convert_hf_to_gguf.py 386 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  559. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  560. res = "glm4"
  561. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  562. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  563. res = "minerva-7b"
  564. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  565. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  566. res = "hunyuan"
  567. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  568. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  569. res = "hunyuan-dense"
  570. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  577. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  578. res = "falcon-h1"
  579. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  580. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  581. res = "falcon-h1"
  582. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  583. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  584. res = "kimi-k2"
  585. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  586. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  587. res = "qwen2"
  588. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  589. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  590. res = "llama-bpe"
  591. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  592. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  593. res = "deepseek-llm"
  594. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  595. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  596. res = "deepseek-coder"
  597. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  598. # ref: https://huggingface.co/tiiuae/falcon-7b
  599. res = "falcon"
  600. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  601. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  602. res = "bert-bge"
  603. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  604. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  605. res = "falcon3"
  606. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  607. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  608. res = "bert-bge-large"
  609. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  610. # ref: https://huggingface.co/mosaicml/mpt-7b
  611. res = "mpt"
  612. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  613. # ref: https://huggingface.co/bigcode/starcoder2-3b
  614. res = "starcoder"
  615. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  616. # ref: https://huggingface.co/openai-community/gpt2
  617. res = "gpt-2"
  618. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  619. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  620. res = "stablelm2"
  621. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  622. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  623. res = "refact"
  624. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  625. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  626. res = "command-r"
  627. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  628. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  629. res = "qwen2"
  630. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  631. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  632. res = "olmo"
  633. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  634. # ref: https://huggingface.co/databricks/dbrx-base
  635. res = "dbrx"
  636. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  637. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  638. res = "jina-v1-en"
  639. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  640. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  641. res = "jina-v2-en"
  642. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  643. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  644. res = "jina-v2-es"
  645. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  647. res = "jina-v2-de"
  648. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  649. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  650. res = "smaug-bpe"
  651. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  652. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  653. res = "poro-chat"
  654. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  655. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  656. res = "jina-v2-code"
  657. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  658. # ref: https://huggingface.co/LumiOpen/Viking-7B
  659. res = "viking"
  660. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  661. # ref: https://huggingface.co/core42/jais-13b
  662. res = "jais"
  663. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  664. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  665. res = "codeshell"
  666. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  667. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  668. res = "tekken"
  669. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  670. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  671. res = "smollm"
  672. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  673. # ref: https://huggingface.co/bigscience/bloom
  674. res = "bloom"
  675. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  676. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  677. res = "gpt3-finnish"
  678. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  679. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  680. res = "exaone"
  681. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  682. # ref: https://huggingface.co/microsoft/phi-2
  683. res = "phi-2"
  684. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  685. # ref: https://huggingface.co/facebook/chameleon-7b
  686. res = "chameleon"
  687. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  688. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  689. res = "roberta-bpe"
  690. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  691. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  692. res = "gigachat"
  693. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  694. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  695. res = "megrez"
  696. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  697. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  698. res = "deepseek-v3"
  699. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  700. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  701. res = "deepseek-r1-qwen"
  702. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  703. # ref: https://huggingface.co/Xenova/gpt-4o
  704. res = "gpt-4o"
  705. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  706. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  707. res = "superbpe"
  708. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  709. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  710. res = "trillion"
  711. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  712. # ref: https://huggingface.co/inclusionAI/Ling-lite
  713. res = "bailingmoe"
  714. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  715. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  716. res = "llama4"
  717. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  718. # ref: https://huggingface.co/mistral-community/pixtral-12b
  719. res = "pixtral"
  720. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  721. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  722. res = "seed-coder"
  723. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  724. # ref: https://huggingface.co/skt/A.X-4.0
  725. res = "a.x-4.0"
  726. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  727. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  728. res = "midm-2.0"
  729. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  730. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  731. res = "lfm2"
  732. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  733. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  734. res = "exaone4"
  735. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  736. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  737. res = "mellum"
  738. if res is None:
  739. logger.warning("\n")
  740. logger.warning("**************************************************************************************")
  741. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  742. logger.warning("** There are 2 possible reasons for this:")
  743. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  744. logger.warning("** - the pre-tokenization config has changed upstream")
  745. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  746. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  747. logger.warning("**")
  748. logger.warning(f"** chkhsh: {chkhsh}")
  749. logger.warning("**************************************************************************************")
  750. logger.warning("\n")
  751. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  752. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  753. logger.debug(f"chkhsh: {chkhsh}")
  754. return res
  755. # Marker: End get_vocab_base_pre
  756. def _set_vocab_none(self) -> None:
  757. self.gguf_writer.add_tokenizer_model("none")
  758. def _set_vocab_gpt2(self) -> None:
  759. tokens, toktypes, tokpre = self.get_vocab_base()
  760. self.gguf_writer.add_tokenizer_model("gpt2")
  761. self.gguf_writer.add_tokenizer_pre(tokpre)
  762. self.gguf_writer.add_token_list(tokens)
  763. self.gguf_writer.add_token_types(toktypes)
  764. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  765. special_vocab.add_to_gguf(self.gguf_writer)
  766. def _set_vocab_qwen(self):
  767. dir_model = self.dir_model
  768. hparams = self.hparams
  769. tokens: list[str] = []
  770. toktypes: list[int] = []
  771. from transformers import AutoTokenizer
  772. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  773. vocab_size = hparams["vocab_size"]
  774. assert max(tokenizer.get_vocab().values()) < vocab_size
  775. tokpre = self.get_vocab_base_pre(tokenizer)
  776. merges = []
  777. vocab = {}
  778. mergeable_ranks = tokenizer.mergeable_ranks
  779. for token, rank in mergeable_ranks.items():
  780. vocab[QwenModel.token_bytes_to_string(token)] = rank
  781. if len(token) == 1:
  782. continue
  783. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  784. assert len(merged) == 2
  785. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  786. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  787. added_vocab = tokenizer.special_tokens
  788. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  789. for i in range(vocab_size):
  790. if i not in reverse_vocab:
  791. tokens.append(f"[PAD{i}]")
  792. toktypes.append(gguf.TokenType.UNUSED)
  793. elif reverse_vocab[i] in added_vocab:
  794. tokens.append(reverse_vocab[i])
  795. toktypes.append(gguf.TokenType.CONTROL)
  796. else:
  797. tokens.append(reverse_vocab[i])
  798. toktypes.append(gguf.TokenType.NORMAL)
  799. self.gguf_writer.add_tokenizer_model("gpt2")
  800. self.gguf_writer.add_tokenizer_pre(tokpre)
  801. self.gguf_writer.add_token_list(tokens)
  802. self.gguf_writer.add_token_types(toktypes)
  803. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  804. special_vocab.merges = merges
  805. # only add special tokens when they were not already loaded from config.json
  806. if len(special_vocab.special_token_ids) == 0:
  807. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  808. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  809. # this one is usually not in config.json anyway
  810. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  811. special_vocab.add_to_gguf(self.gguf_writer)
  812. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  813. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  814. self.gguf_writer.add_tokenizer_model("llama")
  815. self.gguf_writer.add_tokenizer_pre("default")
  816. self.gguf_writer.add_token_list(tokens)
  817. self.gguf_writer.add_token_scores(scores)
  818. self.gguf_writer.add_token_types(toktypes)
  819. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  820. special_vocab.add_to_gguf(self.gguf_writer)
  821. def _create_vocab_sentencepiece(self):
  822. from sentencepiece import SentencePieceProcessor
  823. tokenizer_path = self.dir_model / 'tokenizer.model'
  824. if not tokenizer_path.is_file():
  825. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  826. tokenizer = SentencePieceProcessor()
  827. tokenizer.LoadFromFile(str(tokenizer_path))
  828. vocab_size = self.find_hparam([
  829. "vocab_size_per_layer_input", # gemma3n
  830. "vocab_size",
  831. ], optional=True) or tokenizer.vocab_size()
  832. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  833. scores: list[float] = [-10000.0] * vocab_size
  834. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  835. for token_id in range(tokenizer.vocab_size()):
  836. if token_id >= vocab_size:
  837. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  838. break
  839. piece = tokenizer.IdToPiece(token_id)
  840. text = piece.encode("utf-8")
  841. score = tokenizer.GetScore(token_id)
  842. toktype = SentencePieceTokenTypes.NORMAL
  843. if tokenizer.IsUnknown(token_id):
  844. toktype = SentencePieceTokenTypes.UNKNOWN
  845. elif tokenizer.IsControl(token_id):
  846. toktype = SentencePieceTokenTypes.CONTROL
  847. elif tokenizer.IsUnused(token_id):
  848. toktype = SentencePieceTokenTypes.UNUSED
  849. elif tokenizer.IsByte(token_id):
  850. toktype = SentencePieceTokenTypes.BYTE
  851. tokens[token_id] = text
  852. scores[token_id] = score
  853. toktypes[token_id] = toktype
  854. added_tokens_file = self.dir_model / 'added_tokens.json'
  855. if added_tokens_file.is_file():
  856. with open(added_tokens_file, "r", encoding="utf-8") as f:
  857. added_tokens_json = json.load(f)
  858. for key in added_tokens_json:
  859. token_id = added_tokens_json[key]
  860. if token_id >= vocab_size:
  861. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  862. continue
  863. tokens[token_id] = key.encode("utf-8")
  864. scores[token_id] = -1000.0
  865. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  866. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  867. if tokenizer_config_file.is_file():
  868. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  869. tokenizer_config_json = json.load(f)
  870. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  871. for token_id, token_data in added_tokens_decoder.items():
  872. token_id = int(token_id)
  873. token: str = token_data["content"]
  874. if token_id >= vocab_size:
  875. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  876. continue
  877. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  878. if tokens[token_id] != token.encode("utf-8"):
  879. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  880. if token_data.get("special") or self.does_token_look_special(token):
  881. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  882. else:
  883. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  884. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  885. scores[token_id] = -1000.0
  886. tokens[token_id] = token.encode("utf-8")
  887. if vocab_size > len(tokens):
  888. pad_count = vocab_size - len(tokens)
  889. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  890. for i in range(1, pad_count + 1):
  891. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  892. scores.append(-1000.0)
  893. toktypes.append(SentencePieceTokenTypes.UNUSED)
  894. return tokens, scores, toktypes
  895. def _set_vocab_llama_hf(self):
  896. vocab = gguf.LlamaHfVocab(self.dir_model)
  897. tokens = []
  898. scores = []
  899. toktypes = []
  900. for text, score, toktype in vocab.all_tokens():
  901. tokens.append(text)
  902. scores.append(score)
  903. toktypes.append(toktype)
  904. assert len(tokens) == vocab.vocab_size
  905. self.gguf_writer.add_tokenizer_model("llama")
  906. self.gguf_writer.add_tokenizer_pre("default")
  907. self.gguf_writer.add_token_list(tokens)
  908. self.gguf_writer.add_token_scores(scores)
  909. self.gguf_writer.add_token_types(toktypes)
  910. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  911. special_vocab.add_to_gguf(self.gguf_writer)
  912. def _set_vocab_rwkv_world(self):
  913. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  914. vocab_size = self.hparams.get("vocab_size", 65536)
  915. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  916. toktypes: list[int] = [gguf.TokenType.CONTROL]
  917. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  918. lines = f.readlines()
  919. for line in lines:
  920. parts = line.split(' ')
  921. assert len(parts) >= 3
  922. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  923. token = token.encode("utf-8") if isinstance(token, str) else token
  924. assert isinstance(token, bytes)
  925. assert len(token) == token_len
  926. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  927. tokens.append(token_text.encode("utf-8"))
  928. toktypes.append(gguf.TokenType.NORMAL)
  929. remainder = vocab_size - len(tokens)
  930. assert remainder >= 0
  931. for i in range(len(tokens), vocab_size):
  932. tokens.append(f"[PAD{i}]".encode("utf-8"))
  933. toktypes.append(gguf.TokenType.UNUSED)
  934. self.gguf_writer.add_tokenizer_model("rwkv")
  935. self.gguf_writer.add_token_list(tokens)
  936. self.gguf_writer.add_token_types(toktypes)
  937. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  938. if special_vocab.chat_template is None:
  939. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  940. if template_path.is_file():
  941. with open(template_path, "r", encoding="utf-8") as f:
  942. template = f.read()
  943. else:
  944. template = "rwkv-world"
  945. special_vocab.chat_template = template
  946. # hack: Add '\n\n' as the EOT token to make it chat normally
  947. special_vocab._set_special_token("eot", 261)
  948. # hack: Override these as they have already been set (incorrectly)
  949. special_vocab.special_token_ids["bos"] = 0
  950. special_vocab.special_token_ids["eos"] = 0
  951. special_vocab.add_to_gguf(self.gguf_writer)
  952. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  953. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  954. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  955. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  956. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  958. assert field # tokenizer model
  959. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  960. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  961. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  962. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  963. assert field # token list
  964. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  965. if model_name == "llama-spm":
  966. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  967. assert field # token scores
  968. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  969. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  970. assert field # token types
  971. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  972. if model_name != "llama-spm":
  973. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  974. assert field # token merges
  975. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  976. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  977. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  978. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  979. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  980. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  981. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  982. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  983. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  984. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  985. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  986. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  987. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  988. def _try_set_pooling_type(self) -> None:
  989. # get pooling path
  990. pooling_path = None
  991. module_path = self.dir_model / "modules.json"
  992. if module_path.is_file():
  993. with open(module_path, encoding="utf-8") as f:
  994. modules = json.load(f)
  995. for mod in modules:
  996. if mod["type"] == "sentence_transformers.models.Pooling":
  997. pooling_path = mod["path"]
  998. break
  999. # get pooling type
  1000. if pooling_path is not None:
  1001. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1002. pooling = json.load(f)
  1003. if pooling["pooling_mode_mean_tokens"]:
  1004. pooling_type = gguf.PoolingType.MEAN
  1005. elif pooling["pooling_mode_cls_token"]:
  1006. pooling_type = gguf.PoolingType.CLS
  1007. elif pooling["pooling_mode_lasttoken"]:
  1008. pooling_type = gguf.PoolingType.LAST
  1009. else:
  1010. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1011. self.gguf_writer.add_pooling_type(pooling_type)
  1012. class MmprojModel(ModelBase):
  1013. model_type = ModelType.MMPROJ
  1014. model_arch = gguf.MODEL_ARCH.MMPROJ
  1015. preprocessor_config: dict[str, Any]
  1016. global_config: dict[str, Any]
  1017. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1018. has_vision_encoder: bool = True # by default
  1019. has_audio_encoder: bool = False
  1020. # for models having multiple encoders, we need to separate their hparams
  1021. hparams_vision: dict[str, Any] | None = None
  1022. hparams_audio: dict[str, Any] | None = None
  1023. def __init__(self, *args, **kwargs):
  1024. super().__init__(*args, **kwargs)
  1025. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1026. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1027. # get n_embd of the text model
  1028. if "text_config" not in self.hparams:
  1029. self.hparams["text_config"] = {}
  1030. if "audio_config" not in self.hparams:
  1031. self.hparams["audio_config"] = {}
  1032. text_config = {**self.hparams, **self.hparams["text_config"]}
  1033. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1034. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1035. # move vision config to the top level, while preserving the original hparams in global_config
  1036. import copy
  1037. self.global_config = copy.deepcopy(self.hparams)
  1038. self.hparams_vision = self.get_vision_config()
  1039. self.hparams_audio = self.get_audio_config()
  1040. if self.hparams_vision is None and self.hparams_audio is None:
  1041. raise ValueError("vision_config / audio_config not found in hparams")
  1042. # for compat with vision-only models
  1043. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1044. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1045. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1046. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1047. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1048. # load preprocessor config
  1049. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1050. self.preprocessor_config = json.load(f)
  1051. def get_vision_config(self) -> dict[str, Any] | None:
  1052. return self.global_config.get("vision_config")
  1053. def get_audio_config(self) -> dict[str, Any] | None:
  1054. return self.global_config.get("audio_config")
  1055. def set_type(self):
  1056. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1057. def set_gguf_parameters(self):
  1058. self.gguf_writer.add_file_type(self.ftype)
  1059. if self.has_vision_encoder:
  1060. self.gguf_writer.add_clip_has_vision_encoder(True)
  1061. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1062. # vision config
  1063. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1064. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1065. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1066. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1067. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1068. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1069. # preprocessor config
  1070. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1071. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1072. if self.has_audio_encoder:
  1073. self.gguf_writer.add_clip_has_audio_encoder(True)
  1074. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1075. # audio config
  1076. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1077. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1078. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1079. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1080. if not self.has_vision_encoder and not self.has_audio_encoder:
  1081. raise ValueError("MmprojModel must have either vision or audio encoder")
  1082. def write_vocab(self):
  1083. raise ValueError("MmprojModel does not support vocab writing")
  1084. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1085. assert self.hparams_vision is not None
  1086. return self._find_param(self.hparams_vision, keys, optional)
  1087. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1088. assert self.hparams_audio is not None
  1089. return self._find_param(self.hparams_audio, keys, optional)
  1090. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1091. key = next((k for k in keys if k in obj), None)
  1092. if key is not None:
  1093. return obj[key]
  1094. if optional:
  1095. return None
  1096. raise KeyError(f"could not find any of: {keys}")
  1097. @ModelBase.register("GPTNeoXForCausalLM")
  1098. class GPTNeoXModel(TextModel):
  1099. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1100. def set_gguf_parameters(self):
  1101. block_count = self.hparams["num_hidden_layers"]
  1102. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1103. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1104. self.gguf_writer.add_block_count(block_count)
  1105. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1106. self.gguf_writer.add_rope_dimension_count(
  1107. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1108. )
  1109. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1110. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1111. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1113. del bid # unused
  1114. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1115. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1116. tensors: list[tuple[str, Tensor]] = []
  1117. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1118. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1119. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1120. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1121. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1122. data_torch = torch.cat(
  1123. (
  1124. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1125. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1126. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1127. ),
  1128. dim=0,
  1129. )
  1130. logger.info("re-format attention.linear_qkv.weight")
  1131. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1132. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1133. data_torch = torch.cat(
  1134. (
  1135. qkv_bias[:, 0, :].reshape((n_embed,)),
  1136. qkv_bias[:, 1, :].reshape((n_embed,)),
  1137. qkv_bias[:, 2, :].reshape((n_embed,)),
  1138. ),
  1139. dim=0,
  1140. )
  1141. logger.info("re-format attention.linear_qkv.bias")
  1142. tensors.append((self.map_tensor_name(name), data_torch))
  1143. return tensors
  1144. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1145. class BloomModel(TextModel):
  1146. model_arch = gguf.MODEL_ARCH.BLOOM
  1147. def set_gguf_parameters(self):
  1148. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1149. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1150. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1151. self.gguf_writer.add_embedding_length(n_embed)
  1152. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1153. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1154. self.gguf_writer.add_head_count(n_head)
  1155. self.gguf_writer.add_head_count_kv(n_head)
  1156. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1157. self.gguf_writer.add_file_type(self.ftype)
  1158. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1159. del bid # unused
  1160. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1161. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1162. name = re.sub(r'transformer\.', '', name)
  1163. tensors: list[tuple[str, Tensor]] = []
  1164. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1165. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1166. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1167. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1168. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1169. data_torch = torch.cat(
  1170. (
  1171. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1172. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1173. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1174. ),
  1175. dim=0,
  1176. )
  1177. logger.info("re-format attention.linear_qkv.weight")
  1178. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1179. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1180. data_torch = torch.cat(
  1181. (
  1182. qkv_bias[:, 0, :].reshape((n_embed,)),
  1183. qkv_bias[:, 1, :].reshape((n_embed,)),
  1184. qkv_bias[:, 2, :].reshape((n_embed,)),
  1185. ),
  1186. dim=0,
  1187. )
  1188. logger.info("re-format attention.linear_qkv.bias")
  1189. tensors.append((self.map_tensor_name(name), data_torch))
  1190. return tensors
  1191. @ModelBase.register("MPTForCausalLM")
  1192. class MPTModel(TextModel):
  1193. model_arch = gguf.MODEL_ARCH.MPT
  1194. def set_vocab(self):
  1195. try:
  1196. self._set_vocab_gpt2()
  1197. except Exception:
  1198. # Fallback for SEA-LION model
  1199. self._set_vocab_sentencepiece()
  1200. self.gguf_writer.add_add_bos_token(False)
  1201. self.gguf_writer.add_pad_token_id(3)
  1202. self.gguf_writer.add_eos_token_id(1)
  1203. self.gguf_writer.add_unk_token_id(0)
  1204. def set_gguf_parameters(self):
  1205. block_count = self.hparams["n_layers"]
  1206. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1207. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1208. self.gguf_writer.add_block_count(block_count)
  1209. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1210. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1211. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1212. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1213. self.gguf_writer.add_layer_norm_eps(1e-5)
  1214. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1215. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1216. if self.hparams["attn_config"]["alibi"]:
  1217. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1218. else:
  1219. self.gguf_writer.add_max_alibi_bias(0.0)
  1220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1221. del bid # unused
  1222. if "scales" in name:
  1223. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1224. new_name = new_name.replace("scales", "act.scales")
  1225. else:
  1226. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1227. return [(new_name, data_torch)]
  1228. @ModelBase.register("OrionForCausalLM")
  1229. class OrionModel(TextModel):
  1230. model_arch = gguf.MODEL_ARCH.ORION
  1231. def set_vocab(self):
  1232. self._set_vocab_sentencepiece()
  1233. def set_gguf_parameters(self):
  1234. block_count = self.hparams["num_hidden_layers"]
  1235. head_count = self.hparams["num_attention_heads"]
  1236. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1237. ctx_length = 0
  1238. if "max_sequence_length" in self.hparams:
  1239. ctx_length = self.hparams["max_sequence_length"]
  1240. elif "max_position_embeddings" in self.hparams:
  1241. ctx_length = self.hparams["max_position_embeddings"]
  1242. elif "model_max_length" in self.hparams:
  1243. ctx_length = self.hparams["model_max_length"]
  1244. else:
  1245. raise ValueError("gguf: can not find ctx length parameter.")
  1246. self.gguf_writer.add_file_type(self.ftype)
  1247. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1248. self.gguf_writer.add_context_length(ctx_length)
  1249. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1250. self.gguf_writer.add_block_count(block_count)
  1251. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1252. self.gguf_writer.add_head_count(head_count)
  1253. self.gguf_writer.add_head_count_kv(head_count_kv)
  1254. # note: config provides rms norm but it is actually layer norm
  1255. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1256. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1257. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1258. class BaichuanModel(TextModel):
  1259. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1260. def set_vocab(self):
  1261. self._set_vocab_sentencepiece()
  1262. def set_gguf_parameters(self):
  1263. block_count = self.hparams["num_hidden_layers"]
  1264. head_count = self.hparams["num_attention_heads"]
  1265. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1266. ctx_length = 0
  1267. if "max_sequence_length" in self.hparams:
  1268. ctx_length = self.hparams["max_sequence_length"]
  1269. elif "max_position_embeddings" in self.hparams:
  1270. ctx_length = self.hparams["max_position_embeddings"]
  1271. elif "model_max_length" in self.hparams:
  1272. ctx_length = self.hparams["model_max_length"]
  1273. else:
  1274. raise ValueError("gguf: can not find ctx length parameter.")
  1275. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1276. self.gguf_writer.add_context_length(ctx_length)
  1277. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1278. self.gguf_writer.add_block_count(block_count)
  1279. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1280. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1281. self.gguf_writer.add_head_count(head_count)
  1282. self.gguf_writer.add_head_count_kv(head_count_kv)
  1283. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1284. self.gguf_writer.add_file_type(self.ftype)
  1285. rope_scaling = self.hparams.get("rope_scaling") or {}
  1286. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1288. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1289. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1290. head_count = self.hparams["num_attention_heads"]
  1291. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1292. tensors: list[tuple[str, Tensor]] = []
  1293. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1294. logger.info(f"Unpacking and permuting layer {bid}")
  1295. tensors = [
  1296. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1297. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1298. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1299. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1300. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1301. self._reverse_hf_part(data_torch, 2)),
  1302. ]
  1303. else:
  1304. tensors = [(self.map_tensor_name(name), data_torch)]
  1305. return tensors
  1306. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1307. if n_kv_head is not None and n_head != n_kv_head:
  1308. n_head //= n_kv_head
  1309. return (
  1310. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1311. .swapaxes(1, 2)
  1312. .reshape(weights.shape)
  1313. )
  1314. def _reverse_hf_permute_part(
  1315. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1316. ) -> Tensor:
  1317. r = weights.shape[0] // 3
  1318. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1319. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1320. r = weights.shape[0] // 3
  1321. return weights[r * n_part:r * n_part + r, ...]
  1322. @ModelBase.register("XverseForCausalLM")
  1323. class XverseModel(TextModel):
  1324. model_arch = gguf.MODEL_ARCH.XVERSE
  1325. def set_vocab(self):
  1326. assert (self.dir_model / "tokenizer.json").is_file()
  1327. dir_model = self.dir_model
  1328. hparams = self.hparams
  1329. tokens: list[bytes] = []
  1330. toktypes: list[int] = []
  1331. from transformers import AutoTokenizer
  1332. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1333. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1334. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1335. # because vocab_size is the count of items, and indexes start at 0.
  1336. max_vocab_index = max(tokenizer.get_vocab().values())
  1337. if max_vocab_index >= vocab_size:
  1338. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1339. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1340. added_vocab = tokenizer.get_added_vocab()
  1341. for token_id in range(vocab_size):
  1342. token_text = reverse_vocab[token_id].encode('utf-8')
  1343. # replace "\x00" to string with length > 0
  1344. if token_text == b"\x00":
  1345. toktype = gguf.TokenType.BYTE # special
  1346. token_text = f"<{token_text}>".encode('utf-8')
  1347. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1348. toktype = gguf.TokenType.BYTE # special
  1349. elif reverse_vocab[token_id] in added_vocab:
  1350. if tokenizer.added_tokens_decoder[token_id].special:
  1351. toktype = gguf.TokenType.CONTROL
  1352. else:
  1353. toktype = gguf.TokenType.USER_DEFINED
  1354. else:
  1355. toktype = gguf.TokenType.NORMAL
  1356. tokens.append(token_text)
  1357. toktypes.append(toktype)
  1358. self.gguf_writer.add_tokenizer_model("llama")
  1359. self.gguf_writer.add_tokenizer_pre("default")
  1360. self.gguf_writer.add_token_list(tokens)
  1361. self.gguf_writer.add_token_types(toktypes)
  1362. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1363. special_vocab.add_to_gguf(self.gguf_writer)
  1364. def set_gguf_parameters(self):
  1365. block_count = self.hparams["num_hidden_layers"]
  1366. head_count = self.hparams["num_attention_heads"]
  1367. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1368. ctx_length = 0
  1369. if "max_sequence_length" in self.hparams:
  1370. ctx_length = self.hparams["max_sequence_length"]
  1371. elif "max_position_embeddings" in self.hparams:
  1372. ctx_length = self.hparams["max_position_embeddings"]
  1373. elif "model_max_length" in self.hparams:
  1374. ctx_length = self.hparams["model_max_length"]
  1375. else:
  1376. raise ValueError("gguf: can not find ctx length parameter.")
  1377. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1378. self.gguf_writer.add_context_length(ctx_length)
  1379. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1380. self.gguf_writer.add_block_count(block_count)
  1381. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1382. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1383. self.gguf_writer.add_head_count(head_count)
  1384. self.gguf_writer.add_head_count_kv(head_count_kv)
  1385. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1386. self.gguf_writer.add_file_type(self.ftype)
  1387. rope_scaling = self.hparams.get("rope_scaling") or {}
  1388. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1389. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1390. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1392. del bid # unused
  1393. head_count = self.hparams["num_attention_heads"]
  1394. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1395. # HF models permute some of the tensors, so we need to undo that
  1396. if name.endswith("q_proj.weight"):
  1397. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1398. if name.endswith("k_proj.weight"):
  1399. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1400. return [(self.map_tensor_name(name), data_torch)]
  1401. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1402. if n_kv_head is not None and n_head != n_kv_head:
  1403. n_head //= n_kv_head
  1404. return (
  1405. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1406. .swapaxes(1, 2)
  1407. .reshape(weights.shape)
  1408. )
  1409. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1410. class FalconModel(TextModel):
  1411. model_arch = gguf.MODEL_ARCH.FALCON
  1412. def set_gguf_parameters(self):
  1413. block_count = self.hparams.get("num_hidden_layers")
  1414. if block_count is None:
  1415. block_count = self.hparams["n_layer"] # old name
  1416. n_head = self.hparams.get("num_attention_heads")
  1417. if n_head is None:
  1418. n_head = self.hparams["n_head"] # old name
  1419. n_head_kv = self.hparams.get("num_kv_heads")
  1420. if n_head_kv is None:
  1421. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1422. self.gguf_writer.add_context_length(2048) # not in config.json
  1423. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1424. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1425. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1426. self.gguf_writer.add_block_count(block_count)
  1427. self.gguf_writer.add_head_count(n_head)
  1428. self.gguf_writer.add_head_count_kv(n_head_kv)
  1429. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1430. self.gguf_writer.add_file_type(self.ftype)
  1431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1432. del bid # unused
  1433. # QKV tensor transform
  1434. # The original query_key_value tensor contains n_head_kv "kv groups",
  1435. # each consisting of n_head/n_head_kv query weights followed by one key
  1436. # and one value weight (shared by all query heads in the kv group).
