ROPE:
  14670. case GGML_OP_ROPE_BACK:
  14671. case GGML_OP_ADD_REL_POS:
  14672. {
  14673. n_tasks = n_threads;
  14674. } break;
  14675. case GGML_OP_ALIBI:
  14676. {
  14677. n_tasks = 1; //TODO
  14678. } break;
  14679. case GGML_OP_CLAMP:
  14680. {
  14681. n_tasks = 1; //TODO
  14682. } break;
  14683. case GGML_OP_SOFT_MAX:
  14684. {
  14685. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14686. } break;
  14687. case GGML_OP_CONV_TRANSPOSE_1D:
  14688. {
  14689. n_tasks = n_threads;
  14690. } break;
  14691. case GGML_OP_IM2COL:
  14692. {
  14693. n_tasks = n_threads;
  14694. } break;
  14695. case GGML_OP_CONV_TRANSPOSE_2D:
  14696. {
  14697. n_tasks = n_threads;
  14698. } break;
  14699. case GGML_OP_POOL_1D:
  14700. case GGML_OP_POOL_2D:
  14701. {
  14702. n_tasks = 1;
  14703. } break;
  14704. case GGML_OP_UPSCALE:
  14705. {
  14706. n_tasks = n_threads;
  14707. } break;
  14708. case GGML_OP_PAD:
  14709. {
  14710. n_tasks = n_threads;
  14711. } break;
  14712. case GGML_OP_ARANGE:
  14713. {
  14714. n_tasks = n_threads;
  14715. } break;
  14716. case GGML_OP_TIMESTEP_EMBEDDING:
  14717. {
  14718. n_tasks = n_threads;
  14719. } break;
  14720. case GGML_OP_ARGSORT:
  14721. {
  14722. n_tasks = n_threads;
  14723. } break;
  14724. case GGML_OP_FLASH_ATTN:
  14725. {
  14726. n_tasks = n_threads;
  14727. } break;
  14728. case GGML_OP_FLASH_FF:
  14729. {
  14730. n_tasks = n_threads;
  14731. } break;
  14732. case GGML_OP_FLASH_ATTN_BACK:
  14733. {
  14734. n_tasks = n_threads;
  14735. } break;
  14736. case GGML_OP_SSM_CONV:
  14737. case GGML_OP_SSM_SCAN:
  14738. {
  14739. n_tasks = n_threads;
  14740. } break;
  14741. case GGML_OP_WIN_PART:
  14742. case GGML_OP_WIN_UNPART:
  14743. case GGML_OP_GET_REL_POS:
  14744. case GGML_OP_MAP_UNARY:
  14745. case GGML_OP_MAP_BINARY:
  14746. case GGML_OP_MAP_CUSTOM1_F32:
  14747. case GGML_OP_MAP_CUSTOM2_F32:
  14748. case GGML_OP_MAP_CUSTOM3_F32:
  14749. {
  14750. n_tasks = 1;
  14751. } break;
  14752. case GGML_OP_MAP_CUSTOM1:
  14753. {
  14754. struct ggml_map_custom1_op_params p;
  14755. memcpy(&p, node->op_params, sizeof(p));
  14756. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14757. n_tasks = n_threads;
  14758. } else {
  14759. n_tasks = MIN(p.n_tasks, n_threads);
  14760. }
  14761. } break;
  14762. case GGML_OP_MAP_CUSTOM2:
  14763. {
  14764. struct ggml_map_custom2_op_params p;
  14765. memcpy(&p, node->op_params, sizeof(p));
  14766. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14767. n_tasks = n_threads;
  14768. } else {
  14769. n_tasks = MIN(p.n_tasks, n_threads);
  14770. }
  14771. } break;
  14772. case GGML_OP_MAP_CUSTOM3:
  14773. {
  14774. struct ggml_map_custom3_op_params p;
  14775. memcpy(&p, node->op_params, sizeof(p));
  14776. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14777. n_tasks = n_threads;
  14778. } else {
  14779. n_tasks = MIN(p.n_tasks, n_threads);
  14780. }
  14781. } break;
  14782. case GGML_OP_CROSS_ENTROPY_LOSS:
  14783. {
  14784. n_tasks = n_threads;
  14785. } break;
  14786. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14787. {
  14788. n_tasks = n_threads;
  14789. } break;
  14790. case GGML_OP_NONE:
  14791. {
  14792. n_tasks = 1;
  14793. } break;
  14794. case GGML_OP_COUNT:
  14795. {
  14796. GGML_ASSERT(false);
  14797. } break;
  14798. default:
  14799. {
  14800. fprintf(stderr, "%s: op not implemented: ", __func__);
  14801. if (node->op < GGML_OP_COUNT) {
  14802. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14803. } else {
  14804. fprintf(stderr, "%d\n", node->op);
  14805. }
  14806. GGML_ASSERT(false);
  14807. } break;
  14808. }
  14809. assert(n_tasks > 0);
  14810. return n_tasks;
  14811. }
  14812. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14813. // wait for other threads to finish
  14814. const int last_node_n = * node_n;
  14815. while (true) {
  14816. if (do_yield) {
  14817. sched_yield();
  14818. }
  14819. * node_n = atomic_load(&state->shared->node_n);
  14820. if (* node_n != last_node_n) break;
  14821. }
  14822. }
  14823. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14824. // wait for other threads to finish
  14825. const int last_task_phase = * task_phase;
  14826. while (true) {
  14827. if (do_yield) {
  14828. sched_yield();
  14829. }
  14830. * task_phase = atomic_load(&state->shared->node_task);
  14831. if (* task_phase != last_task_phase) break;
  14832. }
  14833. }
  14834. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14835. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14836. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14837. const struct ggml_cplan * cplan = state->shared->cplan;
  14838. const int n_threads = state->shared->n_threads;
  14839. set_numa_thread_affinity(state->ith);
  14840. int node_n = -1;
  14841. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14842. while (true) {
  14843. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14844. state->shared->node_n += 1;
  14845. state->ec = GGML_STATUS_ABORTED;
  14846. return 0;
  14847. }
  14848. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14849. // all other threads are finished and spinning
  14850. // do finalize and init here so we don't have synchronize again
  14851. struct ggml_compute_params params = {
  14852. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14853. /*.ith =*/ 0,
  14854. /*.nth =*/ 0,
  14855. /*.wsize =*/ cplan->work_size,
  14856. /*.wdata =*/ cplan->work_data,
  14857. };
  14858. if (node_n != -1) {
  14859. /* FINALIZE */
  14860. struct ggml_tensor * node = cgraph->nodes[node_n];
  14861. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14862. params.nth = ggml_get_n_tasks(node, n_threads);
  14863. ggml_compute_forward(&params, node);
  14864. }
  14865. ggml_graph_compute_perf_stats_node(node, state->shared);
  14866. }
  14867. // distribute new work or execute it direct if 1T
  14868. while (++node_n < cgraph->n_nodes) {
  14869. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14870. struct ggml_tensor * node = cgraph->nodes[node_n];
  14871. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14872. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14873. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14874. params.nth = n_tasks;
  14875. if (n_tasks == 1) {
  14876. /* INIT */
  14877. if (GGML_OP_HAS_INIT[node->op]) {
  14878. params.type = GGML_TASK_TYPE_INIT;
  14879. ggml_compute_forward(&params, node);
  14880. }
  14881. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14882. // they do something more efficient than spinning (?)
  14883. params.type = GGML_TASK_TYPE_COMPUTE;
  14884. ggml_compute_forward(&params, node);
  14885. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14886. params.type = GGML_TASK_TYPE_FINALIZE;
  14887. ggml_compute_forward(&params, node);
  14888. }
  14889. ggml_graph_compute_perf_stats_node(node, state->shared);
  14890. } else {
  14891. break;
  14892. }
  14893. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14894. break;
  14895. }
  14896. }
  14897. task_phase = GGML_TASK_TYPE_INIT;
  14898. atomic_store(&state->shared->n_active, n_threads);
  14899. atomic_store(&state->shared->node_n, node_n);
  14900. atomic_store(&state->shared->node_task, task_phase);
  14901. } else {
  14902. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14903. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14904. }
  14905. // check if we should stop
  14906. if (node_n >= cgraph->n_nodes) break;
  14907. /* INIT & COMPUTE */
  14908. struct ggml_tensor * node = cgraph->nodes[node_n];
  14909. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14910. struct ggml_compute_params params = {
  14911. /*.type =*/ GGML_TASK_TYPE_INIT,
  14912. /*.ith =*/ state->ith,
  14913. /*.nth =*/ n_tasks,
  14914. /*.wsize =*/ cplan->work_size,
  14915. /*.wdata =*/ cplan->work_data,
  14916. };
  14917. if (state->ith < n_tasks) {
  14918. if (GGML_OP_HAS_INIT[node->op]) {
  14919. ggml_compute_forward(&params, node);
  14920. }
  14921. }
  14922. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14923. task_phase = GGML_TASK_TYPE_COMPUTE;
  14924. atomic_store(&state->shared->n_active, n_threads);
  14925. atomic_store(&state->shared->node_task, task_phase);
  14926. }
  14927. else {
  14928. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14929. // depending on the workload and the operating system.
  14930. // since it is not clear what is the best approach, it should potentially become user-configurable
  14931. // ref: https://github.com/ggerganov/ggml/issues/291
  14932. // UPD: adding the do_yield flag seems to resolve the issue universally
  14933. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14934. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14935. }
  14936. if (state->ith < n_tasks) {
  14937. params.type = GGML_TASK_TYPE_COMPUTE;
  14938. ggml_compute_forward(&params, node);
  14939. }
  14940. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14941. task_phase = GGML_TASK_TYPE_FINALIZE;
  14942. atomic_store(&state->shared->n_active, n_threads);
  14943. atomic_store(&state->shared->node_task, task_phase);
  14944. }
  14945. else {
  14946. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14947. }
  14948. }
  14949. return 0;
  14950. }
  14951. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14952. if (n_threads <= 0) {
  14953. n_threads = GGML_DEFAULT_N_THREADS;
  14954. }
  14955. size_t work_size = 0;
  14956. struct ggml_cplan cplan;
  14957. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14958. int max_tasks = 1;
  14959. // thread scheduling for the different operations + work buffer size estimation
  14960. for (int i = 0; i < cgraph->n_nodes; i++) {
  14961. struct ggml_tensor * node = cgraph->nodes[i];
  14962. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14963. max_tasks = MAX(max_tasks, n_tasks);
  14964. size_t cur = 0;
  14965. switch (node->op) {
  14966. case GGML_OP_CPY:
  14967. case GGML_OP_DUP:
  14968. {
  14969. if (ggml_is_quantized(node->type)) {
  14970. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14971. }
  14972. } break;
  14973. case GGML_OP_ADD:
  14974. case GGML_OP_ADD1:
  14975. {
  14976. if (ggml_is_quantized(node->src[0]->type)) {
  14977. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14978. }
  14979. } break;
  14980. case GGML_OP_ACC:
  14981. {
  14982. if (ggml_is_quantized(node->src[0]->type)) {
  14983. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14984. }
  14985. } break;
  14986. case GGML_OP_MUL_MAT:
  14987. {
  14988. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14989. #if defined(GGML_USE_CLBLAST)
  14990. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14991. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14992. } else
  14993. #endif
  14994. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14995. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14996. if (node->src[0]->type != GGML_TYPE_F32) {
  14997. // here we need memory for fully dequantized matrix from src0
  14998. // take into account that src0 can be broadcasted into src1[2,3]
  14999. cur = ggml_type_size(GGML_TYPE_F32)
  15000. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15001. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15002. }
  15003. } else
  15004. #endif
  15005. if (node->src[1]->type != vec_dot_type) {
  15006. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15007. }
  15008. } break;
  15009. case GGML_OP_MUL_MAT_ID:
  15010. {
  15011. cur = 0;
  15012. const struct ggml_tensor * src0 = node->src[2];
  15013. const struct ggml_tensor * src1 = node->src[1];
  15014. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15015. if (src1->type != vec_dot_type) {
  15016. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15017. }
  15018. const int n_as = ggml_get_op_params_i32(node, 1);
  15019. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15020. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15021. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15022. } break;
  15023. case GGML_OP_OUT_PROD:
  15024. {
  15025. if (ggml_is_quantized(node->src[0]->type)) {
  15026. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15027. }
  15028. } break;
  15029. case GGML_OP_SOFT_MAX:
  15030. case GGML_OP_ROPE:
  15031. {
  15032. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15033. } break;
  15034. case GGML_OP_CONV_TRANSPOSE_1D:
  15035. {
  15036. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15037. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15038. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15039. const int64_t ne00 = node->src[0]->ne[0]; // K
  15040. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15041. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15042. const int64_t ne10 = node->src[1]->ne[0]; // L
  15043. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15044. if (node->src[0]->type == GGML_TYPE_F16 &&
  15045. node->src[1]->type == GGML_TYPE_F32) {
  15046. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15047. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15048. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15049. node->src[1]->type == GGML_TYPE_F32) {
  15050. cur += sizeof(float)*ne00*ne01*ne02;
  15051. cur += sizeof(float)*ne10*ne11;
  15052. } else {
  15053. GGML_ASSERT(false);
  15054. }
  15055. } break;
  15056. case GGML_OP_CONV_TRANSPOSE_2D:
  15057. {
  15058. const int64_t ne00 = node->src[0]->ne[0]; // W
  15059. const int64_t ne01 = node->src[0]->ne[1]; // H
  15060. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15061. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15062. const int64_t ne10 = node->src[1]->ne[0]; // W
  15063. const int64_t ne11 = node->src[1]->ne[1]; // H
  15064. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15065. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15066. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15067. } break;
  15068. case GGML_OP_FLASH_ATTN:
  15069. {
  15070. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15071. if (node->src[1]->type == GGML_TYPE_F32) {
  15072. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15073. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15074. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15075. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15076. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15077. }
