convert_hf_to_gguf.py 195 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. def prepare_tensors(self):
  228. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  229. for name, data_torch in self.get_tensors():
  230. # we don't need these
  231. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  232. continue
  233. old_dtype = data_torch.dtype
  234. # convert any unsupported data types to float32
  235. if data_torch.dtype not in (torch.float16, torch.float32):
  236. data_torch = data_torch.to(torch.float32)
  237. # use the first number-like part of the tensor name as the block id
  238. bid = None
  239. for part in name.split("."):
  240. if part.isdecimal():
  241. bid = int(part)
  242. break
  243. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  244. data: np.ndarray # type hint
  245. n_dims = len(data.shape)
  246. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  247. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  248. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  249. data_qtype = gguf.GGMLQuantizationType.F32
  250. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  251. # Some tensor types are always in float32
  252. if data_qtype is False and (
  253. any(
  254. self.match_model_tensor_name(new_name, key, bid)
  255. for key in (
  256. gguf.MODEL_TENSOR.FFN_GATE_INP,
  257. gguf.MODEL_TENSOR.POS_EMBD,
  258. gguf.MODEL_TENSOR.TOKEN_TYPES,
  259. gguf.MODEL_TENSOR.SSM_CONV1D,
  260. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  261. gguf.MODEL_TENSOR.TIME_MIX_W1,
  262. gguf.MODEL_TENSOR.TIME_MIX_W2,
  263. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  264. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  265. )
  266. )
  267. or not new_name.endswith(".weight")
  268. ):
  269. data_qtype = gguf.GGMLQuantizationType.F32
  270. if data_qtype is False and any(
  271. self.match_model_tensor_name(new_name, key, bid)
  272. for key in (
  273. gguf.MODEL_TENSOR.TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. )
  276. ):
  277. if self.ftype in (
  278. gguf.LlamaFileType.MOSTLY_TQ1_0,
  279. gguf.LlamaFileType.MOSTLY_TQ2_0,
  280. ):
  281. # TODO: use Q4_K and Q6_K
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  284. if isinstance(data_qtype, bool):
  285. if self.ftype == gguf.LlamaFileType.ALL_F32:
  286. data_qtype = gguf.GGMLQuantizationType.F32
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  288. data_qtype = gguf.GGMLQuantizationType.F16
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  290. data_qtype = gguf.GGMLQuantizationType.BF16
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  292. data_qtype = gguf.GGMLQuantizationType.Q8_0
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  294. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  296. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  297. else:
  298. raise ValueError(f"Unknown file type: {self.ftype.name}")
  299. try:
  300. data = gguf.quants.quantize(data, data_qtype)
  301. except gguf.QuantError as e:
  302. logger.warning("%s, %s", e, "falling back to F16")
  303. data_qtype = gguf.GGMLQuantizationType.F16
  304. data = gguf.quants.quantize(data, data_qtype)
  305. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  306. # reverse shape to make it similar to the internal ggml dimension order
  307. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  308. # n_dims is implicit in the shape
  309. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  310. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  311. def set_type(self):
  312. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  313. def prepare_metadata(self, vocab_only: bool):
  314. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  315. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  316. # Fallback to model directory name if metadata name is still missing
  317. if self.metadata.name is None:
  318. self.metadata.name = self.dir_model.name
  319. # Generate parameter weight class (useful for leader boards) if not yet determined
  320. if self.metadata.size_label is None and total_params > 0:
  321. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  322. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  323. output_type: str = self.ftype.name.partition("_")[2]
  324. # Filename Output
  325. if self.fname_out.is_dir():
  326. # Generate default filename based on model specification and available metadata
  327. if not vocab_only:
  328. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  329. else:
  330. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  331. # Use the default filename
  332. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  333. else:
  334. # Output path is a custom defined templated filename
  335. # Note: `not is_dir()` is used because `.is_file()` will not detect
  336. # file template strings as it doesn't actually exist as a file
  337. # Process templated file name with the output ftype, useful with the "auto" ftype
  338. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  339. self.set_type()
  340. logger.info("Set meta model")
  341. self.metadata.set_gguf_meta_model(self.gguf_writer)
  342. logger.info("Set model parameters")
  343. self.set_gguf_parameters()
  344. logger.info("Set model tokenizer")
  345. self.set_vocab()
  346. logger.info("Set model quantization version")
  347. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  348. def write(self):
  349. self.prepare_tensors()
  350. self.prepare_metadata(vocab_only=False)
  351. self.gguf_writer.write_header_to_file(path=self.fname_out)
  352. self.gguf_writer.write_kv_data_to_file()
  353. self.gguf_writer.write_tensors_to_file(progress=True)
  354. self.gguf_writer.close()
  355. def write_vocab(self):
  356. if len(self.gguf_writer.tensors) != 1:
  357. raise ValueError('Splitting the vocabulary is not supported')
  358. self.prepare_metadata(vocab_only=True)
  359. self.gguf_writer.write_header_to_file(path=self.fname_out)
  360. self.gguf_writer.write_kv_data_to_file()
  361. self.gguf_writer.close()
  362. @staticmethod
  363. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  364. part_names: list[str] = []
  365. for filename in os.listdir(dir_model):
  366. if filename.startswith(prefix) and filename.endswith(suffix):
  367. part_names.append(filename)
  368. part_names.sort()
  369. return part_names
  370. @staticmethod
  371. def load_hparams(dir_model: Path):
  372. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  373. return json.load(f)
  374. @classmethod
  375. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  376. assert names
  377. def func(modelcls: AnyModel) -> AnyModel:
  378. for name in names:
  379. cls._model_classes[name] = modelcls
  380. return modelcls
  381. return func
  382. @classmethod
  383. def from_model_architecture(cls, arch: str) -> type[Model]:
  384. try:
  385. return cls._model_classes[arch]
  386. except KeyError:
  387. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  388. def does_token_look_special(self, token: str | bytes) -> bool:
  389. if isinstance(token, (bytes, bytearray)):
  390. token_text = token.decode(encoding="utf-8")
  391. elif isinstance(token, memoryview):
  392. token_text = token.tobytes().decode(encoding="utf-8")
  393. else:
  394. token_text = token
  395. # Some models mark some added tokens which ought to be control tokens as not special.
  396. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  397. seems_special = token_text in (
  398. "<pad>", # deepseek-coder
  399. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  400. )
  401. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  402. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  403. # TODO: should these be marked as UNUSED instead? (maybe not)
  404. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  405. return seems_special
  406. # used for GPT-2 BPE and WordPiece vocabs
  407. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  408. tokens: list[str] = []
  409. toktypes: list[int] = []
  410. from transformers import AutoTokenizer
  411. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  412. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  413. assert max(tokenizer.vocab.values()) < vocab_size
  414. tokpre = self.get_vocab_base_pre(tokenizer)
  415. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  416. added_vocab = tokenizer.get_added_vocab()
  417. for i in range(vocab_size):
  418. if i not in reverse_vocab:
  419. tokens.append(f"[PAD{i}]")
  420. toktypes.append(gguf.TokenType.UNUSED)
  421. else:
  422. token: str = reverse_vocab[i]
  423. if token in added_vocab:
  424. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  425. toktypes.append(gguf.TokenType.CONTROL)
  426. else:
  427. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  428. toktypes.append(gguf.TokenType.USER_DEFINED)
  429. else:
  430. toktypes.append(gguf.TokenType.NORMAL)
  431. tokens.append(token)
  432. return tokens, toktypes, tokpre
  433. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  434. # do not modify it manually!
  435. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  436. # Marker: Start get_vocab_base_pre
  437. def get_vocab_base_pre(self, tokenizer) -> str:
  438. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  439. # is specific for the BPE pre-tokenizer used by the model
  440. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  441. # use in llama.cpp to implement the same pre-tokenizer
  442. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  443. chktok = tokenizer.encode(chktxt)
  444. chkhsh = sha256(str(chktok).encode()).hexdigest()
  445. logger.debug(f"chktok: {chktok}")
  446. logger.debug(f"chkhsh: {chkhsh}")
  447. res = None
  448. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  449. # or pull the latest version of the model from Huggingface
  450. # don't edit the hashes manually!
  451. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  452. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  453. res = "llama-bpe"
  454. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  455. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  456. res = "deepseek-llm"
  457. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  458. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  459. res = "deepseek-coder"
  460. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  461. # ref: https://huggingface.co/tiiuae/falcon-7b
  462. res = "falcon"
  463. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  464. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  465. res = "bert-bge"
  466. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  467. # ref: https://huggingface.co/mosaicml/mpt-7b
  468. res = "mpt"
  469. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  470. # ref: https://huggingface.co/bigcode/starcoder2-3b
  471. res = "starcoder"
  472. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  473. # ref: https://huggingface.co/openai-community/gpt2
  474. res = "gpt-2"
  475. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  476. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  477. res = "stablelm2"
  478. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  479. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  480. res = "refact"
  481. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  482. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  483. res = "command-r"
  484. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  485. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  486. res = "qwen2"
  487. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  488. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  489. res = "olmo"
  490. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  491. # ref: https://huggingface.co/databricks/dbrx-base
  492. res = "dbrx"
  493. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  494. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  495. res = "jina-v2-en"
  496. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  497. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  498. res = "jina-v2-es"
  499. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  500. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  501. res = "jina-v2-de"
  502. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  503. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  504. res = "smaug-bpe"
  505. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  506. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  507. res = "poro-chat"
  508. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  509. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  510. res = "jina-v2-code"
  511. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  512. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  513. res = "chatglm-bpe"
  514. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  515. # ref: https://huggingface.co/LumiOpen/Viking-7B
  516. res = "viking"
  517. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  518. # ref: https://huggingface.co/core42/jais-13b
  519. res = "jais"
  520. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  521. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  522. res = "codeshell"
  523. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  524. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  525. res = "tekken"
  526. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  527. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  528. res = "smollm"
  529. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  530. # ref: https://huggingface.co/bigscience/bloom
  531. res = "bloom"
  532. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  533. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  534. res = "gpt3-finnish"
  535. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  536. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  537. res = "exaone"
  538. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  539. # ref: https://huggingface.co/microsoft/phi-2
  540. res = "phi-2"
  541. if res is None:
  542. logger.warning("\n")
  543. logger.warning("**************************************************************************************")
  544. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  545. logger.warning("** There are 2 possible reasons for this:")
  546. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  547. logger.warning("** - the pre-tokenization config has changed upstream")
  548. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  549. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  550. logger.warning("**")
  551. logger.warning(f"** chkhsh: {chkhsh}")
  552. logger.warning("**************************************************************************************")
  553. logger.warning("\n")
  554. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  555. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  556. logger.debug(f"chkhsh: {chkhsh}")
  557. return res
  558. # Marker: End get_vocab_base_pre
  559. def _set_vocab_gpt2(self) -> None:
  560. tokens, toktypes, tokpre = self.get_vocab_base()
  561. self.gguf_writer.add_tokenizer_model("gpt2")
  562. self.gguf_writer.add_tokenizer_pre(tokpre)
  563. self.gguf_writer.add_token_list(tokens)
  564. self.gguf_writer.add_token_types(toktypes)
  565. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  566. special_vocab.add_to_gguf(self.gguf_writer)
  567. def _set_vocab_qwen(self):
  568. dir_model = self.dir_model
  569. hparams = self.hparams
  570. tokens: list[str] = []
  571. toktypes: list[int] = []
  572. from transformers import AutoTokenizer
  573. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  574. vocab_size = hparams["vocab_size"]
  575. assert max(tokenizer.get_vocab().values()) < vocab_size
  576. tokpre = self.get_vocab_base_pre(tokenizer)
  577. merges = []
  578. vocab = {}
  579. mergeable_ranks = tokenizer.mergeable_ranks
  580. for token, rank in mergeable_ranks.items():
  581. vocab[QwenModel.token_bytes_to_string(token)] = rank
  582. if len(token) == 1:
  583. continue
  584. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  585. assert len(merged) == 2
  586. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  587. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  588. added_vocab = tokenizer.special_tokens
  589. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  590. for i in range(vocab_size):
  591. if i not in reverse_vocab:
  592. tokens.append(f"[PAD{i}]")
  593. toktypes.append(gguf.TokenType.UNUSED)
  594. elif reverse_vocab[i] in added_vocab:
  595. tokens.append(reverse_vocab[i])
  596. toktypes.append(gguf.TokenType.CONTROL)
  597. else:
  598. tokens.append(reverse_vocab[i])
  599. toktypes.append(gguf.TokenType.NORMAL)
  600. self.gguf_writer.add_tokenizer_model("gpt2")
  601. self.gguf_writer.add_tokenizer_pre(tokpre)
  602. self.gguf_writer.add_token_list(tokens)
  603. self.gguf_writer.add_token_types(toktypes)
  604. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  605. special_vocab.merges = merges
  606. # only add special tokens when they were not already loaded from config.json
  607. if len(special_vocab.special_token_ids) == 0:
  608. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  609. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  610. # this one is usually not in config.json anyway
  611. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  612. special_vocab.add_to_gguf(self.gguf_writer)
  613. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  614. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  615. self.gguf_writer.add_tokenizer_model("llama")
  616. self.gguf_writer.add_tokenizer_pre("default")
  617. self.gguf_writer.add_token_list(tokens)
  618. self.gguf_writer.add_token_scores(scores)
  619. self.gguf_writer.add_token_types(toktypes)
  620. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  621. special_vocab.add_to_gguf(self.gguf_writer)
  622. def _create_vocab_sentencepiece(self):
  623. from sentencepiece import SentencePieceProcessor
  624. tokenizer_path = self.dir_model / 'tokenizer.model'
  625. if not tokenizer_path.is_file():
  626. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  627. tokenizer = SentencePieceProcessor()
  628. tokenizer.LoadFromFile(str(tokenizer_path))
  629. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  630. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  631. scores: list[float] = [-10000.0] * vocab_size
  632. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  633. for token_id in range(tokenizer.vocab_size()):
  634. piece = tokenizer.IdToPiece(token_id)
  635. text = piece.encode("utf-8")
  636. score = tokenizer.GetScore(token_id)
  637. toktype = SentencePieceTokenTypes.NORMAL
  638. if tokenizer.IsUnknown(token_id):
  639. toktype = SentencePieceTokenTypes.UNKNOWN
  640. elif tokenizer.IsControl(token_id):
  641. toktype = SentencePieceTokenTypes.CONTROL
  642. elif tokenizer.IsUnused(token_id):
  643. toktype = SentencePieceTokenTypes.UNUSED
  644. elif tokenizer.IsByte(token_id):
  645. toktype = SentencePieceTokenTypes.BYTE
  646. tokens[token_id] = text
  647. scores[token_id] = score
  648. toktypes[token_id] = toktype
  649. added_tokens_file = self.dir_model / 'added_tokens.json'
  650. if added_tokens_file.is_file():
  651. with open(added_tokens_file, "r", encoding="utf-8") as f:
  652. added_tokens_json = json.load(f)
  653. for key in added_tokens_json:
  654. token_id = added_tokens_json[key]
  655. if token_id >= vocab_size:
  656. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  657. continue
  658. tokens[token_id] = key.encode("utf-8")
  659. scores[token_id] = -1000.0
  660. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  661. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  662. if tokenizer_config_file.is_file():