  1437. # This layout makes it a big pain to work with in GGML.
  1438. # So we rearrange them here,, so that we have n_head query weights
  1439. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1440. # in contiguous fashion.
  1441. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1442. if "query_key_value" in name:
  1443. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1444. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1445. head_dim = self.hparams["hidden_size"] // n_head
  1446. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1447. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1448. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1449. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1450. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1451. return [(self.map_tensor_name(name), data_torch)]
  1452. @ModelBase.register("GPTBigCodeForCausalLM")
  1453. class StarCoderModel(TextModel):
  1454. model_arch = gguf.MODEL_ARCH.STARCODER
  1455. def set_gguf_parameters(self):
  1456. block_count = self.hparams["n_layer"]
  1457. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1458. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1459. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1460. self.gguf_writer.add_block_count(block_count)
  1461. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1462. self.gguf_writer.add_head_count_kv(1)
  1463. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1464. self.gguf_writer.add_file_type(self.ftype)
  1465. @ModelBase.register("GPTRefactForCausalLM")
  1466. class RefactModel(TextModel):
  1467. model_arch = gguf.MODEL_ARCH.REFACT
  1468. def set_vocab(self):
  1469. super().set_vocab()
  1470. # TODO: how to determine special FIM tokens automatically?
  1471. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1472. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1473. special_vocab._set_special_token("prefix", 1)
  1474. special_vocab._set_special_token("suffix", 3)
  1475. special_vocab._set_special_token("middle", 2)
  1476. special_vocab.chat_template = None # do not add it twice
  1477. special_vocab.add_to_gguf(self.gguf_writer)
  1478. def set_gguf_parameters(self):
  1479. hidden_dim = self.hparams["n_embd"]
  1480. inner_dim = 4 * hidden_dim
  1481. hidden_dim = int(2 * inner_dim / 3)
  1482. multiple_of = 256
  1483. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1484. block_count = self.hparams["n_layer"]
  1485. # refact uses Alibi. So this is from config.json which might be used by training.
  1486. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1487. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1488. self.gguf_writer.add_feed_forward_length(ff_dim)
  1489. self.gguf_writer.add_block_count(block_count)
  1490. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1491. self.gguf_writer.add_head_count_kv(1)
  1492. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1493. self.gguf_writer.add_file_type(self.ftype)
  1494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1495. hidden_dim = self.hparams["n_embd"]
  1496. inner_dim = 4 * hidden_dim
  1497. hidden_dim = int(2 * inner_dim / 3)
  1498. multiple_of = 256
  1499. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1500. n_head = self.hparams["n_head"]
  1501. n_head_kv = 1
  1502. head_dim = self.hparams["n_embd"] // n_head
  1503. tensors: list[tuple[str, Tensor]] = []
  1504. if bid is not None:
  1505. if name == f"transformer.h.{bid}.attn.kv.weight":
  1506. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1507. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1508. elif name == f"transformer.h.{bid}.attn.q.weight":
  1509. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1510. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1511. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1512. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1513. if len(tensors) == 0:
  1514. tensors.append((self.map_tensor_name(name), data_torch))
  1515. return tensors
  1516. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1517. class StableLMModel(TextModel):
  1518. model_arch = gguf.MODEL_ARCH.STABLELM
  1519. def set_vocab(self):
  1520. if (self.dir_model / "tokenizer.json").is_file():
  1521. self._set_vocab_gpt2()
  1522. else:
  1523. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1524. self._set_vocab_qwen()
  1525. def set_gguf_parameters(self):
  1526. hparams = self.hparams
  1527. block_count = hparams["num_hidden_layers"]
  1528. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1529. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1530. self.gguf_writer.add_block_count(block_count)
  1531. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1532. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1533. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1534. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1535. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1536. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1537. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1538. self.gguf_writer.add_file_type(self.ftype)
  1539. _q_norms: list[dict[str, Tensor]] | None = None
  1540. _k_norms: list[dict[str, Tensor]] | None = None
  1541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1542. n_head = self.hparams["num_attention_heads"]
  1543. n_kv_head = self.hparams["num_key_value_heads"]
  1544. if name.find("q_layernorm.norms") != -1:
  1545. assert bid is not None
  1546. if self._q_norms is None:
  1547. self._q_norms = [{} for _ in range(self.block_count)]
  1548. self._q_norms[bid][name] = data_torch
  1549. if len(self._q_norms[bid]) >= n_head:
  1550. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1551. else:
  1552. return []
  1553. if name.find("k_layernorm.norms") != -1:
  1554. assert bid is not None
  1555. if self._k_norms is None:
  1556. self._k_norms = [{} for _ in range(self.block_count)]
  1557. self._k_norms[bid][name] = data_torch
  1558. if len(self._k_norms[bid]) >= n_kv_head:
  1559. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1560. else:
  1561. return []
  1562. return [(self.map_tensor_name(name), data_torch)]
  1563. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1564. datas: list[Tensor] = []
  1565. # extract the norms in order
  1566. for xid in range(n_head):
  1567. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1568. datas.append(norms[ename])
  1569. del norms[ename]
  1570. data_torch = torch.stack(datas, dim=0)
  1571. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1572. new_name = self.map_tensor_name(merged_name)
  1573. return [(new_name, data_torch)]
  1574. def prepare_tensors(self):
  1575. super().prepare_tensors()
  1576. if self._q_norms is not None or self._k_norms is not None:
  1577. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1578. norms = (
  1579. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1580. ) + (
  1581. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1582. )
  1583. if len(norms) > 0:
  1584. raise ValueError(f"Unprocessed norms: {norms}")
  1585. @ModelBase.register(
  1586. "LLaMAForCausalLM",
  1587. "LlamaForCausalLM",
  1588. "MistralForCausalLM",
  1589. "MixtralForCausalLM",
  1590. "VLlama3ForCausalLM",
  1591. "LlavaForConditionalGeneration",
  1592. "VoxtralForConditionalGeneration",
  1593. "LlamaModel")
  1594. class LlamaModel(TextModel):
  1595. model_arch = gguf.MODEL_ARCH.LLAMA
  1596. undo_permute = True
  1597. def __init__(self, *args, **kwargs):
  1598. super().__init__(*args, **kwargs)
  1599. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1600. if self.hf_arch == "VLlama3ForCausalLM":
  1601. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1602. def set_vocab(self):
  1603. path_tekken_json = self.dir_model / "tekken.json"
  1604. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1605. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1606. return self.set_vocab_tekken()
  1607. try:
  1608. self._set_vocab_sentencepiece()
  1609. except FileNotFoundError:
  1610. try:
  1611. self._set_vocab_llama_hf()
  1612. except (FileNotFoundError, TypeError):
  1613. # Llama 3
  1614. self._set_vocab_gpt2()
  1615. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1616. if self.hparams.get("vocab_size", 32000) == 32016:
  1617. special_vocab = gguf.SpecialVocab(
  1618. self.dir_model, load_merges=False,
  1619. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1620. )
  1621. special_vocab._set_special_token("prefix", 32007)
  1622. special_vocab._set_special_token("suffix", 32008)
  1623. special_vocab._set_special_token("middle", 32009)
  1624. special_vocab._set_special_token("eot", 32010)
  1625. special_vocab.add_to_gguf(self.gguf_writer)
  1626. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1627. if tokenizer_config_file.is_file():
  1628. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1629. tokenizer_config_json = json.load(f)
  1630. if "add_prefix_space" in tokenizer_config_json:
  1631. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1632. # Apply to granite small models only
  1633. if self.hparams.get("vocab_size", 32000) == 49152:
  1634. self.gguf_writer.add_add_bos_token(False)
  1635. def set_vocab_tekken(self):
  1636. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1637. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1638. tokens = []
  1639. scores = []
  1640. toktypes = []
  1641. for text, score, toktype in vocab.all_tokens():
  1642. tokens.append(text)
  1643. scores.append(score)
  1644. toktypes.append(toktype)
  1645. assert len(tokens) == vocab.vocab_size, (
  1646. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1647. )
  1648. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1649. self.gguf_writer.add_tokenizer_pre("tekken")
  1650. self.gguf_writer.add_token_merges(
  1651. vocab.extract_vocab_merges_from_model()
  1652. )
  1653. logger.info(
  1654. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1655. )
  1656. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1657. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1658. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1659. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1660. self.gguf_writer.add_token_list(tokens)
  1661. self.gguf_writer.add_token_scores(scores)
  1662. self.gguf_writer.add_token_types(toktypes)
  1663. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1664. self.gguf_writer.add_add_bos_token(True)
  1665. self.gguf_writer.add_add_eos_token(False)
  1666. script_dir = Path(__file__).parent
  1667. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1668. with open(template_path, "r", encoding="utf-8") as f:
  1669. template = f.read()
  1670. self.gguf_writer.add_chat_template(template)
  1671. def set_gguf_parameters(self):
  1672. super().set_gguf_parameters()
  1673. hparams = self.hparams
  1674. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1675. if (rope_dim := hparams.get("head_dim")) is None:
  1676. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1677. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1678. rope_scaling = self.hparams.get("rope_scaling") or {}
  1679. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1680. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1681. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1682. @staticmethod
  1683. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1684. if n_head_kv is not None and n_head != n_head_kv:
  1685. n_head = n_head_kv
  1686. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1687. .swapaxes(1, 2)
  1688. .reshape(weights.shape))
  1689. _experts: list[dict[str, Tensor]] | None = None
  1690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1691. n_head = self.hparams["num_attention_heads"]
  1692. n_kv_head = self.hparams.get("num_key_value_heads")
  1693. is_multimodal_tensor = "vision_tower" in name \
  1694. or "vision_model" in name \
  1695. or "audio_tower" in name \
  1696. or "model.connector" in name \
  1697. or "multi_modal_projector" in name
  1698. if is_multimodal_tensor:
  1699. return [] # skip vision tensors
  1700. elif self.hf_arch == "LlamaModel":
  1701. name = "model." + name
  1702. elif name.startswith("model.text_model"):
  1703. name = name.replace("text_model.", "") # for SmolVLM
  1704. elif name.startswith("language_model."):
  1705. name = name.replace("language_model.", "") # for the rest
  1706. if self.undo_permute:
  1707. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1708. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1709. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1710. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1711. # process the experts separately
  1712. if name.find("block_sparse_moe.experts") != -1:
  1713. n_experts = self.hparams["num_local_experts"]
  1714. assert bid is not None
  1715. if self._experts is None:
  1716. self._experts = [{} for _ in range(self.block_count)]
  1717. self._experts[bid][name] = data_torch
  1718. if len(self._experts[bid]) >= n_experts * 3:
  1719. tensors: list[tuple[str, Tensor]] = []
  1720. # merge the experts into a single 3d tensor
  1721. for wid in ["w1", "w2", "w3"]:
  1722. datas: list[Tensor] = []
  1723. for xid in range(n_experts):
  1724. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1725. datas.append(self._experts[bid][ename])
  1726. del self._experts[bid][ename]
  1727. data_torch = torch.stack(datas, dim=0)
  1728. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1729. new_name = self.map_tensor_name(merged_name)
  1730. tensors.append((new_name, data_torch))
  1731. return tensors
  1732. else:
  1733. return []
  1734. return [(self.map_tensor_name(name), data_torch)]
  1735. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1736. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1737. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1738. base = self.hparams.get("rope_theta", 10000.0)
  1739. if (dim := self.hparams.get("head_dim")) is None:
  1740. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1741. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1742. factor = rope_scaling.get("factor", 8.0)
  1743. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1744. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1745. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1746. low_freq_wavelen = old_context_len / low_freq_factor
  1747. high_freq_wavelen = old_context_len / high_freq_factor
  1748. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1749. rope_factors = []
  1750. for freq in freqs:
  1751. wavelen = 2 * math.pi / freq
  1752. if wavelen < high_freq_wavelen:
  1753. rope_factors.append(1)
  1754. elif wavelen > low_freq_wavelen:
  1755. rope_factors.append(factor)
  1756. else:
  1757. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1758. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1759. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1760. def prepare_tensors(self):
  1761. super().prepare_tensors()
  1762. if self._experts is not None:
  1763. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1764. experts = [k for d in self._experts for k in d.keys()]
  1765. if len(experts) > 0:
  1766. raise ValueError(f"Unprocessed experts: {experts}")
  1767. @ModelBase.register("ArceeForCausalLM")
  1768. class ArceeModel(LlamaModel):
  1769. model_arch = gguf.MODEL_ARCH.ARCEE
  1770. def set_gguf_parameters(self):
  1771. super().set_gguf_parameters()
  1772. self._try_set_pooling_type()
  1773. rope_scaling = self.hparams.get("rope_scaling") or {}
  1774. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1775. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1776. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1777. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1778. @ModelBase.register(
  1779. "LlavaForConditionalGeneration", # pixtral
  1780. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1781. )
  1782. class LlavaVisionModel(MmprojModel):
  1783. img_break_tok_id = -1
  1784. def __init__(self, *args, **kwargs):
  1785. super().__init__(*args, **kwargs)
  1786. if self.hparams["model_type"] == "pixtral":
  1787. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1788. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1789. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1790. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1791. else:
  1792. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1793. def get_token_id(self, token: str) -> int:
  1794. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1795. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1796. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1797. for id_, token_data in added_tokens_decoder.items():
  1798. if token_data["content"] == token:
  1799. return int(id_)
  1800. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1801. def set_gguf_parameters(self):
  1802. super().set_gguf_parameters()
  1803. hparams = self.hparams
  1804. if hparams["model_type"] == "pixtral":
  1805. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1806. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1807. # hidden_act
  1808. if hparams["hidden_act"] == "silu":
  1809. self.gguf_writer.add_vision_use_silu(True)
  1810. elif hparams["hidden_act"] == "gelu":
  1811. self.gguf_writer.add_vision_use_gelu(True)
  1812. else:
  1813. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1814. # spatial_merge_size
  1815. if "spatial_merge_size" in self.global_config:
  1816. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1818. del bid # unused
  1819. n_head = self.hparams["num_attention_heads"]
  1820. n_kv_head = n_head
  1821. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1822. # process vision tensors
  1823. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1824. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1825. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1826. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1827. return [(self.map_tensor_name(name), data_torch)]
  1828. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1829. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1830. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1831. img_break_embd = data_torch[self.img_break_tok_id]
  1832. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1833. return [(self.map_tensor_name(name), img_break_embd)]
  1834. return [] # skip other tensors
  1835. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1836. class SmolVLMModel(MmprojModel):
  1837. def __init__(self, *args, **kwargs):
  1838. super().__init__(*args, **kwargs)
  1839. if self.hparams["model_type"] == "smolvlm_vision":
  1840. # fix for SmolVLM2, missing some keys in config.json
  1841. # default values are taken from transformers code
  1842. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1843. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1844. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1845. def set_gguf_parameters(self):
  1846. super().set_gguf_parameters()
  1847. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1848. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1849. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1850. self.gguf_writer.add_vision_use_gelu(True)
  1851. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1852. del bid, new_name, n_dims # unused
  1853. if ".embeddings." in name:
  1854. return gguf.GGMLQuantizationType.F32
  1855. return False
  1856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1857. del bid # unused
  1858. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1859. if is_vision_tensor:
  1860. return [(self.map_tensor_name(name), data_torch)]
  1861. return [] # skip other tensors
  1862. @ModelBase.register("Llama4ForConditionalGeneration")
  1863. class Llama4Model(LlamaModel):
  1864. model_arch = gguf.MODEL_ARCH.LLAMA4
  1865. undo_permute = False
  1866. def __init__(self, *args, **kwargs):
  1867. super().__init__(*args, **kwargs)
  1868. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1869. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1870. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1871. def set_vocab(self):
  1872. self._set_vocab_gpt2()
  1873. def set_gguf_parameters(self):
  1874. super().set_gguf_parameters()
  1875. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1876. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1878. if name.startswith("language_model."):
  1879. name = name.replace("language_model.", "")
  1880. # split the gate_up into gate and up
  1881. if "gate_up_proj" in name:
  1882. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1883. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1884. dim_half = data_torch.shape[-1] // 2
  1885. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1886. return [
  1887. (self.map_tensor_name(name_gate), gate_proj_weight),
  1888. (self.map_tensor_name(name_up), up_proj_weight)
  1889. ]
  1890. if name.endswith("down_proj"):
  1891. name += ".weight"
  1892. data_torch = data_torch.transpose(-1, -2)
  1893. if "multi_modal_projector" in name or "vision_model" in name:
  1894. return []
  1895. return super().modify_tensors(data_torch, name, bid)
  1896. @ModelBase.register("Llama4ForConditionalGeneration")
  1897. class Llama4VisionModel(MmprojModel):
  1898. def set_gguf_parameters(self):
  1899. super().set_gguf_parameters()
  1900. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1901. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1902. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1903. assert self.hparams["hidden_act"] == "gelu"
  1904. self.gguf_writer.add_vision_use_gelu(True)
  1905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1906. del bid # unused
  1907. if "multi_modal_projector" in name or "vision_model" in name:
  1908. # process vision tensors
  1909. if "positional_embedding_vlm" in name and ".weight" not in name:
  1910. name += ".weight"
  1911. if "multi_modal_projector.linear_1" in name:
  1912. # despite the name with number postfix, this is a single fully connected layer
  1913. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1914. return [(self.map_tensor_name(name), data_torch)]
  1915. return []
  1916. @ModelBase.register("Mistral3ForConditionalGeneration")
  1917. class Mistral3Model(LlamaModel):
  1918. model_arch = gguf.MODEL_ARCH.LLAMA
  1919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1920. name = name.replace("language_model.", "")
  1921. if "multi_modal_projector" in name or "vision_tower" in name:
  1922. return []
  1923. return super().modify_tensors(data_torch, name, bid)
  1924. @ModelBase.register("DeciLMForCausalLM")
  1925. class DeciModel(TextModel):
  1926. model_arch = gguf.MODEL_ARCH.DECI
  1927. @staticmethod
  1928. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1929. # DeciLM-specific code
  1930. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1931. return DeciModel._find_multiple(intermediate_size, 256)
  1932. @staticmethod
  1933. def _find_multiple(n: int, k: int) -> int:
  1934. # DeciLM-specific code
  1935. if n % k == 0:
  1936. return n
  1937. return n + k - (n % k)
  1938. def __init__(self, *args, **kwargs):
  1939. super().__init__(*args, **kwargs)
  1940. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1941. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1942. assert self.block_count == len(_block_configs)
  1943. self._num_kv_heads = list()
  1944. self._num_heads = list()
  1945. _ffn_multipliers = list()
  1946. # ***linear attention layer***
  1947. # if n_heads_in_group is None and replace_with_linear is True
  1948. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1949. # ***attention-free layer***
  1950. # if n_heads_in_group is None and replace_with_linear is False
  1951. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1952. # ***normal attention-layer***
  1953. # if n_heads_in_group is not None, then
  1954. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1955. # _num_heads[il] is num_attention_head
  1956. # ***dummy layer*** for nemotron 253B
  1957. # if n_heads_in_group is None and ffn_mult is None
  1958. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1959. for il in range(len(_block_configs)):
  1960. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1961. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1962. self._num_kv_heads.append(0)
  1963. self._num_heads.append(self.hparams["num_attention_heads"])
  1964. else:
  1965. self._num_kv_heads.append(0)
  1966. self._num_heads.append(0)
  1967. else:
  1968. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1969. self._num_heads.append(self.hparams["num_attention_heads"])
  1970. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1971. _ffn_multipliers.append(0.0)
  1972. else:
  1973. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1974. assert self.block_count == len(self._num_kv_heads)
  1975. assert self.block_count == len(self._num_heads)
  1976. assert self.block_count == len(_ffn_multipliers)
  1977. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1978. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1979. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1980. self._ffn_dims: list[int] = [
  1981. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1982. for multiplier in _ffn_multipliers
  1983. ]
  1984. def set_vocab(self):
  1985. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1986. # eos_token from '|eot_id|' to '|end_of_text|'
  1987. if self.hparams.get("vocab_size", 128256) == 128256:
  1988. tokens, toktypes, tokpre = self.get_vocab_base()
  1989. self.gguf_writer.add_tokenizer_model("gpt2")
  1990. self.gguf_writer.add_tokenizer_pre(tokpre)
  1991. self.gguf_writer.add_token_list(tokens)
  1992. self.gguf_writer.add_token_types(toktypes)
  1993. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1994. special_vocab.add_to_gguf(self.gguf_writer)
  1995. else:
  1996. # DeciLM-7B
  1997. self._set_vocab_llama_hf()
  1998. def set_gguf_parameters(self):
  1999. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2000. assert self.block_count == len(self._num_kv_heads)
  2001. assert self.block_count == len(self._num_heads)
  2002. assert self.block_count == len(self._ffn_dims)
  2003. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2004. self.gguf_writer.add_rope_freq_base(rope_theta)
  2005. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2006. self.gguf_writer.add_head_count(self._num_heads)
  2007. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2008. self.gguf_writer.add_block_count(self.block_count)
  2009. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2010. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2011. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2012. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2013. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2014. self.gguf_writer.add_file_type(self.ftype)
  2015. else: # DeciLM-7B
  2016. super().set_gguf_parameters()
  2017. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2018. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2019. assert self.block_count == len(self._num_kv_heads)
  2020. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2021. hparams = self.hparams
  2022. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2023. if (rope_dim := hparams.get("head_dim")) is None:
  2024. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2025. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2026. rope_scaling = self.hparams.get("rope_scaling") or {}
  2027. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2029. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2030. @staticmethod
  2031. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2032. if n_head_kv is not None and n_head != n_head_kv:
  2033. n_head = n_head_kv
  2034. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2035. .swapaxes(1, 2)
  2036. .reshape(weights.shape))
  2037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2038. n_head = self.hparams["num_attention_heads"]
  2039. if bid is not None:
  2040. if "num_key_value_heads_per_layer" in self.hparams:
  2041. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2042. elif "block_configs" in self.hparams:
  2043. n_kv_head = self._num_kv_heads[bid]
  2044. n_head = self._num_heads[bid]
  2045. else:
  2046. n_kv_head = self.hparams.get("num_key_value_heads")
  2047. else:
  2048. n_kv_head = self.hparams.get("num_key_value_heads")
  2049. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2050. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2051. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2052. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2053. return [(self.map_tensor_name(name), data_torch)]
  2054. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2055. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2056. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2057. base = self.hparams.get("rope_theta", 10000.0)
  2058. if (dim := self.hparams.get("head_dim")) is None:
  2059. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2060. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2061. factor = rope_scaling.get("factor", 8.0)
  2062. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2063. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2064. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2065. low_freq_wavelen = old_context_len / low_freq_factor
  2066. high_freq_wavelen = old_context_len / high_freq_factor
  2067. assert low_freq_wavelen != high_freq_wavelen
  2068. rope_factors = []
  2069. for freq in freqs:
  2070. wavelen = 2 * math.pi / freq
  2071. if wavelen < high_freq_wavelen:
  2072. rope_factors.append(1)
  2073. elif wavelen > low_freq_wavelen:
  2074. rope_factors.append(factor)
  2075. else:
  2076. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2077. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2078. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2079. def prepare_tensors(self):
  2080. super().prepare_tensors()
  2081. @ModelBase.register("BitnetForCausalLM")
  2082. class BitnetModel(TextModel):
  2083. model_arch = gguf.MODEL_ARCH.BITNET
  2084. def set_vocab(self):
  2085. self._set_vocab_sentencepiece()
  2086. def set_gguf_parameters(self):
  2087. super().set_gguf_parameters()
  2088. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2089. self.gguf_writer.add_rope_scaling_factor(1.0)
  2090. def weight_quant(self, weight: Tensor) -> Tensor:
  2091. dtype = weight.dtype
  2092. weight = weight.float()
  2093. scale = weight.abs().mean().clamp(min=1e-5)
  2094. iscale = 1 / scale
  2095. # TODO: multiply by the scale directly instead of inverting it twice
  2096. # (this is also unnecessarily doubly inverted upstream)
  2097. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2098. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2099. return result.type(dtype)
  2100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2101. new_name = self.map_tensor_name(name)
  2102. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2103. gguf.MODEL_TENSOR.ATTN_Q,
  2104. gguf.MODEL_TENSOR.ATTN_K,
  2105. gguf.MODEL_TENSOR.ATTN_V,
  2106. gguf.MODEL_TENSOR.ATTN_OUT,
  2107. gguf.MODEL_TENSOR.FFN_UP,
  2108. gguf.MODEL_TENSOR.FFN_DOWN,
  2109. gguf.MODEL_TENSOR.FFN_GATE,
  2110. ]):
  2111. # transform weight into 1/0/-1 (in fp32)
  2112. data_torch = self.weight_quant(data_torch)
  2113. yield (new_name, data_torch)
  2114. @ModelBase.register("GrokForCausalLM")
  2115. class GrokModel(TextModel):
  2116. model_arch = gguf.MODEL_ARCH.GROK
  2117. def set_vocab(self):
  2118. self._set_vocab_sentencepiece()
  2119. def __init__(self, *args, **kwargs):
  2120. super().__init__(*args, **kwargs)
  2121. def set_gguf_parameters(self):
  2122. super().set_gguf_parameters()
  2123. _experts: list[dict[str, Tensor]] | None = None
  2124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2125. # process the experts separately
  2126. if name.find(".moe.") != -1:
  2127. n_experts = self.hparams["num_local_experts"]
  2128. assert bid is not None
  2129. if self._experts is None:
  2130. self._experts = [{} for _ in range(self.block_count)]
  2131. self._experts[bid][name] = data_torch
  2132. if len(self._experts[bid]) >= n_experts * 3:
  2133. tensors: list[tuple[str, Tensor]] = []
  2134. # merge the experts into a single 3d tensor
  2135. for wid in ["linear", "linear_1", "linear_v"]:
  2136. datas: list[Tensor] = []
  2137. for xid in range(n_experts):
  2138. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2139. datas.append(self._experts[bid][ename])
  2140. del self._experts[bid][ename]
  2141. data_torch = torch.stack(datas, dim=0)
  2142. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2143. new_name = self.map_tensor_name(merged_name)
  2144. tensors.append((new_name, data_torch))
  2145. return tensors
  2146. else:
  2147. return []
  2148. return [(self.map_tensor_name(name), data_torch)]
  2149. @ModelBase.register("DbrxForCausalLM")
  2150. class DbrxModel(TextModel):
  2151. model_arch = gguf.MODEL_ARCH.DBRX
  2152. def set_gguf_parameters(self):
  2153. ffn_config = self.hparams["ffn_config"]
  2154. attn_config = self.hparams["attn_config"]
  2155. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2156. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2157. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2158. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2159. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2160. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2161. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2162. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2163. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2164. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2165. self.gguf_writer.add_layer_norm_eps(1e-5)
  2166. self.gguf_writer.add_file_type(self.ftype)
  2167. logger.info(f"gguf: file type = {self.ftype}")
  2168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2169. del bid # unused
  2170. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2171. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2172. n_embd = self.hparams["d_model"]
  2173. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2174. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2175. # But llama.cpp moe graph works differently
  2176. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2177. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2178. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2179. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2180. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2181. experts = False
  2182. for exp_tensor_name in exp_tensor_names.keys():
  2183. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2184. experts = True
  2185. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2186. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2187. data_torch = data_torch.permute(*permute_tensor)
  2188. break
  2189. # map tensor names
  2190. # In MoE models the ffn tensors are typically most of the model weights,
  2191. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2192. # Every other model has the weight names ending in .weight,
  2193. # let's assume that is the convention which is not the case for dbrx:
  2194. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2195. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2196. return [(new_name, data_torch)]
  2197. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2198. del name, new_name, bid # unused
  2199. return n_dims > 1
  2200. @ModelBase.register("MiniCPMForCausalLM")
  2201. class MiniCPMModel(TextModel):
  2202. model_arch = gguf.MODEL_ARCH.MINICPM
  2203. def set_gguf_parameters(self):
  2204. super().set_gguf_parameters()
  2205. embedding_scale = float(self.hparams["scale_emb"])
  2206. self.gguf_writer.add_embedding_scale(embedding_scale)
  2207. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2208. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2209. self.gguf_writer.add_residual_scale(residual_scale)
  2210. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2211. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2212. self.gguf_writer.add_logit_scale(logit_scale)
  2213. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2214. rope_scaling = self.hparams.get("rope_scaling") or {}
  2215. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2216. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2217. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2218. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2219. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2220. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2221. if rope_scaling is not None:
  2222. long_factors = rope_scaling.get('long_factor', None)
  2223. short_factors = rope_scaling.get('short_factor', None)
  2224. if long_factors is None or short_factors is None:
  2225. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2226. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2227. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2228. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2229. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2230. def set_vocab(self):
  2231. self._set_vocab_sentencepiece()
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. del bid # unused
  2234. n_head = self.hparams["num_attention_heads"]
  2235. n_kv_head = self.hparams.get("num_key_value_heads")
  2236. # HF models permute some of the tensors, so we need to undo that
  2237. if name.endswith(("q_proj.weight")):
  2238. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2239. if name.endswith(("k_proj.weight")):
  2240. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2241. return [(self.map_tensor_name(name), data_torch)]
  2242. @ModelBase.register("MiniCPM3ForCausalLM")
  2243. class MiniCPM3Model(TextModel):
  2244. model_arch = gguf.MODEL_ARCH.MINICPM3
  2245. def set_gguf_parameters(self):
  2246. hparams = self.hparams
  2247. self.gguf_writer.add_file_type(self.ftype)
  2248. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2249. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2250. self.gguf_writer.add_block_count(self.block_count)
  2251. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2252. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2253. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2254. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2255. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2256. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2257. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2258. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2259. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2260. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2261. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2262. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2263. if rope_scaling is not None:
  2264. rope_dims = self.hparams["qk_rope_head_dim"]
  2265. long_factors = rope_scaling.get('long_factor', None)
  2266. short_factors = rope_scaling.get('short_factor', None)
  2267. if long_factors is None or short_factors is None:
  2268. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2269. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2270. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2271. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2272. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2273. def set_vocab(self):
  2274. self._set_vocab_sentencepiece()
  2275. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2276. if n_kv_head is not None and n_head != n_kv_head:
  2277. n_head //= n_kv_head
  2278. return (
  2279. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2280. .swapaxes(1, 2)
  2281. .reshape(weights.shape)
  2282. )
  2283. @ModelBase.register("QWenLMHeadModel")
  2284. class QwenModel(TextModel):
  2285. model_arch = gguf.MODEL_ARCH.QWEN
  2286. @staticmethod
  2287. def token_bytes_to_string(b):
  2288. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2289. byte_encoder = bytes_to_unicode()
