ggml.c 382 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. #if __AVX2__ || __AVX512F__
  393. // Unpack 32 4-bit fields into 32 bytes
  394. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  395. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  396. {
  397. // Load 16 bytes from memory
  398. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  399. // Expand bytes into uint16_t values
  400. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  401. // Unpack values into individual bytes
  402. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  403. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  404. __m256i low = _mm256_and_si256( lowMask, bytes );
  405. high = _mm256_slli_epi16( high, 4 );
  406. bytes = _mm256_or_si256( low, high );
  407. return bytes;
  408. }
  409. // add int16_t pairwise and return as float vector
  410. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  411. const __m256i ones = _mm256_set1_epi16(1);
  412. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  413. return _mm256_cvtepi32_ps(summed_pairs);
  414. }
  415. // multiply int8_t, add results pairwise twice and return as float vector
  416. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  417. // Get absolute values of x vectors
  418. const __m256i ax = _mm256_sign_epi8(x, x);
  419. // Sign the values of the y vectors
  420. const __m256i sy = _mm256_sign_epi8(y, x);
  421. // Perform multiplication and create 16-bit values
  422. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  423. return sum_i16_pairs_float(dot);
  424. }
  425. static inline __m128i packNibbles( __m256i bytes )
  426. {
  427. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  428. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  429. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  430. __m256i low = _mm256_and_si256( lowByte, bytes );
  431. high = _mm256_srli_epi16( high, 4 );
  432. bytes = _mm256_or_si256( low, high );
  433. // Compress uint16_t lanes into bytes
  434. __m128i r0 = _mm256_castsi256_si128( bytes );
  435. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  436. return _mm_packus_epi16( r0, r1 );
  437. }
  438. #else
  439. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  440. {
  441. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  442. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  443. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  444. __m128i low = _mm_and_si128( lowByte, bytes1 );
  445. high = _mm_srli_epi16( high, 4 );
  446. bytes1 = _mm_or_si128( low, high );
  447. high = _mm_andnot_si128( lowByte, bytes2 );
  448. low = _mm_and_si128( lowByte, bytes2 );
  449. high = _mm_srli_epi16( high, 4 );
  450. bytes2 = _mm_or_si128( low, high );
  451. return _mm_packus_epi16( bytes1, bytes2);
  452. }
  453. #endif
  454. #endif // __AVX__ || __AVX2__ || __AVX512F__
  455. #if __ARM_NEON
  456. #if !defined(__aarch64__)
  457. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  458. return
  459. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  460. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  461. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  462. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  463. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  464. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  465. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  466. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  467. }
  468. inline static int16_t vaddvq_s8(int8x16_t v) {
  469. return
  470. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  471. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  472. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  473. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  474. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  475. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  476. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  477. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  478. }
  479. inline static int32_t vaddvq_s16(int16x8_t v) {
  480. return
  481. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  482. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  483. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  484. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  485. }
  486. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  487. return
  488. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  489. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  490. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  491. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  492. }
  493. inline static int32_t vaddvq_s32(int32x4_t v) {
  494. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  495. }
  496. inline static float vaddvq_f32(float32x4_t v) {
  497. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  498. }
  499. float vminvq_f32(float32x4_t v) {
  500. return
  501. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  502. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  503. }
  504. float vmaxvq_f32(float32x4_t v) {
  505. return
  506. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  507. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  508. }
  509. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  510. return vget_low_s8(vcombine_s8(a, b));
  511. }
  512. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  513. return vget_high_s8(vcombine_s8(a, b));
  514. }
  515. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  516. return vget_low_u8(vcombine_u8(a, b));
  517. }
  518. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  519. return vget_high_u8(vcombine_u8(a, b));
  520. }
  521. #endif
  522. #endif
  523. #define QK4_0 32
  524. typedef struct {
  525. float d; // delta
  526. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  527. } block_q4_0;
  528. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  529. #define QK4_1 32
  530. typedef struct {
  531. float d; // delta
  532. float m; // min
  533. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  534. } block_q4_1;
  535. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  536. #define QK4_2 16
  537. typedef struct {
  538. ggml_fp16_t d; // delta
  539. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  540. } block_q4_2;
  541. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  542. #define QK4_3 16
  543. typedef struct {
  544. ggml_fp16_t d; // delta
  545. ggml_fp16_t m; // min
  546. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  547. } block_q4_3;
  548. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  549. #define QK8_0 32
  550. typedef struct {
  551. float d; // delta
  552. float s0; // d * sum(qs[i]) low
  553. float s1; // d * sum(qs[i]) high
  554. int8_t qs[QK8_0]; // quants
  555. } block_q8_0;
  556. static_assert(sizeof(block_q8_0) == 3*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  557. // reference implementation for deterministic creation of model files
  558. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  559. assert(k % QK4_0 == 0);
  560. const int nb = k / QK4_0;
  561. uint8_t pp[QK4_0/2];
  562. for (int i = 0; i < nb; i++) {
  563. float amax = 0.0f; // absolute max
  564. for (int l = 0; l < QK4_0; l++) {
  565. const float v = x[i*QK4_0 + l];
  566. amax = MAX(amax, fabsf(v));
  567. }
  568. const float d = amax / ((1 << 3) - 1);
  569. const float id = d ? 1.0f/d : 0.0f;
  570. y[i].d = d;
  571. for (int l = 0; l < QK4_0; l += 2) {
  572. const float v0 = x[i*QK4_0 + l + 0]*id;
  573. const float v1 = x[i*QK4_0 + l + 1]*id;
  574. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  575. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  576. assert(vi0 < 16);
  577. assert(vi1 < 16);
  578. pp[l/2] = vi0 | (vi1 << 4);
  579. }
  580. memcpy(y[i].qs, pp, sizeof(pp));
  581. }
  582. }
  583. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  584. assert(k % QK4_0 == 0);
  585. const int nb = k / QK4_0;
  586. block_q4_0 * restrict y = vy;
  587. #if defined(__POWER9_VECTOR__)
  588. const vector float v85 = vec_splats(8.5f);
  589. for (int i = 0; i < nb; i++) {
  590. float amax = 0.0f; // absolute max
  591. vector float srcv [8];
  592. vector float asrcv[8];
  593. vector float amaxv[8];
  594. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  595. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  596. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  597. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  598. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  599. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  600. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  601. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  602. amax = MAX(
  603. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  604. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  605. const float d = amax / ((1 << 3) - 1);
  606. const float id = d ? 1.0/d : 0.0;
  607. y[i].d = d;
  608. const vector float vid = vec_splats(id);
  609. uint8_t * restrict pb = y[i].qs;
  610. for (int l = 0; l < 8; l++) {
  611. const vector float vf = vec_madd(srcv[l], vid, v85);
  612. const vector signed int vi = vec_signed(vf);
  613. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  614. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  615. }
  616. }
  617. #elif __ARM_NEON
  618. for (int i = 0; i < nb; i++) {
  619. float32x4_t srcv [8];
  620. float32x4_t asrcv[8];
  621. float32x4_t amaxv[8];
  622. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  623. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  624. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  625. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  626. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  627. const float amax = vmaxvq_f32(amaxv[0]);
  628. const float d = amax / ((1 << 3) - 1);
  629. const float id = d ? 1.0f/d : 0.0f;
  630. y[i].d = d;
  631. for (int l = 0; l < 8; l++) {
  632. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  633. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  634. const int32x4_t vi = vcvtq_s32_f32(vf);
  635. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  636. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  637. }
  638. }
  639. #elif defined(__AVX2__)
  640. for (int i = 0; i < nb; i++) {
  641. // Load elements into 4 AVX vectors
  642. __m256 v0 = _mm256_loadu_ps( x );
  643. __m256 v1 = _mm256_loadu_ps( x + 8 );
  644. __m256 v2 = _mm256_loadu_ps( x + 16 );
  645. __m256 v3 = _mm256_loadu_ps( x + 24 );
  646. x += 32;
  647. // Compute max(abs(e)) for the block
  648. const __m256 signBit = _mm256_set1_ps( -0.0f );
  649. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  650. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  651. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  652. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  653. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  654. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  655. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  656. const float maxScalar = _mm_cvtss_f32( max4 );
  657. // Quantize these floats
  658. const float d = maxScalar / 7.0f;
  659. y[i].d = d;
  660. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  661. const __m256 mul = _mm256_set1_ps( id );
  662. // Apply the multiplier
  663. v0 = _mm256_mul_ps( v0, mul );
  664. v1 = _mm256_mul_ps( v1, mul );
  665. v2 = _mm256_mul_ps( v2, mul );
  666. v3 = _mm256_mul_ps( v3, mul );
  667. // Round to nearest integer
  668. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  669. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  670. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  671. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  672. // Convert floats to integers
  673. __m256i i0 = _mm256_cvtps_epi32( v0 );
  674. __m256i i1 = _mm256_cvtps_epi32( v1 );
  675. __m256i i2 = _mm256_cvtps_epi32( v2 );
  676. __m256i i3 = _mm256_cvtps_epi32( v3 );
  677. // Convert int32 to int16
  678. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  679. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  680. // Convert int16 to int8
  681. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  682. // We got our precious signed bytes, but the order is now wrong
  683. // These AVX2 pack instructions process 16-byte pieces independently
  684. // The following instruction is fixing the order
  685. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  686. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  687. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  688. const __m256i off = _mm256_set1_epi8( 8 );
  689. i0 = _mm256_add_epi8( i0, off );
  690. // Compress the vector into 4 bit/value, and store
  691. __m128i res = packNibbles( i0 );
  692. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  693. }
  694. #elif defined(__AVX__)
  695. for (int i = 0; i < nb; i++) {
  696. // Load elements into 4 AVX vectors
  697. __m256 v0 = _mm256_loadu_ps( x );
  698. __m256 v1 = _mm256_loadu_ps( x + 8 );
  699. __m256 v2 = _mm256_loadu_ps( x + 16 );
  700. __m256 v3 = _mm256_loadu_ps( x + 24 );
  701. x += 32;
  702. // Compute max(abs(e)) for the block
  703. const __m256 signBit = _mm256_set1_ps( -0.0f );
  704. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  705. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  706. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  707. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  708. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  709. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  710. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  711. const float maxScalar = _mm_cvtss_f32( max4 );
  712. // Quantize these floats
  713. const float d = maxScalar / 7.0f;
  714. y[i].d = d;
  715. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  716. const __m256 mul = _mm256_set1_ps( id );
  717. // Apply the multiplier
  718. v0 = _mm256_mul_ps( v0, mul );
  719. v1 = _mm256_mul_ps( v1, mul );
  720. v2 = _mm256_mul_ps( v2, mul );
  721. v3 = _mm256_mul_ps( v3, mul );
  722. // Round to nearest integer
  723. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  724. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  725. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  726. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  727. // Convert floats to integers
  728. __m256i i0 = _mm256_cvtps_epi32( v0 );
  729. __m256i i1 = _mm256_cvtps_epi32( v1 );
  730. __m256i i2 = _mm256_cvtps_epi32( v2 );
  731. __m256i i3 = _mm256_cvtps_epi32( v3 );
  732. // Since we don't have in AVX some necessary functions,
  733. // we split the registers in half and call AVX2 analogs from SSE
  734. __m128i ni0 = _mm256_castsi256_si128( i0 );
  735. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  736. __m128i ni2 = _mm256_castsi256_si128( i1 );
  737. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  738. __m128i ni4 = _mm256_castsi256_si128( i2 );
  739. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  740. __m128i ni6 = _mm256_castsi256_si128( i3 );
  741. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  742. // Convert int32 to int16
  743. ni0 = _mm_packs_epi32( ni0, ni1 );
  744. ni2 = _mm_packs_epi32( ni2, ni3 );
  745. ni4 = _mm_packs_epi32( ni4, ni5 );
  746. ni6 = _mm_packs_epi32( ni6, ni7 );
  747. // Convert int16 to int8
  748. ni0 = _mm_packs_epi16( ni0, ni2 );
  749. ni4 = _mm_packs_epi16( ni4, ni6 );
  750. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  751. const __m128i off = _mm_set1_epi8( 8);
  752. ni0 = _mm_add_epi8( ni0, off );
  753. ni4 = _mm_add_epi8( ni4, off );
  754. // Compress the vector into 4 bit/value, and store
  755. __m128i res = packNibbles( ni0, ni4 );
  756. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  757. }
  758. #elif defined(__wasm_simd128__)
  759. for (int i = 0; i < nb; i++) {
  760. float amax = 0.0f; // absolute max
  761. v128_t srcv [8];
  762. v128_t asrcv[8];
  763. v128_t amaxv[8];
  764. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  765. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  766. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  767. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  768. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  769. amax = MAX(
  770. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  771. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  772. const float d = amax / ((1 << 3) - 1);
  773. const float id = d ? 1.0/d : 0.0;
  774. y[i].d = d;
  775. for (int l = 0; l < 8; l++) {
  776. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  777. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  778. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  779. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  780. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  781. }
  782. }
  783. #else
  784. // scalar
  785. quantize_row_q4_0_reference(x, y, k);
  786. #endif
  787. }
  788. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  789. assert(k % QK4_1 == 0);
  790. const int nb = k / QK4_1;
  791. block_q4_1 * restrict y = vy;
  792. uint8_t pp[QK4_1/2];
  793. for (int i = 0; i < nb; i++) {
  794. float min = FLT_MAX;
  795. float max = -FLT_MAX;
  796. for (int l = 0; l < QK4_1; l++) {
  797. const float v = x[i*QK4_1 + l];
  798. if (v < min) min = v;
  799. if (v > max) max = v;
  800. }
  801. const float d = (max - min) / ((1 << 4) - 1);
  802. const float id = d ? 1.0f/d : 0.0f;
  803. y[i].d = d;
  804. y[i].m = min;
  805. for (int l = 0; l < QK4_1; l += 2) {
  806. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  807. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  808. const uint8_t vi0 = roundf(v0);
  809. const uint8_t vi1 = roundf(v1);
  810. assert(vi0 < 16);
  811. assert(vi1 < 16);
  812. pp[l/2] = vi0 | (vi1 << 4);
  813. }
  814. memcpy(y[i].qs, pp, sizeof(pp));
  815. }
  816. }
  817. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  818. assert(k % QK4_1 == 0);
  819. const int nb = k / QK4_1;
  820. block_q4_1 * restrict y = vy;
  821. #if defined(__AVX2__)
  822. for (int i = 0; i < nb; i++) {
  823. // Load elements into 4 AVX vectors
  824. __m256 v0 = _mm256_loadu_ps( x );
  825. __m256 v1 = _mm256_loadu_ps( x + 8 );
  826. __m256 v2 = _mm256_loadu_ps( x + 16 );
  827. __m256 v3 = _mm256_loadu_ps( x + 24 );
  828. x += 32;
  829. // Compute max for the block
  830. __m256 vmax;
  831. vmax = _mm256_max_ps( v0, v1 );
  832. vmax = _mm256_max_ps( vmax, v2 );
  833. vmax = _mm256_max_ps( vmax, v3 );
  834. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  835. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  836. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  837. const float maxScalar = _mm_cvtss_f32( max4 );
  838. // Compute min for the block
  839. __m256 vmin;
  840. vmin = _mm256_min_ps( v0, v1 );
  841. vmin = _mm256_min_ps( vmin, v2 );
  842. vmin = _mm256_min_ps( vmin, v3 );
  843. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  844. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  845. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  846. const float minScalar = _mm_cvtss_f32( min4 );
  847. // Quantize these floats
  848. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].m = minScalar;
  851. y[i].d = d;
  852. // x = (x-min)*id
  853. const __m256 mul = _mm256_set1_ps( id );
  854. const __m256 off = _mm256_set1_ps( minScalar );
  855. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  856. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  857. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  858. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  859. // Round to nearest integer
  860. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  861. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  862. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  863. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  864. // Convert floats to integers
  865. __m256i i0 = _mm256_cvtps_epi32( v0 );
  866. __m256i i1 = _mm256_cvtps_epi32( v1 );
  867. __m256i i2 = _mm256_cvtps_epi32( v2 );
  868. __m256i i3 = _mm256_cvtps_epi32( v3 );
  869. // Convert int32 to int16
  870. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  871. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  872. // Convert int16 to int8
  873. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  874. // We got our precious signed bytes, but the order is now wrong
  875. // These AVX2 pack instructions process 16-byte pieces independently
  876. // The following instruction is fixing the order
  877. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  878. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  879. // Compress the vector into 4 bit/value, and store
  880. __m128i res = packNibbles( i0 );
  881. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  882. }
  883. #elif __ARM_NEON
  884. for (int i = 0; i < nb; i++) {
  885. float32x4_t srcv[8];
  886. float32x4_t minv[8];
  887. float32x4_t maxv[8];
  888. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  889. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  890. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  891. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  892. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  893. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  894. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  895. const float min = vminvq_f32(minv[0]);
  896. const float max = vmaxvq_f32(maxv[0]);
  897. const float d = (max - min) / ((1 << 4) - 1);
  898. const float id = d ? 1.0f/d : 0.0f;
  899. y[i].d = d;
  900. y[i].m = min;
  901. const float32x4_t minv0 = vdupq_n_f32(min);
  902. for (int l = 0; l < 8; l++) {
  903. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  904. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  905. const int32x4_t vi = vcvtq_s32_f32(vf);
  906. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  907. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  908. }
  909. }
  910. #else
  911. // scalar
  912. quantize_row_q4_1_reference(x, vy, k);
  913. #endif
  914. }
  915. // reference implementation for deterministic creation of model files
  916. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  917. assert(k % QK4_2 == 0);
  918. const int nb = k / QK4_2;
  919. for (int i = 0; i < nb; i++) {
  920. float amax = 0.0f; // absolute max
  921. for (int l = 0; l < QK4_2; l++) {
  922. const float v = x[i*QK4_2 + l];
  923. amax = MAX(amax, fabsf(v));
  924. }
  925. const float d = amax / ((1 << 3) - 1);
  926. const float id = d ? 1.0f/d : 0.0f;
  927. y[i].d = GGML_FP32_TO_FP16(d);
  928. for (int l = 0; l < QK4_2; l += 2) {
  929. const float v0 = x[i*QK4_2 + l + 0]*id;
  930. const float v1 = x[i*QK4_2 + l + 1]*id;
  931. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  932. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  933. assert(vi0 < 16);
  934. assert(vi1 < 16);
  935. y[i].qs[l/2] = vi0 | (vi1 << 4);
  936. }
  937. }
  938. }
  939. static inline int nearest_int(float fval) {
  940. assert(fval <= 4194303.f);
  941. float val = fval + 12582912.f;
  942. int i; memcpy(&i, &val, sizeof(int));
  943. return (i & 0x007fffff) - 0x00400000;
  944. }
  945. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  946. const float * restrict candidates, int8_t * restrict L) {
  947. assert (nmin >= INT8_MIN);
  948. assert (nmax <= INT8_MAX);
  949. float amax = 0;
  950. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  951. if (!amax) { // all zero
  952. for (int i=0; i<n; ++i) L[i] = 0;
  953. return 1.f;
  954. }
  955. float best = 0, bestScale = 0;
  956. for (int si=0; si<nCandidates; ++si) {
  957. float iscale = candidates[si]/amax;
  958. float sumlxP = 0; int suml2P = 0;
  959. float sumlxM = 0; int suml2M = 0;
  960. for (int i=0; i<n; ++i) {
  961. int l = nearest_int(iscale*X[i]);
  962. int lp = MAX(nmin, MIN(nmax, +l));
  963. int lm = MAX(nmin, MIN(nmax, -l));
  964. sumlxP += X[i]*lp; suml2P += lp*lp;
  965. sumlxM += X[i]*lm; suml2M += lm*lm;
  966. }
  967. float sumlxP2 = sumlxP*sumlxP;
  968. float sumlxM2 = sumlxM*sumlxM;
  969. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  970. if (sumlxP2 > best*suml2P) {
  971. best = sumlxP2/suml2P; bestScale = iscale;
  972. }
  973. } else {
  974. if (sumlxM2 > best*suml2M) {
  975. best = sumlxM2/suml2M; bestScale = -iscale;
  976. }
  977. }
  978. }
  979. float sumlx = 0; int suml2 = 0;
  980. for (int i=0; i<n; ++i) {
  981. int l = nearest_int(bestScale*X[i]);
  982. l = MAX(nmin, MIN(nmax, l));
  983. sumlx += X[i]*l; suml2 += l*l;
  984. L[i] = l;
  985. }
  986. float scale = sumlx/suml2;
  987. return scale;
  988. }
  989. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  990. #define CANDIDATE_COUNT 8
  991. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  992. assert(k % QK4_2 == 0);
  993. int8_t L[QK4_2];
  994. const int nb = k / QK4_2;
  995. for (int i = 0; i < nb; i++) {
  996. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  997. y[i].d = GGML_FP32_TO_FP16(scale);
  998. for (int l = 0; l < QK4_2; l += 2) {
  999. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  1000. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  1001. assert(vi0 < 16);
  1002. assert(vi1 < 16);
  1003. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1004. }
  1005. x += QK4_2;
  1006. }
  1007. }
  1008. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1009. assert(k % QK4_2 == 0);
  1010. block_q4_2 * restrict y = vy;
  1011. //quantize_row_q4_2_reference(x, y, k);
  1012. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1013. quantize_row_q4_2_rmse(x, y, k);
  1014. }
  1015. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1016. assert(k % QK4_3 == 0);
  1017. const int nb = k / QK4_3;
  1018. for (int i = 0; i < nb; i++) {
  1019. float min = FLT_MAX;
  1020. float max = -FLT_MAX;
  1021. for (int l = 0; l < QK4_3; l++) {
  1022. const float v = x[i*QK4_3 + l];
  1023. if (v < min) min = v;
  1024. if (v > max) max = v;
  1025. }
  1026. const float d = (max - min) / ((1 << 4) - 1);
  1027. const float id = d ? 1.0f/d : 0.0f;
  1028. y[i].d = GGML_FP32_TO_FP16(d);
  1029. y[i].m = GGML_FP32_TO_FP16(min);
  1030. for (int l = 0; l < QK4_3; l += 2) {
  1031. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1032. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1033. const uint8_t vi0 = (int) (v0 + 0.5f);
  1034. const uint8_t vi1 = (int) (v1 + 0.5f);
  1035. assert(vi0 < 16);
  1036. assert(vi1 < 16);
  1037. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1038. }
  1039. }
  1040. }
  1041. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1042. assert(k % QK4_3 == 0);
  1043. block_q4_3 * restrict y = vy;
  1044. quantize_row_q4_3_reference(x, y, k);
  1045. }
  1046. // reference implementation for deterministic creation of model files
  1047. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1048. assert(k % QK8_0 == 0);
  1049. const int nb = k / QK8_0;
  1050. for (int i = 0; i < nb; i++) {
  1051. float amax = 0.0f; // absolute max
  1052. for (int l = 0; l < QK8_0; l++) {
  1053. const float v = x[i*QK8_0 + l];
  1054. amax = MAX(amax, fabsf(v));
  1055. }
  1056. const float d = amax / ((1 << 7) - 1);
  1057. const float id = d ? 1.0f/d : 0.0f;
  1058. y[i].d = d;
  1059. int sum0 = 0;
  1060. int sum1 = 0;
  1061. for (int l = 0; l < QK8_0/2; ++l) {
  1062. const float v0 = x[i*QK8_0 + l]*id;
  1063. const float v1 = x[i*QK8_0 + QK8_0/2 + l]*id;
  1064. y[i].qs[ l] = roundf(v0);
  1065. y[i].qs[QK8_0/2 + l] = roundf(v1);
  1066. sum0 += y[i].qs[ l];
  1067. sum1 += y[i].qs[QK8_0/2 + l];
  1068. }
  1069. y[i].s0 = d * sum0;
  1070. y[i].s1 = d * sum1;
  1071. }
  1072. }
  1073. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1074. assert(k % QK8_0 == 0);
  1075. const int nb = k / QK8_0;
  1076. block_q8_0 * restrict y = vy;
  1077. #if defined(__ARM_NEON)
  1078. for (int i = 0; i < nb; i++) {
  1079. float32x4_t srcv [8];
  1080. float32x4_t asrcv[8];
  1081. float32x4_t amaxv[8];
  1082. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1083. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1084. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1085. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1086. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1087. const float amax = vmaxvq_f32(amaxv[0]);
  1088. const float d = amax / ((1 << 7) - 1);
  1089. const float id = d ? 1.0f/d : 0.0f;
  1090. y[i].d = d;
  1091. int32x4_t accv0 = vdupq_n_s32(0);
  1092. int32x4_t accv1 = vdupq_n_s32(0);
  1093. // low half
  1094. for (int l = 0; l < 4; l++) {
  1095. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1096. const int32x4_t vi = vcvtnq_s32_f32(v);
  1097. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1098. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1099. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1100. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1101. accv0 = vaddq_s32(accv0, vi);
  1102. }
  1103. // high half
  1104. for (int l = 4; l < 8; l++) {
  1105. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1106. const int32x4_t vi = vcvtnq_s32_f32(v);
  1107. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1108. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1109. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1110. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1111. accv1 = vaddq_s32(accv1, vi);
  1112. }
  1113. const int32_t sum0 = vaddvq_s32(accv0);
  1114. const int32_t sum1 = vaddvq_s32(accv1);
  1115. y[i].s0 = d * sum0;
  1116. y[i].s1 = d * sum1;
  1117. }
  1118. #elif defined(__AVX2__) || defined(__AVX__)
  1119. // TODO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  1120. for (int i = 0; i < nb; i++) {
  1121. // Load elements into 4 AVX vectors
  1122. __m256 v0 = _mm256_loadu_ps( x );
  1123. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1124. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1125. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1126. x += 32;
  1127. // Compute max(abs(e)) for the block
  1128. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1129. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1130. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1131. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1132. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1133. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1134. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1135. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1136. const float maxScalar = _mm_cvtss_f32( max4 );
  1137. // Quantize these floats
  1138. const float d = maxScalar / 127.f;
  1139. y[i].d = d;
  1140. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1141. const __m256 mul = _mm256_set1_ps( id );
  1142. // Apply the multiplier
  1143. v0 = _mm256_mul_ps( v0, mul );
  1144. v1 = _mm256_mul_ps( v1, mul );
  1145. v2 = _mm256_mul_ps( v2, mul );
  1146. v3 = _mm256_mul_ps( v3, mul );
  1147. // Round to nearest integer
  1148. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1149. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1150. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1151. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1152. // Convert floats to integers
  1153. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1154. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1155. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1156. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1157. #if defined(__AVX2__)
  1158. // Compute the sum of the quants and set y[i].s
  1159. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1160. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1161. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1162. // Convert int32 to int16
  1163. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1164. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1165. // Convert int16 to int8
  1166. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1167. // We got our precious signed bytes, but the order is now wrong
  1168. // These AVX2 pack instructions process 16-byte pieces independently
  1169. // The following instruction is fixing the order
  1170. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1171. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1172. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1173. #else
  1174. // Since we don't have in AVX some necessary functions,
  1175. // we split the registers in half and call AVX2 analogs from SSE
  1176. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1177. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1178. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1179. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1180. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1181. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1182. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1183. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1184. // Compute the sum of the quants and set y[i].s
  1185. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1186. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1187. y[i].s = d * hsum_i32_8(_mm256_set_m128i(s1, s0));
  1188. // Convert int32 to int16
  1189. ni0 = _mm_packs_epi32( ni0, ni1 );
  1190. ni2 = _mm_packs_epi32( ni2, ni3 );
  1191. ni4 = _mm_packs_epi32( ni4, ni5 );
  1192. ni6 = _mm_packs_epi32( ni6, ni7 );
  1193. // Convert int16 to int8
  1194. ni0 = _mm_packs_epi16( ni0, ni2 );
  1195. ni4 = _mm_packs_epi16( ni4, ni6 );
  1196. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1197. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1198. #endif
  1199. }
  1200. #else
  1201. // scalar
  1202. quantize_row_q8_0_reference(x, y, k);
  1203. #endif
  1204. }
  1205. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1206. assert(k % QK4_0 == 0);
  1207. const int nb = k / QK4_0;
  1208. const block_q4_0 * restrict x = vx;
  1209. #if defined(__AVX2__)
  1210. for (int i = 0; i < nb; i++) {
  1211. // scale factor
  1212. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1213. const uint8_t * restrict pp = x[i].qs;
  1214. for (int l = 0; l < QK4_0; l += 32) {
  1215. // Load 32x4-bit integers into 32x8-bit integers
  1216. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1217. // Subtract 8 from the integers
  1218. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1219. // Convert to 16-bit int
  1220. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1221. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1222. // Convert to 32-bit int -> float 32
  1223. const __m256 vf[4] = {
  1224. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1225. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1226. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1227. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1228. };
  1229. // Scale and store
  1230. for (int j = 0; j < 4; j++) {
  1231. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1232. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1233. }
  1234. }
  1235. }
  1236. #elif defined(__ARM_NEON)
  1237. for (int i = 0; i < nb; i++) {
  1238. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1239. const uint8_t * restrict pp = x[i].qs;
  1240. for (int l = 0; l < QK4_0; l += 16) {
  1241. // Load 16x4-bit integers into 8x8-bit integers
  1242. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1243. // Expand 4-bit qs to 8-bit bytes
  1244. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1245. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1246. // Convert to signed 8-bit integers
  1247. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1248. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1249. // Subtract 8 from each byte
  1250. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1251. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1252. // Interleave and combine
  1253. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1254. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1255. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1256. // convert to 2x int16x8_t
  1257. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1258. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1259. // convert to 4x float32x4_t
  1260. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1261. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1262. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1263. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1264. // Multiply by d
  1265. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1266. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1267. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1268. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1269. // Store
  1270. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1271. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1272. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1273. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1274. }
  1275. }
  1276. #else
  1277. // scalar
  1278. for (int i = 0; i < nb; i++) {
  1279. const float d = x[i].d;
  1280. const uint8_t * restrict pp = x[i].qs;
  1281. for (int l = 0; l < QK4_0; l += 2) {
  1282. const uint8_t vi = pp[l/2];
  1283. const int8_t vi0 = vi & 0xf;
  1284. const int8_t vi1 = vi >> 4;
  1285. const float v0 = (vi0 - 8)*d;
  1286. const float v1 = (vi1 - 8)*d;
  1287. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1288. y[i*QK4_0 + l + 0] = v0;
  1289. y[i*QK4_0 + l + 1] = v1;
  1290. assert(!isnan(y[i*QK4_0 + l + 0]));
  1291. assert(!isnan(y[i*QK4_0 + l + 1]));
  1292. }
  1293. }
  1294. #endif
  1295. }
  1296. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1297. assert(k % QK4_1 == 0);
  1298. const int nb = k / QK4_1;
  1299. const block_q4_1 * restrict x = vx;
  1300. #if defined(__AVX2__)
  1301. for (int i = 0; i < nb; i++) {
  1302. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1303. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1304. const uint8_t * restrict pp = x[i].qs;
  1305. for (int l = 0; l < QK4_1; l += 32) {
  1306. // Load 32x4-bit integers into 32x8-bit integers
  1307. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1308. // Convert to 16-bit int
  1309. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1310. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1311. // Convert to 32-bit int -> float 32
  1312. const __m256 vf[4] = {
  1313. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1314. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1315. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1316. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1317. };
  1318. // Scale, add m and store
  1319. for (int j = 0; j < 4; j++) {
  1320. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1321. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1322. }
  1323. }
  1324. }
  1325. #elif defined(__ARM_NEON)
  1326. for (int i = 0; i < nb; i++) {
  1327. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1328. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1329. const uint8_t * restrict pp = x[i].qs;
  1330. for (int l = 0; l < QK4_1; l += 16) {
  1331. // Load 16x4-bit integers into 8x8-bit integers
  1332. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1333. // Expand 4-bit qs to 8-bit bytes
  1334. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1335. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1336. // Interleave and combine
  1337. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1338. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1339. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1340. // convert to 2x uint16x8_t
  1341. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1342. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1343. // convert to 4x float32x4_t
  1344. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1345. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1346. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1347. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1348. // multiply by d and add m
  1349. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1350. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1351. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1352. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1353. // Store
  1354. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1355. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1356. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1357. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1358. }
  1359. }
  1360. #else
  1361. for (int i = 0; i < nb; i++) {
  1362. const float d = x[i].d;
  1363. const float m = x[i].m;
  1364. const uint8_t * restrict pp = x[i].qs;
  1365. for (int l = 0; l < QK4_1; l += 2) {
  1366. const uint8_t vi = pp[l/2];
  1367. const int8_t vi0 = vi & 0xf;
  1368. const int8_t vi1 = vi >> 4;
  1369. const float v0 = vi0*d + m;
  1370. const float v1 = vi1*d + m;
  1371. y[i*QK4_1 + l + 0] = v0;
  1372. y[i*QK4_1 + l + 1] = v1;
  1373. assert(!isnan(y[i*QK4_1 + l + 0]));
  1374. assert(!isnan(y[i*QK4_1 + l + 1]));
  1375. }
  1376. }
  1377. #endif
  1378. }
  1379. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1380. assert(k % QK4_2 == 0);
  1381. const int nb = k / QK4_2;
  1382. const block_q4_2 * restrict x = vx;
  1383. for (int i = 0; i < nb; i++) {
  1384. const float d = GGML_FP16_TO_FP32(x[i].d);
  1385. const uint8_t * restrict pp = x[i].qs;
  1386. for (int l = 0; l < QK4_2; l += 2) {
  1387. const uint8_t vi = pp[l/2];
  1388. const int8_t vi0 = vi & 0xf;
  1389. const int8_t vi1 = vi >> 4;
  1390. const float v0 = (vi0 - 8)*d;
  1391. const float v1 = (vi1 - 8)*d;
  1392. y[i*QK4_2 + l + 0] = v0;
  1393. y[i*QK4_2 + l + 1] = v1;
  1394. assert(!isnan(y[i*QK4_2 + l + 0]));
  1395. assert(!isnan(y[i*QK4_2 + l + 1]));
  1396. }
  1397. }
  1398. }
  1399. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1400. assert(k % QK4_3 == 0);
  1401. const int nb = k / QK4_3;
  1402. const block_q4_3 * restrict x = vx;
  1403. for (int i = 0; i < nb; i++) {
  1404. const float d = GGML_FP16_TO_FP32(x[i].d);
  1405. const float m = GGML_FP16_TO_FP32(x[i].m);
  1406. const uint8_t * restrict pp = x[i].qs;
  1407. for (int l = 0; l < QK4_3; l += 2) {
  1408. const uint8_t vi = pp[l/2];
  1409. const int8_t vi0 = vi & 0xf;
  1410. const int8_t vi1 = vi >> 4;
  1411. const float v0 = vi0*d + m;
  1412. const float v1 = vi1*d + m;
  1413. y[i*QK4_3 + l + 0] = v0;
  1414. y[i*QK4_3 + l + 1] = v1;
  1415. assert(!isnan(y[i*QK4_3 + l + 0]));
  1416. assert(!isnan(y[i*QK4_3 + l + 1]));
  1417. }
  1418. }
  1419. }
  1420. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1421. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1422. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1423. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1424. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1425. [GGML_TYPE_Q4_0] = {
  1426. .dequantize_row_q = dequantize_row_q4_0,
  1427. .quantize_row_q = quantize_row_q4_0,
  1428. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1429. .quantize_row_q_dot = quantize_row_q8_0,
  1430. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1431. },
  1432. [GGML_TYPE_Q4_1] = {
  1433. .dequantize_row_q = dequantize_row_q4_1,
  1434. .quantize_row_q = quantize_row_q4_1,
  1435. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1436. .quantize_row_q_dot = quantize_row_q8_0,
  1437. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1438. },
  1439. [GGML_TYPE_Q4_2] = {
  1440. .dequantize_row_q = dequantize_row_q4_2,
  1441. .quantize_row_q = quantize_row_q4_2,
  1442. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1443. .quantize_row_q_dot = quantize_row_q8_0,
  1444. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1445. },
  1446. [GGML_TYPE_Q4_3] = {
  1447. .dequantize_row_q = dequantize_row_q4_3,
  1448. .quantize_row_q = quantize_row_q4_3,
  1449. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1450. .quantize_row_q_dot = quantize_row_q8_0,
  1451. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1452. },
  1453. [GGML_TYPE_Q8_0] = {
  1454. .dequantize_row_q = NULL, // TODO
  1455. .quantize_row_q = quantize_row_q8_0,
  1456. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1457. .quantize_row_q_dot = quantize_row_q8_0,
  1458. .vec_dot_q = NULL, // TODO
  1459. },
  1460. };
  1461. // For internal test use
  1462. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1463. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1464. return quantize_fns[i];
  1465. }
  1466. //
  1467. // simd mappings
  1468. //
  1469. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1470. // we then implement the fundamental computation operations below using only these macros
  1471. // adding support for new architectures requires to define the corresponding SIMD macros
  1472. //
  1473. // GGML_F32_STEP / GGML_F16_STEP
  1474. // number of elements to process in a single step
  1475. //
  1476. // GGML_F32_EPR / GGML_F16_EPR
  1477. // number of elements to fit in a single register
  1478. //
  1479. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1480. #define GGML_SIMD
  1481. // F32 NEON
  1482. #define GGML_F32_STEP 16
  1483. #define GGML_F32_EPR 4
  1484. #define GGML_F32x4 float32x4_t
  1485. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1486. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1487. #define GGML_F32x4_LOAD vld1q_f32
  1488. #define GGML_F32x4_STORE vst1q_f32
  1489. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1490. #define GGML_F32x4_ADD vaddq_f32
  1491. #define GGML_F32x4_MUL vmulq_f32
  1492. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1493. #define GGML_F32x4_REDUCE(res, x) \
  1494. { \
  1495. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1496. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1497. } \
  1498. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1499. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1500. } \
  1501. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1502. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1503. } \
  1504. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1505. }
  1506. #define GGML_F32_VEC GGML_F32x4
  1507. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1508. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1509. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1510. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1511. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1512. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1513. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1514. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1515. // F16 NEON
  1516. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1517. #define GGML_F16_STEP 32
  1518. #define GGML_F16_EPR 8
  1519. #define GGML_F16x8 float16x8_t
  1520. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1521. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1522. #define GGML_F16x8_LOAD vld1q_f16
  1523. #define GGML_F16x8_STORE vst1q_f16
  1524. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1525. #define GGML_F16x8_ADD vaddq_f16
  1526. #define GGML_F16x8_MUL vmulq_f16
  1527. #define GGML_F16x8_REDUCE(res, x) \
  1528. { \
  1529. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1530. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1531. } \
  1532. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1533. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1534. } \
  1535. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1536. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1537. } \
  1538. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1539. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1540. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1541. }
  1542. #define GGML_F16_VEC GGML_F16x8
  1543. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1544. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1545. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1546. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1547. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1548. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1549. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1550. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1551. #else
  1552. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1553. // and take advantage of the vcvt_ functions to convert to/from FP16
  1554. #define GGML_F16_STEP 16
  1555. #define GGML_F16_EPR 4
  1556. #define GGML_F32Cx4 float32x4_t
  1557. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1558. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1559. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1560. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1561. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1562. #define GGML_F32Cx4_ADD vaddq_f32
  1563. #define GGML_F32Cx4_MUL vmulq_f32
  1564. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1565. #define GGML_F16_VEC GGML_F32Cx4
  1566. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1567. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1568. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1569. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1570. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1571. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1572. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1573. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1574. #endif
  1575. #elif defined(__AVX__)
  1576. #define GGML_SIMD
  1577. // F32 AVX
  1578. #define GGML_F32_STEP 32
  1579. #define GGML_F32_EPR 8
  1580. #define GGML_F32x8 __m256
  1581. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1582. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1583. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1584. #define GGML_F32x8_STORE _mm256_storeu_ps
  1585. #if defined(__FMA__)
  1586. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1587. #else
  1588. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1589. #endif
  1590. #define GGML_F32x8_ADD _mm256_add_ps
  1591. #define GGML_F32x8_MUL _mm256_mul_ps
  1592. #define GGML_F32x8_REDUCE(res, x) \
  1593. { \
  1594. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1595. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1596. } \
  1597. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1598. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1599. } \
  1600. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1601. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1602. } \
  1603. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1604. _mm256_extractf128_ps(x[0], 1)); \
  1605. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1606. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1607. }
  1608. // TODO: is this optimal ?