  663. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  664. tokenizer_config_json = json.load(f)
  665. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  666. for token_id, token_data in added_tokens_decoder.items():
  667. token_id = int(token_id)
  668. token: str = token_data["content"]
  669. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  670. if tokens[token_id] != token.encode("utf-8"):
  671. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  672. if token_data.get("special") or self.does_token_look_special(token):
  673. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  674. else:
  675. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  676. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  677. scores[token_id] = -1000.0
  678. tokens[token_id] = token.encode("utf-8")
  679. if vocab_size > len(tokens):
  680. pad_count = vocab_size - len(tokens)
  681. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  682. for i in range(1, pad_count + 1):
  683. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  684. scores.append(-1000.0)
  685. toktypes.append(SentencePieceTokenTypes.UNUSED)
  686. return tokens, scores, toktypes
  687. def _set_vocab_llama_hf(self):
  688. vocab = gguf.LlamaHfVocab(self.dir_model)
  689. tokens = []
  690. scores = []
  691. toktypes = []
  692. for text, score, toktype in vocab.all_tokens():
  693. tokens.append(text)
  694. scores.append(score)
  695. toktypes.append(toktype)
  696. assert len(tokens) == vocab.vocab_size
  697. self.gguf_writer.add_tokenizer_model("llama")
  698. self.gguf_writer.add_tokenizer_pre("default")
  699. self.gguf_writer.add_token_list(tokens)
  700. self.gguf_writer.add_token_scores(scores)
  701. self.gguf_writer.add_token_types(toktypes)
  702. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  703. special_vocab.add_to_gguf(self.gguf_writer)
  704. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  705. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  706. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  707. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  708. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  709. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  710. assert field # tokenizer model
  711. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  712. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  713. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  714. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  715. assert field # token list
  716. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  717. if model_name == "llama-spm":
  718. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  719. assert field # token scores
  720. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  721. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  722. assert field # token types
  723. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  724. if model_name != "llama-spm":
  725. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  726. assert field # token merges
  727. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  728. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  729. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  730. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  731. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  732. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  733. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  734. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  735. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  736. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  737. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  738. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  739. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  740. @Model.register("GPTNeoXForCausalLM")
  741. class GPTNeoXModel(Model):
  742. model_arch = gguf.MODEL_ARCH.GPTNEOX
  743. def set_gguf_parameters(self):
  744. block_count = self.hparams["num_hidden_layers"]
  745. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  746. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  747. self.gguf_writer.add_block_count(block_count)
  748. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  749. self.gguf_writer.add_rope_dimension_count(
  750. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  751. )
  752. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  753. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  754. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  756. del bid # unused
  757. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  758. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  759. tensors: list[tuple[str, Tensor]] = []
  760. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  761. # Map bloom-style qkv_linear to gpt-style qkv_linear
  762. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  763. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  764. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  765. data_torch = torch.cat(
  766. (
  767. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  768. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  769. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  770. ),
  771. dim=0,
  772. )
  773. logger.info("re-format attention.linear_qkv.weight")
  774. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  775. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  776. data_torch = torch.cat(
  777. (
  778. qkv_bias[:, 0, :].reshape((n_embed,)),
  779. qkv_bias[:, 1, :].reshape((n_embed,)),
  780. qkv_bias[:, 2, :].reshape((n_embed,)),
  781. ),
  782. dim=0,
  783. )
  784. logger.info("re-format attention.linear_qkv.bias")
  785. tensors.append((self.map_tensor_name(name), data_torch))
  786. return tensors
  787. @Model.register("BloomForCausalLM", "BloomModel")
  788. class BloomModel(Model):
  789. model_arch = gguf.MODEL_ARCH.BLOOM
  790. def set_gguf_parameters(self):
  791. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  792. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  793. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  794. self.gguf_writer.add_embedding_length(n_embed)
  795. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  796. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  797. self.gguf_writer.add_head_count(n_head)
  798. self.gguf_writer.add_head_count_kv(n_head)
  799. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  800. self.gguf_writer.add_file_type(self.ftype)
  801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  802. del bid # unused
  803. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  804. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  805. name = re.sub(r'transformer\.', '', name)
  806. tensors: list[tuple[str, Tensor]] = []
  807. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  808. # Map bloom-style qkv_linear to gpt-style qkv_linear
  809. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  810. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  811. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  812. data_torch = torch.cat(
  813. (
  814. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  815. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  816. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  817. ),
  818. dim=0,
  819. )
  820. logger.info("re-format attention.linear_qkv.weight")
  821. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  822. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  823. data_torch = torch.cat(
  824. (
  825. qkv_bias[:, 0, :].reshape((n_embed,)),
  826. qkv_bias[:, 1, :].reshape((n_embed,)),
  827. qkv_bias[:, 2, :].reshape((n_embed,)),
  828. ),
  829. dim=0,
  830. )
  831. logger.info("re-format attention.linear_qkv.bias")
  832. tensors.append((self.map_tensor_name(name), data_torch))
  833. if name == "word_embeddings.weight":
  834. assert self.tensor_names is not None
  835. # TODO: tie them at runtime, don't duplicate in the model file
  836. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  837. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  838. return tensors
  839. @Model.register("MPTForCausalLM")
  840. class MPTModel(Model):
  841. model_arch = gguf.MODEL_ARCH.MPT
  842. def set_vocab(self):
  843. try:
  844. self._set_vocab_gpt2()
  845. except Exception:
  846. # Fallback for SEA-LION model
  847. self._set_vocab_sentencepiece()
  848. self.gguf_writer.add_add_bos_token(False)
  849. self.gguf_writer.add_pad_token_id(3)
  850. self.gguf_writer.add_eos_token_id(1)
  851. self.gguf_writer.add_unk_token_id(0)
  852. def set_gguf_parameters(self):
  853. block_count = self.hparams["n_layers"]
  854. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  855. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  856. self.gguf_writer.add_block_count(block_count)
  857. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  858. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  859. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  860. self.gguf_writer.add_head_count_kv(kv_n_heads)
  861. self.gguf_writer.add_layer_norm_eps(1e-5)
  862. if self.hparams["attn_config"]["clip_qkv"] is not None:
  863. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  864. if self.hparams["attn_config"]["alibi"]:
  865. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  866. else:
  867. self.gguf_writer.add_max_alibi_bias(0.0)
  868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  869. del bid # unused
  870. if "scales" in name:
  871. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  872. new_name = new_name.replace("scales", "act.scales")
  873. else:
  874. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  875. return [(new_name, data_torch)]
  876. @Model.register("OrionForCausalLM")
  877. class OrionModel(Model):
  878. model_arch = gguf.MODEL_ARCH.ORION
  879. def set_vocab(self):
  880. self._set_vocab_sentencepiece()
  881. def set_gguf_parameters(self):
  882. block_count = self.hparams["num_hidden_layers"]
  883. head_count = self.hparams["num_attention_heads"]
  884. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  885. ctx_length = 0
  886. if "max_sequence_length" in self.hparams:
  887. ctx_length = self.hparams["max_sequence_length"]
  888. elif "max_position_embeddings" in self.hparams:
  889. ctx_length = self.hparams["max_position_embeddings"]
  890. elif "model_max_length" in self.hparams:
  891. ctx_length = self.hparams["model_max_length"]
  892. else:
  893. raise ValueError("gguf: can not find ctx length parameter.")
  894. self.gguf_writer.add_file_type(self.ftype)
  895. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  896. self.gguf_writer.add_context_length(ctx_length)
  897. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  898. self.gguf_writer.add_block_count(block_count)
  899. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  900. self.gguf_writer.add_head_count(head_count)
  901. self.gguf_writer.add_head_count_kv(head_count_kv)
  902. # note: config provides rms norm but it is actually layer norm
  903. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  904. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  905. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  906. class BaichuanModel(Model):
  907. model_arch = gguf.MODEL_ARCH.BAICHUAN
  908. def set_vocab(self):
  909. self._set_vocab_sentencepiece()
  910. def set_gguf_parameters(self):
  911. block_count = self.hparams["num_hidden_layers"]
  912. head_count = self.hparams["num_attention_heads"]
  913. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  914. ctx_length = 0
  915. if "max_sequence_length" in self.hparams:
  916. ctx_length = self.hparams["max_sequence_length"]
  917. elif "max_position_embeddings" in self.hparams:
  918. ctx_length = self.hparams["max_position_embeddings"]
  919. elif "model_max_length" in self.hparams:
  920. ctx_length = self.hparams["model_max_length"]
  921. else:
  922. raise ValueError("gguf: can not find ctx length parameter.")
  923. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  924. self.gguf_writer.add_context_length(ctx_length)
  925. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  926. self.gguf_writer.add_block_count(block_count)
  927. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  928. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  929. self.gguf_writer.add_head_count(head_count)
  930. self.gguf_writer.add_head_count_kv(head_count_kv)
  931. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  932. self.gguf_writer.add_file_type(self.ftype)
  933. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  934. if self.hparams["rope_scaling"].get("type") == "linear":
  935. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  936. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  938. head_count = self.hparams["num_attention_heads"]
  939. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  940. tensors: list[tuple[str, Tensor]] = []
  941. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  942. logger.info(f"Unpacking and permuting layer {bid}")
  943. tensors = [
  944. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  945. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  946. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  947. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  948. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  949. self._reverse_hf_part(data_torch, 2)),
  950. ]
  951. else:
  952. tensors = [(self.map_tensor_name(name), data_torch)]
  953. return tensors
  954. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  955. if n_kv_head is not None and n_head != n_kv_head:
  956. n_head //= n_kv_head
  957. return (
  958. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  959. .swapaxes(1, 2)
  960. .reshape(weights.shape)
  961. )
  962. def _reverse_hf_permute_part(
  963. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  964. ) -> Tensor:
  965. r = weights.shape[0] // 3
  966. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  967. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  968. r = weights.shape[0] // 3
  969. return weights[r * n_part:r * n_part + r, ...]
  970. @Model.register("XverseForCausalLM")
  971. class XverseModel(Model):
  972. model_arch = gguf.MODEL_ARCH.XVERSE
  973. def set_vocab(self):
  974. assert (self.dir_model / "tokenizer.json").is_file()
  975. dir_model = self.dir_model
  976. hparams = self.hparams
  977. tokens: list[bytes] = []
  978. toktypes: list[int] = []
  979. from transformers import AutoTokenizer
  980. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  981. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  982. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  983. # because vocab_size is the count of items, and indexes start at 0.
  984. max_vocab_index = max(tokenizer.get_vocab().values())
  985. if max_vocab_index >= vocab_size:
  986. raise ValueError("Vocabulary size exceeds expected maximum size.")
  987. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  988. added_vocab = tokenizer.get_added_vocab()
  989. for token_id in range(vocab_size):
  990. token_text = reverse_vocab[token_id].encode('utf-8')
  991. # replace "\x00" to string with length > 0
  992. if token_text == b"\x00":
  993. toktype = gguf.TokenType.BYTE # special
  994. token_text = f"<{token_text}>".encode('utf-8')
  995. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  996. toktype = gguf.TokenType.BYTE # special
  997. elif reverse_vocab[token_id] in added_vocab:
  998. if tokenizer.added_tokens_decoder[token_id].special:
  999. toktype = gguf.TokenType.CONTROL
  1000. else:
  1001. toktype = gguf.TokenType.USER_DEFINED
  1002. else:
  1003. toktype = gguf.TokenType.NORMAL
  1004. tokens.append(token_text)
  1005. toktypes.append(toktype)
  1006. self.gguf_writer.add_tokenizer_model("llama")
  1007. self.gguf_writer.add_tokenizer_pre("default")
  1008. self.gguf_writer.add_token_list(tokens)
  1009. self.gguf_writer.add_token_types(toktypes)
  1010. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1011. special_vocab.add_to_gguf(self.gguf_writer)
  1012. def set_gguf_parameters(self):
  1013. block_count = self.hparams["num_hidden_layers"]
  1014. head_count = self.hparams["num_attention_heads"]
  1015. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1016. ctx_length = 0
  1017. if "max_sequence_length" in self.hparams:
  1018. ctx_length = self.hparams["max_sequence_length"]
  1019. elif "max_position_embeddings" in self.hparams:
  1020. ctx_length = self.hparams["max_position_embeddings"]
  1021. elif "model_max_length" in self.hparams:
  1022. ctx_length = self.hparams["model_max_length"]
  1023. else:
  1024. raise ValueError("gguf: can not find ctx length parameter.")
  1025. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1026. self.gguf_writer.add_context_length(ctx_length)
  1027. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1028. self.gguf_writer.add_block_count(block_count)
  1029. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1030. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1031. self.gguf_writer.add_head_count(head_count)
  1032. self.gguf_writer.add_head_count_kv(head_count_kv)
  1033. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1034. self.gguf_writer.add_file_type(self.ftype)
  1035. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1036. if self.hparams["rope_scaling"].get("type") == "linear":
  1037. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1038. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1040. del bid # unused
  1041. head_count = self.hparams["num_attention_heads"]
  1042. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1043. # HF models permute some of the tensors, so we need to undo that
  1044. if name.endswith("q_proj.weight"):
  1045. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1046. if name.endswith("k_proj.weight"):
  1047. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1048. return [(self.map_tensor_name(name), data_torch)]
  1049. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1050. if n_kv_head is not None and n_head != n_kv_head:
  1051. n_head //= n_kv_head
  1052. return (
  1053. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1054. .swapaxes(1, 2)
  1055. .reshape(weights.shape)
  1056. )
  1057. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1058. class FalconModel(Model):
  1059. model_arch = gguf.MODEL_ARCH.FALCON
  1060. def set_gguf_parameters(self):
  1061. block_count = self.hparams.get("num_hidden_layers")
  1062. if block_count is None:
  1063. block_count = self.hparams["n_layer"] # old name
  1064. n_head = self.hparams.get("num_attention_heads")
  1065. if n_head is None:
  1066. n_head = self.hparams["n_head"] # old name
  1067. n_head_kv = self.hparams.get("num_kv_heads")
  1068. if n_head_kv is None:
  1069. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1070. self.gguf_writer.add_context_length(2048) # not in config.json
  1071. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1072. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1073. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1074. self.gguf_writer.add_block_count(block_count)
  1075. self.gguf_writer.add_head_count(n_head)
  1076. self.gguf_writer.add_head_count_kv(n_head_kv)
  1077. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1078. self.gguf_writer.add_file_type(self.ftype)
  1079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1080. del bid # unused
  1081. # QKV tensor transform
  1082. # The original query_key_value tensor contains n_head_kv "kv groups",
  1083. # each consisting of n_head/n_head_kv query weights followed by one key
  1084. # and one value weight (shared by all query heads in the kv group).