  2290. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2291. @staticmethod
  2292. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2293. parts = [bytes([b]) for b in token]
  2294. while True:
  2295. min_idx = None
  2296. min_rank = None
  2297. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2298. rank = mergeable_ranks.get(pair[0] + pair[1])
  2299. if rank is not None and (min_rank is None or rank < min_rank):
  2300. min_idx = i
  2301. min_rank = rank
  2302. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2303. break
  2304. assert min_idx is not None
  2305. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2306. return parts
  2307. def set_vocab(self):
  2308. self._set_vocab_qwen()
  2309. def set_gguf_parameters(self):
  2310. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2311. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2312. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2313. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2314. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2315. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2316. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2318. self.gguf_writer.add_file_type(self.ftype)
  2319. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2320. class Qwen2Model(TextModel):
  2321. model_arch = gguf.MODEL_ARCH.QWEN2
  2322. def set_vocab(self):
  2323. try:
  2324. self._set_vocab_sentencepiece()
  2325. except FileNotFoundError:
  2326. self._set_vocab_gpt2()
  2327. def set_gguf_parameters(self):
  2328. super().set_gguf_parameters()
  2329. self._try_set_pooling_type()
  2330. rope_scaling = self.hparams.get("rope_scaling") or {}
  2331. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2332. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2333. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2334. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2335. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2336. if self.hf_arch == "Qwen2Model":
  2337. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2338. if "language_model." in name:
  2339. name = name.replace("language_model.", "") # for InternVL
  2340. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2341. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2342. # skip vision and audio tensors
  2343. return []
  2344. yield from super().modify_tensors(data_torch, name, bid)
  2345. @ModelBase.register("DreamModel")
  2346. class DreamModel(TextModel):
  2347. model_arch = gguf.MODEL_ARCH.DREAM
  2348. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2349. tokens: list[str] = []
  2350. toktypes: list[int] = []
  2351. from transformers import AutoTokenizer
  2352. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2353. vocab_dict = tokenizer.get_vocab()
  2354. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2355. assert max(vocab_dict.values()) < vocab_size
  2356. tokpre = self.get_vocab_base_pre(tokenizer)
  2357. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2358. added_vocab = tokenizer.get_added_vocab()
  2359. for i in range(vocab_size):
  2360. if i not in reverse_vocab:
  2361. tokens.append(f"[PAD{i}]")
  2362. toktypes.append(gguf.TokenType.UNUSED)
  2363. elif reverse_vocab[i] in added_vocab:
  2364. tokens.append(reverse_vocab[i])
  2365. # Check if it's a special token - treat special tokens as CONTROL tokens
  2366. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2367. if tokenizer.added_tokens_decoder[i].special:
  2368. toktypes.append(gguf.TokenType.CONTROL)
  2369. else:
  2370. toktypes.append(gguf.TokenType.USER_DEFINED)
  2371. else:
  2372. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2373. toktypes.append(gguf.TokenType.CONTROL)
  2374. else:
  2375. tokens.append(reverse_vocab[i])
  2376. toktypes.append(gguf.TokenType.NORMAL)
  2377. return tokens, toktypes, tokpre
  2378. def set_vocab(self):
  2379. try:
  2380. self._set_vocab_sentencepiece()
  2381. except FileNotFoundError:
  2382. self._set_vocab_gpt2()
  2383. def set_gguf_parameters(self):
  2384. super().set_gguf_parameters()
  2385. self._try_set_pooling_type()
  2386. # Dream models use non-causal attention for diffusion
  2387. self.gguf_writer.add_causal_attention(False)
  2388. # Handle RoPE scaling similar to Qwen2
  2389. rope_scaling = self.hparams.get("rope_scaling") or {}
  2390. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2391. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2392. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2393. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2394. # Add Dream-specific parameters
  2395. mask_token_id = self.hparams.get("mask_token_id")
  2396. if mask_token_id is not None:
  2397. self.gguf_writer.add_mask_token_id(mask_token_id)
  2398. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2399. # Dream model tensors should be mapped directly since it's the base model
  2400. yield from super().modify_tensors(data_torch, name, bid)
  2401. @ModelBase.register("LLaDAModelLM")
  2402. class LLaDAModel(TextModel):
  2403. model_arch = gguf.MODEL_ARCH.LLADA
  2404. undo_permute = True
  2405. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2406. tokens: list[str] = []
  2407. toktypes: list[int] = []
  2408. from transformers import AutoTokenizer
  2409. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2410. vocab_dict = tokenizer.get_vocab()
  2411. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2412. assert max(vocab_dict.values()) < vocab_size
  2413. tokpre = self.get_vocab_base_pre(tokenizer)
  2414. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2415. added_vocab = tokenizer.get_added_vocab()
  2416. for i in range(vocab_size):
  2417. if i not in reverse_vocab:
  2418. tokens.append(f"[PAD{i}]")
  2419. toktypes.append(gguf.TokenType.UNUSED)
  2420. elif reverse_vocab[i] in added_vocab:
  2421. tokens.append(reverse_vocab[i])
  2422. # Check if it's a special token - treat special tokens as CONTROL tokens
  2423. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2424. if tokenizer.added_tokens_decoder[i].special:
  2425. toktypes.append(gguf.TokenType.CONTROL)
  2426. else:
  2427. toktypes.append(gguf.TokenType.USER_DEFINED)
  2428. else:
  2429. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2430. toktypes.append(gguf.TokenType.CONTROL)
  2431. else:
  2432. tokens.append(reverse_vocab[i])
  2433. toktypes.append(gguf.TokenType.NORMAL)
  2434. return tokens, toktypes, tokpre
  2435. def set_vocab(self):
  2436. self._set_vocab_gpt2()
  2437. # LLaDA specific parameters
  2438. self.gguf_writer.add_add_bos_token(True)
  2439. def set_gguf_parameters(self):
  2440. super().set_gguf_parameters()
  2441. self._try_set_pooling_type()
  2442. # Add parameters similar to LlamaModel
  2443. hparams = self.hparams
  2444. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2445. if (rope_dim := hparams.get("head_dim")) is None:
  2446. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2447. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2448. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2449. # Set context length for LLaDA
  2450. context_length = self.hparams.get("max_sequence_length", 4096)
  2451. self.gguf_writer.add_context_length(context_length)
  2452. # Set embedding length (dimension size)
  2453. embedding_length = self.hparams.get("d_model", 4096)
  2454. self.gguf_writer.add_embedding_length(embedding_length)
  2455. # Set feed forward length (MLP hidden size)
  2456. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2457. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2458. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2459. self.gguf_writer.add_causal_attention(False)
  2460. # LLaDA models don't shift their logits
  2461. self.gguf_writer.add_diffusion_shift_logits(False)
  2462. @staticmethod
  2463. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2464. if n_head_kv is not None and n_head != n_head_kv:
  2465. n_head = n_head_kv
  2466. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2467. .swapaxes(1, 2)
  2468. .reshape(weights.shape))
  2469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2470. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2471. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2472. if self.undo_permute:
  2473. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2474. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2475. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2476. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2477. # LLaDA model tensors should be mapped directly since it's the base model
  2478. yield from super().modify_tensors(data_torch, name, bid)
  2479. @ModelBase.register("Ernie4_5_ForCausalLM")
  2480. class Ernie4_5Model(TextModel):
  2481. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2482. def set_vocab(self):
  2483. self._set_vocab_sentencepiece()
  2484. def set_gguf_parameters(self):
  2485. super().set_gguf_parameters()
  2486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2487. num_heads = self.hparams["num_attention_heads"]
  2488. num_kv_heads = self.hparams["num_key_value_heads"]
  2489. if (head_dim := self.hparams.get("head_dim")) is None:
  2490. head_dim = self.hparams["hidden_size"] // num_heads
  2491. if "ernie." in name:
  2492. name = name.replace("ernie.", "model.")
  2493. # split the qkv weights
  2494. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2495. if "qkv_proj" in name:
  2496. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2497. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2498. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2499. total_q_dim = num_heads * head_dim
  2500. total_k_dim = num_kv_heads * head_dim
  2501. total_v_dim = num_kv_heads * head_dim
  2502. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2503. return [
  2504. (self.map_tensor_name(name_q), q_proj_weight),
  2505. (self.map_tensor_name(name_k), k_proj_weight),
  2506. (self.map_tensor_name(name_v), v_proj_weight)
  2507. ]
  2508. # split the up_gate_proj into gate and up
  2509. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2510. if "up_gate_proj" in name:
  2511. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2512. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2513. dim_half = data_torch.shape[0] // 2
  2514. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2515. return [
  2516. (self.map_tensor_name(name_gate), gate_proj_weight),
  2517. (self.map_tensor_name(name_up), up_proj_weight)
  2518. ]
  2519. return [(self.map_tensor_name(name), data_torch)]
  2520. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2521. class Ernie4_5MoeModel(Ernie4_5Model):
  2522. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2523. _experts: list[dict[str, Tensor]] | None = None
  2524. def __init__(self, *args, **kwargs):
  2525. super().__init__(*args, **kwargs)
  2526. self._experts = [{} for _ in range(self.block_count)]
  2527. def set_gguf_parameters(self):
  2528. super().set_gguf_parameters()
  2529. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2530. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2531. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2532. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2533. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2534. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2535. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2536. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2537. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2538. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2540. # Modify correction bias name as in DeepseekV2
  2541. if name.endswith("e_score_correction_bias"):
  2542. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2543. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2544. match = re.match(r"model.mtp_block.(\d+)", name)
  2545. if match:
  2546. return []
  2547. # skip all other MTP tensors for now
  2548. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2549. if match:
  2550. return []
  2551. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2552. if match:
  2553. return []
  2554. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2555. if match:
  2556. return []
  2557. # process the experts separately
  2558. if name.find("mlp.experts") != -1:
  2559. n_experts = self.hparams["moe_num_experts"]
  2560. assert bid is not None
  2561. if self._experts is None:
  2562. self._experts = [{} for _ in range(self.block_count)]
  2563. self._experts[bid][name] = data_torch
  2564. if len(self._experts[bid]) >= n_experts * 3:
  2565. tensors: list[tuple[str, Tensor]] = []
  2566. # merge the experts into a single 3d tensor
  2567. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2568. datas: list[Tensor] = []
  2569. for xid in range(n_experts):
  2570. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2571. datas.append(self._experts[bid][ename_to_retrieve])
  2572. del self._experts[bid][ename_to_retrieve]
  2573. data_torch = torch.stack(datas, dim=0)
  2574. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2575. new_name = self.map_tensor_name(merged_name)
  2576. tensors.append((new_name, data_torch))
  2577. return tensors
  2578. else:
  2579. return []
  2580. return [(self.map_tensor_name(name), data_torch)]
  2581. def prepare_tensors(self):
  2582. super().prepare_tensors()
  2583. if self._experts is not None:
  2584. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2585. experts = [k for d in self._experts for k in d.keys()]
  2586. if len(experts) > 0:
  2587. raise ValueError(f"Unprocessed experts: {experts}")
  2588. @ModelBase.register(
  2589. "Qwen2VLModel",
  2590. "Qwen2VLForConditionalGeneration",
  2591. "Qwen2_5_VLForConditionalGeneration",
  2592. "Qwen2_5OmniModel",
  2593. )
  2594. class Qwen2VLModel(TextModel):
  2595. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2596. def set_gguf_parameters(self):
  2597. super().set_gguf_parameters()
  2598. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2599. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2600. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2601. def set_vocab(self):
  2602. try:
  2603. self._set_vocab_sentencepiece()
  2604. except FileNotFoundError:
  2605. self._set_vocab_gpt2()
  2606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2607. del bid # unused
  2608. if name.startswith("thinker."):
  2609. name = name.replace("thinker.", "")
  2610. if name.startswith("visual") or name.startswith("audio") or \
  2611. name.startswith("talker") or name.startswith("token2wav"):
  2612. # skip multimodal tensors
  2613. return []
  2614. return [(self.map_tensor_name(name), data_torch)]
  2615. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2616. class Qwen2VLVisionModel(MmprojModel):
  2617. def __init__(self, *args, **kwargs):
  2618. super().__init__(*args, **kwargs)
  2619. assert self.hparams_vision is not None
  2620. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2621. # rename config.json values
  2622. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2623. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2624. if "embed_dim" in self.hparams_vision: # qwen2vl
  2625. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2626. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2627. def set_gguf_parameters(self):
  2628. super().set_gguf_parameters()
  2629. assert self.hparams_vision is not None
  2630. hparams = self.hparams_vision
  2631. model_type = self.global_config['model_type']
  2632. if model_type == 'qwen2_vl':
  2633. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2634. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2635. if model_type == 'qwen2_5_omni':
  2636. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2637. else:
  2638. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2639. self.gguf_writer.add_vision_use_silu(True)
  2640. # find n_wa_pattern (window attention pattern)
  2641. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2642. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2643. n_wa_pattern = fullatt_block_indexes[0] + 1
  2644. # validate n_wa_pattern
  2645. for i in range(1, len(fullatt_block_indexes)):
  2646. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2647. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2648. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2649. else:
  2650. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2651. # default values below are taken from HF tranformers code
  2652. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2653. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2654. del bid, name, n_dims # unused
  2655. if ".patch_embd." in new_name:
  2656. return gguf.GGMLQuantizationType.F16
  2657. if ".position_embd." in new_name:
  2658. return gguf.GGMLQuantizationType.F32
  2659. return False
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. del bid # unused
  2662. if name.startswith("visual."):
  2663. # process visual tensors
  2664. # split QKV tensors if needed
  2665. if ".qkv." in name:
  2666. if data_torch.ndim == 2: # weight
  2667. c3, _ = data_torch.shape
  2668. else: # bias
  2669. c3 = data_torch.shape[0]
  2670. assert c3 % 3 == 0
  2671. c = c3 // 3
  2672. wq = data_torch[:c]
  2673. wk = data_torch[c: c * 2]
  2674. wv = data_torch[c * 2:]
  2675. return [
  2676. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2677. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2678. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2679. ]
  2680. elif 'patch_embed.proj.weight' in name:
  2681. # split Conv3D into Conv2Ds
  2682. c1, c2, kt, kh, kw = data_torch.shape
  2683. del c1, c2, kh, kw # unused
  2684. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2685. return [
  2686. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2687. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2688. ]
  2689. else:
  2690. return [(self.map_tensor_name(name), data_torch)]
  2691. return [] # skip other tensors
  2692. @ModelBase.register("Qwen2_5OmniModel")
  2693. class Qwen25OmniModel(Qwen2VLVisionModel):
  2694. has_vision_encoder = True
  2695. has_audio_encoder = True
  2696. def __init__(self, *args, **kwargs):
  2697. super().__init__(*args, **kwargs)
  2698. assert self.hparams_audio is not None
  2699. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2700. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2701. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2702. def set_gguf_parameters(self):
  2703. super().set_gguf_parameters()
  2704. assert self.hparams_audio is not None
  2705. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2706. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2707. def get_vision_config(self) -> dict[str, Any] | None:
  2708. return self.global_config["thinker_config"].get("vision_config")
  2709. def get_audio_config(self) -> dict[str, Any] | None:
  2710. return self.global_config["thinker_config"].get("audio_config")
  2711. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2712. # SinusoidsPositionEmbedding
  2713. assert self.hparams_audio is not None
  2714. max_timescale = 10000
  2715. length = 1500
  2716. channels = self.hparams_audio["hidden_size"]
  2717. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2718. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2719. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2720. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2721. yield ("audio_tower.embed_positions.weight", pos_embd)
  2722. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2723. del bid, new_name, n_dims # unused
  2724. if ".conv" in name and ".weight" in name:
  2725. return gguf.GGMLQuantizationType.F16
  2726. return False
  2727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2728. if name.startswith("thinker."):
  2729. name = name.replace("thinker.", "")
  2730. if name.startswith("audio_tower"):
  2731. # process audio tensors
  2732. if "conv1.bias" in name or "conv2.bias" in name:
  2733. # transpose conv1 and conv2 bias
  2734. data_torch = data_torch.unsqueeze(-1)
  2735. if "audio_bos_eos_token" in name:
  2736. # this tensor is left unused in transformers code
  2737. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2738. return []
  2739. return [(self.map_tensor_name(name), data_torch)]
  2740. return super().modify_tensors(data_torch, name, bid)
  2741. @ModelBase.register("InternVisionModel")
  2742. class InternVisionModel(MmprojModel):
  2743. def set_gguf_parameters(self):
  2744. super().set_gguf_parameters()
  2745. hparams = self.hparams
  2746. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2747. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2748. # hidden_act
  2749. if hparams["hidden_act"] == "silu":
  2750. self.gguf_writer.add_vision_use_silu(True)
  2751. elif hparams["hidden_act"] == "gelu":
  2752. self.gguf_writer.add_vision_use_gelu(True)
  2753. else:
  2754. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2755. # downsample_ratio
  2756. downsample_ratio = self.global_config.get("downsample_ratio")
  2757. assert downsample_ratio is not None
  2758. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2759. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2760. del bid, name, n_dims # unused
  2761. if ".patch_embd." in new_name:
  2762. return gguf.GGMLQuantizationType.F16
  2763. if ".position_embd." in new_name:
  2764. return gguf.GGMLQuantizationType.F32
  2765. return False
  2766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2767. del bid # unused
  2768. if name.startswith("vision_model") or name.startswith("mlp"):
  2769. # process visual tensors
  2770. # correct name
  2771. if name.startswith("vision_model"):
  2772. name = "vision_tower." + name
  2773. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2774. name += ".weight"
  2775. # split QKV tensors if needed
  2776. if ".qkv." in name:
  2777. if data_torch.ndim == 2: # weight
  2778. c3, _ = data_torch.shape
  2779. else: # bias
  2780. c3 = data_torch.shape[0]
  2781. assert c3 % 3 == 0
  2782. c = c3 // 3
  2783. wq = data_torch[:c]
  2784. wk = data_torch[c: c * 2]
  2785. wv = data_torch[c * 2:]
  2786. return [
  2787. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2788. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2789. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2790. ]
  2791. return [(self.map_tensor_name(name), data_torch)]
  2792. return [] # skip other tensors
  2793. @ModelBase.register("WavTokenizerDec")
  2794. class WavTokenizerDecModel(TextModel):
  2795. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2797. del bid # unused
  2798. if \
  2799. name.endswith("codebook.cluster_size") or \
  2800. name.endswith("codebook.embed_avg") or \
  2801. name.endswith("codebook.inited"):
  2802. logger.debug(f"Skipping {name!r}")
  2803. return []
  2804. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2805. return [(self.map_tensor_name(name), data_torch)]
  2806. def set_vocab(self):
  2807. self._set_vocab_none()
  2808. def set_gguf_parameters(self):
  2809. super().set_gguf_parameters()
  2810. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2811. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2812. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2813. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2814. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2815. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2816. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2817. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2818. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2819. self.gguf_writer.add_causal_attention(False)
  2820. @ModelBase.register("Qwen2MoeForCausalLM")
  2821. class Qwen2MoeModel(TextModel):
  2822. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2823. def set_gguf_parameters(self):
  2824. super().set_gguf_parameters()
  2825. if (n_experts := self.hparams.get("num_experts")) is not None:
  2826. self.gguf_writer.add_expert_count(n_experts)
  2827. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2828. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2829. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2830. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2831. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2832. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2833. # YaRN is not enabled by default
  2834. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2835. rope_scaling = self.hparams.get("rope_scaling") or {}
  2836. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2837. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2838. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2839. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2840. _experts: list[dict[str, Tensor]] | None = None
  2841. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2842. # process the experts separately
  2843. if name.find("experts") != -1:
  2844. n_experts = self.hparams["num_experts"]
  2845. assert bid is not None
  2846. if self._experts is None:
  2847. self._experts = [{} for _ in range(self.block_count)]
  2848. self._experts[bid][name] = data_torch
  2849. if len(self._experts[bid]) >= n_experts * 3:
  2850. tensors: list[tuple[str, Tensor]] = []
  2851. # merge the experts into a single 3d tensor
  2852. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2853. datas: list[Tensor] = []
  2854. for xid in range(n_experts):
  2855. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2856. datas.append(self._experts[bid][ename])
  2857. del self._experts[bid][ename]
  2858. data_torch = torch.stack(datas, dim=0)
  2859. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2860. new_name = self.map_tensor_name(merged_name)
  2861. tensors.append((new_name, data_torch))
  2862. return tensors
  2863. else:
  2864. return []
  2865. return [(self.map_tensor_name(name), data_torch)]
  2866. def prepare_tensors(self):
  2867. super().prepare_tensors()
  2868. if self._experts is not None:
  2869. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2870. experts = [k for d in self._experts for k in d.keys()]
  2871. if len(experts) > 0:
  2872. raise ValueError(f"Unprocessed experts: {experts}")
  2873. @ModelBase.register("Qwen3ForCausalLM")
  2874. class Qwen3Model(Qwen2Model):
  2875. model_arch = gguf.MODEL_ARCH.QWEN3
  2876. @ModelBase.register("Qwen3MoeForCausalLM")
  2877. class Qwen3MoeModel(Qwen2MoeModel):
  2878. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2879. @ModelBase.register("GPT2LMHeadModel")
  2880. class GPT2Model(TextModel):
  2881. model_arch = gguf.MODEL_ARCH.GPT2
  2882. def set_gguf_parameters(self):
  2883. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2884. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2885. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2886. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2887. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2888. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2889. self.gguf_writer.add_file_type(self.ftype)
  2890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2891. del bid # unused
  2892. tensors: list[tuple[str, Tensor]] = []
  2893. # we don't need these
  2894. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2895. return tensors
  2896. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2897. data_torch = data_torch.transpose(1, 0)
  2898. new_name = self.map_tensor_name(name)
  2899. tensors.append((new_name, data_torch))
  2900. return tensors
  2901. @ModelBase.register("PhiForCausalLM")
  2902. class Phi2Model(TextModel):
  2903. model_arch = gguf.MODEL_ARCH.PHI2
  2904. def set_gguf_parameters(self):
  2905. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2906. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2907. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2908. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2909. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2910. self.gguf_writer.add_embedding_length(n_embd)
  2911. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2912. self.gguf_writer.add_block_count(block_count)
  2913. self.gguf_writer.add_head_count(n_head)
  2914. self.gguf_writer.add_head_count_kv(n_head)
  2915. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2916. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2917. self.gguf_writer.add_file_type(self.ftype)
  2918. self.gguf_writer.add_add_bos_token(False)
  2919. @ModelBase.register("Phi3ForCausalLM")
  2920. class Phi3MiniModel(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.PHI3
  2922. def set_vocab(self):
  2923. # Phi-4 model uses GPT2Tokenizer
  2924. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2925. if tokenizer_config_file.is_file():
  2926. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2927. tokenizer_config_json = json.load(f)
  2928. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2929. if tokenizer_class == 'GPT2Tokenizer':
  2930. return self._set_vocab_gpt2()
  2931. from sentencepiece import SentencePieceProcessor
  2932. tokenizer_path = self.dir_model / 'tokenizer.model'
  2933. if not tokenizer_path.is_file():
  2934. raise ValueError(f'Error: Missing {tokenizer_path}')
  2935. tokenizer = SentencePieceProcessor()
  2936. tokenizer.LoadFromFile(str(tokenizer_path))
  2937. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2938. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2939. scores: list[float] = [-10000.0] * vocab_size
  2940. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2941. for token_id in range(tokenizer.vocab_size()):
  2942. piece = tokenizer.IdToPiece(token_id)
  2943. text = piece.encode("utf-8")
  2944. score = tokenizer.GetScore(token_id)
  2945. toktype = SentencePieceTokenTypes.NORMAL
  2946. if tokenizer.IsUnknown(token_id):
  2947. toktype = SentencePieceTokenTypes.UNKNOWN
  2948. elif tokenizer.IsControl(token_id):
  2949. toktype = SentencePieceTokenTypes.CONTROL
  2950. elif tokenizer.IsUnused(token_id):
  2951. toktype = SentencePieceTokenTypes.UNUSED
  2952. elif tokenizer.IsByte(token_id):
  2953. toktype = SentencePieceTokenTypes.BYTE
  2954. tokens[token_id] = text
  2955. scores[token_id] = score
  2956. toktypes[token_id] = toktype
  2957. added_tokens_file = self.dir_model / 'added_tokens.json'
  2958. if added_tokens_file.is_file():
  2959. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2960. added_tokens_json = json.load(f)
  2961. for key in added_tokens_json:
  2962. token_id = added_tokens_json[key]
  2963. if token_id >= vocab_size:
  2964. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2965. continue
  2966. tokens[token_id] = key.encode("utf-8")
  2967. scores[token_id] = -1000.0
  2968. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2969. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2970. if tokenizer_config_file.is_file():
  2971. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2972. tokenizer_config_json = json.load(f)
  2973. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2974. for token_id, foken_data in added_tokens_decoder.items():
  2975. token_id = int(token_id)
  2976. token = foken_data["content"].encode("utf-8")
  2977. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2978. if tokens[token_id] != token:
  2979. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2980. tokens[token_id] = token
  2981. scores[token_id] = -1000.0
  2982. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2983. if foken_data.get("special"):
  2984. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2985. tokenizer_file = self.dir_model / 'tokenizer.json'
  2986. if tokenizer_file.is_file():
  2987. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2988. tokenizer_json = json.load(f)
  2989. added_tokens = tokenizer_json.get("added_tokens", [])
  2990. for foken_data in added_tokens:
  2991. token_id = int(foken_data["id"])
  2992. token = foken_data["content"].encode("utf-8")
  2993. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2994. if tokens[token_id] != token:
  2995. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2996. tokens[token_id] = token
  2997. scores[token_id] = -1000.0
  2998. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2999. if foken_data.get("special"):
  3000. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3001. self.gguf_writer.add_tokenizer_model("llama")
  3002. self.gguf_writer.add_tokenizer_pre("default")
  3003. self.gguf_writer.add_token_list(tokens)
  3004. self.gguf_writer.add_token_scores(scores)
  3005. self.gguf_writer.add_token_types(toktypes)
  3006. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3007. special_vocab.add_to_gguf(self.gguf_writer)
  3008. def set_gguf_parameters(self):
  3009. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3010. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3011. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3012. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3013. rms_eps = self.find_hparam(["rms_norm_eps"])
  3014. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3015. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3016. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3017. rope_dims = int(rot_pct * n_embd) // n_head
  3018. self.gguf_writer.add_context_length(max_pos_embds)
  3019. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3020. self.gguf_writer.add_embedding_length(n_embd)
  3021. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3022. self.gguf_writer.add_block_count(block_count)
  3023. self.gguf_writer.add_head_count(n_head)
  3024. self.gguf_writer.add_head_count_kv(n_head_kv)
  3025. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3026. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3027. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3028. self.gguf_writer.add_file_type(self.ftype)
  3029. sliding_window = self.hparams.get("sliding_window")
  3030. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3031. if sliding_window is None:
  3032. sliding_window = 0
  3033. self.gguf_writer.add_sliding_window(sliding_window)
  3034. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3035. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3036. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3037. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3038. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3039. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3040. rope_dims = int(rot_pct * n_embd) // n_head
  3041. # write rope scaling for long context (128k) model
  3042. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3043. if rope_scaling is None:
  3044. return
  3045. scale = max_pos_embds / orig_max_pos_embds
  3046. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3047. if len(rope_scaling_type) == 0:
  3048. raise KeyError('Missing the required key rope_scaling.type')
  3049. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3050. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3051. elif rope_scaling_type == 'yarn':
  3052. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3053. else:
  3054. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3055. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3056. long_factors = rope_scaling.get('long_factor', None)
  3057. short_factors = rope_scaling.get('short_factor', None)
  3058. if long_factors is None or short_factors is None:
  3059. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3060. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3061. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3062. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3063. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3064. @ModelBase.register("PhiMoEForCausalLM")
  3065. class PhiMoeModel(Phi3MiniModel):
  3066. model_arch = gguf.MODEL_ARCH.PHIMOE
  3067. _experts: list[dict[str, Tensor]] | None = None
  3068. def set_gguf_parameters(self):
  3069. super().set_gguf_parameters()
  3070. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3071. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3073. # process the experts separately
  3074. if name.find("block_sparse_moe.experts") != -1:
  3075. n_experts = self.hparams["num_local_experts"]
  3076. assert bid is not None
  3077. if self._experts is None:
  3078. self._experts = [{} for _ in range(self.block_count)]
  3079. self._experts[bid][name] = data_torch
  3080. if len(self._experts[bid]) >= n_experts * 3:
  3081. tensors: list[tuple[str, Tensor]] = []
  3082. # merge the experts into a single 3d tensor
  3083. for w_name in ["w1", "w2", "w3"]:
  3084. datas: list[Tensor] = []
  3085. for xid in range(n_experts):
  3086. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3087. datas.append(self._experts[bid][ename])
  3088. del self._experts[bid][ename]
  3089. data_torch = torch.stack(datas, dim=0)
  3090. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3091. new_name = self.map_tensor_name(merged_name)
  3092. tensors.append((new_name, data_torch))
  3093. return tensors
  3094. else:
  3095. return []
  3096. return [(self.map_tensor_name(name), data_torch)]
  3097. def prepare_tensors(self):
  3098. super().prepare_tensors()
  3099. if self._experts is not None:
  3100. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3101. experts = [k for d in self._experts for k in d.keys()]
  3102. if len(experts) > 0:
  3103. raise ValueError(f"Unprocessed experts: {experts}")
  3104. @ModelBase.register("PlamoForCausalLM")
  3105. class PlamoModel(TextModel):
  3106. model_arch = gguf.MODEL_ARCH.PLAMO
  3107. def set_vocab(self):
  3108. self._set_vocab_sentencepiece()
  3109. def set_gguf_parameters(self):
  3110. hparams = self.hparams
  3111. block_count = hparams["num_hidden_layers"]
  3112. self.gguf_writer.add_context_length(4096) # not in config.json
  3113. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3114. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3115. self.gguf_writer.add_block_count(block_count)
  3116. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3117. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3118. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3119. self.gguf_writer.add_file_type(self.ftype)
  3120. def shuffle_attn_q_weight(self, data_torch):
  3121. assert data_torch.size() == (5120, 5120)
  3122. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3123. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3124. data_torch = torch.reshape(data_torch, (5120, 5120))
  3125. return data_torch
  3126. def shuffle_attn_output_weight(self, data_torch):
  3127. assert data_torch.size() == (5120, 5120)
  3128. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3129. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3130. data_torch = torch.reshape(data_torch, (5120, 5120))
  3131. return data_torch
  3132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3133. del bid # unused
  3134. new_name = self.map_tensor_name(name)
  3135. # shuffle for broadcasting of gqa in ggml_mul_mat
  3136. if new_name.endswith("attn_q.weight"):
  3137. data_torch = self.shuffle_attn_q_weight(data_torch)
  3138. elif new_name.endswith("attn_output.weight"):
  3139. data_torch = self.shuffle_attn_output_weight(data_torch)
  3140. return [(new_name, data_torch)]
  3141. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3142. class Plamo2Model(TextModel):
  3143. model_arch = gguf.MODEL_ARCH.PLAMO2
  3144. def set_vocab(self):
  3145. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3146. # We need to handle this specially
  3147. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3148. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3149. if not tokenizer_jsonl_path.is_file():
  3150. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3151. # Load tokenizer config
  3152. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3153. tokenizer_config = json.load(f)
  3154. # Load tokens from JSONL file (actually a list format)
  3155. tokens = []
  3156. scores = []
  3157. toktypes = []
  3158. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3159. for line_num, line in enumerate(f):
  3160. if line.strip():
  3161. token_data = json.loads(line)
  3162. # Format: [token, score, type, ?, ?, ?, ?]