  15078. } break;
  15079. case GGML_OP_FLASH_FF:
  15080. {
  15081. if (node->src[1]->type == GGML_TYPE_F32) {
  15082. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15083. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15084. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15085. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15086. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15087. }
  15088. } break;
  15089. case GGML_OP_FLASH_ATTN_BACK:
  15090. {
  15091. const int64_t D = node->src[0]->ne[0];
  15092. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15093. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15094. if (node->src[1]->type == GGML_TYPE_F32) {
  15095. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15096. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15097. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15098. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15099. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15100. }
  15101. } break;
  15102. case GGML_OP_CROSS_ENTROPY_LOSS:
  15103. {
  15104. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15105. } break;
  15106. case GGML_OP_COUNT:
  15107. {
  15108. GGML_ASSERT(false);
  15109. } break;
  15110. default:
  15111. break;
  15112. }
  15113. work_size = MAX(work_size, cur);
  15114. }
  15115. if (work_size > 0) {
  15116. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15117. }
  15118. cplan.n_threads = MIN(max_tasks, n_threads);
  15119. cplan.work_size = work_size;
  15120. cplan.work_data = NULL;
  15121. return cplan;
  15122. }
  15123. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15124. {
  15125. GGML_ASSERT(cplan);
  15126. GGML_ASSERT(cplan->n_threads > 0);
  15127. if (cplan->work_size > 0) {
  15128. GGML_ASSERT(cplan->work_data);
  15129. }
  15130. }
  15131. #ifdef GGML_USE_VULKAN
  15132. for (int i = 0; i < cgraph->n_nodes; i++) {
  15133. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15134. }
  15135. ggml_vk_preallocate_buffers_cpu_assist();
  15136. for (int i = 0; i < cgraph->n_nodes; i++) {
  15137. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15138. }
  15139. #endif
  15140. const int n_threads = cplan->n_threads;
  15141. struct ggml_compute_state_shared state_shared = {
  15142. /*.cgraph =*/ cgraph,
  15143. /*.cgraph_plan =*/ cplan,
  15144. /*.perf_node_start_cycles =*/ 0,
  15145. /*.perf_node_start_time_us =*/ 0,
  15146. /*.n_threads =*/ n_threads,
  15147. /*.n_active =*/ n_threads,
  15148. /*.node_n =*/ -1,
  15149. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15150. /*.abort_callback =*/ NULL,
  15151. /*.abort_callback_data =*/ NULL,
  15152. };
  15153. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15154. // create thread pool
  15155. if (n_threads > 1) {
  15156. for (int j = 1; j < n_threads; ++j) {
  15157. workers[j] = (struct ggml_compute_state) {
  15158. .thrd = 0,
  15159. .ith = j,
  15160. .shared = &state_shared,
  15161. .ec = GGML_STATUS_SUCCESS,
  15162. };
  15163. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15164. GGML_ASSERT(rc == 0);
  15165. UNUSED(rc);
  15166. }
  15167. }
  15168. workers[0].ith = 0;
  15169. workers[0].shared = &state_shared;
  15170. workers[0].ec = GGML_STATUS_SUCCESS;
  15171. const int64_t perf_start_cycles = ggml_perf_cycles();
  15172. const int64_t perf_start_time_us = ggml_perf_time_us();
  15173. // this is a work thread too
  15174. ggml_graph_compute_thread(&workers[0]);
  15175. enum ggml_status compute_status = workers[0].ec;
  15176. // don't leave affinity set on the main thread
  15177. clear_numa_thread_affinity();
  15178. // join or kill thread pool
  15179. if (n_threads > 1) {
  15180. for (int j = 1; j < n_threads; j++) {
  15181. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15182. GGML_ASSERT(rc == 0);
  15183. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15184. compute_status = workers[j].ec;
  15185. }
  15186. }
  15187. #ifdef GGML_USE_VULKAN
  15188. ggml_vk_graph_cleanup_cpu_assist();
  15189. #endif
  15190. // performance stats (graph)
  15191. {
  15192. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15193. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15194. cgraph->perf_runs++;
  15195. cgraph->perf_cycles += perf_cycles_cur;
  15196. cgraph->perf_time_us += perf_time_us_cur;
  15197. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15198. __func__, cgraph->perf_runs,
  15199. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15200. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15201. (double) perf_time_us_cur / 1000.0,
  15202. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15203. }
  15204. return compute_status;
  15205. }
  15206. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15207. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15208. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15209. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15210. return ggml_graph_compute(cgraph, &cplan);
  15211. }
  15212. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15213. for (int i = 0; i < cgraph->n_leafs; i++) {
  15214. struct ggml_tensor * leaf = cgraph->leafs[i];
  15215. if (strcmp(leaf->name, name) == 0) {
  15216. return leaf;
  15217. }
  15218. }
  15219. for (int i = 0; i < cgraph->n_nodes; i++) {
  15220. struct ggml_tensor * node = cgraph->nodes[i];
  15221. if (strcmp(node->name, name) == 0) {
  15222. return node;
  15223. }
  15224. }
  15225. return NULL;
  15226. }
  15227. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15228. const int64_t * ne = tensor->ne;
  15229. const size_t * nb = tensor->nb;
  15230. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15231. ggml_type_name(tensor->type),
  15232. ggml_op_name (tensor->op),
  15233. ggml_n_dims(tensor),
  15234. ne[0], ne[1], ne[2], ne[3],
  15235. nb[0], nb[1], nb[2], nb[3],
  15236. tensor->data,
  15237. tensor->name);
  15238. }
  15239. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15240. const int64_t * ne = tensor->ne;
  15241. const size_t * nb = tensor->nb;
  15242. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15243. arg,
  15244. ggml_type_name(tensor->type),
  15245. ggml_op_name (tensor->op),
  15246. ggml_n_dims(tensor),
  15247. ne[0], ne[1], ne[2], ne[3],
  15248. nb[0], nb[1], nb[2], nb[3],
  15249. tensor->data,
  15250. tensor->name);
  15251. }
  15252. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15253. uint64_t size_eval = 0;
  15254. // compute size of intermediate results
  15255. // TODO: does not take into account scratch buffers !!!!
  15256. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15257. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15258. }
  15259. // print
  15260. {
  15261. FILE * fout = stdout;
  15262. fprintf(fout, "\n");
  15263. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15264. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15265. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15266. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15267. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15268. // header
  15269. fprintf(fout, "\n");
  15270. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15271. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15272. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15273. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15274. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15275. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15276. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15277. }
  15278. // header
  15279. fprintf(fout, "\n");
  15280. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15281. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15282. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15283. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15284. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15285. if (cgraph->nodes[i]->src[j]) {
  15286. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15287. }
  15288. }
  15289. fprintf(fout, "\n");
  15290. }
  15291. fprintf(fout, "\n");
  15292. }
  15293. // write binary data
  15294. {
  15295. FILE * fout = fopen(fname, "wb");
  15296. if (!fout) {
  15297. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15298. return;
  15299. }
  15300. // header
  15301. {
  15302. const uint32_t magic = GGML_FILE_MAGIC;
  15303. const uint32_t version = GGML_FILE_VERSION;
  15304. const uint32_t n_leafs = cgraph->n_leafs;
  15305. const uint32_t n_nodes = cgraph->n_nodes;
  15306. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15307. fwrite(&version, sizeof(uint32_t), 1, fout);
  15308. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15309. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15310. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15311. }
  15312. // leafs
  15313. {
  15314. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15315. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15316. const uint32_t type = tensor->type;
  15317. const uint32_t op = tensor->op;
  15318. fwrite(&type, sizeof(uint32_t), 1, fout);
  15319. fwrite(&op, sizeof(uint32_t), 1, fout);
  15320. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15321. const uint64_t ne = tensor->ne[j];
  15322. const uint64_t nb = tensor->nb[j];
  15323. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15324. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15325. }
  15326. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15327. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15328. // dump the data
  15329. // TODO: pad this to 32 byte boundary
  15330. {
  15331. const size_t size = ggml_nbytes(tensor);
  15332. fwrite(tensor->data, sizeof(char), size, fout);
  15333. }
  15334. }
  15335. }
  15336. // nodes
  15337. {
  15338. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15339. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15340. const uint32_t type = tensor->type;
  15341. const uint32_t op = tensor->op;
  15342. fwrite(&type, sizeof(uint32_t), 1, fout);
  15343. fwrite(&op, sizeof(uint32_t), 1, fout);
  15344. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15345. const uint64_t ne = tensor->ne[j];
  15346. const uint64_t nb = tensor->nb[j];
  15347. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15348. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15349. }
  15350. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15351. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15352. // output the op arguments
  15353. {
  15354. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15355. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15356. args[j] = tensor->src[j];
  15357. }
  15358. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15359. if (args[j]) {
  15360. int32_t idx = -1;
  15361. // check if leaf
  15362. {
  15363. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15364. if (args[j] == cgraph->leafs[k]) {
  15365. idx = k;
  15366. break;
  15367. }
  15368. }
  15369. }
  15370. // check if node
  15371. if (idx == -1) {
  15372. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15373. if (args[j] == cgraph->nodes[k]) {
  15374. idx = cgraph->n_leafs + k;
  15375. break;
  15376. }
  15377. }
  15378. }
  15379. if (idx == -1) {
  15380. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15381. fclose(fout);
  15382. return;
  15383. }
  15384. fwrite(&idx, sizeof(int32_t), 1, fout);
  15385. } else {
  15386. const int32_t nul = -1;
  15387. fwrite(&nul, sizeof(int32_t), 1, fout);
  15388. }
  15389. }
  15390. }
  15391. }
  15392. }
  15393. fclose(fout);
  15394. }
  15395. }
  15396. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15397. assert(*ctx_data == NULL);
  15398. assert(*ctx_eval == NULL);
  15399. struct ggml_cgraph * result = NULL;
  15400. struct ggml_tensor * data = NULL;
  15401. // read file into data
  15402. {
  15403. FILE * fin = fopen(fname, "rb");
  15404. if (!fin) {
  15405. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15406. return result;
  15407. }
  15408. size_t fsize = 0;
  15409. fseek(fin, 0, SEEK_END);
  15410. fsize = ftell(fin);
  15411. fseek(fin, 0, SEEK_SET);
  15412. // create the data context
  15413. {
  15414. const size_t overhead = 1*ggml_tensor_overhead();
  15415. struct ggml_init_params params = {
  15416. .mem_size = fsize + overhead,
  15417. .mem_buffer = NULL,
  15418. .no_alloc = false,
  15419. };
  15420. *ctx_data = ggml_init(params);
  15421. if (!*ctx_data) {
  15422. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15423. fclose(fin);
  15424. return result;
  15425. }
  15426. }
  15427. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15428. {
  15429. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15430. if (ret != fsize) {
  15431. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15432. fclose(fin);
  15433. return result;
  15434. }
  15435. }
  15436. fclose(fin);
  15437. }
  15438. // populate result
  15439. {
  15440. char * ptr = (char *) data->data;
  15441. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15442. if (magic != GGML_FILE_MAGIC) {
  15443. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15444. return result;
  15445. }
  15446. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15447. if (version != GGML_FILE_VERSION) {
  15448. fprintf(stderr, "%s: invalid version number\n", __func__);
  15449. return result;
  15450. }
  15451. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15452. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15453. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15454. const int graph_size = MAX(n_leafs, n_nodes);
  15455. // create the data context
  15456. {
  15457. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15458. struct ggml_init_params params = {
  15459. .mem_size = size_eval + overhead,
  15460. .mem_buffer = NULL,
  15461. .no_alloc = true,
  15462. };
  15463. *ctx_eval = ggml_init(params);
  15464. if (!*ctx_eval) {
  15465. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15466. return result;
  15467. }
  15468. }
  15469. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15470. result->n_leafs = n_leafs;
  15471. result->n_nodes = n_nodes;
  15472. // leafs
  15473. {
  15474. uint32_t type;
  15475. uint32_t op;
  15476. for (uint32_t i = 0; i < n_leafs; ++i) {