  1085. # This layout makes it a big pain to work with in GGML.
  1086. # So we rearrange them here,, so that we have n_head query weights
  1087. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1088. # in contiguous fashion.
  1089. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1090. if "query_key_value" in name:
  1091. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1092. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1093. head_dim = self.hparams["hidden_size"] // n_head
  1094. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1095. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1096. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1097. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1098. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1099. return [(self.map_tensor_name(name), data_torch)]
  1100. @Model.register("GPTBigCodeForCausalLM")
  1101. class StarCoderModel(Model):
  1102. model_arch = gguf.MODEL_ARCH.STARCODER
  1103. def set_gguf_parameters(self):
  1104. block_count = self.hparams["n_layer"]
  1105. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1106. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1107. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1108. self.gguf_writer.add_block_count(block_count)
  1109. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1110. self.gguf_writer.add_head_count_kv(1)
  1111. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1112. self.gguf_writer.add_file_type(self.ftype)
  1113. @Model.register("GPTRefactForCausalLM")
  1114. class RefactModel(Model):
  1115. model_arch = gguf.MODEL_ARCH.REFACT
  1116. def set_vocab(self):
  1117. super().set_vocab()
  1118. # TODO: how to determine special FIM tokens automatically?
  1119. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1120. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1121. special_vocab._set_special_token("prefix", 1)
  1122. special_vocab._set_special_token("suffix", 3)
  1123. special_vocab._set_special_token("middle", 2)
  1124. special_vocab.chat_template = None # do not add it twice
  1125. special_vocab.add_to_gguf(self.gguf_writer)
  1126. def set_gguf_parameters(self):
  1127. hidden_dim = self.hparams["n_embd"]
  1128. inner_dim = 4 * hidden_dim
  1129. hidden_dim = int(2 * inner_dim / 3)
  1130. multiple_of = 256
  1131. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1132. block_count = self.hparams["n_layer"]
  1133. # refact uses Alibi. So this is from config.json which might be used by training.
  1134. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1135. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1136. self.gguf_writer.add_feed_forward_length(ff_dim)
  1137. self.gguf_writer.add_block_count(block_count)
  1138. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1139. self.gguf_writer.add_head_count_kv(1)
  1140. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1141. self.gguf_writer.add_file_type(self.ftype)
  1142. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1143. hidden_dim = self.hparams["n_embd"]
  1144. inner_dim = 4 * hidden_dim
  1145. hidden_dim = int(2 * inner_dim / 3)
  1146. multiple_of = 256
  1147. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1148. n_head = self.hparams["n_head"]
  1149. n_head_kv = 1
  1150. head_dim = self.hparams["n_embd"] // n_head
  1151. tensors: list[tuple[str, Tensor]] = []
  1152. if bid is not None:
  1153. if name == f"transformer.h.{bid}.attn.kv.weight":
  1154. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1155. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1156. elif name == f"transformer.h.{bid}.attn.q.weight":
  1157. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1158. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1159. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1160. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1161. if len(tensors) == 0:
  1162. tensors.append((self.map_tensor_name(name), data_torch))
  1163. return tensors
  1164. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1165. class StableLMModel(Model):
  1166. model_arch = gguf.MODEL_ARCH.STABLELM
  1167. def set_vocab(self):
  1168. if (self.dir_model / "tokenizer.json").is_file():
  1169. self._set_vocab_gpt2()
  1170. else:
  1171. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1172. self._set_vocab_qwen()
  1173. def set_gguf_parameters(self):
  1174. hparams = self.hparams
  1175. block_count = hparams["num_hidden_layers"]
  1176. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1177. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1178. self.gguf_writer.add_block_count(block_count)
  1179. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1180. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1181. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1182. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1183. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1184. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1185. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1186. self.gguf_writer.add_file_type(self.ftype)
  1187. _q_norms: list[dict[str, Tensor]] | None = None
  1188. _k_norms: list[dict[str, Tensor]] | None = None
  1189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1190. n_head = self.hparams["num_attention_heads"]
  1191. n_kv_head = self.hparams["num_key_value_heads"]
  1192. if name.find("q_layernorm.norms") != -1:
  1193. assert bid is not None
  1194. if self._q_norms is None:
  1195. self._q_norms = [{} for _ in range(self.block_count)]
  1196. self._q_norms[bid][name] = data_torch
  1197. if len(self._q_norms[bid]) >= n_head:
  1198. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1199. else:
  1200. return []
  1201. if name.find("k_layernorm.norms") != -1:
  1202. assert bid is not None
  1203. if self._k_norms is None:
  1204. self._k_norms = [{} for _ in range(self.block_count)]
  1205. self._k_norms[bid][name] = data_torch
  1206. if len(self._k_norms[bid]) >= n_kv_head:
  1207. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1208. else:
  1209. return []
  1210. return [(self.map_tensor_name(name), data_torch)]
  1211. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1212. datas: list[Tensor] = []
  1213. # extract the norms in order
  1214. for xid in range(n_head):
  1215. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1216. datas.append(norms[ename])
  1217. del norms[ename]
  1218. data_torch = torch.stack(datas, dim=0)
  1219. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1220. new_name = self.map_tensor_name(merged_name)
  1221. return [(new_name, data_torch)]
  1222. def prepare_tensors(self):
  1223. super().prepare_tensors()
  1224. if self._q_norms is not None or self._k_norms is not None:
  1225. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1226. norms = (
  1227. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1228. ) + (
  1229. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1230. )
  1231. if len(norms) > 0:
  1232. raise ValueError(f"Unprocessed norms: {norms}")
  1233. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1234. class LlamaModel(Model):
  1235. model_arch = gguf.MODEL_ARCH.LLAMA
  1236. def set_vocab(self):
  1237. try:
  1238. self._set_vocab_sentencepiece()
  1239. except FileNotFoundError:
  1240. try:
  1241. self._set_vocab_llama_hf()
  1242. except (FileNotFoundError, TypeError):
  1243. # Llama 3
  1244. self._set_vocab_gpt2()
  1245. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1246. if self.hparams.get("vocab_size", 32000) == 32016:
  1247. special_vocab = gguf.SpecialVocab(
  1248. self.dir_model, load_merges=False,
  1249. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1250. )
  1251. special_vocab._set_special_token("prefix", 32007)
  1252. special_vocab._set_special_token("suffix", 32008)
  1253. special_vocab._set_special_token("middle", 32009)
  1254. special_vocab._set_special_token("eot", 32010)
  1255. special_vocab.add_to_gguf(self.gguf_writer)
  1256. def set_gguf_parameters(self):
  1257. super().set_gguf_parameters()
  1258. hparams = self.hparams
  1259. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1260. if "head_dim" in hparams:
  1261. rope_dim = hparams["head_dim"]
  1262. else:
  1263. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1264. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1265. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1266. if self.hparams["rope_scaling"].get("type") == "linear":
  1267. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1268. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1269. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1270. if tokenizer_config_file.is_file():
  1271. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1272. tokenizer_config_json = json.load(f)
  1273. if "add_prefix_space" in tokenizer_config_json:
  1274. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1275. # Apply to granite small models only
  1276. if self.hparams.get("vocab_size", 32000) == 49152:
  1277. self.gguf_writer.add_add_bos_token(False)
  1278. @staticmethod
  1279. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1280. if n_head_kv is not None and n_head != n_head_kv:
  1281. n_head = n_head_kv
  1282. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1283. .swapaxes(1, 2)
  1284. .reshape(weights.shape))
  1285. _experts: list[dict[str, Tensor]] | None = None
  1286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1287. n_head = self.hparams["num_attention_heads"]
  1288. n_kv_head = self.hparams.get("num_key_value_heads")
  1289. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1290. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1291. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1292. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1293. # process the experts separately
  1294. if name.find("block_sparse_moe.experts") != -1:
  1295. n_experts = self.hparams["num_local_experts"]
  1296. assert bid is not None
  1297. if self._experts is None:
  1298. self._experts = [{} for _ in range(self.block_count)]
  1299. self._experts[bid][name] = data_torch
  1300. if len(self._experts[bid]) >= n_experts * 3:
  1301. tensors: list[tuple[str, Tensor]] = []
  1302. # merge the experts into a single 3d tensor
  1303. for wid in ["w1", "w2", "w3"]:
  1304. datas: list[Tensor] = []
  1305. for xid in range(n_experts):
  1306. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1307. datas.append(self._experts[bid][ename])
  1308. del self._experts[bid][ename]
  1309. data_torch = torch.stack(datas, dim=0)
  1310. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1311. new_name = self.map_tensor_name(merged_name)
  1312. tensors.append((new_name, data_torch))
  1313. return tensors
  1314. else:
  1315. return []
  1316. return [(self.map_tensor_name(name), data_torch)]
  1317. def prepare_tensors(self):
  1318. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1319. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1320. base = self.hparams.get("rope_theta", 10000.0)
  1321. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1322. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1323. factor = rope_scaling.get("factor", 8.0)
  1324. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1325. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1326. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1327. low_freq_wavelen = old_context_len / low_freq_factor
  1328. high_freq_wavelen = old_context_len / high_freq_factor
  1329. assert low_freq_wavelen != high_freq_wavelen
  1330. rope_factors = []
  1331. for freq in freqs:
  1332. wavelen = 2 * math.pi / freq
  1333. if wavelen < high_freq_wavelen:
  1334. rope_factors.append(1)
  1335. elif wavelen > low_freq_wavelen:
  1336. rope_factors.append(factor)
  1337. else:
  1338. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1339. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1340. if not self.is_lora:
  1341. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1342. super().prepare_tensors()
  1343. if self._experts is not None:
  1344. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1345. experts = [k for d in self._experts for k in d.keys()]
  1346. if len(experts) > 0:
  1347. raise ValueError(f"Unprocessed experts: {experts}")
  1348. @Model.register("BitnetForCausalLM")
  1349. class BitnetModel(Model):
  1350. model_arch = gguf.MODEL_ARCH.BITNET
  1351. def set_vocab(self):
  1352. self._set_vocab_sentencepiece()
  1353. def set_gguf_parameters(self):
  1354. super().set_gguf_parameters()
  1355. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1356. self.gguf_writer.add_rope_scaling_factor(1.0)
  1357. def weight_quant(self, weight: Tensor) -> Tensor:
  1358. dtype = weight.dtype
  1359. weight = weight.float()
  1360. scale = weight.abs().mean().clamp(min=1e-5)
  1361. iscale = 1 / scale
  1362. # TODO: multiply by the scale directly instead of inverting it twice
  1363. # (this is also unnecessarily doubly inverted upstream)
  1364. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1365. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1366. return result.type(dtype)
  1367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1368. new_name = self.map_tensor_name(name)
  1369. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1370. gguf.MODEL_TENSOR.ATTN_Q,
  1371. gguf.MODEL_TENSOR.ATTN_K,
  1372. gguf.MODEL_TENSOR.ATTN_V,
  1373. gguf.MODEL_TENSOR.ATTN_OUT,
  1374. gguf.MODEL_TENSOR.FFN_UP,
  1375. gguf.MODEL_TENSOR.FFN_DOWN,
  1376. gguf.MODEL_TENSOR.FFN_GATE,
  1377. ]):
  1378. # transform weight into 1/0/-1 (in fp32)
  1379. data_torch = self.weight_quant(data_torch)
  1380. yield (new_name, data_torch)
  1381. @Model.register("GrokForCausalLM")
  1382. class GrokModel(Model):
  1383. model_arch = gguf.MODEL_ARCH.GROK
  1384. def set_vocab(self):
  1385. self._set_vocab_sentencepiece()
  1386. def __init__(self, *args, **kwargs):
  1387. super().__init__(*args, **kwargs)
  1388. def set_gguf_parameters(self):
  1389. super().set_gguf_parameters()
  1390. _experts: list[dict[str, Tensor]] | None = None
  1391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1392. # process the experts separately
  1393. if name.find(".moe.") != -1:
  1394. n_experts = self.hparams["num_local_experts"]
  1395. assert bid is not None
  1396. if self._experts is None:
  1397. self._experts = [{} for _ in range(self.block_count)]
  1398. self._experts[bid][name] = data_torch
  1399. if len(self._experts[bid]) >= n_experts * 3:
  1400. tensors: list[tuple[str, Tensor]] = []
  1401. # merge the experts into a single 3d tensor
  1402. for wid in ["linear", "linear_1", "linear_v"]:
  1403. datas: list[Tensor] = []
  1404. for xid in range(n_experts):
  1405. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1406. datas.append(self._experts[bid][ename])
  1407. del self._experts[bid][ename]
  1408. data_torch = torch.stack(datas, dim=0)
  1409. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1410. new_name = self.map_tensor_name(merged_name)
  1411. tensors.append((new_name, data_torch))
  1412. return tensors
  1413. else:
  1414. return []
  1415. return [(self.map_tensor_name(name), data_torch)]
  1416. @Model.register("DbrxForCausalLM")
  1417. class DbrxModel(Model):
  1418. model_arch = gguf.MODEL_ARCH.DBRX
  1419. def set_gguf_parameters(self):
  1420. ffn_config = self.hparams["ffn_config"]
  1421. attn_config = self.hparams["attn_config"]
  1422. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1423. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1424. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1425. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1426. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1427. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1428. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1429. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1430. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1431. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1432. self.gguf_writer.add_layer_norm_eps(1e-5)
  1433. self.gguf_writer.add_file_type(self.ftype)
  1434. logger.info(f"gguf: file type = {self.ftype}")
  1435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1436. del bid # unused
  1437. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1438. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1439. n_embd = self.hparams["d_model"]
  1440. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1441. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1442. # But llama.cpp moe graph works differently
  1443. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1444. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1445. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1446. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1447. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1448. experts = False
  1449. for exp_tensor_name in exp_tensor_names.keys():
  1450. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1451. experts = True
  1452. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1453. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1454. data_torch = data_torch.permute(*permute_tensor)
  1455. break
  1456. # map tensor names
  1457. # In MoE models the ffn tensors are typically most of the model weights,
  1458. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1459. # Every other model has the weight names ending in .weight,
  1460. # let's assume that is the convention which is not the case for dbrx:
  1461. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1462. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1463. return [(new_name, data_torch)]
  1464. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1465. del name, new_name, bid # unused
  1466. return n_dims > 1
  1467. @Model.register("MiniCPMForCausalLM")
  1468. class MiniCPMModel(Model):
  1469. model_arch = gguf.MODEL_ARCH.MINICPM
  1470. def set_gguf_parameters(self):
  1471. block_count = self.hparams["num_hidden_layers"]
  1472. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1473. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1474. self.gguf_writer.add_block_count(block_count)
  1475. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1476. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1477. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1478. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1479. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1480. self.gguf_writer.add_file_type(self.ftype)