  3163. token = token_data[0].encode("utf-8")
  3164. score = float(token_data[1])
  3165. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3166. tokens.append(token)
  3167. scores.append(score)
  3168. # Map token type strings to GGUF token types
  3169. if token_type_str == "UNKNOWN":
  3170. toktypes.append(gguf.TokenType.UNKNOWN)
  3171. elif token_type_str == "CONTROL":
  3172. toktypes.append(gguf.TokenType.CONTROL)
  3173. elif token_type_str == "BYTE":
  3174. toktypes.append(gguf.TokenType.BYTE)
  3175. else:
  3176. # Check for PLaMo-2 special tokens
  3177. token_str = token_data[0]
  3178. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3179. toktypes.append(gguf.TokenType.CONTROL)
  3180. else:
  3181. toktypes.append(gguf.TokenType.NORMAL)
  3182. vocab_size = self.hparams["vocab_size"]
  3183. if vocab_size > len(tokens):
  3184. pad_count = vocab_size - len(tokens)
  3185. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3186. for i in range(1, pad_count + 1):
  3187. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3188. scores.append(-1000.0)
  3189. toktypes.append(gguf.TokenType.UNUSED)
  3190. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3191. self.gguf_writer.add_tokenizer_model("plamo2")
  3192. self.gguf_writer.add_tokenizer_pre("default")
  3193. self.gguf_writer.add_token_list(tokens)
  3194. self.gguf_writer.add_token_scores(scores)
  3195. self.gguf_writer.add_token_types(toktypes)
  3196. # Add special tokens from config
  3197. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3198. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3199. self.gguf_writer.add_bos_token_id(token_id)
  3200. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3201. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3202. self.gguf_writer.add_eos_token_id(token_id)
  3203. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3204. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3205. self.gguf_writer.add_pad_token_id(token_id)
  3206. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3207. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3208. self.gguf_writer.add_sep_token_id(token_id)
  3209. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3210. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3211. self.gguf_writer.add_unk_token_id(token_id)
  3212. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3213. self.gguf_writer.add_eot_token_id(4)
  3214. self.gguf_writer.add_add_space_prefix(False)
  3215. def set_gguf_parameters(self):
  3216. hparams = self.hparams
  3217. block_count = hparams["num_hidden_layers"]
  3218. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3219. # Which layers are Mamba layers
  3220. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3221. # This logic matches modeling_plamo.py's is_mamba function
  3222. mamba_step = hparams.get("mamba_step", 2)
  3223. mamba_enabled = hparams.get("mamba_enabled", True)
  3224. mamba_layers = []
  3225. if mamba_enabled:
  3226. for i in range(block_count):
  3227. if block_count <= (mamba_step // 2):
  3228. # use attention in last layer
  3229. is_mamba = (i != block_count - 1)
  3230. else:
  3231. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3232. if is_mamba:
  3233. mamba_layers.append(0)
  3234. else:
  3235. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3236. if mamba_layers:
  3237. self.gguf_writer.add_head_count_kv(mamba_layers)
  3238. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3239. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3240. self.gguf_writer.add_block_count(block_count)
  3241. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3242. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3243. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3244. # Mamba parameters
  3245. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3246. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3247. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3248. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3249. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3250. self.gguf_writer.add_ssm_group_count(0)
  3251. # MLP feed forward parameters (for attention layers)
  3252. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3253. self.gguf_writer.add_file_type(self.ftype)
  3254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3255. del bid # unused
  3256. if name.endswith(".A_log"):
  3257. data_torch = -torch.exp(data_torch)
  3258. elif name.endswith(".dt_bias"):
  3259. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3260. elif name.endswith(".dt_norm_weight"):
  3261. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3262. elif name.endswith(".B_norm_weight"):
  3263. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3264. elif name.endswith(".C_norm_weight"):
  3265. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3266. elif name.endswith(".k_weight"):
  3267. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3268. elif name.endswith(".q_weight"):
  3269. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3270. elif name.endswith(".conv1d.weight"):
  3271. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3272. assert data_torch.ndim == 2
  3273. elif name.endswith(".pre_mixer_norm.weight"):
  3274. data_torch += 1.0
  3275. elif name.endswith(".post_mixer_norm.weight"):
  3276. data_torch += 1.0 / 5
  3277. elif name.endswith(".pre_mlp_norm.weight"):
  3278. data_torch += 1.0
  3279. elif name.endswith(".post_mlp_norm.weight"):
  3280. data_torch += 1.0 / (5**1.5)
  3281. elif name.endswith(".norm.weight"):
  3282. data_torch += 1.0
  3283. new_name = self.map_tensor_name(name)
  3284. return [(new_name, data_torch)]
  3285. @ModelBase.register("CodeShellForCausalLM")
  3286. class CodeShellModel(TextModel):
  3287. model_arch = gguf.MODEL_ARCH.CODESHELL
  3288. def set_gguf_parameters(self):
  3289. block_count = self.hparams["n_layer"]
  3290. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3291. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3292. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3293. self.gguf_writer.add_block_count(block_count)
  3294. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3295. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3296. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3297. self.gguf_writer.add_file_type(self.ftype)
  3298. self.gguf_writer.add_rope_freq_base(10000.0)
  3299. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3300. self.gguf_writer.add_rope_scaling_factor(1.0)
  3301. _has_tok_embd = False
  3302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3303. del bid # unused
  3304. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3305. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3306. new_name = self.map_tensor_name(name)
  3307. # assuming token_embd.weight is seen before output.weight
  3308. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3309. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3310. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3311. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3312. self.tensor_names.remove("transformer.wte.weight")
  3313. elif new_name == tok_embd_name:
  3314. self._has_tok_embd = True
  3315. return [(new_name, data_torch)]
  3316. @ModelBase.register("InternLM2ForCausalLM")
  3317. class InternLM2Model(TextModel):
  3318. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3319. def set_vocab(self):
  3320. # (TODO): Is there a better way?
  3321. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3322. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3323. # recognized as an empty string in C++.
  3324. from sentencepiece import SentencePieceProcessor
  3325. from sentencepiece import sentencepiece_model_pb2 as model
  3326. tokenizer_path = self.dir_model / 'tokenizer.model'
  3327. tokens: list[bytes] = []
  3328. scores: list[float] = []
  3329. toktypes: list[int] = []
  3330. if not tokenizer_path.is_file():
  3331. logger.error(f'Error: Missing {tokenizer_path}')
  3332. sys.exit(1)
  3333. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3334. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3335. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3336. tokenizer = SentencePieceProcessor()
  3337. tokenizer.LoadFromFile(str(tokenizer_path))
  3338. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3339. for token_id in range(vocab_size):
  3340. piece = tokenizer.IdToPiece(token_id)
  3341. text = piece.encode("utf-8")
  3342. score = tokenizer.GetScore(token_id)
  3343. if text == b"\x00":
  3344. # (TODO): fixme
  3345. # Hack here and replace the \x00 characters.
  3346. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3347. text = "🐉".encode("utf-8")
  3348. toktype = SentencePieceTokenTypes.NORMAL
  3349. if tokenizer.IsUnknown(token_id):
  3350. toktype = SentencePieceTokenTypes.UNKNOWN
  3351. elif tokenizer.IsControl(token_id):
  3352. toktype = SentencePieceTokenTypes.CONTROL
  3353. elif tokenizer.IsUnused(token_id):
  3354. toktype = SentencePieceTokenTypes.UNUSED
  3355. elif tokenizer.IsByte(token_id):
  3356. toktype = SentencePieceTokenTypes.BYTE
  3357. # take care of ununsed raw token
  3358. if piece.startswith('[UNUSED'):
  3359. toktype = SentencePieceTokenTypes.UNUSED
  3360. tokens.append(text)
  3361. scores.append(score)
  3362. toktypes.append(toktype)
  3363. added_tokens_file = self.dir_model / 'added_tokens.json'
  3364. if added_tokens_file.is_file():
  3365. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3366. added_tokens_json = json.load(f)
  3367. for key in added_tokens_json:
  3368. tokens.append(key.encode("utf-8"))
  3369. scores.append(-1000.0)
  3370. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3371. chat_eos_token = '<|im_end|>'
  3372. chat_eos_token_id = None
  3373. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3374. if tokenizer_config_file.is_file():
  3375. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3376. tokenizer_config_json = json.load(f)
  3377. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3378. for token_id, foken_data in added_tokens_decoder.items():
  3379. token_id = int(token_id)
  3380. token = foken_data["content"]
  3381. if token == chat_eos_token:
  3382. chat_eos_token_id = token_id
  3383. token = token.encode("utf-8")
  3384. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3385. if tokens[token_id] != token:
  3386. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3387. tokens[token_id] = token
  3388. scores[token_id] = -1000.0
  3389. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3390. if foken_data.get("special"):
  3391. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3392. tokenizer_file = self.dir_model / 'tokenizer.json'
  3393. if tokenizer_file.is_file():
  3394. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3395. tokenizer_json = json.load(f)
  3396. added_tokens = tokenizer_json.get("added_tokens", [])
  3397. for foken_data in added_tokens:
  3398. token_id = int(foken_data["id"])
  3399. token = foken_data["content"]
  3400. if token == chat_eos_token:
  3401. chat_eos_token_id = token_id
  3402. token = token.encode("utf-8")
  3403. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3404. if tokens[token_id] != token:
  3405. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3406. tokens[token_id] = token
  3407. scores[token_id] = -1000.0
  3408. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3409. if foken_data.get("special"):
  3410. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3411. self.gguf_writer.add_tokenizer_model("llama")
  3412. self.gguf_writer.add_tokenizer_pre("default")
  3413. self.gguf_writer.add_token_list(tokens)
  3414. self.gguf_writer.add_token_scores(scores)
  3415. self.gguf_writer.add_token_types(toktypes)
  3416. self.gguf_writer.add_add_space_prefix(add_prefix)
  3417. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3418. old_eos = special_vocab.special_token_ids["eos"]
  3419. if chat_eos_token_id is not None:
  3420. # For the chat model, we replace the eos with '<|im_end|>'.
  3421. # TODO: this is a hack, should be fixed
  3422. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3423. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3424. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3425. " in chat mode so that the conversation can end normally.")
  3426. special_vocab.add_to_gguf(self.gguf_writer)
  3427. def set_gguf_parameters(self):
  3428. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3429. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3430. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3431. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3432. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3433. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3434. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3435. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3436. self.gguf_writer.add_file_type(self.ftype)
  3437. rope_scaling = self.hparams.get("rope_scaling") or {}
  3438. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3439. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3440. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3442. num_heads = self.hparams["num_attention_heads"]
  3443. num_kv_heads = self.hparams["num_key_value_heads"]
  3444. n_embd = self.hparams["hidden_size"]
  3445. q_per_kv = num_heads // num_kv_heads
  3446. head_dim = n_embd // num_heads
  3447. num_groups = num_heads // q_per_kv
  3448. name = name.replace("language_model.", "") # InternVL
  3449. if name.startswith("mlp") or name.startswith("vision_model"):
  3450. # skip visual tensors
  3451. return []
  3452. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3453. qkv = data_torch
  3454. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3455. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3456. # The model weights of q and k equire additional reshape.
  3457. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3458. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3459. v = v.reshape((-1, v.shape[-1]))
  3460. return [
  3461. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3462. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3463. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3464. ]
  3465. else:
  3466. return [(self.map_tensor_name(name), data_torch)]
  3467. @ModelBase.register("InternLM3ForCausalLM")
  3468. class InternLM3Model(TextModel):
  3469. model_arch = gguf.MODEL_ARCH.LLAMA
  3470. def set_vocab(self):
  3471. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3472. self.gguf_writer.add_tokenizer_model("llama")
  3473. self.gguf_writer.add_tokenizer_pre("default")
  3474. self.gguf_writer.add_token_list(tokens)
  3475. self.gguf_writer.add_token_scores(scores)
  3476. self.gguf_writer.add_token_types(toktypes)
  3477. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3478. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3479. if tokenizer_config_file.is_file():
  3480. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3481. tokenizer_config_json = json.load(f)
  3482. if "add_prefix_space" in tokenizer_config_json:
  3483. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3484. if "added_tokens_decoder" in tokenizer_config_json:
  3485. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3486. if token_data.get("special"):
  3487. token_id = int(token_id)
  3488. token = token_data["content"]
  3489. special_vocab._set_special_token(token, token_id)
  3490. # update eos token
  3491. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3492. special_vocab.special_token_ids["eos"] = token_id
  3493. special_vocab.add_to_gguf(self.gguf_writer)
  3494. def set_gguf_parameters(self):
  3495. super().set_gguf_parameters()
  3496. hparams = self.hparams
  3497. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3498. if (rope_dim := hparams.get("head_dim")) is None:
  3499. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3500. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3501. rope_scaling = self.hparams.get("rope_scaling") or {}
  3502. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3503. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3504. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3506. n_head = self.hparams["num_attention_heads"]
  3507. n_kv_head = self.hparams.get("num_key_value_heads")
  3508. name = name.replace("language_model.", "") # InternVL
  3509. if name.startswith("mlp") or name.startswith("vision_model"):
  3510. # skip visual tensors
  3511. return []
  3512. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3513. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3514. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3515. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3516. return [(self.map_tensor_name(name), data_torch)]
  3517. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3518. class BertModel(TextModel):
  3519. model_arch = gguf.MODEL_ARCH.BERT
  3520. def __init__(self, *args, **kwargs):
  3521. super().__init__(*args, **kwargs)
  3522. self.vocab_size = None
  3523. if cls_out_labels := self.hparams.get("id2label"):
  3524. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3525. # Remove dummy labels added by AutoConfig
  3526. cls_out_labels = None
  3527. self.cls_out_labels = cls_out_labels
  3528. def set_gguf_parameters(self):
  3529. super().set_gguf_parameters()
  3530. self.gguf_writer.add_causal_attention(False)
  3531. self._try_set_pooling_type()
  3532. if self.cls_out_labels:
  3533. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3534. def set_vocab(self):
  3535. tokens, toktypes, tokpre = self.get_vocab_base()
  3536. self.vocab_size = len(tokens)
  3537. # we need this to validate the size of the token_type embeddings
  3538. # though currently we are passing all zeros to the token_type embeddings
  3539. # "Sequence A" or "Sequence B"
  3540. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3541. # convert to phantom space vocab
  3542. def phantom(tok):
  3543. if tok.startswith("[") and tok.endswith("]"):
  3544. return tok
  3545. if tok.startswith("##"):
  3546. return tok[2:]
  3547. return "\u2581" + tok
  3548. tokens = list(map(phantom, tokens))
  3549. # add vocab to gguf
  3550. self.gguf_writer.add_tokenizer_model("bert")
  3551. self.gguf_writer.add_tokenizer_pre(tokpre)
  3552. self.gguf_writer.add_token_list(tokens)
  3553. self.gguf_writer.add_token_types(toktypes)
  3554. # handle special tokens
  3555. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3556. special_vocab.add_to_gguf(self.gguf_writer)
  3557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3558. del bid # unused
  3559. if name.startswith("bert."):
  3560. name = name[5:]
  3561. if name.endswith(".gamma"):
  3562. name = name[:-6] + ".weight"
  3563. if name.endswith(".beta"):
  3564. name = name[:-5] + ".bias"
  3565. # we are only using BERT for embeddings so we don't need the pooling layer
  3566. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3567. return [] # we don't need these
  3568. if name.startswith("cls.predictions"):
  3569. return []
  3570. if name.startswith("cls.seq_relationship"):
  3571. return []
  3572. if self.cls_out_labels:
  3573. # For BertForSequenceClassification (direct projection layer)
  3574. if name == "classifier.weight":
  3575. name = "classifier.out_proj.weight"
  3576. if name == "classifier.bias":
  3577. name = "classifier.out_proj.bias"
  3578. return [(self.map_tensor_name(name), data_torch)]
  3579. def _xlmroberta_tokenizer_init(self) -> None:
  3580. # we need the pad_token_id to know how to chop down position_embd matrix
  3581. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3582. self._position_offset = 1 + pad_token_id
  3583. if "max_position_embeddings" in self.hparams:
  3584. self.hparams["max_position_embeddings"] -= self._position_offset
  3585. else:
  3586. self._position_offset = None
  3587. def _xlmroberta_set_vocab(self) -> None:
  3588. # to avoid TypeError: Descriptors cannot be created directly
  3589. # exception when importing sentencepiece_model_pb2
  3590. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3591. from sentencepiece import SentencePieceProcessor
  3592. from sentencepiece import sentencepiece_model_pb2 as model
  3593. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3594. tokenizer_json = {}
  3595. tokenizer_config_json = {}
  3596. if not tokenizer_path.is_file():
  3597. tokenizer_path = self.dir_model / 'tokenizer.json'
  3598. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3599. if not tokenizer_path.is_file():
  3600. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3601. from base64 import b64decode
  3602. from transformers import AutoTokenizer
  3603. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3604. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3605. tokenizer_json = json.load(fp)
  3606. if tokenizer_config_path.is_file():
  3607. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3608. tokenizer_config_json = json.load(fp)
  3609. add_prefix = tokenizer.add_prefix_space
  3610. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3611. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3612. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3613. else:
  3614. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3615. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3616. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3617. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3618. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3619. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3620. tokenizer = SentencePieceProcessor()
  3621. tokenizer.LoadFromFile(str(tokenizer_path))
  3622. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3623. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3624. scores: list[float] = [-10000.0] * vocab_size
  3625. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3626. if isinstance(tokenizer, SentencePieceProcessor):
  3627. for token_id in range(tokenizer.vocab_size()):
  3628. piece = tokenizer.IdToPiece(token_id)
  3629. text = piece.encode("utf-8")
  3630. score = tokenizer.GetScore(token_id)
  3631. toktype = SentencePieceTokenTypes.NORMAL
  3632. if tokenizer.IsUnknown(token_id):
  3633. toktype = SentencePieceTokenTypes.UNKNOWN
  3634. elif tokenizer.IsControl(token_id):
  3635. toktype = SentencePieceTokenTypes.CONTROL
  3636. elif tokenizer.IsUnused(token_id):
  3637. toktype = SentencePieceTokenTypes.UNUSED
  3638. elif tokenizer.IsByte(token_id):
  3639. toktype = SentencePieceTokenTypes.BYTE
  3640. tokens[token_id] = text
  3641. scores[token_id] = score
  3642. toktypes[token_id] = toktype
  3643. else:
  3644. added_vocab = tokenizer.get_added_vocab()
  3645. unk_token = tokenizer_config_json.get("unk_token")
  3646. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3647. for token_id in range(tokenizer.vocab_size):
  3648. piece = tokenizer._convert_id_to_token(token_id)
  3649. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3650. text = piece.encode("utf-8")
  3651. score = tokenizer_json["model"]["vocab"][token_id][1]
  3652. toktype = SentencePieceTokenTypes.NORMAL
  3653. if token_id == unk_token_id:
  3654. toktype = SentencePieceTokenTypes.UNKNOWN
  3655. elif token_id in tokenizer.all_special_ids:
  3656. toktype = SentencePieceTokenTypes.CONTROL
  3657. elif token_id in added_vocab.values():
  3658. toktype = SentencePieceTokenTypes.USER_DEFINED
  3659. # No reliable way to detect this, but jina doesn't have any
  3660. # elif tokenizer.IsByte(token_id):
  3661. # toktype = SentencePieceTokenTypes.BYTE
  3662. tokens[token_id] = text
  3663. scores[token_id] = score
  3664. toktypes[token_id] = toktype
  3665. if isinstance(tokenizer, SentencePieceProcessor):
  3666. # realign tokens (see HF tokenizer code)
  3667. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3668. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3669. toktypes = [
  3670. SentencePieceTokenTypes.CONTROL,
  3671. SentencePieceTokenTypes.CONTROL,
  3672. SentencePieceTokenTypes.CONTROL,
  3673. SentencePieceTokenTypes.UNKNOWN,
  3674. ] + toktypes[3:-1]
  3675. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3676. # Add mask token missing from sentencepiece.bpe.model
  3677. tokens[250001] = b'<mask>'
  3678. scores[250001] = 0.0
  3679. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3680. self.gguf_writer.add_tokenizer_model("t5")
  3681. self.gguf_writer.add_tokenizer_pre("default")
  3682. self.gguf_writer.add_token_list(tokens)
  3683. self.gguf_writer.add_token_scores(scores)
  3684. self.gguf_writer.add_token_types(toktypes)
  3685. self.gguf_writer.add_add_space_prefix(add_prefix)
  3686. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3687. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3688. if precompiled_charsmap:
  3689. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3690. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3691. special_vocab.add_to_gguf(self.gguf_writer)
  3692. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3693. class DistilBertModel(BertModel):
  3694. model_arch = gguf.MODEL_ARCH.BERT
  3695. def set_gguf_parameters(self):
  3696. self.gguf_writer.add_layer_norm_eps(1e-12)
  3697. logger.info("gguf: layer norm epsilon = 1e-12")
  3698. super().set_gguf_parameters()
  3699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3700. if name.startswith("distilbert."):
  3701. name = name[11:]
  3702. # These layers act as MLM head, so we don't need them
  3703. if name.startswith("vocab_"):
  3704. return []
  3705. return super().modify_tensors(data_torch, name, bid)
  3706. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3707. class RobertaModel(BertModel):
  3708. model_arch = gguf.MODEL_ARCH.BERT
  3709. def __init__(self, *args, **kwargs):
  3710. super().__init__(*args, **kwargs)
  3711. # we need the pad_token_id to know how to chop down position_embd matrix
  3712. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3713. self._position_offset = 1 + pad_token_id
  3714. if "max_position_embeddings" in self.hparams:
  3715. self.hparams["max_position_embeddings"] -= self._position_offset
  3716. else:
  3717. self._position_offset = None
  3718. def set_vocab(self):
  3719. """Support BPE tokenizers for roberta models"""
  3720. bpe_tok_path = self.dir_model / "tokenizer.json"
  3721. if bpe_tok_path.exists():
  3722. self._set_vocab_gpt2()
  3723. # we need this to validate the size of the token_type embeddings
  3724. # though currently we are passing all zeros to the token_type embeddings
  3725. # "Sequence A" or "Sequence B"
  3726. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3727. else:
  3728. return super().set_vocab()
  3729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3730. # if name starts with "roberta.", remove the prefix
  3731. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3732. if name.startswith("roberta."):
  3733. name = name[8:]
  3734. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3735. if name == "embeddings.position_embeddings.weight":
  3736. if self._position_offset is not None:
  3737. data_torch = data_torch[self._position_offset:,:]
  3738. return super().modify_tensors(data_torch, name, bid)
  3739. @ModelBase.register("NomicBertModel")
  3740. class NomicBertModel(BertModel):
  3741. model_arch = gguf.MODEL_ARCH.BERT
  3742. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3743. hparams = kwargs.pop("hparams", None)
  3744. if hparams is None:
  3745. hparams = ModelBase.load_hparams(dir_model)
  3746. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3747. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3748. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3749. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3750. if self._tokenizer_is_xlmroberta:
  3751. self._xlmroberta_tokenizer_init()
  3752. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3753. if npos == 8192 and mtp == 2048:
  3754. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3755. elif npos == 2048 and mtp == 2048:
  3756. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3757. else:
  3758. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3759. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3760. # this doesn't do anything in the HF version
  3761. assert self.hparams["causal"] is False
  3762. # no bias tensors unless MoE
  3763. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3764. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3765. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3766. # norm at end of layer
  3767. assert self.hparams["prenorm"] is False
  3768. # standard RoPE
  3769. assert self.hparams["rotary_emb_fraction"] == 1.0
  3770. assert self.hparams["rotary_emb_interleaved"] is False
  3771. assert self.hparams["rotary_emb_scale_base"] is None
  3772. def set_vocab(self) -> None:
  3773. if self._tokenizer_is_xlmroberta:
  3774. return self._xlmroberta_set_vocab()
  3775. return super().set_vocab()
  3776. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3777. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3778. if "mlp.experts.bias" in name:
  3779. return [] # Explicitly return an empty list.