  15477. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15478. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15479. int64_t ne[GGML_MAX_DIMS];
  15480. size_t nb[GGML_MAX_DIMS];
  15481. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15482. uint64_t ne_cur;
  15483. uint64_t nb_cur;
  15484. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15485. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15486. ne[j] = ne_cur;
  15487. nb[j] = nb_cur;
  15488. }
  15489. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15490. tensor->op = (enum ggml_op) op;
  15491. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15492. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15493. tensor->data = (void *) ptr;
  15494. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15495. tensor->nb[j] = nb[j];
  15496. }
  15497. result->leafs[i] = tensor;
  15498. ptr += ggml_nbytes(tensor);
  15499. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15500. }
  15501. }
  15502. ggml_set_no_alloc(*ctx_eval, false);
  15503. // nodes
  15504. {
  15505. uint32_t type;
  15506. uint32_t op;
  15507. for (uint32_t i = 0; i < n_nodes; ++i) {
  15508. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15509. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15510. enum ggml_op eop = (enum ggml_op) op;
  15511. int64_t ne[GGML_MAX_DIMS];
  15512. size_t nb[GGML_MAX_DIMS];
  15513. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15514. uint64_t ne_cur;
  15515. uint64_t nb_cur;
  15516. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15517. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15518. ne[j] = ne_cur;
  15519. nb[j] = nb_cur;
  15520. }
  15521. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15522. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15523. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15524. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15525. // parse args
  15526. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15527. const int32_t arg_idx = ptr_arg_idx[j];
  15528. if (arg_idx == -1) {
  15529. continue;
  15530. }
  15531. if (arg_idx < result->n_leafs) {
  15532. args[j] = result->leafs[arg_idx];
  15533. } else {
  15534. args[j] = result->nodes[arg_idx - result->n_leafs];
  15535. }
  15536. }
  15537. // create the tensor
  15538. // "view" operations are handled differently
  15539. // TODO: handle inplace ops - currently a copy is always made
  15540. struct ggml_tensor * tensor = NULL;
  15541. switch (eop) {
  15542. // TODO: implement other view ops
  15543. case GGML_OP_RESHAPE:
  15544. {
  15545. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15546. } break;
  15547. case GGML_OP_VIEW:
  15548. {
  15549. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15550. size_t offs;
  15551. memcpy(&offs, ptr_op_params, sizeof(offs));
  15552. tensor->data = ((char *) tensor->data) + offs;
  15553. } break;
  15554. case GGML_OP_TRANSPOSE:
  15555. {
  15556. tensor = ggml_transpose(*ctx_eval, args[0]);
  15557. } break;
  15558. case GGML_OP_PERMUTE:
  15559. {
  15560. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15561. } break;
  15562. default:
  15563. {
  15564. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15565. tensor->op = eop;
  15566. } break;
  15567. }
  15568. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15569. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15570. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15571. tensor->nb[j] = nb[j];
  15572. }
  15573. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15574. tensor->src[j] = args[j];
  15575. }
  15576. result->nodes[i] = tensor;
  15577. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15578. }
  15579. }
  15580. }
  15581. return result;
  15582. }
  15583. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15584. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15585. GGML_PRINT("=== GRAPH ===\n");
  15586. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15587. for (int i = 0; i < cgraph->n_nodes; i++) {
  15588. struct ggml_tensor * node = cgraph->nodes[i];
  15589. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15590. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15591. i,
  15592. node->ne[0], node->ne[1], node->ne[2],
  15593. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15594. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15595. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15596. (double) node->perf_time_us / 1000.0,
  15597. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15598. }
  15599. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15600. for (int i = 0; i < cgraph->n_leafs; i++) {
  15601. struct ggml_tensor * node = cgraph->leafs[i];
  15602. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15603. i,
  15604. node->ne[0], node->ne[1],
  15605. ggml_op_name(node->op),
  15606. ggml_get_name(node));
  15607. }
  15608. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15609. if (perf_total_per_op_us[i] == 0) {
  15610. continue;
  15611. }
  15612. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15613. }
  15614. GGML_PRINT("========================================\n");
  15615. }
  15616. // check if node is part of the graph
  15617. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15618. if (cgraph == NULL) {
  15619. return true;
  15620. }
  15621. for (int i = 0; i < cgraph->n_nodes; i++) {
  15622. if (cgraph->nodes[i] == node) {
  15623. return true;
  15624. }
  15625. }
  15626. return false;
  15627. }
  15628. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15629. for (int i = 0; i < cgraph->n_nodes; i++) {
  15630. struct ggml_tensor * parent = cgraph->nodes[i];
  15631. if (parent->grad == node) {
  15632. return parent;
  15633. }
  15634. }
  15635. return NULL;
  15636. }
  15637. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15638. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15639. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15640. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15641. gparent0 ? (void *) gparent0 : (void *) parent,
  15642. gparent0 ? "g" : "x",
  15643. gparent ? (void *) gparent : (void *) node,
  15644. gparent ? "g" : "x",
  15645. gparent ? "empty" : "vee",
  15646. gparent ? "dashed" : "solid",
  15647. label);
  15648. }
  15649. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15650. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15651. (void *) parent, "x",
  15652. (void *) node, "x",
  15653. label);
  15654. }
  15655. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15656. char color[16];
  15657. FILE * fp = fopen(filename, "w");
  15658. GGML_ASSERT(fp);
  15659. fprintf(fp, "digraph G {\n");
  15660. fprintf(fp, " newrank = true;\n");
  15661. fprintf(fp, " rankdir = LR;\n");
  15662. for (int i = 0; i < gb->n_nodes; i++) {
  15663. struct ggml_tensor * node = gb->nodes[i];
  15664. if (ggml_graph_get_parent(gb, node) != NULL) {
  15665. continue;
  15666. }
  15667. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15668. snprintf(color, sizeof(color), "yellow");
  15669. } else if (node->grad) {
  15670. if (ggml_graph_find(gf, node)) {
  15671. snprintf(color, sizeof(color), "green");
  15672. } else {
  15673. snprintf(color, sizeof(color), "lightblue");
  15674. }
  15675. } else {
  15676. snprintf(color, sizeof(color), "white");
  15677. }
  15678. fprintf(fp, " \"%p\" [ "
  15679. "style = filled; fillcolor = %s; shape = record; "
  15680. "label=\"",
  15681. (void *) node, color);
  15682. if (strlen(node->name) > 0) {
  15683. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15684. } else {
  15685. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15686. }
  15687. if (ggml_is_matrix(node)) {
  15688. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15689. } else {
  15690. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15691. }
  15692. if (node->grad) {
  15693. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15694. } else {
  15695. fprintf(fp, "\"; ]\n");
  15696. }
  15697. }
  15698. for (int i = 0; i < gb->n_leafs; i++) {
  15699. struct ggml_tensor * node = gb->leafs[i];
  15700. snprintf(color, sizeof(color), "pink");
  15701. fprintf(fp, " \"%p\" [ "
  15702. "style = filled; fillcolor = %s; shape = record; "
  15703. "label=\"<x>",
  15704. (void *) node, color);
  15705. if (strlen(node->name) > 0) {
  15706. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15707. } else {
  15708. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15709. }
  15710. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15711. if (ggml_nelements(node) < 5) {
  15712. fprintf(fp, " | (");
  15713. for (int j = 0; j < ggml_nelements(node); j++) {
  15714. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15715. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15716. }
  15717. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15718. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15719. }
  15720. else {
  15721. fprintf(fp, "#");
  15722. }
  15723. if (j < ggml_nelements(node) - 1) {
  15724. fprintf(fp, ", ");
  15725. }
  15726. }
  15727. fprintf(fp, ")");
  15728. }
  15729. fprintf(fp, "\"; ]\n");
  15730. }
  15731. for (int i = 0; i < gb->n_nodes; i++) {
  15732. struct ggml_tensor * node = gb->nodes[i];
  15733. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15734. if (node->src[j]) {
  15735. char label[16];
  15736. snprintf(label, sizeof(label), "src %d", j);
  15737. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15738. }
  15739. }
  15740. }
  15741. for (int i = 0; i < gb->n_leafs; i++) {
  15742. struct ggml_tensor * node = gb->leafs[i];
  15743. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15744. if (node->src[j]) {
  15745. char label[16];
  15746. snprintf(label, sizeof(label), "src %d", j);
  15747. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15748. }
  15749. }
  15750. }
  15751. fprintf(fp, "}\n");
  15752. fclose(fp);
  15753. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15754. }
  15755. ////////////////////////////////////////////////////////////////////////////////
  15756. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15757. int i = 0;
  15758. for (int p = 0; p < np; ++p) {
  15759. const int64_t ne = ggml_nelements(ps[p]) ;
  15760. // TODO: add function to set tensor from array
  15761. for (int64_t j = 0; j < ne; ++j) {
  15762. ggml_set_f32_1d(ps[p], j, x[i++]);
  15763. }
  15764. }
  15765. }
  15766. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15767. int i = 0;
  15768. for (int p = 0; p < np; ++p) {
  15769. const int64_t ne = ggml_nelements(ps[p]) ;
  15770. // TODO: add function to get all elements at once
  15771. for (int64_t j = 0; j < ne; ++j) {
  15772. x[i++] = ggml_get_f32_1d(ps[p], j);
  15773. }
  15774. }
  15775. }
  15776. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15777. int64_t i = 0;
  15778. for (int p = 0; p < np; ++p) {
  15779. const int64_t ne = ggml_nelements(ps[p]) ;
  15780. // TODO: add function to get all elements at once
  15781. for (int64_t j = 0; j < ne; ++j) {
  15782. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15783. }
  15784. }
  15785. }
  15786. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15787. int64_t i = 0;
  15788. for (int p = 0; p < np; ++p) {
  15789. const int64_t ne = ggml_nelements(ps[p]) ;
  15790. // TODO: add function to get all elements at once
  15791. for (int64_t j = 0; j < ne; ++j) {
  15792. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15793. }
  15794. }
  15795. }
  15796. //
  15797. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15798. //
  15799. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15800. //
  15801. static enum ggml_opt_result ggml_opt_adam(
  15802. struct ggml_context * ctx,
  15803. struct ggml_opt_context * opt,
  15804. struct ggml_opt_params params,
  15805. struct ggml_tensor * f,
  15806. struct ggml_cgraph * gf,
  15807. struct ggml_cgraph * gb,
  15808. ggml_opt_callback callback,
  15809. void * callback_data) {
  15810. GGML_ASSERT(ggml_is_scalar(f));
  15811. // these will store the parameters we want to optimize
  15812. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15813. int np = 0;
  15814. int64_t nx = 0;
  15815. for (int i = 0; i < gf->n_nodes; ++i) {
  15816. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15817. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15818. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15819. ps[np++] = gf->nodes[i];
  15820. nx += ggml_nelements(gf->nodes[i]);
  15821. }
  15822. }
  15823. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15824. int iter = opt->iter;
  15825. ggml_opt_init(opt->ctx, opt, params, nx);
  15826. opt->iter = iter;
  15827. }
  15828. // constants
  15829. float sched = params.adam.sched;
  15830. const float alpha = params.adam.alpha;
  15831. const float decay = params.adam.decay * alpha;
  15832. const float beta1 = params.adam.beta1;
  15833. const float beta2 = params.adam.beta2;
  15834. const float eps = params.adam.eps;
  15835. const float gclip = params.adam.gclip;
  15836. const int decay_min_ndim = params.adam.decay_min_ndim;
  15837. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15838. const float accum_norm = 1.0f / (float) n_accum;
  15839. float * g = opt->adam.g->data; // gradients
  15840. float * m = opt->adam.m->data; // first moment
  15841. float * v = opt->adam.v->data; // second moment
  15842. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15843. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15844. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15845. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15846. bool cancel = false;
  15847. // compute the function value
  15848. float fx = 0;
  15849. ggml_set_zero(opt->adam.g);
  15850. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15851. if (callback) {
  15852. callback(callback_data, accum_step, &sched, &cancel);
  15853. if (cancel) {
  15854. return GGML_OPT_RESULT_CANCEL;
  15855. }
  15856. }
  15857. // ggml_graph_reset (gf);
  15858. ggml_set_f32 (f->grad, 1.0f);
  15859. ggml_graph_compute(gb, &cplan);
  15860. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15861. fx += ggml_get_f32_1d(f, 0);
  15862. }
  15863. fx *= accum_norm;
  15864. opt->adam.fx_prev = fx;
  15865. opt->adam.fx_best = opt->adam.fx_prev;
  15866. if (pf) {
  15867. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15868. }
  15869. opt->loss_before = opt->adam.fx_prev;