  1481. def set_vocab(self):
  1482. self._set_vocab_llama_hf()
  1483. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1484. if n_kv_head is not None and n_head != n_kv_head:
  1485. n_head //= n_kv_head
  1486. return (
  1487. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1488. .swapaxes(1, 2)
  1489. .reshape(weights.shape)
  1490. )
  1491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1492. del bid # unused
  1493. n_head = self.hparams["num_attention_heads"]
  1494. n_kv_head = self.hparams.get("num_key_value_heads")
  1495. # HF models permute some of the tensors, so we need to undo that
  1496. if name.endswith(("q_proj.weight")):
  1497. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1498. if name.endswith(("k_proj.weight")):
  1499. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1500. return [(self.map_tensor_name(name), data_torch)]
  1501. @Model.register("MiniCPM3ForCausalLM")
  1502. class MiniCPM3Model(Model):
  1503. model_arch = gguf.MODEL_ARCH.MINICPM3
  1504. def set_gguf_parameters(self):
  1505. hparams = self.hparams
  1506. rope_dims = hparams["qk_rope_head_dim"]
  1507. self.gguf_writer.add_file_type(self.ftype)
  1508. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1509. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1510. self.gguf_writer.add_block_count(self.block_count)
  1511. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1512. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1513. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1514. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1515. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1516. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1517. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1518. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1519. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1520. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1521. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1522. if rope_scaling is None:
  1523. return
  1524. long_factors = rope_scaling.get('long_factor', None)
  1525. short_factors = rope_scaling.get('short_factor', None)
  1526. if long_factors is None or short_factors is None:
  1527. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1528. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1529. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1530. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1531. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1532. def set_vocab(self):
  1533. self._set_vocab_llama_hf()
  1534. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1535. if n_kv_head is not None and n_head != n_kv_head:
  1536. n_head //= n_kv_head
  1537. return (
  1538. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1539. .swapaxes(1, 2)
  1540. .reshape(weights.shape)
  1541. )
  1542. @Model.register("QWenLMHeadModel")
  1543. class QwenModel(Model):
  1544. model_arch = gguf.MODEL_ARCH.QWEN
  1545. @staticmethod
  1546. def token_bytes_to_string(b):
  1547. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1548. byte_encoder = bytes_to_unicode()
  1549. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1550. @staticmethod
  1551. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1552. parts = [bytes([b]) for b in token]
  1553. while True:
  1554. min_idx = None
  1555. min_rank = None
  1556. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1557. rank = mergeable_ranks.get(pair[0] + pair[1])
  1558. if rank is not None and (min_rank is None or rank < min_rank):
  1559. min_idx = i
  1560. min_rank = rank
  1561. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1562. break
  1563. assert min_idx is not None
  1564. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1565. return parts
  1566. def set_vocab(self):
  1567. self._set_vocab_qwen()
  1568. def set_gguf_parameters(self):
  1569. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1570. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1571. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1572. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1573. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1574. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1575. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1576. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1577. self.gguf_writer.add_file_type(self.ftype)
  1578. @Model.register("Qwen2ForCausalLM")
  1579. class Qwen2Model(Model):
  1580. model_arch = gguf.MODEL_ARCH.QWEN2
  1581. def set_vocab(self):
  1582. try:
  1583. self._set_vocab_sentencepiece()
  1584. except FileNotFoundError:
  1585. self._set_vocab_gpt2()
  1586. @Model.register("Qwen2MoeForCausalLM")
  1587. class Qwen2MoeModel(Model):
  1588. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1589. def set_gguf_parameters(self):
  1590. super().set_gguf_parameters()
  1591. if (n_experts := self.hparams.get("num_experts")) is not None:
  1592. self.gguf_writer.add_expert_count(n_experts)
  1593. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1594. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1595. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1596. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1597. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1598. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1599. _experts: list[dict[str, Tensor]] | None = None
  1600. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1601. # process the experts separately
  1602. if name.find("experts") != -1:
  1603. n_experts = self.hparams["num_experts"]
  1604. assert bid is not None
  1605. if self._experts is None:
  1606. self._experts = [{} for _ in range(self.block_count)]
  1607. self._experts[bid][name] = data_torch
  1608. if len(self._experts[bid]) >= n_experts * 3:
  1609. tensors: list[tuple[str, Tensor]] = []
  1610. # merge the experts into a single 3d tensor
  1611. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1612. datas: list[Tensor] = []
  1613. for xid in range(n_experts):
  1614. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1615. datas.append(self._experts[bid][ename])
  1616. del self._experts[bid][ename]
  1617. data_torch = torch.stack(datas, dim=0)
  1618. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1619. new_name = self.map_tensor_name(merged_name)
  1620. tensors.append((new_name, data_torch))
  1621. return tensors
  1622. else:
  1623. return []
  1624. return [(self.map_tensor_name(name), data_torch)]
  1625. def prepare_tensors(self):
  1626. super().prepare_tensors()
  1627. if self._experts is not None:
  1628. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1629. experts = [k for d in self._experts for k in d.keys()]
  1630. if len(experts) > 0:
  1631. raise ValueError(f"Unprocessed experts: {experts}")
  1632. @Model.register("GPT2LMHeadModel")
  1633. class GPT2Model(Model):
  1634. model_arch = gguf.MODEL_ARCH.GPT2
  1635. def set_gguf_parameters(self):
  1636. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1637. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1638. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1639. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1640. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1641. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1642. self.gguf_writer.add_file_type(self.ftype)
  1643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1644. del bid # unused
  1645. tensors: list[tuple[str, Tensor]] = []
  1646. # we don't need these
  1647. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1648. return tensors
  1649. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1650. data_torch = data_torch.transpose(1, 0)
  1651. new_name = self.map_tensor_name(name)
  1652. tensors.append((new_name, data_torch))
  1653. # note: GPT2 output is tied to (same as) wte in original model
  1654. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1655. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1656. return tensors
  1657. @Model.register("PhiForCausalLM")
  1658. class Phi2Model(Model):
  1659. model_arch = gguf.MODEL_ARCH.PHI2
  1660. def set_gguf_parameters(self):
  1661. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1662. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1663. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1664. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1665. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1666. self.gguf_writer.add_embedding_length(n_embd)
  1667. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1668. self.gguf_writer.add_block_count(block_count)
  1669. self.gguf_writer.add_head_count(n_head)
  1670. self.gguf_writer.add_head_count_kv(n_head)
  1671. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1672. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1673. self.gguf_writer.add_file_type(self.ftype)
  1674. self.gguf_writer.add_add_bos_token(False)
  1675. @Model.register("Phi3ForCausalLM")
  1676. class Phi3MiniModel(Model):
  1677. model_arch = gguf.MODEL_ARCH.PHI3
  1678. def set_vocab(self):
  1679. from sentencepiece import SentencePieceProcessor
  1680. tokenizer_path = self.dir_model / 'tokenizer.model'
  1681. if not tokenizer_path.is_file():
  1682. raise ValueError(f'Error: Missing {tokenizer_path}')
  1683. tokenizer = SentencePieceProcessor()
  1684. tokenizer.LoadFromFile(str(tokenizer_path))
  1685. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1686. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1687. scores: list[float] = [-10000.0] * vocab_size
  1688. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1689. for token_id in range(tokenizer.vocab_size()):
  1690. piece = tokenizer.IdToPiece(token_id)
  1691. text = piece.encode("utf-8")
  1692. score = tokenizer.GetScore(token_id)
  1693. toktype = SentencePieceTokenTypes.NORMAL
  1694. if tokenizer.IsUnknown(token_id):
  1695. toktype = SentencePieceTokenTypes.UNKNOWN
  1696. elif tokenizer.IsControl(token_id):
  1697. toktype = SentencePieceTokenTypes.CONTROL
  1698. elif tokenizer.IsUnused(token_id):
  1699. toktype = SentencePieceTokenTypes.UNUSED
  1700. elif tokenizer.IsByte(token_id):
  1701. toktype = SentencePieceTokenTypes.BYTE
  1702. tokens[token_id] = text
  1703. scores[token_id] = score
  1704. toktypes[token_id] = toktype
  1705. added_tokens_file = self.dir_model / 'added_tokens.json'
  1706. if added_tokens_file.is_file():
  1707. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1708. added_tokens_json = json.load(f)
  1709. for key in added_tokens_json:
  1710. token_id = added_tokens_json[key]
  1711. if token_id >= vocab_size:
  1712. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1713. continue
  1714. tokens[token_id] = key.encode("utf-8")
  1715. scores[token_id] = -1000.0
  1716. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1717. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1718. if tokenizer_config_file.is_file():
  1719. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1720. tokenizer_config_json = json.load(f)
  1721. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1722. for token_id, foken_data in added_tokens_decoder.items():
  1723. token_id = int(token_id)
  1724. token = foken_data["content"].encode("utf-8")
  1725. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1726. if tokens[token_id] != token:
  1727. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1728. tokens[token_id] = token
  1729. scores[token_id] = -1000.0
  1730. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1731. if foken_data.get("special"):
  1732. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1733. tokenizer_file = self.dir_model / 'tokenizer.json'
  1734. if tokenizer_file.is_file():
  1735. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1736. tokenizer_json = json.load(f)
  1737. added_tokens = tokenizer_json.get("added_tokens", [])
  1738. for foken_data in added_tokens:
  1739. token_id = int(foken_data["id"])
  1740. token = foken_data["content"].encode("utf-8")
  1741. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1742. if tokens[token_id] != token:
  1743. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1744. tokens[token_id] = token
  1745. scores[token_id] = -1000.0
  1746. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1747. if foken_data.get("special"):
  1748. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1749. self.gguf_writer.add_tokenizer_model("llama")
  1750. self.gguf_writer.add_tokenizer_pre("default")
  1751. self.gguf_writer.add_token_list(tokens)
  1752. self.gguf_writer.add_token_scores(scores)
  1753. self.gguf_writer.add_token_types(toktypes)
  1754. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1755. special_vocab.add_to_gguf(self.gguf_writer)
  1756. def set_gguf_parameters(self):
  1757. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1758. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1759. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1760. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1761. rms_eps = self.find_hparam(["rms_norm_eps"])
  1762. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1763. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1764. rope_dims = n_embd // n_head
  1765. self.gguf_writer.add_context_length(max_pos_embds)
  1766. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1767. self.gguf_writer.add_embedding_length(n_embd)
  1768. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1769. self.gguf_writer.add_block_count(block_count)
  1770. self.gguf_writer.add_head_count(n_head)
  1771. self.gguf_writer.add_head_count_kv(n_head_kv)
  1772. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1773. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1774. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1775. self.gguf_writer.add_file_type(self.ftype)
  1776. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1777. # write rope scaling for long context (128k) model
  1778. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1779. if rope_scaling is None:
  1780. return
  1781. scale = max_pos_embds / orig_max_pos_embds
  1782. rope_scaling_type = rope_scaling.get('type', '').lower()
  1783. if len(rope_scaling_type) == 0:
  1784. raise KeyError('Missing the required key rope_scaling.type')
  1785. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1786. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1787. elif rope_scaling_type == 'yarn':
  1788. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1789. else:
  1790. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1791. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1792. long_factors = rope_scaling.get('long_factor', None)
  1793. short_factors = rope_scaling.get('short_factor', None)
  1794. if long_factors is None or short_factors is None:
  1795. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1796. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1797. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1798. if not self.is_lora:
  1799. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1800. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1801. @Model.register("PlamoForCausalLM")
  1802. class PlamoModel(Model):
  1803. model_arch = gguf.MODEL_ARCH.PLAMO
  1804. def set_vocab(self):
  1805. self._set_vocab_sentencepiece()
  1806. def set_gguf_parameters(self):
  1807. hparams = self.hparams
  1808. block_count = hparams["num_hidden_layers"]
  1809. self.gguf_writer.add_context_length(4096) # not in config.json
  1810. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1811. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1812. self.gguf_writer.add_block_count(block_count)
  1813. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1814. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1815. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1816. self.gguf_writer.add_file_type(self.ftype)
  1817. def shuffle_attn_q_weight(self, data_torch):
  1818. assert data_torch.size() == (5120, 5120)
  1819. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1820. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1821. data_torch = torch.reshape(data_torch, (5120, 5120))
  1822. return data_torch
  1823. def shuffle_attn_output_weight(self, data_torch):
  1824. assert data_torch.size() == (5120, 5120)
  1825. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1826. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1827. data_torch = torch.reshape(data_torch, (5120, 5120))
  1828. return data_torch
  1829. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1830. del bid # unused
  1831. new_name = self.map_tensor_name(name)
  1832. # shuffle for broadcasting of gqa in ggml_mul_mat
  1833. if new_name.endswith("attn_q.weight"):
  1834. data_torch = self.shuffle_attn_q_weight(data_torch)
  1835. elif new_name.endswith("attn_output.weight"):
  1836. data_torch = self.shuffle_attn_output_weight(data_torch)
  1837. return [(new_name, data_torch)]
  1838. @Model.register("CodeShellForCausalLM")
  1839. class CodeShellModel(Model):
  1840. model_arch = gguf.MODEL_ARCH.CODESHELL
  1841. def set_gguf_parameters(self):
  1842. block_count = self.hparams["n_layer"]
  1843. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1844. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1845. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1846. self.gguf_writer.add_block_count(block_count)
  1847. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1848. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1849. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1850. self.gguf_writer.add_file_type(self.ftype)
  1851. self.gguf_writer.add_rope_freq_base(10000.0)
  1852. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1853. self.gguf_writer.add_rope_scaling_factor(1.0)
  1854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1855. del bid # unused
  1856. new_name = self.map_tensor_name(name)
  1857. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1858. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1859. assert self.tensor_names is not None
  1860. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1861. # copy tok_embd.weight to output.weight
  1862. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1863. return tensors
  1864. @Model.register("InternLM2ForCausalLM")
  1865. class InternLM2Model(Model):
  1866. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1867. def set_vocab(self):
  1868. # (TODO): Is there a better way?