  1609. #define GGML_F32_VEC GGML_F32x8
  1610. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1611. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1612. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1613. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1614. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1615. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1616. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1617. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1618. // F16 AVX
  1619. #define GGML_F16_STEP 32
  1620. #define GGML_F16_EPR 8
  1621. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1622. #define GGML_F32Cx8 __m256
  1623. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1624. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1625. #if defined(__F16C__)
  1626. // the _mm256_cvt intrinsics require F16C
  1627. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1628. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1629. #else
  1630. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1631. float tmp[8];
  1632. for (int i = 0; i < 8; i++)
  1633. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1634. return _mm256_loadu_ps(tmp);
  1635. }
  1636. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1637. float arr[8];
  1638. _mm256_storeu_ps(arr, y);
  1639. for (int i = 0; i < 8; i++)
  1640. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1641. }
  1642. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1643. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1644. #endif
  1645. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1646. #define GGML_F32Cx8_ADD _mm256_add_ps
  1647. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1648. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1649. #define GGML_F16_VEC GGML_F32Cx8
  1650. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1651. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1652. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1653. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1654. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1655. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1656. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1657. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1658. #elif defined(__POWER9_VECTOR__)
  1659. #define GGML_SIMD
  1660. // F32 POWER9
  1661. #define GGML_F32_STEP 32
  1662. #define GGML_F32_EPR 4
  1663. #define GGML_F32x4 vector float
  1664. #define GGML_F32x4_ZERO 0.0f
  1665. #define GGML_F32x4_SET1 vec_splats
  1666. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1667. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1668. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1669. #define GGML_F32x4_ADD vec_add
  1670. #define GGML_F32x4_MUL vec_mul
  1671. #define GGML_F32x4_REDUCE(res, x) \
  1672. { \
  1673. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1674. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1675. } \
  1676. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1677. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1678. } \
  1679. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1680. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1681. } \
  1682. res = vec_extract(x[0], 0) + \
  1683. vec_extract(x[0], 1) + \
  1684. vec_extract(x[0], 2) + \
  1685. vec_extract(x[0], 3); \
  1686. }
  1687. #define GGML_F32_VEC GGML_F32x4
  1688. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1689. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1690. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1691. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1692. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1693. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1694. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1695. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1696. // F16 POWER9
  1697. #define GGML_F16_STEP GGML_F32_STEP
  1698. #define GGML_F16_EPR GGML_F32_EPR
  1699. #define GGML_F16_VEC GGML_F32x4
  1700. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1701. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1702. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1703. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1704. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1705. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1706. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1707. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1708. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1709. #define GGML_F16_VEC_STORE(p, r, i) \
  1710. if (i & 0x1) \
  1711. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1712. r[i - GGML_ENDIAN_BYTE(0)]), \
  1713. 0, p - GGML_F16_EPR)
  1714. #elif defined(__wasm_simd128__)
  1715. #define GGML_SIMD
  1716. // F32 WASM
  1717. #define GGML_F32_STEP 16
  1718. #define GGML_F32_EPR 4
  1719. #define GGML_F32x4 v128_t
  1720. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1721. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1722. #define GGML_F32x4_LOAD wasm_v128_load
  1723. #define GGML_F32x4_STORE wasm_v128_store
  1724. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1725. #define GGML_F32x4_ADD wasm_f32x4_add
  1726. #define GGML_F32x4_MUL wasm_f32x4_mul
  1727. #define GGML_F32x4_REDUCE(res, x) \
  1728. { \
  1729. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1730. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1731. } \
  1732. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1733. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1734. } \
  1735. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1736. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1737. } \
  1738. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1739. wasm_f32x4_extract_lane(x[0], 1) + \
  1740. wasm_f32x4_extract_lane(x[0], 2) + \
  1741. wasm_f32x4_extract_lane(x[0], 3); \
  1742. }
  1743. #define GGML_F32_VEC GGML_F32x4
  1744. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1745. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1746. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1747. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1748. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1749. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1750. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1751. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1752. // F16 WASM
  1753. #define GGML_F16_STEP 16
  1754. #define GGML_F16_EPR 4
  1755. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1756. float tmp[4];
  1757. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1758. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1759. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1760. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1761. return wasm_v128_load(tmp);
  1762. }
  1763. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1764. float tmp[4];
  1765. wasm_v128_store(tmp, x);
  1766. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1767. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1768. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1769. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1770. }
  1771. #define GGML_F16x4 v128_t
  1772. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1773. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1774. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1775. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1776. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1777. #define GGML_F16x4_ADD wasm_f32x4_add
  1778. #define GGML_F16x4_MUL wasm_f32x4_mul
  1779. #define GGML_F16x4_REDUCE(res, x) \
  1780. { \
  1781. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1782. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1783. } \
  1784. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1785. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1786. } \
  1787. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1788. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1789. } \
  1790. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1791. wasm_f32x4_extract_lane(x[0], 1) + \
  1792. wasm_f32x4_extract_lane(x[0], 2) + \
  1793. wasm_f32x4_extract_lane(x[0], 3); \
  1794. }
  1795. #define GGML_F16_VEC GGML_F16x4
  1796. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1797. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1798. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1799. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1800. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1801. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1802. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1803. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1804. #elif defined(__SSE3__)
  1805. #define GGML_SIMD
  1806. // F32 SSE
  1807. #define GGML_F32_STEP 32
  1808. #define GGML_F32_EPR 4
  1809. #define GGML_F32x4 __m128
  1810. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1811. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1812. #define GGML_F32x4_LOAD _mm_loadu_ps
  1813. #define GGML_F32x4_STORE _mm_storeu_ps
  1814. #if defined(__FMA__)
  1815. // TODO: Does this work?
  1816. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1817. #else
  1818. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1819. #endif
  1820. #define GGML_F32x4_ADD _mm_add_ps
  1821. #define GGML_F32x4_MUL _mm_mul_ps
  1822. #define GGML_F32x4_REDUCE(res, x) \
  1823. { \
  1824. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1825. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1826. } \
  1827. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1828. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1829. } \
  1830. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1831. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1832. } \
  1833. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1834. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1835. }
  1836. // TODO: is this optimal ?
  1837. #define GGML_F32_VEC GGML_F32x4
  1838. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1839. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1840. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1841. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1842. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1843. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1844. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1845. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1846. // F16 SSE
  1847. #define GGML_F16_STEP 32
  1848. #define GGML_F16_EPR 4
  1849. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1850. float tmp[4];
  1851. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1852. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1853. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1854. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1855. return _mm_loadu_ps(tmp);
  1856. }
  1857. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1858. float arr[4];
  1859. _mm_storeu_ps(arr, y);
  1860. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1861. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1862. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1863. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1864. }
  1865. #define GGML_F32Cx4 __m128
  1866. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1867. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1868. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1869. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1870. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1871. #define GGML_F32Cx4_ADD _mm_add_ps
  1872. #define GGML_F32Cx4_MUL _mm_mul_ps
  1873. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1874. #define GGML_F16_VEC GGML_F32Cx4
  1875. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1876. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1877. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1878. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1879. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1880. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1881. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1882. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1883. #endif
  1884. // GGML_F32_ARR / GGML_F16_ARR
  1885. // number of registers to use per step
  1886. #ifdef GGML_SIMD
  1887. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1888. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1889. #endif
  1890. //
  1891. // fundamental operations
  1892. //
  1893. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1894. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1895. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1896. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1898. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1899. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1900. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1901. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1902. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1903. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1904. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1905. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1906. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1907. #ifdef GGML_SIMD
  1908. float sumf = 0.0f;
  1909. const int np = (n & ~(GGML_F32_STEP - 1));
  1910. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1911. GGML_F32_VEC ax[GGML_F32_ARR];
  1912. GGML_F32_VEC ay[GGML_F32_ARR];
  1913. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1914. for (int j = 0; j < GGML_F32_ARR; j++) {
  1915. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1916. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1917. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1918. }
  1919. }
  1920. // reduce sum0..sum3 to sum0
  1921. GGML_F32_VEC_REDUCE(sumf, sum);
  1922. // leftovers
  1923. for (int i = np; i < n; ++i) {
  1924. sumf += x[i]*y[i];
  1925. }
  1926. #else
  1927. // scalar
  1928. ggml_float sumf = 0.0;
  1929. for (int i = 0; i < n; ++i) {
  1930. sumf += (ggml_float)(x[i]*y[i]);
  1931. }
  1932. #endif
  1933. *s = sumf;
  1934. }
  1935. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1936. ggml_float sumf = 0.0;
  1937. #if defined(GGML_SIMD)
  1938. const int np = (n & ~(GGML_F16_STEP - 1));
  1939. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1940. GGML_F16_VEC ax[GGML_F16_ARR];
  1941. GGML_F16_VEC ay[GGML_F16_ARR];
  1942. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1943. for (int j = 0; j < GGML_F16_ARR; j++) {
  1944. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1945. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1946. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1947. }
  1948. }
  1949. // reduce sum0..sum3 to sum0
  1950. GGML_F16_VEC_REDUCE(sumf, sum);
  1951. // leftovers
  1952. for (int i = np; i < n; ++i) {
  1953. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1954. }
  1955. #else
  1956. for (int i = 0; i < n; ++i) {
  1957. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1958. }
  1959. #endif
  1960. *s = sumf;
  1961. }
  1962. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1963. const int nb = n / QK8_0;
  1964. assert(n % QK8_0 == 0);
  1965. assert(nb % 2 == 0);
  1966. const block_q4_0 * restrict x = vx;
  1967. const block_q8_0 * restrict y = vy;
  1968. #if defined(__ARM_NEON)
  1969. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1970. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1971. float sum8 = 0;
  1972. for (int i = 0; i < nb; i += 2) {
  1973. const block_q4_0 * restrict x0 = &x[i + 0];
  1974. const block_q4_0 * restrict x1 = &x[i + 1];
  1975. const block_q8_0 * restrict y0 = &y[i + 0];
  1976. const block_q8_0 * restrict y1 = &y[i + 1];
  1977. sum8 += x0->d * (y0->s0 + y0->s1) + x1->d * (y1->s0 + y1->s1);
  1978. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1979. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1980. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1981. // 4-bit -> 8-bit
  1982. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1983. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1984. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1985. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. // interleave
  1992. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1993. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1994. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1995. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1996. #if defined(__ARM_FEATURE_DOTPROD)
  1997. // dot product into int32x4_t
  1998. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  1999. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2000. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2001. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2002. #else
  2003. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2004. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2005. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2006. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2007. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2008. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2009. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2010. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2011. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2012. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2013. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2014. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2015. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2016. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2017. #endif
  2018. }
  2019. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  2020. #elif defined(__AVX2__)
  2021. // Initialize accumulator with zeros
  2022. __m256 acc = _mm256_setzero_ps();
  2023. // Main loop
  2024. for (int i = 0; i < nb; ++i) {
  2025. /* Compute combined scale for the block */
  2026. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2027. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2028. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2029. const __m256i off = _mm256_set1_epi8( 8 );
  2030. bx = _mm256_sub_epi8( bx, off );
  2031. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2032. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2033. /* Multiply q with scale and accumulate */
  2034. acc = _mm256_fmadd_ps( d, q, acc );
  2035. }
  2036. *s = hsum_float_8(acc);
  2037. #elif defined(__AVX__)
  2038. // Initialize accumulator with zeros
  2039. __m256 acc = _mm256_setzero_ps();
  2040. // Main loop
  2041. for (int i = 0; i < nb; ++i) {
  2042. // Compute combined scale for the block
  2043. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2044. __m128i i32[2];
  2045. for (int j = 0; j < 2; ++j) {
  2046. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2047. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2048. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2049. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2050. const __m128i off = _mm_set1_epi8( 8 );
  2051. bx = _mm_sub_epi8( bx, off );
  2052. // Get absolute values of x vectors
  2053. const __m128i ax = _mm_sign_epi8(bx, bx);
  2054. // Sign the values of the y vectors
  2055. const __m128i sy = _mm_sign_epi8(by, bx);
  2056. // Perform multiplication and create 16-bit values
  2057. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2058. const __m128i ones = _mm_set1_epi16(1);
  2059. i32[j] = _mm_madd_epi16(ones, dot);
  2060. }
  2061. // Convert int32_t to float
  2062. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2063. // Apply the scale, and accumulate
  2064. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2065. }
  2066. *s = hsum_float_8(acc);
  2067. #else
  2068. // scalar
  2069. float sumf = 0.0;
  2070. for (int i = 0; i < nb; i++) {
  2071. const float d0 = x[i].d;
  2072. const float d1 = y[i].d;
  2073. const uint8_t * restrict p0 = x[i].qs;
  2074. const int8_t * restrict p1 = y[i].qs;
  2075. int sumi = 0;
  2076. for (int j = 0; j < QK8_0/2; j++) {
  2077. const uint8_t v0 = p0[j];
  2078. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2079. const int i1 = (int8_t) (v0 >> 4) - 8;
  2080. const int i2 = p1[2*j + 0];
  2081. const int i3 = p1[2*j + 1];
  2082. sumi += i0*i2 + i1*i3;
  2083. }
  2084. sumf += d0*d1*sumi;
  2085. }
  2086. *s = sumf;
  2087. #endif
  2088. }
  2089. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2090. const int nb = n / QK8_0;
  2091. assert(n % QK8_0 == 0);
  2092. assert(nb % 2 == 0);
  2093. const block_q4_1 * restrict x = vx;
  2094. const block_q8_0 * restrict y = vy;
  2095. // TODO: add AVX / WASM SIMD / etc
  2096. #if defined(__ARM_NEON)
  2097. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2098. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2099. float summs = 0;
  2100. for (int i = 0; i < nb; i += 2) {
  2101. const block_q4_1 * restrict x0 = &x[i + 0];
  2102. const block_q4_1 * restrict x1 = &x[i + 1];
  2103. const block_q8_0 * restrict y0 = &y[i + 0];
  2104. const block_q8_0 * restrict y1 = &y[i + 1];
  2105. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2106. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2107. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2108. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2109. // 4-bit -> 8-bit
  2110. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2111. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2112. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2113. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2114. // interleave
  2115. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2116. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2117. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2118. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2119. // load y
  2120. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2121. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2122. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2123. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2124. #if defined(__ARM_FEATURE_DOTPROD)
  2125. // dot product into int32x4_t
  2126. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2127. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2128. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2129. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2130. #else
  2131. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2132. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2133. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2134. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2135. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2136. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2137. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2138. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2139. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2140. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2141. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2142. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2143. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2144. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2145. #endif
  2146. }
  2147. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2148. #elif defined(__AVX2__)
  2149. // Initialize accumulator with zeros
  2150. __m256 acc = _mm256_setzero_ps();
  2151. float summs = 0;
  2152. // Main loop
  2153. for (int i = 0; i < nb; ++i) {
  2154. const float * d0 = &x[i].d;
  2155. const float * d1 = &y[i].d;
  2156. summs += x[i].m * (y[i].s0 + y[i].s1);
  2157. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2158. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2159. // Compute combined scales
  2160. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2161. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2162. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2163. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2164. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2165. // Accumulate d0*d1*x*y
  2166. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2167. }
  2168. *s = hsum_float_8(acc) + summs;
  2169. #else
  2170. // scalar
  2171. float sumf = 0.0;
  2172. for (int i = 0; i < nb; i++) {
  2173. const float d0 = x[i].d;
  2174. const float m0 = x[i].m;
  2175. const float d1 = y[i].d;
  2176. const uint8_t * restrict p0 = x[i].qs;
  2177. const int8_t * restrict p1 = y[i].qs;
  2178. // TODO: this is very slow ..
  2179. for (int j = 0; j < QK8_0/2; j++) {
  2180. const uint8_t v0 = p0[j];
  2181. const float f0 = d0*(v0 & 0xf) + m0;
  2182. const float f1 = d0*(v0 >> 4) + m0;
  2183. const float f2 = d1*p1[2*j + 0];
  2184. const float f3 = d1*p1[2*j + 1];
  2185. sumf += f0*f2 + f1*f3;
  2186. }
  2187. }
  2188. *s = sumf;
  2189. #endif
  2190. }
  2191. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2192. const int nb = n / QK8_0;
  2193. assert(n % QK8_0 == 0);
  2194. assert(nb % 2 == 0);
  2195. assert(QK8_0 == 2*QK4_2);
  2196. const block_q4_2 * restrict x = vx;
  2197. const block_q8_0 * restrict y = vy;
  2198. #if defined(__ARM_NEON)
  2199. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2200. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2201. for (int i = 0; i < nb; i += 2) {
  2202. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2203. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2204. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2205. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2206. const block_q8_0 * restrict y0 = &y[i + 0];
  2207. const block_q8_0 * restrict y1 = &y[i + 1];
  2208. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2209. const int8x16_t s8b = vdupq_n_s8(0x8);
  2210. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2211. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2212. // 4-bit -> 8-bit
  2213. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2214. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2215. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2216. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2217. // sub 8
  2218. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2219. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2220. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2221. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2222. // interleave
  2223. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2224. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2225. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2226. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2227. // load y
  2228. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2229. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2230. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2231. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2232. #if defined(__ARM_FEATURE_DOTPROD)
  2233. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2234. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2235. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2236. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2237. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2238. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2239. #else
  2240. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2241. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2242. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2243. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2244. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2245. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2246. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2247. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2248. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2249. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2250. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2251. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2252. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2253. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2254. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2255. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2256. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2257. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2258. #endif
  2259. }
  2260. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2261. #elif defined(__AVX2__)
  2262. // Initialize accumulator with zeros
  2263. __m256 acc = _mm256_setzero_ps();
  2264. // Main loop
  2265. for (int i = 0; i < nb; i++) {
  2266. /* Compute combined scale for the block */
  2267. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2268. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2269. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2270. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2271. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2272. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2273. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2274. const __m256i off = _mm256_set1_epi8(8);
  2275. bx = _mm256_sub_epi8(bx, off);
  2276. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2277. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2278. /* Multiply q with scale and accumulate */
  2279. acc = _mm256_fmadd_ps(d, q, acc);
  2280. }
  2281. *s = hsum_float_8(acc);
  2282. #else
  2283. // scalar
  2284. float sumf = 0.0;
  2285. for (int i = 0; i < nb; i++) {
  2286. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2287. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2288. const int8_t * restrict y0 = y[i].qs;
  2289. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2290. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2291. int sumi_0 = 0;
  2292. int sumi_1 = 0;
  2293. for (int j = 0; j < QK8_0/4; j++) {
  2294. const uint8_t v0 = x0[j];
  2295. const uint8_t v1 = x1[j];
  2296. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2297. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2298. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2299. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2300. const int i2_0 = y0[2*j + 0];
  2301. const int i3_0 = y0[2*j + 1];
  2302. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2303. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2304. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2305. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2306. }
  2307. sumf += (d0 * y[i].d) * sumi_0;
  2308. sumf += (d1 * y[i].d) * sumi_1;
  2309. }
  2310. *s = sumf;
  2311. #endif
  2312. }
  2313. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2314. const int nb = n / QK8_0;
  2315. assert(n % QK8_0 == 0);
  2316. assert(nb % 2 == 0);
  2317. assert(QK8_0 == 2*QK4_2);
  2318. const block_q4_3 * restrict x = vx;
  2319. const block_q8_0 * restrict y = vy;
  2320. #if defined(__ARM_NEON)
  2321. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2322. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2323. float summs0 = 0.0f;
  2324. float summs1 = 0.0f;
  2325. for (int i = 0; i < nb; ++i) {
  2326. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2327. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2328. const block_q8_0 * restrict y0 = &y[i + 0];
  2329. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2330. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2331. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2332. // 4-bit -> 8-bit
  2333. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0xf)));
  2334. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2335. // interleave
  2336. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2337. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2338. // load y
  2339. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2340. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2341. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2342. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2343. #if defined(__ARM_FEATURE_DOTPROD)
  2344. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2345. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2346. #else
  2347. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2348. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2349. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2350. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2351. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2352. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2355. #endif
  2356. }
  2357. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2358. #elif defined(__AVX2__)
  2359. // Initialize accumulator with zeros
  2360. __m256 acc = _mm256_setzero_ps();
  2361. // Main loop
  2362. for (int i = 0; i < nb; i++) {
  2363. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2364. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2365. const __m256 dx = _mm256_set_m128(d1, d0);
  2366. const __m128 m0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].m));
  2367. const __m128 m1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].m));
  2368. const __m256 mx = _mm256_set_m128(m1, m0);
  2369. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2370. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2371. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2372. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2373. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2374. const __m256i syi = _mm256_maddubs_epi16(_mm256_set1_epi8(1), by);
  2375. const __m256 syf = sum_i16_pairs_float(syi);
  2376. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2377. const __m256 sxy = _mm256_fmadd_ps(q, dx, _mm256_mul_ps(mx, syf));
  2378. acc = _mm256_fmadd_ps(sxy, dy, acc);
  2379. }
  2380. *s = hsum_float_8(acc);
  2381. #else
  2382. // scalar
  2383. float sumf = 0.0;
  2384. for (int i = 0; i < nb; i++) {
  2385. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2386. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2387. const int8_t * restrict y0 = y[i].qs;
  2388. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2389. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2390. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2391. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2392. int sxy_0 = 0;
  2393. int sxy_1 = 0;
  2394. for (int j = 0; j < QK8_0/4; j++) {
  2395. const uint8_t v0 = x0[j];
  2396. const uint8_t v1 = x1[j];
  2397. const int x0_0 = v0 & 0xf;
  2398. const int x1_0 = v0 >> 4;
  2399. const int x0_1 = v1 & 0xf;
  2400. const int x1_1 = v1 >> 4;
  2401. const int y0_0 = y0[2*j + 0];
  2402. const int y1_0 = y0[2*j + 1];
  2403. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2404. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2405. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2406. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2407. }
  2408. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2409. }
  2410. *s = sumf;
  2411. #endif
  2412. }
  2413. // compute GGML_VEC_DOT_UNROLL dot products at once
  2414. // xs - x row stride in bytes
  2415. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2416. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2417. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2418. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2419. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2420. }
  2421. #if defined(GGML_SIMD)
  2422. const int np = (n & ~(GGML_F16_STEP - 1));
  2423. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2424. GGML_F16_VEC ax[GGML_F16_ARR];
  2425. GGML_F16_VEC ay[GGML_F16_ARR];
  2426. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2427. for (int j = 0; j < GGML_F16_ARR; j++) {
  2428. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2429. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2430. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2431. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2432. }
  2433. }
  2434. }
  2435. // reduce sum0..sum3 to sum0
  2436. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2437. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2438. }
  2439. // leftovers
  2440. for (int i = np; i < n; ++i) {
  2441. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2442. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2443. }
  2444. }
  2445. #else
  2446. for (int i = 0; i < n; ++i) {
  2447. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2448. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2449. }
  2450. }
  2451. #endif
  2452. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2453. s[i] = sumf[i];
  2454. }
  2455. }
  2456. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2457. #if defined(GGML_SIMD)
  2458. const int np = (n & ~(GGML_F32_STEP - 1));
  2459. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2460. GGML_F32_VEC ax[GGML_F32_ARR];
  2461. GGML_F32_VEC ay[GGML_F32_ARR];
  2462. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2463. for (int j = 0; j < GGML_F32_ARR; j++) {
  2464. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2465. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2466. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2467. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2468. }
  2469. }
  2470. // leftovers
  2471. for (int i = np; i < n; ++i) {
  2472. y[i] += x[i]*v;
  2473. }
  2474. #else
  2475. // scalar
  2476. for (int i = 0; i < n; ++i) {
  2477. y[i] += x[i]*v;
  2478. }
  2479. #endif
  2480. }
  2481. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2482. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2483. #if defined(GGML_SIMD)
  2484. const int np = (n & ~(GGML_F32_STEP - 1));
  2485. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2486. GGML_F32_VEC ay[GGML_F32_ARR];
  2487. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2488. for (int j = 0; j < GGML_F32_ARR; j++) {
  2489. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2490. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2491. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2492. }
  2493. }
  2494. // leftovers
  2495. for (int i = np; i < n; ++i) {
  2496. y[i] *= v;
  2497. }
  2498. #else
  2499. // scalar
  2500. for (int i = 0; i < n; ++i) {
  2501. y[i] *= v;
  2502. }
  2503. #endif
  2504. }
  2505. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2506. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2507. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2508. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2509. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2510. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2511. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2512. static const float GELU_COEF_A = 0.044715f;
  2513. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2514. inline static float ggml_gelu_f32(float x) {
  2515. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2516. }
  2517. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2518. const uint16_t * i16 = (const uint16_t *) x;
  2519. for (int i = 0; i < n; ++i) {
  2520. y[i] = table_gelu_f16[i16[i]];
  2521. }
  2522. }
  2523. #ifdef GGML_GELU_FP16
  2524. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2525. uint16_t t;
  2526. for (int i = 0; i < n; ++i) {
  2527. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2528. memcpy(&t, &fp16, sizeof(uint16_t));
  2529. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2530. }
  2531. }
  2532. #else
  2533. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2534. for (int i = 0; i < n; ++i) {
  2535. y[i] = ggml_gelu_f32(x[i]);
  2536. }
  2537. }
  2538. #endif
  2539. // Sigmoid Linear Unit (SiLU) function
  2540. inline static float ggml_silu_f32(float x) {
  2541. return x/(1.0f + expf(-x));
  2542. }
  2543. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2544. const uint16_t * i16 = (const uint16_t *) x;
  2545. for (int i = 0; i < n; ++i) {
  2546. y[i] = table_silu_f16[i16[i]];
  2547. }
  2548. }
  2549. #ifdef GGML_SILU_FP16
  2550. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2551. uint16_t t;
  2552. for (int i = 0; i < n; ++i) {
  2553. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2554. memcpy(&t, &fp16, sizeof(uint16_t));
  2555. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2556. }
  2557. }
  2558. #else
  2559. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2560. for (int i = 0; i < n; ++i) {
  2561. y[i] = ggml_silu_f32(x[i]);
  2562. }
  2563. }
  2564. #endif
  2565. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2566. #ifndef GGML_USE_ACCELERATE
  2567. ggml_float sum = 0.0;
  2568. for (int i = 0; i < n; ++i) {
  2569. sum += (ggml_float)x[i];
  2570. }
  2571. *s = sum;
  2572. #else
  2573. vDSP_sve(x, 1, s, n);
  2574. #endif
  2575. }
  2576. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2577. #ifndef GGML_USE_ACCELERATE
  2578. float max = -INFINITY;
  2579. for (int i = 0; i < n; ++i) {
  2580. max = MAX(max, x[i]);
  2581. }
  2582. *s = max;
  2583. #else
  2584. vDSP_maxv(x, 1, s, n);
  2585. #endif
  2586. }
  2587. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2588. ggml_vec_norm_f32(n, s, x);
  2589. *s = 1.f/(*s);
  2590. }
  2591. //
  2592. // logging
  2593. //
  2594. #if (GGML_DEBUG >= 1)
  2595. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2596. #else
  2597. #define GGML_PRINT_DEBUG(...)
  2598. #endif
  2599. #if (GGML_DEBUG >= 5)
  2600. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2601. #else
  2602. #define GGML_PRINT_DEBUG_5(...)
  2603. #endif
  2604. #if (GGML_DEBUG >= 10)
  2605. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2606. #else
  2607. #define GGML_PRINT_DEBUG_10(...)