  15870. opt->loss_after = opt->adam.fx_prev;
  15871. // initialize
  15872. if (opt->just_initialized) {
  15873. opt->adam.n_no_improvement = 0;
  15874. opt->just_initialized = false;
  15875. }
  15876. float * fx_best = &opt->adam.fx_best;
  15877. float * fx_prev = &opt->adam.fx_prev;
  15878. int * n_no_improvement = &opt->adam.n_no_improvement;
  15879. int iter0 = opt->iter;
  15880. // run the optimizer
  15881. for (int t = 0; t < params.adam.n_iter; ++t) {
  15882. opt->iter = iter0 + t + 1;
  15883. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15884. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15885. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15886. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15887. for (int i = 0; i < np; ++i) {
  15888. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15889. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15890. }
  15891. const int64_t t_start_wall = ggml_time_us();
  15892. const int64_t t_start_cpu = ggml_cycles();
  15893. UNUSED(t_start_wall);
  15894. UNUSED(t_start_cpu);
  15895. {
  15896. float gnorm = 1.0f;
  15897. if (gclip > 0.0f) {
  15898. // gradient clipping
  15899. ggml_float sum = 0.0;
  15900. for (int64_t i = 0; i < nx; ++i) {
  15901. sum += (ggml_float)(g[i]*g[i]);
  15902. }
  15903. ggml_float norm = sqrt(sum);
  15904. if (norm > (ggml_float) gclip) {
  15905. gnorm = (float) ((ggml_float) gclip / norm);
  15906. }
  15907. }
  15908. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15909. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15910. int64_t i = 0;
  15911. for (int p = 0; p < np; ++p) {
  15912. const int64_t ne = ggml_nelements(ps[p]);
  15913. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15914. for (int64_t j = 0; j < ne; ++j) {
  15915. float x = ggml_get_f32_1d(ps[p], j);
  15916. float g_ = g[i]*gnorm;
  15917. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15918. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15919. float mh = m[i]*beta1h;
  15920. float vh = v[i]*beta2h;
  15921. vh = sqrtf(vh) + eps;
  15922. x = x*(1.0f - p_decay) - mh/vh;
  15923. ggml_set_f32_1d(ps[p], j, x);
  15924. ++i;
  15925. }
  15926. }
  15927. }
  15928. fx = 0;
  15929. ggml_set_zero(opt->adam.g);
  15930. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15931. if (callback) {
  15932. callback(callback_data, accum_step, &sched, &cancel);
  15933. if (cancel) {
  15934. return GGML_OPT_RESULT_CANCEL;;
  15935. }
  15936. }
  15937. // ggml_graph_reset (gf);
  15938. ggml_set_f32 (f->grad, 1.0f);
  15939. ggml_graph_compute(gb, &cplan);
  15940. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15941. fx += ggml_get_f32_1d(f, 0);
  15942. }
  15943. fx *= accum_norm;
  15944. opt->loss_after = fx;
  15945. // check convergence
  15946. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15947. GGML_PRINT_DEBUG("converged\n");
  15948. return GGML_OPT_RESULT_OK;
  15949. }
  15950. // delta-based convergence test
  15951. if (pf != NULL) {
  15952. // need at least params.past iterations to start checking for convergence
  15953. if (params.past <= iter0 + t) {
  15954. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15955. if (fabsf(rate) < params.delta) {
  15956. return GGML_OPT_RESULT_OK;
  15957. }
  15958. }
  15959. pf[(iter0 + t)%params.past] = fx;
  15960. }
  15961. // check for improvement
  15962. if (params.max_no_improvement > 0) {
  15963. if (fx_best[0] > fx) {
  15964. fx_best[0] = fx;
  15965. n_no_improvement[0] = 0;
  15966. } else {
  15967. ++n_no_improvement[0];
  15968. if (n_no_improvement[0] >= params.max_no_improvement) {
  15969. return GGML_OPT_RESULT_OK;
  15970. }
  15971. }
  15972. }
  15973. fx_prev[0] = fx;
  15974. {
  15975. const int64_t t_end_cpu = ggml_cycles();
  15976. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15977. UNUSED(t_end_cpu);
  15978. const int64_t t_end_wall = ggml_time_us();
  15979. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15980. UNUSED(t_end_wall);
  15981. }
  15982. }
  15983. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15984. }
  15985. //
  15986. // L-BFGS
  15987. //
  15988. // the L-BFGS implementation below is based on the following implementation:
  15989. //
  15990. // https://github.com/chokkan/liblbfgs
  15991. //
  15992. struct ggml_lbfgs_iteration_data {
  15993. float alpha;
  15994. float ys;
  15995. float * s;
  15996. float * y;
  15997. };
  15998. static enum ggml_opt_result linesearch_backtracking(
  15999. const struct ggml_opt_params * params,
  16000. int nx,
  16001. float * x,
  16002. float * fx,
  16003. float * g,
  16004. float * d,
  16005. float * step,
  16006. const float * xp,
  16007. struct ggml_tensor * f,
  16008. struct ggml_cgraph * gb,
  16009. struct ggml_cplan * cplan,
  16010. const int np,
  16011. struct ggml_tensor * ps[],
  16012. bool * cancel,
  16013. ggml_opt_callback callback,
  16014. void * callback_data) {
  16015. int count = 0;
  16016. float width = 0.0f;
  16017. float dg = 0.0f;
  16018. float finit = 0.0f;
  16019. float dginit = 0.0f;
  16020. float dgtest = 0.0f;
  16021. const float dec = 0.5f;
  16022. const float inc = 2.1f;
  16023. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16024. const float accum_norm = 1.0f / (float) n_accum;
  16025. if (*step <= 0.f) {
  16026. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16027. }
  16028. // compute the initial gradient in the search direction
  16029. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16030. // make sure that d points to a descent direction
  16031. if (0 < dginit) {
  16032. return GGML_LINESEARCH_FAIL;
  16033. }
  16034. // initialize local variables
  16035. finit = *fx;
  16036. dgtest = params->lbfgs.ftol*dginit;
  16037. while (true) {
  16038. ggml_vec_cpy_f32(nx, x, xp);
  16039. ggml_vec_mad_f32(nx, x, d, *step);
  16040. // evaluate the function and gradient values
  16041. {
  16042. ggml_opt_set_params(np, ps, x);
  16043. *fx = 0;
  16044. memset(g, 0, sizeof(float)*nx);
  16045. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16046. if (callback) {
  16047. // LBFG-S does not support learning rate -> ignore learning schedule
  16048. float sched = 0;
  16049. callback(callback_data, accum_step, &sched, cancel);
  16050. if (*cancel) {
  16051. return GGML_OPT_RESULT_CANCEL;
  16052. }
  16053. }
  16054. // ggml_graph_reset (gf);
  16055. ggml_set_f32 (f->grad, 1.0f);
  16056. ggml_graph_compute(gb, cplan);
  16057. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16058. *fx += ggml_get_f32_1d(f, 0);
  16059. }
  16060. *fx *= accum_norm;
  16061. }
  16062. ++count;
  16063. if (*fx > finit + (*step)*dgtest) {
  16064. width = dec;
  16065. } else {
  16066. // Armijo condition is satisfied
  16067. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16068. return count;
  16069. }
  16070. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16071. // check the Wolfe condition
  16072. if (dg < params->lbfgs.wolfe * dginit) {
  16073. width = inc;
  16074. } else {
  16075. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16076. // regular Wolfe conditions
  16077. return count;
  16078. }
  16079. if(dg > -params->lbfgs.wolfe*dginit) {
  16080. width = dec;
  16081. } else {
  16082. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16083. return count;
  16084. }
  16085. }
  16086. }
  16087. if (*step < params->lbfgs.min_step) {
  16088. return GGML_LINESEARCH_MINIMUM_STEP;
  16089. }
  16090. if (*step > params->lbfgs.max_step) {
  16091. return GGML_LINESEARCH_MAXIMUM_STEP;
  16092. }
  16093. if (params->lbfgs.max_linesearch <= count) {
  16094. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16095. }
  16096. (*step) *= width;
  16097. }
  16098. GGML_ASSERT(false && "line search failed");
  16099. return GGML_LINESEARCH_FAIL;
  16100. }
  16101. static enum ggml_opt_result ggml_opt_lbfgs(
  16102. struct ggml_context * ctx,
  16103. struct ggml_opt_context * opt,
  16104. struct ggml_opt_params params,
  16105. struct ggml_tensor * f,
  16106. struct ggml_cgraph * gf,
  16107. struct ggml_cgraph * gb,
  16108. ggml_opt_callback callback,
  16109. void * callback_data) {
  16110. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16111. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16112. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16113. return GGML_OPT_RESULT_INVALID_WOLFE;
  16114. }
  16115. }
  16116. const int m = params.lbfgs.m;
  16117. // these will store the parameters we want to optimize
  16118. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16119. int np = 0;
  16120. int nx = 0;
  16121. for (int i = 0; i < gf->n_nodes; ++i) {
  16122. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16123. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16124. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16125. ps[np++] = gf->nodes[i];
  16126. nx += ggml_nelements(gf->nodes[i]);
  16127. }
  16128. }
  16129. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16130. int iter = opt->iter;
  16131. ggml_opt_init(ctx, opt, params, nx);
  16132. opt->iter = iter;
  16133. }
  16134. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16135. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16136. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16137. float * x = opt->lbfgs.x->data; // current parameters
  16138. float * xp = opt->lbfgs.xp->data; // previous parameters
  16139. float * g = opt->lbfgs.g->data; // current gradient
  16140. float * gp = opt->lbfgs.gp->data; // previous gradient
  16141. float * d = opt->lbfgs.d->data; // search direction
  16142. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16143. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16144. const float accum_norm = 1.0f / (float) n_accum;
  16145. float fx = 0.0f; // cost function value
  16146. float xnorm = 0.0f; // ||x||
  16147. float gnorm = 0.0f; // ||g||
  16148. // initialize x from the graph nodes
  16149. ggml_opt_get_params(np, ps, x);
  16150. // the L-BFGS memory
  16151. float * lm_alpha = opt->lbfgs.lmal->data;
  16152. float * lm_ys = opt->lbfgs.lmys->data;
  16153. float * lm_s = opt->lbfgs.lms->data;
  16154. float * lm_y = opt->lbfgs.lmy->data;
  16155. bool cancel = false;
  16156. // evaluate the function value and its gradient
  16157. {
  16158. ggml_opt_set_params(np, ps, x);
  16159. fx = 0;
  16160. memset(g, 0, sizeof(float)*nx);
  16161. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16162. if (callback) {
  16163. // LBFG-S does not support learning rate -> ignore learning schedule
  16164. float sched = 0;
  16165. callback(callback_data, accum_step, &sched, &cancel);
  16166. if (cancel) {
  16167. return GGML_OPT_RESULT_CANCEL;
  16168. }
  16169. }
  16170. // ggml_graph_reset (gf);
  16171. ggml_set_f32 (f->grad, 1.0f);
  16172. ggml_graph_compute(gb, &cplan);
  16173. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16174. fx += ggml_get_f32_1d(f, 0);
  16175. }
  16176. fx *= accum_norm;
  16177. opt->loss_before = fx;
  16178. opt->loss_after = fx;
  16179. }
  16180. // search direction = -gradient
  16181. ggml_vec_neg_f32(nx, d, g);
  16182. // ||x||, ||g||
  16183. ggml_vec_norm_f32(nx, &xnorm, x);
  16184. ggml_vec_norm_f32(nx, &gnorm, g);
  16185. if (xnorm < 1.0f) {
  16186. xnorm = 1.0f;
  16187. }
  16188. // already optimized
  16189. if (gnorm/xnorm <= params.lbfgs.eps) {
  16190. return GGML_OPT_RESULT_OK;
  16191. }
  16192. if (opt->just_initialized) {
  16193. if (pf) {
  16194. pf[0] = fx;
  16195. }
  16196. opt->lbfgs.fx_best = fx;
  16197. // initial step
  16198. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16199. opt->lbfgs.j = 0;
  16200. opt->lbfgs.k = 1;
  16201. opt->lbfgs.end = 0;
  16202. opt->lbfgs.n_no_improvement = 0;
  16203. opt->just_initialized = false;
  16204. }
  16205. float * fx_best = &opt->lbfgs.fx_best;
  16206. float * step = &opt->lbfgs.step;
  16207. int * j = &opt->lbfgs.j;
  16208. int * k = &opt->lbfgs.k;
  16209. int * end = &opt->lbfgs.end;
  16210. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16211. int ls = 0;
  16212. int bound = 0;
  16213. float ys = 0.0f;
  16214. float yy = 0.0f;
  16215. float beta = 0.0f;
  16216. int it = 0;
  16217. while (true) {
  16218. // store the current position and gradient vectors
  16219. ggml_vec_cpy_f32(nx, xp, x);
  16220. ggml_vec_cpy_f32(nx, gp, g);
  16221. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16222. // to determine if the optimization should be cancelled
  16223. // this is a simple change, but not doing this atm, since I don't have a nice
  16224. // way to test and don't want to break something with so many changes lined up
  16225. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16226. if (cancel) {
  16227. return GGML_OPT_RESULT_CANCEL;
  16228. }
  16229. if (ls < 0) {
  16230. // linesearch failed - go back to the previous point and return
  16231. ggml_vec_cpy_f32(nx, x, xp);
  16232. ggml_vec_cpy_f32(nx, g, gp);
  16233. return ls;
  16234. }
  16235. opt->loss_after = fx;
  16236. ggml_vec_norm_f32(nx, &xnorm, x);
  16237. ggml_vec_norm_f32(nx, &gnorm, g);
  16238. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16239. if (xnorm < 1.0f) {
  16240. xnorm = 1.0f;
  16241. }
  16242. if (gnorm/xnorm <= params.lbfgs.eps) {
  16243. // converged
  16244. return GGML_OPT_RESULT_OK;
  16245. }
  16246. // delta-based convergence test
  16247. if (pf != NULL) {
  16248. // need at least params.past iterations to start checking for convergence
  16249. if (params.past <= k[0]) {
  16250. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16251. if (fabsf(rate) < params.delta) {
  16252. return GGML_OPT_RESULT_OK;
  16253. }
  16254. }
  16255. pf[k[0]%params.past] = fx;
  16256. }
  16257. // check for improvement
  16258. if (params.max_no_improvement > 0) {
  16259. if (fx < fx_best[0]) {
  16260. fx_best[0] = fx;
  16261. n_no_improvement[0] = 0;
  16262. } else {
  16263. n_no_improvement[0]++;
  16264. if (n_no_improvement[0] >= params.max_no_improvement) {
  16265. return GGML_OPT_RESULT_OK;
  16266. }
  16267. }
  16268. }
  16269. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16270. // reached the maximum number of iterations
  16271. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16272. }
  16273. // update vectors s and y:
  16274. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16275. // y_{k+1} = g_{k+1} - g_{k}.