  1869. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1870. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1871. # recognized as an empty string in C++.
  1872. from sentencepiece import SentencePieceProcessor
  1873. from sentencepiece import sentencepiece_model_pb2 as model
  1874. tokenizer_path = self.dir_model / 'tokenizer.model'
  1875. tokens: list[bytes] = []
  1876. scores: list[float] = []
  1877. toktypes: list[int] = []
  1878. if not tokenizer_path.is_file():
  1879. logger.error(f'Error: Missing {tokenizer_path}')
  1880. sys.exit(1)
  1881. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1882. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1883. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1884. tokenizer = SentencePieceProcessor()
  1885. tokenizer.LoadFromFile(str(tokenizer_path))
  1886. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1887. for token_id in range(vocab_size):
  1888. piece = tokenizer.IdToPiece(token_id)
  1889. text = piece.encode("utf-8")
  1890. score = tokenizer.GetScore(token_id)
  1891. if text == b"\x00":
  1892. # (TODO): fixme
  1893. # Hack here and replace the \x00 characters.
  1894. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1895. text = "🐉".encode("utf-8")
  1896. toktype = SentencePieceTokenTypes.NORMAL
  1897. if tokenizer.IsUnknown(token_id):
  1898. toktype = SentencePieceTokenTypes.UNKNOWN
  1899. elif tokenizer.IsControl(token_id):
  1900. toktype = SentencePieceTokenTypes.CONTROL
  1901. elif tokenizer.IsUnused(token_id):
  1902. toktype = SentencePieceTokenTypes.UNUSED
  1903. elif tokenizer.IsByte(token_id):
  1904. toktype = SentencePieceTokenTypes.BYTE
  1905. # take care of ununsed raw token
  1906. if piece.startswith('[UNUSED'):
  1907. toktype = SentencePieceTokenTypes.UNUSED
  1908. tokens.append(text)
  1909. scores.append(score)
  1910. toktypes.append(toktype)
  1911. added_tokens_file = self.dir_model / 'added_tokens.json'
  1912. if added_tokens_file.is_file():
  1913. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1914. added_tokens_json = json.load(f)
  1915. for key in added_tokens_json:
  1916. tokens.append(key.encode("utf-8"))
  1917. scores.append(-1000.0)
  1918. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1919. chat_eos_token = '<|im_end|>'
  1920. chat_eos_token_id = None
  1921. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1922. if tokenizer_config_file.is_file():
  1923. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1924. tokenizer_config_json = json.load(f)
  1925. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1926. for token_id, foken_data in added_tokens_decoder.items():
  1927. token_id = int(token_id)
  1928. token = foken_data["content"]
  1929. if token == chat_eos_token:
  1930. chat_eos_token_id = token_id
  1931. token = token.encode("utf-8")
  1932. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1933. if tokens[token_id] != token:
  1934. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1935. tokens[token_id] = token
  1936. scores[token_id] = -1000.0
  1937. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1938. if foken_data.get("special"):
  1939. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1940. tokenizer_file = self.dir_model / 'tokenizer.json'
  1941. if tokenizer_file.is_file():
  1942. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1943. tokenizer_json = json.load(f)
  1944. added_tokens = tokenizer_json.get("added_tokens", [])
  1945. for foken_data in added_tokens:
  1946. token_id = int(foken_data["id"])
  1947. token = foken_data["content"]
  1948. if token == chat_eos_token:
  1949. chat_eos_token_id = token_id
  1950. token = token.encode("utf-8")
  1951. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1952. if tokens[token_id] != token:
  1953. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1954. tokens[token_id] = token
  1955. scores[token_id] = -1000.0
  1956. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1957. if foken_data.get("special"):
  1958. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1959. self.gguf_writer.add_tokenizer_model("llama")
  1960. self.gguf_writer.add_tokenizer_pre("default")
  1961. self.gguf_writer.add_token_list(tokens)
  1962. self.gguf_writer.add_token_scores(scores)
  1963. self.gguf_writer.add_token_types(toktypes)
  1964. self.gguf_writer.add_add_space_prefix(add_prefix)
  1965. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1966. old_eos = special_vocab.special_token_ids["eos"]
  1967. if chat_eos_token_id is not None:
  1968. # For the chat model, we replace the eos with '<|im_end|>'.
  1969. # TODO: this is a hack, should be fixed
  1970. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1971. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1972. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1973. " in chat mode so that the conversation can end normally.")
  1974. special_vocab.add_to_gguf(self.gguf_writer)
  1975. def set_gguf_parameters(self):
  1976. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1977. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1978. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1979. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1980. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1981. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1982. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1983. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1984. self.gguf_writer.add_file_type(self.ftype)
  1985. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1986. if self.hparams["rope_scaling"].get("type") == "linear":
  1987. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1988. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1989. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1990. num_heads = self.hparams["num_attention_heads"]
  1991. num_kv_heads = self.hparams["num_key_value_heads"]
  1992. n_embd = self.hparams["hidden_size"]
  1993. q_per_kv = num_heads // num_kv_heads
  1994. head_dim = n_embd // num_heads
  1995. num_groups = num_heads // q_per_kv
  1996. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1997. qkv = data_torch
  1998. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1999. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2000. # The model weights of q and k equire additional reshape.
  2001. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2002. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2003. v = v.reshape((-1, v.shape[-1]))
  2004. return [
  2005. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2006. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2007. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2008. ]
  2009. else:
  2010. return [(self.map_tensor_name(name), data_torch)]
  2011. @Model.register("BertModel", "CamembertModel")
  2012. class BertModel(Model):
  2013. model_arch = gguf.MODEL_ARCH.BERT
  2014. def __init__(self, *args, **kwargs):
  2015. super().__init__(*args, **kwargs)
  2016. self.vocab_size = None
  2017. def set_gguf_parameters(self):
  2018. super().set_gguf_parameters()
  2019. self.gguf_writer.add_causal_attention(False)
  2020. # get pooling path
  2021. pooling_path = None
  2022. module_path = self.dir_model / "modules.json"
  2023. if module_path.is_file():
  2024. with open(module_path, encoding="utf-8") as f:
  2025. modules = json.load(f)
  2026. for mod in modules:
  2027. if mod["type"] == "sentence_transformers.models.Pooling":
  2028. pooling_path = mod["path"]
  2029. break
  2030. # get pooling type
  2031. if pooling_path is not None:
  2032. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2033. pooling = json.load(f)
  2034. if pooling["pooling_mode_mean_tokens"]:
  2035. pooling_type = gguf.PoolingType.MEAN
  2036. elif pooling["pooling_mode_cls_token"]:
  2037. pooling_type = gguf.PoolingType.CLS
  2038. else:
  2039. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2040. self.gguf_writer.add_pooling_type(pooling_type)
  2041. def set_vocab(self):
  2042. tokens, toktypes, tokpre = self.get_vocab_base()
  2043. self.vocab_size = len(tokens)
  2044. # we need this to validate the size of the token_type embeddings
  2045. # though currently we are passing all zeros to the token_type embeddings
  2046. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2047. # convert to phantom space vocab
  2048. def phantom(tok):
  2049. if tok.startswith("[") and tok.endswith("]"):
  2050. return tok
  2051. if tok.startswith("##"):
  2052. return tok[2:]
  2053. return "\u2581" + tok
  2054. tokens = list(map(phantom, tokens))
  2055. # add vocab to gguf
  2056. self.gguf_writer.add_tokenizer_model("bert")
  2057. self.gguf_writer.add_tokenizer_pre(tokpre)
  2058. self.gguf_writer.add_token_list(tokens)
  2059. self.gguf_writer.add_token_types(toktypes)
  2060. # handle special tokens
  2061. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2062. special_vocab.add_to_gguf(self.gguf_writer)
  2063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2064. del bid # unused
  2065. # we are only using BERT for embeddings so we don't need the pooling layer
  2066. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2067. return [] # we don't need these
  2068. return [(self.map_tensor_name(name), data_torch)]
  2069. @Model.register("NomicBertModel")
  2070. class NomicBertModel(BertModel):
  2071. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2072. def __init__(self, *args, **kwargs):
  2073. super().__init__(*args, **kwargs)
  2074. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2075. self.hparams["n_ctx"] = 2048
  2076. # SwigLU activation
  2077. assert self.hparams["activation_function"] == "swiglu"
  2078. # this doesn't do anything in the HF version
  2079. assert self.hparams["causal"] is False
  2080. # no bias tensors
  2081. assert self.hparams["qkv_proj_bias"] is False
  2082. assert self.hparams["mlp_fc1_bias"] is False
  2083. assert self.hparams["mlp_fc2_bias"] is False
  2084. # norm at end of layer
  2085. assert self.hparams["prenorm"] is False
  2086. # standard RoPE
  2087. assert self.hparams["rotary_emb_fraction"] == 1.0
  2088. assert self.hparams["rotary_emb_interleaved"] is False
  2089. assert self.hparams["rotary_emb_scale_base"] is None
  2090. def set_gguf_parameters(self):
  2091. super().set_gguf_parameters()
  2092. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2093. @Model.register("XLMRobertaModel")
  2094. class XLMRobertaModel(BertModel):
  2095. model_arch = gguf.MODEL_ARCH.BERT
  2096. def __init__(self, *args, **kwargs):
  2097. super().__init__(*args, **kwargs)
  2098. # we need the pad_token_id to know how to chop down position_embd matrix
  2099. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2100. self._position_offset = 1 + pad_token_id
  2101. if "max_position_embeddings" in self.hparams:
  2102. self.hparams["max_position_embeddings"] -= self._position_offset
  2103. else:
  2104. self._position_offset = None
  2105. def set_vocab(self):
  2106. # to avoid TypeError: Descriptors cannot be created directly
  2107. # exception when importing sentencepiece_model_pb2
  2108. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2109. from sentencepiece import SentencePieceProcessor
  2110. from sentencepiece import sentencepiece_model_pb2 as model
  2111. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2112. if not tokenizer_path.is_file():
  2113. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2114. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2115. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2116. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2117. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2118. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2119. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2120. tokenizer = SentencePieceProcessor()
  2121. tokenizer.LoadFromFile(str(tokenizer_path))
  2122. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2123. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2124. scores: list[float] = [-10000.0] * vocab_size
  2125. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2126. for token_id in range(tokenizer.vocab_size()):
  2127. piece = tokenizer.IdToPiece(token_id)
  2128. text = piece.encode("utf-8")
  2129. score = tokenizer.GetScore(token_id)
  2130. toktype = SentencePieceTokenTypes.NORMAL
  2131. if tokenizer.IsUnknown(token_id):
  2132. toktype = SentencePieceTokenTypes.UNKNOWN
  2133. elif tokenizer.IsControl(token_id):
  2134. toktype = SentencePieceTokenTypes.CONTROL
  2135. elif tokenizer.IsUnused(token_id):
  2136. toktype = SentencePieceTokenTypes.UNUSED
  2137. elif tokenizer.IsByte(token_id):
  2138. toktype = SentencePieceTokenTypes.BYTE
  2139. tokens[token_id] = text
  2140. scores[token_id] = score
  2141. toktypes[token_id] = toktype
  2142. if vocab_size > len(tokens):
  2143. pad_count = vocab_size - len(tokens)
  2144. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2145. for i in range(1, pad_count + 1):
  2146. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2147. scores.append(-1000.0)
  2148. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2149. # realign tokens (see HF tokenizer code)
  2150. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2151. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2152. toktypes = [
  2153. SentencePieceTokenTypes.CONTROL,
  2154. SentencePieceTokenTypes.CONTROL,
  2155. SentencePieceTokenTypes.CONTROL,
  2156. SentencePieceTokenTypes.UNKNOWN,
  2157. ] + toktypes[3:-1]
  2158. self.gguf_writer.add_tokenizer_model("t5")
  2159. self.gguf_writer.add_tokenizer_pre("default")
  2160. self.gguf_writer.add_token_list(tokens)
  2161. self.gguf_writer.add_token_scores(scores)
  2162. self.gguf_writer.add_token_types(toktypes)
  2163. self.gguf_writer.add_add_space_prefix(add_prefix)
  2164. self.gguf_writer.add_token_type_count(1)
  2165. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2166. if precompiled_charsmap:
  2167. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2168. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2169. special_vocab.add_to_gguf(self.gguf_writer)
  2170. self.gguf_writer.add_add_bos_token(True)
  2171. self.gguf_writer.add_add_eos_token(True)
  2172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2173. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2174. if name == "embeddings.position_embeddings.weight":
  2175. if self._position_offset is not None:
  2176. data_torch = data_torch[self._position_offset:,:]
  2177. return super().modify_tensors(data_torch, name, bid)
  2178. @Model.register("GemmaForCausalLM")
  2179. class GemmaModel(Model):
  2180. model_arch = gguf.MODEL_ARCH.GEMMA
  2181. def set_vocab(self):
  2182. self._set_vocab_sentencepiece()
  2183. # TODO: these special tokens should be exported only for the CodeGemma family
  2184. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2185. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2186. special_vocab._set_special_token("prefix", 67)
  2187. special_vocab._set_special_token("suffix", 69)
  2188. special_vocab._set_special_token("middle", 68)
  2189. special_vocab._set_special_token("fsep", 70)
  2190. special_vocab._set_special_token("eot", 107)
  2191. special_vocab.chat_template = None # do not add it twice
  2192. special_vocab.add_to_gguf(self.gguf_writer)
  2193. self.gguf_writer.add_add_space_prefix(False)
  2194. def set_gguf_parameters(self):
  2195. hparams = self.hparams
  2196. block_count = hparams["num_hidden_layers"]
  2197. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2198. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2199. self.gguf_writer.add_block_count(block_count)
  2200. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2201. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2202. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2203. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2204. self.gguf_writer.add_key_length(hparams["head_dim"])
  2205. self.gguf_writer.add_value_length(hparams["head_dim"])
  2206. self.gguf_writer.add_file_type(self.ftype)
  2207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2208. del bid # unused
  2209. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2210. # To prevent errors, skip loading lm_head.weight.