  2608. #endif
  2609. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2610. //
  2611. // data types
  2612. //
  2613. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2614. [GGML_TYPE_F32] = 1,
  2615. [GGML_TYPE_F16] = 1,
  2616. [GGML_TYPE_Q4_0] = QK4_0,
  2617. [GGML_TYPE_Q4_1] = QK4_1,
  2618. [GGML_TYPE_Q4_2] = QK4_2,
  2619. [GGML_TYPE_Q4_3] = QK4_3,
  2620. [GGML_TYPE_Q8_0] = QK8_0,
  2621. [GGML_TYPE_I8] = 1,
  2622. [GGML_TYPE_I16] = 1,
  2623. [GGML_TYPE_I32] = 1,
  2624. };
  2625. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2626. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2627. [GGML_TYPE_F32] = sizeof(float),
  2628. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2629. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2630. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2631. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2632. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2633. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2634. [GGML_TYPE_I8] = sizeof(int8_t),
  2635. [GGML_TYPE_I16] = sizeof(int16_t),
  2636. [GGML_TYPE_I32] = sizeof(int32_t),
  2637. };
  2638. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2639. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2640. [GGML_TYPE_F32] = "f32",
  2641. [GGML_TYPE_F16] = "f16",
  2642. [GGML_TYPE_Q4_0] = "q4_0",
  2643. [GGML_TYPE_Q4_1] = "q4_1",
  2644. [GGML_TYPE_Q4_2] = "q4_2",
  2645. [GGML_TYPE_Q4_3] = "q4_3",
  2646. [GGML_TYPE_Q8_0] = "q8_0",
  2647. [GGML_TYPE_I8] = "i8",
  2648. [GGML_TYPE_I16] = "i16",
  2649. [GGML_TYPE_I32] = "i32",
  2650. };
  2651. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2652. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2653. [GGML_TYPE_F32] = false,
  2654. [GGML_TYPE_F16] = false,
  2655. [GGML_TYPE_Q4_0] = true,
  2656. [GGML_TYPE_Q4_1] = true,
  2657. [GGML_TYPE_Q4_2] = true,
  2658. [GGML_TYPE_Q4_3] = true,
  2659. [GGML_TYPE_Q8_0] = true,
  2660. [GGML_TYPE_I8] = false,
  2661. [GGML_TYPE_I16] = false,
  2662. [GGML_TYPE_I32] = false,
  2663. };
  2664. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2665. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2666. "NONE",
  2667. "DUP",
  2668. "ADD",
  2669. "SUB",
  2670. "MUL",
  2671. "DIV",
  2672. "SQR",
  2673. "SQRT",
  2674. "SUM",
  2675. "MEAN",
  2676. "REPEAT",
  2677. "ABS",
  2678. "SGN",
  2679. "NEG",
  2680. "STEP",
  2681. "RELU",
  2682. "GELU",
  2683. "SILU",
  2684. "NORM",
  2685. "RMS_NORM",
  2686. "MUL_MAT",
  2687. "SCALE",
  2688. "CPY",
  2689. "CONT",
  2690. "RESHAPE",
  2691. "VIEW",
  2692. "PERMUTE",
  2693. "TRANSPOSE",
  2694. "GET_ROWS",
  2695. "DIAG_MASK_INF",
  2696. "SOFT_MAX",
  2697. "ROPE",
  2698. "CONV_1D_1S",
  2699. "CONV_1D_2S",
  2700. "FLASH_ATTN",
  2701. "FLASH_FF",
  2702. "MAP_UNARY",
  2703. "MAP_BINARY",
  2704. };
  2705. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2706. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2707. "none",
  2708. "x",
  2709. "x+y",
  2710. "x-y",
  2711. "x*y",
  2712. "x/y",
  2713. "x^2",
  2714. "√x",
  2715. "Σx",
  2716. "Σx/n",
  2717. "repeat(x)",
  2718. "abs(x)",
  2719. "sgn(x)",
  2720. "-x",
  2721. "step(x)",
  2722. "relu(x)",
  2723. "gelu(x)",
  2724. "silu(x)",
  2725. "norm(x)",
  2726. "rms_norm(x)",
  2727. "X*Y",
  2728. "x*v",
  2729. "x-\\>y",
  2730. "cont(x)",
  2731. "reshape(x)",
  2732. "view(x)",
  2733. "permute(x)",
  2734. "transpose(x)",
  2735. "get_rows(x)",
  2736. "diag_mask_inf(x)",
  2737. "soft_max(x)",
  2738. "rope(x)",
  2739. "conv_1d_1s(x)",
  2740. "conv_1d_2s(x)",
  2741. "flash_attn(x)",
  2742. "flash_ff(x)",
  2743. "f(x)",
  2744. "f(x,y)",
  2745. };
  2746. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2747. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2748. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2749. //
  2750. // ggml context
  2751. //
  2752. struct ggml_context {
  2753. size_t mem_size;
  2754. void * mem_buffer;
  2755. bool mem_buffer_owned;
  2756. bool no_alloc;
  2757. int n_objects;
  2758. struct ggml_object * objects_begin;
  2759. struct ggml_object * objects_end;
  2760. struct ggml_scratch scratch;
  2761. struct ggml_scratch scratch_save;
  2762. };
  2763. struct ggml_context_container {
  2764. bool used;
  2765. struct ggml_context context;
  2766. };
  2767. //
  2768. // compute types
  2769. //
  2770. enum ggml_task_type {
  2771. GGML_TASK_INIT = 0,
  2772. GGML_TASK_COMPUTE,
  2773. GGML_TASK_FINALIZE,
  2774. };
  2775. struct ggml_compute_params {
  2776. enum ggml_task_type type;
  2777. int ith, nth;
  2778. // work buffer for all threads
  2779. size_t wsize;
  2780. void * wdata;
  2781. };
  2782. //
  2783. // ggml state
  2784. //
  2785. struct ggml_state {
  2786. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2787. };
  2788. // global state
  2789. static struct ggml_state g_state;
  2790. static atomic_int g_state_barrier = 0;
  2791. // barrier via spin lock
  2792. inline static void ggml_critical_section_start(void) {
  2793. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2794. while (processing > 0) {
  2795. // wait for other threads to finish
  2796. atomic_fetch_sub(&g_state_barrier, 1);
  2797. sched_yield(); // TODO: reconsider this
  2798. processing = atomic_fetch_add(&g_state_barrier, 1);
  2799. }
  2800. }
  2801. // TODO: make this somehow automatically executed
  2802. // some sort of "sentry" mechanism
  2803. inline static void ggml_critical_section_end(void) {
  2804. atomic_fetch_sub(&g_state_barrier, 1);
  2805. }
  2806. ////////////////////////////////////////////////////////////////////////////////
  2807. void ggml_print_object(const struct ggml_object * obj) {
  2808. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2809. obj->offs, obj->size, (const void *) obj->next);
  2810. }
  2811. void ggml_print_objects(const struct ggml_context * ctx) {
  2812. struct ggml_object * obj = ctx->objects_begin;
  2813. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2814. while (obj != NULL) {
  2815. ggml_print_object(obj);
  2816. obj = obj->next;
  2817. }
  2818. GGML_PRINT("%s: --- end ---\n", __func__);
  2819. }
  2820. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2823. }
  2824. int ggml_nrows(const struct ggml_tensor * tensor) {
  2825. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2826. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2827. }
  2828. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2831. }
  2832. int ggml_blck_size(enum ggml_type type) {
  2833. return GGML_BLCK_SIZE[type];
  2834. }
  2835. size_t ggml_type_size(enum ggml_type type) {
  2836. return GGML_TYPE_SIZE[type];
  2837. }
  2838. float ggml_type_sizef(enum ggml_type type) {
  2839. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2840. }
  2841. const char * ggml_type_name(enum ggml_type type) {
  2842. return GGML_TYPE_NAME[type];
  2843. }
  2844. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2845. return GGML_TYPE_SIZE[tensor->type];
  2846. }
  2847. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2849. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2850. }
  2851. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2853. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2854. }
  2855. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2857. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2858. }
  2859. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2860. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2861. return
  2862. (t0->ne[0] == t1->ne[0]) &&
  2863. (t0->ne[2] == t1->ne[2]) &&
  2864. (t0->ne[3] == t1->ne[3]);
  2865. }
  2866. bool ggml_is_quantized(enum ggml_type type) {
  2867. return GGML_IS_QUANTIZED[type];
  2868. }
  2869. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2870. return tensor->nb[0] > tensor->nb[1];
  2871. }
  2872. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2873. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2874. return
  2875. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2876. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2877. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2878. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2879. }
  2880. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2881. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2882. return
  2883. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2884. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2885. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2886. }
  2887. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return
  2890. (t0->ne[0] == t1->ne[0] ) &&
  2891. (t0->ne[1] == t1->ne[1] ) &&
  2892. (t0->ne[2] == t1->ne[2] ) &&
  2893. (t0->ne[3] == t1->ne[3] );
  2894. }
  2895. // check if t1 can be represented as a repeatition of t0
  2896. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2897. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2898. return
  2899. (t1->ne[0]%t0->ne[0] == 0) &&
  2900. (t1->ne[1]%t0->ne[1] == 0) &&
  2901. (t1->ne[2]%t0->ne[2] == 0) &&
  2902. (t1->ne[3]%t0->ne[3] == 0);
  2903. }
  2904. static inline int ggml_up32(int n) {
  2905. return (n + 31) & ~31;
  2906. }
  2907. static inline int ggml_up64(int n) {
  2908. return (n + 63) & ~63;
  2909. }
  2910. static inline int ggml_up(int n, int m) {
  2911. // assert m is a power of 2
  2912. GGML_ASSERT((m & (m - 1)) == 0);
  2913. return (n + m - 1) & ~(m - 1);
  2914. }
  2915. // assert that pointer is aligned to GGML_MEM_ALIGN
  2916. #define ggml_assert_aligned(ptr) \
  2917. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2918. ////////////////////////////////////////////////////////////////////////////////
  2919. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2920. // make this function thread safe
  2921. ggml_critical_section_start();
  2922. static bool is_first_call = true;
  2923. if (is_first_call) {
  2924. // initialize time system (required on Windows)
  2925. ggml_time_init();
  2926. // initialize GELU, SILU and EXP F32 tables
  2927. {
  2928. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2929. ggml_fp16_t ii;
  2930. for (int i = 0; i < (1 << 16); ++i) {
  2931. uint16_t ui = i;
  2932. memcpy(&ii, &ui, sizeof(ii));
  2933. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2934. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2935. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2936. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2937. }
  2938. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2939. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2940. }
  2941. // initialize g_state
  2942. {
  2943. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2944. g_state = (struct ggml_state) {
  2945. /*.contexts =*/ { { 0 } },
  2946. };
  2947. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2948. g_state.contexts[i].used = false;
  2949. }
  2950. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2951. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2952. }
  2953. // initialize cuBLAS
  2954. #if defined(GGML_USE_CUBLAS)
  2955. ggml_init_cublas();
  2956. #endif
  2957. is_first_call = false;
  2958. }
  2959. // find non-used context in g_state
  2960. struct ggml_context * ctx = NULL;
  2961. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2962. if (!g_state.contexts[i].used) {
  2963. g_state.contexts[i].used = true;
  2964. ctx = &g_state.contexts[i].context;
  2965. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2966. break;
  2967. }
  2968. }
  2969. if (ctx == NULL) {
  2970. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2971. ggml_critical_section_end();
  2972. return NULL;
  2973. }
  2974. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2975. *ctx = (struct ggml_context) {
  2976. /*.mem_size =*/ mem_size,
  2977. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2978. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2979. /*.no_alloc =*/ params.no_alloc,
  2980. /*.n_objects =*/ 0,
  2981. /*.objects_begin =*/ NULL,
  2982. /*.objects_end =*/ NULL,
  2983. /*.scratch =*/ { 0, 0, NULL, },
  2984. /*.scratch_save =*/ { 0, 0, NULL, },
  2985. };
  2986. GGML_ASSERT(ctx->mem_buffer != NULL);
  2987. ggml_assert_aligned(ctx->mem_buffer);
  2988. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2989. ggml_critical_section_end();
  2990. return ctx;
  2991. }
  2992. void ggml_free(struct ggml_context * ctx) {
  2993. // make this function thread safe
  2994. ggml_critical_section_start();
  2995. bool found = false;
  2996. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2997. if (&g_state.contexts[i].context == ctx) {
  2998. g_state.contexts[i].used = false;
  2999. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3000. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3001. if (ctx->mem_buffer_owned) {
  3002. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3003. }
  3004. found = true;
  3005. break;
  3006. }
  3007. }
  3008. if (!found) {
  3009. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3010. }
  3011. ggml_critical_section_end();
  3012. }
  3013. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3014. return ctx->objects_end->offs + ctx->objects_end->size;
  3015. }
  3016. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3017. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3018. ctx->scratch = scratch;
  3019. return result;
  3020. }
  3021. ////////////////////////////////////////////////////////////////////////////////
  3022. struct ggml_tensor * ggml_new_tensor_impl(
  3023. struct ggml_context * ctx,
  3024. enum ggml_type type,
  3025. int n_dims,
  3026. const int64_t* ne,
  3027. void* data) {
  3028. // always insert objects at the end of the context's memory pool
  3029. struct ggml_object * obj_cur = ctx->objects_end;
  3030. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3031. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3032. const size_t cur_end = cur_offs + cur_size;
  3033. size_t size_needed = 0;
  3034. if (data == NULL && !ctx->no_alloc) {
  3035. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3036. for (int i = 1; i < n_dims; i++) {
  3037. size_needed *= ne[i];
  3038. }
  3039. // align to GGML_MEM_ALIGN
  3040. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3041. }
  3042. char * const mem_buffer = ctx->mem_buffer;
  3043. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3044. if (ctx->scratch.data == NULL || data != NULL) {
  3045. size_needed += sizeof(struct ggml_tensor);
  3046. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3047. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3048. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3049. assert(false);
  3050. return NULL;
  3051. }
  3052. *obj_new = (struct ggml_object) {
  3053. .offs = cur_end + GGML_OBJECT_SIZE,
  3054. .size = size_needed,
  3055. .next = NULL,
  3056. };
  3057. } else {
  3058. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3059. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3060. assert(false);
  3061. return NULL;
  3062. }
  3063. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3064. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3065. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3066. assert(false);
  3067. return NULL;
  3068. }
  3069. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3070. *obj_new = (struct ggml_object) {
  3071. .offs = cur_end + GGML_OBJECT_SIZE,
  3072. .size = sizeof(struct ggml_tensor),
  3073. .next = NULL,
  3074. };
  3075. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3076. ctx->scratch.offs += size_needed;
  3077. }
  3078. if (obj_cur != NULL) {
  3079. obj_cur->next = obj_new;
  3080. } else {
  3081. // this is the first object in this context
  3082. ctx->objects_begin = obj_new;
  3083. }
  3084. ctx->objects_end = obj_new;
  3085. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3086. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3087. ggml_assert_aligned(result);
  3088. *result = (struct ggml_tensor) {
  3089. /*.type =*/ type,
  3090. /*.n_dims =*/ n_dims,
  3091. /*.ne =*/ { 1, 1, 1, 1 },
  3092. /*.nb =*/ { 0, 0, 0, 0 },
  3093. /*.op =*/ GGML_OP_NONE,
  3094. /*.is_param =*/ false,
  3095. /*.grad =*/ NULL,
  3096. /*.src0 =*/ NULL,
  3097. /*.src1 =*/ NULL,
  3098. /*.opt =*/ { NULL },
  3099. /*.n_tasks =*/ 0,
  3100. /*.perf_runs =*/ 0,
  3101. /*.perf_cycles =*/ 0,
  3102. /*.perf_time_us =*/ 0,
  3103. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3104. /*.pad =*/ { 0 },
  3105. };
  3106. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3107. //ggml_assert_aligned(result->data);
  3108. for (int i = 0; i < n_dims; i++) {
  3109. result->ne[i] = ne[i];
  3110. }
  3111. result->nb[0] = GGML_TYPE_SIZE[type];
  3112. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3113. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3114. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3115. }
  3116. ctx->n_objects++;
  3117. return result;
  3118. }
  3119. struct ggml_tensor * ggml_new_tensor(
  3120. struct ggml_context * ctx,
  3121. enum ggml_type type,
  3122. int n_dims,
  3123. const int64_t * ne) {
  3124. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3125. }
  3126. struct ggml_tensor * ggml_new_tensor_1d(
  3127. struct ggml_context * ctx,
  3128. enum ggml_type type,
  3129. int64_t ne0) {
  3130. return ggml_new_tensor(ctx, type, 1, &ne0);
  3131. }
  3132. struct ggml_tensor * ggml_new_tensor_2d(
  3133. struct ggml_context * ctx,
  3134. enum ggml_type type,
  3135. int64_t ne0,
  3136. int64_t ne1) {
  3137. const int64_t ne[2] = { ne0, ne1 };
  3138. return ggml_new_tensor(ctx, type, 2, ne);
  3139. }
  3140. struct ggml_tensor * ggml_new_tensor_3d(
  3141. struct ggml_context * ctx,
  3142. enum ggml_type type,
  3143. int64_t ne0,
  3144. int64_t ne1,
  3145. int64_t ne2) {
  3146. const int64_t ne[3] = { ne0, ne1, ne2 };
  3147. return ggml_new_tensor(ctx, type, 3, ne);
  3148. }
  3149. struct ggml_tensor * ggml_new_tensor_4d(
  3150. struct ggml_context * ctx,
  3151. enum ggml_type type,
  3152. int64_t ne0,
  3153. int64_t ne1,
  3154. int64_t ne2,
  3155. int64_t ne3) {
  3156. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3157. return ggml_new_tensor(ctx, type, 4, ne);
  3158. }
  3159. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3160. ctx->scratch_save = ctx->scratch;
  3161. ctx->scratch.data = NULL;
  3162. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3163. ctx->scratch = ctx->scratch_save;
  3164. ggml_set_i32(result, value);
  3165. return result;
  3166. }
  3167. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3168. ctx->scratch_save = ctx->scratch;
  3169. ctx->scratch.data = NULL;
  3170. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3171. ctx->scratch = ctx->scratch_save;
  3172. ggml_set_f32(result, value);
  3173. return result;
  3174. }
  3175. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3176. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3177. }
  3178. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3179. memset(tensor->data, 0, ggml_nbytes(tensor));
  3180. return tensor;
  3181. }
  3182. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3183. const int n = ggml_nrows(tensor);
  3184. const int nc = tensor->ne[0];
  3185. const size_t n1 = tensor->nb[1];
  3186. char * const data = tensor->data;
  3187. switch (tensor->type) {
  3188. case GGML_TYPE_I8:
  3189. {
  3190. assert(tensor->nb[0] == sizeof(int8_t));
  3191. for (int i = 0; i < n; i++) {
  3192. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3193. }
  3194. } break;
  3195. case GGML_TYPE_I16:
  3196. {
  3197. assert(tensor->nb[0] == sizeof(int16_t));
  3198. for (int i = 0; i < n; i++) {
  3199. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3200. }
  3201. } break;
  3202. case GGML_TYPE_I32:
  3203. {
  3204. assert(tensor->nb[0] == sizeof(int32_t));
  3205. for (int i = 0; i < n; i++) {
  3206. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3207. }
  3208. } break;
  3209. case GGML_TYPE_F16:
  3210. {
  3211. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3212. for (int i = 0; i < n; i++) {
  3213. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3214. }
  3215. } break;
  3216. case GGML_TYPE_F32:
  3217. {
  3218. assert(tensor->nb[0] == sizeof(float));
  3219. for (int i = 0; i < n; i++) {
  3220. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3221. }
  3222. } break;
  3223. default:
  3224. {
  3225. GGML_ASSERT(false);
  3226. } break;
  3227. }
  3228. return tensor;
  3229. }
  3230. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3231. const int n = ggml_nrows(tensor);
  3232. const int nc = tensor->ne[0];
  3233. const size_t n1 = tensor->nb[1];
  3234. char * const data = tensor->data;
  3235. switch (tensor->type) {
  3236. case GGML_TYPE_I8:
  3237. {
  3238. assert(tensor->nb[0] == sizeof(int8_t));
  3239. for (int i = 0; i < n; i++) {
  3240. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3241. }
  3242. } break;
  3243. case GGML_TYPE_I16:
  3244. {
  3245. assert(tensor->nb[0] == sizeof(int16_t));
  3246. for (int i = 0; i < n; i++) {
  3247. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3248. }
  3249. } break;
  3250. case GGML_TYPE_I32:
  3251. {
  3252. assert(tensor->nb[0] == sizeof(int32_t));
  3253. for (int i = 0; i < n; i++) {
  3254. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3255. }
  3256. } break;
  3257. case GGML_TYPE_F16:
  3258. {
  3259. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3260. for (int i = 0; i < n; i++) {
  3261. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3262. }
  3263. } break;
  3264. case GGML_TYPE_F32:
  3265. {
  3266. assert(tensor->nb[0] == sizeof(float));
  3267. for (int i = 0; i < n; i++) {
  3268. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3269. }
  3270. } break;
  3271. default:
  3272. {
  3273. GGML_ASSERT(false);
  3274. } break;
  3275. }
  3276. return tensor;
  3277. }
  3278. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3279. switch (tensor->type) {
  3280. case GGML_TYPE_I8:
  3281. {
  3282. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3283. return ((int8_t *)(tensor->data))[i];
  3284. } break;
  3285. case GGML_TYPE_I16:
  3286. {
  3287. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3288. return ((int16_t *)(tensor->data))[i];
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3293. return ((int32_t *)(tensor->data))[i];
  3294. } break;
  3295. case GGML_TYPE_F16:
  3296. {
  3297. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3298. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3299. } break;
  3300. case GGML_TYPE_F32:
  3301. {
  3302. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3303. return ((float *)(tensor->data))[i];
  3304. } break;
  3305. default:
  3306. {
  3307. GGML_ASSERT(false);
  3308. } break;
  3309. }
  3310. return 0.0f;
  3311. }
  3312. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3313. switch (tensor->type) {
  3314. case GGML_TYPE_I8:
  3315. {
  3316. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3317. ((int8_t *)(tensor->data))[i] = value;
  3318. } break;
  3319. case GGML_TYPE_I16:
  3320. {
  3321. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3322. ((int16_t *)(tensor->data))[i] = value;
  3323. } break;
  3324. case GGML_TYPE_I32:
  3325. {
  3326. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3327. ((int32_t *)(tensor->data))[i] = value;
  3328. } break;
  3329. case GGML_TYPE_F16:
  3330. {
  3331. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3332. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3333. } break;
  3334. case GGML_TYPE_F32:
  3335. {
  3336. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3337. ((float *)(tensor->data))[i] = value;
  3338. } break;
  3339. default:
  3340. {
  3341. GGML_ASSERT(false);
  3342. } break;
  3343. }
  3344. }
  3345. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3346. switch (tensor->type) {
  3347. case GGML_TYPE_I8:
  3348. {
  3349. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3350. return ((int8_t *)(tensor->data))[i];
  3351. } break;
  3352. case GGML_TYPE_I16:
  3353. {
  3354. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3355. return ((int16_t *)(tensor->data))[i];
  3356. } break;
  3357. case GGML_TYPE_I32:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3360. return ((int32_t *)(tensor->data))[i];
  3361. } break;
  3362. case GGML_TYPE_F16:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3365. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3366. } break;
  3367. case GGML_TYPE_F32:
  3368. {
  3369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3370. return ((float *)(tensor->data))[i];
  3371. } break;
  3372. default:
  3373. {
  3374. GGML_ASSERT(false);
  3375. } break;
  3376. }
  3377. return 0.0f;
  3378. }
  3379. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3380. switch (tensor->type) {
  3381. case GGML_TYPE_I8:
  3382. {
  3383. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3384. ((int8_t *)(tensor->data))[i] = value;
  3385. } break;
  3386. case GGML_TYPE_I16:
  3387. {
  3388. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3389. ((int16_t *)(tensor->data))[i] = value;
  3390. } break;
  3391. case GGML_TYPE_I32:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3394. ((int32_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_F16:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3399. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3400. } break;
  3401. case GGML_TYPE_F32:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3404. ((float *)(tensor->data))[i] = value;
  3405. } break;
  3406. default:
  3407. {
  3408. GGML_ASSERT(false);
  3409. } break;
  3410. }
  3411. }
  3412. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3413. return tensor->data;
  3414. }
  3415. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3416. assert(tensor->type == GGML_TYPE_F32);
  3417. return (float *)(tensor->data);
  3418. }
  3419. struct ggml_tensor * ggml_view_tensor(
  3420. struct ggml_context * ctx,
  3421. const struct ggml_tensor * src) {
  3422. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3423. result->nb[0] = src->nb[0];
  3424. result->nb[1] = src->nb[1];
  3425. result->nb[2] = src->nb[2];
  3426. result->nb[3] = src->nb[3];
  3427. return result;
  3428. }
  3429. ////////////////////////////////////////////////////////////////////////////////
  3430. // ggml_dup
  3431. struct ggml_tensor * ggml_dup_impl(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a,
  3434. bool inplace) {
  3435. bool is_node = false;
  3436. if (!inplace && (a->grad)) {
  3437. is_node = true;
  3438. }
  3439. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3440. result->op = GGML_OP_DUP;
  3441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3442. result->src0 = a;
  3443. result->src1 = NULL;
  3444. return result;
  3445. }
  3446. struct ggml_tensor * ggml_dup(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a) {
  3449. return ggml_dup_impl(ctx, a, false);
  3450. }
  3451. struct ggml_tensor * ggml_dup_inplace(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a) {
  3454. return ggml_dup_impl(ctx, a, true);
  3455. }
  3456. // ggml_add
  3457. struct ggml_tensor * ggml_add_impl(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. struct ggml_tensor * b,
  3461. bool inplace) {
  3462. GGML_ASSERT(ggml_are_same_shape(a, b));
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad || b->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. result->op = GGML_OP_ADD;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = a;
  3471. result->src1 = b;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_add(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. struct ggml_tensor * b) {
  3478. return ggml_add_impl(ctx, a, b, false);
  3479. }
  3480. struct ggml_tensor * ggml_add_inplace(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. struct ggml_tensor * b) {
  3484. return ggml_add_impl(ctx, a, b, true);
  3485. }
  3486. // ggml_sub
  3487. struct ggml_tensor * ggml_sub_impl(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. bool inplace) {
  3492. GGML_ASSERT(ggml_are_same_shape(a, b));
  3493. bool is_node = false;
  3494. if (!inplace && (a->grad || b->grad)) {
  3495. is_node = true;
  3496. }
  3497. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3498. result->op = GGML_OP_SUB;
  3499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3500. result->src0 = a;
  3501. result->src1 = b;
  3502. return result;
  3503. }
  3504. struct ggml_tensor * ggml_sub(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b) {
  3508. return ggml_sub_impl(ctx, a, b, false);
  3509. }
  3510. struct ggml_tensor * ggml_sub_inplace(
  3511. struct ggml_context * ctx,
  3512. struct ggml_tensor * a,
  3513. struct ggml_tensor * b) {
  3514. return ggml_sub_impl(ctx, a, b, true);
  3515. }
  3516. // ggml_mul
  3517. struct ggml_tensor * ggml_mul_impl(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. struct ggml_tensor * b,
  3521. bool inplace) {
  3522. GGML_ASSERT(ggml_are_same_shape(a, b));
  3523. bool is_node = false;
  3524. if (!inplace && (a->grad || b->grad)) {
  3525. is_node = true;
  3526. }
  3527. if (inplace) {
  3528. GGML_ASSERT(is_node == false);
  3529. }
  3530. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3531. result->op = GGML_OP_MUL;
  3532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3533. result->src0 = a;
  3534. result->src1 = b;
  3535. return result;
  3536. }
  3537. struct ggml_tensor * ggml_mul(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. struct ggml_tensor * b) {
  3541. return ggml_mul_impl(ctx, a, b, false);
  3542. }
  3543. struct ggml_tensor * ggml_mul_inplace(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. struct ggml_tensor * b) {
  3547. return ggml_mul_impl(ctx, a, b, true);
  3548. }
  3549. // ggml_div
  3550. struct ggml_tensor * ggml_div_impl(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b,
  3554. bool inplace) {
  3555. GGML_ASSERT(ggml_are_same_shape(a, b));
  3556. bool is_node = false;
  3557. if (!inplace && (a->grad || b->grad)) {
  3558. is_node = true;
  3559. }
  3560. if (inplace) {
  3561. GGML_ASSERT(is_node == false);
  3562. }
  3563. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3564. result->op = GGML_OP_DIV;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src0 = a;
  3567. result->src1 = b;
  3568. return result;
  3569. }
  3570. struct ggml_tensor * ggml_div(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b) {
  3574. return ggml_div_impl(ctx, a, b, false);
  3575. }
  3576. struct ggml_tensor * ggml_div_inplace(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a,
  3579. struct ggml_tensor * b) {
  3580. return ggml_div_impl(ctx, a, b, true);
  3581. }
  3582. // ggml_sqr
  3583. struct ggml_tensor * ggml_sqr_impl(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. bool inplace) {
  3587. bool is_node = false;
  3588. if (!inplace && (a->grad)) {
  3589. is_node = true;
  3590. }
  3591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3592. result->op = GGML_OP_SQR;
  3593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3594. result->src0 = a;
  3595. result->src1 = NULL;
  3596. return result;
  3597. }
  3598. struct ggml_tensor * ggml_sqr(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_sqr_impl(ctx, a, false);
  3602. }
  3603. struct ggml_tensor * ggml_sqr_inplace(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_sqr_impl(ctx, a, true);
  3607. }
  3608. // ggml_sqrt
  3609. struct ggml_tensor * ggml_sqrt_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. bool inplace) {
  3613. bool is_node = false;
  3614. if (!inplace && (a->grad)) {
  3615. is_node = true;
  3616. }
  3617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3618. result->op = GGML_OP_SQRT;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src0 = a;
  3621. result->src1 = NULL;
  3622. return result;
  3623. }
  3624. struct ggml_tensor * ggml_sqrt(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_sqrt_impl(ctx, a, false);
  3628. }
  3629. struct ggml_tensor * ggml_sqrt_inplace(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a) {
  3632. return ggml_sqrt_impl(ctx, a, true);
  3633. }
  3634. // ggml_sum
  3635. struct ggml_tensor * ggml_sum(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3643. result->op = GGML_OP_SUM;
  3644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3645. result->src0 = a;
  3646. result->src1 = NULL;
  3647. return result;
  3648. }
  3649. // ggml_mean
  3650. struct ggml_tensor * ggml_mean(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a) {
  3653. bool is_node = false;
  3654. if (a->grad) {
  3655. GGML_ASSERT(false); // TODO: implement
  3656. is_node = true;
  3657. }
  3658. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3659. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3660. result->op = GGML_OP_MEAN;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src0 = a;
  3663. result->src1 = NULL;
  3664. return result;
  3665. }
  3666. // ggml_repeat
  3667. struct ggml_tensor * ggml_repeat(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b) {
  3671. GGML_ASSERT(ggml_can_repeat(a, b));
  3672. bool is_node = false;
  3673. if (a->grad) {
  3674. is_node = true;
  3675. }
  3676. if (ggml_are_same_shape(a, b) && !is_node) {
  3677. return a;
  3678. }
  3679. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3680. result->op = GGML_OP_REPEAT;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src0 = a;
  3683. result->src1 = b;
  3684. return result;
  3685. }
  3686. // ggml_abs
  3687. struct ggml_tensor * ggml_abs_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. bool inplace) {
  3691. bool is_node = false;
  3692. if (!inplace && (a->grad)) {
  3693. is_node = true;
  3694. }
  3695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3696. result->op = GGML_OP_ABS;
  3697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3698. result->src0 = a;
  3699. result->src1 = NULL;
  3700. return result;
  3701. }
  3702. struct ggml_tensor * ggml_abs(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a) {
  3705. return ggml_abs_impl(ctx, a, false);
  3706. }
  3707. struct ggml_tensor * ggml_abs_inplace(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a) {
  3710. return ggml_abs_impl(ctx, a, true);
  3711. }
  3712. // ggml_sgn
  3713. struct ggml_tensor * ggml_sgn_impl(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a,
  3716. bool inplace) {
  3717. bool is_node = false;
  3718. if (!inplace && (a->grad)) {
  3719. is_node = true;
  3720. }
  3721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3722. result->op = GGML_OP_SGN;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src0 = a;
  3725. result->src1 = NULL;
  3726. return result;
  3727. }
  3728. struct ggml_tensor * ggml_sgn(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a) {
  3731. return ggml_sgn_impl(ctx, a, false);
  3732. }
  3733. struct ggml_tensor * ggml_sgn_inplace(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a) {
  3736. return ggml_sgn_impl(ctx, a, true);
  3737. }
  3738. // ggml_neg
  3739. struct ggml_tensor * ggml_neg_impl(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. bool inplace) {
  3743. bool is_node = false;
  3744. if (!inplace && (a->grad)) {
  3745. is_node = true;
  3746. }
  3747. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3748. result->op = GGML_OP_NEG;
  3749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3750. result->src0 = a;
  3751. result->src1 = NULL;
  3752. return result;
  3753. }
  3754. struct ggml_tensor * ggml_neg(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a) {
  3757. return ggml_neg_impl(ctx, a, false);
  3758. }
  3759. struct ggml_tensor * ggml_neg_inplace(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a) {
  3762. return ggml_neg_impl(ctx, a, true);
  3763. }
  3764. // ggml_step
  3765. struct ggml_tensor * ggml_step_impl(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. bool inplace) {
  3769. bool is_node = false;
  3770. if (!inplace && (a->grad)) {
  3771. is_node = true;
  3772. }
  3773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3774. result->op = GGML_OP_STEP;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src0 = a;
  3777. result->src1 = NULL;
  3778. return result;
  3779. }
  3780. struct ggml_tensor * ggml_step(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a) {
  3783. return ggml_step_impl(ctx, a, false);
  3784. }
  3785. struct ggml_tensor * ggml_step_inplace(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a) {
  3788. return ggml_step_impl(ctx, a, true);
  3789. }
  3790. // ggml_relu
  3791. struct ggml_tensor * ggml_relu_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. bool inplace) {
  3795. bool is_node = false;
  3796. if (!inplace && (a->grad)) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3800. result->op = GGML_OP_RELU;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = a;
  3803. result->src1 = NULL;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_relu(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_relu_impl(ctx, a, false);
  3810. }
  3811. struct ggml_tensor * ggml_relu_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a) {
  3814. return ggml_relu_impl(ctx, a, true);
  3815. }
  3816. // ggml_gelu
  3817. struct ggml_tensor * ggml_gelu_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. bool inplace) {
  3821. bool is_node = false;
  3822. if (!inplace && (a->grad)) {
  3823. is_node = true;
  3824. }
  3825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3826. result->op = GGML_OP_GELU;
  3827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3828. result->src0 = a;
  3829. result->src1 = NULL;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_gelu(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_gelu_impl(ctx, a, false);
  3836. }
  3837. struct ggml_tensor * ggml_gelu_inplace(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_gelu_impl(ctx, a, true);
  3841. }
  3842. // ggml_silu
  3843. struct ggml_tensor * ggml_silu_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. bool inplace) {
  3847. bool is_node = false;
  3848. if (!inplace && (a->grad)) {
  3849. is_node = true;
  3850. }
  3851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3852. result->op = GGML_OP_SILU;
  3853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3854. result->src0 = a;
  3855. result->src1 = NULL;
  3856. return result;
  3857. }
  3858. struct ggml_tensor * ggml_silu(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_silu_impl(ctx, a, false);
  3862. }
  3863. struct ggml_tensor * ggml_silu_inplace(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. return ggml_silu_impl(ctx, a, true);
  3867. }
  3868. // ggml_norm
  3869. struct ggml_tensor * ggml_norm_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. bool inplace) {
  3873. bool is_node = false;
  3874. if (!inplace && (a->grad)) {
  3875. GGML_ASSERT(false); // TODO: implement backward
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. result->op = GGML_OP_NORM;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src0 = a;
  3882. result->src1 = NULL; // TODO: maybe store epsilon here?
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_norm(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a) {
  3888. return ggml_norm_impl(ctx, a, false);
  3889. }
  3890. struct ggml_tensor * ggml_norm_inplace(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_norm_impl(ctx, a, true);
  3894. }
  3895. struct ggml_tensor * ggml_rms_norm_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. bool inplace) {
  3899. bool is_node = false;
  3900. if (!inplace && (a->grad)) {
  3901. GGML_ASSERT(false); // TODO: implement backward
  3902. is_node = true;
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_RMS_NORM;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src0 = a;
  3908. result->src1 = NULL; // TODO: maybe store epsilon here?
  3909. return result;
  3910. }
  3911. struct ggml_tensor * ggml_rms_norm(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a) {
  3914. return ggml_rms_norm_impl(ctx, a, false);
  3915. }
  3916. struct ggml_tensor * ggml_rms_norm_inplace(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a) {
  3919. return ggml_rms_norm_impl(ctx, a, true);
  3920. }
  3921. // ggml_mul_mat
  3922. struct ggml_tensor * ggml_mul_mat(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b) {
  3926. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3927. GGML_ASSERT(!ggml_is_transposed(a));
  3928. bool is_node = false;
  3929. if (a->grad || b->grad) {
  3930. is_node = true;
  3931. }
  3932. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3933. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3934. result->op = GGML_OP_MUL_MAT;
  3935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3936. result->src0 = a;
  3937. result->src1 = b;
  3938. return result;
  3939. }
  3940. // ggml_scale
  3941. struct ggml_tensor * ggml_scale_impl(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b,
  3945. bool inplace) {
  3946. GGML_ASSERT(ggml_is_scalar(b));
  3947. GGML_ASSERT(ggml_is_padded_1d(a));
  3948. bool is_node = false;
  3949. if (!inplace && (a->grad || b->grad)) {
  3950. GGML_ASSERT(false); // TODO: implement backward
  3951. is_node = true;
  3952. }
  3953. // TODO: when implement backward, fix this:
  3954. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3955. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3956. result->op = GGML_OP_SCALE;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src0 = a;
  3959. result->src1 = b;
  3960. return result;
  3961. }
  3962. struct ggml_tensor * ggml_scale(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. return ggml_scale_impl(ctx, a, b, false);
  3967. }
  3968. struct ggml_tensor * ggml_scale_inplace(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b) {
  3972. return ggml_scale_impl(ctx, a, b, true);
  3973. }
  3974. // ggml_cpy
  3975. struct ggml_tensor * ggml_cpy_impl(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b,
  3979. bool inplace) {
  3980. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3981. bool is_node = false;
  3982. if (!inplace && (a->grad || b->grad)) {
  3983. GGML_ASSERT(false); // TODO: implement backward
  3984. is_node = true;
  3985. }
  3986. // make a view of the destination
  3987. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3988. result->op = GGML_OP_CPY;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src0 = a;
  3991. result->src1 = b;
  3992. return result;
  3993. }
  3994. struct ggml_tensor * ggml_cpy(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. struct ggml_tensor * b) {
  3998. return ggml_cpy_impl(ctx, a, b, false);
  3999. }
  4000. struct ggml_tensor * ggml_cpy_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * b) {
  4004. return ggml_cpy_impl(ctx, a, b, true);
  4005. }
  4006. // ggml_cont
  4007. struct ggml_tensor * ggml_cont_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. bool inplace) {
  4011. bool is_node = false;
  4012. if (!inplace && a->grad) {
  4013. GGML_ASSERT(false); // TODO: implement backward
  4014. is_node = true;
  4015. }
  4016. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4017. result->op = GGML_OP_CONT;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src0 = a;
  4020. result->src1 = NULL;
  4021. return result;
  4022. }
  4023. struct ggml_tensor * ggml_cont(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a) {
  4026. return ggml_cont_impl(ctx, a, false);
  4027. }
  4028. struct ggml_tensor * ggml_cont_inplace(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. return ggml_cont_impl(ctx, a, true);
  4032. }
  4033. // ggml_reshape
  4034. struct ggml_tensor * ggml_reshape(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. struct ggml_tensor * b) {
  4038. GGML_ASSERT(ggml_is_contiguous(a));
  4039. GGML_ASSERT(ggml_is_contiguous(b));
  4040. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4041. bool is_node = false;
  4042. if (a->grad || b->grad) {
  4043. GGML_ASSERT(false); // TODO: implement backward
  4044. is_node = true;
  4045. }
  4046. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4047. result->op = GGML_OP_RESHAPE;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src0 = a;
  4050. result->src1 = NULL;
  4051. return result;
  4052. }
  4053. struct ggml_tensor * ggml_reshape_2d(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. int64_t ne0,
  4057. int64_t ne1) {
  4058. GGML_ASSERT(ggml_is_contiguous(a));
  4059. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4060. bool is_node = false;
  4061. if (a->grad) {
  4062. GGML_ASSERT(false); // TODO: implement backward
  4063. is_node = true;
  4064. }
  4065. const int64_t ne[2] = { ne0, ne1 };
  4066. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4067. result->op = GGML_OP_RESHAPE;
  4068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4069. result->src0 = a;
  4070. result->src1 = NULL;
  4071. return result;
  4072. }
  4073. struct ggml_tensor * ggml_reshape_3d(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a,
  4076. int64_t ne0,
  4077. int64_t ne1,
  4078. int64_t ne2) {
  4079. GGML_ASSERT(ggml_is_contiguous(a));
  4080. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. GGML_ASSERT(false); // TODO: implement backward
  4084. is_node = true;
  4085. }
  4086. const int64_t ne[3] = { ne0, ne1, ne2 };
  4087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4088. result->op = GGML_OP_RESHAPE;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src0 = a;
  4091. result->src1 = NULL;
  4092. return result;
  4093. }
  4094. // ggml_view_1d
  4095. struct ggml_tensor * ggml_view_1d(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. int64_t ne0,
  4099. size_t offset) {
  4100. if (a->grad) {
  4101. GGML_ASSERT(false); // gradient propagation is not supported
  4102. }
  4103. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4104. result->op = GGML_OP_VIEW;
  4105. result->grad = NULL;
  4106. result->src0 = a;
  4107. result->src1 = NULL; // TODO: maybe store the offset here?
  4108. return result;
  4109. }
  4110. // ggml_view_2d
  4111. struct ggml_tensor * ggml_view_2d(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. int64_t ne0,
  4115. int64_t ne1,
  4116. size_t nb1,
  4117. size_t offset) {
  4118. if (a->grad) {
  4119. GGML_ASSERT(false); // gradient propagation is not supported
  4120. }
  4121. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4122. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4123. result->nb[1] = nb1;
  4124. result->nb[2] = result->nb[1]*ne1;
  4125. result->nb[3] = result->nb[2];
  4126. result->op = GGML_OP_VIEW;
  4127. result->grad = NULL;
  4128. result->src0 = a;
  4129. result->src1 = NULL; // TODO: maybe store the offset here?
  4130. return result;
  4131. }
  4132. // ggml_view_3d
  4133. struct ggml_tensor * ggml_view_3d(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. int64_t ne0,
  4137. int64_t ne1,
  4138. int64_t ne2,
  4139. size_t nb1,
  4140. size_t nb2,
  4141. size_t offset) {
  4142. if (a->grad) {
  4143. GGML_ASSERT(false); // gradient propagation is not supported
  4144. }
  4145. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4146. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4147. result->nb[1] = nb1;
  4148. result->nb[2] = nb2;
  4149. result->nb[3] = result->nb[2]*ne2;
  4150. result->op = GGML_OP_VIEW;
  4151. result->grad = NULL;
  4152. result->src0 = a;
  4153. result->src1 = NULL; // TODO: maybe store the offset here?
  4154. return result;
  4155. }
  4156. // ggml_permute
  4157. struct ggml_tensor * ggml_permute(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. int axis0,
  4161. int axis1,
  4162. int axis2,
  4163. int axis3) {
  4164. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4165. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4166. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4167. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4168. GGML_ASSERT(axis0 != axis1);
  4169. GGML_ASSERT(axis0 != axis2);
  4170. GGML_ASSERT(axis0 != axis3);
  4171. GGML_ASSERT(axis1 != axis2);
  4172. GGML_ASSERT(axis1 != axis3);
  4173. GGML_ASSERT(axis2 != axis3);
  4174. bool is_node = false;
  4175. if (a->grad) {
  4176. GGML_ASSERT(false); // TODO: implement backward
  4177. is_node = true;
  4178. }
  4179. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4180. int ne[GGML_MAX_DIMS];
  4181. int nb[GGML_MAX_DIMS];
  4182. ne[axis0] = a->ne[0];
  4183. ne[axis1] = a->ne[1];
  4184. ne[axis2] = a->ne[2];
  4185. ne[axis3] = a->ne[3];
  4186. nb[axis0] = a->nb[0];
  4187. nb[axis1] = a->nb[1];
  4188. nb[axis2] = a->nb[2];
  4189. nb[axis3] = a->nb[3];
  4190. result->ne[0] = ne[0];
  4191. result->ne[1] = ne[1];
  4192. result->ne[2] = ne[2];
  4193. result->ne[3] = ne[3];
  4194. result->nb[0] = nb[0];
  4195. result->nb[1] = nb[1];
  4196. result->nb[2] = nb[2];
  4197. result->nb[3] = nb[3];
  4198. result->op = GGML_OP_PERMUTE;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = NULL; // TODO: maybe store the permutation here?