  3780. if "mlp.experts.mlp.w1" in name:
  3781. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3782. name += ".weight"
  3783. if "mlp.experts.mlp.w2" in name:
  3784. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3785. data_torch = data_torch.transpose(1, 2)
  3786. name += ".weight"
  3787. return [(self.map_tensor_name(name), data_torch)]
  3788. def set_gguf_parameters(self):
  3789. super().set_gguf_parameters()
  3790. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3791. if self.is_moe:
  3792. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3793. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3794. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3795. def _is_tokenizer_xlmroberta(self) -> bool:
  3796. with open(self.dir_model / "tokenizer.json") as f:
  3797. tokenizer_json = json.load(f)
  3798. toktyp = tokenizer_json["model"]["type"]
  3799. if toktyp == "Unigram":
  3800. return True
  3801. if toktyp == "WordPiece":
  3802. return False
  3803. raise ValueError(f"unknown tokenizer: {toktyp}")
  3804. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3805. class NeoBert(BertModel):
  3806. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3807. def set_gguf_parameters(self):
  3808. super().set_gguf_parameters()
  3809. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3810. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3811. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3813. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3814. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3815. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3816. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3817. def modify_tensors(self, data_torch, name, bid):
  3818. if name.startswith("decoder."):
  3819. return []
  3820. if name.startswith("model."):
  3821. name = name[6:]
  3822. return super().modify_tensors(data_torch, name, bid)
  3823. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3824. class XLMRobertaModel(BertModel):
  3825. model_arch = gguf.MODEL_ARCH.BERT
  3826. def __init__(self, *args, **kwargs):
  3827. super().__init__(*args, **kwargs)
  3828. self._xlmroberta_tokenizer_init()
  3829. def set_vocab(self):
  3830. self._xlmroberta_set_vocab()
  3831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3832. # if name starts with "roberta.", remove the prefix
  3833. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3834. if name.startswith("roberta."):
  3835. name = name[8:]
  3836. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3837. if name == "embeddings.position_embeddings.weight":
  3838. if self._position_offset is not None:
  3839. data_torch = data_torch[self._position_offset:,:]
  3840. return super().modify_tensors(data_torch, name, bid)
  3841. @ModelBase.register("GemmaForCausalLM")
  3842. class GemmaModel(TextModel):
  3843. model_arch = gguf.MODEL_ARCH.GEMMA
  3844. def set_vocab(self):
  3845. self._set_vocab_sentencepiece()
  3846. # TODO: these special tokens should be exported only for the CodeGemma family
  3847. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3848. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3849. special_vocab._set_special_token("prefix", 67)
  3850. special_vocab._set_special_token("suffix", 69)
  3851. special_vocab._set_special_token("middle", 68)
  3852. special_vocab._set_special_token("fsep", 70)
  3853. special_vocab._set_special_token("eot", 107)
  3854. special_vocab.chat_template = None # do not add it twice
  3855. special_vocab.add_to_gguf(self.gguf_writer)
  3856. self.gguf_writer.add_add_space_prefix(False)
  3857. def set_gguf_parameters(self):
  3858. hparams = self.hparams
  3859. block_count = hparams["num_hidden_layers"]
  3860. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3861. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3862. self.gguf_writer.add_block_count(block_count)
  3863. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3864. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3865. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3866. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3867. self.gguf_writer.add_key_length(hparams["head_dim"])
  3868. self.gguf_writer.add_value_length(hparams["head_dim"])
  3869. self.gguf_writer.add_file_type(self.ftype)
  3870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3871. del bid # unused
  3872. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3873. # To prevent errors, skip loading lm_head.weight.
  3874. if name == "lm_head.weight":
  3875. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3876. return []
  3877. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3878. if name.endswith("norm.weight"):
  3879. data_torch = data_torch + 1
  3880. return [(self.map_tensor_name(name), data_torch)]
  3881. @ModelBase.register("Gemma2ForCausalLM")
  3882. class Gemma2Model(TextModel):
  3883. model_arch = gguf.MODEL_ARCH.GEMMA2
  3884. def set_vocab(self):
  3885. self._set_vocab_sentencepiece()
  3886. self.gguf_writer.add_add_space_prefix(False)
  3887. def set_gguf_parameters(self):
  3888. hparams = self.hparams
  3889. block_count = hparams["num_hidden_layers"]
  3890. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3891. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3892. self.gguf_writer.add_block_count(block_count)
  3893. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3894. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3895. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3896. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3897. self.gguf_writer.add_key_length(hparams["head_dim"])
  3898. self.gguf_writer.add_value_length(hparams["head_dim"])
  3899. self.gguf_writer.add_file_type(self.ftype)
  3900. self.gguf_writer.add_attn_logit_softcapping(
  3901. self.hparams["attn_logit_softcapping"]
  3902. )
  3903. self.gguf_writer.add_final_logit_softcapping(
  3904. self.hparams["final_logit_softcapping"]
  3905. )
  3906. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3908. del bid # unused
  3909. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3910. # To prevent errors, skip loading lm_head.weight.
  3911. if name == "lm_head.weight":
  3912. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3913. return []
  3914. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3915. if name.endswith("norm.weight"):
  3916. data_torch = data_torch + 1
  3917. return [(self.map_tensor_name(name), data_torch)]
  3918. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3919. class Gemma3Model(TextModel):
  3920. model_arch = gguf.MODEL_ARCH.GEMMA3
  3921. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3922. def set_vocab(self):
  3923. self._set_vocab_sentencepiece()
  3924. self.gguf_writer.add_add_space_prefix(False)
  3925. def set_gguf_parameters(self):
  3926. hparams = self.hparams
  3927. block_count = hparams["num_hidden_layers"]
  3928. # some default values are not specified in the hparams
  3929. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3930. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3931. self.gguf_writer.add_block_count(block_count)
  3932. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3933. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3934. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3935. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3936. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3937. self.gguf_writer.add_file_type(self.ftype)
  3938. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3939. # attn_logit_softcapping is removed in Gemma3
  3940. assert hparams.get("attn_logit_softcapping") is None
  3941. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3942. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3943. if hparams.get("rope_scaling") is not None:
  3944. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3945. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3946. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3947. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3949. del bid # unused
  3950. if "language_model." in name:
  3951. name = name.replace("language_model.", "")
  3952. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3953. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3954. return [] # skip vision tensors
  3955. # remove OOV (out-of-vocabulary) rows in token_embd
  3956. if "embed_tokens.weight" in name:
  3957. vocab = self._create_vocab_sentencepiece()
  3958. tokens = vocab[0]
  3959. data_torch = data_torch[:len(tokens)]
  3960. # ref code in Gemma3RMSNorm
  3961. # output = output * (1.0 + self.weight.float())
  3962. # note: this is not the case on gemma3n
  3963. if name.endswith("norm.weight"):
  3964. data_torch = data_torch + self.norm_shift
  3965. return [(self.map_tensor_name(name), data_torch)]
  3966. @ModelBase.register("Gemma3ForConditionalGeneration")
  3967. class Gemma3VisionModel(MmprojModel):
  3968. def set_gguf_parameters(self):
  3969. super().set_gguf_parameters()
  3970. hparams = self.hparams
  3971. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3972. # default values below are taken from HF tranformers code
  3973. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3974. self.gguf_writer.add_vision_use_gelu(True)
  3975. # calculate proj_scale_factor (used by tinygemma3 test model)
  3976. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3977. n_per_side = int(image_seq_length ** 0.5)
  3978. image_size = self.hparams["image_size"]
  3979. patch_size = self.hparams["patch_size"]
  3980. proj_scale_factor = (image_size // patch_size) // n_per_side
  3981. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3982. # we only need to write this if it's not the default value
  3983. # in this case, we are converting a test model
  3984. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3985. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3986. del bid, new_name, n_dims # unused
  3987. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3988. if "input_projection" in name:
  3989. return gguf.GGMLQuantizationType.F16
  3990. if ".embeddings." in name:
  3991. return gguf.GGMLQuantizationType.F32
  3992. return False
  3993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3994. del bid # unused
  3995. if "vision_model.head." in name:
  3996. return [] # skip redundant tensors for tinygemma3
  3997. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3998. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3999. # process vision tensors
  4000. name = name.replace("_weight", ".weight")
  4001. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4002. # the other norm values are part of SigLIP model, and they are already correct
  4003. # ref code: Gemma3RMSNorm
  4004. if "soft_emb_norm.weight" in name:
  4005. logger.info(f"Correcting norm value for '{name}'")
  4006. data_torch = data_torch + 1
  4007. return [(self.map_tensor_name(name), data_torch)]
  4008. return [] # skip other tensors
  4009. @ModelBase.register("Gemma3nForConditionalGeneration")
  4010. class Gemma3NModel(Gemma3Model):
  4011. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4012. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4013. _altup_proj: list[Tensor] = []
  4014. _altup_unembd: list[Tensor] = []
  4015. def __init__(self, *args, **kwargs):
  4016. super().__init__(*args, **kwargs)
  4017. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4018. self._altup_proj = [
  4019. torch.Tensor(), # to be replaced
  4020. torch.Tensor(), # to be replaced
  4021. torch.Tensor(), # to be replaced
  4022. ]
  4023. self._altup_unembd = [
  4024. torch.Tensor(), # to be replaced
  4025. torch.Tensor(), # to be replaced
  4026. torch.Tensor(), # to be replaced
  4027. ]
  4028. def set_vocab(self):
  4029. super().set_vocab()
  4030. def set_gguf_parameters(self):
  4031. super().set_gguf_parameters()
  4032. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4033. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4034. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4035. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4036. activation_sparsity_scale = []
  4037. for s in self.hparams["activation_sparsity_pattern"]:
  4038. normal_dist = torch.distributions.normal.Normal(0, 1)
  4039. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4040. activation_sparsity_scale.append(std_multiplier.item())
  4041. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4042. sliding_window_pattern = []
  4043. for t in self.hparams["layer_types"]:
  4044. sliding_window_pattern.append(t == "sliding_attention")
  4045. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4046. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4047. has_all = all(m.numel() > 0 for m in matrices)
  4048. if not has_all:
  4049. return None
  4050. else:
  4051. return torch.stack(matrices, dim=0)
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. if name.endswith("_scale"):
  4054. name = name + ".weight"
  4055. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4056. if "language_model." not in name:
  4057. return [] # skip non-language model tensors
  4058. if "altup_unembed_projections" in name:
  4059. data_torch = data_torch.to(device="cpu")
  4060. if ".0." in name:
  4061. self._altup_unembd[0] = data_torch
  4062. elif ".1." in name:
  4063. self._altup_unembd[1] = data_torch
  4064. elif ".2." in name:
  4065. self._altup_unembd[2] = data_torch
  4066. else:
  4067. raise ValueError(f"Unknown name: {name}")
  4068. out = self._stack_matrices(self._altup_unembd)
  4069. if out is not None:
  4070. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4071. else:
  4072. return []
  4073. if "altup_projections" in name:
  4074. data_torch = data_torch.to(device="cpu")
  4075. if ".0." in name:
  4076. self._altup_proj[0] = data_torch
  4077. elif ".1." in name:
  4078. self._altup_proj[1] = data_torch
  4079. elif ".2." in name:
  4080. self._altup_proj[2] = data_torch
  4081. else:
  4082. raise ValueError(f"Unknown name: {name}")
  4083. out = self._stack_matrices(self._altup_proj)
  4084. if out is not None:
  4085. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4086. else:
  4087. return []
  4088. return super().modify_tensors(data_torch, name, bid)
  4089. @ModelBase.register("Starcoder2ForCausalLM")
  4090. class StarCoder2Model(TextModel):
  4091. model_arch = gguf.MODEL_ARCH.STARCODER2
  4092. @ModelBase.register("Rwkv6ForCausalLM")
  4093. class Rwkv6Model(TextModel):
  4094. model_arch = gguf.MODEL_ARCH.RWKV6
  4095. def set_vocab(self):
  4096. self._set_vocab_rwkv_world()
  4097. def set_gguf_parameters(self):
  4098. block_count = self.hparams["num_hidden_layers"]
  4099. head_size = self.hparams["head_size"]
  4100. hidden_size = self.hparams["hidden_size"]
  4101. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4102. rescale_every_n_layers = self.hparams["rescale_every"]
  4103. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4104. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4105. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4106. # RWKV isn't context limited
  4107. self.gguf_writer.add_context_length(1048576)
  4108. self.gguf_writer.add_embedding_length(hidden_size)
  4109. self.gguf_writer.add_block_count(block_count)
  4110. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4111. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4112. self.gguf_writer.add_wkv_head_size(head_size)
  4113. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4114. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4115. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4116. self.gguf_writer.add_file_type(self.ftype)
  4117. # required by llama.cpp, unused
  4118. self.gguf_writer.add_head_count(0)
  4119. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4121. new_name = self.map_tensor_name(name)
  4122. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4123. new_name += ".weight"
  4124. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4125. data_torch = data_torch.transpose(0, 1)
  4126. if new_name.endswith("time_mix_w2.weight"):
  4127. data_torch = data_torch.permute(0, 2, 1)
  4128. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4129. data_torch = data_torch.squeeze()
  4130. try:
  4131. rescale_every_n_layers = self.hparams["rescale_every"]
  4132. if rescale_every_n_layers > 0:
  4133. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4134. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4135. except KeyError:
  4136. pass
  4137. # concat time_mix_lerp weights to reduce some cpu overhead
  4138. # also reduces the number of tensors in the model
  4139. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4140. try:
  4141. self.lerp_weights[bid][new_name] = data_torch
  4142. except KeyError:
  4143. self.lerp_weights[bid] = {new_name: data_torch}
  4144. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4145. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4146. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4147. yield (new_name, data)
  4148. return
  4149. yield (new_name, data_torch)
  4150. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4151. class RWKV6Qwen2Model(Rwkv6Model):
  4152. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4153. def set_vocab(self):
  4154. try:
  4155. self._set_vocab_sentencepiece()
  4156. except FileNotFoundError:
  4157. self._set_vocab_gpt2()
  4158. def set_gguf_parameters(self):
  4159. block_count = self.hparams["num_hidden_layers"]
  4160. num_attention_heads = self.hparams["num_attention_heads"]
  4161. num_key_value_heads = self.hparams["num_key_value_heads"]
  4162. hidden_size = self.hparams["hidden_size"]
  4163. head_size = hidden_size // num_attention_heads
  4164. rms_norm_eps = self.hparams["rms_norm_eps"]
  4165. intermediate_size = self.hparams["intermediate_size"]
  4166. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4167. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4168. # RWKV isn't context limited
  4169. self.gguf_writer.add_context_length(1048576)
  4170. self.gguf_writer.add_embedding_length(hidden_size)
  4171. self.gguf_writer.add_block_count(block_count)
  4172. self.gguf_writer.add_wkv_head_size(head_size)
  4173. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4174. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4175. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4176. self.gguf_writer.add_file_type(self.ftype)
  4177. # special parameters for time_mixing in RWKV6QWEN2
  4178. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4179. self.gguf_writer.add_token_shift_count(1)
  4180. # RWKV6QWEN2 use grouped key/value like GQA
  4181. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4182. # required by llama.cpp, unused
  4183. self.gguf_writer.add_head_count(0)
  4184. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4185. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4186. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4187. data = data.view(5, -1, data.shape[-1])
  4188. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4189. # permute them here to avoid code changes
  4190. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4191. if "w2" in new_name:
  4192. data = data.view(5, -1, data.shape[-1])
  4193. yield (new_name, data)
  4194. continue
  4195. yield (new_name, data)
  4196. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4197. class Rwkv7Model(TextModel):
  4198. model_arch = gguf.MODEL_ARCH.RWKV7
  4199. def set_vocab(self):
  4200. self._set_vocab_rwkv_world()
  4201. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4202. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4203. def set_gguf_parameters(self):
  4204. block_count = self.hparams["num_hidden_layers"]
  4205. try:
  4206. head_size = self.hparams["head_size"]
  4207. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4208. except KeyError:
  4209. head_size = self.hparams["head_dim"]
  4210. layer_norm_eps = self.hparams["norm_eps"]
  4211. hidden_size = self.hparams["hidden_size"]
  4212. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4213. # ICLR: In-Context-Learning-Rate
  4214. try:
  4215. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4216. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4217. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4218. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4219. except KeyError:
  4220. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4221. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4222. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4223. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4224. # RWKV isn't context limited
  4225. self.gguf_writer.add_context_length(1048576)
  4226. self.gguf_writer.add_embedding_length(hidden_size)
  4227. self.gguf_writer.add_block_count(block_count)
  4228. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4229. self.gguf_writer.add_wkv_head_size(head_size)
  4230. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4231. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4232. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4233. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4234. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4235. self.gguf_writer.add_file_type(self.ftype)
  4236. # required by llama.cpp, unused
  4237. self.gguf_writer.add_head_count(0)
  4238. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4239. lora_needs_transpose: bool = True
  4240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4241. # unify tensor names here to make life easier
  4242. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4243. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4244. name = name.replace("time_mixer.", "")
  4245. # lora layer names in fla-hub's impl
  4246. if "_lora.lora" in name:
  4247. self.lora_needs_transpose = False
  4248. name = name.replace("_lora.lora.0.weight", "1.weight")
  4249. name = name.replace("_lora.lora.2.weight", "2.weight")
  4250. name = name.replace("_lora.lora.2.bias", "0.weight")
  4251. name = name.replace("feed_forward_norm", "ln2")
  4252. name = name.replace("g_norm", "ln_x")
  4253. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4254. # some models have dummy v0/v1/v2 on first layer while others don't
  4255. # ignore them all since they are not used
  4256. return
  4257. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4258. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4259. if bid is not None and "attention.x_" in name:
  4260. if "attention.x_x" in name:
  4261. # already concatenated
  4262. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4263. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4264. yield (new_name, data)
  4265. else:
  4266. try:
  4267. self.lerp_weights[bid][name] = data_torch
  4268. except KeyError:
  4269. self.lerp_weights[bid] = {name: data_torch}
  4270. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4271. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4272. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4273. yield (new_name, data)
  4274. return
  4275. else:
  4276. data_torch = data_torch.squeeze()
  4277. new_name = self.map_tensor_name(name)
  4278. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4279. new_name += ".weight"
  4280. if self.lora_needs_transpose and any(
  4281. new_name.endswith(t) for t in [
  4282. "time_mix_w1.weight", "time_mix_w2.weight",
  4283. "time_mix_a1.weight", "time_mix_a2.weight",
  4284. "time_mix_v1.weight", "time_mix_v2.weight",
  4285. "time_mix_g1.weight", "time_mix_g2.weight",
  4286. ]
  4287. ):
  4288. data_torch = data_torch.transpose(0, 1)
  4289. if 'r_k' in new_name:
  4290. data_torch = data_torch.flatten()
  4291. if bid == 0 and "time_mix_a" in new_name:
  4292. # dummy v0/v1/v2 on first layer
  4293. # easist way to make llama happy
  4294. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4295. yield (new_name, data_torch)
  4296. @ModelBase.register("RwkvHybridForCausalLM")
  4297. class ARwkv7Model(Rwkv7Model):
  4298. model_arch = gguf.MODEL_ARCH.ARWKV7
  4299. def set_vocab(self):
  4300. try:
  4301. self._set_vocab_sentencepiece()
  4302. except FileNotFoundError:
  4303. self._set_vocab_gpt2()
  4304. def set_gguf_parameters(self):
  4305. block_count = self.hparams["num_hidden_layers"]
  4306. hidden_size = self.hparams["hidden_size"]
  4307. head_size = self.hparams["head_size"]
  4308. rms_norm_eps = self.hparams["rms_norm_eps"]
  4309. intermediate_size = self.hparams["intermediate_size"]
  4310. wkv_has_gate = self.hparams["wkv_has_gate"]
  4311. assert self.hparams["wkv_version"] == 7
  4312. # ICLR: In-Context-Learning-Rate
  4313. lora_rank_decay = 64
  4314. lora_rank_iclr = 64
  4315. lora_rank_value_residual_mix = 32
  4316. lora_rank_gate = 128 if wkv_has_gate else 0
  4317. # RWKV isn't context limited
  4318. self.gguf_writer.add_context_length(1048576)
  4319. self.gguf_writer.add_embedding_length(hidden_size)
  4320. self.gguf_writer.add_block_count(block_count)
  4321. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4322. self.gguf_writer.add_wkv_head_size(head_size)
  4323. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4324. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4325. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4326. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4327. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4328. self.gguf_writer.add_file_type(self.ftype)
  4329. self.gguf_writer.add_token_shift_count(1)
  4330. # required by llama.cpp, unused
  4331. self.gguf_writer.add_head_count(0)
  4332. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4333. class MambaModel(TextModel):
  4334. model_arch = gguf.MODEL_ARCH.MAMBA
  4335. def __init__(self, dir_model: Path, *args, **kwargs):
  4336. # Avoid using AutoConfig for hparams
  4337. hparams = kwargs.pop("hparams", None)
  4338. if hparams is None:
  4339. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4340. hparams = json.load(f)
  4341. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4342. def set_vocab(self):
  4343. vocab_size = self.hparams["vocab_size"]
  4344. # Round vocab size to next multiple of 8
  4345. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4346. # pad using ceiling division
  4347. # ref: https://stackoverflow.com/a/17511341/22827863
  4348. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4349. self.hparams["vocab_size"] = vocab_size
  4350. if (self.dir_model / "tokenizer.json").is_file():
  4351. self._set_vocab_gpt2()
  4352. elif (self.dir_model / "tokenizer.model").is_file():
  4353. self._set_vocab_sentencepiece()
  4354. else:
  4355. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4356. self._set_vocab_builtin("gpt-neox", vocab_size)
  4357. def set_gguf_parameters(self):
  4358. d_model = self.find_hparam(["hidden_size", "d_model"])
  4359. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4360. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4361. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4362. # ceiling division
  4363. # ref: https://stackoverflow.com/a/17511341/22827863
  4364. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4365. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4366. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4367. use_dt_b_c_norm = False
  4368. # For falconmamba we do apply RMS norm on B / DT and C layers
  4369. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4370. use_dt_b_c_norm = True
  4371. # Fail early for models which don't have a block expansion factor of 2
  4372. assert d_inner == 2 * d_model
  4373. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4374. self.gguf_writer.add_embedding_length(d_model)
  4375. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4376. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4377. self.gguf_writer.add_block_count(self.block_count)
  4378. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4379. self.gguf_writer.add_ssm_inner_size(d_inner)
  4380. self.gguf_writer.add_ssm_state_size(d_state)
  4381. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4382. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4383. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4384. self.gguf_writer.add_file_type(self.ftype)
  4385. _tok_embd = None
  4386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4387. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4388. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4389. new_name = self.map_tensor_name(name)
  4390. if name.endswith(".A_log"):
  4391. logger.debug("A_log --> A ==> " + new_name)
  4392. data_torch = -torch.exp(data_torch)
  4393. # [4 1 8192 1] -> [4 8192 1 1]
  4394. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4395. data_torch = data_torch.squeeze()
  4396. # assuming token_embd.weight is seen before output.weight
  4397. if self._tok_embd is not None and new_name == output_name:
  4398. if torch.equal(self._tok_embd, data_torch):
  4399. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4400. return []
  4401. elif new_name == tok_embd_name:
  4402. self._tok_embd = data_torch
  4403. return [(new_name, data_torch)]
  4404. @ModelBase.register("Mamba2ForCausalLM")
  4405. class Mamba2Model(TextModel):
  4406. model_arch = gguf.MODEL_ARCH.MAMBA2
  4407. def __init__(self, dir_model: Path, *args, **kwargs):
  4408. # Avoid using AutoConfig for hparams
  4409. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4410. hparams = kwargs.pop("hparams", None)
  4411. if hparams is None:
  4412. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4413. hparams = json.load(f)
  4414. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4415. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4416. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4417. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4418. def set_vocab(self):
  4419. vocab_size = self.hparams["vocab_size"]
  4420. # Round vocab size to next multiple of 16
  4421. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4422. # pad using ceiling division
  4423. # ref: https://stackoverflow.com/a/17511341/22827863
  4424. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4425. self.hparams["vocab_size"] = vocab_size
  4426. if (self.dir_model / "tokenizer.model").is_file():
  4427. self._set_vocab_sentencepiece()
  4428. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4429. # mamba-codestral
  4430. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4431. elif (self.dir_model / "tokenizer.json").is_file():
  4432. self._set_vocab_gpt2()
  4433. else:
  4434. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4435. self._set_vocab_builtin("gpt-neox", vocab_size)
  4436. def set_gguf_parameters(self):
  4437. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4438. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4439. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4440. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4441. # Fail early for models which don't have a block expansion factor of 2
  4442. # TODO: does this really matter?
  4443. # skip the assertion for FalconH1 Model
  4444. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4445. assert self.d_inner == 2 * self.d_model
  4446. assert self.d_inner % head_dim == 0
  4447. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4448. self.gguf_writer.add_embedding_length(self.d_model)
  4449. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4450. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4451. self.gguf_writer.add_block_count(self.block_count)
  4452. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4453. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4454. self.gguf_writer.add_ssm_state_size(d_state)
  4455. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4456. self.gguf_writer.add_ssm_group_count(self.n_group)
  4457. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4458. self.gguf_writer.add_file_type(self.ftype)
  4459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4460. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4461. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4462. name = name.removeprefix("model.")
  4463. if name.endswith(".dt_bias"):
  4464. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4465. new_name = self.map_tensor_name(name)
  4466. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4467. data_torch = data_torch.squeeze()
  4468. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4469. gguf.MODEL_TENSOR.SSM_A,
  4470. gguf.MODEL_TENSOR.SSM_D,
  4471. ]):
  4472. # unsqueeze A to use similar shape semantics as Mamba-1
  4473. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4474. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4475. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4476. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4477. if name.endswith(".A_log"):
  4478. logger.debug("A_log --> A ==> " + new_name)
  4479. data_torch = -torch.exp(data_torch)
  4480. yield (new_name, data_torch)
  4481. @ModelBase.register("JambaForCausalLM")
  4482. class JambaModel(TextModel):
  4483. model_arch = gguf.MODEL_ARCH.JAMBA
  4484. def get_vocab_base_pre(self, tokenizer) -> str:
  4485. del tokenizer # unused
  4486. return "gpt-2"
  4487. def set_vocab(self):
  4488. if (self.dir_model / "tokenizer.model").is_file():
  4489. # Using Jamba's tokenizer.json causes errors on model load
  4490. # (something about "byte not found in vocab"),
  4491. # but there's a working tokenizer.model
  4492. self._set_vocab_sentencepiece()
  4493. else:
  4494. # Some Jamba models only have a tokenizer.json, which works.
  4495. self._set_vocab_gpt2()
  4496. def set_gguf_parameters(self):
  4497. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4498. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4499. d_inner = self.hparams["mamba_expand"] * d_model
  4500. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4501. # ceiling division
  4502. # ref: https://stackoverflow.com/a/17511341/22827863
  4503. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4504. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4505. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4506. n_kv_head = self.hparams["num_key_value_heads"]
  4507. attn_offset = self.hparams["attn_layer_offset"]
  4508. attn_period = self.hparams["attn_layer_period"]
  4509. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4510. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4511. ]
  4512. self.gguf_writer.add_block_count(self.block_count)
  4513. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4514. self.gguf_writer.add_embedding_length(d_model)
  4515. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4516. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4517. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4518. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4519. self.gguf_writer.add_ssm_inner_size(d_inner)
  4520. self.gguf_writer.add_ssm_state_size(d_state)
  4521. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4522. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4523. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4524. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4525. self.gguf_writer.add_file_type(self.ftype)
  4526. _experts: list[dict[str, Tensor]] | None = None
  4527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4528. # Mini-Jamba
  4529. name = name.replace(".moe.", ".feed_forward.")