  2211. if name == "lm_head.weight":
  2212. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2213. return []
  2214. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2215. if name.endswith("norm.weight"):
  2216. data_torch = data_torch + 1
  2217. return [(self.map_tensor_name(name), data_torch)]
  2218. @Model.register("Gemma2ForCausalLM")
  2219. class Gemma2Model(Model):
  2220. model_arch = gguf.MODEL_ARCH.GEMMA2
  2221. def set_vocab(self):
  2222. self._set_vocab_sentencepiece()
  2223. self.gguf_writer.add_add_space_prefix(False)
  2224. def set_gguf_parameters(self):
  2225. hparams = self.hparams
  2226. block_count = hparams["num_hidden_layers"]
  2227. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2228. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2229. self.gguf_writer.add_block_count(block_count)
  2230. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2231. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2232. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2233. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2234. self.gguf_writer.add_key_length(hparams["head_dim"])
  2235. self.gguf_writer.add_value_length(hparams["head_dim"])
  2236. self.gguf_writer.add_file_type(self.ftype)
  2237. self.gguf_writer.add_attn_logit_softcapping(
  2238. self.hparams["attn_logit_softcapping"]
  2239. )
  2240. self.gguf_writer.add_final_logit_softcapping(
  2241. self.hparams["final_logit_softcapping"]
  2242. )
  2243. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2245. del bid # unused
  2246. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2247. # To prevent errors, skip loading lm_head.weight.
  2248. if name == "lm_head.weight":
  2249. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2250. return []
  2251. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2252. if name.endswith("norm.weight"):
  2253. data_torch = data_torch + 1
  2254. return [(self.map_tensor_name(name), data_torch)]
  2255. @Model.register("Starcoder2ForCausalLM")
  2256. class StarCoder2Model(Model):
  2257. model_arch = gguf.MODEL_ARCH.STARCODER2
  2258. @Model.register("Rwkv6ForCausalLM")
  2259. class Rwkv6Model(Model):
  2260. model_arch = gguf.MODEL_ARCH.RWKV6
  2261. def set_vocab(self):
  2262. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2263. vocab_size = self.hparams.get("vocab_size", 65536)
  2264. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2265. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2266. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2267. lines = f.readlines()
  2268. for line in lines:
  2269. parts = line.split(' ')
  2270. assert len(parts) >= 3
  2271. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2272. token = token.encode("utf-8") if isinstance(token, str) else token
  2273. assert isinstance(token, bytes)
  2274. assert len(token) == token_len
  2275. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2276. tokens.append(token_text.encode("utf-8"))
  2277. toktypes.append(gguf.TokenType.NORMAL)
  2278. remainder = vocab_size - len(tokens)
  2279. assert remainder >= 0
  2280. for i in range(len(tokens), vocab_size):
  2281. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2282. toktypes.append(gguf.TokenType.UNUSED)
  2283. self.gguf_writer.add_tokenizer_model("rwkv")
  2284. self.gguf_writer.add_token_list(tokens)
  2285. self.gguf_writer.add_token_types(toktypes)
  2286. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2287. special_vocab.add_to_gguf(self.gguf_writer)
  2288. def set_gguf_parameters(self):
  2289. block_count = self.hparams["num_hidden_layers"]
  2290. head_size = self.hparams["head_size"]
  2291. hidden_size = self.hparams["hidden_size"]
  2292. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2293. rescale_every_n_layers = self.hparams["rescale_every"]
  2294. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2295. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2296. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2297. # RWKV isn't context limited
  2298. self.gguf_writer.add_context_length(1048576)
  2299. self.gguf_writer.add_embedding_length(hidden_size)
  2300. self.gguf_writer.add_block_count(block_count)
  2301. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2302. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2303. self.gguf_writer.add_wkv_head_size(head_size)
  2304. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2305. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2306. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2307. self.gguf_writer.add_file_type(self.ftype)
  2308. # required by llama.cpp, unused
  2309. self.gguf_writer.add_head_count(0)
  2310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2311. new_name = self.map_tensor_name(name)
  2312. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2313. new_name += ".weight"
  2314. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2315. data_torch = data_torch.transpose(0, 1)
  2316. if new_name.endswith("time_mix_w2.weight"):
  2317. data_torch = data_torch.permute(0, 2, 1)
  2318. rescale_every_n_layers = self.hparams["rescale_every"]
  2319. if rescale_every_n_layers > 0:
  2320. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2321. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2322. yield (new_name, data_torch)
  2323. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2324. class MambaModel(Model):
  2325. model_arch = gguf.MODEL_ARCH.MAMBA
  2326. def set_vocab(self):
  2327. vocab_size = self.hparams["vocab_size"]
  2328. # Round vocab size to next multiple of 8
  2329. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2330. # pad using ceiling division
  2331. # ref: https://stackoverflow.com/a/17511341/22827863
  2332. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2333. self.hparams["vocab_size"] = vocab_size
  2334. if (self.dir_model / "tokenizer.json").is_file():
  2335. self._set_vocab_gpt2()
  2336. elif (self.dir_model / "tokenizer.model").is_file():
  2337. self._set_vocab_sentencepiece()
  2338. else:
  2339. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2340. self._set_vocab_builtin("gpt-neox", vocab_size)
  2341. def set_gguf_parameters(self):
  2342. d_model = self.find_hparam(["hidden_size", "d_model"])
  2343. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2344. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2345. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2346. # ceiling division
  2347. # ref: https://stackoverflow.com/a/17511341/22827863
  2348. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2349. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2350. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2351. use_dt_b_c_norm = False
  2352. # For falconmamba we do apply RMS norm on B / DT and C layers
  2353. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2354. use_dt_b_c_norm = True
  2355. # Fail early for models which don't have a block expansion factor of 2
  2356. assert d_inner == 2 * d_model
  2357. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2358. self.gguf_writer.add_embedding_length(d_model)
  2359. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2360. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2361. self.gguf_writer.add_block_count(self.block_count)
  2362. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2363. self.gguf_writer.add_ssm_inner_size(d_inner)
  2364. self.gguf_writer.add_ssm_state_size(d_state)
  2365. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2366. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2367. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2368. self.gguf_writer.add_file_type(self.ftype)
  2369. _tok_embd = None
  2370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2371. del bid # unused
  2372. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2373. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2374. new_name = self.map_tensor_name(name)
  2375. if name.endswith(".A_log"):
  2376. logger.debug("A_log --> A ==> " + new_name)
  2377. data_torch = -torch.exp(data_torch)
  2378. # assuming token_embd.weight is seen before output.weight
  2379. if self._tok_embd is not None and new_name == output_name:
  2380. if torch.equal(self._tok_embd, data_torch):
  2381. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2382. return []
  2383. elif new_name == tok_embd_name:
  2384. self._tok_embd = data_torch
  2385. return [(new_name, data_torch)]
  2386. @Model.register("CohereForCausalLM")
  2387. class CommandR2Model(Model):
  2388. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2389. def __init__(self, *args, **kwargs):
  2390. super().__init__(*args, **kwargs)
  2391. # max_position_embeddings = 8192 in config.json but model was actually
  2392. # trained on 128k context length
  2393. # aya-23 models don't have model_max_length specified
  2394. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2395. def set_gguf_parameters(self):
  2396. super().set_gguf_parameters()
  2397. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2398. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2399. @Model.register("OlmoForCausalLM")
  2400. @Model.register("OLMoForCausalLM")
  2401. class OlmoModel(Model):
  2402. model_arch = gguf.MODEL_ARCH.OLMO
  2403. def set_gguf_parameters(self):
  2404. super().set_gguf_parameters()
  2405. self.gguf_writer.add_layer_norm_eps(1e-5)
  2406. clip_qkv = self.hparams.get("clip_qkv")
  2407. if clip_qkv is not None:
  2408. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2409. # Same as super class, but permuting q_proj, k_proj
  2410. # Copied from: LlamaModel
  2411. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2412. del bid # unused
  2413. n_head = self.hparams["num_attention_heads"]
  2414. n_kv_head = self.hparams.get("num_key_value_heads")
  2415. if name.endswith("q_proj.weight"):
  2416. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2417. if name.endswith("k_proj.weight"):
  2418. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2419. return [(self.map_tensor_name(name), data_torch)]
  2420. @Model.register("OlmoeForCausalLM")
  2421. class OlmoeModel(Model):
  2422. model_arch = gguf.MODEL_ARCH.OLMOE
  2423. def set_gguf_parameters(self):
  2424. super().set_gguf_parameters()
  2425. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2426. if (n_experts := self.hparams.get("num_experts")) is not None:
  2427. self.gguf_writer.add_expert_count(n_experts)
  2428. _experts: list[dict[str, Tensor]] | None = None
  2429. # Copied from: Qwen2MoeModel
  2430. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2431. # process the experts separately
  2432. if name.find("experts") != -1:
  2433. n_experts = self.hparams["num_experts"]
  2434. assert bid is not None
  2435. if self._experts is None:
  2436. self._experts = [{} for _ in range(self.block_count)]
  2437. self._experts[bid][name] = data_torch
  2438. if len(self._experts[bid]) >= n_experts * 3:
  2439. tensors: list[tuple[str, Tensor]] = []
  2440. # merge the experts into a single 3d tensor
  2441. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2442. datas: list[Tensor] = []
  2443. for xid in range(n_experts):
  2444. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2445. datas.append(self._experts[bid][ename])
  2446. del self._experts[bid][ename]
  2447. data_torch = torch.stack(datas, dim=0)
  2448. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2449. new_name = self.map_tensor_name(merged_name)
  2450. tensors.append((new_name, data_torch))
  2451. return tensors
  2452. else:
  2453. return []
  2454. return [(self.map_tensor_name(name), data_torch)]
  2455. # Copied from: Qwen2MoeModel
  2456. def prepare_tensors(self):
  2457. super().prepare_tensors()
  2458. if self._experts is not None:
  2459. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2460. experts = [k for d in self._experts for k in d.keys()]
  2461. if len(experts) > 0:
  2462. raise ValueError(f"Unprocessed experts: {experts}")
  2463. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2464. class JinaBertV2Model(BertModel):
  2465. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2466. def __init__(self, *args, **kwargs):
  2467. super().__init__(*args, **kwargs)
  2468. self.intermediate_size = self.hparams["intermediate_size"]
  2469. def get_tensors(self):
  2470. for name, data in super().get_tensors():
  2471. if 'gated_layer' in name:
  2472. d1 = data[:self.intermediate_size, :]
  2473. name1 = name.replace('gated_layers', 'gated_layers_w')
  2474. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2475. d2 = data[self.intermediate_size:, :]
  2476. name2 = name.replace('gated_layers', 'gated_layers_v')
  2477. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2478. yield name1, d1
  2479. yield name2, d2
  2480. continue
  2481. yield name, data
  2482. def set_vocab(self):
  2483. tokenizer_class = 'BertTokenizer'
  2484. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2485. tokenizer_class = json.load(f)['tokenizer_class']
  2486. if tokenizer_class == 'BertTokenizer':
  2487. super().set_vocab()
  2488. elif tokenizer_class == 'RobertaTokenizer':
  2489. self._set_vocab_gpt2()
  2490. self.gguf_writer.add_token_type_count(2)
  2491. else:
  2492. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2493. self.gguf_writer.add_add_bos_token(True)
  2494. self.gguf_writer.add_add_eos_token(True)
  2495. @Model.register("OpenELMForCausalLM")
  2496. class OpenELMModel(Model):
  2497. model_arch = gguf.MODEL_ARCH.OPENELM
  2498. @staticmethod
  2499. def _make_divisible(v: float | int, divisor: int) -> int:
  2500. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2501. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2502. # Make sure that round down does not go down by more than 10%.
  2503. if new_v < 0.9 * v:
  2504. new_v += divisor
  2505. return new_v
  2506. def __init__(self, *args, **kwargs):
  2507. super().__init__(*args, **kwargs)
  2508. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2509. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2510. self._n_embd: int = self.hparams["model_dim"]
  2511. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2512. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2513. self._ffn_dims: list[int] = [
  2514. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2515. for multiplier in ffn_multipliers
  2516. ]
  2517. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2518. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2519. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2520. def set_vocab(self):
  2521. try:
  2522. self._set_vocab_sentencepiece()
  2523. except FileNotFoundError:
  2524. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2525. def set_gguf_parameters(self):
  2526. n_embd = self._n_embd
  2527. head_dim = self.hparams["head_dim"]
  2528. rot_pct = 1.0
  2529. assert self.block_count == len(self._num_kv_heads)
  2530. assert self.block_count == len(self._num_query_heads)
  2531. assert self.block_count == len(self._ffn_dims)
  2532. self.gguf_writer.add_block_count(self.block_count)
  2533. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2534. self.gguf_writer.add_embedding_length(n_embd)
  2535. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2536. self.gguf_writer.add_head_count(self._num_query_heads)
  2537. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2538. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2539. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2540. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2541. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2542. self.gguf_writer.add_key_length(head_dim)
  2543. self.gguf_writer.add_value_length(head_dim)
  2544. self.gguf_writer.add_file_type(self.ftype)
  2545. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2546. if "n_layers" in keys:
  2547. return self.hparams["num_transformer_layers"]
  2548. return super().find_hparam(keys, optional)
  2549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2550. # split ff
  2551. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2552. ff_dim = self._ffn_dims[bid]
  2553. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2554. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2555. return
  2556. yield (self.map_tensor_name(name), data_torch)
  2557. @Model.register("ArcticForCausalLM")
  2558. class ArcticModel(Model):
  2559. model_arch = gguf.MODEL_ARCH.ARCTIC
  2560. def set_vocab(self):
  2561. # The reason for using a custom implementation here is that the
  2562. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2563. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2564. from sentencepiece import SentencePieceProcessor
  2565. tokenizer_path = self.dir_model / 'tokenizer.model'
  2566. if not tokenizer_path.is_file():
  2567. logger.error(f'Error: Missing {tokenizer_path}')
  2568. sys.exit(1)
  2569. # Read the whole vocabulary from the tokenizer.model file
  2570. tokenizer = SentencePieceProcessor()
  2571. tokenizer.LoadFromFile(str(tokenizer_path))
  2572. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2573. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2574. scores: list[float] = [-10000.0] * vocab_size
  2575. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2576. for token_id in range(tokenizer.vocab_size()):
  2577. piece = tokenizer.IdToPiece(token_id)
  2578. text = piece.encode("utf-8")
  2579. score = tokenizer.GetScore(token_id)
  2580. toktype = SentencePieceTokenTypes.NORMAL
  2581. if tokenizer.IsUnknown(token_id):
  2582. toktype = SentencePieceTokenTypes.UNKNOWN
  2583. elif tokenizer.IsControl(token_id):
  2584. toktype = SentencePieceTokenTypes.CONTROL
  2585. elif tokenizer.IsUnused(token_id):
  2586. toktype = SentencePieceTokenTypes.UNUSED
  2587. elif tokenizer.IsByte(token_id):
  2588. toktype = SentencePieceTokenTypes.BYTE
  2589. tokens[token_id] = text
  2590. scores[token_id] = score
  2591. toktypes[token_id] = toktype
  2592. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2593. # of information about added/redefined tokens and modify them accordingly.