  4202. return result;
  4203. }
  4204. // ggml_transpose
  4205. struct ggml_tensor * ggml_transpose(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a) {
  4208. bool is_node = false;
  4209. if (a->grad) {
  4210. GGML_ASSERT(false); // TODO: implement backward
  4211. is_node = true;
  4212. }
  4213. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4214. result->ne[0] = a->ne[1];
  4215. result->ne[1] = a->ne[0];
  4216. result->nb[0] = a->nb[1];
  4217. result->nb[1] = a->nb[0];
  4218. result->op = GGML_OP_TRANSPOSE;
  4219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4220. result->src0 = a;
  4221. result->src1 = NULL;
  4222. return result;
  4223. }
  4224. // ggml_get_rows
  4225. struct ggml_tensor * ggml_get_rows(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. struct ggml_tensor * b) {
  4229. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4230. bool is_node = false;
  4231. if (a->grad || b->grad) {
  4232. GGML_ASSERT(false); // TODO: implement backward
  4233. is_node = true;
  4234. }
  4235. // TODO: implement non F32 return
  4236. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4237. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4238. result->op = GGML_OP_GET_ROWS;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src0 = a;
  4241. result->src1 = b;
  4242. return result;
  4243. }
  4244. // ggml_diag_mask_inf
  4245. struct ggml_tensor * ggml_diag_mask_inf(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int n_past) {
  4249. bool is_node = false;
  4250. if (a->grad) {
  4251. GGML_ASSERT(false); // TODO: implement backward
  4252. is_node = true;
  4253. }
  4254. // TODO: when implement backward, fix this:
  4255. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4256. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4257. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4258. result->op = GGML_OP_DIAG_MASK_INF;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src0 = a;
  4261. result->src1 = b;
  4262. return result;
  4263. }
  4264. // ggml_soft_max
  4265. struct ggml_tensor * ggml_soft_max(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. bool is_node = false;
  4269. if (a->grad) {
  4270. GGML_ASSERT(false); // TODO: implement backward
  4271. is_node = true;
  4272. }
  4273. // TODO: when implement backward, fix this:
  4274. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4275. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4276. result->op = GGML_OP_SOFT_MAX;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src0 = a;
  4279. result->src1 = NULL;
  4280. return result;
  4281. }
  4282. // ggml_rope
  4283. struct ggml_tensor * ggml_rope(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. int n_past,
  4287. int n_dims,
  4288. int mode) {
  4289. GGML_ASSERT(n_past >= 0);
  4290. bool is_node = false;
  4291. if (a->grad) {
  4292. GGML_ASSERT(false); // TODO: implement backward
  4293. is_node = true;
  4294. }
  4295. // TODO: when implement backward, fix this:
  4296. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4298. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4299. ((int32_t *) b->data)[0] = n_past;
  4300. ((int32_t *) b->data)[1] = n_dims;
  4301. ((int32_t *) b->data)[2] = mode;
  4302. result->op = GGML_OP_ROPE;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src0 = a;
  4305. result->src1 = b;
  4306. return result;
  4307. }
  4308. // ggml_conv_1d_1s
  4309. struct ggml_tensor * ggml_conv_1d_1s(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. GGML_ASSERT(ggml_is_matrix(b));
  4314. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4315. GGML_ASSERT(a->ne[3] == 1);
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. GGML_ASSERT(false); // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4322. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4323. result->op = GGML_OP_CONV_1D_1S;
  4324. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4325. result->src0 = a;
  4326. result->src1 = b;
  4327. return result;
  4328. }
  4329. // ggml_conv_1d_2s
  4330. struct ggml_tensor * ggml_conv_1d_2s(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. GGML_ASSERT(ggml_is_matrix(b));
  4335. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4336. GGML_ASSERT(a->ne[3] == 1);
  4337. bool is_node = false;
  4338. if (a->grad || b->grad) {
  4339. GGML_ASSERT(false); // TODO: implement backward
  4340. is_node = true;
  4341. }
  4342. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4343. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4344. result->op = GGML_OP_CONV_1D_2S;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src0 = a;
  4347. result->src1 = b;
  4348. return result;
  4349. }
  4350. // ggml_flash_attn
  4351. struct ggml_tensor * ggml_flash_attn(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * q,
  4354. struct ggml_tensor * k,
  4355. struct ggml_tensor * v,
  4356. bool masked) {
  4357. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4358. // TODO: check if vT can be multiplied by (k*qT)
  4359. bool is_node = false;
  4360. if (q->grad || k->grad || v->grad) {
  4361. GGML_ASSERT(false); // TODO: implement backward
  4362. is_node = true;
  4363. }
  4364. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4365. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4366. result->op = GGML_OP_FLASH_ATTN;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src0 = q;
  4369. result->src1 = k;
  4370. result->opt[0] = v;
  4371. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4372. return result;
  4373. }
  4374. // ggml_flash_ff
  4375. struct ggml_tensor * ggml_flash_ff(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. struct ggml_tensor * b0,
  4379. struct ggml_tensor * b1,
  4380. struct ggml_tensor * c0,
  4381. struct ggml_tensor * c1) {
  4382. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4383. // TODO: more checks
  4384. bool is_node = false;
  4385. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4386. GGML_ASSERT(false); // TODO: implement backward
  4387. is_node = true;
  4388. }
  4389. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4390. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4391. result->op = GGML_OP_FLASH_FF;
  4392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4393. result->src0 = a;
  4394. result->src1 = b0;
  4395. result->opt[0] = b1;
  4396. result->opt[1] = c0;
  4397. result->opt[2] = c1;
  4398. return result;
  4399. }
  4400. // ggml_map_unary
  4401. struct ggml_tensor * ggml_map_unary_impl_f32(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. const ggml_unary_op_f32_t fun,
  4405. bool inplace) {
  4406. bool is_node = false;
  4407. if (!inplace && a->grad) {
  4408. is_node = true;
  4409. }
  4410. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4411. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4412. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op = GGML_OP_MAP_UNARY;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src0 = a;
  4416. result->opt[0] = addr_tensor;
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_map_unary_f32(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. const ggml_unary_op_f32_t fun) {
  4423. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4424. }
  4425. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. const ggml_unary_op_f32_t fun) {
  4429. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4430. }
  4431. // ggml_map_binary
  4432. struct ggml_tensor * ggml_map_binary_impl_f32(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b,
  4436. const ggml_binary_op_f32_t fun,
  4437. bool inplace) {
  4438. GGML_ASSERT(ggml_are_same_shape(a, b));
  4439. bool is_node = false;
  4440. if (!inplace && (a->grad || b->grad)) {
  4441. is_node = true;
  4442. }
  4443. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4444. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4445. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4446. result->op = GGML_OP_MAP_BINARY;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src0 = a;
  4449. result->src1 = b;
  4450. result->opt[0] = addr_tensor;
  4451. return result;
  4452. }
  4453. struct ggml_tensor * ggml_map_binary_f32(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a,
  4456. struct ggml_tensor * b,
  4457. const ggml_binary_op_f32_t fun) {
  4458. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4459. }
  4460. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. struct ggml_tensor * b,
  4464. const ggml_binary_op_f32_t fun) {
  4465. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4466. }
  4467. ////////////////////////////////////////////////////////////////////////////////
  4468. void ggml_set_param(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * tensor) {
  4471. tensor->is_param = true;
  4472. GGML_ASSERT(tensor->grad == NULL);
  4473. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4474. }
  4475. // ggml_compute_forward_dup
  4476. static void ggml_compute_forward_dup_f16(
  4477. const struct ggml_compute_params * params,
  4478. const struct ggml_tensor * src0,
  4479. struct ggml_tensor * dst) {
  4480. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4482. return;
  4483. }
  4484. const int64_t ne00 = src0->ne[0];
  4485. const int64_t ne01 = src0->ne[1];
  4486. const int64_t ne02 = src0->ne[2];
  4487. const int64_t ne03 = src0->ne[3];
  4488. const int64_t ne0 = dst->ne[0];
  4489. const int64_t ne1 = dst->ne[1];
  4490. const int64_t ne2 = dst->ne[2];
  4491. const int64_t ne3 = dst->ne[3];
  4492. const size_t nb00 = src0->nb[0];
  4493. const size_t nb01 = src0->nb[1];
  4494. const size_t nb02 = src0->nb[2];
  4495. const size_t nb03 = src0->nb[3];
  4496. const size_t nb0 = dst->nb[0];
  4497. const size_t nb1 = dst->nb[1];
  4498. const size_t nb2 = dst->nb[2];
  4499. const size_t nb3 = dst->nb[3];
  4500. const int ith = params->ith; // thread index
  4501. const int nth = params->nth; // number of threads
  4502. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4503. // parallelize by elements
  4504. const int ne = ggml_nelements(dst);
  4505. const int dr = (ne + nth - 1) / nth;
  4506. const int ie0 = dr * ith;
  4507. const int ie1 = MIN(ie0 + dr, ne);
  4508. memcpy(
  4509. ((char *) dst->data + ie0*nb0),
  4510. ((char *) src0->data + ie0*nb00),
  4511. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4512. return;
  4513. }
  4514. // parallelize by rows
  4515. const int nr = ne01;
  4516. // number of rows per thread
  4517. const int dr = (nr + nth - 1) / nth;
  4518. // row range for this thread
  4519. const int ir0 = dr * ith;
  4520. const int ir1 = MIN(ir0 + dr, nr);
  4521. if (src0->type == dst->type &&
  4522. ne00 == ne0 &&
  4523. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4524. // copy by rows
  4525. const size_t rs = ne00*nb00;
  4526. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4527. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4528. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4529. memcpy(
  4530. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4531. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4532. rs);
  4533. }
  4534. }
  4535. }
  4536. return;
  4537. }
  4538. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4539. if (ggml_is_contiguous(dst)) {
  4540. if (nb00 == sizeof(ggml_fp16_t)) {
  4541. if (dst->type == GGML_TYPE_F16) {
  4542. size_t id = 0;
  4543. const size_t rs = ne00 * nb00;
  4544. char * dst_ptr = (char *) dst->data;
  4545. for (int i03 = 0; i03 < ne03; i03++) {
  4546. for (int i02 = 0; i02 < ne02; i02++) {
  4547. id += rs * ir0;
  4548. for (int i01 = ir0; i01 < ir1; i01++) {
  4549. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4550. memcpy(dst_ptr + id, src0_ptr, rs);
  4551. id += rs;
  4552. }
  4553. id += rs * (ne01 - ir1);
  4554. }
  4555. }
  4556. } else if (dst->type == GGML_TYPE_F32) {
  4557. size_t id = 0;
  4558. float * dst_ptr = (float *) dst->data;
  4559. for (int i03 = 0; i03 < ne03; i03++) {
  4560. for (int i02 = 0; i02 < ne02; i02++) {
  4561. id += ne00 * ir0;
  4562. for (int i01 = ir0; i01 < ir1; i01++) {
  4563. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4564. for (int i00 = 0; i00 < ne00; i00++) {
  4565. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4566. id++;
  4567. }
  4568. }
  4569. id += ne00 * (ne01 - ir1);
  4570. }
  4571. }
  4572. } else if (ggml_is_quantized(dst->type)) {
  4573. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4574. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4575. size_t id = 0;
  4576. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4577. char * dst_ptr = (char *) dst->data;
  4578. for (int i03 = 0; i03 < ne03; i03++) {
  4579. for (int i02 = 0; i02 < ne02; i02++) {
  4580. id += rs * ir0;
  4581. for (int i01 = ir0; i01 < ir1; i01++) {
  4582. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4583. for (int i00 = 0; i00 < ne00; i00++) {
  4584. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4585. }
  4586. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4587. id += rs;
  4588. }
  4589. id += rs * (ne01 - ir1);
  4590. }
  4591. }
  4592. } else {
  4593. GGML_ASSERT(false); // TODO: implement
  4594. }
  4595. } else {
  4596. //printf("%s: this is not optimal - fix me\n", __func__);
  4597. if (dst->type == GGML_TYPE_F32) {
  4598. size_t id = 0;
  4599. float * dst_ptr = (float *) dst->data;
  4600. for (int i03 = 0; i03 < ne03; i03++) {
  4601. for (int i02 = 0; i02 < ne02; i02++) {
  4602. id += ne00 * ir0;
  4603. for (int i01 = ir0; i01 < ir1; i01++) {
  4604. for (int i00 = 0; i00 < ne00; i00++) {
  4605. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4606. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4607. id++;
  4608. }
  4609. }
  4610. id += ne00 * (ne01 - ir1);
  4611. }
  4612. }
  4613. } else if (dst->type == GGML_TYPE_F16) {
  4614. size_t id = 0;
  4615. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4616. for (int i03 = 0; i03 < ne03; i03++) {
  4617. for (int i02 = 0; i02 < ne02; i02++) {
  4618. id += ne00 * ir0;
  4619. for (int i01 = ir0; i01 < ir1; i01++) {
  4620. for (int i00 = 0; i00 < ne00; i00++) {
  4621. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4622. dst_ptr[id] = *src0_ptr;
  4623. id++;
  4624. }
  4625. }
  4626. id += ne00 * (ne01 - ir1);
  4627. }
  4628. }
  4629. } else {
  4630. GGML_ASSERT(false); // TODO: implement
  4631. }
  4632. }
  4633. return;
  4634. }
  4635. // dst counters
  4636. int64_t i10 = 0;
  4637. int64_t i11 = 0;
  4638. int64_t i12 = 0;
  4639. int64_t i13 = 0;
  4640. if (dst->type == GGML_TYPE_F16) {
  4641. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4642. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4643. i10 += ne00 * ir0;
  4644. while (i10 >= ne0) {
  4645. i10 -= ne0;
  4646. if (++i11 == ne1) {
  4647. i11 = 0;
  4648. if (++i12 == ne2) {
  4649. i12 = 0;
  4650. if (++i13 == ne3) {
  4651. i13 = 0;
  4652. }
  4653. }
  4654. }
  4655. }
  4656. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4657. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4658. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4659. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4660. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4661. if (++i10 == ne00) {
  4662. i10 = 0;
  4663. if (++i11 == ne01) {
  4664. i11 = 0;
  4665. if (++i12 == ne02) {
  4666. i12 = 0;
  4667. if (++i13 == ne03) {
  4668. i13 = 0;
  4669. }
  4670. }
  4671. }
  4672. }
  4673. }
  4674. }
  4675. i10 += ne00 * (ne01 - ir1);
  4676. while (i10 >= ne0) {
  4677. i10 -= ne0;
  4678. if (++i11 == ne1) {
  4679. i11 = 0;
  4680. if (++i12 == ne2) {
  4681. i12 = 0;
  4682. if (++i13 == ne3) {
  4683. i13 = 0;
  4684. }
  4685. }
  4686. }
  4687. }
  4688. }
  4689. }
  4690. } else if (dst->type == GGML_TYPE_F32) {
  4691. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4692. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4693. i10 += ne00 * ir0;
  4694. while (i10 >= ne0) {
  4695. i10 -= ne0;
  4696. if (++i11 == ne1) {
  4697. i11 = 0;
  4698. if (++i12 == ne2) {
  4699. i12 = 0;
  4700. if (++i13 == ne3) {
  4701. i13 = 0;
  4702. }
  4703. }
  4704. }
  4705. }
  4706. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4707. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4708. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4709. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4710. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4711. if (++i10 == ne0) {
  4712. i10 = 0;
  4713. if (++i11 == ne1) {
  4714. i11 = 0;
  4715. if (++i12 == ne2) {
  4716. i12 = 0;
  4717. if (++i13 == ne3) {
  4718. i13 = 0;
  4719. }
  4720. }
  4721. }
  4722. }
  4723. }
  4724. }
  4725. i10 += ne00 * (ne01 - ir1);
  4726. while (i10 >= ne0) {
  4727. i10 -= ne0;
  4728. if (++i11 == ne1) {
  4729. i11 = 0;
  4730. if (++i12 == ne2) {
  4731. i12 = 0;
  4732. if (++i13 == ne3) {
  4733. i13 = 0;
  4734. }
  4735. }
  4736. }
  4737. }
  4738. }
  4739. }
  4740. } else {
  4741. GGML_ASSERT(false); // TODO: implement
  4742. }
  4743. }
  4744. static void ggml_compute_forward_dup_f32(
  4745. const struct ggml_compute_params * params,
  4746. const struct ggml_tensor * src0,
  4747. struct ggml_tensor * dst) {
  4748. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4750. return;
  4751. }
  4752. const int64_t ne00 = src0->ne[0];
  4753. const int64_t ne01 = src0->ne[1];
  4754. const int64_t ne02 = src0->ne[2];
  4755. const int64_t ne03 = src0->ne[3];
  4756. const int64_t ne0 = dst->ne[0];
  4757. const int64_t ne1 = dst->ne[1];
  4758. const int64_t ne2 = dst->ne[2];
  4759. const int64_t ne3 = dst->ne[3];
  4760. const size_t nb00 = src0->nb[0];
  4761. const size_t nb01 = src0->nb[1];
  4762. const size_t nb02 = src0->nb[2];
  4763. const size_t nb03 = src0->nb[3];
  4764. const size_t nb0 = dst->nb[0];
  4765. const size_t nb1 = dst->nb[1];
  4766. const size_t nb2 = dst->nb[2];
  4767. const size_t nb3 = dst->nb[3];
  4768. const int ith = params->ith; // thread index
  4769. const int nth = params->nth; // number of threads
  4770. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4771. // parallelize by elements
  4772. const int ne = ggml_nelements(dst);
  4773. const int dr = (ne + nth - 1) / nth;
  4774. const int ie0 = dr * ith;
  4775. const int ie1 = MIN(ie0 + dr, ne);
  4776. memcpy(
  4777. ((char *) dst->data + ie0*nb0),
  4778. ((char *) src0->data + ie0*nb00),
  4779. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4780. return;
  4781. }
  4782. // parallelize by rows
  4783. const int nr = ne01;
  4784. // number of rows per thread
  4785. const int dr = (nr + nth - 1) / nth;
  4786. // row range for this thread
  4787. const int ir0 = dr * ith;
  4788. const int ir1 = MIN(ir0 + dr, nr);
  4789. if (src0->type == dst->type &&
  4790. ne00 == ne0 &&
  4791. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4792. // copy by rows
  4793. const size_t rs = ne00*nb00;
  4794. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4796. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4797. memcpy(
  4798. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4799. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4800. rs);
  4801. }
  4802. }
  4803. }
  4804. return;
  4805. }
  4806. if (ggml_is_contiguous(dst)) {
  4807. // TODO: simplify
  4808. if (nb00 == sizeof(float)) {
  4809. if (dst->type == GGML_TYPE_F32) {
  4810. size_t id = 0;
  4811. const size_t rs = ne00 * nb00;
  4812. char * dst_ptr = (char *) dst->data;
  4813. for (int i03 = 0; i03 < ne03; i03++) {
  4814. for (int i02 = 0; i02 < ne02; i02++) {
  4815. id += rs * ir0;
  4816. for (int i01 = ir0; i01 < ir1; i01++) {
  4817. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4818. memcpy(dst_ptr + id, src0_ptr, rs);
  4819. id += rs;
  4820. }
  4821. id += rs * (ne01 - ir1);
  4822. }
  4823. }
  4824. } else if (dst->type == GGML_TYPE_F16) {
  4825. size_t id = 0;
  4826. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4827. for (int i03 = 0; i03 < ne03; i03++) {
  4828. for (int i02 = 0; i02 < ne02; i02++) {
  4829. id += ne00 * ir0;
  4830. for (int i01 = ir0; i01 < ir1; i01++) {
  4831. for (int i00 = 0; i00 < ne00; i00++) {
  4832. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4833. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4834. id++;
  4835. }
  4836. }
  4837. id += ne00 * (ne01 - ir1);
  4838. }
  4839. }
  4840. } else if (ggml_is_quantized(dst->type)) {
  4841. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4842. size_t id = 0;
  4843. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4844. char * dst_ptr = (char *) dst->data;
  4845. for (int i03 = 0; i03 < ne03; i03++) {
  4846. for (int i02 = 0; i02 < ne02; i02++) {
  4847. id += rs * ir0;
  4848. for (int i01 = ir0; i01 < ir1; i01++) {
  4849. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4850. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4851. id += rs;
  4852. }
  4853. id += rs * (ne01 - ir1);
  4854. }
  4855. }
  4856. } else {
  4857. GGML_ASSERT(false); // TODO: implement
  4858. }
  4859. } else {
  4860. //printf("%s: this is not optimal - fix me\n", __func__);
  4861. if (dst->type == GGML_TYPE_F32) {
  4862. size_t id = 0;
  4863. float * dst_ptr = (float *) dst->data;
  4864. for (int i03 = 0; i03 < ne03; i03++) {
  4865. for (int i02 = 0; i02 < ne02; i02++) {
  4866. id += ne00 * ir0;
  4867. for (int i01 = ir0; i01 < ir1; i01++) {
  4868. for (int i00 = 0; i00 < ne00; i00++) {
  4869. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4870. dst_ptr[id] = *src0_ptr;
  4871. id++;
  4872. }
  4873. }
  4874. id += ne00 * (ne01 - ir1);
  4875. }
  4876. }
  4877. } else if (dst->type == GGML_TYPE_F16) {
  4878. size_t id = 0;
  4879. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4880. for (int i03 = 0; i03 < ne03; i03++) {
  4881. for (int i02 = 0; i02 < ne02; i02++) {
  4882. id += ne00 * ir0;
  4883. for (int i01 = ir0; i01 < ir1; i01++) {
  4884. for (int i00 = 0; i00 < ne00; i00++) {
  4885. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4886. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4887. id++;
  4888. }
  4889. }
  4890. id += ne00 * (ne01 - ir1);
  4891. }
  4892. }
  4893. } else {
  4894. GGML_ASSERT(false); // TODO: implement
  4895. }
  4896. }
  4897. return;
  4898. }
  4899. // dst counters
  4900. int64_t i10 = 0;
  4901. int64_t i11 = 0;
  4902. int64_t i12 = 0;
  4903. int64_t i13 = 0;
  4904. if (dst->type == GGML_TYPE_F32) {
  4905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4907. i10 += ne00 * ir0;
  4908. while (i10 >= ne0) {
  4909. i10 -= ne0;
  4910. if (++i11 == ne1) {
  4911. i11 = 0;
  4912. if (++i12 == ne2) {
  4913. i12 = 0;
  4914. if (++i13 == ne3) {
  4915. i13 = 0;
  4916. }
  4917. }
  4918. }
  4919. }
  4920. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4921. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4922. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4923. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4924. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4925. if (++i10 == ne0) {
  4926. i10 = 0;
  4927. if (++i11 == ne1) {
  4928. i11 = 0;
  4929. if (++i12 == ne2) {
  4930. i12 = 0;
  4931. if (++i13 == ne3) {
  4932. i13 = 0;
  4933. }
  4934. }
  4935. }
  4936. }
  4937. }
  4938. }
  4939. i10 += ne00 * (ne01 - ir1);
  4940. while (i10 >= ne0) {
  4941. i10 -= ne0;
  4942. if (++i11 == ne1) {
  4943. i11 = 0;
  4944. if (++i12 == ne2) {
  4945. i12 = 0;
  4946. if (++i13 == ne3) {
  4947. i13 = 0;
  4948. }
  4949. }
  4950. }
  4951. }
  4952. }
  4953. }
  4954. } else if (dst->type == GGML_TYPE_F16) {
  4955. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4957. i10 += ne00 * ir0;
  4958. while (i10 >= ne0) {
  4959. i10 -= ne0;
  4960. if (++i11 == ne1) {
  4961. i11 = 0;
  4962. if (++i12 == ne2) {
  4963. i12 = 0;
  4964. if (++i13 == ne3) {
  4965. i13 = 0;
  4966. }
  4967. }
  4968. }
  4969. }
  4970. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4971. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4972. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4973. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4974. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4975. if (++i10 == ne0) {
  4976. i10 = 0;
  4977. if (++i11 == ne1) {
  4978. i11 = 0;
  4979. if (++i12 == ne2) {
  4980. i12 = 0;
  4981. if (++i13 == ne3) {
  4982. i13 = 0;
  4983. }
  4984. }
  4985. }
  4986. }
  4987. }
  4988. }
  4989. i10 += ne00 * (ne01 - ir1);
  4990. while (i10 >= ne0) {
  4991. i10 -= ne0;
  4992. if (++i11 == ne1) {
  4993. i11 = 0;
  4994. if (++i12 == ne2) {
  4995. i12 = 0;
  4996. if (++i13 == ne3) {
  4997. i13 = 0;
  4998. }
  4999. }
  5000. }
  5001. }
  5002. }
  5003. }
  5004. } else {
  5005. GGML_ASSERT(false); // TODO: implement
  5006. }
  5007. }
  5008. static void ggml_compute_forward_dup(
  5009. const struct ggml_compute_params * params,
  5010. const struct ggml_tensor * src0,
  5011. struct ggml_tensor * dst) {
  5012. switch (src0->type) {
  5013. case GGML_TYPE_F16:
  5014. {
  5015. ggml_compute_forward_dup_f16(params, src0, dst);
  5016. } break;
  5017. case GGML_TYPE_F32:
  5018. {
  5019. ggml_compute_forward_dup_f32(params, src0, dst);
  5020. } break;
  5021. default:
  5022. {
  5023. GGML_ASSERT(false);
  5024. } break;
  5025. }
  5026. }
  5027. // ggml_compute_forward_add
  5028. static void ggml_compute_forward_add_f32(
  5029. const struct ggml_compute_params * params,
  5030. const struct ggml_tensor * src0,
  5031. const struct ggml_tensor * src1,
  5032. struct ggml_tensor * dst) {
  5033. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5035. return;
  5036. }
  5037. const int ith = params->ith;
  5038. const int nth = params->nth;
  5039. const int n = ggml_nrows(src0);
  5040. const int nc = src0->ne[0];
  5041. const size_t nb00 = src0->nb[0];
  5042. const size_t nb01 = src0->nb[1];
  5043. const size_t nb10 = src1->nb[0];
  5044. const size_t nb11 = src1->nb[1];
  5045. const size_t nb0 = dst->nb[0];
  5046. const size_t nb1 = dst->nb[1];
  5047. GGML_ASSERT( nb0 == sizeof(float));
  5048. GGML_ASSERT(nb00 == sizeof(float));
  5049. if (nb10 == sizeof(float)) {
  5050. for (int j = ith; j < n; j += nth) {
  5051. #ifdef GGML_USE_ACCELERATE
  5052. vDSP_vadd(
  5053. (float *) ((char *) src0->data + j*nb01), 1,
  5054. (float *) ((char *) src1->data + j*nb11), 1,
  5055. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5056. #else
  5057. ggml_vec_add_f32(nc,
  5058. (float *) ((char *) dst->data + j*nb1),
  5059. (float *) ((char *) src0->data + j*nb01),
  5060. (float *) ((char *) src1->data + j*nb11));
  5061. #endif
  5062. }
  5063. } else {
  5064. // src1 is not contiguous
  5065. for (int j = ith; j < n; j += nth) {
  5066. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5067. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5068. for (int i = 0; i < nc; i++) {
  5069. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5070. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5071. }
  5072. }
  5073. }
  5074. }
  5075. static void ggml_compute_forward_add_f16_f32(
  5076. const struct ggml_compute_params * params,
  5077. const struct ggml_tensor * src0,
  5078. const struct ggml_tensor * src1,
  5079. struct ggml_tensor * dst) {
  5080. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5082. return;
  5083. }
  5084. const int ith = params->ith;
  5085. const int nth = params->nth;
  5086. const int n = ggml_nrows(src0);
  5087. const int nc = src0->ne[0];
  5088. const size_t nb00 = src0->nb[0];
  5089. const size_t nb01 = src0->nb[1];
  5090. const size_t nb10 = src1->nb[0];
  5091. const size_t nb11 = src1->nb[1];
  5092. const size_t nb0 = dst->nb[0];
  5093. const size_t nb1 = dst->nb[1];
  5094. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5095. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5096. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5097. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5098. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5099. if (nb10 == sizeof(float)) {
  5100. for (int j = ith; j < n; j += nth) {
  5101. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5102. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5103. for (int i = 0; i < nc; i++) {
  5104. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5105. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5106. }
  5107. }
  5108. }
  5109. else {
  5110. // src1 is not contiguous
  5111. GGML_ASSERT(false);
  5112. }
  5113. }
  5114. static void ggml_compute_forward_add_f16_f16(
  5115. const struct ggml_compute_params * params,
  5116. const struct ggml_tensor * src0,
  5117. const struct ggml_tensor * src1,
  5118. struct ggml_tensor * dst) {
  5119. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5121. return;
  5122. }
  5123. const int ith = params->ith;
  5124. const int nth = params->nth;
  5125. const int n = ggml_nrows(src0);
  5126. const int nc = src0->ne[0];
  5127. const size_t nb00 = src0->nb[0];
  5128. const size_t nb01 = src0->nb[1];
  5129. const size_t nb10 = src1->nb[0];
  5130. const size_t nb11 = src1->nb[1];
  5131. const size_t nb0 = dst->nb[0];
  5132. const size_t nb1 = dst->nb[1];
  5133. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5134. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5135. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5136. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5137. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5138. if (nb10 == sizeof(ggml_fp16_t)) {
  5139. for (int j = ith; j < n; j += nth) {
  5140. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5141. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5142. for (int i = 0; i < nc; i++) {
  5143. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5144. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5145. }
  5146. }
  5147. }
  5148. else {
  5149. // src1 is not contiguous
  5150. GGML_ASSERT(false);
  5151. }
  5152. }
  5153. static void ggml_compute_forward_add_q_f32(
  5154. const struct ggml_compute_params * params,
  5155. const struct ggml_tensor * src0,
  5156. const struct ggml_tensor * src1,
  5157. struct ggml_tensor * dst) {
  5158. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5160. return;
  5161. }
  5162. const int64_t ne00 = src0->ne[0];
  5163. const int64_t ne01 = src0->ne[1];
  5164. const int64_t ne02 = src0->ne[2];
  5165. const int64_t ne03 = src0->ne[3];
  5166. //const int64_t ne10 = src1->ne[0];
  5167. //const int64_t ne11 = src1->ne[1];
  5168. const int64_t ne12 = src1->ne[2];
  5169. const int64_t ne13 = src1->ne[3];
  5170. //const int64_t ne0 = dst->ne[0];
  5171. //const int64_t ne1 = dst->ne[1];
  5172. const int64_t ne2 = dst->ne[2];
  5173. const int64_t ne3 = dst->ne[3];
  5174. const int nb00 = src0->nb[0];
  5175. const int nb01 = src0->nb[1];
  5176. const int nb02 = src0->nb[2];
  5177. const int nb03 = src0->nb[3];
  5178. const int nb10 = src1->nb[0];
  5179. const int nb11 = src1->nb[1];
  5180. const int nb12 = src1->nb[2];
  5181. const int nb13 = src1->nb[3];
  5182. const int nb0 = dst->nb[0];
  5183. const int nb1 = dst->nb[1];
  5184. const int nb2 = dst->nb[2];
  5185. const int nb3 = dst->nb[3];
  5186. const int ith = params->ith;
  5187. const int nth = params->nth;
  5188. GGML_ASSERT(ne02 == ne12);
  5189. GGML_ASSERT(ne03 == ne13);
  5190. GGML_ASSERT(ne2 == ne12);
  5191. GGML_ASSERT(ne3 == ne13);
  5192. const enum ggml_type type = src0->type;
  5193. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5194. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5195. // we don't support permuted src0 or src1
  5196. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5197. GGML_ASSERT(nb10 == sizeof(float));
  5198. // dst cannot be transposed or permuted
  5199. GGML_ASSERT(nb0 <= nb1);
  5200. GGML_ASSERT(nb1 <= nb2);
  5201. GGML_ASSERT(nb2 <= nb3);
  5202. GGML_ASSERT(ggml_is_quantized(src0->type));
  5203. GGML_ASSERT(dst->type == src0->type);
  5204. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5205. // total rows in src0
  5206. const int nr = ne01*ne02*ne03;
  5207. // rows per thread
  5208. const int dr = (nr + nth - 1)/nth;
  5209. // row range for this thread
  5210. const int ir0 = dr*ith;
  5211. const int ir1 = MIN(ir0 + dr, nr);
  5212. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5213. for (int ir = ir0; ir < ir1; ++ir) {
  5214. // src0 indices
  5215. const int i03 = ir/(ne02*ne01);
  5216. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5217. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5218. // src1 and dst are same shape as src0 => same indices
  5219. const int i13 = i03;
  5220. const int i12 = i02;
  5221. const int i11 = i01;
  5222. const int i3 = i03;
  5223. const int i2 = i02;
  5224. const int i1 = i01;
  5225. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5226. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5227. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5228. assert(ne00 % 32 == 0);
  5229. // unquantize row from src0 to temp buffer
  5230. dequantize_row_q(src0_row, wdata, ne00);
  5231. // add src1
  5232. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5233. // quantize row to dst
  5234. quantize_row_q(wdata, dst_row, ne00);
  5235. }
  5236. }
  5237. static void ggml_compute_forward_add(
  5238. const struct ggml_compute_params * params,
  5239. const struct ggml_tensor * src0,
  5240. const struct ggml_tensor * src1,
  5241. struct ggml_tensor * dst) {
  5242. switch (src0->type) {
  5243. case GGML_TYPE_F32:
  5244. {
  5245. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5246. } break;
  5247. case GGML_TYPE_F16:
  5248. {
  5249. if (src1->type == GGML_TYPE_F16) {
  5250. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5251. }
  5252. else if (src1->type == GGML_TYPE_F32) {
  5253. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5254. }
  5255. else {
  5256. GGML_ASSERT(false);
  5257. }
  5258. } break;
  5259. case GGML_TYPE_Q4_0:
  5260. case GGML_TYPE_Q4_1:
  5261. case GGML_TYPE_Q4_2:
  5262. case GGML_TYPE_Q4_3:
  5263. {
  5264. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5265. } break;
  5266. default:
  5267. {
  5268. GGML_ASSERT(false);
  5269. } break;
  5270. }
  5271. }
  5272. // ggml_compute_forward_sub
  5273. static void ggml_compute_forward_sub_f32(
  5274. const struct ggml_compute_params * params,
  5275. const struct ggml_tensor * src0,
  5276. const struct ggml_tensor * src1,
  5277. struct ggml_tensor * dst) {
  5278. assert(params->ith == 0);
  5279. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5281. return;
  5282. }
  5283. const int n = ggml_nrows(src0);
  5284. const int nc = src0->ne[0];
  5285. assert( dst->nb[0] == sizeof(float));
  5286. assert(src0->nb[0] == sizeof(float));
  5287. assert(src1->nb[0] == sizeof(float));
  5288. for (int i = 0; i < n; i++) {
  5289. ggml_vec_sub_f32(nc,
  5290. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5291. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5292. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5293. }
  5294. }
  5295. static void ggml_compute_forward_sub(
  5296. const struct ggml_compute_params * params,
  5297. const struct ggml_tensor * src0,
  5298. const struct ggml_tensor * src1,
  5299. struct ggml_tensor * dst) {
  5300. switch (src0->type) {
  5301. case GGML_TYPE_F32:
  5302. {
  5303. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5304. } break;
  5305. default:
  5306. {
  5307. GGML_ASSERT(false);
  5308. } break;
  5309. }
  5310. }
  5311. // ggml_compute_forward_mul
  5312. static void ggml_compute_forward_mul_f32(
  5313. const struct ggml_compute_params * params,
  5314. const struct ggml_tensor * src0,
  5315. const struct ggml_tensor * src1,
  5316. struct ggml_tensor * dst) {
  5317. assert(params->ith == 0);
  5318. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5320. return;
  5321. }
  5322. const int n = ggml_nrows(src0);
  5323. const int nc = src0->ne[0];
  5324. assert( dst->nb[0] == sizeof(float));
  5325. assert(src0->nb[0] == sizeof(float));
  5326. assert(src1->nb[0] == sizeof(float));
  5327. for (int i = 0; i < n; i++) {
  5328. ggml_vec_mul_f32(nc,
  5329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5330. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5331. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5332. }
  5333. }
  5334. static void ggml_compute_forward_mul(
  5335. const struct ggml_compute_params * params,
  5336. const struct ggml_tensor * src0,
  5337. const struct ggml_tensor * src1,
  5338. struct ggml_tensor * dst) {
  5339. switch (src0->type) {
  5340. case GGML_TYPE_F32:
  5341. {
  5342. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5343. } break;
  5344. default:
  5345. {
  5346. GGML_ASSERT(false);
  5347. } break;
  5348. }
  5349. }
  5350. // ggml_compute_forward_div
  5351. static void ggml_compute_forward_div_f32(
  5352. const struct ggml_compute_params * params,
  5353. const struct ggml_tensor * src0,
  5354. const struct ggml_tensor * src1,
  5355. struct ggml_tensor * dst) {
  5356. assert(params->ith == 0);
  5357. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5358. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5359. return;
  5360. }
  5361. const int n = ggml_nrows(src0);
  5362. const int nc = src0->ne[0];
  5363. assert( dst->nb[0] == sizeof(float));
  5364. assert(src0->nb[0] == sizeof(float));
  5365. assert(src1->nb[0] == sizeof(float));
  5366. for (int i = 0; i < n; i++) {
  5367. ggml_vec_div_f32(nc,
  5368. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5369. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5370. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5371. }
  5372. }
  5373. static void ggml_compute_forward_div(
  5374. const struct ggml_compute_params * params,
  5375. const struct ggml_tensor * src0,
  5376. const struct ggml_tensor * src1,
  5377. struct ggml_tensor * dst) {
  5378. switch (src0->type) {
  5379. case GGML_TYPE_F32:
  5380. {
  5381. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5382. } break;
  5383. default:
  5384. {
  5385. GGML_ASSERT(false);
  5386. } break;
  5387. }
  5388. }
  5389. // ggml_compute_forward_sqr
  5390. static void ggml_compute_forward_sqr_f32(
  5391. const struct ggml_compute_params * params,
  5392. const struct ggml_tensor * src0,
  5393. struct ggml_tensor * dst) {
  5394. assert(params->ith == 0);
  5395. assert(ggml_are_same_shape(src0, dst));
  5396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5397. return;
  5398. }
  5399. const int n = ggml_nrows(src0);
  5400. const int nc = src0->ne[0];
  5401. assert( dst->nb[0] == sizeof(float));
  5402. assert(src0->nb[0] == sizeof(float));
  5403. for (int i = 0; i < n; i++) {
  5404. ggml_vec_sqr_f32(nc,
  5405. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5406. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5407. }
  5408. }
  5409. static void ggml_compute_forward_sqr(
  5410. const struct ggml_compute_params * params,
  5411. const struct ggml_tensor * src0,
  5412. struct ggml_tensor * dst) {
  5413. switch (src0->type) {
  5414. case GGML_TYPE_F32:
  5415. {
  5416. ggml_compute_forward_sqr_f32(params, src0, dst);
  5417. } break;
  5418. default:
  5419. {
  5420. GGML_ASSERT(false);
  5421. } break;
  5422. }
  5423. }
  5424. // ggml_compute_forward_sqrt
  5425. static void ggml_compute_forward_sqrt_f32(
  5426. const struct ggml_compute_params * params,
  5427. const struct ggml_tensor * src0,
  5428. struct ggml_tensor * dst) {
  5429. assert(params->ith == 0);
  5430. assert(ggml_are_same_shape(src0, dst));
  5431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5432. return;
  5433. }
  5434. const int n = ggml_nrows(src0);
  5435. const int nc = src0->ne[0];
  5436. assert( dst->nb[0] == sizeof(float));
  5437. assert(src0->nb[0] == sizeof(float));
  5438. for (int i = 0; i < n; i++) {
  5439. ggml_vec_sqrt_f32(nc,
  5440. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5441. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5442. }
  5443. }
  5444. static void ggml_compute_forward_sqrt(
  5445. const struct ggml_compute_params * params,
  5446. const struct ggml_tensor * src0,
  5447. struct ggml_tensor * dst) {
  5448. switch (src0->type) {
  5449. case GGML_TYPE_F32:
  5450. {
  5451. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5452. } break;
  5453. default:
  5454. {
  5455. GGML_ASSERT(false);
  5456. } break;
  5457. }
  5458. }
  5459. // ggml_compute_forward_sum
  5460. static void ggml_compute_forward_sum_f32(
  5461. const struct ggml_compute_params * params,
  5462. const struct ggml_tensor * src0,
  5463. struct ggml_tensor * dst) {
  5464. assert(params->ith == 0);
  5465. assert(ggml_is_scalar(dst));
  5466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5467. return;
  5468. }
  5469. assert(ggml_is_scalar(dst));
  5470. assert(src0->nb[0] == sizeof(float));
  5471. const int64_t ne00 = src0->ne[0];
  5472. const int64_t ne01 = src0->ne[1];
  5473. const int64_t ne02 = src0->ne[2];
  5474. const int64_t ne03 = src0->ne[3];
  5475. const size_t nb01 = src0->nb[1];
  5476. const size_t nb02 = src0->nb[2];
  5477. const size_t nb03 = src0->nb[3];
  5478. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5479. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5480. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5481. ggml_vec_sum_f32(ne00,
  5482. (float *) (dst->data),
  5483. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5484. }
  5485. }
  5486. }
  5487. }
  5488. static void ggml_compute_forward_sum(
  5489. const struct ggml_compute_params * params,
  5490. const struct ggml_tensor * src0,
  5491. struct ggml_tensor * dst) {
  5492. switch (src0->type) {
  5493. case GGML_TYPE_F32:
  5494. {
  5495. ggml_compute_forward_sum_f32(params, src0, dst);
  5496. } break;
  5497. default:
  5498. {
  5499. GGML_ASSERT(false);
  5500. } break;
  5501. }
  5502. }
  5503. // ggml_compute_forward_mean
  5504. static void ggml_compute_forward_mean_f32(
  5505. const struct ggml_compute_params * params,
  5506. const struct ggml_tensor * src0,
  5507. struct ggml_tensor * dst) {
  5508. assert(params->ith == 0);
  5509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5510. return;
  5511. }
  5512. assert(src0->nb[0] == sizeof(float));
  5513. const int64_t ne00 = src0->ne[0];
  5514. const int64_t ne01 = src0->ne[1];
  5515. const int64_t ne02 = src0->ne[2];
  5516. const int64_t ne03 = src0->ne[3];
  5517. const size_t nb01 = src0->nb[1];
  5518. const size_t nb02 = src0->nb[2];
  5519. const size_t nb03 = src0->nb[3];
  5520. const int64_t ne0 = dst->ne[0];
  5521. const int64_t ne1 = dst->ne[1];
  5522. const int64_t ne2 = dst->ne[2];
  5523. const int64_t ne3 = dst->ne[3];
  5524. assert(ne0 == 1);
  5525. assert(ne1 == ne01);
  5526. assert(ne2 == ne02);
  5527. assert(ne3 == ne03);
  5528. UNUSED(ne0);
  5529. UNUSED(ne1);
  5530. UNUSED(ne2);
  5531. UNUSED(ne3);
  5532. const size_t nb1 = dst->nb[1];
  5533. const size_t nb2 = dst->nb[2];
  5534. const size_t nb3 = dst->nb[3];
  5535. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5536. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5537. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5538. ggml_vec_sum_f32(ne00,
  5539. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5540. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5541. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5542. }
  5543. }
  5544. }
  5545. }
  5546. static void ggml_compute_forward_mean(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0,
  5549. struct ggml_tensor * dst) {
  5550. switch (src0->type) {
  5551. case GGML_TYPE_F32:
  5552. {
  5553. ggml_compute_forward_mean_f32(params, src0, dst);
  5554. } break;
  5555. default:
  5556. {
  5557. GGML_ASSERT(false);
  5558. } break;
  5559. }
  5560. }
  5561. // ggml_compute_forward_repeat
  5562. static void ggml_compute_forward_repeat_f32(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. struct ggml_tensor * dst) {
  5566. assert(params->ith == 0);
  5567. assert(ggml_can_repeat(src0, dst));
  5568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5569. return;
  5570. }
  5571. // TODO: implement support for rank > 2 tensors
  5572. assert(src0->ne[2] == 1);
  5573. assert(src0->ne[3] == 1);
  5574. assert( dst->ne[2] == 1);
  5575. assert( dst->ne[3] == 1);
  5576. const int nc = dst->ne[0];
  5577. const int nr = dst->ne[1];
  5578. const int nc0 = src0->ne[0];
  5579. const int nr0 = src0->ne[1];
  5580. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5581. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5582. // TODO: support for transposed / permuted tensors
  5583. assert( dst->nb[0] == sizeof(float));
  5584. assert(src0->nb[0] == sizeof(float));
  5585. // TODO: maybe this is not optimal?