  16276. //
  16277. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16278. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16279. // compute scalars ys and yy:
  16280. // ys = y^t \cdot s -> 1 / \rho.
  16281. // yy = y^t \cdot y.
  16282. //
  16283. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16284. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16285. lm_ys[end[0]] = ys;
  16286. // find new search direction
  16287. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16288. bound = (m <= k[0]) ? m : k[0];
  16289. k[0]++;
  16290. it++;
  16291. end[0] = (end[0] + 1)%m;
  16292. // initialize search direction with -g
  16293. ggml_vec_neg_f32(nx, d, g);
  16294. j[0] = end[0];
  16295. for (int i = 0; i < bound; ++i) {
  16296. j[0] = (j[0] + m - 1) % m;
  16297. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16298. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16299. lm_alpha[j[0]] /= lm_ys[j[0]];
  16300. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16301. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16302. }
  16303. ggml_vec_scale_f32(nx, d, ys/yy);
  16304. for (int i = 0; i < bound; ++i) {
  16305. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16306. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16307. beta /= lm_ys[j[0]];
  16308. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16309. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16310. j[0] = (j[0] + 1)%m;
  16311. }
  16312. step[0] = 1.0;
  16313. }
  16314. GGML_ASSERT(false && "lbfgs failed");
  16315. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16316. }
  16317. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16318. struct ggml_opt_params result;
  16319. switch (type) {
  16320. case GGML_OPT_TYPE_ADAM:
  16321. {
  16322. result = (struct ggml_opt_params) {
  16323. .type = GGML_OPT_TYPE_ADAM,
  16324. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16325. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16326. .past = 0,
  16327. .delta = 1e-5f,
  16328. .max_no_improvement = 100,
  16329. .print_forward_graph = true,
  16330. .print_backward_graph = true,
  16331. .n_gradient_accumulation = 1,
  16332. .adam = {
  16333. .n_iter = 10000,
  16334. .sched = 1.000f,
  16335. .decay = 0.0f,
  16336. .decay_min_ndim = 2,
  16337. .alpha = 0.001f,
  16338. .beta1 = 0.9f,
  16339. .beta2 = 0.999f,
  16340. .eps = 1e-8f,
  16341. .eps_f = 1e-5f,
  16342. .eps_g = 1e-3f,
  16343. .gclip = 0.0f,
  16344. },
  16345. };
  16346. } break;
  16347. case GGML_OPT_TYPE_LBFGS:
  16348. {
  16349. result = (struct ggml_opt_params) {
  16350. .type = GGML_OPT_TYPE_LBFGS,
  16351. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16352. .n_threads = 1,
  16353. .past = 0,
  16354. .delta = 1e-5f,
  16355. .max_no_improvement = 0,
  16356. .print_forward_graph = true,
  16357. .print_backward_graph = true,
  16358. .n_gradient_accumulation = 1,
  16359. .lbfgs = {
  16360. .m = 6,
  16361. .n_iter = 100,
  16362. .max_linesearch = 20,
  16363. .eps = 1e-5f,
  16364. .ftol = 1e-4f,
  16365. .wolfe = 0.9f,
  16366. .min_step = 1e-20f,
  16367. .max_step = 1e+20f,
  16368. .linesearch = GGML_LINESEARCH_DEFAULT,
  16369. },
  16370. };
  16371. } break;
  16372. }
  16373. return result;
  16374. }
  16375. GGML_API void ggml_opt_init(
  16376. struct ggml_context * ctx,
  16377. struct ggml_opt_context * opt,
  16378. struct ggml_opt_params params,
  16379. int64_t nx) {
  16380. opt->ctx = ctx;
  16381. opt->params = params;
  16382. opt->iter = 0;
  16383. opt->nx = nx;
  16384. opt->just_initialized = true;
  16385. if (opt->ctx == NULL) {
  16386. struct ggml_init_params ctx_opt_params;
  16387. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16388. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16389. if (opt->params.past > 0) {
  16390. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16391. }
  16392. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16393. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16394. if (opt->params.past > 0) {
  16395. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16396. }
  16397. }
  16398. ctx_opt_params.mem_buffer = NULL;
  16399. ctx_opt_params.no_alloc = false;
  16400. opt->ctx = ggml_init(ctx_opt_params);
  16401. }
  16402. switch (opt->params.type) {
  16403. case GGML_OPT_TYPE_ADAM:
  16404. {
  16405. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16406. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16407. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16408. opt->adam.pf = params.past > 0
  16409. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16410. : NULL;
  16411. ggml_set_zero(opt->adam.m);
  16412. ggml_set_zero(opt->adam.v);
  16413. if (opt->adam.pf) {
  16414. ggml_set_zero(opt->adam.pf);
  16415. }
  16416. } break;
  16417. case GGML_OPT_TYPE_LBFGS:
  16418. {
  16419. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16420. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16421. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16422. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16423. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16424. opt->lbfgs.pf = params.past > 0
  16425. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16426. : NULL;
  16427. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16428. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16429. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16430. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16431. ggml_set_zero(opt->lbfgs.x);
  16432. ggml_set_zero(opt->lbfgs.xp);
  16433. ggml_set_zero(opt->lbfgs.g);
  16434. ggml_set_zero(opt->lbfgs.gp);
  16435. ggml_set_zero(opt->lbfgs.d);
  16436. if (opt->lbfgs.pf) {
  16437. ggml_set_zero(opt->lbfgs.pf);
  16438. }
  16439. ggml_set_zero(opt->lbfgs.lmal);
  16440. ggml_set_zero(opt->lbfgs.lmys);
  16441. ggml_set_zero(opt->lbfgs.lms);
  16442. ggml_set_zero(opt->lbfgs.lmy);
  16443. } break;
  16444. }
  16445. }
  16446. enum ggml_opt_result ggml_opt(
  16447. struct ggml_context * ctx,
  16448. struct ggml_opt_params params,
  16449. struct ggml_tensor * f) {
  16450. bool free_ctx = false;
  16451. if (ctx == NULL) {
  16452. struct ggml_init_params params_ctx = {
  16453. .mem_size = 16*1024*1024,
  16454. .mem_buffer = NULL,
  16455. .no_alloc = false,
  16456. };
  16457. ctx = ggml_init(params_ctx);
  16458. if (ctx == NULL) {
  16459. return GGML_OPT_RESULT_NO_CONTEXT;
  16460. }
  16461. free_ctx = true;
  16462. }
  16463. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16464. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16465. ggml_opt_init(ctx, opt, params, 0);
  16466. result = ggml_opt_resume(ctx, opt, f);
  16467. if (free_ctx) {
  16468. ggml_free(ctx);
  16469. }
  16470. return result;
  16471. }
  16472. enum ggml_opt_result ggml_opt_resume(
  16473. struct ggml_context * ctx,
  16474. struct ggml_opt_context * opt,
  16475. struct ggml_tensor * f) {
  16476. // build forward + backward compute graphs
  16477. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16478. ggml_build_forward_expand(gf, f);
  16479. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16480. ggml_build_backward_expand(ctx, gf, gb, true);
  16481. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16482. }
  16483. enum ggml_opt_result ggml_opt_resume_g(
  16484. struct ggml_context * ctx,
  16485. struct ggml_opt_context * opt,
  16486. struct ggml_tensor * f,
  16487. struct ggml_cgraph * gf,
  16488. struct ggml_cgraph * gb,
  16489. ggml_opt_callback callback,
  16490. void * callback_data) {
  16491. // build forward + backward compute graphs
  16492. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16493. switch (opt->params.type) {
  16494. case GGML_OPT_TYPE_ADAM:
  16495. {
  16496. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16497. } break;
  16498. case GGML_OPT_TYPE_LBFGS:
  16499. {
  16500. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16501. } break;
  16502. }
  16503. if (opt->params.print_forward_graph) {
  16504. ggml_graph_print (gf);
  16505. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16506. }
  16507. if (opt->params.print_backward_graph) {
  16508. ggml_graph_print (gb);
  16509. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16510. }
  16511. return result;
  16512. }
  16513. ////////////////////////////////////////////////////////////////////////////////
  16514. void ggml_set_input(struct ggml_tensor * tensor) {
  16515. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16516. }
  16517. void ggml_set_output(struct ggml_tensor * tensor) {
  16518. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16519. }
  16520. ////////////////////////////////////////////////////////////////////////////////
  16521. void ggml_quantize_init(enum ggml_type type) {
  16522. ggml_critical_section_start();
  16523. switch (type) {
  16524. case GGML_TYPE_IQ2_XXS:
  16525. case GGML_TYPE_IQ2_XS:
  16526. case GGML_TYPE_IQ2_S:
  16527. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16528. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16529. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16530. default: // nothing
  16531. break;
  16532. }
  16533. ggml_critical_section_end();
  16534. }
  16535. void ggml_quantize_free(void) {
  16536. ggml_critical_section_start();
  16537. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16538. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16539. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16540. iq3xs_free_impl(256);
  16541. ggml_critical_section_end();
  16542. }
  16543. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16544. assert(k % QK4_0 == 0);
  16545. const int nb = k / QK4_0;
  16546. for (int b = 0; b < n; b += k) {
  16547. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16548. quantize_row_q4_0_reference(src + b, y, k);
  16549. for (int i = 0; i < nb; i++) {
  16550. for (int j = 0; j < QK4_0; j += 2) {
  16551. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16552. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16553. hist[vi0]++;
  16554. hist[vi1]++;
  16555. }
  16556. }
  16557. }
  16558. return (n/QK4_0*sizeof(block_q4_0));
  16559. }
  16560. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16561. assert(k % QK4_1 == 0);
  16562. const int nb = k / QK4_1;
  16563. for (int b = 0; b < n; b += k) {
  16564. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16565. quantize_row_q4_1_reference(src + b, y, k);
  16566. for (int i = 0; i < nb; i++) {
  16567. for (int j = 0; j < QK4_1; j += 2) {
  16568. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16569. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16570. hist[vi0]++;
  16571. hist[vi1]++;
  16572. }
  16573. }
  16574. }
  16575. return (n/QK4_1*sizeof(block_q4_1));
  16576. }
  16577. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16578. assert(k % QK5_0 == 0);
  16579. const int nb = k / QK5_0;
  16580. for (int b = 0; b < n; b += k) {
  16581. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16582. quantize_row_q5_0_reference(src + b, y, k);
  16583. for (int i = 0; i < nb; i++) {
  16584. uint32_t qh;
  16585. memcpy(&qh, &y[i].qh, sizeof(qh));
  16586. for (int j = 0; j < QK5_0; j += 2) {
  16587. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16588. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16589. // cast to 16 bins
  16590. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16591. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16592. hist[vi0]++;
  16593. hist[vi1]++;
  16594. }
  16595. }
  16596. }
  16597. return (n/QK5_0*sizeof(block_q5_0));
  16598. }
  16599. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16600. assert(k % QK5_1 == 0);
  16601. const int nb = k / QK5_1;
  16602. for (int b = 0; b < n; b += k) {
  16603. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16604. quantize_row_q5_1_reference(src + b, y, k);
  16605. for (int i = 0; i < nb; i++) {
  16606. uint32_t qh;
  16607. memcpy(&qh, &y[i].qh, sizeof(qh));
  16608. for (int j = 0; j < QK5_1; j += 2) {
  16609. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16610. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16611. // cast to 16 bins
  16612. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16613. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16614. hist[vi0]++;
  16615. hist[vi1]++;
  16616. }
  16617. }
  16618. }
  16619. return (n/QK5_1*sizeof(block_q5_1));
  16620. }
  16621. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16622. assert(k % QK8_0 == 0);
  16623. const int nb = k / QK8_0;
  16624. for (int b = 0; b < n; b += k) {
  16625. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16626. quantize_row_q8_0_reference(src + b, y, k);
  16627. for (int i = 0; i < nb; i++) {
  16628. for (int j = 0; j < QK8_0; ++j) {
  16629. const int8_t vi = y[i].qs[j];
  16630. hist[vi/16 + 8]++;
  16631. }
  16632. }
  16633. }
  16634. return (n/QK8_0*sizeof(block_q8_0));
  16635. }
  16636. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16637. return
  16638. type == GGML_TYPE_IQ2_XXS ||
  16639. type == GGML_TYPE_IQ2_XS ||
  16640. type == GGML_TYPE_IQ1_S;
  16641. }
  16642. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16643. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16644. ggml_quantize_init(type); // this is noop if already initialized
  16645. size_t result = 0;
  16646. int n = nrows * n_per_row;
  16647. switch (type) {
  16648. case GGML_TYPE_Q4_0:
  16649. {
  16650. GGML_ASSERT(start % QK4_0 == 0);
  16651. GGML_ASSERT(start % n_per_row == 0);
  16652. size_t start_row = start / n_per_row;
  16653. size_t row_size = ggml_row_size(type, n_per_row);
  16654. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16655. GGML_ASSERT(result == row_size * nrows);
  16656. } break;
  16657. case GGML_TYPE_Q4_1:
  16658. {
  16659. GGML_ASSERT(start % QK4_1 == 0);
  16660. GGML_ASSERT(start % n_per_row == 0);
  16661. size_t start_row = start / n_per_row;
  16662. size_t row_size = ggml_row_size(type, n_per_row);
  16663. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16664. GGML_ASSERT(result == row_size * nrows);
  16665. } break;
  16666. case GGML_TYPE_Q5_0:
  16667. {
  16668. GGML_ASSERT(start % QK5_0 == 0);
  16669. GGML_ASSERT(start % n_per_row == 0);
  16670. size_t start_row = start / n_per_row;
  16671. size_t row_size = ggml_row_size(type, n_per_row);
  16672. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16673. GGML_ASSERT(result == row_size * nrows);
  16674. } break;
  16675. case GGML_TYPE_Q5_1:
  16676. {
  16677. GGML_ASSERT(start % QK5_1 == 0);
  16678. GGML_ASSERT(start % n_per_row == 0);
  16679. size_t start_row = start / n_per_row;
  16680. size_t row_size = ggml_row_size(type, n_per_row);
  16681. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16682. GGML_ASSERT(result == row_size * nrows);
  16683. } break;
  16684. case GGML_TYPE_Q8_0:
  16685. {