  2594. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2595. if tokenizer_config_file.is_file():
  2596. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2597. tokenizer_config_json = json.load(f)
  2598. if "added_tokens_decoder" in tokenizer_config_json:
  2599. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2600. for token_id, token_json in added_tokens_decoder.items():
  2601. token_id = int(token_id)
  2602. if token_id >= vocab_size:
  2603. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2604. continue
  2605. token_content = token_json["content"]
  2606. token_type = SentencePieceTokenTypes.USER_DEFINED
  2607. token_score = -10000.0
  2608. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2609. # Set the score to 0.0 as in the original tokenizer.model
  2610. if ("special" in token_json) and token_json["special"]:
  2611. if token_content == tokenizer_config_json["unk_token"]:
  2612. token_type = SentencePieceTokenTypes.UNKNOWN
  2613. else:
  2614. token_type = SentencePieceTokenTypes.CONTROL
  2615. token_score = 0.0
  2616. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2617. tokens[token_id] = token_content.encode("utf-8")
  2618. toktypes[token_id] = token_type
  2619. scores[token_id] = token_score
  2620. self.gguf_writer.add_tokenizer_model("llama")
  2621. self.gguf_writer.add_tokenizer_pre("default")
  2622. self.gguf_writer.add_token_list(tokens)
  2623. self.gguf_writer.add_token_scores(scores)
  2624. self.gguf_writer.add_token_types(toktypes)
  2625. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2626. special_vocab.add_to_gguf(self.gguf_writer)
  2627. def set_gguf_parameters(self):
  2628. super().set_gguf_parameters()
  2629. hparams = self.hparams
  2630. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2631. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2632. _experts: list[dict[str, Tensor]] | None = None
  2633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2634. n_head = self.hparams["num_attention_heads"]
  2635. n_kv_head = self.hparams.get("num_key_value_heads")
  2636. if name.endswith("q_proj.weight"):
  2637. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2638. if name.endswith("k_proj.weight"):
  2639. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2640. # process the experts separately
  2641. if name.find("block_sparse_moe.experts") != -1:
  2642. n_experts = self.hparams["num_local_experts"]
  2643. assert bid is not None
  2644. if self._experts is None:
  2645. self._experts = [{} for _ in range(self.block_count)]
  2646. self._experts[bid][name] = data_torch
  2647. if len(self._experts[bid]) >= n_experts * 3:
  2648. tensors: list[tuple[str, Tensor]] = []
  2649. # merge the experts into a single 3d tensor
  2650. for wid in ["w1", "w2", "w3"]:
  2651. datas: list[Tensor] = []
  2652. for xid in range(n_experts):
  2653. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2654. datas.append(self._experts[bid][ename])
  2655. del self._experts[bid][ename]
  2656. data_torch = torch.stack(datas, dim=0)
  2657. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2658. new_name = self.map_tensor_name(merged_name)
  2659. tensors.append((new_name, data_torch))
  2660. return tensors
  2661. else:
  2662. return []
  2663. return [(self.map_tensor_name(name), data_torch)]
  2664. def prepare_tensors(self):
  2665. super().prepare_tensors()
  2666. if self._experts is not None:
  2667. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2668. experts = [k for d in self._experts for k in d.keys()]
  2669. if len(experts) > 0:
  2670. raise ValueError(f"Unprocessed experts: {experts}")
  2671. @Model.register("DeepseekV2ForCausalLM")
  2672. class DeepseekV2Model(Model):
  2673. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2674. def set_vocab(self):
  2675. self._set_vocab_gpt2()
  2676. def set_gguf_parameters(self):
  2677. super().set_gguf_parameters()
  2678. hparams = self.hparams
  2679. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2680. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2681. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2682. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2683. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2684. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2685. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2686. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2687. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2688. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2689. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2690. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2691. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2692. if self.hparams["rope_scaling"].get("type") == "yarn":
  2693. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2694. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2695. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2696. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2697. _experts: list[dict[str, Tensor]] | None = None
  2698. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2699. # process the experts separately
  2700. if name.find("mlp.experts") != -1:
  2701. n_experts = self.hparams["n_routed_experts"]
  2702. assert bid is not None
  2703. if self._experts is None:
  2704. self._experts = [{} for _ in range(self.block_count)]
  2705. self._experts[bid][name] = data_torch
  2706. if len(self._experts[bid]) >= n_experts * 3:
  2707. tensors: list[tuple[str, Tensor]] = []
  2708. # merge the experts into a single 3d tensor
  2709. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2710. datas: list[Tensor] = []
  2711. for xid in range(n_experts):
  2712. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2713. datas.append(self._experts[bid][ename])
  2714. del self._experts[bid][ename]
  2715. data_torch = torch.stack(datas, dim=0)
  2716. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2717. new_name = self.map_tensor_name(merged_name)
  2718. tensors.append((new_name, data_torch))
  2719. return tensors
  2720. else:
  2721. return []
  2722. return [(self.map_tensor_name(name), data_torch)]
  2723. def prepare_tensors(self):
  2724. super().prepare_tensors()
  2725. if self._experts is not None:
  2726. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2727. experts = [k for d in self._experts for k in d.keys()]
  2728. if len(experts) > 0:
  2729. raise ValueError(f"Unprocessed experts: {experts}")
  2730. @Model.register("T5WithLMHeadModel")
  2731. @Model.register("T5ForConditionalGeneration")
  2732. @Model.register("MT5ForConditionalGeneration")
  2733. @Model.register("UMT5ForConditionalGeneration")
  2734. class T5Model(Model):
  2735. model_arch = gguf.MODEL_ARCH.T5
  2736. def __init__(self, *args, **kwargs):
  2737. super().__init__(*args, **kwargs)
  2738. self.shared_token_embeddings_found = False
  2739. def set_vocab(self):
  2740. # to avoid TypeError: Descriptors cannot be created directly
  2741. # exception when importing sentencepiece_model_pb2
  2742. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2743. from sentencepiece import SentencePieceProcessor
  2744. from sentencepiece import sentencepiece_model_pb2 as model
  2745. tokenizer_path = self.dir_model / 'tokenizer.model'
  2746. # many older models use spiece.model tokenizer model filename
  2747. if not tokenizer_path.is_file():
  2748. tokenizer_path = self.dir_model / 'spiece.model'
  2749. if not tokenizer_path.is_file():
  2750. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2751. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2752. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2753. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2754. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2755. # assure the tokenizer model file name is correct
  2756. assert tokenizer_path.name == 'tokenizer.model'
  2757. return self._set_vocab_sentencepiece()
  2758. else:
  2759. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2760. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2761. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2762. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2763. tokenizer = SentencePieceProcessor()
  2764. tokenizer.LoadFromFile(str(tokenizer_path))
  2765. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2766. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2767. scores: list[float] = [-10000.0] * vocab_size
  2768. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2769. for token_id in range(tokenizer.vocab_size()):
  2770. piece = tokenizer.IdToPiece(token_id)
  2771. text = piece.encode("utf-8")
  2772. score = tokenizer.GetScore(token_id)
  2773. toktype = SentencePieceTokenTypes.NORMAL
  2774. if tokenizer.IsUnknown(token_id):
  2775. toktype = SentencePieceTokenTypes.UNKNOWN
  2776. elif tokenizer.IsControl(token_id):
  2777. toktype = SentencePieceTokenTypes.CONTROL
  2778. elif tokenizer.IsUnused(token_id):
  2779. toktype = SentencePieceTokenTypes.UNUSED
  2780. elif tokenizer.IsByte(token_id):
  2781. toktype = SentencePieceTokenTypes.BYTE
  2782. tokens[token_id] = text
  2783. scores[token_id] = score
  2784. toktypes[token_id] = toktype
  2785. added_tokens_file = self.dir_model / 'added_tokens.json'
  2786. if added_tokens_file.is_file():
  2787. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2788. added_tokens_json = json.load(f)
  2789. for key in added_tokens_json:
  2790. token_id = added_tokens_json[key]
  2791. if token_id >= vocab_size:
  2792. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2793. continue
  2794. tokens[token_id] = key.encode("utf-8")
  2795. scores[token_id] = -1000.0
  2796. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2797. if vocab_size > len(tokens):
  2798. pad_count = vocab_size - len(tokens)
  2799. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2800. for i in range(1, pad_count + 1):
  2801. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2802. scores.append(-1000.0)
  2803. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2804. self.gguf_writer.add_tokenizer_model("t5")
  2805. self.gguf_writer.add_tokenizer_pre("default")
  2806. self.gguf_writer.add_token_list(tokens)
  2807. self.gguf_writer.add_token_scores(scores)
  2808. self.gguf_writer.add_token_types(toktypes)
  2809. self.gguf_writer.add_add_space_prefix(add_prefix)
  2810. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2811. if precompiled_charsmap:
  2812. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2813. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2814. special_vocab.add_to_gguf(self.gguf_writer)
  2815. self.gguf_writer.add_add_bos_token(False)
  2816. self.gguf_writer.add_add_eos_token(True)
  2817. def set_gguf_parameters(self):
  2818. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2819. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2820. n_ctx = 512
  2821. self.gguf_writer.add_context_length(n_ctx)
  2822. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2823. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2824. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2825. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2826. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2827. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2828. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2829. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2830. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2831. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2832. self.gguf_writer.add_file_type(self.ftype)
  2833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2834. del bid # unused
  2835. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2836. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2837. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2838. # and decoder and ignore the remaining ones.
  2839. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2840. if not self.shared_token_embeddings_found:
  2841. name = "shared.weight"
  2842. self.shared_token_embeddings_found = True
  2843. else:
  2844. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2845. return []
  2846. return [(self.map_tensor_name(name), data_torch)]
  2847. @Model.register("T5EncoderModel")
  2848. class T5EncoderModel(Model):
  2849. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2850. def __init__(self, *args, **kwargs):
  2851. super().__init__(*args, **kwargs)
  2852. self.shared_token_embeddings_found = False
  2853. def set_vocab(self):
  2854. # to avoid TypeError: Descriptors cannot be created directly
  2855. # exception when importing sentencepiece_model_pb2
  2856. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2857. from sentencepiece import SentencePieceProcessor
  2858. from sentencepiece import sentencepiece_model_pb2 as model
  2859. tokenizer_path = self.dir_model / 'tokenizer.model'
  2860. # many older models use spiece.model tokenizer model filename
  2861. if not tokenizer_path.is_file():
  2862. tokenizer_path = self.dir_model / 'spiece.model'
  2863. if not tokenizer_path.is_file():
  2864. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2865. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2866. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2867. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2868. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2869. # assure the tokenizer model file name is correct
  2870. assert tokenizer_path.name == 'tokenizer.model'
  2871. return self._set_vocab_sentencepiece()
  2872. else:
  2873. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2874. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2875. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2876. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2877. tokenizer = SentencePieceProcessor()
  2878. tokenizer.LoadFromFile(str(tokenizer_path))
  2879. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2880. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2881. scores: list[float] = [-10000.0] * vocab_size
  2882. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2883. for token_id in range(tokenizer.vocab_size()):
  2884. piece = tokenizer.IdToPiece(token_id)
  2885. text = piece.encode("utf-8")
  2886. score = tokenizer.GetScore(token_id)
  2887. toktype = SentencePieceTokenTypes.NORMAL
  2888. if tokenizer.IsUnknown(token_id):
  2889. toktype = SentencePieceTokenTypes.UNKNOWN
  2890. elif tokenizer.IsControl(token_id):
  2891. toktype = SentencePieceTokenTypes.CONTROL
  2892. elif tokenizer.IsUnused(token_id):
  2893. toktype = SentencePieceTokenTypes.UNUSED
  2894. elif tokenizer.IsByte(token_id):
  2895. toktype = SentencePieceTokenTypes.BYTE
  2896. tokens[token_id] = text
  2897. scores[token_id] = score
  2898. toktypes[token_id] = toktype
  2899. added_tokens_file = self.dir_model / 'added_tokens.json'
  2900. if added_tokens_file.is_file():
  2901. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2902. added_tokens_json = json.load(f)
  2903. for key in added_tokens_json:
  2904. token_id = added_tokens_json[key]
  2905. if token_id >= vocab_size:
  2906. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2907. continue
  2908. tokens[token_id] = key.encode("utf-8")
  2909. scores[token_id] = -1000.0
  2910. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2911. if vocab_size > len(tokens):
  2912. pad_count = vocab_size - len(tokens)
  2913. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2914. for i in range(1, pad_count + 1):
  2915. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2916. scores.append(-1000.0)
  2917. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2918. self.gguf_writer.add_tokenizer_model("t5")
  2919. self.gguf_writer.add_tokenizer_pre("default")
  2920. self.gguf_writer.add_token_list(tokens)
  2921. self.gguf_writer.add_token_scores(scores)
  2922. self.gguf_writer.add_token_types(toktypes)
  2923. self.gguf_writer.add_add_space_prefix(add_prefix)
  2924. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2925. if precompiled_charsmap:
  2926. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2927. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2928. special_vocab.add_to_gguf(self.gguf_writer)
  2929. self.gguf_writer.add_add_bos_token(False)
  2930. self.gguf_writer.add_add_eos_token(True)
  2931. def set_gguf_parameters(self):
  2932. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2933. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2934. n_ctx = 512
  2935. self.gguf_writer.add_context_length(n_ctx)
  2936. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2937. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2938. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2939. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2940. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2941. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2942. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2943. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2944. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2945. self.gguf_writer.add_file_type(self.ftype)
  2946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2947. del bid # unused
  2948. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2949. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2950. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2951. # and decoder and ignore the remaining ones.
  2952. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2953. if not self.shared_token_embeddings_found:
  2954. name = "shared.weight"
  2955. self.shared_token_embeddings_found = True
  2956. else:
  2957. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2958. return []
  2959. return [(self.map_tensor_name(name), data_torch)]
  2960. @Model.register("JAISLMHeadModel")
  2961. class JaisModel(Model):
  2962. model_arch = gguf.MODEL_ARCH.JAIS
  2963. def __init__(self, *args, **kwargs):
  2964. super().__init__(*args, **kwargs)
  2965. # SwigLU activation
  2966. assert self.hparams["activation_function"] == "swiglu"
  2967. # ALiBi position embedding
  2968. assert self.hparams["position_embedding_type"] == "alibi"
  2969. # Embeddings scale
  2970. self.embeddings_scale = 1.0
  2971. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2972. self.output_is_wte = False
  2973. if 'mup_embeddings_scale' in self.hparams:
  2974. self.output_is_wte = True # Hack (?)