  5586. for (int i = 0; i < nrr; i++) {
  5587. for (int j = 0; j < ncr; j++) {
  5588. for (int k = 0; k < nr0; k++) {
  5589. ggml_vec_cpy_f32(nc0,
  5590. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5591. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5592. }
  5593. }
  5594. }
  5595. }
  5596. static void ggml_compute_forward_repeat(
  5597. const struct ggml_compute_params * params,
  5598. const struct ggml_tensor * src0,
  5599. struct ggml_tensor * dst) {
  5600. switch (src0->type) {
  5601. case GGML_TYPE_F32:
  5602. {
  5603. ggml_compute_forward_repeat_f32(params, src0, dst);
  5604. } break;
  5605. default:
  5606. {
  5607. GGML_ASSERT(false);
  5608. } break;
  5609. }
  5610. }
  5611. // ggml_compute_forward_abs
  5612. static void ggml_compute_forward_abs_f32(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0,
  5615. struct ggml_tensor * dst) {
  5616. assert(params->ith == 0);
  5617. assert(ggml_are_same_shape(src0, dst));
  5618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5619. return;
  5620. }
  5621. const int n = ggml_nrows(src0);
  5622. const int nc = src0->ne[0];
  5623. assert(dst->nb[0] == sizeof(float));
  5624. assert(src0->nb[0] == sizeof(float));
  5625. for (int i = 0; i < n; i++) {
  5626. ggml_vec_abs_f32(nc,
  5627. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5628. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5629. }
  5630. }
  5631. static void ggml_compute_forward_abs(
  5632. const struct ggml_compute_params * params,
  5633. const struct ggml_tensor * src0,
  5634. struct ggml_tensor * dst) {
  5635. switch (src0->type) {
  5636. case GGML_TYPE_F32:
  5637. {
  5638. ggml_compute_forward_abs_f32(params, src0, dst);
  5639. } break;
  5640. default:
  5641. {
  5642. GGML_ASSERT(false);
  5643. } break;
  5644. }
  5645. }
  5646. // ggml_compute_forward_sgn
  5647. static void ggml_compute_forward_sgn_f32(
  5648. const struct ggml_compute_params * params,
  5649. const struct ggml_tensor * src0,
  5650. struct ggml_tensor * dst) {
  5651. assert(params->ith == 0);
  5652. assert(ggml_are_same_shape(src0, dst));
  5653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5654. return;
  5655. }
  5656. const int n = ggml_nrows(src0);
  5657. const int nc = src0->ne[0];
  5658. assert(dst->nb[0] == sizeof(float));
  5659. assert(src0->nb[0] == sizeof(float));
  5660. for (int i = 0; i < n; i++) {
  5661. ggml_vec_sgn_f32(nc,
  5662. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5663. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5664. }
  5665. }
  5666. static void ggml_compute_forward_sgn(
  5667. const struct ggml_compute_params * params,
  5668. const struct ggml_tensor * src0,
  5669. struct ggml_tensor * dst) {
  5670. switch (src0->type) {
  5671. case GGML_TYPE_F32:
  5672. {
  5673. ggml_compute_forward_sgn_f32(params, src0, dst);
  5674. } break;
  5675. default:
  5676. {
  5677. GGML_ASSERT(false);
  5678. } break;
  5679. }
  5680. }
  5681. // ggml_compute_forward_neg
  5682. static void ggml_compute_forward_neg_f32(
  5683. const struct ggml_compute_params * params,
  5684. const struct ggml_tensor * src0,
  5685. struct ggml_tensor * dst) {
  5686. assert(params->ith == 0);
  5687. assert(ggml_are_same_shape(src0, dst));
  5688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5689. return;
  5690. }
  5691. const int n = ggml_nrows(src0);
  5692. const int nc = src0->ne[0];
  5693. assert(dst->nb[0] == sizeof(float));
  5694. assert(src0->nb[0] == sizeof(float));
  5695. for (int i = 0; i < n; i++) {
  5696. ggml_vec_neg_f32(nc,
  5697. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5698. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5699. }
  5700. }
  5701. static void ggml_compute_forward_neg(
  5702. const struct ggml_compute_params * params,
  5703. const struct ggml_tensor * src0,
  5704. struct ggml_tensor * dst) {
  5705. switch (src0->type) {
  5706. case GGML_TYPE_F32:
  5707. {
  5708. ggml_compute_forward_neg_f32(params, src0, dst);
  5709. } break;
  5710. default:
  5711. {
  5712. GGML_ASSERT(false);
  5713. } break;
  5714. }
  5715. }
  5716. // ggml_compute_forward_step
  5717. static void ggml_compute_forward_step_f32(
  5718. const struct ggml_compute_params * params,
  5719. const struct ggml_tensor * src0,
  5720. struct ggml_tensor * dst) {
  5721. assert(params->ith == 0);
  5722. assert(ggml_are_same_shape(src0, dst));
  5723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5724. return;
  5725. }
  5726. const int n = ggml_nrows(src0);
  5727. const int nc = src0->ne[0];
  5728. assert(dst->nb[0] == sizeof(float));
  5729. assert(src0->nb[0] == sizeof(float));
  5730. for (int i = 0; i < n; i++) {
  5731. ggml_vec_step_f32(nc,
  5732. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5733. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5734. }
  5735. }
  5736. static void ggml_compute_forward_step(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. struct ggml_tensor * dst) {
  5740. switch (src0->type) {
  5741. case GGML_TYPE_F32:
  5742. {
  5743. ggml_compute_forward_step_f32(params, src0, dst);
  5744. } break;
  5745. default:
  5746. {
  5747. GGML_ASSERT(false);
  5748. } break;
  5749. }
  5750. }
  5751. // ggml_compute_forward_relu
  5752. static void ggml_compute_forward_relu_f32(
  5753. const struct ggml_compute_params * params,
  5754. const struct ggml_tensor * src0,
  5755. struct ggml_tensor * dst) {
  5756. assert(params->ith == 0);
  5757. assert(ggml_are_same_shape(src0, dst));
  5758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5759. return;
  5760. }
  5761. const int n = ggml_nrows(src0);
  5762. const int nc = src0->ne[0];
  5763. assert(dst->nb[0] == sizeof(float));
  5764. assert(src0->nb[0] == sizeof(float));
  5765. for (int i = 0; i < n; i++) {
  5766. ggml_vec_relu_f32(nc,
  5767. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5768. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5769. }
  5770. }
  5771. static void ggml_compute_forward_relu(
  5772. const struct ggml_compute_params * params,
  5773. const struct ggml_tensor * src0,
  5774. struct ggml_tensor * dst) {
  5775. switch (src0->type) {
  5776. case GGML_TYPE_F32:
  5777. {
  5778. ggml_compute_forward_relu_f32(params, src0, dst);
  5779. } break;
  5780. default:
  5781. {
  5782. GGML_ASSERT(false);
  5783. } break;
  5784. }
  5785. }
  5786. // ggml_compute_forward_gelu
  5787. static void ggml_compute_forward_gelu_f32(
  5788. const struct ggml_compute_params * params,
  5789. const struct ggml_tensor * src0,
  5790. struct ggml_tensor * dst) {
  5791. GGML_ASSERT(ggml_is_contiguous(src0));
  5792. GGML_ASSERT(ggml_is_contiguous(dst));
  5793. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5795. return;
  5796. }
  5797. const int ith = params->ith;
  5798. const int nth = params->nth;
  5799. const int nc = src0->ne[0];
  5800. const int nr = ggml_nrows(src0);
  5801. // rows per thread
  5802. const int dr = (nr + nth - 1)/nth;
  5803. // row range for this thread
  5804. const int ir0 = dr*ith;
  5805. const int ir1 = MIN(ir0 + dr, nr);
  5806. for (int i1 = ir0; i1 < ir1; i1++) {
  5807. ggml_vec_gelu_f32(nc,
  5808. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5809. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5810. #ifndef NDEBUG
  5811. for (int k = 0; k < nc; k++) {
  5812. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5813. UNUSED(x);
  5814. assert(!isnan(x));
  5815. assert(!isinf(x));
  5816. }
  5817. #endif
  5818. }
  5819. }
  5820. static void ggml_compute_forward_gelu(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. struct ggml_tensor * dst) {
  5824. switch (src0->type) {
  5825. case GGML_TYPE_F32:
  5826. {
  5827. ggml_compute_forward_gelu_f32(params, src0, dst);
  5828. } break;
  5829. default:
  5830. {
  5831. GGML_ASSERT(false);
  5832. } break;
  5833. }
  5834. //printf("XXXXXXXX gelu\n");
  5835. }
  5836. // ggml_compute_forward_silu
  5837. static void ggml_compute_forward_silu_f32(
  5838. const struct ggml_compute_params * params,
  5839. const struct ggml_tensor * src0,
  5840. struct ggml_tensor * dst) {
  5841. GGML_ASSERT(ggml_is_contiguous(src0));
  5842. GGML_ASSERT(ggml_is_contiguous(dst));
  5843. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5845. return;
  5846. }
  5847. const int ith = params->ith;
  5848. const int nth = params->nth;
  5849. const int nc = src0->ne[0];
  5850. const int nr = ggml_nrows(src0);
  5851. // rows per thread
  5852. const int dr = (nr + nth - 1)/nth;
  5853. // row range for this thread
  5854. const int ir0 = dr*ith;
  5855. const int ir1 = MIN(ir0 + dr, nr);
  5856. for (int i1 = ir0; i1 < ir1; i1++) {
  5857. ggml_vec_silu_f32(nc,
  5858. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5859. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5860. #ifndef NDEBUG
  5861. for (int k = 0; k < nc; k++) {
  5862. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5863. UNUSED(x);
  5864. assert(!isnan(x));
  5865. assert(!isinf(x));
  5866. }
  5867. #endif
  5868. }
  5869. }
  5870. static void ggml_compute_forward_silu(
  5871. const struct ggml_compute_params * params,
  5872. const struct ggml_tensor * src0,
  5873. struct ggml_tensor * dst) {
  5874. switch (src0->type) {
  5875. case GGML_TYPE_F32:
  5876. {
  5877. ggml_compute_forward_silu_f32(params, src0, dst);
  5878. } break;
  5879. default:
  5880. {
  5881. GGML_ASSERT(false);
  5882. } break;
  5883. }
  5884. }
  5885. // ggml_compute_forward_norm
  5886. static void ggml_compute_forward_norm_f32(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. struct ggml_tensor * dst) {
  5890. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5892. return;
  5893. }
  5894. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5895. const int ith = params->ith;
  5896. const int nth = params->nth;
  5897. const int64_t ne00 = src0->ne[0];
  5898. const int64_t ne01 = src0->ne[1];
  5899. const int64_t ne02 = src0->ne[2];
  5900. const int64_t ne03 = src0->ne[3];
  5901. const size_t nb01 = src0->nb[1];
  5902. const size_t nb02 = src0->nb[2];
  5903. const size_t nb03 = src0->nb[3];
  5904. const size_t nb1 = dst->nb[1];
  5905. const size_t nb2 = dst->nb[2];
  5906. const size_t nb3 = dst->nb[3];
  5907. const float eps = 1e-5f; // TODO: make this a parameter
  5908. // TODO: optimize
  5909. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5910. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5911. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5912. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5913. ggml_float sum = 0.0;
  5914. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5915. sum += (ggml_float)x[i00];
  5916. }
  5917. float mean = sum/ne00;
  5918. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5919. ggml_float sum2 = 0.0;
  5920. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5921. float v = x[i00] - mean;
  5922. y[i00] = v;
  5923. sum2 += (ggml_float)(v*v);
  5924. }
  5925. float variance = sum2/ne00;
  5926. const float scale = 1.0f/sqrtf(variance + eps);
  5927. ggml_vec_scale_f32(ne00, y, scale);
  5928. }
  5929. }
  5930. }
  5931. }
  5932. static void ggml_compute_forward_norm(
  5933. const struct ggml_compute_params * params,
  5934. const struct ggml_tensor * src0,
  5935. struct ggml_tensor * dst) {
  5936. switch (src0->type) {
  5937. case GGML_TYPE_F32:
  5938. {
  5939. ggml_compute_forward_norm_f32(params, src0, dst);
  5940. } break;
  5941. default:
  5942. {
  5943. GGML_ASSERT(false);
  5944. } break;
  5945. }
  5946. }
  5947. static void ggml_compute_forward_rms_norm_f32(
  5948. const struct ggml_compute_params * params,
  5949. const struct ggml_tensor * src0,
  5950. struct ggml_tensor * dst) {
  5951. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5953. return;
  5954. }
  5955. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5956. const int ith = params->ith;
  5957. const int nth = params->nth;
  5958. const int64_t ne00 = src0->ne[0];
  5959. const int64_t ne01 = src0->ne[1];
  5960. const int64_t ne02 = src0->ne[2];
  5961. const int64_t ne03 = src0->ne[3];
  5962. const size_t nb01 = src0->nb[1];
  5963. const size_t nb02 = src0->nb[2];
  5964. const size_t nb03 = src0->nb[3];
  5965. const size_t nb1 = dst->nb[1];
  5966. const size_t nb2 = dst->nb[2];
  5967. const size_t nb3 = dst->nb[3];
  5968. const float eps = 1e-6f; // TODO: make this a parameter
  5969. // TODO: optimize
  5970. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5971. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5972. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5973. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5974. ggml_float sum = 0.0;
  5975. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5976. sum += (ggml_float)(x[i00] * x[i00]);
  5977. }
  5978. float mean = sum/ne00;
  5979. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5980. memcpy(y, x, ne00 * sizeof(float));
  5981. // for (int i00 = 0; i00 < ne00; i00++) {
  5982. // y[i00] = x[i00];
  5983. // }
  5984. const float scale = 1.0f/sqrtf(mean + eps);
  5985. ggml_vec_scale_f32(ne00, y, scale);
  5986. }
  5987. }
  5988. }
  5989. }
  5990. static void ggml_compute_forward_rms_norm(
  5991. const struct ggml_compute_params * params,
  5992. const struct ggml_tensor * src0,
  5993. struct ggml_tensor * dst) {
  5994. switch (src0->type) {
  5995. case GGML_TYPE_F32:
  5996. {
  5997. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5998. } break;
  5999. default:
  6000. {
  6001. GGML_ASSERT(false);
  6002. } break;
  6003. }
  6004. }
  6005. // ggml_compute_forward_mul_mat
  6006. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6007. // helper function to determine if it is better to use BLAS or not
  6008. // for large matrices, BLAS is faster
  6009. static bool ggml_compute_forward_mul_mat_use_blas(
  6010. const struct ggml_tensor * src0,
  6011. const struct ggml_tensor * src1,
  6012. struct ggml_tensor * dst) {
  6013. //const int64_t ne00 = src0->ne[0];
  6014. //const int64_t ne01 = src0->ne[1];
  6015. const int64_t ne10 = src1->ne[0];
  6016. const int64_t ne0 = dst->ne[0];
  6017. const int64_t ne1 = dst->ne[1];
  6018. // TODO: find the optimal values for these
  6019. if (ggml_is_contiguous(src0) &&
  6020. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6021. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6022. return true;
  6023. }
  6024. return false;
  6025. }
  6026. #endif
  6027. static void ggml_compute_forward_mul_mat_f32(
  6028. const struct ggml_compute_params * params,
  6029. const struct ggml_tensor * src0,
  6030. const struct ggml_tensor * src1,
  6031. struct ggml_tensor * dst) {
  6032. int64_t t0 = ggml_perf_time_us();
  6033. UNUSED(t0);
  6034. const int64_t ne00 = src0->ne[0];
  6035. const int64_t ne01 = src0->ne[1];
  6036. const int64_t ne02 = src0->ne[2];
  6037. const int64_t ne03 = src0->ne[3];
  6038. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6039. const int64_t ne10 = src1->ne[0];
  6040. #endif
  6041. const int64_t ne11 = src1->ne[1];
  6042. #ifndef NDEBUG
  6043. const int64_t ne12 = src1->ne[2];
  6044. const int64_t ne13 = src1->ne[3];
  6045. const int64_t ne0 = dst->ne[0];
  6046. const int64_t ne1 = dst->ne[1];
  6047. const int64_t ne2 = dst->ne[2];
  6048. const int64_t ne3 = dst->ne[3];
  6049. const int nb00 = src0->nb[0];
  6050. #endif
  6051. const int nb01 = src0->nb[1];
  6052. const int nb02 = src0->nb[2];
  6053. const int nb03 = src0->nb[3];
  6054. #ifndef NDEBUG
  6055. const int nb10 = src1->nb[0];
  6056. #endif
  6057. const int nb11 = src1->nb[1];
  6058. const int nb12 = src1->nb[2];
  6059. const int nb13 = src1->nb[3];
  6060. const int nb0 = dst->nb[0];
  6061. const int nb1 = dst->nb[1];
  6062. const int nb2 = dst->nb[2];
  6063. const int nb3 = dst->nb[3];
  6064. const int ith = params->ith;
  6065. const int nth = params->nth;
  6066. assert(ne02 == ne12);
  6067. assert(ne03 == ne13);
  6068. assert(ne2 == ne12);
  6069. assert(ne3 == ne13);
  6070. // we don't support permuted src0 or src1
  6071. assert(nb00 == sizeof(float));
  6072. assert(nb10 == sizeof(float));
  6073. // dst cannot be transposed or permuted
  6074. assert(nb0 == sizeof(float));
  6075. assert(nb0 <= nb1);
  6076. assert(nb1 <= nb2);
  6077. assert(nb2 <= nb3);
  6078. assert(ne0 == ne01);
  6079. assert(ne1 == ne11);
  6080. assert(ne2 == ne02);
  6081. assert(ne3 == ne03);
  6082. // nb01 >= nb00 - src0 is not transposed
  6083. // compute by src0 rows
  6084. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6085. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6086. if (params->ith != 0) {
  6087. return;
  6088. }
  6089. if (params->type == GGML_TASK_INIT) {
  6090. return;
  6091. }
  6092. if (params->type == GGML_TASK_FINALIZE) {
  6093. return;
  6094. }
  6095. #if defined(GGML_USE_CUBLAS)
  6096. const float alpha = 1.0f;
  6097. const float beta = 0.0f;
  6098. const int x_ne = ne01 * ne10;
  6099. const int y_ne = ne11 * ne10;
  6100. const int d_ne = ne11 * ne01;
  6101. size_t x_size, y_size, d_size;
  6102. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6103. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6104. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6105. #endif
  6106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6108. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6109. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6110. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6111. #if defined(GGML_USE_CUBLAS)
  6112. // copy data to device
  6113. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6114. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6115. // compute
  6116. CUBLAS_CHECK(
  6117. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6118. ne01, ne11, ne10,
  6119. &alpha, d_X, ne00,
  6120. d_Y, ne10,
  6121. &beta, d_D, ne01));
  6122. // copy data to host
  6123. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6124. #else
  6125. // zT = y * xT
  6126. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6127. ne11, ne01, ne10,
  6128. 1.0f, y, ne10,
  6129. x, ne00,
  6130. 0.0f, d, ne01);
  6131. #endif
  6132. }
  6133. }
  6134. #if defined(GGML_USE_CUBLAS)
  6135. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6136. ggml_cuda_pool_free(d_X, x_size);
  6137. ggml_cuda_pool_free(d_Y, y_size);
  6138. ggml_cuda_pool_free(d_D, d_size);
  6139. #endif
  6140. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6141. return;
  6142. }
  6143. #endif
  6144. if (params->type == GGML_TASK_INIT) {
  6145. return;
  6146. }
  6147. if (params->type == GGML_TASK_FINALIZE) {
  6148. return;
  6149. }
  6150. // parallelize by src0 rows using ggml_vec_dot_f32
  6151. // total rows in src0
  6152. const int nr = ne01*ne02*ne03;
  6153. // rows per thread
  6154. const int dr = (nr + nth - 1)/nth;
  6155. // row range for this thread
  6156. const int ir0 = dr*ith;
  6157. const int ir1 = MIN(ir0 + dr, nr);
  6158. for (int ir = ir0; ir < ir1; ++ir) {
  6159. // src0 indices
  6160. const int i03 = ir/(ne02*ne01);
  6161. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6162. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6163. for (int64_t ic = 0; ic < ne11; ++ic) {
  6164. // src1 indices
  6165. const int i13 = i03;
  6166. const int i12 = i02;
  6167. const int i11 = ic;
  6168. // dst indices
  6169. const int i0 = i01;
  6170. const int i1 = i11;
  6171. const int i2 = i02;
  6172. const int i3 = i03;
  6173. ggml_vec_dot_f32(ne00,
  6174. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6175. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6176. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6177. }
  6178. }
  6179. //int64_t t1 = ggml_perf_time_us();
  6180. //static int64_t acc = 0;
  6181. //acc += t1 - t0;
  6182. //if (t1 - t0 > 10) {
  6183. // printf("\n");
  6184. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6185. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6186. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6187. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6188. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6189. //}
  6190. }
  6191. static void ggml_compute_forward_mul_mat_f16_f32(
  6192. const struct ggml_compute_params * params,
  6193. const struct ggml_tensor * src0,
  6194. const struct ggml_tensor * src1,
  6195. struct ggml_tensor * dst) {
  6196. int64_t t0 = ggml_perf_time_us();
  6197. UNUSED(t0);
  6198. const int64_t ne00 = src0->ne[0];
  6199. const int64_t ne01 = src0->ne[1];
  6200. const int64_t ne02 = src0->ne[2];
  6201. const int64_t ne03 = src0->ne[3];
  6202. const int64_t ne10 = src1->ne[0];
  6203. const int64_t ne11 = src1->ne[1];
  6204. const int64_t ne12 = src1->ne[2];
  6205. const int64_t ne13 = src1->ne[3];
  6206. const int64_t ne0 = dst->ne[0];
  6207. const int64_t ne1 = dst->ne[1];
  6208. const int64_t ne2 = dst->ne[2];
  6209. const int64_t ne3 = dst->ne[3];
  6210. //const int64_t ne = ne0*ne1*ne2*ne3;
  6211. const int nb00 = src0->nb[0];
  6212. const int nb01 = src0->nb[1];
  6213. const int nb02 = src0->nb[2];
  6214. const int nb03 = src0->nb[3];
  6215. const int nb10 = src1->nb[0];
  6216. const int nb11 = src1->nb[1];
  6217. const int nb12 = src1->nb[2];
  6218. const int nb13 = src1->nb[3];
  6219. const int nb0 = dst->nb[0];
  6220. const int nb1 = dst->nb[1];
  6221. const int nb2 = dst->nb[2];
  6222. const int nb3 = dst->nb[3];
  6223. const int ith = params->ith;
  6224. const int nth = params->nth;
  6225. GGML_ASSERT(ne02 == ne12);
  6226. GGML_ASSERT(ne03 == ne13);
  6227. GGML_ASSERT(ne2 == ne12);
  6228. GGML_ASSERT(ne3 == ne13);
  6229. // TODO: we don't support permuted src0
  6230. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6231. // dst cannot be transposed or permuted
  6232. GGML_ASSERT(nb0 == sizeof(float));
  6233. GGML_ASSERT(nb0 <= nb1);
  6234. GGML_ASSERT(nb1 <= nb2);
  6235. GGML_ASSERT(nb2 <= nb3);
  6236. GGML_ASSERT(ne0 == ne01);
  6237. GGML_ASSERT(ne1 == ne11);
  6238. GGML_ASSERT(ne2 == ne02);
  6239. GGML_ASSERT(ne3 == ne03);
  6240. // nb01 >= nb00 - src0 is not transposed
  6241. // compute by src0 rows
  6242. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6243. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6244. GGML_ASSERT(nb10 == sizeof(float));
  6245. if (params->ith != 0) {
  6246. return;
  6247. }
  6248. if (params->type == GGML_TASK_INIT) {
  6249. return;
  6250. }
  6251. if (params->type == GGML_TASK_FINALIZE) {
  6252. return;
  6253. }
  6254. #if defined(GGML_USE_CUBLAS)
  6255. ggml_fp16_t * const wdata = params->wdata;
  6256. const float alpha = 1.0f;
  6257. const float beta = 0.0f;
  6258. const int x_ne = ne01 * ne10;
  6259. const int y_ne = ne11 * ne10;
  6260. const int d_ne = ne11 * ne01;
  6261. size_t x_size, y_size, d_size;
  6262. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6263. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6264. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6265. #else
  6266. float * const wdata = params->wdata;
  6267. #endif
  6268. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6269. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6270. #if defined(GGML_USE_CUBLAS)
  6271. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6272. {
  6273. size_t id = 0;
  6274. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6275. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6276. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6277. }
  6278. }
  6279. }
  6280. #else
  6281. {
  6282. size_t id = 0;
  6283. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6284. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6285. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6286. }
  6287. }
  6288. }
  6289. #endif
  6290. #if defined(GGML_USE_CUBLAS)
  6291. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6292. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6293. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6294. // copy data to device
  6295. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6296. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6297. // compute
  6298. CUBLAS_CHECK(
  6299. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6300. ne01, ne11, ne10,
  6301. &alpha, d_X, CUDA_R_16F, ne00,
  6302. d_Y, CUDA_R_16F, ne10,
  6303. &beta, d_D, CUDA_R_32F, ne01,
  6304. CUBLAS_COMPUTE_32F,
  6305. CUBLAS_GEMM_DEFAULT));
  6306. // copy data to host
  6307. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6308. #else
  6309. const float * x = wdata;
  6310. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6311. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6312. // zT = y * xT
  6313. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6314. ne11, ne01, ne10,
  6315. 1.0f, y, ne10,
  6316. x, ne00,
  6317. 0.0f, d, ne01);
  6318. #endif
  6319. }
  6320. }
  6321. #if defined(GGML_USE_CUBLAS)
  6322. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6323. ggml_cuda_pool_free(d_X, x_size);
  6324. ggml_cuda_pool_free(d_Y, y_size);
  6325. ggml_cuda_pool_free(d_D, d_size);
  6326. #endif
  6327. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6328. return;
  6329. }
  6330. #endif
  6331. if (params->type == GGML_TASK_INIT) {
  6332. ggml_fp16_t * const wdata = params->wdata;
  6333. size_t id = 0;
  6334. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6335. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6336. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6337. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6338. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6339. }
  6340. }
  6341. }
  6342. }
  6343. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6344. return;
  6345. }
  6346. if (params->type == GGML_TASK_FINALIZE) {
  6347. return;
  6348. }
  6349. // fp16 -> half the size, so divide by 2
  6350. // TODO: do not support transposed src1
  6351. assert(nb10/2 == sizeof(ggml_fp16_t));
  6352. // parallelize by src0 rows using ggml_vec_dot_f16
  6353. // total rows in src0
  6354. const int nr = ne01*ne02*ne03;
  6355. // rows per thread
  6356. const int dr = (nr + nth - 1)/nth;
  6357. // row range for this thread
  6358. const int ir0 = dr*ith;
  6359. const int ir1 = MIN(ir0 + dr, nr);
  6360. ggml_fp16_t * wdata = params->wdata;
  6361. for (int ir = ir0; ir < ir1; ++ir) {
  6362. // src0 indices
  6363. const int i03 = ir/(ne02*ne01);
  6364. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6365. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6366. const int i13 = i03;
  6367. const int i12 = i02;
  6368. const int i0 = i01;
  6369. const int i2 = i02;
  6370. const int i3 = i03;
  6371. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6372. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6373. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6374. for (int64_t ic = 0; ic < ne11; ++ic) {
  6375. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6376. }
  6377. }
  6378. //int64_t t1 = ggml_time_us();
  6379. //static int64_t acc = 0;
  6380. //acc += t1 - t0;
  6381. //if (t1 - t0 > 10) {
  6382. // printf("\n");
  6383. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6384. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6385. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6386. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6387. //}
  6388. }
  6389. static void ggml_compute_forward_mul_mat_q_f32(
  6390. const struct ggml_compute_params * params,
  6391. const struct ggml_tensor * src0,
  6392. const struct ggml_tensor * src1,
  6393. struct ggml_tensor * dst) {
  6394. int64_t t0 = ggml_perf_time_us();
  6395. UNUSED(t0);
  6396. const int64_t ne00 = src0->ne[0];
  6397. const int64_t ne01 = src0->ne[1];
  6398. const int64_t ne02 = src0->ne[2];
  6399. const int64_t ne03 = src0->ne[3];
  6400. const int64_t ne10 = src1->ne[0];
  6401. const int64_t ne11 = src1->ne[1];
  6402. const int64_t ne12 = src1->ne[2];
  6403. const int64_t ne13 = src1->ne[3];
  6404. const int64_t ne0 = dst->ne[0];
  6405. const int64_t ne1 = dst->ne[1];
  6406. const int64_t ne2 = dst->ne[2];
  6407. const int64_t ne3 = dst->ne[3];
  6408. const int nb00 = src0->nb[0];
  6409. const int nb01 = src0->nb[1];
  6410. const int nb02 = src0->nb[2];
  6411. const int nb03 = src0->nb[3];
  6412. const int nb10 = src1->nb[0];
  6413. const int nb11 = src1->nb[1];
  6414. const int nb12 = src1->nb[2];
  6415. const int nb13 = src1->nb[3];
  6416. const int nb0 = dst->nb[0];
  6417. const int nb1 = dst->nb[1];
  6418. const int nb2 = dst->nb[2];
  6419. const int nb3 = dst->nb[3];
  6420. const int ith = params->ith;
  6421. const int nth = params->nth;
  6422. GGML_ASSERT(ne02 == ne12);
  6423. GGML_ASSERT(ne03 == ne13);
  6424. GGML_ASSERT(ne2 == ne12);
  6425. GGML_ASSERT(ne3 == ne13);
  6426. const enum ggml_type type = src0->type;
  6427. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6428. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6429. // we don't support permuted src0 or src1
  6430. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6431. GGML_ASSERT(nb10 == sizeof(float));
  6432. // dst cannot be transposed or permuted
  6433. GGML_ASSERT(nb0 == sizeof(float));
  6434. GGML_ASSERT(nb0 <= nb1);
  6435. GGML_ASSERT(nb1 <= nb2);
  6436. GGML_ASSERT(nb2 <= nb3);
  6437. GGML_ASSERT(ne0 == ne01);
  6438. GGML_ASSERT(ne1 == ne11);
  6439. GGML_ASSERT(ne2 == ne02);
  6440. GGML_ASSERT(ne3 == ne03);
  6441. // nb01 >= nb00 - src0 is not transposed
  6442. // compute by src0 rows
  6443. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6444. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6445. if (params->ith != 0) {
  6446. return;
  6447. }
  6448. if (params->type == GGML_TASK_INIT) {
  6449. return;
  6450. }
  6451. if (params->type == GGML_TASK_FINALIZE) {
  6452. return;
  6453. }
  6454. #if defined(GGML_USE_CUBLAS)
  6455. const float alpha = 1.0f;
  6456. const float beta = 0.0f;
  6457. const int x_ne = ne01 * ne10;
  6458. const int y_ne = ne11 * ne10;
  6459. const int d_ne = ne11 * ne01;
  6460. size_t x_size, y_size, d_size, q_size;
  6461. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6462. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6463. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6464. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6465. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6466. if (type == GGML_TYPE_Q4_0) {
  6467. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6468. }
  6469. else if (type == GGML_TYPE_Q4_1) {
  6470. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6471. }
  6472. else if (type == GGML_TYPE_Q4_2) {
  6473. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6474. }
  6475. else {
  6476. GGML_ASSERT(false);
  6477. }
  6478. #else
  6479. float * const wdata = params->wdata;
  6480. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6481. #endif
  6482. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6483. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6484. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6485. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6486. #if defined(GGML_USE_CUBLAS)
  6487. // copy and dequantize on device
  6488. CUDA_CHECK(
  6489. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6490. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6491. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6492. CUDA_CHECK(cudaGetLastError());
  6493. #else
  6494. {
  6495. size_t id = 0;
  6496. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6497. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6498. id += ne00;
  6499. }
  6500. }
  6501. const float * x = wdata;
  6502. #endif
  6503. #if defined(GGML_USE_CUBLAS)
  6504. // copy data to device
  6505. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6506. // compute
  6507. CUBLAS_CHECK(
  6508. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6509. ne01, ne11, ne10,
  6510. &alpha, d_X, ne00,
  6511. d_Y, ne10,
  6512. &beta, d_D, ne01));
  6513. // copy data to host
  6514. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6515. #else
  6516. // zT = y * xT
  6517. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6518. ne11, ne01, ne10,
  6519. 1.0f, y, ne10,
  6520. x, ne00,
  6521. 0.0f, d, ne01);
  6522. #endif
  6523. }
  6524. }
  6525. #if defined(GGML_USE_CUBLAS)
  6526. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6527. ggml_cuda_pool_free(d_X, x_size);
  6528. ggml_cuda_pool_free(d_Y, y_size);
  6529. ggml_cuda_pool_free(d_D, d_size);
  6530. ggml_cuda_pool_free(d_Q, q_size);
  6531. #endif
  6532. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6533. return;
  6534. }
  6535. #endif
  6536. if (params->type == GGML_TASK_INIT) {
  6537. char * wdata = params->wdata;
  6538. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6539. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6540. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6541. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6542. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6543. wdata += row_size;
  6544. }
  6545. }
  6546. }
  6547. return;
  6548. }
  6549. if (params->type == GGML_TASK_FINALIZE) {
  6550. return;
  6551. }
  6552. // parallelize by src0 rows using ggml_vec_dot_q
  6553. // total rows in src0
  6554. const int nr = ne01*ne02*ne03;
  6555. // rows per thread
  6556. const int dr = (nr + nth - 1)/nth;
  6557. // row range for this thread
  6558. const int ir0 = dr*ith;
  6559. const int ir1 = MIN(ir0 + dr, nr);
  6560. void * wdata = params->wdata;
  6561. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6562. for (int ir = ir0; ir < ir1; ++ir) {
  6563. // src0 indices
  6564. const int i03 = ir/(ne02*ne01);
  6565. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6566. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6567. const int i13 = i03;
  6568. const int i12 = i02;
  6569. const int i0 = i01;
  6570. const int i2 = i02;
  6571. const int i3 = i03;
  6572. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6573. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6574. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6575. assert(ne00 % 32 == 0);
  6576. for (int64_t ic = 0; ic < ne11; ++ic) {
  6577. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6578. }
  6579. }
  6580. //int64_t t1 = ggml_time_us();
  6581. //static int64_t acc = 0;
  6582. //acc += t1 - t0;
  6583. //if (t1 - t0 > 10) {
  6584. // printf("\n");
  6585. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6586. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6587. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6588. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6589. //}
  6590. }
  6591. static void ggml_compute_forward_mul_mat(
  6592. const struct ggml_compute_params * params,
  6593. const struct ggml_tensor * src0,
  6594. const struct ggml_tensor * src1,
  6595. struct ggml_tensor * dst) {
  6596. switch (src0->type) {
  6597. case GGML_TYPE_Q4_0:
  6598. case GGML_TYPE_Q4_1:
  6599. case GGML_TYPE_Q4_2:
  6600. case GGML_TYPE_Q4_3:
  6601. case GGML_TYPE_Q8_0:
  6602. {
  6603. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6604. } break;
  6605. case GGML_TYPE_F16:
  6606. {
  6607. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6608. } break;
  6609. case GGML_TYPE_F32:
  6610. {
  6611. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6612. } break;
  6613. default:
  6614. {
  6615. GGML_ASSERT(false);
  6616. } break;
  6617. }
  6618. }
  6619. // ggml_compute_forward_scale
  6620. static void ggml_compute_forward_scale_f32(
  6621. const struct ggml_compute_params * params,
  6622. const struct ggml_tensor * src0,
  6623. const struct ggml_tensor * src1,
  6624. struct ggml_tensor * dst) {
  6625. GGML_ASSERT(ggml_is_contiguous(src0));
  6626. GGML_ASSERT(ggml_is_contiguous(dst));
  6627. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6628. GGML_ASSERT(ggml_is_scalar(src1));
  6629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6630. return;
  6631. }
  6632. // scale factor
  6633. const float v = *(float *) src1->data;
  6634. const int ith = params->ith;
  6635. const int nth = params->nth;
  6636. const int nc = src0->ne[0];
  6637. const int nr = ggml_nrows(src0);
  6638. // rows per thread
  6639. const int dr = (nr + nth - 1)/nth;
  6640. // row range for this thread
  6641. const int ir0 = dr*ith;
  6642. const int ir1 = MIN(ir0 + dr, nr);
  6643. for (int i1 = ir0; i1 < ir1; i1++) {
  6644. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6645. }
  6646. }
  6647. static void ggml_compute_forward_scale(
  6648. const struct ggml_compute_params * params,
  6649. const struct ggml_tensor * src0,
  6650. const struct ggml_tensor * src1,
  6651. struct ggml_tensor * dst) {
  6652. switch (src0->type) {
  6653. case GGML_TYPE_F32:
  6654. {
  6655. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6656. } break;
  6657. default:
  6658. {
  6659. GGML_ASSERT(false);
  6660. } break;
  6661. }
  6662. }
  6663. // ggml_compute_forward_cpy
  6664. static void ggml_compute_forward_cpy(
  6665. const struct ggml_compute_params * params,
  6666. const struct ggml_tensor * src0,
  6667. struct ggml_tensor * dst) {