  4530. if bid is not None:
  4531. moe_offset = self.hparams["expert_layer_offset"]
  4532. moe_period = self.hparams["expert_layer_period"]
  4533. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4534. name = name.replace(".experts.0.", ".")
  4535. # process the experts separately
  4536. if ".feed_forward.experts." in name:
  4537. n_experts = self.hparams["num_experts"]
  4538. assert bid is not None
  4539. if self._experts is None:
  4540. self._experts = [{} for _ in range(self.block_count)]
  4541. self._experts[bid][name] = data_torch
  4542. if len(self._experts[bid]) >= n_experts * 3:
  4543. # merge the experts into a single 3d tensor
  4544. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4545. datas: list[Tensor] = []
  4546. for xid in range(n_experts):
  4547. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4548. datas.append(self._experts[bid][ename])
  4549. del self._experts[bid][ename]
  4550. data_torch = torch.stack(datas, dim=0)
  4551. # using the same merged name as qwen2moe
  4552. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4553. new_name = self.map_tensor_name(merged_name)
  4554. yield new_name, data_torch
  4555. return
  4556. new_name = self.map_tensor_name(name)
  4557. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4558. data_torch = data_torch.squeeze()
  4559. if name.endswith(".A_log"):
  4560. logger.debug("A_log --> A ==> " + new_name)
  4561. data_torch = -torch.exp(data_torch)
  4562. yield (new_name, data_torch)
  4563. def prepare_tensors(self):
  4564. super().prepare_tensors()
  4565. if self._experts is not None:
  4566. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4567. experts = [k for d in self._experts for k in d.keys()]
  4568. if len(experts) > 0:
  4569. raise ValueError(f"Unprocessed experts: {experts}")
  4570. @ModelBase.register("CohereForCausalLM")
  4571. class CommandR2Model(TextModel):
  4572. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4573. def __init__(self, *args, **kwargs):
  4574. super().__init__(*args, **kwargs)
  4575. # max_position_embeddings = 8192 in config.json but model was actually
  4576. # trained on 128k context length
  4577. # aya-23 models don't have model_max_length specified
  4578. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4579. def set_gguf_parameters(self):
  4580. super().set_gguf_parameters()
  4581. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4582. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4583. @ModelBase.register("Cohere2ForCausalLM")
  4584. class Cohere2Model(TextModel):
  4585. model_arch = gguf.MODEL_ARCH.COHERE2
  4586. def set_gguf_parameters(self):
  4587. super().set_gguf_parameters()
  4588. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4589. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4590. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4591. rotary_pct = self.hparams["rotary_pct"]
  4592. hidden_size = self.hparams["hidden_size"]
  4593. num_attention_heads = self.hparams["num_attention_heads"]
  4594. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4595. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4596. @ModelBase.register("OlmoForCausalLM")
  4597. @ModelBase.register("OLMoForCausalLM")
  4598. class OlmoModel(TextModel):
  4599. model_arch = gguf.MODEL_ARCH.OLMO
  4600. def set_gguf_parameters(self):
  4601. super().set_gguf_parameters()
  4602. self.gguf_writer.add_layer_norm_eps(1e-5)
  4603. clip_qkv = self.hparams.get("clip_qkv")
  4604. if clip_qkv is not None:
  4605. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4606. # Same as super class, but permuting q_proj, k_proj
  4607. # Copied from: LlamaModel
  4608. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4609. del bid # unused
  4610. n_head = self.hparams["num_attention_heads"]
  4611. n_kv_head = self.hparams.get("num_key_value_heads")
  4612. if name.endswith("q_proj.weight"):
  4613. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4614. if name.endswith("k_proj.weight"):
  4615. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4616. return [(self.map_tensor_name(name), data_torch)]
  4617. @ModelBase.register("Olmo2ForCausalLM")
  4618. class Olmo2Model(TextModel):
  4619. model_arch = gguf.MODEL_ARCH.OLMO2
  4620. @ModelBase.register("OlmoeForCausalLM")
  4621. class OlmoeModel(TextModel):
  4622. model_arch = gguf.MODEL_ARCH.OLMOE
  4623. def set_gguf_parameters(self):
  4624. super().set_gguf_parameters()
  4625. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4626. if (n_experts := self.hparams.get("num_experts")) is not None:
  4627. self.gguf_writer.add_expert_count(n_experts)
  4628. _experts: list[dict[str, Tensor]] | None = None
  4629. # Copied from: Qwen2MoeModel
  4630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4631. # process the experts separately
  4632. if name.find("experts") != -1:
  4633. n_experts = self.hparams["num_experts"]
  4634. assert bid is not None
  4635. if self._experts is None:
  4636. self._experts = [{} for _ in range(self.block_count)]
  4637. self._experts[bid][name] = data_torch
  4638. if len(self._experts[bid]) >= n_experts * 3:
  4639. tensors: list[tuple[str, Tensor]] = []
  4640. # merge the experts into a single 3d tensor
  4641. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4642. datas: list[Tensor] = []
  4643. for xid in range(n_experts):
  4644. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4645. datas.append(self._experts[bid][ename])
  4646. del self._experts[bid][ename]
  4647. data_torch = torch.stack(datas, dim=0)
  4648. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4649. new_name = self.map_tensor_name(merged_name)
  4650. tensors.append((new_name, data_torch))
  4651. return tensors
  4652. else:
  4653. return []
  4654. return [(self.map_tensor_name(name), data_torch)]
  4655. # Copied from: Qwen2MoeModel
  4656. def prepare_tensors(self):
  4657. super().prepare_tensors()
  4658. if self._experts is not None:
  4659. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4660. experts = [k for d in self._experts for k in d.keys()]
  4661. if len(experts) > 0:
  4662. raise ValueError(f"Unprocessed experts: {experts}")
  4663. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4664. class JinaBertV2Model(BertModel):
  4665. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4666. def set_vocab(self):
  4667. tokenizer_class = 'BertTokenizer'
  4668. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4669. tokenizer_class = json.load(f)['tokenizer_class']
  4670. if tokenizer_class == 'BertTokenizer':
  4671. super().set_vocab()
  4672. elif tokenizer_class == 'RobertaTokenizer':
  4673. self._set_vocab_gpt2()
  4674. self.gguf_writer.add_token_type_count(2)
  4675. else:
  4676. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4677. @ModelBase.register("OpenELMForCausalLM")
  4678. class OpenELMModel(TextModel):
  4679. model_arch = gguf.MODEL_ARCH.OPENELM
  4680. @staticmethod
  4681. def _make_divisible(v: float | int, divisor: int) -> int:
  4682. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4683. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4684. # Make sure that round down does not go down by more than 10%.
  4685. if new_v < 0.9 * v:
  4686. new_v += divisor
  4687. return new_v
  4688. def __init__(self, *args, **kwargs):
  4689. super().__init__(*args, **kwargs)
  4690. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4691. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4692. self._n_embd: int = self.hparams["model_dim"]
  4693. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4694. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4695. self._ffn_dims: list[int] = [
  4696. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4697. for multiplier in ffn_multipliers
  4698. ]
  4699. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4700. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4701. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4702. def set_vocab(self):
  4703. try:
  4704. self._set_vocab_sentencepiece()
  4705. except FileNotFoundError:
  4706. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4707. def set_gguf_parameters(self):
  4708. n_embd = self._n_embd
  4709. head_dim = self.hparams["head_dim"]
  4710. rot_pct = 1.0
  4711. assert self.block_count == len(self._num_kv_heads)
  4712. assert self.block_count == len(self._num_query_heads)
  4713. assert self.block_count == len(self._ffn_dims)
  4714. self.gguf_writer.add_block_count(self.block_count)
  4715. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4716. self.gguf_writer.add_embedding_length(n_embd)
  4717. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4718. self.gguf_writer.add_head_count(self._num_query_heads)
  4719. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4720. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4721. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4722. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4723. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4724. self.gguf_writer.add_key_length(head_dim)
  4725. self.gguf_writer.add_value_length(head_dim)
  4726. self.gguf_writer.add_file_type(self.ftype)
  4727. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4728. if "n_layers" in keys:
  4729. return self.hparams["num_transformer_layers"]
  4730. return super().find_hparam(keys, optional)
  4731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4732. # split ff
  4733. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4734. ff_dim = self._ffn_dims[bid]
  4735. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4736. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4737. return
  4738. yield (self.map_tensor_name(name), data_torch)
  4739. @ModelBase.register("ArcticForCausalLM")
  4740. class ArcticModel(TextModel):
  4741. model_arch = gguf.MODEL_ARCH.ARCTIC
  4742. def set_vocab(self):
  4743. # The reason for using a custom implementation here is that the
  4744. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4745. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4746. from sentencepiece import SentencePieceProcessor
  4747. tokenizer_path = self.dir_model / 'tokenizer.model'
  4748. if not tokenizer_path.is_file():
  4749. logger.error(f'Error: Missing {tokenizer_path}')
  4750. sys.exit(1)
  4751. # Read the whole vocabulary from the tokenizer.model file
  4752. tokenizer = SentencePieceProcessor()
  4753. tokenizer.LoadFromFile(str(tokenizer_path))
  4754. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4755. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4756. scores: list[float] = [-10000.0] * vocab_size
  4757. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4758. for token_id in range(tokenizer.vocab_size()):
  4759. piece = tokenizer.IdToPiece(token_id)
  4760. text = piece.encode("utf-8")
  4761. score = tokenizer.GetScore(token_id)
  4762. toktype = SentencePieceTokenTypes.NORMAL
  4763. if tokenizer.IsUnknown(token_id):
  4764. toktype = SentencePieceTokenTypes.UNKNOWN
  4765. elif tokenizer.IsControl(token_id):
  4766. toktype = SentencePieceTokenTypes.CONTROL
  4767. elif tokenizer.IsUnused(token_id):
  4768. toktype = SentencePieceTokenTypes.UNUSED
  4769. elif tokenizer.IsByte(token_id):
  4770. toktype = SentencePieceTokenTypes.BYTE
  4771. tokens[token_id] = text
  4772. scores[token_id] = score
  4773. toktypes[token_id] = toktype
  4774. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4775. # of information about added/redefined tokens and modify them accordingly.
  4776. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4777. if tokenizer_config_file.is_file():
  4778. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4779. tokenizer_config_json = json.load(f)
  4780. if "added_tokens_decoder" in tokenizer_config_json:
  4781. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4782. for token_id, token_json in added_tokens_decoder.items():
  4783. token_id = int(token_id)
  4784. if token_id >= vocab_size:
  4785. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4786. continue
  4787. token_content = token_json["content"]
  4788. token_type = SentencePieceTokenTypes.USER_DEFINED
  4789. token_score = -10000.0
  4790. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4791. # Set the score to 0.0 as in the original tokenizer.model
  4792. if ("special" in token_json) and token_json["special"]:
  4793. if token_content == tokenizer_config_json["unk_token"]:
  4794. token_type = SentencePieceTokenTypes.UNKNOWN
  4795. else:
  4796. token_type = SentencePieceTokenTypes.CONTROL
  4797. token_score = 0.0
  4798. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4799. tokens[token_id] = token_content.encode("utf-8")
  4800. toktypes[token_id] = token_type
  4801. scores[token_id] = token_score
  4802. self.gguf_writer.add_tokenizer_model("llama")
  4803. self.gguf_writer.add_tokenizer_pre("default")
  4804. self.gguf_writer.add_token_list(tokens)
  4805. self.gguf_writer.add_token_scores(scores)
  4806. self.gguf_writer.add_token_types(toktypes)
  4807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4808. special_vocab.add_to_gguf(self.gguf_writer)
  4809. def set_gguf_parameters(self):
  4810. super().set_gguf_parameters()
  4811. hparams = self.hparams
  4812. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4813. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4814. _experts: list[dict[str, Tensor]] | None = None
  4815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4816. n_head = self.hparams["num_attention_heads"]
  4817. n_kv_head = self.hparams.get("num_key_value_heads")
  4818. if name.endswith("q_proj.weight"):
  4819. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4820. if name.endswith("k_proj.weight"):
  4821. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4822. # process the experts separately
  4823. if name.find("block_sparse_moe.experts") != -1:
  4824. n_experts = self.hparams["num_local_experts"]
  4825. assert bid is not None
  4826. if self._experts is None:
  4827. self._experts = [{} for _ in range(self.block_count)]
  4828. self._experts[bid][name] = data_torch
  4829. if len(self._experts[bid]) >= n_experts * 3:
  4830. tensors: list[tuple[str, Tensor]] = []
  4831. # merge the experts into a single 3d tensor
  4832. for wid in ["w1", "w2", "w3"]:
  4833. datas: list[Tensor] = []
  4834. for xid in range(n_experts):
  4835. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4836. datas.append(self._experts[bid][ename])
  4837. del self._experts[bid][ename]
  4838. data_torch = torch.stack(datas, dim=0)
  4839. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4840. new_name = self.map_tensor_name(merged_name)
  4841. tensors.append((new_name, data_torch))
  4842. return tensors
  4843. else:
  4844. return []
  4845. return [(self.map_tensor_name(name), data_torch)]
  4846. def prepare_tensors(self):
  4847. super().prepare_tensors()
  4848. if self._experts is not None:
  4849. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4850. experts = [k for d in self._experts for k in d.keys()]
  4851. if len(experts) > 0:
  4852. raise ValueError(f"Unprocessed experts: {experts}")
  4853. @ModelBase.register("DeepseekForCausalLM")
  4854. class DeepseekModel(TextModel):
  4855. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4856. def set_vocab(self):
  4857. try:
  4858. self._set_vocab_sentencepiece()
  4859. except FileNotFoundError:
  4860. self._set_vocab_gpt2()
  4861. def set_gguf_parameters(self):
  4862. super().set_gguf_parameters()
  4863. hparams = self.hparams
  4864. if (rope_dim := hparams.get("head_dim")) is None:
  4865. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4866. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4867. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4868. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4869. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4870. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4871. self.gguf_writer.add_expert_weights_scale(1.0)
  4872. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4873. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4874. _experts: list[dict[str, Tensor]] | None = None
  4875. @staticmethod
  4876. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4877. if n_head_kv is not None and n_head != n_head_kv:
  4878. n_head = n_head_kv
  4879. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4880. .swapaxes(1, 2)
  4881. .reshape(weights.shape))
  4882. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4883. n_head = self.hparams["num_attention_heads"]
  4884. n_kv_head = self.hparams.get("num_key_value_heads")
  4885. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4886. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4887. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4888. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4889. # process the experts separately
  4890. if name.find("mlp.experts") != -1:
  4891. n_experts = self.hparams["n_routed_experts"]
  4892. assert bid is not None
  4893. if self._experts is None:
  4894. self._experts = [{} for _ in range(self.block_count)]
  4895. self._experts[bid][name] = data_torch
  4896. if len(self._experts[bid]) >= n_experts * 3:
  4897. tensors: list[tuple[str, Tensor]] = []
  4898. # merge the experts into a single 3d tensor
  4899. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4900. datas: list[Tensor] = []
  4901. for xid in range(n_experts):
  4902. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4903. datas.append(self._experts[bid][ename])
  4904. del self._experts[bid][ename]
  4905. data_torch = torch.stack(datas, dim=0)
  4906. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4907. new_name = self.map_tensor_name(merged_name)
  4908. tensors.append((new_name, data_torch))
  4909. return tensors
  4910. else:
  4911. return []
  4912. return [(self.map_tensor_name(name), data_torch)]
  4913. def prepare_tensors(self):
  4914. super().prepare_tensors()
  4915. if self._experts is not None:
  4916. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4917. experts = [k for d in self._experts for k in d.keys()]
  4918. if len(experts) > 0:
  4919. raise ValueError(f"Unprocessed experts: {experts}")
  4920. @ModelBase.register("DeepseekV2ForCausalLM")
  4921. @ModelBase.register("DeepseekV3ForCausalLM")
  4922. @ModelBase.register("KimiVLForConditionalGeneration")
  4923. class DeepseekV2Model(TextModel):
  4924. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4925. def set_vocab(self):
  4926. try:
  4927. self._set_vocab_gpt2()
  4928. return
  4929. except Exception:
  4930. pass
  4931. from transformers import AutoTokenizer
  4932. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4933. tokpre = self.get_vocab_base_pre(tokenizer)
  4934. if tokpre == "kimi-k2":
  4935. # Build merges list using the approach similar to HunYuanMoE
  4936. merges = []
  4937. vocab = {}
  4938. mergeable_ranks = tokenizer.model._mergeable_ranks
  4939. for token, rank in mergeable_ranks.items():
  4940. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4941. if len(token) == 1:
  4942. continue
  4943. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4944. if len(merged) == 2:
  4945. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4946. # Build token list
  4947. vocab_size = self.hparams["vocab_size"]
  4948. special_tokens = tokenizer.special_tokens
  4949. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4950. tokens: list[str] = []
  4951. toktypes: list[int] = []
  4952. for i in range(vocab_size):
  4953. if i not in reverse_vocab:
  4954. tokens.append(f"[PAD{i}]")
  4955. toktypes.append(gguf.TokenType.UNUSED)
  4956. else:
  4957. token = reverse_vocab[i]
  4958. tokens.append(token)
  4959. if i in special_tokens.values():
  4960. toktypes.append(gguf.TokenType.CONTROL)
  4961. else:
  4962. toktypes.append(gguf.TokenType.NORMAL)
  4963. self.gguf_writer.add_tokenizer_model("gpt2")
  4964. self.gguf_writer.add_tokenizer_pre(tokpre)
  4965. self.gguf_writer.add_token_list(tokens)
  4966. self.gguf_writer.add_token_types(toktypes)
  4967. self.gguf_writer.add_token_merges(merges)
  4968. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4969. special_vocab.add_to_gguf(self.gguf_writer)
  4970. else:
  4971. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4972. def set_gguf_parameters(self):
  4973. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4974. self.hparams["num_key_value_heads"] = 1
  4975. super().set_gguf_parameters()
  4976. hparams = self.hparams
  4977. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4978. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4979. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4980. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4981. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4982. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4983. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4984. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4985. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4986. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4987. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4988. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4989. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4990. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4991. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4992. if hparams["scoring_func"] == "sigmoid":
  4993. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4994. elif hparams["scoring_func"] == "softmax":
  4995. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4996. else:
  4997. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4998. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4999. rope_scaling = self.hparams.get("rope_scaling") or {}
  5000. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5001. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5002. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5003. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5004. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5005. _experts: list[dict[str, Tensor]] | None = None
  5006. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5007. # skip vision tensors and remove "language_model." for Kimi-VL
  5008. if "vision_tower" in name or "multi_modal_projector" in name:
  5009. return []
  5010. if name.startswith("language_model."):
  5011. name = name.replace("language_model.", "")
  5012. # rename e_score_correction_bias tensors
  5013. if name.endswith("e_score_correction_bias"):
  5014. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5015. # skip Multi-Token Prediction (MTP) layers
  5016. block_count = self.hparams["num_hidden_layers"]
  5017. match = re.match(r"model.layers.(\d+)", name)
  5018. if match and int(match.group(1)) >= block_count:
  5019. return []
  5020. # process the experts separately
  5021. if name.find("mlp.experts") != -1:
  5022. n_experts = self.hparams["n_routed_experts"]
  5023. assert bid is not None
  5024. if self._experts is None:
  5025. self._experts = [{} for _ in range(self.block_count)]
  5026. self._experts[bid][name] = data_torch
  5027. if len(self._experts[bid]) >= n_experts * 3:
  5028. tensors: list[tuple[str, Tensor]] = []
  5029. # merge the experts into a single 3d tensor
  5030. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5031. datas: list[Tensor] = []
  5032. for xid in range(n_experts):
  5033. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5034. datas.append(self._experts[bid][ename])
  5035. del self._experts[bid][ename]
  5036. data_torch = torch.stack(datas, dim=0)
  5037. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5038. new_name = self.map_tensor_name(merged_name)
  5039. tensors.append((new_name, data_torch))
  5040. return tensors
  5041. else:
  5042. return []
  5043. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5044. if name.endswith("kv_b_proj.weight"):
  5045. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5046. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5047. n_head_kv = self.hparams["num_key_value_heads"]
  5048. v_head_dim = self.hparams["v_head_dim"]
  5049. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5050. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5051. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5052. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5053. k_b = k_b.transpose(1, 2)
  5054. return [
  5055. (self.map_tensor_name(name_kb), k_b),
  5056. (self.map_tensor_name(name_vb), v_b)
  5057. ]
  5058. return [(self.map_tensor_name(name), data_torch)]
  5059. def prepare_tensors(self):
  5060. super().prepare_tensors()
  5061. if self._experts is not None:
  5062. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5063. experts = [k for d in self._experts for k in d.keys()]
  5064. if len(experts) > 0:
  5065. raise ValueError(f"Unprocessed experts: {experts}")
  5066. @ModelBase.register("Dots1ForCausalLM")
  5067. class Dots1Model(Qwen2MoeModel):
  5068. model_arch = gguf.MODEL_ARCH.DOTS1
  5069. def __init__(self, *args, **kwargs):
  5070. super().__init__(*args, **kwargs)
  5071. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5072. def set_gguf_parameters(self):
  5073. super().set_gguf_parameters()
  5074. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5075. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5076. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5077. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5078. if self.hparams["scoring_func"] == "noaux_tc":
  5079. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5080. else:
  5081. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5083. if name.endswith("e_score_correction_bias"):
  5084. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5085. if "shared_experts" in name:
  5086. return [(self.map_tensor_name(name), data_torch)]
  5087. return super().modify_tensors(data_torch, name, bid)
  5088. @ModelBase.register("PLMForCausalLM")
  5089. class PLMModel(TextModel):
  5090. model_arch = gguf.MODEL_ARCH.PLM
  5091. def set_vocab(self):
  5092. self._set_vocab_gpt2()
  5093. def set_gguf_parameters(self):
  5094. super().set_gguf_parameters()
  5095. hparams = self.hparams
  5096. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5097. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5098. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5099. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5100. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5102. return [(self.map_tensor_name(name), data_torch)]
  5103. def prepare_tensors(self):
  5104. super().prepare_tensors()
  5105. @ModelBase.register("T5WithLMHeadModel")
  5106. @ModelBase.register("T5ForConditionalGeneration")
  5107. @ModelBase.register("MT5ForConditionalGeneration")
  5108. @ModelBase.register("UMT5ForConditionalGeneration")
  5109. class T5Model(TextModel):
  5110. model_arch = gguf.MODEL_ARCH.T5
  5111. def __init__(self, *args, **kwargs):
  5112. super().__init__(*args, **kwargs)
  5113. self.shared_token_embeddings_found = False
  5114. def set_vocab(self):
  5115. # to avoid TypeError: Descriptors cannot be created directly
  5116. # exception when importing sentencepiece_model_pb2
  5117. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5118. from sentencepiece import SentencePieceProcessor
  5119. from sentencepiece import sentencepiece_model_pb2 as model
  5120. tokenizer_path = self.dir_model / 'tokenizer.model'
  5121. # many older models use spiece.model tokenizer model filename
  5122. if not tokenizer_path.is_file():
  5123. tokenizer_path = self.dir_model / 'spiece.model'
  5124. if not tokenizer_path.is_file():
  5125. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5126. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5127. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5128. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5129. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5130. # assure the tokenizer model file name is correct
  5131. assert tokenizer_path.name == 'tokenizer.model'
  5132. return self._set_vocab_sentencepiece()
  5133. else:
  5134. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5135. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5136. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5137. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5138. tokenizer = SentencePieceProcessor()
  5139. tokenizer.LoadFromFile(str(tokenizer_path))
  5140. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5141. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5142. scores: list[float] = [-10000.0] * vocab_size
  5143. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5144. for token_id in range(tokenizer.vocab_size()):
  5145. piece = tokenizer.IdToPiece(token_id)
  5146. text = piece.encode("utf-8")
  5147. score = tokenizer.GetScore(token_id)
  5148. toktype = SentencePieceTokenTypes.NORMAL
  5149. if tokenizer.IsUnknown(token_id):
  5150. toktype = SentencePieceTokenTypes.UNKNOWN
  5151. elif tokenizer.IsControl(token_id):
  5152. toktype = SentencePieceTokenTypes.CONTROL
  5153. elif tokenizer.IsUnused(token_id):
  5154. toktype = SentencePieceTokenTypes.UNUSED
  5155. elif tokenizer.IsByte(token_id):
  5156. toktype = SentencePieceTokenTypes.BYTE
  5157. tokens[token_id] = text
  5158. scores[token_id] = score
  5159. toktypes[token_id] = toktype
  5160. added_tokens_file = self.dir_model / 'added_tokens.json'
  5161. if added_tokens_file.is_file():
  5162. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5163. added_tokens_json = json.load(f)
  5164. for key in added_tokens_json:
  5165. token_id = added_tokens_json[key]
  5166. if token_id >= vocab_size:
  5167. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5168. continue
  5169. tokens[token_id] = key.encode("utf-8")
  5170. scores[token_id] = -1000.0
  5171. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5172. if vocab_size > len(tokens):
  5173. pad_count = vocab_size - len(tokens)
  5174. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5175. for i in range(1, pad_count + 1):
  5176. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5177. scores.append(-1000.0)
  5178. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5179. self.gguf_writer.add_tokenizer_model("t5")
  5180. self.gguf_writer.add_tokenizer_pre("default")
  5181. self.gguf_writer.add_token_list(tokens)
  5182. self.gguf_writer.add_token_scores(scores)
  5183. self.gguf_writer.add_token_types(toktypes)
  5184. self.gguf_writer.add_add_space_prefix(add_prefix)
  5185. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5186. if precompiled_charsmap:
  5187. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5188. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5189. special_vocab.add_to_gguf(self.gguf_writer)
  5190. def set_gguf_parameters(self):
  5191. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5192. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5193. n_ctx = 512
  5194. self.gguf_writer.add_context_length(n_ctx)
  5195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5196. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5197. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5198. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5199. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5200. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5201. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5202. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5203. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5204. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5205. self.gguf_writer.add_file_type(self.ftype)
  5206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5207. del bid # unused
  5208. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5209. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5210. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5211. # and decoder and ignore the remaining ones.
  5212. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5213. if not self.shared_token_embeddings_found:
  5214. name = "shared.weight"
  5215. self.shared_token_embeddings_found = True
  5216. else:
  5217. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5218. return []
  5219. return [(self.map_tensor_name(name), data_torch)]
  5220. @ModelBase.register("T5EncoderModel")
  5221. class T5EncoderModel(TextModel):
  5222. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5223. def __init__(self, *args, **kwargs):
  5224. super().__init__(*args, **kwargs)
  5225. self.shared_token_embeddings_found = False
  5226. def set_vocab(self):
  5227. # to avoid TypeError: Descriptors cannot be created directly
  5228. # exception when importing sentencepiece_model_pb2
  5229. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5230. from sentencepiece import SentencePieceProcessor
  5231. from sentencepiece import sentencepiece_model_pb2 as model
  5232. tokenizer_path = self.dir_model / 'tokenizer.model'
  5233. # many older models use spiece.model tokenizer model filename
  5234. if not tokenizer_path.is_file():
  5235. tokenizer_path = self.dir_model / 'spiece.model'
  5236. if not tokenizer_path.is_file():
  5237. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5238. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5239. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5240. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5241. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5242. # assure the tokenizer model file name is correct
  5243. assert tokenizer_path.name == 'tokenizer.model'
  5244. return self._set_vocab_sentencepiece()
  5245. else:
  5246. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5247. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5248. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5249. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5250. tokenizer = SentencePieceProcessor()
  5251. tokenizer.LoadFromFile(str(tokenizer_path))
  5252. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5253. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5254. scores: list[float] = [-10000.0] * vocab_size
  5255. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5256. for token_id in range(tokenizer.vocab_size()):
  5257. piece = tokenizer.IdToPiece(token_id)
  5258. text = piece.encode("utf-8")
  5259. score = tokenizer.GetScore(token_id)
  5260. toktype = SentencePieceTokenTypes.NORMAL
  5261. if tokenizer.IsUnknown(token_id):
  5262. toktype = SentencePieceTokenTypes.UNKNOWN
  5263. elif tokenizer.IsControl(token_id):
  5264. toktype = SentencePieceTokenTypes.CONTROL
  5265. elif tokenizer.IsUnused(token_id):
  5266. toktype = SentencePieceTokenTypes.UNUSED
  5267. elif tokenizer.IsByte(token_id):
  5268. toktype = SentencePieceTokenTypes.BYTE
  5269. tokens[token_id] = text
  5270. scores[token_id] = score
  5271. toktypes[token_id] = toktype
  5272. added_tokens_file = self.dir_model / 'added_tokens.json'
  5273. if added_tokens_file.is_file():
  5274. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5275. added_tokens_json = json.load(f)
  5276. for key in added_tokens_json:
  5277. token_id = added_tokens_json[key]
  5278. if token_id >= vocab_size:
  5279. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5280. continue
  5281. tokens[token_id] = key.encode("utf-8")
  5282. scores[token_id] = -1000.0
  5283. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5284. if vocab_size > len(tokens):
  5285. pad_count = vocab_size - len(tokens)
  5286. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5287. for i in range(1, pad_count + 1):
  5288. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5289. scores.append(-1000.0)
  5290. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5291. self.gguf_writer.add_tokenizer_model("t5")
  5292. self.gguf_writer.add_tokenizer_pre("default")
  5293. self.gguf_writer.add_token_list(tokens)
  5294. self.gguf_writer.add_token_scores(scores)
  5295. self.gguf_writer.add_token_types(toktypes)
  5296. self.gguf_writer.add_add_space_prefix(add_prefix)
  5297. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5298. if precompiled_charsmap:
  5299. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5300. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5301. special_vocab.add_to_gguf(self.gguf_writer)
  5302. def set_gguf_parameters(self):
  5303. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5304. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5305. n_ctx = 512
  5306. self.gguf_writer.add_context_length(n_ctx)
  5307. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5308. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5309. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5310. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5311. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5312. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5313. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5314. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5315. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5316. self.gguf_writer.add_file_type(self.ftype)
  5317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5318. del bid # unused
  5319. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5320. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5321. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5322. # and decoder and ignore the remaining ones.