  16686. GGML_ASSERT(start % QK8_0 == 0);
  16687. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16688. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16689. } break;
  16690. case GGML_TYPE_Q2_K:
  16691. {
  16692. GGML_ASSERT(start % QK_K == 0);
  16693. GGML_ASSERT(start % n_per_row == 0);
  16694. size_t start_row = start / n_per_row;
  16695. size_t row_size = ggml_row_size(type, n_per_row);
  16696. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16697. GGML_ASSERT(result == row_size * nrows);
  16698. } break;
  16699. case GGML_TYPE_Q3_K:
  16700. {
  16701. GGML_ASSERT(start % QK_K == 0);
  16702. GGML_ASSERT(start % n_per_row == 0);
  16703. size_t start_row = start / n_per_row;
  16704. size_t row_size = ggml_row_size(type, n_per_row);
  16705. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16706. GGML_ASSERT(result == row_size * nrows);
  16707. } break;
  16708. case GGML_TYPE_Q4_K:
  16709. {
  16710. GGML_ASSERT(start % QK_K == 0);
  16711. GGML_ASSERT(start % n_per_row == 0);
  16712. size_t start_row = start / n_per_row;
  16713. size_t row_size = ggml_row_size(type, n_per_row);
  16714. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16715. GGML_ASSERT(result == row_size * nrows);
  16716. } break;
  16717. case GGML_TYPE_Q5_K:
  16718. {
  16719. GGML_ASSERT(start % QK_K == 0);
  16720. GGML_ASSERT(start % n_per_row == 0);
  16721. size_t start_row = start / n_per_row;
  16722. size_t row_size = ggml_row_size(type, n_per_row);
  16723. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16724. GGML_ASSERT(result == row_size * nrows);
  16725. } break;
  16726. case GGML_TYPE_Q6_K:
  16727. {
  16728. GGML_ASSERT(start % QK_K == 0);
  16729. GGML_ASSERT(start % n_per_row == 0);
  16730. size_t start_row = start / n_per_row;
  16731. size_t row_size = ggml_row_size(type, n_per_row);
  16732. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16733. GGML_ASSERT(result == row_size * nrows);
  16734. } break;
  16735. case GGML_TYPE_IQ2_XXS:
  16736. {
  16737. GGML_ASSERT(start % QK_K == 0);
  16738. GGML_ASSERT(start % n_per_row == 0);
  16739. GGML_ASSERT(imatrix);
  16740. size_t start_row = start / n_per_row;
  16741. size_t row_size = ggml_row_size(type, n_per_row);
  16742. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16743. GGML_ASSERT(result == row_size * nrows);
  16744. } break;
  16745. case GGML_TYPE_IQ2_XS:
  16746. {
  16747. GGML_ASSERT(start % QK_K == 0);
  16748. GGML_ASSERT(start % n_per_row == 0);
  16749. GGML_ASSERT(imatrix);
  16750. size_t start_row = start / n_per_row;
  16751. size_t row_size = ggml_row_size(type, n_per_row);
  16752. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16753. GGML_ASSERT(result == row_size * nrows);
  16754. } break;
  16755. case GGML_TYPE_IQ3_XXS:
  16756. {
  16757. GGML_ASSERT(start % QK_K == 0);
  16758. GGML_ASSERT(start % n_per_row == 0);
  16759. size_t start_row = start / n_per_row;
  16760. size_t row_size = ggml_row_size(type, n_per_row);
  16761. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16762. GGML_ASSERT(result == row_size * nrows);
  16763. } break;
  16764. case GGML_TYPE_IQ3_S:
  16765. {
  16766. GGML_ASSERT(start % QK_K == 0);
  16767. GGML_ASSERT(start % n_per_row == 0);
  16768. size_t start_row = start / n_per_row;
  16769. size_t row_size = ggml_row_size(type, n_per_row);
  16770. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16771. GGML_ASSERT(result == row_size * nrows);
  16772. } break;
  16773. case GGML_TYPE_IQ2_S:
  16774. {
  16775. GGML_ASSERT(start % QK_K == 0);
  16776. GGML_ASSERT(start % n_per_row == 0);
  16777. size_t start_row = start / n_per_row;
  16778. size_t row_size = ggml_row_size(type, n_per_row);
  16779. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16780. GGML_ASSERT(result == row_size * nrows);
  16781. } break;
  16782. case GGML_TYPE_IQ1_S:
  16783. {
  16784. GGML_ASSERT(start % QK_K == 0);
  16785. GGML_ASSERT(start % n_per_row == 0);
  16786. size_t start_row = start / n_per_row;
  16787. size_t row_size = ggml_row_size(type, n_per_row);
  16788. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16789. GGML_ASSERT(result == row_size * nrows);
  16790. } break;
  16791. case GGML_TYPE_IQ4_NL:
  16792. #if QK_K == 64
  16793. case GGML_TYPE_IQ4_XS:
  16794. #endif
  16795. {
  16796. GGML_ASSERT(start % QK4_NL == 0);
  16797. GGML_ASSERT(start % n_per_row == 0);
  16798. size_t start_row = start / n_per_row;
  16799. size_t row_size = ggml_row_size(type, n_per_row);
  16800. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16801. GGML_ASSERT(result == row_size * nrows);
  16802. } break;
  16803. #if QK_K != 64
  16804. case GGML_TYPE_IQ4_XS:
  16805. {
  16806. GGML_ASSERT(start % QK_K == 0);
  16807. GGML_ASSERT(start % n_per_row == 0);
  16808. size_t start_row = start / n_per_row;
  16809. size_t row_size = ggml_row_size(type, n_per_row);
  16810. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16811. GGML_ASSERT(result == row_size * nrows);
  16812. } break;
  16813. #endif
  16814. case GGML_TYPE_F16:
  16815. {
  16816. size_t elemsize = sizeof(ggml_fp16_t);
  16817. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16818. result = n * elemsize;
  16819. } break;
  16820. case GGML_TYPE_F32:
  16821. {
  16822. size_t elemsize = sizeof(float);
  16823. result = n * elemsize;
  16824. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16825. } break;
  16826. default:
  16827. assert(false);
  16828. }
  16829. return result;
  16830. }
  16831. ////////////////////////////////////////////////////////////////////////////////
  16832. struct gguf_str {
  16833. uint64_t n; // GGUFv2
  16834. char * data;
  16835. };
  16836. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16837. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16838. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16839. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16840. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16841. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16842. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16843. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16844. [GGUF_TYPE_BOOL] = sizeof(bool),
  16845. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16846. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16847. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16848. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16849. [GGUF_TYPE_ARRAY] = 0, // undefined
  16850. };
  16851. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16852. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16853. [GGUF_TYPE_UINT8] = "u8",
  16854. [GGUF_TYPE_INT8] = "i8",
  16855. [GGUF_TYPE_UINT16] = "u16",
  16856. [GGUF_TYPE_INT16] = "i16",
  16857. [GGUF_TYPE_UINT32] = "u32",
  16858. [GGUF_TYPE_INT32] = "i32",
  16859. [GGUF_TYPE_FLOAT32] = "f32",
  16860. [GGUF_TYPE_BOOL] = "bool",
  16861. [GGUF_TYPE_STRING] = "str",
  16862. [GGUF_TYPE_ARRAY] = "arr",
  16863. [GGUF_TYPE_UINT64] = "u64",
  16864. [GGUF_TYPE_INT64] = "i64",
  16865. [GGUF_TYPE_FLOAT64] = "f64",
  16866. };
  16867. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16868. union gguf_value {
  16869. uint8_t uint8;
  16870. int8_t int8;
  16871. uint16_t uint16;
  16872. int16_t int16;
  16873. uint32_t uint32;
  16874. int32_t int32;
  16875. float float32;
  16876. uint64_t uint64;
  16877. int64_t int64;
  16878. double float64;
  16879. bool bool_;
  16880. struct gguf_str str;
  16881. struct {
  16882. enum gguf_type type;
  16883. uint64_t n; // GGUFv2
  16884. void * data;
  16885. } arr;
  16886. };
  16887. struct gguf_kv {
  16888. struct gguf_str key;
  16889. enum gguf_type type;
  16890. union gguf_value value;
  16891. };
  16892. struct gguf_header {
  16893. char magic[4];
  16894. uint32_t version;
  16895. uint64_t n_tensors; // GGUFv2
  16896. uint64_t n_kv; // GGUFv2
  16897. };
  16898. struct gguf_tensor_info {
  16899. struct gguf_str name;
  16900. uint32_t n_dims;
  16901. uint64_t ne[GGML_MAX_DIMS];
  16902. enum ggml_type type;
  16903. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16904. // for writing API
  16905. const void * data;
  16906. size_t size;
  16907. };
  16908. struct gguf_context {
  16909. struct gguf_header header;
  16910. struct gguf_kv * kv;
  16911. struct gguf_tensor_info * infos;
  16912. size_t alignment;
  16913. size_t offset; // offset of `data` from beginning of file
  16914. size_t size; // size of `data` in bytes
  16915. //uint8_t * padding;
  16916. void * data;
  16917. };
  16918. static size_t gguf_type_size(enum gguf_type type) {
  16919. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16920. return GGUF_TYPE_SIZE[type];
  16921. }
  16922. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16923. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16924. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16925. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16926. GGML_ASSERT(info->ne[i] > 0);
  16927. }
  16928. // prevent overflow for total number of elements
  16929. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16930. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16931. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16932. }
  16933. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16934. const size_t n = fread(dst, 1, size, file);
  16935. *offset += n;
  16936. return n == size;
  16937. }
  16938. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16939. p->n = 0;
  16940. p->data = NULL;
  16941. bool ok = true;
  16942. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16943. // early exit if string length is invalid, prevents from integer overflow
  16944. if (p->n == SIZE_MAX) {
  16945. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16946. return false;
  16947. }
  16948. p->data = GGML_CALLOC(p->n + 1, 1);
  16949. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16950. return ok;
  16951. }
  16952. struct gguf_context * gguf_init_empty(void) {
  16953. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16954. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16955. ctx->header.version = GGUF_VERSION;
  16956. ctx->header.n_tensors = 0;
  16957. ctx->header.n_kv = 0;
  16958. ctx->kv = NULL;
  16959. ctx->infos = NULL;
  16960. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16961. ctx->offset = 0;
  16962. ctx->size = 0;
  16963. ctx->data = NULL;
  16964. return ctx;
  16965. }
  16966. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16967. FILE * file = fopen(fname, "rb");
  16968. if (!file) {
  16969. return NULL;
  16970. }
  16971. // offset from start of file
  16972. size_t offset = 0;
  16973. char magic[4];
  16974. // check the magic before making allocations
  16975. {
  16976. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16977. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16978. if (magic[i] != GGUF_MAGIC[i]) {
  16979. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16980. fclose(file);
  16981. return NULL;
  16982. }
  16983. }
  16984. }
  16985. bool ok = true;
  16986. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16987. // read the header
  16988. {
  16989. strncpy(ctx->header.magic, magic, 4);
  16990. ctx->kv = NULL;
  16991. ctx->infos = NULL;
  16992. ctx->data = NULL;
  16993. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16994. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16995. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16996. if (ctx->header.version == 1) {
  16997. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16998. fclose(file);
  16999. gguf_free(ctx);
  17000. return NULL;
  17001. }
  17002. // sanity-checks to prevent from integer/buffer overflows
  17003. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17004. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17005. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17006. if (!ok) {
  17007. fprintf(stderr, "%s: failed to read header\n", __func__);
  17008. fclose(file);
  17009. gguf_free(ctx);
  17010. return NULL;
  17011. }
  17012. }
  17013. // read the kv pairs
  17014. {
  17015. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  17016. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17017. struct gguf_kv * kv = &ctx->kv[i];
  17018. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17019. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17020. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17021. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17022. switch (kv->type) {
  17023. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17024. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17025. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17026. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17027. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17028. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17029. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17030. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17031. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17032. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17033. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17034. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17035. case GGUF_TYPE_ARRAY:
  17036. {
  17037. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17038. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17039. switch (kv->value.arr.type) {
  17040. case GGUF_TYPE_UINT8:
  17041. case GGUF_TYPE_INT8:
  17042. case GGUF_TYPE_UINT16:
  17043. case GGUF_TYPE_INT16:
  17044. case GGUF_TYPE_UINT32:
  17045. case GGUF_TYPE_INT32:
  17046. case GGUF_TYPE_FLOAT32:
  17047. case GGUF_TYPE_UINT64:
  17048. case GGUF_TYPE_INT64:
  17049. case GGUF_TYPE_FLOAT64:
  17050. case GGUF_TYPE_BOOL:
  17051. {
  17052. // prevent from integer overflow in the malloc below
  17053. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17054. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17055. fclose(file);
  17056. gguf_free(ctx);
  17057. return NULL;
  17058. }
  17059. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17060. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17061. } break;
  17062. case GGUF_TYPE_STRING:
  17063. {
  17064. // prevent from integer overflow in the malloc below
  17065. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17066. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17067. fclose(file);
  17068. gguf_free(ctx);
  17069. return NULL;
  17070. }
  17071. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17072. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17073. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17074. }
  17075. } break;
  17076. case GGUF_TYPE_ARRAY:
  17077. default: GGML_ASSERT(false && "invalid type"); break;
  17078. }
  17079. } break;
  17080. default: GGML_ASSERT(false && "invalid type");
  17081. }
  17082. if (!ok) {
  17083. break;
  17084. }
  17085. }
  17086. if (!ok) {