  6668. ggml_compute_forward_dup(params, src0, dst);
  6669. }
  6670. // ggml_compute_forward_cont
  6671. static void ggml_compute_forward_cont(
  6672. const struct ggml_compute_params * params,
  6673. const struct ggml_tensor * src0,
  6674. struct ggml_tensor * dst) {
  6675. ggml_compute_forward_dup(params, src0, dst);
  6676. }
  6677. // ggml_compute_forward_reshape
  6678. static void ggml_compute_forward_reshape(
  6679. const struct ggml_compute_params * params,
  6680. const struct ggml_tensor * src0,
  6681. struct ggml_tensor * dst) {
  6682. // NOP
  6683. UNUSED(params);
  6684. UNUSED(src0);
  6685. UNUSED(dst);
  6686. }
  6687. // ggml_compute_forward_view
  6688. static void ggml_compute_forward_view(
  6689. const struct ggml_compute_params * params,
  6690. const struct ggml_tensor * src0) {
  6691. // NOP
  6692. UNUSED(params);
  6693. UNUSED(src0);
  6694. }
  6695. // ggml_compute_forward_permute
  6696. static void ggml_compute_forward_permute(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0) {
  6699. // NOP
  6700. UNUSED(params);
  6701. UNUSED(src0);
  6702. }
  6703. // ggml_compute_forward_transpose
  6704. static void ggml_compute_forward_transpose(
  6705. const struct ggml_compute_params * params,
  6706. const struct ggml_tensor * src0) {
  6707. // NOP
  6708. UNUSED(params);
  6709. UNUSED(src0);
  6710. }
  6711. // ggml_compute_forward_get_rows
  6712. static void ggml_compute_forward_get_rows_q(
  6713. const struct ggml_compute_params * params,
  6714. const struct ggml_tensor * src0,
  6715. const struct ggml_tensor * src1,
  6716. struct ggml_tensor * dst) {
  6717. assert(params->ith == 0);
  6718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6719. return;
  6720. }
  6721. const int nc = src0->ne[0];
  6722. const int nr = ggml_nelements(src1);
  6723. const enum ggml_type type = src0->type;
  6724. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6725. assert( dst->ne[0] == nc);
  6726. assert( dst->ne[1] == nr);
  6727. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6728. for (int i = 0; i < nr; ++i) {
  6729. const int r = ((int32_t *) src1->data)[i];
  6730. dequantize_row_q(
  6731. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6732. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6733. }
  6734. }
  6735. static void ggml_compute_forward_get_rows_f16(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0,
  6738. const struct ggml_tensor * src1,
  6739. struct ggml_tensor * dst) {
  6740. assert(params->ith == 0);
  6741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6742. return;
  6743. }
  6744. const int nc = src0->ne[0];
  6745. const int nr = ggml_nelements(src1);
  6746. assert( dst->ne[0] == nc);
  6747. assert( dst->ne[1] == nr);
  6748. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6749. for (int i = 0; i < nr; ++i) {
  6750. const int r = ((int32_t *) src1->data)[i];
  6751. for (int j = 0; j < nc; ++j) {
  6752. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6753. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6754. }
  6755. }
  6756. }
  6757. static void ggml_compute_forward_get_rows_f32(
  6758. const struct ggml_compute_params * params,
  6759. const struct ggml_tensor * src0,
  6760. const struct ggml_tensor * src1,
  6761. struct ggml_tensor * dst) {
  6762. assert(params->ith == 0);
  6763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6764. return;
  6765. }
  6766. const int nc = src0->ne[0];
  6767. const int nr = ggml_nelements(src1);
  6768. assert( dst->ne[0] == nc);
  6769. assert( dst->ne[1] == nr);
  6770. assert(src0->nb[0] == sizeof(float));
  6771. for (int i = 0; i < nr; ++i) {
  6772. const int r = ((int32_t *) src1->data)[i];
  6773. ggml_vec_cpy_f32(nc,
  6774. (float *) ((char *) dst->data + i*dst->nb[1]),
  6775. (float *) ((char *) src0->data + r*src0->nb[1]));
  6776. }
  6777. }
  6778. static void ggml_compute_forward_get_rows(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0,
  6781. const struct ggml_tensor * src1,
  6782. struct ggml_tensor * dst) {
  6783. switch (src0->type) {
  6784. case GGML_TYPE_Q4_0:
  6785. case GGML_TYPE_Q4_1:
  6786. case GGML_TYPE_Q4_2:
  6787. case GGML_TYPE_Q4_3:
  6788. case GGML_TYPE_Q8_0:
  6789. {
  6790. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6791. } break;
  6792. case GGML_TYPE_F16:
  6793. {
  6794. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6795. } break;
  6796. case GGML_TYPE_F32:
  6797. {
  6798. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6799. } break;
  6800. default:
  6801. {
  6802. GGML_ASSERT(false);
  6803. } break;
  6804. }
  6805. //static bool first = true;
  6806. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6807. //if (first) {
  6808. // first = false;
  6809. //} else {
  6810. // for (int k = 0; k < dst->ne[1]; ++k) {
  6811. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6812. // for (int i = 0; i < 16; ++i) {
  6813. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6814. // }
  6815. // printf("\n");
  6816. // }
  6817. // printf("\n");
  6818. // }
  6819. // printf("\n");
  6820. // exit(0);
  6821. //}
  6822. }
  6823. // ggml_compute_forward_diag_mask_inf
  6824. static void ggml_compute_forward_diag_mask_inf_f32(
  6825. const struct ggml_compute_params * params,
  6826. const struct ggml_tensor * src0,
  6827. const struct ggml_tensor * src1,
  6828. struct ggml_tensor * dst) {
  6829. assert(params->ith == 0);
  6830. assert(src1->type == GGML_TYPE_I32);
  6831. assert(ggml_nelements(src1) == 1);
  6832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6833. return;
  6834. }
  6835. const int n_past = ((int32_t *) src1->data)[0];
  6836. // TODO: handle transposed/permuted matrices
  6837. const int n = ggml_nrows(src0);
  6838. const int nc = src0->ne[0];
  6839. const int nr = src0->ne[1];
  6840. const int nz = n/nr;
  6841. assert( dst->nb[0] == sizeof(float));
  6842. assert(src0->nb[0] == sizeof(float));
  6843. for (int k = 0; k < nz; k++) {
  6844. for (int j = 0; j < nr; j++) {
  6845. for (int i = n_past; i < nc; i++) {
  6846. if (i > n_past + j) {
  6847. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6848. }
  6849. }
  6850. }
  6851. }
  6852. }
  6853. static void ggml_compute_forward_diag_mask_inf(
  6854. const struct ggml_compute_params * params,
  6855. const struct ggml_tensor * src0,
  6856. const struct ggml_tensor * src1,
  6857. struct ggml_tensor * dst) {
  6858. switch (src0->type) {
  6859. case GGML_TYPE_F32:
  6860. {
  6861. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6862. } break;
  6863. default:
  6864. {
  6865. GGML_ASSERT(false);
  6866. } break;
  6867. }
  6868. }
  6869. // ggml_compute_forward_soft_max
  6870. static void ggml_compute_forward_soft_max_f32(
  6871. const struct ggml_compute_params * params,
  6872. const struct ggml_tensor * src0,
  6873. struct ggml_tensor * dst) {
  6874. GGML_ASSERT(ggml_is_contiguous(src0));
  6875. GGML_ASSERT(ggml_is_contiguous(dst));
  6876. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6878. return;
  6879. }
  6880. // TODO: handle transposed/permuted matrices
  6881. const int ith = params->ith;
  6882. const int nth = params->nth;
  6883. const int nc = src0->ne[0];
  6884. const int nr = ggml_nrows(src0);
  6885. // rows per thread
  6886. const int dr = (nr + nth - 1)/nth;
  6887. // row range for this thread
  6888. const int ir0 = dr*ith;
  6889. const int ir1 = MIN(ir0 + dr, nr);
  6890. for (int i1 = ir0; i1 < ir1; i1++) {
  6891. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6892. #ifndef NDEBUG
  6893. for (int i = 0; i < nc; ++i) {
  6894. //printf("p[%d] = %f\n", i, p[i]);
  6895. assert(!isnan(p[i]));
  6896. }
  6897. #endif
  6898. float max = -INFINITY;
  6899. ggml_vec_max_f32(nc, &max, p);
  6900. ggml_float sum = 0.0;
  6901. uint16_t scvt;
  6902. for (int i = 0; i < nc; i++) {
  6903. if (p[i] == -INFINITY) {
  6904. p[i] = 0.0f;
  6905. } else {
  6906. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6907. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6908. memcpy(&scvt, &s, sizeof(scvt));
  6909. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6910. sum += (ggml_float)val;
  6911. p[i] = val;
  6912. }
  6913. }
  6914. assert(sum > 0.0);
  6915. sum = 1.0/sum;
  6916. ggml_vec_scale_f32(nc, p, sum);
  6917. #ifndef NDEBUG
  6918. for (int i = 0; i < nc; ++i) {
  6919. assert(!isnan(p[i]));
  6920. assert(!isinf(p[i]));
  6921. }
  6922. #endif
  6923. }
  6924. }
  6925. static void ggml_compute_forward_soft_max(
  6926. const struct ggml_compute_params * params,
  6927. const struct ggml_tensor * src0,
  6928. struct ggml_tensor * dst) {
  6929. switch (src0->type) {
  6930. case GGML_TYPE_F32:
  6931. {
  6932. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6933. } break;
  6934. default:
  6935. {
  6936. GGML_ASSERT(false);
  6937. } break;
  6938. }
  6939. }
  6940. // ggml_compute_forward_rope
  6941. static void ggml_compute_forward_rope_f32(
  6942. const struct ggml_compute_params * params,
  6943. const struct ggml_tensor * src0,
  6944. const struct ggml_tensor * src1,
  6945. struct ggml_tensor * dst) {
  6946. assert(src1->type == GGML_TYPE_I32);
  6947. assert(ggml_nelements(src1) == 3);
  6948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6949. return;
  6950. }
  6951. const int n_past = ((int32_t *) src1->data)[0];
  6952. const int n_dims = ((int32_t *) src1->data)[1];
  6953. const int mode = ((int32_t *) src1->data)[2];
  6954. //const int64_t ne0 = src0->ne[0];
  6955. const int64_t ne1 = src0->ne[1];
  6956. const int64_t ne2 = src0->ne[2];
  6957. const int64_t ne3 = src0->ne[3];
  6958. const int nb0 = src0->nb[0];
  6959. const int nb1 = src0->nb[1];
  6960. const int nb2 = src0->nb[2];
  6961. const int nb3 = src0->nb[3];
  6962. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6963. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6964. assert(nb0 == sizeof(float));
  6965. const int ith = params->ith;
  6966. const int nth = params->nth;
  6967. const int nr = ggml_nrows(src0);
  6968. // rows per thread
  6969. const int dr = (nr + nth - 1)/nth;
  6970. // row range for this thread
  6971. const int ir0 = dr*ith;
  6972. const int ir1 = MIN(ir0 + dr, nr);
  6973. // row index used to determine which thread to use
  6974. int ir = 0;
  6975. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6976. const bool is_neox = mode & 2;
  6977. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6978. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6979. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  6980. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6981. if (ir++ < ir0) continue;
  6982. if (ir > ir1) break;
  6983. float theta = (float)p;
  6984. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6985. const float cos_theta = cosf(theta);
  6986. const float sin_theta = sinf(theta);
  6987. theta *= theta_scale;
  6988. if (!is_neox) {
  6989. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6990. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6991. const float x0 = src[0];
  6992. const float x1 = src[1];
  6993. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6994. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6995. } else {
  6996. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  6997. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  6998. const float x0 = src[0];
  6999. const float x1 = src[n_dims/2];
  7000. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7001. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7002. }
  7003. }
  7004. }
  7005. }
  7006. }
  7007. }
  7008. static void ggml_compute_forward_rope_f16(
  7009. const struct ggml_compute_params * params,
  7010. const struct ggml_tensor * src0,
  7011. const struct ggml_tensor * src1,
  7012. struct ggml_tensor * dst) {
  7013. assert(src1->type == GGML_TYPE_I32);
  7014. assert(ggml_nelements(src1) == 3);
  7015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7016. return;
  7017. }
  7018. const int n_past = ((int32_t *) src1->data)[0];
  7019. const int n_dims = ((int32_t *) src1->data)[1];
  7020. const int mode = ((int32_t *) src1->data)[2];
  7021. //const int64_t ne0 = src0->ne[0];
  7022. const int64_t ne1 = src0->ne[1];
  7023. const int64_t ne2 = src0->ne[2];
  7024. const int64_t ne3 = src0->ne[3];
  7025. const int nb0 = src0->nb[0];
  7026. const int nb1 = src0->nb[1];
  7027. const int nb2 = src0->nb[2];
  7028. const int nb3 = src0->nb[3];
  7029. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7030. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7031. assert(nb0 == sizeof(ggml_fp16_t));
  7032. const int ith = params->ith;
  7033. const int nth = params->nth;
  7034. const int nr = ggml_nrows(src0);
  7035. // rows per thread
  7036. const int dr = (nr + nth - 1)/nth;
  7037. // row range for this thread
  7038. const int ir0 = dr*ith;
  7039. const int ir1 = MIN(ir0 + dr, nr);
  7040. // row index used to determine which thread to use
  7041. int ir = 0;
  7042. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7043. const bool is_neox = mode & 2;
  7044. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7045. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7046. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7047. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7048. if (ir++ < ir0) continue;
  7049. if (ir > ir1) break;
  7050. float theta = (float)p;
  7051. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7052. const float cos_theta = cosf(theta);
  7053. const float sin_theta = sinf(theta);
  7054. theta *= theta_scale;
  7055. if (!is_neox) {
  7056. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7057. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7058. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7059. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7060. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7061. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7062. } else {
  7063. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7064. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7065. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7066. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7067. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7068. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7069. }
  7070. }
  7071. }
  7072. }
  7073. }
  7074. }
  7075. static void ggml_compute_forward_rope(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. const struct ggml_tensor * src1,
  7079. struct ggml_tensor * dst) {
  7080. switch (src0->type) {
  7081. case GGML_TYPE_F16:
  7082. {
  7083. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7084. } break;
  7085. case GGML_TYPE_F32:
  7086. {
  7087. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7088. } break;
  7089. default:
  7090. {
  7091. GGML_ASSERT(false);
  7092. } break;
  7093. }
  7094. }
  7095. // ggml_compute_forward_conv_1d_1s
  7096. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7097. const struct ggml_compute_params * params,
  7098. const struct ggml_tensor * src0,
  7099. const struct ggml_tensor * src1,
  7100. struct ggml_tensor * dst) {
  7101. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7102. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7103. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7104. int64_t t0 = ggml_perf_time_us();
  7105. UNUSED(t0);
  7106. const int64_t ne00 = src0->ne[0];
  7107. const int64_t ne01 = src0->ne[1];
  7108. const int64_t ne02 = src0->ne[2];
  7109. //const int64_t ne03 = src0->ne[3];
  7110. const int64_t ne10 = src1->ne[0];
  7111. const int64_t ne11 = src1->ne[1];
  7112. //const int64_t ne12 = src1->ne[2];
  7113. //const int64_t ne13 = src1->ne[3];
  7114. //const int64_t ne0 = dst->ne[0];
  7115. //const int64_t ne1 = dst->ne[1];
  7116. //const int64_t ne2 = dst->ne[2];
  7117. //const int64_t ne3 = dst->ne[3];
  7118. //const int64_t ne = ne0*ne1*ne2*ne3;
  7119. const int nb00 = src0->nb[0];
  7120. const int nb01 = src0->nb[1];
  7121. const int nb02 = src0->nb[2];
  7122. //const int nb03 = src0->nb[3];
  7123. const int nb10 = src1->nb[0];
  7124. const int nb11 = src1->nb[1];
  7125. //const int nb12 = src1->nb[2];
  7126. //const int nb13 = src1->nb[3];
  7127. //const int nb0 = dst->nb[0];
  7128. const int nb1 = dst->nb[1];
  7129. //const int nb2 = dst->nb[2];
  7130. //const int nb3 = dst->nb[3];
  7131. const int ith = params->ith;
  7132. const int nth = params->nth;
  7133. const int nk = ne00;
  7134. const int nh = nk/2;
  7135. const int ew0 = ggml_up32(ne01);
  7136. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7137. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7138. GGML_ASSERT(nb10 == sizeof(float));
  7139. if (params->type == GGML_TASK_INIT) {
  7140. // TODO: fix this memset (wsize is overestimated)
  7141. memset(params->wdata, 0, params->wsize);
  7142. // prepare kernel data (src0)
  7143. {
  7144. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7145. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7146. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7147. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7148. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7149. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7150. dst_data[i00*ew0 + i01] = src[i00];
  7151. }
  7152. }
  7153. }
  7154. }
  7155. // prepare source data (src1)
  7156. {
  7157. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7158. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7159. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7160. ggml_fp16_t * dst_data = wdata;
  7161. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7162. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7163. }
  7164. }
  7165. }
  7166. return;
  7167. }
  7168. if (params->type == GGML_TASK_FINALIZE) {
  7169. return;
  7170. }
  7171. // total rows in dst
  7172. const int nr = ne02;
  7173. // rows per thread
  7174. const int dr = (nr + nth - 1)/nth;
  7175. // row range for this thread
  7176. const int ir0 = dr*ith;
  7177. const int ir1 = MIN(ir0 + dr, nr);
  7178. for (int i1 = ir0; i1 < ir1; i1++) {
  7179. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7180. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7181. dst_data[i0] = 0;
  7182. for (int k = -nh; k <= nh; k++) {
  7183. float v = 0.0f;
  7184. ggml_vec_dot_f16(ew0, &v,
  7185. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7186. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7187. dst_data[i0] += v;
  7188. }
  7189. }
  7190. }
  7191. }
  7192. static void ggml_compute_forward_conv_1d_1s_f32(
  7193. const struct ggml_compute_params * params,
  7194. const struct ggml_tensor * src0,
  7195. const struct ggml_tensor * src1,
  7196. struct ggml_tensor * dst) {
  7197. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7198. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7199. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7200. int64_t t0 = ggml_perf_time_us();
  7201. UNUSED(t0);
  7202. const int64_t ne00 = src0->ne[0];
  7203. const int64_t ne01 = src0->ne[1];
  7204. const int64_t ne02 = src0->ne[2];
  7205. //const int64_t ne03 = src0->ne[3];
  7206. const int64_t ne10 = src1->ne[0];
  7207. const int64_t ne11 = src1->ne[1];
  7208. //const int64_t ne12 = src1->ne[2];
  7209. //const int64_t ne13 = src1->ne[3];
  7210. //const int64_t ne0 = dst->ne[0];
  7211. //const int64_t ne1 = dst->ne[1];
  7212. //const int64_t ne2 = dst->ne[2];
  7213. //const int64_t ne3 = dst->ne[3];
  7214. //const int64_t ne = ne0*ne1*ne2*ne3;
  7215. const int nb00 = src0->nb[0];
  7216. const int nb01 = src0->nb[1];
  7217. const int nb02 = src0->nb[2];
  7218. //const int nb03 = src0->nb[3];
  7219. const int nb10 = src1->nb[0];
  7220. const int nb11 = src1->nb[1];
  7221. //const int nb12 = src1->nb[2];
  7222. //const int nb13 = src1->nb[3];
  7223. //const int nb0 = dst->nb[0];
  7224. const int nb1 = dst->nb[1];
  7225. //const int nb2 = dst->nb[2];
  7226. //const int nb3 = dst->nb[3];
  7227. const int ith = params->ith;
  7228. const int nth = params->nth;
  7229. const int nk = ne00;
  7230. const int nh = nk/2;
  7231. const int ew0 = ggml_up32(ne01);
  7232. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7233. GGML_ASSERT(nb00 == sizeof(float));
  7234. GGML_ASSERT(nb10 == sizeof(float));
  7235. if (params->type == GGML_TASK_INIT) {
  7236. // TODO: fix this memset (wsize is overestimated)
  7237. memset(params->wdata, 0, params->wsize);
  7238. // prepare kernel data (src0)
  7239. {
  7240. float * const wdata = (float *) params->wdata + 0;
  7241. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7242. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7243. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7244. float * dst_data = wdata + i02*ew0*ne00;
  7245. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7246. dst_data[i00*ew0 + i01] = src[i00];
  7247. }
  7248. }
  7249. }
  7250. }
  7251. // prepare source data (src1)
  7252. {
  7253. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7254. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7255. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7256. float * dst_data = wdata;
  7257. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7258. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7259. }
  7260. }
  7261. }
  7262. return;
  7263. }
  7264. if (params->type == GGML_TASK_FINALIZE) {
  7265. return;
  7266. }
  7267. // total rows in dst
  7268. const int nr = ne02;
  7269. // rows per thread
  7270. const int dr = (nr + nth - 1)/nth;
  7271. // row range for this thread
  7272. const int ir0 = dr*ith;
  7273. const int ir1 = MIN(ir0 + dr, nr);
  7274. for (int i1 = ir0; i1 < ir1; i1++) {
  7275. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7276. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7277. dst_data[i0] = 0;
  7278. for (int k = -nh; k <= nh; k++) {
  7279. float v = 0.0f;
  7280. ggml_vec_dot_f32(ew0, &v,
  7281. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7282. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7283. dst_data[i0] += v;
  7284. }
  7285. }
  7286. }
  7287. }
  7288. static void ggml_compute_forward_conv_1d_1s(
  7289. const struct ggml_compute_params * params,
  7290. const struct ggml_tensor * src0,
  7291. const struct ggml_tensor * src1,
  7292. struct ggml_tensor * dst) {
  7293. switch (src0->type) {
  7294. case GGML_TYPE_F16:
  7295. {
  7296. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7297. } break;
  7298. case GGML_TYPE_F32:
  7299. {
  7300. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7301. } break;
  7302. default:
  7303. {
  7304. GGML_ASSERT(false);
  7305. } break;
  7306. }
  7307. }
  7308. // ggml_compute_forward_conv_1d_2s
  7309. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. const struct ggml_tensor * src1,
  7313. struct ggml_tensor * dst) {
  7314. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7316. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7317. int64_t t0 = ggml_perf_time_us();
  7318. UNUSED(t0);
  7319. const int64_t ne00 = src0->ne[0];
  7320. const int64_t ne01 = src0->ne[1];
  7321. const int64_t ne02 = src0->ne[2];
  7322. //const int64_t ne03 = src0->ne[3];
  7323. const int64_t ne10 = src1->ne[0];
  7324. const int64_t ne11 = src1->ne[1];
  7325. //const int64_t ne12 = src1->ne[2];
  7326. //const int64_t ne13 = src1->ne[3];
  7327. //const int64_t ne0 = dst->ne[0];
  7328. //const int64_t ne1 = dst->ne[1];
  7329. //const int64_t ne2 = dst->ne[2];
  7330. //const int64_t ne3 = dst->ne[3];
  7331. //const int64_t ne = ne0*ne1*ne2*ne3;
  7332. const int nb00 = src0->nb[0];
  7333. const int nb01 = src0->nb[1];
  7334. const int nb02 = src0->nb[2];
  7335. //const int nb03 = src0->nb[3];
  7336. const int nb10 = src1->nb[0];
  7337. const int nb11 = src1->nb[1];
  7338. //const int nb12 = src1->nb[2];
  7339. //const int nb13 = src1->nb[3];
  7340. //const int nb0 = dst->nb[0];
  7341. const int nb1 = dst->nb[1];
  7342. //const int nb2 = dst->nb[2];
  7343. //const int nb3 = dst->nb[3];
  7344. const int ith = params->ith;
  7345. const int nth = params->nth;
  7346. const int nk = ne00;
  7347. const int nh = nk/2;
  7348. const int ew0 = ggml_up32(ne01);
  7349. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7350. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7351. GGML_ASSERT(nb10 == sizeof(float));
  7352. if (params->type == GGML_TASK_INIT) {
  7353. // TODO: fix this memset (wsize is overestimated)
  7354. memset(params->wdata, 0, params->wsize);
  7355. // prepare kernel data (src0)
  7356. {
  7357. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7359. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7360. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7361. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7362. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7363. dst_data[i00*ew0 + i01] = src[i00];
  7364. }
  7365. }
  7366. }
  7367. }
  7368. // prepare source data (src1)
  7369. {
  7370. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7371. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7372. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7373. ggml_fp16_t * dst_data = wdata;
  7374. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7375. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7376. }
  7377. }
  7378. }
  7379. return;
  7380. }
  7381. if (params->type == GGML_TASK_FINALIZE) {
  7382. return;
  7383. }
  7384. // total rows in dst
  7385. const int nr = ne02;
  7386. // rows per thread
  7387. const int dr = (nr + nth - 1)/nth;
  7388. // row range for this thread
  7389. const int ir0 = dr*ith;
  7390. const int ir1 = MIN(ir0 + dr, nr);
  7391. for (int i1 = ir0; i1 < ir1; i1++) {
  7392. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7393. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7394. dst_data[i0/2] = 0;
  7395. for (int k = -nh; k <= nh; k++) {
  7396. float v = 0.0f;
  7397. ggml_vec_dot_f16(ew0, &v,
  7398. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7399. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7400. dst_data[i0/2] += v;
  7401. }
  7402. }
  7403. }
  7404. }
  7405. static void ggml_compute_forward_conv_1d_2s_f32(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. const struct ggml_tensor * src1,
  7409. struct ggml_tensor * dst) {
  7410. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7411. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7412. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7413. int64_t t0 = ggml_perf_time_us();
  7414. UNUSED(t0);
  7415. const int64_t ne00 = src0->ne[0];
  7416. const int64_t ne01 = src0->ne[1];
  7417. const int64_t ne02 = src0->ne[2];
  7418. //const int64_t ne03 = src0->ne[3];
  7419. const int64_t ne10 = src1->ne[0];
  7420. const int64_t ne11 = src1->ne[1];
  7421. //const int64_t ne12 = src1->ne[2];
  7422. //const int64_t ne13 = src1->ne[3];
  7423. //const int64_t ne0 = dst->ne[0];
  7424. //const int64_t ne1 = dst->ne[1];
  7425. //const int64_t ne2 = dst->ne[2];
  7426. //const int64_t ne3 = dst->ne[3];
  7427. //const int64_t ne = ne0*ne1*ne2*ne3;
  7428. const int nb00 = src0->nb[0];
  7429. const int nb01 = src0->nb[1];
  7430. const int nb02 = src0->nb[2];
  7431. //const int nb03 = src0->nb[3];
  7432. const int nb10 = src1->nb[0];
  7433. const int nb11 = src1->nb[1];
  7434. //const int nb12 = src1->nb[2];
  7435. //const int nb13 = src1->nb[3];
  7436. //const int nb0 = dst->nb[0];
  7437. const int nb1 = dst->nb[1];
  7438. //const int nb2 = dst->nb[2];
  7439. //const int nb3 = dst->nb[3];
  7440. const int ith = params->ith;
  7441. const int nth = params->nth;
  7442. const int nk = ne00;
  7443. const int nh = nk/2;
  7444. const int ew0 = ggml_up32(ne01);
  7445. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7446. GGML_ASSERT(nb00 == sizeof(float));
  7447. GGML_ASSERT(nb10 == sizeof(float));
  7448. if (params->type == GGML_TASK_INIT) {
  7449. // TODO: fix this memset (wsize is overestimated)
  7450. memset(params->wdata, 0, params->wsize);
  7451. // prepare kernel data (src0)
  7452. {
  7453. float * const wdata = (float *) params->wdata + 0;
  7454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7455. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7456. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7457. float * dst_data = wdata + i02*ew0*ne00;
  7458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7459. dst_data[i00*ew0 + i01] = src[i00];
  7460. }
  7461. }
  7462. }
  7463. }
  7464. // prepare source data (src1)
  7465. {
  7466. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7467. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7468. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7469. float * dst_data = wdata;
  7470. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7471. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7472. }
  7473. }
  7474. }
  7475. return;
  7476. }
  7477. if (params->type == GGML_TASK_FINALIZE) {
  7478. return;
  7479. }
  7480. // total rows in dst
  7481. const int nr = ne02;
  7482. // rows per thread
  7483. const int dr = (nr + nth - 1)/nth;
  7484. // row range for this thread
  7485. const int ir0 = dr*ith;
  7486. const int ir1 = MIN(ir0 + dr, nr);
  7487. for (int i1 = ir0; i1 < ir1; i1++) {
  7488. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7489. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7490. dst_data[i0/2] = 0;
  7491. for (int k = -nh; k <= nh; k++) {
  7492. float v = 0.0f;
  7493. ggml_vec_dot_f32(ew0, &v,
  7494. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7495. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7496. dst_data[i0/2] += v;
  7497. }
  7498. }
  7499. }
  7500. }
  7501. static void ggml_compute_forward_conv_1d_2s(
  7502. const struct ggml_compute_params * params,
  7503. const struct ggml_tensor * src0,
  7504. const struct ggml_tensor * src1,
  7505. struct ggml_tensor * dst) {
  7506. switch (src0->type) {
  7507. case GGML_TYPE_F16:
  7508. {
  7509. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7510. } break;
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_flash_attn
  7522. static void ggml_compute_forward_flash_attn_f32(
  7523. const struct ggml_compute_params * params,
  7524. const struct ggml_tensor * q,
  7525. const struct ggml_tensor * k,
  7526. const struct ggml_tensor * v,
  7527. const bool masked,
  7528. struct ggml_tensor * dst) {
  7529. int64_t t0 = ggml_perf_time_us();
  7530. UNUSED(t0);
  7531. const int64_t neq0 = q->ne[0];
  7532. const int64_t neq1 = q->ne[1];
  7533. const int64_t neq2 = q->ne[2];
  7534. const int64_t neq3 = q->ne[3];
  7535. const int64_t nek0 = k->ne[0];
  7536. const int64_t nek1 = k->ne[1];
  7537. //const int64_t nek2 = k->ne[2];
  7538. //const int64_t nek3 = k->ne[3];
  7539. //const int64_t nev0 = v->ne[0];
  7540. const int64_t nev1 = v->ne[1];
  7541. //const int64_t nev2 = v->ne[2];
  7542. //const int64_t nev3 = v->ne[3];
  7543. const int64_t ne0 = dst->ne[0];
  7544. const int64_t ne1 = dst->ne[1];
  7545. //const int64_t ne2 = dst->ne[2];
  7546. //const int64_t ne3 = dst->ne[3];
  7547. const int nbk0 = k->nb[0];
  7548. const int nbk1 = k->nb[1];
  7549. const int nbk2 = k->nb[2];
  7550. const int nbk3 = k->nb[3];
  7551. const int nbq0 = q->nb[0];
  7552. const int nbq1 = q->nb[1];
  7553. const int nbq2 = q->nb[2];
  7554. const int nbq3 = q->nb[3];
  7555. const int nbv0 = v->nb[0];
  7556. const int nbv1 = v->nb[1];
  7557. const int nbv2 = v->nb[2];
  7558. const int nbv3 = v->nb[3];
  7559. const int nb0 = dst->nb[0];
  7560. const int nb1 = dst->nb[1];
  7561. const int nb2 = dst->nb[2];
  7562. const int nb3 = dst->nb[3];
  7563. const int ith = params->ith;
  7564. const int nth = params->nth;
  7565. const int64_t D = neq0;
  7566. const int64_t N = neq1;
  7567. const int64_t P = nek1 - N;
  7568. const int64_t M = P + N;
  7569. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7570. GGML_ASSERT(ne0 == D);
  7571. GGML_ASSERT(ne1 == N);
  7572. GGML_ASSERT(P >= 0);
  7573. GGML_ASSERT(nbq0 == sizeof(float));
  7574. GGML_ASSERT(nbk0 == sizeof(float));
  7575. GGML_ASSERT(nbv0 == sizeof(float));
  7576. GGML_ASSERT(neq0 == D);
  7577. GGML_ASSERT(nek0 == D);
  7578. GGML_ASSERT(nev1 == D);
  7579. GGML_ASSERT(neq1 == N);
  7580. GGML_ASSERT(nek1 == N + P);
  7581. GGML_ASSERT(nev1 == D);
  7582. // dst cannot be transposed or permuted
  7583. GGML_ASSERT(nb0 == sizeof(float));
  7584. GGML_ASSERT(nb0 <= nb1);
  7585. GGML_ASSERT(nb1 <= nb2);
  7586. GGML_ASSERT(nb2 <= nb3);
  7587. if (params->type == GGML_TASK_INIT) {
  7588. return;
  7589. }
  7590. if (params->type == GGML_TASK_FINALIZE) {
  7591. return;
  7592. }
  7593. // parallelize by q rows using ggml_vec_dot_f32
  7594. // total rows in q
  7595. const int nr = neq1*neq2*neq3;
  7596. // rows per thread
  7597. const int dr = (nr + nth - 1)/nth;
  7598. // row range for this thread
  7599. const int ir0 = dr*ith;
  7600. const int ir1 = MIN(ir0 + dr, nr);
  7601. const float scale = 1.0f/sqrtf(D);
  7602. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7603. for (int ir = ir0; ir < ir1; ++ir) {
  7604. // q indices
  7605. const int iq3 = ir/(neq2*neq1);
  7606. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7607. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7608. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7609. for (int i = M; i < Mup; ++i) {
  7610. S[i] = -INFINITY;
  7611. }
  7612. for (int64_t ic = 0; ic < nek1; ++ic) {
  7613. // k indices
  7614. const int ik3 = iq3;
  7615. const int ik2 = iq2;
  7616. const int ik1 = ic;
  7617. // S indices
  7618. const int i1 = ik1;
  7619. ggml_vec_dot_f32(neq0,
  7620. S + i1,
  7621. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7622. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7623. }
  7624. // scale
  7625. ggml_vec_scale_f32(nek1, S, scale);
  7626. if (masked) {
  7627. for (int64_t i = P; i < M; i++) {
  7628. if (i > P + iq1) {
  7629. S[i] = -INFINITY;
  7630. }
  7631. }
  7632. }
  7633. // softmax
  7634. {
  7635. float max = -INFINITY;
  7636. ggml_vec_max_f32(M, &max, S);
  7637. ggml_float sum = 0.0;
  7638. {
  7639. #ifdef GGML_SOFT_MAX_ACCELERATE
  7640. max = -max;
  7641. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7642. vvexpf(S, S, &Mup);
  7643. ggml_vec_sum_f32(Mup, &sum, S);
  7644. #else
  7645. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7646. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7647. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7648. float * SS = S + i;
  7649. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7650. if (SS[j] == -INFINITY) {
  7651. SS[j] = 0.0f;
  7652. } else {
  7653. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7654. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7655. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7656. sump[j] += (ggml_float)val;
  7657. SS[j] = val;
  7658. }
  7659. }
  7660. }
  7661. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7662. sum += sump[i];
  7663. }
  7664. #endif
  7665. }
  7666. assert(sum > 0.0);
  7667. sum = 1.0/sum;
  7668. ggml_vec_scale_f32(M, S, sum);
  7669. #ifndef NDEBUG
  7670. for (int i = 0; i < M; ++i) {
  7671. assert(!isnan(S[i]));
  7672. assert(!isinf(S[i]));
  7673. }
  7674. #endif
  7675. }
  7676. for (int64_t ic = 0; ic < nev1; ++ic) {
  7677. // dst indices
  7678. const int i1 = iq1;
  7679. const int i2 = iq2;
  7680. const int i3 = iq3;
  7681. ggml_vec_dot_f32(nek1,
  7682. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7683. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7684. S);
  7685. }
  7686. }
  7687. }
  7688. static void ggml_compute_forward_flash_attn_f16(
  7689. const struct ggml_compute_params * params,
  7690. const struct ggml_tensor * q,
  7691. const struct ggml_tensor * k,
  7692. const struct ggml_tensor * v,
  7693. const bool masked,
  7694. struct ggml_tensor * dst) {
  7695. int64_t t0 = ggml_perf_time_us();
  7696. UNUSED(t0);
  7697. const int64_t neq0 = q->ne[0];
  7698. const int64_t neq1 = q->ne[1];
  7699. const int64_t neq2 = q->ne[2];
  7700. const int64_t neq3 = q->ne[3];
  7701. const int64_t nek0 = k->ne[0];
  7702. const int64_t nek1 = k->ne[1];
  7703. //const int64_t nek2 = k->ne[2];
  7704. //const int64_t nek3 = k->ne[3];
  7705. //const int64_t nev0 = v->ne[0];
  7706. const int64_t nev1 = v->ne[1];
  7707. //const int64_t nev2 = v->ne[2];
  7708. //const int64_t nev3 = v->ne[3];
  7709. const int64_t ne0 = dst->ne[0];
  7710. const int64_t ne1 = dst->ne[1];
  7711. //const int64_t ne2 = dst->ne[2];
  7712. //const int64_t ne3 = dst->ne[3];
  7713. const int nbk0 = k->nb[0];
  7714. const int nbk1 = k->nb[1];
  7715. const int nbk2 = k->nb[2];
  7716. const int nbk3 = k->nb[3];
  7717. const int nbq0 = q->nb[0];
  7718. const int nbq1 = q->nb[1];
  7719. const int nbq2 = q->nb[2];
  7720. const int nbq3 = q->nb[3];
  7721. const int nbv0 = v->nb[0];
  7722. const int nbv1 = v->nb[1];
  7723. const int nbv2 = v->nb[2];
  7724. const int nbv3 = v->nb[3];
  7725. const int nb0 = dst->nb[0];
  7726. const int nb1 = dst->nb[1];
  7727. const int nb2 = dst->nb[2];
  7728. const int nb3 = dst->nb[3];