  5323. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5324. if not self.shared_token_embeddings_found:
  5325. name = "shared.weight"
  5326. self.shared_token_embeddings_found = True
  5327. else:
  5328. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5329. return []
  5330. return [(self.map_tensor_name(name), data_torch)]
  5331. @ModelBase.register("JAISLMHeadModel")
  5332. class JaisModel(TextModel):
  5333. model_arch = gguf.MODEL_ARCH.JAIS
  5334. def __init__(self, *args, **kwargs):
  5335. super().__init__(*args, **kwargs)
  5336. # SwigLU activation
  5337. assert self.hparams["activation_function"] == "swiglu"
  5338. # ALiBi position embedding
  5339. assert self.hparams["position_embedding_type"] == "alibi"
  5340. # Embeddings scale
  5341. self.embeddings_scale = 1.0
  5342. if 'mup_embeddings_scale' in self.hparams:
  5343. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5344. elif 'embeddings_scale' in self.hparams:
  5345. self.embeddings_scale = self.hparams['embeddings_scale']
  5346. else:
  5347. assert False
  5348. self.width_scale = 1.0
  5349. if 'mup_output_alpha' in self.hparams:
  5350. assert 'mup_width_scale' in self.hparams
  5351. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5352. elif 'width_scale' in self.hparams:
  5353. self.width_scale = self.hparams['width_scale']
  5354. else:
  5355. assert False
  5356. self.max_alibi_bias = 8.0
  5357. def set_vocab(self):
  5358. self._set_vocab_gpt2()
  5359. def set_gguf_parameters(self):
  5360. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5361. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5362. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5363. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5364. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5365. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5366. self.gguf_writer.add_file_type(self.ftype)
  5367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5368. del bid # unused
  5369. tensors: list[tuple[str, Tensor]] = []
  5370. # we don't need these
  5371. if name.endswith((".attn.bias")):
  5372. return tensors
  5373. if name.endswith(("relative_pe.slopes")):
  5374. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5375. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5376. # but Jais's PyTorch model simply precalculates the slope values and places them
  5377. # in relative_pes.slopes
  5378. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5379. first_val = float(data_torch[0].item())
  5380. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5381. return tensors
  5382. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5383. data_torch = data_torch.transpose(1, 0)
  5384. new_name = self.map_tensor_name(name)
  5385. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5386. tensors.append((new_name, data_torch * self.embeddings_scale))
  5387. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5388. tensors.append((new_name, data_torch * self.width_scale))
  5389. else:
  5390. tensors.append((new_name, data_torch))
  5391. return tensors
  5392. def prepare_tensors(self):
  5393. super().prepare_tensors()
  5394. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5395. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5396. class Glm4Model(TextModel):
  5397. model_arch = gguf.MODEL_ARCH.GLM4
  5398. def set_vocab(self):
  5399. from transformers import AutoTokenizer
  5400. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5401. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5402. tokens, toktypes, tokpre = self.get_vocab_base()
  5403. self.gguf_writer.add_tokenizer_model("gpt2")
  5404. self.gguf_writer.add_tokenizer_pre(tokpre)
  5405. self.gguf_writer.add_token_list(tokens)
  5406. self.gguf_writer.add_token_types(toktypes)
  5407. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5408. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5409. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5410. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5411. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5412. special_vocab.add_to_gguf(self.gguf_writer)
  5413. def set_gguf_parameters(self):
  5414. super().set_gguf_parameters()
  5415. if (rope_dim := self.hparams.get("head_dim")) is None:
  5416. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5417. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5418. rope_scaling = self.hparams.get("rope_scaling") or {}
  5419. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5420. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5421. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5422. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5424. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5425. return []
  5426. elif name.startswith("model.language_model."):
  5427. name = name.replace("language_model.", "") # for Glm4v
  5428. return super().modify_tensors(data_torch, name, bid)
  5429. @ModelBase.register("Glm4MoeForCausalLM")
  5430. class Glm4MoeModel(TextModel):
  5431. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5432. def __init__(self, *args, **kwargs):
  5433. super().__init__(*args, **kwargs)
  5434. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5435. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5436. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5437. def set_vocab(self):
  5438. from transformers import AutoTokenizer
  5439. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5440. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5441. tokens, toktypes, tokpre = self.get_vocab_base()
  5442. self.gguf_writer.add_tokenizer_model("gpt2")
  5443. self.gguf_writer.add_tokenizer_pre(tokpre)
  5444. self.gguf_writer.add_token_list(tokens)
  5445. self.gguf_writer.add_token_types(toktypes)
  5446. # Special tokens
  5447. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5448. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5449. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5450. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5451. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5452. # Patch broken chat template
  5453. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5454. special_vocab.chat_template = special_vocab.chat_template.replace(
  5455. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5456. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5457. special_vocab.add_to_gguf(self.gguf_writer)
  5458. def set_gguf_parameters(self):
  5459. super().set_gguf_parameters()
  5460. if (rope_dim := self.hparams.get("head_dim")) is None:
  5461. rope_dim = (
  5462. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5463. )
  5464. self.gguf_writer.add_rope_dimension_count(
  5465. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5466. )
  5467. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5468. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5469. self.gguf_writer.add_expert_count(n_routed_experts)
  5470. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5471. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5472. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5473. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5474. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5475. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5476. # Expert gating function (sigmoid for GLM4_MOE)
  5477. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5478. # Routed scaling factor
  5479. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5480. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5481. # Normalise topk probabilities
  5482. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5483. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5484. # NextN/MTP prediction layers
  5485. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5486. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5487. _experts: list[dict[str, Tensor]] | None = None
  5488. def modify_tensors(
  5489. self, data_torch: Tensor, name: str, bid: int | None
  5490. ) -> Iterable[tuple[str, Tensor]]:
  5491. if name.startswith("model.visual."): # ignore visual part
  5492. return []
  5493. elif name.startswith("model.language_model."):
  5494. name = name.replace("language_model.", "") # for multimodal variants
  5495. # Handle main token embedding (but not layer-specific NextN embeddings)
  5496. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5497. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5498. # Handle routed experts
  5499. if name.find("mlp.experts") != -1:
  5500. n_experts = self.hparams["n_routed_experts"]
  5501. assert bid is not None
  5502. if self._experts is None:
  5503. self._experts = [{} for _ in range(self.block_count)]
  5504. self._experts[bid][name] = data_torch
  5505. if len(self._experts[bid]) >= n_experts * 3:
  5506. tensors: list[tuple[str, Tensor]] = []
  5507. # merge the experts into a single 3d tensor
  5508. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5509. datas: list[Tensor] = []
  5510. for xid in range(n_experts):
  5511. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5512. datas.append(self._experts[bid][ename])
  5513. del self._experts[bid][ename]
  5514. data_torch = torch.stack(datas, dim=0)
  5515. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5516. new_name = self.map_tensor_name(merged_name)
  5517. tensors.append((new_name, data_torch))
  5518. return tensors
  5519. else:
  5520. return []
  5521. if name.endswith("e_score_correction_bias"):
  5522. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5523. new_name = self.map_tensor_name(name)
  5524. return [(new_name, data_torch)]
  5525. def prepare_tensors(self):
  5526. super().prepare_tensors()
  5527. if self._experts is not None:
  5528. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5529. experts = [k for d in self._experts for k in d.keys()]
  5530. if len(experts) > 0:
  5531. raise ValueError(f"Unprocessed experts: {experts}")
  5532. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5533. class ChatGLMModel(TextModel):
  5534. model_arch = gguf.MODEL_ARCH.CHATGLM
  5535. def set_vocab_chatglm3(self):
  5536. dir_model = self.dir_model
  5537. hparams = self.hparams
  5538. tokens: list[bytes] = []
  5539. toktypes: list[int] = []
  5540. scores: list[float] = []
  5541. from transformers import AutoTokenizer
  5542. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5543. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5544. assert max(tokenizer.get_vocab().values()) < vocab_size
  5545. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5546. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5547. for token_id in range(vocab_size):
  5548. piece = tokenizer._convert_id_to_token(token_id)
  5549. if token_id == 0:
  5550. piece = "<unk>"
  5551. elif token_id == 1:
  5552. piece = "<bos>"
  5553. elif token_id == 2:
  5554. piece = "<eos>"
  5555. text = piece.encode("utf-8")
  5556. score = 0.0
  5557. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5558. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5559. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5560. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5561. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5562. if piece in special_tokens:
  5563. toktype = SentencePieceTokenTypes.CONTROL
  5564. elif len(piece) == 0:
  5565. text = f"[PAD{token_id}]".encode("utf-8")
  5566. toktype = SentencePieceTokenTypes.UNUSED
  5567. else:
  5568. toktype = SentencePieceTokenTypes.USER_DEFINED
  5569. tokens.append(text)
  5570. scores.append(score)
  5571. toktypes.append(toktype)
  5572. continue
  5573. toktype = SentencePieceTokenTypes.NORMAL
  5574. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5575. toktype = SentencePieceTokenTypes.UNKNOWN
  5576. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5577. toktype = SentencePieceTokenTypes.CONTROL
  5578. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5579. toktype = SentencePieceTokenTypes.UNUSED
  5580. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5581. toktype = SentencePieceTokenTypes.BYTE
  5582. tokens.append(text)
  5583. scores.append(score)
  5584. toktypes.append(toktype)
  5585. self.gguf_writer.add_tokenizer_model("llama")
  5586. # glm3 needs prefix and suffix formatted as:
  5587. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5588. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5589. self.gguf_writer.add_token_list(tokens)
  5590. self.gguf_writer.add_token_scores(scores)
  5591. self.gguf_writer.add_token_types(toktypes)
  5592. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5593. special_vocab.add_to_gguf(self.gguf_writer)
  5594. @staticmethod
  5595. def token_bytes_to_string(b):
  5596. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5597. byte_encoder = bytes_to_unicode()
  5598. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5599. @staticmethod
  5600. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5601. parts = [bytes([b]) for b in token]
  5602. while True:
  5603. min_idx = None
  5604. min_rank = None
  5605. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5606. rank = mergeable_ranks.get(pair[0] + pair[1])
  5607. if rank is not None and (min_rank is None or rank < min_rank):
  5608. min_idx = i
  5609. min_rank = rank
  5610. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5611. break
  5612. assert min_idx is not None
  5613. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5614. return parts
  5615. def set_vocab(self):
  5616. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5617. self.set_vocab_chatglm3()
  5618. return
  5619. dir_model = self.dir_model
  5620. hparams = self.hparams
  5621. tokens: list[str] = []
  5622. toktypes: list[int] = []
  5623. from transformers import AutoTokenizer
  5624. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5625. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5626. assert max(tokenizer.get_vocab().values()) < vocab_size
  5627. tokens, toktypes, tokpre = self.get_vocab_base()
  5628. self.gguf_writer.add_tokenizer_model("gpt2")
  5629. self.gguf_writer.add_tokenizer_pre(tokpre)
  5630. self.gguf_writer.add_token_list(tokens)
  5631. self.gguf_writer.add_token_types(toktypes)
  5632. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5633. # only add special tokens when they were not already loaded from config.json
  5634. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5635. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5636. # this one is usually not in config.json anyway
  5637. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5638. special_vocab.add_to_gguf(self.gguf_writer)
  5639. def set_gguf_parameters(self):
  5640. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5641. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5642. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5643. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5644. self.gguf_writer.add_embedding_length(n_embed)
  5645. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5646. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5647. self.gguf_writer.add_head_count(n_head)
  5648. self.gguf_writer.add_head_count_kv(n_head_kv)
  5649. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5650. self.gguf_writer.add_file_type(self.ftype)
  5651. if "attention_dim" in self.hparams:
  5652. rope_dim = self.hparams["attention_dim"]
  5653. else:
  5654. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5655. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5656. self.gguf_writer.add_add_bos_token(False)
  5657. rope_freq = 10000
  5658. if "rope_ratio" in self.hparams:
  5659. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5660. self.gguf_writer.add_rope_freq_base(rope_freq)
  5661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5662. del bid # unused
  5663. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5664. return []
  5665. name = name.removeprefix("transformer.")
  5666. return [(self.map_tensor_name(name), data_torch)]
  5667. @ModelBase.register("NemotronForCausalLM")
  5668. class NemotronModel(TextModel):
  5669. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5670. def set_vocab(self):
  5671. self._set_vocab_sentencepiece()
  5672. self.gguf_writer.add_pad_token_id(0)
  5673. self.gguf_writer.add_unk_token_id(1)
  5674. def set_gguf_parameters(self):
  5675. super().set_gguf_parameters()
  5676. hparams = self.hparams
  5677. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5678. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5679. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5680. # * Partial RoPE
  5681. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5682. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5683. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5684. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5685. # * RopeScaling for Nemotron
  5686. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5687. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5688. else:
  5689. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5690. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5692. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5693. # model.layers.{l}.input_layernorm.weight
  5694. # model.layers.{l}.post_attention_layernorm.weight
  5695. # model.norm.weight
  5696. if name.endswith("norm.weight"):
  5697. data_torch = data_torch + 1
  5698. return [(self.map_tensor_name(name), data_torch)]
  5699. @ModelBase.register("ExaoneForCausalLM")
  5700. class ExaoneModel(TextModel):
  5701. model_arch = gguf.MODEL_ARCH.EXAONE
  5702. def set_gguf_parameters(self):
  5703. hparams = self.hparams
  5704. assert (hparams["activation_function"] == "silu")
  5705. max_position_embeddings = hparams["max_position_embeddings"]
  5706. embed_dim = hparams["hidden_size"]
  5707. num_heads = hparams["num_attention_heads"]
  5708. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5709. layer_norm_eps = hparams["layer_norm_epsilon"]
  5710. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5711. num_layers = hparams["num_layers"]
  5712. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5713. # attention_dropout_rate = hparams["attention_dropout"]
  5714. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5715. # embed_dropout_rate = hparams["embed_dropout"]
  5716. self.gguf_writer.add_embedding_length(embed_dim)
  5717. self.gguf_writer.add_head_count(num_heads)
  5718. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5719. self.gguf_writer.add_context_length(max_position_embeddings)
  5720. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5721. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5722. self.gguf_writer.add_block_count(num_layers)
  5723. self.gguf_writer.add_file_type(self.ftype)
  5724. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5725. self.gguf_writer.add_rope_freq_base(rope_theta)
  5726. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5727. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5728. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5729. rope_scaling = self.hparams.get("rope_scaling") or {}
  5730. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5731. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5732. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5733. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5734. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5735. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5736. base = self.hparams.get("rope_theta", 10000.0)
  5737. if (dim := self.hparams.get("head_dim")) is None:
  5738. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5739. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5740. factor = rope_scaling.get("factor", 8.0)
  5741. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5742. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5743. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5744. low_freq_wavelen = old_context_len / low_freq_factor
  5745. high_freq_wavelen = old_context_len / high_freq_factor
  5746. assert low_freq_wavelen != high_freq_wavelen
  5747. rope_factors = []
  5748. for freq in freqs:
  5749. wavelen = 2 * math.pi / freq
  5750. if wavelen < high_freq_wavelen:
  5751. rope_factors.append(1)
  5752. elif wavelen > low_freq_wavelen:
  5753. rope_factors.append(factor)
  5754. else:
  5755. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5756. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5757. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5758. @ModelBase.register("Exaone4ForCausalLM")
  5759. class Exaone4Model(TextModel):
  5760. model_arch = gguf.MODEL_ARCH.EXAONE4
  5761. def set_vocab(self):
  5762. tokens, toktypes, tokpre = self.get_vocab_base()
  5763. self.gguf_writer.add_tokenizer_model("gpt2")
  5764. self.gguf_writer.add_tokenizer_pre(tokpre)
  5765. self.gguf_writer.add_token_list(tokens)
  5766. self.gguf_writer.add_token_types(toktypes)
  5767. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5768. special_vocab.add_to_gguf(self.gguf_writer)
  5769. def set_gguf_parameters(self):
  5770. super().set_gguf_parameters()
  5771. hparams = self.hparams
  5772. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5773. if hparams.get("sliding_window") is not None:
  5774. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5775. if "layer_types" in hparams:
  5776. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5777. elif "sliding_window_pattern" in hparams:
  5778. sliding_window_pattern = []
  5779. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5780. for i in range(hparams["num_hidden_layers"]):
  5781. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5782. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5783. for i in range(hparams["num_hidden_layers"]):
  5784. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5785. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5786. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5787. rope_scaling = self.hparams.get("rope_scaling") or {}
  5788. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5789. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5790. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5791. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5792. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5793. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5794. base = self.hparams.get("rope_theta", 10_000.0)
  5795. if (dim := self.hparams.get("head_dim")) is None:
  5796. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5797. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5798. factor = rope_scaling.get("factor", 16.0)
  5799. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5800. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5801. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5802. low_freq_wavelen = old_context_len / low_freq_factor
  5803. high_freq_wavelen = old_context_len / high_freq_factor
  5804. rope_factors = []
  5805. for freq in freqs:
  5806. wavelen = 2 * math.pi / freq
  5807. if wavelen < high_freq_wavelen:
  5808. rope_factors.append(1)
  5809. elif wavelen > low_freq_wavelen:
  5810. rope_factors.append(factor)
  5811. else:
  5812. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5813. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5814. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5815. @ModelBase.register("GraniteForCausalLM")
  5816. class GraniteModel(LlamaModel):
  5817. """Conversion for IBM's GraniteForCausalLM"""
  5818. model_arch = gguf.MODEL_ARCH.GRANITE
  5819. def set_gguf_parameters(self):
  5820. """Granite uses standard llama parameters with the following differences:
  5821. - No head_dim support
  5822. - New multiplier params:
  5823. - attention_scale
  5824. - embedding_scale
  5825. - residual_scale
  5826. - logits_scaling
  5827. """
  5828. if head_dim := self.hparams.pop("head_dim", None):
  5829. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5830. super().set_gguf_parameters()
  5831. # NOTE: Convert _multiplier params to _scale params for naming
  5832. # consistency
  5833. if attention_scale := self.hparams.get("attention_multiplier"):
  5834. self.gguf_writer.add_attention_scale(attention_scale)
  5835. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5836. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5837. self.gguf_writer.add_embedding_scale(embedding_scale)
  5838. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5839. if residual_scale := self.hparams.get("residual_multiplier"):
  5840. self.gguf_writer.add_residual_scale(residual_scale)
  5841. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5842. if logits_scale := self.hparams.get("logits_scaling"):
  5843. self.gguf_writer.add_logit_scale(logits_scale)
  5844. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5845. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5846. class GraniteMoeModel(GraniteModel):
  5847. """Conversion for IBM's GraniteMoeForCausalLM"""
  5848. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5849. def set_gguf_parameters(self):
  5850. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5851. - shared_intermediate_size
  5852. """
  5853. super().set_gguf_parameters()
  5854. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5855. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5856. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5858. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5859. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5860. the hidden size that is then split during forward. To keep compatibility
  5861. with existing mixtral support, we pull them apart here.
  5862. """
  5863. if name.endswith("block_sparse_moe.input_linear.weight"):
  5864. ffn_dim = self.hparams["intermediate_size"]
  5865. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5866. gate, up = data_torch.split(ffn_dim, dim=-2)
  5867. return [
  5868. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5869. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5870. ]
  5871. has_experts = bool(self.hparams.get('num_local_experts'))
  5872. if name.endswith("shared_mlp.input_linear.weight"):
  5873. ffn_dim = self.hparams["shared_intermediate_size"]
  5874. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5875. gate, up = data_torch.split(ffn_dim, dim=-2)
  5876. if has_experts:
  5877. return [
  5878. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5879. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5880. ]
  5881. return [
  5882. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5883. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5884. ]
  5885. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5886. return [
  5887. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5888. ]
  5889. return super().modify_tensors(data_torch, name, bid)
  5890. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5891. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5892. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5893. layers and optionally uses MoE w/ a shared expert"""
  5894. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5895. undo_permute = True
  5896. def __init__(self, *args, **kwargs):
  5897. # Hybrid mamba models use a prefix for the mamba-specific params.