  17087. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17088. fclose(file);
  17089. gguf_free(ctx);
  17090. return NULL;
  17091. }
  17092. }
  17093. // read the tensor infos
  17094. {
  17095. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17096. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17097. struct gguf_tensor_info * info = &ctx->infos[i];
  17098. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17099. info->ne[j] = 1;
  17100. }
  17101. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17102. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17103. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17104. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17105. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17106. }
  17107. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17108. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17109. gguf_tensor_info_sanitize(info);
  17110. if (!ok) {
  17111. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17112. fclose(file);
  17113. gguf_free(ctx);
  17114. return NULL;
  17115. }
  17116. }
  17117. }
  17118. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17119. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17120. if (alignment_idx != -1) {
  17121. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17122. }
  17123. // we require the data section to be aligned, so take into account any padding
  17124. {
  17125. const size_t offset_pad = offset % ctx->alignment;
  17126. if (offset_pad != 0) {
  17127. offset += ctx->alignment - offset_pad;
  17128. fseek(file, offset, SEEK_SET);
  17129. }
  17130. }
  17131. // store the current file offset - this is where the data section starts
  17132. ctx->offset = offset;
  17133. // compute the total size of the data section, taking into account the alignment
  17134. {
  17135. ctx->size = 0;
  17136. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17137. struct gguf_tensor_info * info = &ctx->infos[i];
  17138. const int64_t ne =
  17139. (int64_t) info->ne[0] *
  17140. (int64_t) info->ne[1] *
  17141. (int64_t) info->ne[2] *
  17142. (int64_t) info->ne[3];
  17143. if (ne % ggml_blck_size(info->type) != 0) {
  17144. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17145. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17146. fclose(file);
  17147. gguf_free(ctx);
  17148. return NULL;
  17149. }
  17150. const size_t size_cur = ggml_row_size(info->type, ne);
  17151. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17152. }
  17153. }
  17154. // load the tensor data only if requested
  17155. if (params.ctx != NULL) {
  17156. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17157. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17158. // the ggml_tensor structs to the appropriate locations in the binary blob
  17159. // compute the exact size needed for the new ggml_context
  17160. const size_t mem_size =
  17161. params.no_alloc ?
  17162. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17163. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17164. struct ggml_init_params pdata = {
  17165. .mem_size = mem_size,
  17166. .mem_buffer = NULL,
  17167. .no_alloc = params.no_alloc,
  17168. };
  17169. *params.ctx = ggml_init(pdata);
  17170. struct ggml_context * ctx_data = *params.ctx;
  17171. struct ggml_tensor * data = NULL;
  17172. if (!params.no_alloc) {
  17173. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17174. ok = ok && data != NULL;
  17175. // read the binary blob with the tensor data
  17176. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17177. if (!ok) {
  17178. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17179. fclose(file);
  17180. ggml_free(ctx_data);
  17181. gguf_free(ctx);
  17182. return NULL;
  17183. }
  17184. ctx->data = data->data;
  17185. }
  17186. ggml_set_no_alloc(ctx_data, true);
  17187. // create the tensors
  17188. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17189. const int64_t ne[GGML_MAX_DIMS] = {
  17190. ctx->infos[i].ne[0],
  17191. ctx->infos[i].ne[1],
  17192. ctx->infos[i].ne[2],
  17193. ctx->infos[i].ne[3],
  17194. };
  17195. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17196. ok = ok && cur != NULL;
  17197. ggml_set_name(cur, ctx->infos[i].name.data);
  17198. if (!ok) {
  17199. break;
  17200. }
  17201. // point the data member to the appropriate location in the binary blob using the tensor infos
  17202. if (!params.no_alloc) {
  17203. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17204. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17205. }
  17206. }
  17207. if (!ok) {
  17208. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17209. fclose(file);
  17210. ggml_free(ctx_data);
  17211. gguf_free(ctx);
  17212. return NULL;
  17213. }
  17214. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17215. }
  17216. fclose(file);
  17217. return ctx;
  17218. }
  17219. void gguf_free(struct gguf_context * ctx) {
  17220. if (ctx == NULL) {
  17221. return;
  17222. }
  17223. if (ctx->kv) {
  17224. // free string memory - not great..
  17225. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17226. struct gguf_kv * kv = &ctx->kv[i];
  17227. if (kv->key.data) {
  17228. GGML_FREE(kv->key.data);
  17229. }
  17230. if (kv->type == GGUF_TYPE_STRING) {
  17231. if (kv->value.str.data) {
  17232. GGML_FREE(kv->value.str.data);
  17233. }
  17234. }
  17235. if (kv->type == GGUF_TYPE_ARRAY) {
  17236. if (kv->value.arr.data) {
  17237. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17238. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17239. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17240. if (str->data) {
  17241. GGML_FREE(str->data);
  17242. }
  17243. }
  17244. }
  17245. GGML_FREE(kv->value.arr.data);
  17246. }
  17247. }
  17248. }
  17249. GGML_FREE(ctx->kv);
  17250. }
  17251. if (ctx->infos) {
  17252. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17253. struct gguf_tensor_info * info = &ctx->infos[i];
  17254. if (info->name.data) {
  17255. GGML_FREE(info->name.data);
  17256. }
  17257. }
  17258. GGML_FREE(ctx->infos);
  17259. }
  17260. GGML_ALIGNED_FREE(ctx);
  17261. }
  17262. const char * gguf_type_name(enum gguf_type type) {
  17263. return GGUF_TYPE_NAME[type];
  17264. }
  17265. int gguf_get_version(const struct gguf_context * ctx) {
  17266. return ctx->header.version;
  17267. }
  17268. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17269. return ctx->alignment;
  17270. }
  17271. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17272. return ctx->offset;
  17273. }
  17274. void * gguf_get_data(const struct gguf_context * ctx) {
  17275. return ctx->data;
  17276. }
  17277. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17278. return ctx->header.n_kv;
  17279. }
  17280. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17281. // return -1 if key not found
  17282. int keyfound = -1;
  17283. const int n_kv = gguf_get_n_kv(ctx);
  17284. for (int i = 0; i < n_kv; ++i) {
  17285. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17286. keyfound = i;
  17287. break;
  17288. }
  17289. }
  17290. return keyfound;
  17291. }
  17292. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17293. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17294. return ctx->kv[key_id].key.data;
  17295. }
  17296. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17297. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17298. return ctx->kv[key_id].type;
  17299. }
  17300. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17303. return ctx->kv[key_id].value.arr.type;
  17304. }
  17305. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17308. return ctx->kv[key_id].value.arr.data;
  17309. }
  17310. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17313. struct gguf_kv * kv = &ctx->kv[key_id];
  17314. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17315. return str->data;
  17316. }
  17317. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17318. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17319. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17320. return ctx->kv[key_id].value.arr.n;
  17321. }
  17322. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17323. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17324. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17325. return ctx->kv[key_id].value.uint8;
  17326. }
  17327. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17328. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17329. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17330. return ctx->kv[key_id].value.int8;
  17331. }
  17332. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17333. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17334. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17335. return ctx->kv[key_id].value.uint16;
  17336. }
  17337. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17338. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17339. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17340. return ctx->kv[key_id].value.int16;
  17341. }
  17342. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17343. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17344. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17345. return ctx->kv[key_id].value.uint32;
  17346. }
  17347. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17348. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17349. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17350. return ctx->kv[key_id].value.int32;
  17351. }
  17352. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17353. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17354. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17355. return ctx->kv[key_id].value.float32;
  17356. }
  17357. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17358. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17359. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17360. return ctx->kv[key_id].value.uint64;
  17361. }
  17362. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17363. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17364. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17365. return ctx->kv[key_id].value.int64;
  17366. }
  17367. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17368. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17369. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17370. return ctx->kv[key_id].value.float64;
  17371. }
  17372. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17373. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17374. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17375. return ctx->kv[key_id].value.bool_;
  17376. }
  17377. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17378. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17379. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17380. return ctx->kv[key_id].value.str.data;
  17381. }
  17382. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17383. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17384. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17385. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17386. return &ctx->kv[key_id].value;
  17387. }
  17388. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17389. return ctx->header.n_tensors;
  17390. }
  17391. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17392. // return -1 if tensor not found
  17393. int tensorfound = -1;
  17394. const int n_tensors = gguf_get_n_tensors(ctx);
  17395. for (int i = 0; i < n_tensors; ++i) {
  17396. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17397. tensorfound = i;
  17398. break;
  17399. }
  17400. }
  17401. return tensorfound;
  17402. }
  17403. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17404. return ctx->infos[i].offset;
  17405. }
  17406. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17407. return ctx->infos[i].name.data;
  17408. }
  17409. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17410. return ctx->infos[i].type;
  17411. }
  17412. // returns the index
  17413. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17414. const int idx = gguf_find_key(ctx, key);
  17415. if (idx >= 0) {
  17416. return idx;
  17417. }
  17418. const int n_kv = gguf_get_n_kv(ctx);
  17419. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17420. ctx->kv[n_kv].key.n = strlen(key);
  17421. ctx->kv[n_kv].key.data = strdup(key);
  17422. ctx->header.n_kv++;
  17423. return n_kv;
  17424. }
  17425. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17426. const int idx = gguf_get_or_add_key(ctx, key);
  17427. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17428. ctx->kv[idx].value.uint8 = val;
  17429. }
  17430. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17431. const int idx = gguf_get_or_add_key(ctx, key);
  17432. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17433. ctx->kv[idx].value.int8 = val;
  17434. }
  17435. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17436. const int idx = gguf_get_or_add_key(ctx, key);
  17437. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17438. ctx->kv[idx].value.uint16 = val;
  17439. }
  17440. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17441. const int idx = gguf_get_or_add_key(ctx, key);
  17442. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17443. ctx->kv[idx].value.int16 = val;
  17444. }
  17445. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17446. const int idx = gguf_get_or_add_key(ctx, key);
  17447. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17448. ctx->kv[idx].value.uint32 = val;
  17449. }
  17450. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17451. const int idx = gguf_get_or_add_key(ctx, key);
  17452. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17453. ctx->kv[idx].value.int32 = val;
  17454. }
  17455. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17456. const int idx = gguf_get_or_add_key(ctx, key);
  17457. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17458. ctx->kv[idx].value.float32 = val;
  17459. }
  17460. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17461. const int idx = gguf_get_or_add_key(ctx, key);
  17462. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17463. ctx->kv[idx].value.uint64 = val;
  17464. }
  17465. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17466. const int idx = gguf_get_or_add_key(ctx, key);
  17467. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17468. ctx->kv[idx].value.int64 = val;
  17469. }
  17470. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17471. const int idx = gguf_get_or_add_key(ctx, key);
  17472. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17473. ctx->kv[idx].value.float64 = val;
  17474. }
  17475. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17476. const int idx = gguf_get_or_add_key(ctx, key);