  7729. const int ith = params->ith;
  7730. const int nth = params->nth;
  7731. const int64_t D = neq0;
  7732. const int64_t N = neq1;
  7733. const int64_t P = nek1 - N;
  7734. const int64_t M = P + N;
  7735. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7736. GGML_ASSERT(ne0 == D);
  7737. GGML_ASSERT(ne1 == N);
  7738. GGML_ASSERT(P >= 0);
  7739. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7740. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7741. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7742. GGML_ASSERT(neq0 == D);
  7743. GGML_ASSERT(nek0 == D);
  7744. GGML_ASSERT(nev1 == D);
  7745. GGML_ASSERT(neq1 == N);
  7746. GGML_ASSERT(nek1 == N + P);
  7747. GGML_ASSERT(nev1 == D);
  7748. // dst cannot be transposed or permuted
  7749. GGML_ASSERT(nb0 == sizeof(float));
  7750. GGML_ASSERT(nb0 <= nb1);
  7751. GGML_ASSERT(nb1 <= nb2);
  7752. GGML_ASSERT(nb2 <= nb3);
  7753. if (params->type == GGML_TASK_INIT) {
  7754. return;
  7755. }
  7756. if (params->type == GGML_TASK_FINALIZE) {
  7757. return;
  7758. }
  7759. // parallelize by q rows using ggml_vec_dot_f32
  7760. // total rows in q
  7761. const int nr = neq1*neq2*neq3;
  7762. // rows per thread
  7763. const int dr = (nr + nth - 1)/nth;
  7764. // row range for this thread
  7765. const int ir0 = dr*ith;
  7766. const int ir1 = MIN(ir0 + dr, nr);
  7767. const float scale = 1.0f/sqrtf(D);
  7768. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7769. for (int ir = ir0; ir < ir1; ++ir) {
  7770. // q indices
  7771. const int iq3 = ir/(neq2*neq1);
  7772. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7773. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7774. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7775. for (int i = M; i < Mup; ++i) {
  7776. S[i] = -INFINITY;
  7777. }
  7778. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7779. for (int64_t ic = 0; ic < nek1; ++ic) {
  7780. // k indices
  7781. const int ik3 = iq3;
  7782. const int ik2 = iq2;
  7783. const int ik1 = ic;
  7784. // S indices
  7785. const int i1 = ik1;
  7786. ggml_vec_dot_f16(neq0,
  7787. S + i1,
  7788. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7789. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7790. }
  7791. } else {
  7792. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7793. // k indices
  7794. const int ik3 = iq3;
  7795. const int ik2 = iq2;
  7796. const int ik1 = ic;
  7797. // S indices
  7798. const int i1 = ik1;
  7799. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7800. S + i1,
  7801. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7802. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7803. }
  7804. }
  7805. // scale
  7806. ggml_vec_scale_f32(nek1, S, scale);
  7807. if (masked) {
  7808. for (int64_t i = P; i < M; i++) {
  7809. if (i > P + iq1) {
  7810. S[i] = -INFINITY;
  7811. }
  7812. }
  7813. }
  7814. // softmax
  7815. {
  7816. float max = -INFINITY;
  7817. ggml_vec_max_f32(M, &max, S);
  7818. ggml_float sum = 0.0;
  7819. {
  7820. #ifdef GGML_SOFT_MAX_ACCELERATE
  7821. max = -max;
  7822. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7823. vvexpf(S, S, &Mup);
  7824. ggml_vec_sum_f32(Mup, &sum, S);
  7825. #else
  7826. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7827. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7828. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7829. float * SS = S + i;
  7830. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7831. if (SS[j] == -INFINITY) {
  7832. SS[j] = 0.0f;
  7833. } else {
  7834. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7835. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7836. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7837. sump[j] += (ggml_float)val;
  7838. SS[j] = val;
  7839. }
  7840. }
  7841. }
  7842. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7843. sum += sump[i];
  7844. }
  7845. #endif
  7846. }
  7847. assert(sum > 0.0);
  7848. sum = 1.0/sum;
  7849. ggml_vec_scale_f32(M, S, sum);
  7850. #ifndef NDEBUG
  7851. for (int i = 0; i < M; ++i) {
  7852. assert(!isnan(S[i]));
  7853. assert(!isinf(S[i]));
  7854. }
  7855. #endif
  7856. }
  7857. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7858. for (int64_t i = 0; i < M; i++) {
  7859. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7860. }
  7861. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7862. for (int64_t ic = 0; ic < nev1; ++ic) {
  7863. // dst indices
  7864. const int i1 = iq1;
  7865. const int i2 = iq2;
  7866. const int i3 = iq3;
  7867. ggml_vec_dot_f16(nek1,
  7868. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7869. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7870. S16);
  7871. }
  7872. } else {
  7873. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7874. // dst indices
  7875. const int i1 = iq1;
  7876. const int i2 = iq2;
  7877. const int i3 = iq3;
  7878. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7879. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7880. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7881. S16);
  7882. }
  7883. }
  7884. }
  7885. }
  7886. static void ggml_compute_forward_flash_attn(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * q,
  7889. const struct ggml_tensor * k,
  7890. const struct ggml_tensor * v,
  7891. const bool masked,
  7892. struct ggml_tensor * dst) {
  7893. switch (q->type) {
  7894. case GGML_TYPE_F16:
  7895. {
  7896. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7897. } break;
  7898. case GGML_TYPE_F32:
  7899. {
  7900. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7901. } break;
  7902. default:
  7903. {
  7904. GGML_ASSERT(false);
  7905. } break;
  7906. }
  7907. }
  7908. // ggml_compute_forward_flash_ff
  7909. static void ggml_compute_forward_flash_ff_f16(
  7910. const struct ggml_compute_params * params,
  7911. const struct ggml_tensor * a, // F16
  7912. const struct ggml_tensor * b0, // F16 fc_w
  7913. const struct ggml_tensor * b1, // F32 fc_b
  7914. const struct ggml_tensor * c0, // F16 proj_w
  7915. const struct ggml_tensor * c1, // F32 proj_b
  7916. struct ggml_tensor * dst) {
  7917. int64_t t0 = ggml_perf_time_us();
  7918. UNUSED(t0);
  7919. const int64_t nea0 = a->ne[0];
  7920. const int64_t nea1 = a->ne[1];
  7921. const int64_t nea2 = a->ne[2];
  7922. const int64_t nea3 = a->ne[3];
  7923. const int64_t neb00 = b0->ne[0];
  7924. const int64_t neb01 = b0->ne[1];
  7925. //const int64_t neb02 = b0->ne[2];
  7926. //const int64_t neb03 = b0->ne[3];
  7927. const int64_t neb10 = b1->ne[0];
  7928. const int64_t neb11 = b1->ne[1];
  7929. //const int64_t neb12 = b1->ne[2];
  7930. //const int64_t neb13 = b1->ne[3];
  7931. const int64_t nec00 = c0->ne[0];
  7932. const int64_t nec01 = c0->ne[1];
  7933. //const int64_t nec02 = c0->ne[2];
  7934. //const int64_t nec03 = c0->ne[3];
  7935. const int64_t nec10 = c1->ne[0];
  7936. const int64_t nec11 = c1->ne[1];
  7937. //const int64_t nec12 = c1->ne[2];
  7938. //const int64_t nec13 = c1->ne[3];
  7939. const int64_t ne0 = dst->ne[0];
  7940. const int64_t ne1 = dst->ne[1];
  7941. const int64_t ne2 = dst->ne[2];
  7942. //const int64_t ne3 = dst->ne[3];
  7943. const int nba0 = a->nb[0];
  7944. const int nba1 = a->nb[1];
  7945. const int nba2 = a->nb[2];
  7946. const int nba3 = a->nb[3];
  7947. const int nbb00 = b0->nb[0];
  7948. const int nbb01 = b0->nb[1];
  7949. const int nbb02 = b0->nb[2];
  7950. const int nbb03 = b0->nb[3];
  7951. const int nbb10 = b1->nb[0];
  7952. //const int nbb11 = b1->nb[1];
  7953. //const int nbb12 = b1->nb[2];
  7954. //const int nbb13 = b1->nb[3];
  7955. const int nbc00 = c0->nb[0];
  7956. const int nbc01 = c0->nb[1];
  7957. const int nbc02 = c0->nb[2];
  7958. const int nbc03 = c0->nb[3];
  7959. const int nbc10 = c1->nb[0];
  7960. //const int nbc11 = c1->nb[1];
  7961. //const int nbc12 = c1->nb[2];
  7962. //const int nbc13 = c1->nb[3];
  7963. const int nb0 = dst->nb[0];
  7964. const int nb1 = dst->nb[1];
  7965. const int nb2 = dst->nb[2];
  7966. const int nb3 = dst->nb[3];
  7967. const int ith = params->ith;
  7968. const int nth = params->nth;
  7969. const int64_t D = nea0;
  7970. //const int64_t N = nea1;
  7971. const int64_t M = neb01;
  7972. GGML_ASSERT(ne0 == nea0);
  7973. GGML_ASSERT(ne1 == nea1);
  7974. GGML_ASSERT(ne2 == nea2);
  7975. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7976. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7977. GGML_ASSERT(nbb10 == sizeof(float));
  7978. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7979. GGML_ASSERT(nbc10 == sizeof(float));
  7980. GGML_ASSERT(neb00 == D);
  7981. GGML_ASSERT(neb01 == M);
  7982. GGML_ASSERT(neb10 == M);
  7983. GGML_ASSERT(neb11 == 1);
  7984. GGML_ASSERT(nec00 == M);
  7985. GGML_ASSERT(nec01 == D);
  7986. GGML_ASSERT(nec10 == D);
  7987. GGML_ASSERT(nec11 == 1);
  7988. // dst cannot be transposed or permuted
  7989. GGML_ASSERT(nb0 == sizeof(float));
  7990. GGML_ASSERT(nb0 <= nb1);
  7991. GGML_ASSERT(nb1 <= nb2);
  7992. GGML_ASSERT(nb2 <= nb3);
  7993. if (params->type == GGML_TASK_INIT) {
  7994. return;
  7995. }
  7996. if (params->type == GGML_TASK_FINALIZE) {
  7997. return;
  7998. }
  7999. // parallelize by a rows using ggml_vec_dot_f32
  8000. // total rows in a
  8001. const int nr = nea1*nea2*nea3;
  8002. // rows per thread
  8003. const int dr = (nr + nth - 1)/nth;
  8004. // row range for this thread
  8005. const int ir0 = dr*ith;
  8006. const int ir1 = MIN(ir0 + dr, nr);
  8007. for (int ir = ir0; ir < ir1; ++ir) {
  8008. // a indices
  8009. const int ia3 = ir/(nea2*nea1);
  8010. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8011. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8012. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8013. for (int64_t ic = 0; ic < neb01; ++ic) {
  8014. // b0 indices
  8015. const int ib03 = ia3;
  8016. const int ib02 = ia2;
  8017. const int ib01 = ic;
  8018. // S indices
  8019. const int i1 = ib01;
  8020. ggml_vec_dot_f16(nea0,
  8021. S + i1,
  8022. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8023. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8024. }
  8025. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8026. //ggml_vec_gelu_f32(neb01, S, S);
  8027. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8028. for (int64_t i = 0; i < M; i++) {
  8029. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8030. }
  8031. ggml_vec_gelu_f16(neb01, S16, S16);
  8032. {
  8033. // dst indices
  8034. const int i1 = ia1;
  8035. const int i2 = ia2;
  8036. const int i3 = ia3;
  8037. for (int64_t ic = 0; ic < nec01; ++ic) {
  8038. ggml_vec_dot_f16(neb01,
  8039. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8040. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8041. S16);
  8042. }
  8043. ggml_vec_add_f32(nec01,
  8044. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8045. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8046. (float *) c1->data);
  8047. }
  8048. }
  8049. }
  8050. static void ggml_compute_forward_flash_ff(
  8051. const struct ggml_compute_params * params,
  8052. const struct ggml_tensor * a,
  8053. const struct ggml_tensor * b0,
  8054. const struct ggml_tensor * b1,
  8055. const struct ggml_tensor * c0,
  8056. const struct ggml_tensor * c1,
  8057. struct ggml_tensor * dst) {
  8058. switch (b0->type) {
  8059. case GGML_TYPE_F16:
  8060. {
  8061. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8062. } break;
  8063. case GGML_TYPE_F32:
  8064. {
  8065. GGML_ASSERT(false); // TODO
  8066. } break;
  8067. default:
  8068. {
  8069. GGML_ASSERT(false);
  8070. } break;
  8071. }
  8072. }
  8073. // ggml_compute_forward_map_unary
  8074. static void ggml_compute_forward_map_unary_f32(
  8075. const struct ggml_compute_params * params,
  8076. const struct ggml_tensor * src0,
  8077. struct ggml_tensor * dst,
  8078. const ggml_unary_op_f32_t fun) {
  8079. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8081. return;
  8082. }
  8083. const int n = ggml_nrows(src0);
  8084. const int nc = src0->ne[0];
  8085. assert( dst->nb[0] == sizeof(float));
  8086. assert(src0->nb[0] == sizeof(float));
  8087. for (int i = 0; i < n; i++) {
  8088. fun(nc,
  8089. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8090. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8091. }
  8092. }
  8093. static void ggml_compute_forward_map_unary(
  8094. const struct ggml_compute_params * params,
  8095. const struct ggml_tensor * src0,
  8096. struct ggml_tensor * dst,
  8097. const ggml_unary_op_f32_t fun) {
  8098. switch (src0->type) {
  8099. case GGML_TYPE_F32:
  8100. {
  8101. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8102. } break;
  8103. default:
  8104. {
  8105. GGML_ASSERT(false);
  8106. } break;
  8107. }
  8108. }
  8109. // ggml_compute_forward_map_binary
  8110. static void ggml_compute_forward_map_binary_f32(
  8111. const struct ggml_compute_params * params,
  8112. const struct ggml_tensor * src0,
  8113. const struct ggml_tensor * src1,
  8114. struct ggml_tensor * dst,
  8115. const ggml_binary_op_f32_t fun) {
  8116. assert(params->ith == 0);
  8117. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8119. return;
  8120. }
  8121. const int n = ggml_nrows(src0);
  8122. const int nc = src0->ne[0];
  8123. assert( dst->nb[0] == sizeof(float));
  8124. assert(src0->nb[0] == sizeof(float));
  8125. assert(src1->nb[0] == sizeof(float));
  8126. for (int i = 0; i < n; i++) {
  8127. fun(nc,
  8128. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8129. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8130. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8131. }
  8132. }
  8133. static void ggml_compute_forward_map_binary(
  8134. const struct ggml_compute_params * params,
  8135. const struct ggml_tensor * src0,
  8136. const struct ggml_tensor * src1,
  8137. struct ggml_tensor * dst,
  8138. const ggml_binary_op_f32_t fun) {
  8139. switch (src0->type) {
  8140. case GGML_TYPE_F32:
  8141. {
  8142. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8143. } break;
  8144. default:
  8145. {
  8146. GGML_ASSERT(false);
  8147. } break;
  8148. }
  8149. }
  8150. /////////////////////////////////
  8151. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8152. GGML_ASSERT(params);
  8153. switch (tensor->op) {
  8154. case GGML_OP_DUP:
  8155. {
  8156. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8157. } break;
  8158. case GGML_OP_ADD:
  8159. {
  8160. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8161. } break;
  8162. case GGML_OP_SUB:
  8163. {
  8164. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8165. } break;
  8166. case GGML_OP_MUL:
  8167. {
  8168. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8169. } break;
  8170. case GGML_OP_DIV:
  8171. {
  8172. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8173. } break;
  8174. case GGML_OP_SQR:
  8175. {
  8176. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8177. } break;
  8178. case GGML_OP_SQRT:
  8179. {
  8180. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8181. } break;
  8182. case GGML_OP_SUM:
  8183. {
  8184. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8185. } break;
  8186. case GGML_OP_MEAN:
  8187. {
  8188. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8189. } break;
  8190. case GGML_OP_REPEAT:
  8191. {
  8192. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8193. } break;
  8194. case GGML_OP_ABS:
  8195. {
  8196. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8197. } break;
  8198. case GGML_OP_SGN:
  8199. {
  8200. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8201. } break;
  8202. case GGML_OP_NEG:
  8203. {
  8204. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8205. } break;
  8206. case GGML_OP_STEP:
  8207. {
  8208. ggml_compute_forward_step(params, tensor->src0, tensor);
  8209. } break;
  8210. case GGML_OP_RELU:
  8211. {
  8212. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8213. } break;
  8214. case GGML_OP_GELU:
  8215. {
  8216. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8217. } break;
  8218. case GGML_OP_SILU:
  8219. {
  8220. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8221. } break;
  8222. case GGML_OP_NORM:
  8223. {
  8224. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8225. } break;
  8226. case GGML_OP_RMS_NORM:
  8227. {
  8228. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8229. } break;
  8230. case GGML_OP_MUL_MAT:
  8231. {
  8232. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8233. } break;
  8234. case GGML_OP_SCALE:
  8235. {
  8236. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8237. } break;
  8238. case GGML_OP_CPY:
  8239. {
  8240. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8241. } break;
  8242. case GGML_OP_CONT:
  8243. {
  8244. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8245. } break;
  8246. case GGML_OP_RESHAPE:
  8247. {
  8248. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8249. } break;
  8250. case GGML_OP_VIEW:
  8251. {
  8252. ggml_compute_forward_view(params, tensor->src0);
  8253. } break;
  8254. case GGML_OP_PERMUTE:
  8255. {
  8256. ggml_compute_forward_permute(params, tensor->src0);
  8257. } break;
  8258. case GGML_OP_TRANSPOSE:
  8259. {
  8260. ggml_compute_forward_transpose(params, tensor->src0);
  8261. } break;
  8262. case GGML_OP_GET_ROWS:
  8263. {
  8264. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8265. } break;
  8266. case GGML_OP_DIAG_MASK_INF:
  8267. {
  8268. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8269. } break;
  8270. case GGML_OP_SOFT_MAX:
  8271. {
  8272. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8273. } break;
  8274. case GGML_OP_ROPE:
  8275. {
  8276. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8277. } break;
  8278. case GGML_OP_CONV_1D_1S:
  8279. {
  8280. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8281. } break;
  8282. case GGML_OP_CONV_1D_2S:
  8283. {
  8284. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8285. } break;
  8286. case GGML_OP_FLASH_ATTN:
  8287. {
  8288. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8289. GGML_ASSERT(t == 0 || t == 1);
  8290. bool masked = t != 0;
  8291. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8292. } break;
  8293. case GGML_OP_FLASH_FF:
  8294. {
  8295. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8296. } break;
  8297. case GGML_OP_MAP_UNARY:
  8298. {
  8299. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8300. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8301. }
  8302. break;
  8303. case GGML_OP_MAP_BINARY:
  8304. {
  8305. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8306. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8307. }
  8308. break;
  8309. case GGML_OP_NONE:
  8310. {
  8311. // nop
  8312. } break;
  8313. case GGML_OP_COUNT:
  8314. {
  8315. GGML_ASSERT(false);
  8316. } break;
  8317. }
  8318. }
  8319. ////////////////////////////////////////////////////////////////////////////////
  8320. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8321. struct ggml_tensor * src0 = tensor->src0;
  8322. struct ggml_tensor * src1 = tensor->src1;
  8323. switch (tensor->op) {
  8324. case GGML_OP_DUP:
  8325. {
  8326. if (src0->grad) {
  8327. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8328. }
  8329. } break;
  8330. case GGML_OP_ADD:
  8331. {
  8332. if (src0->grad) {
  8333. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8334. }
  8335. if (src1->grad) {
  8336. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8337. }
  8338. } break;
  8339. case GGML_OP_SUB:
  8340. {
  8341. if (src0->grad) {
  8342. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8343. }
  8344. if (src1->grad) {
  8345. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8346. }
  8347. } break;
  8348. case GGML_OP_MUL:
  8349. {
  8350. if (src0->grad) {
  8351. src0->grad =
  8352. ggml_add_impl(ctx,
  8353. src0->grad,
  8354. ggml_mul(ctx, src1, tensor->grad),
  8355. inplace);
  8356. }
  8357. if (src1->grad) {
  8358. src1->grad =
  8359. ggml_add_impl(ctx,
  8360. src1->grad,
  8361. ggml_mul(ctx, src0, tensor->grad),
  8362. inplace);
  8363. }
  8364. } break;
  8365. case GGML_OP_DIV:
  8366. {
  8367. if (src0->grad) {
  8368. src0->grad =
  8369. ggml_add_impl(ctx,
  8370. src0->grad,
  8371. ggml_div(ctx, tensor->grad, src1),
  8372. inplace);
  8373. }
  8374. if (src1->grad) {
  8375. src1->grad =
  8376. ggml_sub_impl(ctx,
  8377. src1->grad,
  8378. ggml_mul(ctx,
  8379. tensor->grad,
  8380. ggml_div(ctx, tensor, src1)),
  8381. inplace);
  8382. }
  8383. } break;
  8384. case GGML_OP_SQR:
  8385. {
  8386. if (src0->grad) {
  8387. src0->grad =
  8388. ggml_add_impl(ctx,
  8389. src0->grad,
  8390. ggml_mul(ctx,
  8391. ggml_mul(ctx, src0, tensor->grad),
  8392. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8393. inplace);
  8394. }
  8395. } break;
  8396. case GGML_OP_SQRT:
  8397. {
  8398. if (src0->grad) {
  8399. src0->grad =
  8400. ggml_add_impl(ctx,
  8401. src0->grad,
  8402. ggml_div(ctx,
  8403. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8404. tensor),
  8405. inplace);
  8406. }
  8407. } break;
  8408. case GGML_OP_SUM:
  8409. {
  8410. if (src0->grad) {
  8411. src0->grad =
  8412. ggml_add_impl(ctx,
  8413. src0->grad,
  8414. ggml_repeat(ctx, tensor->grad, src0->grad),
  8415. inplace);
  8416. }
  8417. } break;
  8418. case GGML_OP_MEAN:
  8419. {
  8420. GGML_ASSERT(false); // TODO: implement
  8421. } break;
  8422. case GGML_OP_REPEAT:
  8423. {
  8424. if (src0->grad) {
  8425. src0->grad =
  8426. ggml_add_impl(ctx,
  8427. src0->grad,
  8428. ggml_sum(ctx, tensor->grad),
  8429. inplace);
  8430. }
  8431. } break;
  8432. case GGML_OP_ABS:
  8433. {
  8434. if (src0->grad) {
  8435. src0->grad =
  8436. ggml_add_impl(ctx,
  8437. src0->grad,
  8438. ggml_mul(ctx,
  8439. ggml_sgn(ctx, src0),
  8440. tensor->grad),
  8441. inplace);
  8442. }
  8443. } break;
  8444. case GGML_OP_SGN:
  8445. {
  8446. if (src0->grad) {
  8447. // noop
  8448. }
  8449. } break;
  8450. case GGML_OP_NEG:
  8451. {
  8452. if (src0->grad) {
  8453. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8454. }
  8455. } break;
  8456. case GGML_OP_STEP:
  8457. {
  8458. if (src0->grad) {
  8459. // noop
  8460. }
  8461. } break;
  8462. case GGML_OP_RELU:
  8463. {
  8464. if (src0->grad) {
  8465. src0->grad = ggml_sub_impl(ctx,
  8466. src0->grad,
  8467. ggml_mul(ctx,
  8468. ggml_step(ctx, src0),
  8469. tensor->grad),
  8470. inplace);
  8471. }
  8472. } break;
  8473. case GGML_OP_GELU:
  8474. {
  8475. GGML_ASSERT(false); // TODO: not implemented
  8476. } break;
  8477. case GGML_OP_SILU:
  8478. {
  8479. GGML_ASSERT(false); // TODO: not implemented
  8480. } break;
  8481. case GGML_OP_NORM:
  8482. {
  8483. GGML_ASSERT(false); // TODO: not implemented
  8484. } break;
  8485. case GGML_OP_RMS_NORM:
  8486. {
  8487. GGML_ASSERT(false); // TODO: not implemented
  8488. } break;
  8489. case GGML_OP_MUL_MAT:
  8490. {
  8491. if (src0->grad) {
  8492. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8493. GGML_ASSERT(false);
  8494. }
  8495. if (src1->grad) {
  8496. src1->grad =
  8497. ggml_add_impl(ctx,
  8498. src1->grad,
  8499. ggml_mul_mat(ctx,
  8500. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8501. tensor->grad),
  8502. inplace);
  8503. }
  8504. } break;
  8505. case GGML_OP_SCALE:
  8506. {
  8507. GGML_ASSERT(false); // TODO: not implemented
  8508. } break;
  8509. case GGML_OP_CPY:
  8510. {
  8511. GGML_ASSERT(false); // TODO: not implemented
  8512. } break;
  8513. case GGML_OP_CONT:
  8514. {
  8515. GGML_ASSERT(false); // TODO: not implemented
  8516. } break;
  8517. case GGML_OP_RESHAPE:
  8518. {
  8519. GGML_ASSERT(false); // TODO: not implemented
  8520. } break;
  8521. case GGML_OP_VIEW:
  8522. {
  8523. GGML_ASSERT(false); // not supported
  8524. } break;
  8525. case GGML_OP_PERMUTE:
  8526. {
  8527. GGML_ASSERT(false); // TODO: not implemented
  8528. } break;
  8529. case GGML_OP_TRANSPOSE:
  8530. {
  8531. GGML_ASSERT(false); // TODO: not implemented
  8532. } break;
  8533. case GGML_OP_GET_ROWS:
  8534. {
  8535. GGML_ASSERT(false); // TODO: not implemented
  8536. } break;
  8537. case GGML_OP_DIAG_MASK_INF:
  8538. {
  8539. GGML_ASSERT(false); // TODO: not implemented
  8540. } break;
  8541. case GGML_OP_SOFT_MAX:
  8542. {
  8543. GGML_ASSERT(false); // TODO: not implemented
  8544. } break;
  8545. case GGML_OP_ROPE:
  8546. {
  8547. GGML_ASSERT(false); // TODO: not implemented
  8548. } break;
  8549. case GGML_OP_CONV_1D_1S:
  8550. {
  8551. GGML_ASSERT(false); // TODO: not implemented
  8552. } break;
  8553. case GGML_OP_CONV_1D_2S:
  8554. {
  8555. GGML_ASSERT(false); // TODO: not implemented
  8556. } break;
  8557. case GGML_OP_FLASH_ATTN:
  8558. {
  8559. GGML_ASSERT(false); // not supported
  8560. } break;
  8561. case GGML_OP_FLASH_FF:
  8562. {
  8563. GGML_ASSERT(false); // not supported
  8564. } break;
  8565. case GGML_OP_MAP_UNARY:
  8566. case GGML_OP_MAP_BINARY:
  8567. {
  8568. GGML_ASSERT(false); // not supported
  8569. } break;
  8570. case GGML_OP_NONE:
  8571. {
  8572. // nop
  8573. } break;
  8574. case GGML_OP_COUNT:
  8575. {
  8576. GGML_ASSERT(false);
  8577. } break;
  8578. }
  8579. }
  8580. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8581. if (node->grad == NULL) {
  8582. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8583. // it can also happen during forward pass, if the user performs computations with constants
  8584. if (node->op != GGML_OP_NONE) {
  8585. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8586. }
  8587. }
  8588. // check if already visited
  8589. for (int i = 0; i < cgraph->n_nodes; i++) {
  8590. if (cgraph->nodes[i] == node) {
  8591. return;
  8592. }
  8593. }
  8594. for (int i = 0; i < cgraph->n_leafs; i++) {
  8595. if (cgraph->leafs[i] == node) {
  8596. return;
  8597. }
  8598. }
  8599. if (node->src0) {
  8600. ggml_visit_parents(cgraph, node->src0);
  8601. }
  8602. if (node->src1) {
  8603. ggml_visit_parents(cgraph, node->src1);
  8604. }
  8605. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8606. if (node->opt[i]) {
  8607. ggml_visit_parents(cgraph, node->opt[i]);
  8608. }
  8609. }
  8610. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8611. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8612. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8613. cgraph->leafs[cgraph->n_leafs] = node;
  8614. cgraph->n_leafs++;
  8615. } else {
  8616. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8617. cgraph->nodes[cgraph->n_nodes] = node;
  8618. cgraph->grads[cgraph->n_nodes] = node->grad;
  8619. cgraph->n_nodes++;
  8620. }
  8621. }
  8622. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8623. if (!expand) {
  8624. cgraph->n_nodes = 0;
  8625. cgraph->n_leafs = 0;
  8626. }
  8627. const int n0 = cgraph->n_nodes;
  8628. UNUSED(n0);
  8629. ggml_visit_parents(cgraph, tensor);
  8630. const int n_new = cgraph->n_nodes - n0;
  8631. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8632. if (n_new > 0) {
  8633. // the last added node should always be starting point
  8634. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8635. }
  8636. }
  8637. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8638. ggml_build_forward_impl(cgraph, tensor, true);
  8639. }
  8640. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8641. struct ggml_cgraph result = {
  8642. /*.n_nodes =*/ 0,
  8643. /*.n_leafs =*/ 0,
  8644. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8645. /*.work_size =*/ 0,
  8646. /*.work =*/ NULL,
  8647. /*.nodes =*/ { NULL },
  8648. /*.grads =*/ { NULL },
  8649. /*.leafs =*/ { NULL },
  8650. /*.perf_runs =*/ 0,
  8651. /*.perf_cycles =*/ 0,
  8652. /*.perf_time_us =*/ 0,
  8653. };
  8654. ggml_build_forward_impl(&result, tensor, false);
  8655. return result;
  8656. }
  8657. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8658. struct ggml_cgraph result = *gf;
  8659. GGML_ASSERT(gf->n_nodes > 0);
  8660. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8661. if (keep) {
  8662. for (int i = 0; i < gf->n_nodes; i++) {
  8663. struct ggml_tensor * node = gf->nodes[i];
  8664. if (node->grad) {
  8665. node->grad = ggml_dup_tensor(ctx, node);
  8666. gf->grads[i] = node->grad;
  8667. }
  8668. }
  8669. }
  8670. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8671. struct ggml_tensor * node = gf->nodes[i];
  8672. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8673. if (node->grad) {
  8674. ggml_compute_backward(ctx, node, keep);
  8675. }
  8676. }
  8677. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8678. struct ggml_tensor * node = gf->nodes[i];
  8679. if (node->is_param) {
  8680. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8681. ggml_build_forward_impl(&result, node->grad, true);
  8682. }
  8683. }
  8684. return result;
  8685. }
  8686. //
  8687. // thread data
  8688. //
  8689. // synchronization is done via busy loops
  8690. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8691. //
  8692. #ifdef __APPLE__
  8693. //#include <os/lock.h>
  8694. //
  8695. //typedef os_unfair_lock ggml_lock_t;
  8696. //
  8697. //#define ggml_lock_init(x) UNUSED(x)
  8698. //#define ggml_lock_destroy(x) UNUSED(x)
  8699. //#define ggml_lock_lock os_unfair_lock_lock
  8700. //#define ggml_lock_unlock os_unfair_lock_unlock
  8701. //
  8702. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8703. typedef int ggml_lock_t;
  8704. #define ggml_lock_init(x) UNUSED(x)
  8705. #define ggml_lock_destroy(x) UNUSED(x)
  8706. #define ggml_lock_lock(x) UNUSED(x)
  8707. #define ggml_lock_unlock(x) UNUSED(x)
  8708. #define GGML_LOCK_INITIALIZER 0
  8709. typedef pthread_t ggml_thread_t;
  8710. #define ggml_thread_create pthread_create
  8711. #define ggml_thread_join pthread_join
  8712. #else
  8713. //typedef pthread_spinlock_t ggml_lock_t;
  8714. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8715. //#define ggml_lock_destroy pthread_spin_destroy
  8716. //#define ggml_lock_lock pthread_spin_lock
  8717. //#define ggml_lock_unlock pthread_spin_unlock
  8718. typedef int ggml_lock_t;
  8719. #define ggml_lock_init(x) UNUSED(x)
  8720. #define ggml_lock_destroy(x) UNUSED(x)
  8721. #define ggml_lock_lock(x) UNUSED(x)
  8722. #define ggml_lock_unlock(x) UNUSED(x)
  8723. #define GGML_LOCK_INITIALIZER 0
  8724. typedef pthread_t ggml_thread_t;
  8725. #define ggml_thread_create pthread_create
  8726. #define ggml_thread_join pthread_join
  8727. #endif
  8728. struct ggml_compute_state_shared {
  8729. ggml_lock_t spin;
  8730. int n_threads;
  8731. // synchronization primitives
  8732. atomic_int n_ready;
  8733. atomic_bool has_work;
  8734. atomic_bool stop; // stop all threads
  8735. };
  8736. struct ggml_compute_state {
  8737. ggml_thread_t thrd;
  8738. struct ggml_compute_params params;
  8739. struct ggml_tensor * node;
  8740. struct ggml_compute_state_shared * shared;
  8741. };
  8742. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8743. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8744. const int n_threads = state->shared->n_threads;
  8745. while (true) {
  8746. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8747. atomic_store(&state->shared->has_work, false);
  8748. } else {
  8749. while (atomic_load(&state->shared->has_work)) {
  8750. if (atomic_load(&state->shared->stop)) {
  8751. return 0;
  8752. }
  8753. ggml_lock_lock (&state->shared->spin);
  8754. ggml_lock_unlock(&state->shared->spin);
  8755. }
  8756. }
  8757. atomic_fetch_sub(&state->shared->n_ready, 1);
  8758. // wait for work
  8759. while (!atomic_load(&state->shared->has_work)) {
  8760. if (atomic_load(&state->shared->stop)) {
  8761. return 0;
  8762. }
  8763. ggml_lock_lock (&state->shared->spin);
  8764. ggml_lock_unlock(&state->shared->spin);
  8765. }
  8766. // check if we should stop
  8767. if (atomic_load(&state->shared->stop)) {
  8768. break;
  8769. }
  8770. if (state->node) {
  8771. if (state->params.ith < state->params.nth) {
  8772. ggml_compute_forward(&state->params, state->node);
  8773. }
  8774. state->node = NULL;
  8775. } else {
  8776. break;
  8777. }
  8778. }
  8779. return 0;
  8780. }
  8781. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8782. const int n_threads = cgraph->n_threads;
  8783. struct ggml_compute_state_shared state_shared = {
  8784. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8785. /*.n_threads =*/ n_threads,
  8786. /*.n_ready =*/ 0,
  8787. /*.has_work =*/ false,
  8788. /*.stop =*/ false,
  8789. };
  8790. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8791. // create thread pool
  8792. if (n_threads > 1) {
  8793. ggml_lock_init(&state_shared.spin);
  8794. atomic_store(&state_shared.has_work, true);
  8795. for (int j = 0; j < n_threads - 1; j++) {
  8796. workers[j] = (struct ggml_compute_state) {
  8797. .thrd = 0,
  8798. .params = {
  8799. .type = GGML_TASK_COMPUTE,
  8800. .ith = j + 1,
  8801. .nth = n_threads,
  8802. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8803. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8804. },
  8805. .node = NULL,
  8806. .shared = &state_shared,
  8807. };
  8808. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8809. GGML_ASSERT(rc == 0);
  8810. UNUSED(rc);
  8811. }
  8812. }
  8813. // initialize tasks + work buffer
  8814. {
  8815. size_t work_size = 0;
  8816. // thread scheduling for the different operations
  8817. for (int i = 0; i < cgraph->n_nodes; i++) {
  8818. struct ggml_tensor * node = cgraph->nodes[i];
  8819. switch (node->op) {
  8820. case GGML_OP_CPY:
  8821. case GGML_OP_DUP:
  8822. {
  8823. node->n_tasks = n_threads;
  8824. size_t cur = 0;
  8825. if (ggml_is_quantized(node->type)) {
  8826. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8827. }
  8828. work_size = MAX(work_size, cur);
  8829. } break;
  8830. case GGML_OP_ADD:
  8831. {
  8832. node->n_tasks = n_threads;
  8833. size_t cur = 0;
  8834. if (ggml_is_quantized(node->src0->type)) {
  8835. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8836. }
  8837. work_size = MAX(work_size, cur);
  8838. } break;
  8839. case GGML_OP_SUB:
  8840. case GGML_OP_MUL:
  8841. case GGML_OP_DIV:
  8842. case GGML_OP_SQR:
  8843. case GGML_OP_SQRT:
  8844. case GGML_OP_SUM:
  8845. case GGML_OP_MEAN:
  8846. case GGML_OP_REPEAT:
  8847. case GGML_OP_ABS:
  8848. case GGML_OP_SGN:
  8849. case GGML_OP_NEG:
  8850. case GGML_OP_STEP:
  8851. case GGML_OP_RELU:
  8852. {
  8853. node->n_tasks = 1;
  8854. } break;
  8855. case GGML_OP_GELU:
  8856. {
  8857. node->n_tasks = n_threads;
  8858. } break;
  8859. case GGML_OP_SILU:
  8860. {
  8861. node->n_tasks = n_threads;
  8862. } break;
  8863. case GGML_OP_NORM:
  8864. case GGML_OP_RMS_NORM:
  8865. {
  8866. node->n_tasks = n_threads;
  8867. } break;
  8868. case GGML_OP_MUL_MAT:
  8869. {
  8870. node->n_tasks = n_threads;
  8871. // TODO: use different scheduling for different matrix sizes
  8872. //const int nr0 = ggml_nrows(node->src0);
  8873. //const int nr1 = ggml_nrows(node->src1);
  8874. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8875. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8876. size_t cur = 0;
  8877. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8878. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8879. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8880. node->n_tasks = 1; // TODO: this actually is doing nothing
  8881. // the threads are still spinning
  8882. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8883. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8884. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8885. //printf("cur = %zu\n", cur);
  8886. } else {
  8887. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8888. }
  8889. #else
  8890. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8891. #endif
  8892. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8893. cur = 0;
  8894. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8895. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8896. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8897. node->n_tasks = 1;
  8898. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8899. } else
  8900. #endif
  8901. {
  8902. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8903. }
  8904. } else {
  8905. GGML_ASSERT(false);
  8906. }
  8907. work_size = MAX(work_size, cur);
  8908. } break;
  8909. case GGML_OP_SCALE:
  8910. {
  8911. node->n_tasks = n_threads;
  8912. } break;
  8913. case GGML_OP_CONT:
  8914. case GGML_OP_RESHAPE:
  8915. case GGML_OP_VIEW:
  8916. case GGML_OP_PERMUTE:
  8917. case GGML_OP_TRANSPOSE:
  8918. case GGML_OP_GET_ROWS:
  8919. case GGML_OP_DIAG_MASK_INF:
  8920. {
  8921. node->n_tasks = 1;
  8922. } break;
  8923. case GGML_OP_SOFT_MAX:
  8924. {
  8925. node->n_tasks = n_threads;
  8926. } break;
  8927. case GGML_OP_ROPE:
  8928. {
  8929. node->n_tasks = n_threads;
  8930. } break;
  8931. case GGML_OP_CONV_1D_1S:
  8932. case GGML_OP_CONV_1D_2S:
  8933. {
  8934. node->n_tasks = n_threads;
  8935. GGML_ASSERT(node->src0->ne[3] == 1);
  8936. GGML_ASSERT(node->src1->ne[2] == 1);