  5898. # TODO: Extend this if the prefix(es) need to be configurable
  5899. self.hparam_prefixes = ["mamba"]
  5900. super().__init__(*args, **kwargs)
  5901. # Lists of which layers use ssm vs attention
  5902. self._attn_layers = self.get_attn_layers()
  5903. self._ssm_layers = [
  5904. i for i in range(self.block_count)
  5905. if i not in self._attn_layers
  5906. ]
  5907. # n_group and d_inner are used during reshape_tensors for mamba2
  5908. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5909. self.n_group = self.find_hparam(["n_groups"])
  5910. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5911. def get_attn_layers(self):
  5912. # Explicit list of layer type names
  5913. if layer_types := self.hparams.get("layer_types"):
  5914. return [
  5915. i for i, typ in enumerate(layer_types)
  5916. if typ == "attention"
  5917. ]
  5918. # Layer types indicated by index or period
  5919. attn_layers = self.hparams.get("attn_layer_indices", [])
  5920. if not attn_layers:
  5921. attn_period = self.hparams.get("attn_layer_period")
  5922. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5923. attn_offset = self.hparams.get("attn_layer_offset")
  5924. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5925. attn_layers = [
  5926. i for i in range(self.block_count)
  5927. if i % attn_period == attn_offset
  5928. ]
  5929. return attn_layers
  5930. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5931. prefixed = []
  5932. for pfx in self.hparam_prefixes:
  5933. prefixed.extend(
  5934. "_".join([pfx, k])
  5935. for k in keys
  5936. )
  5937. keys = list(keys) + prefixed
  5938. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5939. def modify_tensors(
  5940. self, data_torch: Tensor, name: str, bid: int | None
  5941. ) -> Iterable[tuple[str, Tensor]]:
  5942. if (
  5943. name.endswith("block_sparse_moe.input_linear.weight")
  5944. or "shared_mlp" in name
  5945. ):
  5946. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5947. # Determine whether this is a mamba layer or an attention layer
  5948. if bid in self._ssm_layers:
  5949. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5950. elif bid in self._attn_layers:
  5951. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5952. return [(self.map_tensor_name(name), data_torch)]
  5953. def set_gguf_parameters(self):
  5954. """This method merges params from both parents and some that are
  5955. specific to this model. The result is some duplication of how the params
  5956. get set. The following warnings are expected during conversion:
  5957. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5958. WARNING:Duplicated key name 'granitehybrid.context_length'
  5959. """
  5960. GraniteMoeModel.set_gguf_parameters(self)
  5961. ## Mamba mixer params ##
  5962. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5963. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5964. self.gguf_writer.add_ssm_group_count(self.n_group)
  5965. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5966. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5967. # in llama.cpp
  5968. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5969. ## Attention params ##
  5970. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5971. head_count_kv_vec = [
  5972. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5973. ]
  5974. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5975. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5976. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5977. ## If Bamba, use rope, otherwise don't
  5978. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5979. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5980. if not use_rope:
  5981. self.gguf_writer.add_context_length(2**20)
  5982. ## Validation ##
  5983. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5984. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5985. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5986. def set_vocab(self):
  5987. self.hparams["pad_vocab_size_multiple"] = 8
  5988. Mamba2Model.set_vocab(self)
  5989. @ModelBase.register("BailingMoeForCausalLM")
  5990. class BailingMoeModel(TextModel):
  5991. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5992. def set_vocab(self):
  5993. self._set_vocab_gpt2()
  5994. def set_gguf_parameters(self):
  5995. super().set_gguf_parameters()
  5996. hparams = self.hparams
  5997. if (rope_dim := hparams.get("head_dim")) is None:
  5998. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5999. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6000. rope_scaling = self.hparams.get("rope_scaling") or {}
  6001. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6002. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6003. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6004. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6005. else:
  6006. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6007. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6008. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6009. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6010. self.gguf_writer.add_expert_weights_scale(1.0)
  6011. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6012. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6013. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6014. _experts: list[dict[str, Tensor]] | None = None
  6015. @staticmethod
  6016. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6017. if n_head_kv is not None and n_head != n_head_kv:
  6018. n_head = n_head_kv
  6019. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6020. .swapaxes(1, 2)
  6021. .reshape(weights.shape))
  6022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6023. n_head = self.hparams["num_attention_heads"]
  6024. n_kv_head = self.hparams.get("num_key_value_heads")
  6025. n_embd = self.hparams["hidden_size"]
  6026. if (head_dim := self.hparams.get("head_dim")) is None:
  6027. head_dim = n_embd // n_head
  6028. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6029. if name.endswith("attention.dense.weight"):
  6030. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6031. elif name.endswith("query_key_value.weight"):
  6032. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6033. return [
  6034. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6035. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6036. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6037. ]
  6038. elif name.find("mlp.experts") != -1:
  6039. n_experts = self.hparams["num_experts"]
  6040. assert bid is not None
  6041. tensors: list[tuple[str, Tensor]] = []
  6042. if self._experts is None:
  6043. self._experts = [{} for _ in range(self.block_count)]
  6044. self._experts[bid][name] = data_torch
  6045. if len(self._experts[bid]) >= n_experts * 3:
  6046. # merge the experts into a single 3d tensor
  6047. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6048. datas: list[Tensor] = []
  6049. for xid in range(n_experts):
  6050. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6051. datas.append(self._experts[bid][ename])
  6052. del self._experts[bid][ename]
  6053. data_torch = torch.stack(datas, dim=0)
  6054. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6055. new_name = self.map_tensor_name(merged_name)
  6056. tensors.append((new_name, data_torch))
  6057. return tensors
  6058. new_name = self.map_tensor_name(name)
  6059. if new_name == output_name and self.hparams.get("norm_head"):
  6060. data_torch = data_torch.float()
  6061. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6062. return [(new_name, data_torch)]
  6063. def prepare_tensors(self):
  6064. super().prepare_tensors()
  6065. if self._experts is not None:
  6066. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6067. experts = [k for d in self._experts for k in d.keys()]
  6068. if len(experts) > 0:
  6069. raise ValueError(f"Unprocessed experts: {experts}")
  6070. @ModelBase.register("ChameleonForConditionalGeneration")
  6071. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6072. class ChameleonModel(TextModel):
  6073. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6074. def set_gguf_parameters(self):
  6075. super().set_gguf_parameters()
  6076. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6077. def set_vocab(self):
  6078. self._set_vocab_gpt2()
  6079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6080. # ignore image tokenizer for now
  6081. # TODO: remove this once image support is implemented for Chameleon
  6082. if name.startswith("model.vqmodel"):
  6083. return []
  6084. n_head = self.hparams["num_attention_heads"]
  6085. n_kv_head = self.hparams.get("num_key_value_heads")
  6086. hidden_dim = self.hparams.get("hidden_size")
  6087. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6088. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6089. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6090. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6091. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6092. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6093. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6094. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6095. return [(self.map_tensor_name(name), data_torch)]
  6096. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6097. @staticmethod
  6098. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6099. head_dim = hidden_dim // n_heads
  6100. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6101. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6102. return data_torch
  6103. @ModelBase.register("UltravoxModel")
  6104. class UltravoxModel(TextModel):
  6105. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6106. def __init__(self, *args, **kwargs):
  6107. super().__init__(*args, **kwargs)
  6108. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6109. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6110. class WhisperEncoderModel(MmprojModel):
  6111. has_vision_encoder = False # no vision encoder
  6112. has_audio_encoder = True
  6113. def __init__(self, *args, **kwargs):
  6114. super().__init__(*args, **kwargs)
  6115. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6116. self.hparams["hidden_size"] = self.hparams["d_model"]
  6117. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6118. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6119. def set_gguf_parameters(self):
  6120. super().set_gguf_parameters()
  6121. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6122. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6123. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6124. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6125. del bid, new_name, n_dims # unused
  6126. if ".conv" in name and ".weight" in name:
  6127. return gguf.GGMLQuantizationType.F16
  6128. return False
  6129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6130. del bid # unused
  6131. if name.startswith("language_model."):
  6132. # skip language model tensors
  6133. return []
  6134. # prevent clash naming with vision tensors
  6135. if name.startswith("multi_modal_projector"):
  6136. name = "audio." + name
  6137. if "conv1.bias" in name or "conv2.bias" in name:
  6138. # transpose conv1 and conv2 bias
  6139. data_torch = data_torch.unsqueeze(-1)
  6140. return [(self.map_tensor_name(name), data_torch)]
  6141. @ModelBase.register("UltravoxModel")
  6142. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6143. has_vision_encoder = False # no vision encoder
  6144. has_audio_encoder = True
  6145. def set_gguf_parameters(self):
  6146. super().set_gguf_parameters()
  6147. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6148. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6149. @ModelBase.register("VoxtralForConditionalGeneration")
  6150. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6151. has_vision_encoder = False # no vision encoder
  6152. has_audio_encoder = True
  6153. def set_gguf_parameters(self):
  6154. super().set_gguf_parameters()
  6155. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6156. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6157. @ModelBase.register("FalconH1ForCausalLM")
  6158. class FalconH1Model(Mamba2Model):
  6159. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6160. def __init__(self, *args, **kwargs):
  6161. # Set the hparam prefixes for Falcon Mamba2
  6162. self.hparam_prefixes = ["mamba"]
  6163. # Initialize the base Mamba2Model
  6164. super().__init__(*args, **kwargs)
  6165. # Use Llama conversion for attention
  6166. self._transformer_model_class = LlamaModel
  6167. # n_group and d_inner are used during reshape_tensors for mamba2
  6168. self.n_group = self.find_hparam(["n_groups"])
  6169. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6170. self.d_head = self.find_hparam(["d_head"])
  6171. # Initialize any Falcon Mamba2 specific attributes
  6172. self.has_attention = True # Falcon Mamba2 has attention components
  6173. # Load Falcon-H1 multipliers from hyperparameters
  6174. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6175. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6176. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6177. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6178. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6179. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6180. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6181. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6182. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6183. prefixed = []
  6184. for pfx in self.hparam_prefixes:
  6185. prefixed.extend(
  6186. "_".join([pfx, k])
  6187. for k in keys
  6188. )
  6189. keys = list(keys) + prefixed
  6190. return super().find_hparam(keys, *args, **kwargs)
  6191. def set_vocab(self):
  6192. self._set_vocab_gpt2()
  6193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6194. tensors = list(super().modify_tensors(data_torch, name, bid))
  6195. tensor = tensors[0][1]
  6196. if "down_proj" in name:
  6197. tensor = tensor * self.mlp_multipliers[1]
  6198. elif "gate_proj" in name:
  6199. tensor = tensor * self.mlp_multipliers[0]
  6200. elif "k_proj" in name:
  6201. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6202. elif "q_proj" in name:
  6203. tensor = tensor * self.attention_in_multiplier
  6204. elif "v_proj" in name:
  6205. tensor = tensor * self.attention_in_multiplier
  6206. elif "o_proj" in name:
  6207. tensor = tensor * self.attention_out_multiplier
  6208. elif "out_proj" in name:
  6209. tensor = tensor * self.ssm_out_multiplier
  6210. elif "in_proj" in name:
  6211. tensor = tensor * self.ssm_in_multiplier
  6212. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6213. intermediate_size = self.hparams["mamba_d_ssm"]
  6214. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6215. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6216. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6217. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6218. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6219. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6220. elif "lm_head" in name:
  6221. tensor = tensor * self.hparams["lm_head_multiplier"]
  6222. elif "embed_tokens" in name:
  6223. tensor = tensor * self.hparams["embedding_multiplier"]
  6224. elif "mamba.norm" in name:
  6225. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6226. tensors = [(tensors[0][0], tensor)]
  6227. return tensors
  6228. def set_gguf_parameters(self):
  6229. super().set_gguf_parameters()
  6230. ## General Params ##
  6231. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6232. # Override some Mamba2 defaults
  6233. self.gguf_writer.add_block_count(self.block_count)
  6234. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6235. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6236. ## Attention params ##
  6237. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6238. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6239. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6240. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6241. ## Validation ##
  6242. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6243. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6244. # Add any other Falcon Mamba2 specific configuration
  6245. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6246. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6247. class HunYuanMoEModel(TextModel):
  6248. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6249. def set_vocab(self):
  6250. from transformers import AutoTokenizer
  6251. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6252. # 1. Get the pre-tokenizer identifier hash
  6253. tokpre = self.get_vocab_base_pre(tokenizer)
  6254. # 2. Reverse-engineer the merges list from mergeable_ranks
  6255. merges = []
  6256. vocab = {}
  6257. mergeable_ranks = tokenizer.mergeable_ranks
  6258. for token, rank in mergeable_ranks.items():
  6259. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6260. if len(token) == 1:
  6261. continue
  6262. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6263. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6264. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6265. # 3. Generate the tokens and toktypes lists
  6266. vocab_size = self.hparams["vocab_size"]
  6267. assert tokenizer.vocab_size == vocab_size
  6268. special_tokens = tokenizer.special_tokens
  6269. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6270. tokens: list[str] = []
  6271. toktypes: list[int] = []
  6272. for i in range(vocab_size):
  6273. if i not in reverse_vocab:
  6274. tokens.append(f"[PAD{i}]")
  6275. toktypes.append(gguf.TokenType.UNUSED)
  6276. else:
  6277. token = reverse_vocab[i]
  6278. tokens.append(token)
  6279. if i in special_tokens.values():
  6280. toktypes.append(gguf.TokenType.CONTROL)
  6281. else:
  6282. toktypes.append(gguf.TokenType.NORMAL)
  6283. # 4. Write all vocab-related fields to the GGUF writer
  6284. self.gguf_writer.add_tokenizer_model("gpt2")
  6285. self.gguf_writer.add_tokenizer_pre(tokpre)
  6286. self.gguf_writer.add_token_list(tokens)
  6287. self.gguf_writer.add_token_types(toktypes)
  6288. self.gguf_writer.add_token_merges(merges)
  6289. # 5. Add special tokens and chat templates
  6290. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6291. special_vocab.add_to_gguf(self.gguf_writer)
  6292. # FIX for BOS token: Overwrite incorrect id read from config.json
  6293. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6294. def set_gguf_parameters(self):
  6295. super().set_gguf_parameters()
  6296. hparams = self.hparams
  6297. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6298. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6299. moe_intermediate_size = hparams["moe_intermediate_size"]
  6300. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6301. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6302. moe_topk = hparams["moe_topk"]
  6303. assert all(topk == moe_topk[0] for topk in moe_topk)
  6304. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6305. moe_shared_expert = hparams["num_shared_expert"]
  6306. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6307. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6308. # Rope
  6309. rope_scaling = hparams.get("rope_scaling", {})
  6310. if rope_scaling.get("type") == "dynamic":
  6311. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6312. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6313. alpha = rope_scaling.get("alpha", 1000)
  6314. base = hparams.get("rope_theta", 10000.0)
  6315. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6316. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6317. self.gguf_writer.add_rope_freq_base(scaled_base)
  6318. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6319. self.gguf_writer.add_rope_scaling_factor(1)
  6320. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6321. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6322. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6323. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6324. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6325. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6326. _experts: list[dict[str, Tensor]] | None = None
  6327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6328. if name == "lm_head.weight":
  6329. if self.hparams.get("tie_word_embeddings", False):
  6330. logger.info("Skipping tied output layer 'lm_head.weight'")
  6331. return []
  6332. if name.find("mlp.experts") != -1:
  6333. n_experts = self.hparams["num_experts"]
  6334. assert bid is not None
  6335. if self._experts is None:
  6336. self._experts = [{} for _ in range(self.block_count)]
  6337. self._experts[bid][name] = data_torch
  6338. if len(self._experts[bid]) >= n_experts * 3:
  6339. # merge the experts into a single 3d tensor
  6340. tensors: list[tuple[str, Tensor]] = []
  6341. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6342. datas: list[Tensor] = []
  6343. for xid in range(n_experts):
  6344. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6345. datas.append(self._experts[bid][ename])
  6346. del self._experts[bid][ename]
  6347. data_torch = torch.stack(datas, dim=0)
  6348. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6349. new_name = self.map_tensor_name(merged_name)
  6350. tensors.append((new_name, data_torch))
  6351. return tensors
  6352. else:
  6353. return []
  6354. return [(self.map_tensor_name(name), data_torch)]
  6355. def prepare_tensors(self):
  6356. super().prepare_tensors()
  6357. if self._experts is not None:
  6358. experts = [k for d in self._experts for k in d.keys()]
  6359. if len(experts) > 0:
  6360. raise ValueError(f"Unprocessed experts: {experts}")
  6361. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6362. class HunYuanModel(TextModel):
  6363. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6364. def set_vocab(self):
  6365. if (self.dir_model / "tokenizer.json").is_file():
  6366. self._set_vocab_gpt2()
  6367. else:
  6368. from transformers import AutoTokenizer
  6369. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6370. # 1. Get the pre-tokenizer identifier hash
  6371. tokpre = self.get_vocab_base_pre(tokenizer)
  6372. # 2. Reverse-engineer the merges list from mergeable_ranks
  6373. merges = []
  6374. vocab = {}
  6375. mergeable_ranks = tokenizer.mergeable_ranks
  6376. for token, rank in mergeable_ranks.items():
  6377. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6378. if len(token) == 1:
  6379. continue
  6380. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6381. if len(merged) == 2:
  6382. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6383. # 3. Generate the tokens and toktypes lists
  6384. vocab_size = self.hparams["vocab_size"]
  6385. assert tokenizer.vocab_size == vocab_size
  6386. special_tokens = tokenizer.special_tokens
  6387. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6388. tokens: list[str] = []
  6389. toktypes: list[int] = []
  6390. for i in range(vocab_size):
  6391. if i not in reverse_vocab:
  6392. tokens.append(f"[PAD{i}]")
  6393. toktypes.append(gguf.TokenType.UNUSED)
  6394. else:
  6395. token = reverse_vocab[i]
  6396. tokens.append(token)
  6397. if i in special_tokens.values():
  6398. toktypes.append(gguf.TokenType.CONTROL)
  6399. else:
  6400. toktypes.append(gguf.TokenType.NORMAL)
  6401. # 4. Write all vocab-related fields to the GGUF writer
  6402. self.gguf_writer.add_tokenizer_model("gpt2")
  6403. self.gguf_writer.add_tokenizer_pre(tokpre)
  6404. self.gguf_writer.add_token_list(tokens)
  6405. self.gguf_writer.add_token_types(toktypes)
  6406. self.gguf_writer.add_token_merges(merges)
  6407. # 5. Add special tokens and chat templates
  6408. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6409. special_vocab.add_to_gguf(self.gguf_writer)
  6410. # FIX for BOS token: Overwrite incorrect id read from config.json
  6411. if self.hparams['hidden_size'] == 4096:
  6412. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6413. def set_gguf_parameters(self):
  6414. super().set_gguf_parameters()
  6415. hparams = self.hparams
  6416. # Rope
  6417. rope_scaling = hparams.get("rope_scaling", {})
  6418. if rope_scaling.get("type") == "dynamic":
  6419. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6420. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6421. alpha = rope_scaling.get("alpha", 50)
  6422. base = hparams.get("rope_theta", 10000.0)
  6423. dim = hparams["head_dim"]
  6424. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6425. self.gguf_writer.add_rope_freq_base(scaled_base)
  6426. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6427. self.gguf_writer.add_rope_scaling_factor(1)
  6428. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6429. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6430. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6431. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6432. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6433. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6435. if name == "lm_head.weight":
  6436. if self.hparams.get("tie_word_embeddings", False):
  6437. logger.info("Skipping tied output layer 'lm_head.weight'")
  6438. return []
  6439. return [(self.map_tensor_name(name), data_torch)]
  6440. @ModelBase.register("SmolLM3ForCausalLM")
  6441. class SmolLM3Model(LlamaModel):
  6442. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6443. def set_vocab(self):
  6444. super().set_vocab()
  6445. # remove unsupported array slicing in chat template
  6446. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6447. from transformers import AutoTokenizer
  6448. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6449. if tokenizer.chat_template is not None:
  6450. chat_template = tokenizer.chat_template.replace("[:]", "")
  6451. self.gguf_writer.add_chat_template(chat_template)
  6452. @ModelBase.register("GptOssForCausalLM")
  6453. class GptOssModel(TextModel):
  6454. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6455. def transform_nibble_layout(self, tensor):
  6456. assert tensor.dtype == torch.uint8
  6457. assert tensor.shape[-1] == 16
  6458. # swap nibbles
  6459. t_lo = tensor & 0x0F
  6460. t_hi = tensor & 0xF0
  6461. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6462. tensor = t_swapped
  6463. # transform aaaa...bbbb... to abababab...
  6464. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6465. # get a_
  6466. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6467. blk_a1 = (blk_a << 4).view(-1, 1)
  6468. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6469. # get _b
  6470. blk_b0 = (blk_b >> 4).view(-1, 1)
  6471. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6472. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6473. # swap once more
  6474. out = blk_a | blk_b
  6475. out_h = out & 0xF0
  6476. out_l = out & 0x0F
  6477. out = (out_h >> 4) | (out_l << 4)
  6478. return out
  6479. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6480. assert blocks.dtype == torch.uint8
  6481. assert scales.dtype == torch.uint8
  6482. scales = scales.unsqueeze(-1)
  6483. assert len(blocks.shape) == 4
  6484. assert len(scales.shape) == 4
  6485. blocks = self.transform_nibble_layout(blocks)
  6486. new_data = torch.concat((scales, blocks), dim=-1)
  6487. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6488. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6489. # flatten last dim
  6490. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6491. new_data = new_data.numpy()
  6492. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6493. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6494. blocks0: Tensor = torch.zeros(1)
  6495. blocks1: Tensor = torch.zeros(1)
  6496. found_mxfp4_tensors = False
  6497. # we assume that tensors are loaded in the correct order
  6498. for name, data_torch in self.get_tensors():
  6499. if "mlp.experts.down_proj_blocks" in name:
  6500. blocks0 = data_torch
  6501. elif "mlp.experts.down_proj_scales" in name:
  6502. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6503. self.repack_mxfp4(new_name, blocks0, data_torch)
  6504. found_mxfp4_tensors = True
  6505. elif "mlp.experts.gate_up_proj_blocks" in name:
  6506. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6507. elif "mlp.experts.gate_up_proj_scales" in name:
  6508. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6509. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6510. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6511. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6512. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6513. found_mxfp4_tensors = True
  6514. if not found_mxfp4_tensors:
  6515. raise ValueError("No MXFP4 tensors found in the model. Please make sure you are using MXFP4 model.")
  6516. return []
  6517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6518. del bid # unused
  6519. if "sinks" in name:
  6520. name += ".weight"
  6521. # correct naming for down_proj
  6522. if "down_proj" in name:
  6523. if name.endswith("_bias"):
  6524. name = name.replace("down_proj_bias", "down_proj.bias")
  6525. else:
  6526. return []
  6527. # split the gate_up into gate and up
  6528. if "gate_up_proj" in name:
  6529. if name.endswith("_bias"):
  6530. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6531. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6532. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6533. return [
  6534. (self.map_tensor_name(name_gate), gate_proj_bias),
  6535. (self.map_tensor_name(name_up), up_proj_bias)
  6536. ]
  6537. else:
  6538. return []
  6539. return [(self.map_tensor_name(name), data_torch)]
  6540. def set_vocab(self):
  6541. self._set_vocab_gpt2()
  6542. def set_gguf_parameters(self):
  6543. super().set_gguf_parameters()
  6544. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6545. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6546. rope_scaling = self.hparams.get("rope_scaling") or {}
  6547. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6548. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6549. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6550. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6551. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6552. @ModelBase.register("Lfm2ForCausalLM")
  6553. @ModelBase.register("LFM2ForCausalLM")
  6554. class LFM2Model(TextModel):
  6555. model_arch = gguf.MODEL_ARCH.LFM2
  6556. def _add_feed_forward_length(self):
  6557. ff_dim = self.hparams["block_ff_dim"]
  6558. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6559. ff_dim = self.hparams["block_ff_dim"]
  6560. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6561. multiple_of = self.hparams["block_multiple_of"]
  6562. if auto_adjust_ff_dim:
  6563. ff_dim = int(2 * ff_dim / 3)
  6564. # custom dim factor multiplier
  6565. if ffn_dim_multiplier is not None:
  6566. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6567. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6568. self.gguf_writer.add_feed_forward_length(ff_dim)
  6569. def set_gguf_parameters(self):
  6570. # set num_key_value_heads only for attention layers
  6571. self.hparams["num_key_value_heads"] = [
  6572. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6573. for layer_type in self.hparams["layer_types"]
  6574. ]
  6575. super().set_gguf_parameters()
  6576. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6577. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6578. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6579. self._add_feed_forward_length()
  6580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6581. # conv op requires 2d tensor
  6582. if 'conv.conv' in name:
  6583. data_torch = data_torch.squeeze(1)
  6584. return [(self.map_tensor_name(name), data_torch)]
  6585. @ModelBase.register("SmallThinkerForCausalLM")
  6586. class SmallThinkerModel(TextModel):
  6587. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6588. def set_gguf_parameters(self):
  6589. super().set_gguf_parameters()
  6590. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6591. self.gguf_writer.add_expert_count(n_experts)
  6592. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6593. self.gguf_writer.add_expert_used_count(n_experts_used)
  6594. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6595. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6596. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6597. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6598. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6599. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6600. else:
  6601. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6602. # YaRN is not enabled by default
  6603. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6604. rope_scaling = self.hparams.get("rope_scaling") or {}
  6605. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6606. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6607. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6608. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6609. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6610. if sliding_window_layout:
  6611. for i in sliding_window_layout:
  6612. if i != 0:
  6613. sliding_window = self.hparams.get("sliding_window_size")
  6614. if sliding_window:
  6615. self.gguf_writer.add_sliding_window(sliding_window)
  6616. break
  6617. _experts: list[dict[str, Tensor]] | None = None
  6618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6619. # process the experts separately
  6620. if name.find("experts") != -1:
  6621. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6622. assert bid is not None
  6623. if self._experts is None:
  6624. self._experts = [{} for _ in range(self.block_count)]
  6625. self._experts[bid][name] = data_torch
  6626. if len(self._experts[bid]) >= n_experts * 3:
  6627. tensors: list[tuple[str, Tensor]] = []
  6628. # merge the experts into a single 3d tensor
  6629. for w_name in ["down", "gate", "up"]:
  6630. datas: list[Tensor] = []
  6631. for xid in range(n_experts):
  6632. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6633. datas.append(self._experts[bid][ename])
  6634. del self._experts[bid][ename]
  6635. data_torch = torch.stack(datas, dim=0)
  6636. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6637. new_name = self.map_tensor_name(merged_name)
  6638. tensors.append((new_name, data_torch))
  6639. return tensors
  6640. else:
  6641. return []
  6642. return [(self.map_tensor_name(name), data_torch)]
  6643. def prepare_tensors(self):
  6644. super().prepare_tensors()
  6645. if self._experts is not None:
  6646. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6647. experts = [k for d in self._experts for k in d.keys()]
  6648. if len(experts) > 0:
  6649. raise ValueError(f"Unprocessed experts: {experts}")
  6650. ###### CONVERSION LOGIC ######
  6651. # tree of lazy tensors
  6652. class LazyTorchTensor(gguf.LazyBase):
  6653. _tensor_type = torch.Tensor
  6654. # to keep the type-checker happy
  6655. dtype: torch.dtype
  6656. shape: torch.Size
  6657. # only used when converting a torch.Tensor to a np.ndarray
  6658. _dtype_map: dict[torch.dtype, type] = {
  6659. torch.float16: np.float16,
  6660. torch.float32: np.float32,
  6661. torch.uint8: np.uint8,
  6662. }
  6663. # used for safetensors slices
  6664. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6665. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6666. _dtype_str_map: dict[str, torch.dtype] = {
  6667. "F64": torch.float64,
  6668. "F32": torch.float32,
  6669. "BF16": torch.bfloat16,
  6670. "F16": torch.float16,
  6671. # "U64": torch.uint64,
  6672. "I64": torch.int64,
  6673. # "U32": torch.uint32,
  6674. "I32": torch.int32,
  6675. # "U16": torch.uint16,
  6676. "I16": torch.int16,
  6677. "U8": torch.uint8,
  6678. "I8": torch.int8,
  6679. "BOOL": torch.bool,
  6680. "F8_E4M3": torch.float8_e4m3fn,
  6681. "F8_E5M2": torch.float8_e5m2,
  6682. }
  6683. def numpy(self) -> gguf.LazyNumpyTensor:
  6684. dtype = self._dtype_map[self.dtype]
  6685. return gguf.LazyNumpyTensor(
  6686. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6687. args=(self,),
  6688. func=(lambda s: s.numpy())
  6689. )
  6690. @classmethod
  6691. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6692. return torch.empty(size=shape, dtype=dtype, device="meta")
  6693. @classmethod
  6694. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6695. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6696. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6697. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6698. return cast(torch.Tensor, lazy)
  6699. @classmethod
  6700. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6701. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6702. shape = remote_tensor.shape
  6703. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6704. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6705. return cast(torch.Tensor, lazy)
  6706. @classmethod
  6707. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6708. del types # unused
  6709. if kwargs is None:
  6710. kwargs = {}
  6711. if func is torch.Tensor.numpy:
  6712. return args[0].numpy()
  6713. return cls._wrap_fn(func)(*args, **kwargs)
  6714. def parse_args() -> argparse.Namespace:
  6715. parser = argparse.ArgumentParser(
  6716. description="Convert a huggingface model to a GGML compatible file")
  6717. parser.add_argument(
  6718. "--vocab-only", action="store_true",
  6719. help="extract only the vocab",
  6720. )
  6721. parser.add_argument(
  6722. "--outfile", type=Path,
  6723. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6724. )
  6725. parser.add_argument(
  6726. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6727. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6728. )
  6729. parser.add_argument(
  6730. "--bigendian", action="store_true",
  6731. help="model is executed on big endian machine",
  6732. )
  6733. parser.add_argument(
  6734. "model", type=str,
  6735. help="directory containing model file or huggingface repository ID (if --remote)",
  6736. nargs="?",
  6737. )
  6738. parser.add_argument(
  6739. "--use-temp-file", action="store_true",
  6740. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6741. )
  6742. parser.add_argument(
  6743. "--no-lazy", action="store_true",
  6744. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6745. )
  6746. parser.add_argument(
  6747. "--model-name", type=str, default=None,
  6748. help="name of the model",
  6749. )
  6750. parser.add_argument(
  6751. "--verbose", action="store_true",
  6752. help="increase output verbosity",
  6753. )
  6754. parser.add_argument(
  6755. "--split-max-tensors", type=int, default=0,
  6756. help="max tensors in each split",
  6757. )
  6758. parser.add_argument(
  6759. "--split-max-size", type=str, default="0",
  6760. help="max size per split N(M|G)",
  6761. )
  6762. parser.add_argument(
  6763. "--dry-run", action="store_true",
  6764. help="only print out a split plan and exit, without writing any new files",
  6765. )
  6766. parser.add_argument(
  6767. "--no-tensor-first-split", action="store_true",
  6768. help="do not add tensors to the first split (disabled by default)"
  6769. )
  6770. parser.add_argument(
  6771. "--metadata", type=Path,
  6772. help="Specify the path for an authorship metadata override file"
  6773. )
  6774. parser.add_argument(
  6775. "--print-supported-models", action="store_true",
  6776. help="Print the supported models"
  6777. )
  6778. parser.add_argument(
  6779. "--remote", action="store_true",
  6780. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6781. )
  6782. parser.add_argument(
  6783. "--mmproj", action="store_true",
  6784. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6785. )
  6786. args = parser.parse_args()
  6787. if not args.print_supported_models and args.model is None:
  6788. parser.error("the following arguments are required: model")
  6789. return args
  6790. def split_str_to_n_bytes(split_str: str) -> int:
  6791. if split_str.endswith("K"):
  6792. n = int(split_str[:-1]) * 1000
  6793. elif split_str.endswith("M"):
  6794. n = int(split_str[:-1]) * 1000 * 1000
  6795. elif split_str.endswith("G"):
  6796. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6797. elif split_str.isnumeric():
  6798. n = int(split_str)
  6799. else:
  6800. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6801. if n < 0:
  6802. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6803. return n
  6804. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6805. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6806. # maybe we should fallback to text model's arch in that case, since not many models have both
  6807. text_config = hparams.get("text_config", {})
  6808. vision_config = hparams.get("vision_config", {})
  6809. arch = None
  6810. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6811. arch = arches[0]
  6812. elif "ssm_cfg" in hparams:
  6813. # For non-hf Mamba and Mamba2 models
  6814. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6815. # if "architectures" is found in the sub-config, use that instead
  6816. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6817. arch = text_config["architectures"][0]
  6818. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6819. arch = vision_config["architectures"][0]
  6820. if arch is None:
  6821. raise ValueError("Failed to detect model architecture")
  6822. return arch
  6823. def main() -> None:
  6824. args = parse_args()
  6825. if args.print_supported_models:
  6826. logger.error("Supported models:")
  6827. ModelBase.print_registered_models()
  6828. sys.exit(0)
  6829. if args.verbose:
  6830. logging.basicConfig(level=logging.DEBUG)
  6831. else:
  6832. logging.basicConfig(level=logging.INFO)
  6833. if args.remote:
  6834. hf_repo_id = args.model
  6835. from huggingface_hub import snapshot_download
  6836. local_dir = snapshot_download(
  6837. repo_id=hf_repo_id,
  6838. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6839. dir_model = Path(local_dir)
  6840. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6841. else:
  6842. hf_repo_id = None
  6843. dir_model = Path(args.model)
  6844. if not dir_model.is_dir():
  6845. logger.error(f'Error: {dir_model} is not a directory')
  6846. sys.exit(1)
  6847. ftype_map: dict[str, gguf.LlamaFileType] = {
  6848. "f32": gguf.LlamaFileType.ALL_F32,
  6849. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6850. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6851. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6852. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6853. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6854. "auto": gguf.LlamaFileType.GUESSED,
  6855. }
  6856. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6857. if args.use_temp_file and is_split:
  6858. logger.error("Error: Cannot use temp file when splitting")
  6859. sys.exit(1)
  6860. if args.outfile is not None:
  6861. fname_out = args.outfile
  6862. elif hf_repo_id:
  6863. # if remote, use the model ID as the output file name
  6864. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6865. else:
  6866. fname_out = dir_model
  6867. logger.info(f"Loading model: {dir_model.name}")
  6868. if args.mmproj:
  6869. if "mmproj" not in fname_out.name:
  6870. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6871. with torch.inference_mode():
  6872. output_type = ftype_map[args.outtype]
  6873. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6874. hparams = ModelBase.load_hparams(dir_model)
  6875. model_architecture = get_model_architecture(hparams, model_type)
  6876. logger.info(f"Model architecture: {model_architecture}")
  6877. try:
  6878. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6879. except NotImplementedError:
  6880. logger.error(f"Model {model_architecture} is not supported")
  6881. sys.exit(1)
  6882. model_instance = model_class(dir_model, output_type, fname_out,
  6883. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6884. eager=args.no_lazy,
  6885. metadata_override=args.metadata, model_name=args.model_name,
  6886. split_max_tensors=args.split_max_tensors,
  6887. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6888. small_first_shard=args.no_tensor_first_split,
  6889. remote_hf_model_id=hf_repo_id)
  6890. if args.vocab_only:
  6891. logger.info("Exporting model vocab...")
  6892. model_instance.write_vocab()
  6893. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6894. else:
  6895. logger.info("Exporting model...")
  6896. model_instance.write()
  6897. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6898. logger.info(f"Model successfully exported to {out_path}")
  6899. if __name__ == '__main__':
  6900. main()