  17477. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17478. ctx->kv[idx].value.bool_ = val;
  17479. }
  17480. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17481. const int idx = gguf_get_or_add_key(ctx, key);
  17482. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17483. ctx->kv[idx].value.str.n = strlen(val);
  17484. ctx->kv[idx].value.str.data = strdup(val);
  17485. }
  17486. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17487. const int idx = gguf_get_or_add_key(ctx, key);
  17488. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17489. ctx->kv[idx].value.arr.type = type;
  17490. ctx->kv[idx].value.arr.n = n;
  17491. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17492. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17493. }
  17494. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17495. const int idx = gguf_get_or_add_key(ctx, key);
  17496. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17497. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17498. ctx->kv[idx].value.arr.n = n;
  17499. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17500. for (int i = 0; i < n; i++) {
  17501. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17502. str->n = strlen(data[i]);
  17503. str->data = strdup(data[i]);
  17504. }
  17505. }
  17506. // set or add KV pairs from another context
  17507. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17508. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17509. switch (src->kv[i].type) {
  17510. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17511. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17512. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17513. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17514. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17515. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17516. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17517. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17518. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17519. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17520. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17521. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17522. case GGUF_TYPE_ARRAY:
  17523. {
  17524. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17525. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17526. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17527. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17528. }
  17529. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17530. GGML_FREE((void *)data);
  17531. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17532. GGML_ASSERT(false && "nested arrays not supported");
  17533. } else {
  17534. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17535. }
  17536. } break;
  17537. default: GGML_ASSERT(false && "invalid type"); break;
  17538. }
  17539. }
  17540. }
  17541. void gguf_add_tensor(
  17542. struct gguf_context * ctx,
  17543. const struct ggml_tensor * tensor) {
  17544. const int idx = ctx->header.n_tensors;
  17545. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17546. ctx->infos[idx].name.n = strlen(tensor->name);
  17547. ctx->infos[idx].name.data = strdup(tensor->name);
  17548. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17549. ctx->infos[idx].ne[i] = 1;
  17550. }
  17551. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17552. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17553. ctx->infos[idx].ne[i] = tensor->ne[i];
  17554. }
  17555. ctx->infos[idx].type = tensor->type;
  17556. ctx->infos[idx].offset = 0;
  17557. ctx->infos[idx].data = tensor->data;
  17558. ctx->infos[idx].size = ggml_nbytes(tensor);
  17559. if (ctx->header.n_tensors > 0) {
  17560. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17561. }
  17562. ctx->header.n_tensors++;
  17563. }
  17564. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17565. const int idx = gguf_find_tensor(ctx, name);
  17566. if (idx < 0) {
  17567. GGML_ASSERT(false && "tensor not found");
  17568. }
  17569. ctx->infos[idx].type = type;
  17570. }
  17571. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17572. const int idx = gguf_find_tensor(ctx, name);
  17573. if (idx < 0) {
  17574. GGML_ASSERT(false && "tensor not found");
  17575. }
  17576. ctx->infos[idx].data = data;
  17577. ctx->infos[idx].size = size;
  17578. // update offsets
  17579. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17580. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17581. }
  17582. }
  17583. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17584. // fwrite(&val->n, sizeof(val->n), 1, file);
  17585. // fwrite(val->data, sizeof(char), val->n, file);
  17586. //}
  17587. //
  17588. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17589. // fwrite(val, sizeof(char), size, file);
  17590. //}
  17591. struct gguf_buf {
  17592. void * data;
  17593. size_t size;
  17594. size_t offset;
  17595. };
  17596. static struct gguf_buf gguf_buf_init(size_t size) {
  17597. struct gguf_buf buf = {
  17598. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17599. /*buf.size =*/ size,
  17600. /*buf.offset =*/ 0,
  17601. };
  17602. return buf;
  17603. }
  17604. static void gguf_buf_free(struct gguf_buf buf) {
  17605. if (buf.data) {
  17606. GGML_FREE(buf.data);
  17607. }
  17608. }
  17609. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17610. if (buf->offset + size > buf->size) {
  17611. buf->size = 1.5*(buf->offset + size);
  17612. if (buf->data) {
  17613. buf->data = realloc(buf->data, buf->size);
  17614. }
  17615. }
  17616. }
  17617. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17618. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17619. if (buf->data) {
  17620. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17621. }
  17622. buf->offset += sizeof(val->n);
  17623. if (buf->data) {
  17624. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17625. }
  17626. buf->offset += val->n;
  17627. }
  17628. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17629. gguf_buf_grow(buf, el_size);
  17630. if (buf->data) {
  17631. memcpy((char *) buf->data + buf->offset, val, el_size);
  17632. }
  17633. buf->offset += el_size;
  17634. }
  17635. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17636. // write header
  17637. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17638. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17639. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17640. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17641. // write key-value pairs
  17642. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17643. struct gguf_kv * kv = &ctx->kv[i];
  17644. gguf_bwrite_str(buf, &kv->key);
  17645. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17646. switch (kv->type) {
  17647. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17648. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17649. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17650. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17651. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17652. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17653. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17654. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17655. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17656. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17657. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17658. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17659. case GGUF_TYPE_ARRAY:
  17660. {
  17661. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17662. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17663. switch (kv->value.arr.type) {
  17664. case GGUF_TYPE_UINT8:
  17665. case GGUF_TYPE_INT8:
  17666. case GGUF_TYPE_UINT16:
  17667. case GGUF_TYPE_INT16:
  17668. case GGUF_TYPE_UINT32:
  17669. case GGUF_TYPE_INT32:
  17670. case GGUF_TYPE_FLOAT32:
  17671. case GGUF_TYPE_UINT64:
  17672. case GGUF_TYPE_INT64:
  17673. case GGUF_TYPE_FLOAT64:
  17674. case GGUF_TYPE_BOOL:
  17675. {
  17676. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17677. } break;
  17678. case GGUF_TYPE_STRING:
  17679. {
  17680. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17681. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17682. }
  17683. } break;
  17684. case GGUF_TYPE_ARRAY:
  17685. default: GGML_ASSERT(false && "invalid type"); break;
  17686. }
  17687. } break;
  17688. default: GGML_ASSERT(false && "invalid type");
  17689. }
  17690. }
  17691. // write tensor infos
  17692. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17693. struct gguf_tensor_info * info = &ctx->infos[i];
  17694. gguf_bwrite_str(buf, &info->name);
  17695. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17696. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17697. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17698. }
  17699. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17700. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17701. }
  17702. // we require the data section to be aligned, so take into account any padding
  17703. {
  17704. const size_t offset = buf->offset;
  17705. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17706. if (offset_pad != offset) {
  17707. uint8_t pad = 0;
  17708. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17709. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17710. }
  17711. }
  17712. }
  17713. if (only_meta) {
  17714. return;
  17715. }
  17716. size_t offset = 0;
  17717. // write tensor data
  17718. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17719. struct gguf_tensor_info * info = &ctx->infos[i];
  17720. const size_t size = info->size;
  17721. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17722. gguf_bwrite_el(buf, info->data, size);
  17723. if (size_pad != size) {
  17724. uint8_t pad = 0;
  17725. for (size_t j = 0; j < size_pad - size; ++j) {
  17726. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17727. }
  17728. }
  17729. GGML_ASSERT(offset == info->offset);
  17730. offset += size_pad;
  17731. }
  17732. }
  17733. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17734. FILE * file = fopen(fname, "wb");
  17735. if (!file) {
  17736. GGML_ASSERT(false && "failed to open file for writing");
  17737. }
  17738. struct gguf_buf buf = gguf_buf_init(16*1024);
  17739. gguf_write_to_buf(ctx, &buf, only_meta);
  17740. fwrite(buf.data, 1, buf.offset, file);
  17741. gguf_buf_free(buf);
  17742. fclose(file);
  17743. }
  17744. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17745. // no allocs - only compute size
  17746. struct gguf_buf buf = gguf_buf_init(0);
  17747. gguf_write_to_buf(ctx, &buf, true);
  17748. return buf.offset;
  17749. }
  17750. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17751. struct gguf_buf buf = gguf_buf_init(16*1024);
  17752. gguf_write_to_buf(ctx, &buf, true);
  17753. memcpy(data, buf.data, buf.offset);
  17754. gguf_buf_free(buf);
  17755. }
  17756. ////////////////////////////////////////////////////////////////////////////////
  17757. int ggml_cpu_has_avx(void) {
  17758. #if defined(__AVX__)
  17759. return 1;
  17760. #else
  17761. return 0;
  17762. #endif
  17763. }
  17764. int ggml_cpu_has_avx_vnni(void) {
  17765. #if defined(__AVXVNNI__)
  17766. return 1;
  17767. #else
  17768. return 0;
  17769. #endif
  17770. }
  17771. int ggml_cpu_has_avx2(void) {
  17772. #if defined(__AVX2__)
  17773. return 1;
  17774. #else
  17775. return 0;
  17776. #endif
  17777. }
  17778. int ggml_cpu_has_avx512(void) {
  17779. #if defined(__AVX512F__)
  17780. return 1;
  17781. #else
  17782. return 0;
  17783. #endif
  17784. }
  17785. int ggml_cpu_has_avx512_vbmi(void) {
  17786. #if defined(__AVX512VBMI__)
  17787. return 1;
  17788. #else
  17789. return 0;
  17790. #endif
  17791. }
  17792. int ggml_cpu_has_avx512_vnni(void) {
  17793. #if defined(__AVX512VNNI__)
  17794. return 1;
  17795. #else
  17796. return 0;
  17797. #endif
  17798. }
  17799. int ggml_cpu_has_fma(void) {
  17800. #if defined(__FMA__)
  17801. return 1;
  17802. #else
  17803. return 0;
  17804. #endif
  17805. }
  17806. int ggml_cpu_has_neon(void) {
  17807. #if defined(__ARM_NEON)
  17808. return 1;
  17809. #else
  17810. return 0;
  17811. #endif
  17812. }
  17813. int ggml_cpu_has_arm_fma(void) {
  17814. #if defined(__ARM_FEATURE_FMA)
  17815. return 1;
  17816. #else
  17817. return 0;
  17818. #endif
  17819. }
  17820. int ggml_cpu_has_metal(void) {
  17821. #if defined(GGML_USE_METAL)
  17822. return 1;
  17823. #else
  17824. return 0;
  17825. #endif
  17826. }
  17827. int ggml_cpu_has_f16c(void) {
  17828. #if defined(__F16C__)
  17829. return 1;
  17830. #else
  17831. return 0;
  17832. #endif
  17833. }
  17834. int ggml_cpu_has_fp16_va(void) {
  17835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17836. return 1;
  17837. #else
  17838. return 0;
  17839. #endif
  17840. }
  17841. int ggml_cpu_has_wasm_simd(void) {
  17842. #if defined(__wasm_simd128__)
  17843. return 1;
  17844. #else
  17845. return 0;
  17846. #endif
  17847. }
  17848. int ggml_cpu_has_blas(void) {
  17849. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17850. return 1;
  17851. #else
  17852. return 0;
  17853. #endif
  17854. }
  17855. int ggml_cpu_has_cublas(void) {
  17856. #if defined(GGML_USE_CUBLAS)
  17857. return 1;
  17858. #else
  17859. return 0;
  17860. #endif
  17861. }
  17862. int ggml_cpu_has_clblast(void) {
  17863. #if defined(GGML_USE_CLBLAST)
  17864. return 1;
  17865. #else
  17866. return 0;
  17867. #endif
  17868. }
  17869. int ggml_cpu_has_vulkan(void) {
  17870. #if defined(GGML_USE_VULKAN)
  17871. return 1;
  17872. #else
  17873. return 0;
  17874. #endif
  17875. }
  17876. int ggml_cpu_has_kompute(void) {
  17877. #if defined(GGML_USE_KOMPUTE)
  17878. return 1;
  17879. #else
  17880. return 0;
  17881. #endif
  17882. }
  17883. int ggml_cpu_has_sycl(void) {
  17884. #if defined(GGML_USE_SYCL)
  17885. return 1;
  17886. #else
  17887. return 0;
  17888. #endif
  17889. }
  17890. int ggml_cpu_has_gpublas(void) {
  17891. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17892. ggml_cpu_has_sycl();
  17893. }
  17894. int ggml_cpu_has_sse3(void) {
  17895. #if defined(__SSE3__)
  17896. return 1;
  17897. #else
  17898. return 0;
  17899. #endif
  17900. }
  17901. int ggml_cpu_has_ssse3(void) {
  17902. #if defined(__SSSE3__)
  17903. return 1;
  17904. #else
  17905. return 0;
  17906. #endif
  17907. }
  17908. int ggml_cpu_has_vsx(void) {
  17909. #if defined(__POWER9_VECTOR__)
  17910. return 1;
  17911. #else
  17912. return 0;
  17913. #endif
  17914. }
  17915. int ggml_cpu_has_matmul_int8(void) {
  17916. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17917. return 1;
  17918. #else
  17919. return 0;
  17920. #endif
  17921. }
  17922. ////////////////////////////////////////////////////////////////////////////////