  8937. GGML_ASSERT(node->src1->ne[3] == 1);
  8938. size_t cur = 0;
  8939. const int nk = node->src0->ne[0];
  8940. if (node->src0->type == GGML_TYPE_F16 &&
  8941. node->src1->type == GGML_TYPE_F32) {
  8942. cur = sizeof(ggml_fp16_t)*(
  8943. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8944. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8945. );
  8946. } else if (node->src0->type == GGML_TYPE_F32 &&
  8947. node->src1->type == GGML_TYPE_F32) {
  8948. cur = sizeof(float)*(
  8949. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8950. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8951. );
  8952. } else {
  8953. GGML_ASSERT(false);
  8954. }
  8955. work_size = MAX(work_size, cur);
  8956. } break;
  8957. case GGML_OP_FLASH_ATTN:
  8958. {
  8959. node->n_tasks = n_threads;
  8960. size_t cur = 0;
  8961. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8962. if (node->src1->type == GGML_TYPE_F32) {
  8963. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8964. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8965. }
  8966. if (node->src1->type == GGML_TYPE_F16) {
  8967. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8968. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8969. }
  8970. work_size = MAX(work_size, cur);
  8971. } break;
  8972. case GGML_OP_FLASH_FF:
  8973. {
  8974. node->n_tasks = n_threads;
  8975. size_t cur = 0;
  8976. if (node->src1->type == GGML_TYPE_F32) {
  8977. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8978. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8979. }
  8980. if (node->src1->type == GGML_TYPE_F16) {
  8981. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8982. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8983. }
  8984. work_size = MAX(work_size, cur);
  8985. } break;
  8986. case GGML_OP_MAP_UNARY:
  8987. case GGML_OP_MAP_BINARY:
  8988. {
  8989. node->n_tasks = 1;
  8990. } break;
  8991. case GGML_OP_NONE:
  8992. {
  8993. node->n_tasks = 1;
  8994. } break;
  8995. case GGML_OP_COUNT:
  8996. {
  8997. GGML_ASSERT(false);
  8998. } break;
  8999. }
  9000. }
  9001. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9002. GGML_ASSERT(false); // TODO: better handling
  9003. }
  9004. if (work_size > 0 && cgraph->work == NULL) {
  9005. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9006. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9007. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9008. }
  9009. }
  9010. const int64_t perf_start_cycles = ggml_perf_cycles();
  9011. const int64_t perf_start_time_us = ggml_perf_time_us();
  9012. for (int i = 0; i < cgraph->n_nodes; i++) {
  9013. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9014. struct ggml_tensor * node = cgraph->nodes[i];
  9015. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9016. //if (node->grad == NULL && node->perf_runs > 0) {
  9017. // continue;
  9018. //}
  9019. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9020. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9021. // INIT
  9022. struct ggml_compute_params params = {
  9023. /*.type =*/ GGML_TASK_INIT,
  9024. /*.ith =*/ 0,
  9025. /*.nth =*/ node->n_tasks,
  9026. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9027. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9028. };
  9029. ggml_compute_forward(&params, node);
  9030. // COMPUTE
  9031. if (node->n_tasks > 1) {
  9032. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9033. atomic_store(&state_shared.has_work, false);
  9034. }
  9035. while (atomic_load(&state_shared.has_work)) {
  9036. ggml_lock_lock (&state_shared.spin);
  9037. ggml_lock_unlock(&state_shared.spin);
  9038. }
  9039. // launch thread pool
  9040. for (int j = 0; j < n_threads - 1; j++) {
  9041. workers[j].params = (struct ggml_compute_params) {
  9042. .type = GGML_TASK_COMPUTE,
  9043. .ith = j + 1,
  9044. .nth = node->n_tasks,
  9045. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9046. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9047. };
  9048. workers[j].node = node;
  9049. }
  9050. atomic_fetch_sub(&state_shared.n_ready, 1);
  9051. while (atomic_load(&state_shared.n_ready) > 0) {
  9052. ggml_lock_lock (&state_shared.spin);
  9053. ggml_lock_unlock(&state_shared.spin);
  9054. }
  9055. atomic_store(&state_shared.has_work, true);
  9056. }
  9057. params.type = GGML_TASK_COMPUTE;
  9058. ggml_compute_forward(&params, node);
  9059. // wait for thread pool
  9060. if (node->n_tasks > 1) {
  9061. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9062. atomic_store(&state_shared.has_work, false);
  9063. }
  9064. while (atomic_load(&state_shared.has_work)) {
  9065. ggml_lock_lock (&state_shared.spin);
  9066. ggml_lock_unlock(&state_shared.spin);
  9067. }
  9068. atomic_fetch_sub(&state_shared.n_ready, 1);
  9069. while (atomic_load(&state_shared.n_ready) != 0) {
  9070. ggml_lock_lock (&state_shared.spin);
  9071. ggml_lock_unlock(&state_shared.spin);
  9072. }
  9073. }
  9074. // FINALIZE
  9075. if (node->n_tasks > 1) {
  9076. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9077. atomic_store(&state_shared.has_work, false);
  9078. }
  9079. while (atomic_load(&state_shared.has_work)) {
  9080. ggml_lock_lock (&state_shared.spin);
  9081. ggml_lock_unlock(&state_shared.spin);
  9082. }
  9083. // launch thread pool
  9084. for (int j = 0; j < n_threads - 1; j++) {
  9085. workers[j].params = (struct ggml_compute_params) {
  9086. .type = GGML_TASK_FINALIZE,
  9087. .ith = j + 1,
  9088. .nth = node->n_tasks,
  9089. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9090. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9091. };
  9092. workers[j].node = node;
  9093. }
  9094. atomic_fetch_sub(&state_shared.n_ready, 1);
  9095. while (atomic_load(&state_shared.n_ready) > 0) {
  9096. ggml_lock_lock (&state_shared.spin);
  9097. ggml_lock_unlock(&state_shared.spin);
  9098. }
  9099. atomic_store(&state_shared.has_work, true);
  9100. }
  9101. params.type = GGML_TASK_FINALIZE;
  9102. ggml_compute_forward(&params, node);
  9103. // wait for thread pool
  9104. if (node->n_tasks > 1) {
  9105. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9106. atomic_store(&state_shared.has_work, false);
  9107. }
  9108. while (atomic_load(&state_shared.has_work)) {
  9109. ggml_lock_lock (&state_shared.spin);
  9110. ggml_lock_unlock(&state_shared.spin);
  9111. }
  9112. atomic_fetch_sub(&state_shared.n_ready, 1);
  9113. while (atomic_load(&state_shared.n_ready) != 0) {
  9114. ggml_lock_lock (&state_shared.spin);
  9115. ggml_lock_unlock(&state_shared.spin);
  9116. }
  9117. }
  9118. // performance stats (node)
  9119. {
  9120. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9121. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9122. node->perf_runs++;
  9123. node->perf_cycles += perf_cycles_cur;
  9124. node->perf_time_us += perf_time_us_cur;
  9125. }
  9126. }
  9127. // join thread pool
  9128. if (n_threads > 1) {
  9129. atomic_store(&state_shared.stop, true);
  9130. atomic_store(&state_shared.has_work, true);
  9131. for (int j = 0; j < n_threads - 1; j++) {
  9132. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9133. GGML_ASSERT(rc == 0);
  9134. UNUSED(rc);
  9135. }
  9136. ggml_lock_destroy(&state_shared.spin);
  9137. }
  9138. // performance stats (graph)
  9139. {
  9140. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9141. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9142. cgraph->perf_runs++;
  9143. cgraph->perf_cycles += perf_cycles_cur;
  9144. cgraph->perf_time_us += perf_time_us_cur;
  9145. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9146. __func__, cgraph->perf_runs,
  9147. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9148. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9149. (double) perf_time_us_cur / 1000.0,
  9150. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9151. }
  9152. }
  9153. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9154. for (int i = 0; i < cgraph->n_nodes; i++) {
  9155. struct ggml_tensor * grad = cgraph->grads[i];
  9156. if (grad) {
  9157. ggml_set_zero(grad);
  9158. }
  9159. }
  9160. }
  9161. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9162. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9163. GGML_PRINT("=== GRAPH ===\n");
  9164. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9165. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9166. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9167. for (int i = 0; i < cgraph->n_nodes; i++) {
  9168. struct ggml_tensor * node = cgraph->nodes[i];
  9169. perf_total_per_op_us[node->op] += node->perf_time_us;
  9170. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9171. i,
  9172. node->ne[0], node->ne[1], node->ne[2],
  9173. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9174. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9175. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9176. (double) node->perf_time_us / 1000.0,
  9177. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9178. }
  9179. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9180. for (int i = 0; i < cgraph->n_leafs; i++) {
  9181. struct ggml_tensor * node = cgraph->leafs[i];
  9182. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9183. i,
  9184. node->ne[0], node->ne[1],
  9185. GGML_OP_LABEL[node->op]);
  9186. }
  9187. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9188. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9189. }
  9190. GGML_PRINT("========================================\n");
  9191. }
  9192. // check if node is part of the graph
  9193. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9194. if (cgraph == NULL) {
  9195. return true;
  9196. }
  9197. for (int i = 0; i < cgraph->n_nodes; i++) {
  9198. if (cgraph->nodes[i] == node) {
  9199. return true;
  9200. }
  9201. }
  9202. return false;
  9203. }
  9204. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9205. for (int i = 0; i < cgraph->n_nodes; i++) {
  9206. struct ggml_tensor * parent = cgraph->nodes[i];
  9207. if (parent->grad == node) {
  9208. return parent;
  9209. }
  9210. }
  9211. return NULL;
  9212. }
  9213. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9214. char color[16];
  9215. FILE * fp = fopen(filename, "w");
  9216. GGML_ASSERT(fp);
  9217. fprintf(fp, "digraph G {\n");
  9218. fprintf(fp, " newrank = true;\n");
  9219. fprintf(fp, " rankdir = LR;\n");
  9220. for (int i = 0; i < gb->n_nodes; i++) {
  9221. struct ggml_tensor * node = gb->nodes[i];
  9222. if (ggml_graph_get_parent(gb, node) != NULL) {
  9223. continue;
  9224. }
  9225. if (node->is_param) {
  9226. snprintf(color, sizeof(color), "yellow");
  9227. } else if (node->grad) {
  9228. if (ggml_graph_find(gf, node)) {
  9229. snprintf(color, sizeof(color), "green");
  9230. } else {
  9231. snprintf(color, sizeof(color), "lightblue");
  9232. }
  9233. } else {
  9234. snprintf(color, sizeof(color), "white");
  9235. }
  9236. fprintf(fp, " \"%p\" [ \
  9237. style = filled; fillcolor = %s; shape = record; \
  9238. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9239. (void *) node, color,
  9240. i, node->ne[0], node->ne[1],
  9241. GGML_OP_SYMBOL[node->op]);
  9242. if (node->grad) {
  9243. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9244. } else {
  9245. fprintf(fp, "\"; ]\n");
  9246. }
  9247. }
  9248. for (int i = 0; i < gb->n_leafs; i++) {
  9249. struct ggml_tensor * node = gb->leafs[i];
  9250. snprintf(color, sizeof(color), "pink");
  9251. if (ggml_nelements(node) == 1) {
  9252. fprintf(fp, " \"%p\" [ \
  9253. style = filled; fillcolor = %s; shape = record; \
  9254. label=\"<x>%.1e\"; ]\n",
  9255. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9256. } else {
  9257. fprintf(fp, " \"%p\" [ \
  9258. style = filled; fillcolor = %s; shape = record; \
  9259. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9260. (void *) node, color,
  9261. i, node->ne[0], node->ne[1]);
  9262. }
  9263. }
  9264. for (int i = 0; i < gb->n_nodes; i++) {
  9265. struct ggml_tensor * node = gb->nodes[i];
  9266. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9267. if (node->src0) {
  9268. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9269. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9270. parent0 ? (void *) parent0 : (void *) node->src0,
  9271. parent0 ? "g" : "x",
  9272. parent ? (void *) parent : (void *) node,
  9273. parent ? "g" : "x",
  9274. parent ? "empty" : "vee",
  9275. parent ? "dashed" : "solid");
  9276. }
  9277. if (node->src1) {
  9278. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9279. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9280. parent1 ? (void *) parent1 : (void *) node->src1,
  9281. parent1 ? "g" : "x",
  9282. parent ? (void *) parent : (void *) node,
  9283. parent ? "g" : "x",
  9284. parent ? "empty" : "vee",
  9285. parent ? "dashed" : "solid");
  9286. }
  9287. }
  9288. for (int i = 0; i < gb->n_leafs; i++) {
  9289. struct ggml_tensor * node = gb->leafs[i];
  9290. if (node->src0) {
  9291. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9292. (void *) node->src0, "x",
  9293. (void *) node, "x");
  9294. }
  9295. if (node->src1) {
  9296. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9297. (void *) node->src1, "x",
  9298. (void *) node, "x");
  9299. }
  9300. }
  9301. fprintf(fp, "}\n");
  9302. fclose(fp);
  9303. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9304. }
  9305. ////////////////////////////////////////////////////////////////////////////////
  9306. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9307. int i = 0;
  9308. for (int p = 0; p < np; ++p) {
  9309. const int64_t ne = ggml_nelements(ps[p]) ;
  9310. // TODO: add function to set tensor from array
  9311. for (int64_t j = 0; j < ne; ++j) {
  9312. ggml_set_f32_1d(ps[p], j, x[i++]);
  9313. }
  9314. }
  9315. }
  9316. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9317. int i = 0;
  9318. for (int p = 0; p < np; ++p) {
  9319. const int64_t ne = ggml_nelements(ps[p]) ;
  9320. // TODO: add function to get all elements at once
  9321. for (int64_t j = 0; j < ne; ++j) {
  9322. x[i++] = ggml_get_f32_1d(ps[p], j);
  9323. }
  9324. }
  9325. }
  9326. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9327. int i = 0;
  9328. for (int p = 0; p < np; ++p) {
  9329. const int64_t ne = ggml_nelements(ps[p]) ;
  9330. // TODO: add function to get all elements at once
  9331. for (int64_t j = 0; j < ne; ++j) {
  9332. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9333. }
  9334. }
  9335. }
  9336. //
  9337. // ADAM
  9338. //
  9339. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9340. //
  9341. static enum ggml_opt_result ggml_opt_adam(
  9342. struct ggml_context * ctx,
  9343. struct ggml_opt_params params,
  9344. struct ggml_tensor * f,
  9345. struct ggml_cgraph * gf,
  9346. struct ggml_cgraph * gb) {
  9347. GGML_ASSERT(ggml_is_scalar(f));
  9348. gf->n_threads = params.n_threads;
  9349. gb->n_threads = params.n_threads;
  9350. // these will store the parameters we want to optimize
  9351. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9352. int np = 0;
  9353. int nx = 0;
  9354. for (int i = 0; i < gf->n_nodes; ++i) {
  9355. if (gf->nodes[i]->is_param) {
  9356. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9357. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9358. ps[np++] = gf->nodes[i];
  9359. nx += ggml_nelements(gf->nodes[i]);
  9360. }
  9361. }
  9362. // constants
  9363. const float alpha = params.adam.alpha;
  9364. const float beta1 = params.adam.beta1;
  9365. const float beta2 = params.adam.beta2;
  9366. const float eps = params.adam.eps;
  9367. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9368. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9369. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9370. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9371. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9372. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9373. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9374. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9375. // initialize
  9376. ggml_vec_set_f32(nx, m, 0.0f);
  9377. ggml_vec_set_f32(nx, v, 0.0f);
  9378. // update view
  9379. ggml_opt_get_params(np, ps, x);
  9380. // compute the function value
  9381. ggml_graph_reset (gf);
  9382. ggml_set_f32 (f->grad, 1.0f);
  9383. ggml_graph_compute(ctx, gb);
  9384. float fx_prev = ggml_get_f32_1d(f, 0);
  9385. if (pf) {
  9386. pf[0] = fx_prev;
  9387. }
  9388. int n_no_improvement = 0;
  9389. float fx_best = fx_prev;
  9390. // run the optimizer
  9391. for (int t = 0; t < params.adam.n_iter; ++t) {
  9392. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9393. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9394. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9395. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9396. for (int i = 0; i < np; ++i) {
  9397. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9398. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9399. }
  9400. const int64_t t_start_wall = ggml_time_us();
  9401. const int64_t t_start_cpu = ggml_cycles();
  9402. UNUSED(t_start_wall);
  9403. UNUSED(t_start_cpu);
  9404. {
  9405. // update the gradient
  9406. ggml_opt_get_grad(np, ps, g1);
  9407. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9408. ggml_vec_scale_f32(nx, m, beta1);
  9409. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9410. // g2 = g1^2
  9411. ggml_vec_sqr_f32 (nx, g2, g1);
  9412. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9413. ggml_vec_scale_f32(nx, v, beta2);
  9414. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9415. // m^hat = m_t / (1 - beta1^t)
  9416. // v^hat = v_t / (1 - beta2^t)
  9417. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9418. ggml_vec_cpy_f32 (nx, mh, m);
  9419. ggml_vec_cpy_f32 (nx, vh, v);
  9420. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9421. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9422. ggml_vec_sqrt_f32 (nx, vh, vh);
  9423. ggml_vec_acc1_f32 (nx, vh, eps);
  9424. ggml_vec_div_f32 (nx, mh, mh, vh);
  9425. ggml_vec_sub_f32 (nx, x, x, mh);
  9426. // update the parameters
  9427. ggml_opt_set_params(np, ps, x);
  9428. }
  9429. ggml_graph_reset (gf);
  9430. ggml_set_f32 (f->grad, 1.0f);
  9431. ggml_graph_compute(ctx, gb);
  9432. const float fx = ggml_get_f32_1d(f, 0);
  9433. // check convergence
  9434. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9435. GGML_PRINT_DEBUG("converged\n");
  9436. return GGML_OPT_OK;
  9437. }
  9438. // delta-based convergence test
  9439. if (pf != NULL) {
  9440. // need at least params.past iterations to start checking for convergence
  9441. if (params.past <= t) {
  9442. const float rate = (pf[t%params.past] - fx)/fx;
  9443. if (fabsf(rate) < params.delta) {
  9444. return GGML_OPT_OK;
  9445. }
  9446. }
  9447. pf[t%params.past] = fx;
  9448. }
  9449. // check for improvement
  9450. if (params.max_no_improvement > 0) {
  9451. if (fx_best > fx) {
  9452. fx_best = fx;
  9453. n_no_improvement = 0;
  9454. } else {
  9455. ++n_no_improvement;
  9456. if (n_no_improvement >= params.max_no_improvement) {
  9457. return GGML_OPT_OK;
  9458. }
  9459. }
  9460. }
  9461. fx_prev = fx;
  9462. {
  9463. const int64_t t_end_cpu = ggml_cycles();
  9464. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9465. UNUSED(t_end_cpu);
  9466. const int64_t t_end_wall = ggml_time_us();
  9467. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9468. UNUSED(t_end_wall);
  9469. }
  9470. }
  9471. return GGML_OPT_DID_NOT_CONVERGE;
  9472. }
  9473. //
  9474. // L-BFGS
  9475. //
  9476. // the L-BFGS implementation below is based on the following implementation:
  9477. //
  9478. // https://github.com/chokkan/liblbfgs
  9479. //
  9480. struct ggml_lbfgs_iteration_data {
  9481. float alpha;
  9482. float ys;
  9483. float * s;
  9484. float * y;
  9485. };
  9486. static enum ggml_opt_result linesearch_backtracking(
  9487. struct ggml_context * ctx,
  9488. const struct ggml_opt_params * params,
  9489. int nx,
  9490. float * x,
  9491. float * fx,
  9492. float * g,
  9493. float * d,
  9494. float * step,
  9495. const float * xp,
  9496. struct ggml_tensor * f,
  9497. struct ggml_cgraph * gf,
  9498. struct ggml_cgraph * gb,
  9499. const int np,
  9500. struct ggml_tensor * ps[]) {
  9501. int count = 0;
  9502. float width = 0.0f;
  9503. float dg = 0.0f;
  9504. float finit = 0.0f;
  9505. float dginit = 0.0f;
  9506. float dgtest = 0.0f;
  9507. const float dec = 0.5f;
  9508. const float inc = 2.1f;
  9509. if (*step <= 0.f) {
  9510. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9511. }
  9512. // compute the initial gradient in the search direction
  9513. ggml_vec_dot_f32(nx, &dginit, g, d);
  9514. // make sure that d points to a descent direction
  9515. if (0 < dginit) {
  9516. return GGML_LINESEARCH_FAIL;
  9517. }
  9518. // initialize local variables
  9519. finit = *fx;
  9520. dgtest = params->lbfgs.ftol*dginit;
  9521. while (true) {
  9522. ggml_vec_cpy_f32(nx, x, xp);
  9523. ggml_vec_mad_f32(nx, x, d, *step);
  9524. // evaluate the function and gradient values
  9525. {
  9526. ggml_opt_set_params(np, ps, x);
  9527. ggml_graph_reset (gf);
  9528. ggml_set_f32 (f->grad, 1.0f);
  9529. ggml_graph_compute(ctx, gb);
  9530. ggml_opt_get_grad(np, ps, g);
  9531. *fx = ggml_get_f32_1d(f, 0);
  9532. }
  9533. ++count;
  9534. if (*fx > finit + (*step)*dgtest) {
  9535. width = dec;
  9536. } else {
  9537. // Armijo condition is satisfied
  9538. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9539. return count;
  9540. }
  9541. ggml_vec_dot_f32(nx, &dg, g, d);
  9542. // check the Wolfe condition
  9543. if (dg < params->lbfgs.wolfe * dginit) {
  9544. width = inc;
  9545. } else {
  9546. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9547. // regular Wolfe conditions
  9548. return count;
  9549. }
  9550. if(dg > -params->lbfgs.wolfe*dginit) {
  9551. width = dec;
  9552. } else {
  9553. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9554. return count;
  9555. }
  9556. return count;
  9557. }
  9558. }
  9559. if (*step < params->lbfgs.min_step) {
  9560. return GGML_LINESEARCH_MINIMUM_STEP;
  9561. }
  9562. if (*step > params->lbfgs.max_step) {
  9563. return GGML_LINESEARCH_MAXIMUM_STEP;
  9564. }
  9565. if (params->lbfgs.max_linesearch <= count) {
  9566. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9567. }
  9568. (*step) *= width;
  9569. }
  9570. return GGML_LINESEARCH_FAIL;
  9571. }
  9572. static enum ggml_opt_result ggml_opt_lbfgs(
  9573. struct ggml_context * ctx,
  9574. struct ggml_opt_params params,
  9575. struct ggml_tensor * f,
  9576. struct ggml_cgraph * gf,
  9577. struct ggml_cgraph * gb) {
  9578. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9579. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9580. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9581. return GGML_OPT_INVALID_WOLFE;
  9582. }
  9583. }
  9584. gf->n_threads = params.n_threads;
  9585. gb->n_threads = params.n_threads;
  9586. const int m = params.lbfgs.m;
  9587. // these will store the parameters we want to optimize
  9588. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9589. int np = 0;
  9590. int nx = 0;
  9591. for (int i = 0; i < gf->n_nodes; ++i) {
  9592. if (gf->nodes[i]->is_param) {
  9593. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9594. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9595. ps[np++] = gf->nodes[i];
  9596. nx += ggml_nelements(gf->nodes[i]);
  9597. }
  9598. }
  9599. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9600. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9601. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9602. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9603. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9604. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9605. float fx = 0.0f; // cost function value
  9606. float xnorm = 0.0f; // ||x||
  9607. float gnorm = 0.0f; // ||g||
  9608. float step = 0.0f;
  9609. // initialize x from the graph nodes
  9610. ggml_opt_get_params(np, ps, x);
  9611. // the L-BFGS memory
  9612. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9613. for (int i = 0; i < m; ++i) {
  9614. lm[i].alpha = 0.0f;
  9615. lm[i].ys = 0.0f;
  9616. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9617. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9618. }
  9619. // evaluate the function value and its gradient
  9620. {
  9621. ggml_opt_set_params(np, ps, x);
  9622. ggml_graph_reset (gf);
  9623. ggml_set_f32 (f->grad, 1.0f);
  9624. ggml_graph_compute(ctx, gb);
  9625. ggml_opt_get_grad(np, ps, g);
  9626. fx = ggml_get_f32_1d(f, 0);
  9627. }
  9628. if (pf) {
  9629. pf[0] = fx;
  9630. }
  9631. float fx_best = fx;
  9632. // search direction = -gradient
  9633. ggml_vec_neg_f32(nx, d, g);
  9634. // ||x||, ||g||
  9635. ggml_vec_norm_f32(nx, &xnorm, x);
  9636. ggml_vec_norm_f32(nx, &gnorm, g);
  9637. if (xnorm < 1.0f) {
  9638. xnorm = 1.0f;
  9639. }
  9640. // already optimized
  9641. if (gnorm/xnorm <= params.lbfgs.eps) {
  9642. return GGML_OPT_OK;
  9643. }
  9644. // initial step
  9645. ggml_vec_norm_inv_f32(nx, &step, d);
  9646. int j = 0;
  9647. int k = 1;
  9648. int ls = 0;
  9649. int end = 0;
  9650. int bound = 0;
  9651. int n_no_improvement = 0;
  9652. float ys = 0.0f;
  9653. float yy = 0.0f;
  9654. float beta = 0.0f;
  9655. while (true) {
  9656. // store the current position and gradient vectors
  9657. ggml_vec_cpy_f32(nx, xp, x);
  9658. ggml_vec_cpy_f32(nx, gp, g);
  9659. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9660. if (ls < 0) {
  9661. // linesearch failed - go back to the previous point and return
  9662. ggml_vec_cpy_f32(nx, x, xp);
  9663. ggml_vec_cpy_f32(nx, g, gp);
  9664. return ls;
  9665. }
  9666. ggml_vec_norm_f32(nx, &xnorm, x);
  9667. ggml_vec_norm_f32(nx, &gnorm, g);
  9668. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9669. if (xnorm < 1.0f) {
  9670. xnorm = 1.0f;
  9671. }
  9672. if (gnorm/xnorm <= params.lbfgs.eps) {
  9673. // converged
  9674. return GGML_OPT_OK;
  9675. }
  9676. // delta-based convergence test
  9677. if (pf != NULL) {
  9678. // need at least params.past iterations to start checking for convergence
  9679. if (params.past <= k) {
  9680. const float rate = (pf[k%params.past] - fx)/fx;
  9681. if (fabsf(rate) < params.delta) {
  9682. return GGML_OPT_OK;
  9683. }
  9684. }
  9685. pf[k%params.past] = fx;
  9686. }
  9687. // check for improvement
  9688. if (params.max_no_improvement > 0) {
  9689. if (fx < fx_best) {
  9690. fx_best = fx;
  9691. n_no_improvement = 0;
  9692. } else {
  9693. n_no_improvement++;
  9694. if (n_no_improvement >= params.max_no_improvement) {
  9695. return GGML_OPT_OK;
  9696. }
  9697. }
  9698. }
  9699. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9700. // reached the maximum number of iterations
  9701. return GGML_OPT_DID_NOT_CONVERGE;
  9702. }
  9703. // update vectors s and y:
  9704. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9705. // y_{k+1} = g_{k+1} - g_{k}.
  9706. //
  9707. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9708. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9709. // compute scalars ys and yy:
  9710. // ys = y^t \cdot s -> 1 / \rho.
  9711. // yy = y^t \cdot y.
  9712. //
  9713. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9714. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9715. lm[end].ys = ys;
  9716. // find new search direction
  9717. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9718. bound = (m <= k) ? m : k;
  9719. k++;
  9720. end = (end + 1)%m;
  9721. // initialize search direction with -g
  9722. ggml_vec_neg_f32(nx, d, g);
  9723. j = end;
  9724. for (int i = 0; i < bound; ++i) {
  9725. j = (j + m - 1) % m;
  9726. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9727. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9728. lm[j].alpha /= lm[j].ys;
  9729. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9730. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9731. }
  9732. ggml_vec_scale_f32(nx, d, ys/yy);
  9733. for (int i = 0; i < bound; ++i) {
  9734. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9735. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9736. beta /= lm[j].ys;
  9737. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9738. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9739. j = (j + 1)%m;
  9740. }
  9741. step = 1.0;
  9742. }
  9743. return GGML_OPT_DID_NOT_CONVERGE;
  9744. }
  9745. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9746. struct ggml_opt_params result;
  9747. switch (type) {
  9748. case GGML_OPT_ADAM:
  9749. {
  9750. result = (struct ggml_opt_params) {
  9751. .type = GGML_OPT_ADAM,
  9752. .n_threads = 1,
  9753. .past = 0,
  9754. .delta = 1e-5f,
  9755. .max_no_improvement = 100,
  9756. .print_forward_graph = true,
  9757. .print_backward_graph = true,
  9758. .adam = {
  9759. .n_iter = 10000,
  9760. .alpha = 0.001f,
  9761. .beta1 = 0.9f,
  9762. .beta2 = 0.999f,
  9763. .eps = 1e-8f,
  9764. .eps_f = 1e-5f,
  9765. .eps_g = 1e-3f,
  9766. },
  9767. };
  9768. } break;
  9769. case GGML_OPT_LBFGS:
  9770. {
  9771. result = (struct ggml_opt_params) {
  9772. .type = GGML_OPT_LBFGS,
  9773. .n_threads = 1,
  9774. .past = 0,
  9775. .delta = 1e-5f,
  9776. .max_no_improvement = 0,
  9777. .print_forward_graph = true,
  9778. .print_backward_graph = true,
  9779. .lbfgs = {
  9780. .m = 6,
  9781. .n_iter = 100,
  9782. .max_linesearch = 20,
  9783. .eps = 1e-5f,
  9784. .ftol = 1e-4f,
  9785. .wolfe = 0.9f,
  9786. .min_step = 1e-20f,
  9787. .max_step = 1e+20f,
  9788. .linesearch = GGML_LINESEARCH_DEFAULT,
  9789. },
  9790. };
  9791. } break;
  9792. }
  9793. return result;
  9794. }
  9795. enum ggml_opt_result ggml_opt(
  9796. struct ggml_context * ctx,
  9797. struct ggml_opt_params params,
  9798. struct ggml_tensor * f) {
  9799. bool free_ctx = false;
  9800. if (ctx == NULL) {
  9801. struct ggml_init_params params_ctx = {
  9802. .mem_size = 16*1024*1024,
  9803. .mem_buffer = NULL,
  9804. .no_alloc = false,
  9805. };
  9806. ctx = ggml_init(params_ctx);
  9807. if (ctx == NULL) {
  9808. return GGML_OPT_NO_CONTEXT;
  9809. }
  9810. free_ctx = true;
  9811. }
  9812. enum ggml_opt_result result = GGML_OPT_OK;
  9813. // build forward + backward compute graphs
  9814. struct ggml_cgraph gf = ggml_build_forward (f);
  9815. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9816. switch (params.type) {
  9817. case GGML_OPT_ADAM:
  9818. {
  9819. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9820. } break;
  9821. case GGML_OPT_LBFGS:
  9822. {
  9823. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9824. } break;
  9825. }
  9826. if (params.print_forward_graph) {
  9827. ggml_graph_print (&gf);
  9828. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9829. }
  9830. if (params.print_backward_graph) {
  9831. ggml_graph_print (&gb);
  9832. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9833. }
  9834. if (free_ctx) {
  9835. ggml_free(ctx);
  9836. }
  9837. return result;
  9838. }
  9839. ////////////////////////////////////////////////////////////////////////////////
  9840. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9841. assert(k % QK4_0 == 0);
  9842. const int nb = k / QK4_0;
  9843. for (int j = 0; j < n; j += k) {
  9844. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9845. quantize_row_q4_0_reference(src + j, y, k);
  9846. for (int i = 0; i < nb; i++) {
  9847. for (int l = 0; l < QK4_0; l += 2) {
  9848. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9849. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9850. hist[vi0]++;
  9851. hist[vi1]++;
  9852. }
  9853. }
  9854. }
  9855. return (n/QK4_0*sizeof(block_q4_0));
  9856. }
  9857. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9858. assert(k % QK4_1 == 0);
  9859. const int nb = k / QK4_1;
  9860. for (int j = 0; j < n; j += k) {
  9861. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9862. quantize_row_q4_1_reference(src + j, y, k);
  9863. for (int i = 0; i < nb; i++) {
  9864. for (int l = 0; l < QK4_1; l += 2) {
  9865. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9866. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9867. hist[vi0]++;
  9868. hist[vi1]++;
  9869. }
  9870. }
  9871. }
  9872. return (n/QK4_1*sizeof(block_q4_1));
  9873. }
  9874. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9875. assert(k % QK4_2 == 0);
  9876. const int nb = k / QK4_2;
  9877. for (int j = 0; j < n; j += k) {
  9878. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9879. //quantize_row_q4_2_reference(src + j, y, k);
  9880. quantize_row_q4_2_rmse(src + j, y, k);
  9881. for (int i = 0; i < nb; i++) {
  9882. for (int l = 0; l < QK4_2; l += 2) {
  9883. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9884. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9885. hist[vi0]++;
  9886. hist[vi1]++;
  9887. }
  9888. }
  9889. }
  9890. return (n/QK4_2*sizeof(block_q4_2));
  9891. }
  9892. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9893. assert(k % QK4_3 == 0);
  9894. const int nb = k / QK4_3;
  9895. for (int j = 0; j < n; j += k) {
  9896. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9897. quantize_row_q4_3_reference(src + j, y, k);
  9898. for (int i = 0; i < nb; i++) {
  9899. for (int l = 0; l < QK4_3; l += 2) {
  9900. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9901. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9902. hist[vi0]++;
  9903. hist[vi1]++;
  9904. }
  9905. }
  9906. }
  9907. return (n/QK4_3*sizeof(block_q4_3));
  9908. }
  9909. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9910. size_t result = 0;
  9911. switch (type) {
  9912. case GGML_TYPE_Q4_0:
  9913. {
  9914. GGML_ASSERT(start % QK4_0 == 0);
  9915. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9916. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9917. } break;
  9918. case GGML_TYPE_Q4_1:
  9919. {
  9920. GGML_ASSERT(start % QK4_1 == 0);
  9921. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9922. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9923. } break;
  9924. case GGML_TYPE_Q4_2:
  9925. {
  9926. GGML_ASSERT(start % QK4_2 == 0);
  9927. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9928. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9929. } break;
  9930. case GGML_TYPE_Q4_3:
  9931. {
  9932. GGML_ASSERT(start % QK4_3 == 0);
  9933. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9934. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9935. } break;
  9936. default:
  9937. assert(false);
  9938. }
  9939. return result;
  9940. }
  9941. ////////////////////////////////////////////////////////////////////////////////
  9942. int ggml_cpu_has_avx(void) {
  9943. #if defined(__AVX__)
  9944. return 1;
  9945. #else
  9946. return 0;
  9947. #endif
  9948. }
  9949. int ggml_cpu_has_avx2(void) {
  9950. #if defined(__AVX2__)
  9951. return 1;
  9952. #else
  9953. return 0;
  9954. #endif
  9955. }
  9956. int ggml_cpu_has_avx512(void) {
  9957. #if defined(__AVX512F__)
  9958. return 1;
  9959. #else
  9960. return 0;
  9961. #endif
  9962. }
  9963. int ggml_cpu_has_avx512_vbmi(void) {
  9964. #if defined(__AVX512VBMI__)
  9965. return 1;
  9966. #else
  9967. return 0;
  9968. #endif
  9969. }
  9970. int ggml_cpu_has_avx512_vnni(void) {
  9971. #if defined(__AVX512VNNI__)
  9972. return 1;
  9973. #else
  9974. return 0;
  9975. #endif
  9976. }
  9977. int ggml_cpu_has_fma(void) {
  9978. #if defined(__FMA__)
  9979. return 1;
  9980. #else
  9981. return 0;
  9982. #endif
  9983. }
  9984. int ggml_cpu_has_neon(void) {
  9985. #if defined(__ARM_NEON)
  9986. return 1;
  9987. #else
  9988. return 0;
  9989. #endif
  9990. }
  9991. int ggml_cpu_has_arm_fma(void) {
  9992. #if defined(__ARM_FEATURE_FMA)
  9993. return 1;
  9994. #else
  9995. return 0;
  9996. #endif
  9997. }
  9998. int ggml_cpu_has_f16c(void) {
  9999. #if defined(__F16C__)
  10000. return 1;
  10001. #else
  10002. return 0;
  10003. #endif
  10004. }
  10005. int ggml_cpu_has_fp16_va(void) {
  10006. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10007. return 1;
  10008. #else
  10009. return 0;
  10010. #endif
  10011. }
  10012. int ggml_cpu_has_wasm_simd(void) {
  10013. #if defined(__wasm_simd128__)
  10014. return 1;
  10015. #else
  10016. return 0;
  10017. #endif
  10018. }
  10019. int ggml_cpu_has_blas(void) {
  10020. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10021. return 1;
  10022. #else
  10023. return 0;
  10024. #endif
  10025. }
  10026. int ggml_cpu_has_cublas(void) {
  10027. #if defined(GGML_USE_CUBLAS)
  10028. return 1;
  10029. #else
  10030. return 0;
  10031. #endif
  10032. }
  10033. int ggml_cpu_has_sse3(void) {
  10034. #if defined(__SSE3__)
  10035. return 1;
  10036. #else
  10037. return 0;
  10038. #endif
  10039. }
  10040. int ggml_cpu_has_vsx(void) {
  10041. #if defined(__POWER9_VECTOR__)
  10042. return 1;
  10043. #else
  10044. return 0;
  10045. #endif
  10046. }
  10047. ////////////////////////////////////////////////////////////////////////////////