  2975. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2976. elif 'embeddings_scale' in self.hparams:
  2977. self.embeddings_scale = self.hparams['embeddings_scale']
  2978. else:
  2979. assert False
  2980. self.width_scale = 1.0
  2981. if 'mup_output_alpha' in self.hparams:
  2982. assert 'mup_width_scale' in self.hparams
  2983. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2984. elif 'width_scale' in self.hparams:
  2985. self.width_scale = self.hparams['width_scale']
  2986. else:
  2987. assert False
  2988. self.max_alibi_bias = 8.0
  2989. def set_vocab(self):
  2990. self._set_vocab_gpt2()
  2991. def set_gguf_parameters(self):
  2992. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2993. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2994. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2995. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2996. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2997. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2998. self.gguf_writer.add_file_type(self.ftype)
  2999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3000. del bid # unused
  3001. tensors: list[tuple[str, Tensor]] = []
  3002. # we don't need these
  3003. if name.endswith((".attn.bias")):
  3004. return tensors
  3005. if name.endswith(("relative_pe.slopes")):
  3006. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3007. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3008. # but Jais's PyTorch model simply precalculates the slope values and places them
  3009. # in relative_pes.slopes
  3010. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3011. first_val = float(data_torch[0].item())
  3012. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3013. return tensors
  3014. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3015. data_torch = data_torch.transpose(1, 0)
  3016. new_name = self.map_tensor_name(name)
  3017. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3018. tensors.append((new_name, data_torch * self.embeddings_scale))
  3019. if self.output_is_wte:
  3020. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  3021. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3022. assert not self.output_is_wte
  3023. tensors.append((new_name, data_torch * self.width_scale))
  3024. else:
  3025. tensors.append((new_name, data_torch))
  3026. return tensors
  3027. def prepare_tensors(self):
  3028. super().prepare_tensors()
  3029. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3030. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3031. class ChatGLMModel(Model):
  3032. model_arch = gguf.MODEL_ARCH.CHATGLM
  3033. def set_vocab_chatglm3(self):
  3034. dir_model = self.dir_model
  3035. hparams = self.hparams
  3036. tokens: list[bytes] = []
  3037. toktypes: list[int] = []
  3038. scores: list[float] = []
  3039. from transformers import AutoTokenizer
  3040. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3041. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3042. assert max(tokenizer.get_vocab().values()) < vocab_size
  3043. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3044. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3045. for token_id in range(vocab_size):
  3046. piece = tokenizer._convert_id_to_token(token_id)
  3047. if token_id == 0:
  3048. piece = "<unk>"
  3049. elif token_id == 1:
  3050. piece = "<bos>"
  3051. elif token_id == 2:
  3052. piece = "<eos>"
  3053. text = piece.encode("utf-8")
  3054. score = 0.0
  3055. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3056. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3057. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3058. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3059. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3060. if piece in special_tokens:
  3061. toktype = SentencePieceTokenTypes.CONTROL
  3062. elif len(piece) == 0:
  3063. text = f"[PAD{token_id}]".encode("utf-8")
  3064. toktype = SentencePieceTokenTypes.UNUSED
  3065. else:
  3066. toktype = SentencePieceTokenTypes.USER_DEFINED
  3067. tokens.append(text)
  3068. scores.append(score)
  3069. toktypes.append(toktype)
  3070. continue
  3071. toktype = SentencePieceTokenTypes.NORMAL
  3072. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3073. toktype = SentencePieceTokenTypes.UNKNOWN
  3074. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3075. toktype = SentencePieceTokenTypes.CONTROL
  3076. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3077. toktype = SentencePieceTokenTypes.UNUSED
  3078. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3079. toktype = SentencePieceTokenTypes.BYTE
  3080. tokens.append(text)
  3081. scores.append(score)
  3082. toktypes.append(toktype)
  3083. self.gguf_writer.add_tokenizer_model("llama")
  3084. # glm3 needs prefix and suffix formatted as:
  3085. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3086. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3087. self.gguf_writer.add_token_list(tokens)
  3088. self.gguf_writer.add_token_scores(scores)
  3089. self.gguf_writer.add_token_types(toktypes)
  3090. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3091. special_vocab.add_to_gguf(self.gguf_writer)
  3092. @staticmethod
  3093. def token_bytes_to_string(b):
  3094. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3095. byte_encoder = bytes_to_unicode()
  3096. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3097. @staticmethod
  3098. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3099. parts = [bytes([b]) for b in token]
  3100. while True:
  3101. min_idx = None
  3102. min_rank = None
  3103. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3104. rank = mergeable_ranks.get(pair[0] + pair[1])
  3105. if rank is not None and (min_rank is None or rank < min_rank):
  3106. min_idx = i
  3107. min_rank = rank
  3108. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3109. break
  3110. assert min_idx is not None
  3111. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3112. return parts
  3113. def set_vocab(self):
  3114. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3115. self.set_vocab_chatglm3()
  3116. return
  3117. dir_model = self.dir_model
  3118. hparams = self.hparams
  3119. tokens: list[str] = []
  3120. toktypes: list[int] = []
  3121. from transformers import AutoTokenizer
  3122. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3123. vocab_size = hparams["padded_vocab_size"]
  3124. assert max(tokenizer.get_vocab().values()) < vocab_size
  3125. tokpre = self.get_vocab_base_pre(tokenizer)
  3126. merges = []
  3127. vocab = {}
  3128. mergeable_ranks = tokenizer.mergeable_ranks
  3129. for token, rank in mergeable_ranks.items():
  3130. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3131. if len(token) == 1:
  3132. continue
  3133. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3134. assert len(merged) >= 2 and len(merged) <= 7
  3135. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3136. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3137. added_vocab = tokenizer.get_added_vocab()
  3138. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3139. for i in range(vocab_size):
  3140. if i not in reverse_vocab:
  3141. tokens.append(f"[PAD{i}]")
  3142. toktypes.append(gguf.TokenType.UNUSED)
  3143. elif reverse_vocab[i] in added_vocab:
  3144. tokens.append(reverse_vocab[i])
  3145. if tokenizer.added_tokens_decoder[i].special:
  3146. toktypes.append(gguf.TokenType.CONTROL)
  3147. else:
  3148. toktypes.append(gguf.TokenType.USER_DEFINED)
  3149. else:
  3150. tokens.append(reverse_vocab[i])
  3151. toktypes.append(gguf.TokenType.NORMAL)
  3152. self.gguf_writer.add_tokenizer_model("gpt2")
  3153. self.gguf_writer.add_tokenizer_pre(tokpre)
  3154. self.gguf_writer.add_token_list(tokens)
  3155. self.gguf_writer.add_token_types(toktypes)
  3156. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3157. special_vocab.merges = merges
  3158. # only add special tokens when they were not already loaded from config.json
  3159. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3160. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3161. # this one is usually not in config.json anyway
  3162. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3163. special_vocab.add_to_gguf(self.gguf_writer)
  3164. def set_gguf_parameters(self):
  3165. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3166. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3167. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3168. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3169. self.gguf_writer.add_embedding_length(n_embed)
  3170. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3171. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3172. self.gguf_writer.add_head_count(n_head)
  3173. self.gguf_writer.add_head_count_kv(n_head_kv)
  3174. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3175. self.gguf_writer.add_file_type(self.ftype)
  3176. self.gguf_writer.add_rope_dimension_count(64)
  3177. self.gguf_writer.add_add_bos_token(False)
  3178. rope_freq = 10000
  3179. if "rope_ratio" in self.hparams:
  3180. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3181. self.gguf_writer.add_rope_freq_base(rope_freq)
  3182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3183. del bid # unused
  3184. if name.endswith(".rotary_pos_emb.inv_freq"):
  3185. return []
  3186. name = name.removeprefix("transformer.")
  3187. return [(self.map_tensor_name(name), data_torch)]
  3188. @Model.register("NemotronForCausalLM")
  3189. class NemotronModel(Model):
  3190. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3191. def set_vocab(self):
  3192. self._set_vocab_sentencepiece()
  3193. self.gguf_writer.add_pad_token_id(0)
  3194. self.gguf_writer.add_unk_token_id(1)
  3195. def set_gguf_parameters(self):
  3196. super().set_gguf_parameters()
  3197. hparams = self.hparams
  3198. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3199. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3200. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3201. # * Partial RoPE
  3202. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3203. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3204. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3205. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3206. # * RopeScaling for Nemotron
  3207. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3208. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3209. else:
  3210. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3211. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3213. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3214. # model.layers.{l}.input_layernorm.weight
  3215. # model.layers.{l}.post_attention_layernorm.weight
  3216. # model.norm.weight
  3217. if name.endswith("norm.weight"):
  3218. data_torch = data_torch + 1
  3219. return [(self.map_tensor_name(name), data_torch)]
  3220. @Model.register("ExaoneForCausalLM")
  3221. class ExaoneModel(Model):
  3222. model_arch = gguf.MODEL_ARCH.EXAONE
  3223. def set_gguf_parameters(self):
  3224. hparams = self.hparams
  3225. assert (hparams["activation_function"] == "silu")
  3226. max_position_embeddings = hparams["max_position_embeddings"]
  3227. embed_dim = hparams["hidden_size"]
  3228. num_heads = hparams["num_attention_heads"]
  3229. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3230. layer_norm_eps = hparams["layer_norm_epsilon"]
  3231. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3232. num_layers = hparams["num_layers"]
  3233. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3234. # attention_dropout_rate = hparams["attention_dropout"]
  3235. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3236. # embed_dropout_rate = hparams["embed_dropout"]
  3237. self.gguf_writer.add_embedding_length(embed_dim)
  3238. self.gguf_writer.add_head_count(num_heads)
  3239. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3240. self.gguf_writer.add_context_length(max_position_embeddings)
  3241. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3242. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3243. self.gguf_writer.add_block_count(num_layers)
  3244. self.gguf_writer.add_file_type(self.ftype)
  3245. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3246. self.gguf_writer.add_rope_freq_base(rope_theta)
  3247. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3248. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3249. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3250. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3251. if hparams["rope_scaling"].get("type") == "linear":
  3252. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3253. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3254. def prepare_tensors(self):
  3255. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3256. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3257. base = self.hparams.get("rope_theta", 10000.0)
  3258. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3259. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3260. factor = rope_scaling.get("factor", 8.0)
  3261. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3262. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3263. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3264. low_freq_wavelen = old_context_len / low_freq_factor
  3265. high_freq_wavelen = old_context_len / high_freq_factor
  3266. assert low_freq_wavelen != high_freq_wavelen
  3267. rope_factors = []
  3268. for freq in freqs:
  3269. wavelen = 2 * math.pi / freq
  3270. if wavelen < high_freq_wavelen:
  3271. rope_factors.append(1)
  3272. elif wavelen > low_freq_wavelen:
  3273. rope_factors.append(factor)
  3274. else:
  3275. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3276. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3277. if not self.is_lora:
  3278. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3279. super().prepare_tensors()
  3280. @Model.register("GraniteForCausalLM")
  3281. class GraniteModel(LlamaModel):
  3282. """Conversion for IBM's GraniteForCausalLM"""
  3283. model_arch = gguf.MODEL_ARCH.GRANITE
  3284. def set_gguf_parameters(self):
  3285. """Granite uses standard llama parameters with the following differences:
  3286. - No head_dim support
  3287. - New multiplier params:
  3288. - attention_scale
  3289. - embedding_scale
  3290. - residual_scale
  3291. - logits_scaling
  3292. """
  3293. if head_dim := self.hparams.pop("head_dim", None):
  3294. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3295. super().set_gguf_parameters()
  3296. # NOTE: Convert _multiplier params to _scale params for naming
  3297. # consistency
  3298. if attention_scale := self.hparams.get("attention_multiplier"):
  3299. self.gguf_writer.add_attention_scale(attention_scale)
  3300. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3301. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3302. self.gguf_writer.add_embedding_scale(embedding_scale)
  3303. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3304. if residual_scale := self.hparams.get("residual_multiplier"):
  3305. self.gguf_writer.add_residual_scale(residual_scale)
  3306. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3307. if logits_scale := self.hparams.get("logits_scaling"):
  3308. self.gguf_writer.add_logit_scale(logits_scale)
  3309. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3310. @Model.register("GraniteMoeForCausalLM")
  3311. class GraniteMoeModel(GraniteModel):
  3312. """Conversion for IBM's GraniteMoeForCausalLM"""
  3313. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3315. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3316. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3317. the hidden size that is then split during forward. To keep compatibility
  3318. with existing mixtral support, we pull them apart here.
  3319. """
  3320. if name.endswith("block_sparse_moe.input_linear.weight"):
  3321. ffn_dim = self.hparams["intermediate_size"]
  3322. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3323. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3324. return [
  3325. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3326. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3327. ]
  3328. return super().modify_tensors(data_torch, name, bid)
  3329. ###### CONVERSION LOGIC ######
  3330. # tree of lazy tensors
  3331. class LazyTorchTensor(gguf.LazyBase):
  3332. _tensor_type = torch.Tensor
  3333. # to keep the type-checker happy
  3334. dtype: torch.dtype
  3335. shape: torch.Size
  3336. # only used when converting a torch.Tensor to a np.ndarray
  3337. _dtype_map: dict[torch.dtype, type] = {
  3338. torch.float16: np.float16,
  3339. torch.float32: np.float32,
  3340. }
  3341. # used for safetensors slices
  3342. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3343. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3344. _dtype_str_map: dict[str, torch.dtype] = {
  3345. "F64": torch.float64,
  3346. "F32": torch.float32,
  3347. "BF16": torch.bfloat16,
  3348. "F16": torch.float16,
  3349. # "U64": torch.uint64,
  3350. "I64": torch.int64,
  3351. # "U32": torch.uint32,
  3352. "I32": torch.int32,
  3353. # "U16": torch.uint16,
  3354. "I16": torch.int16,
  3355. "U8": torch.uint8,
  3356. "I8": torch.int8,
  3357. "BOOL": torch.bool,
  3358. "F8_E4M3": torch.float8_e4m3fn,
  3359. "F8_E5M2": torch.float8_e5m2,
  3360. }
  3361. def numpy(self) -> gguf.LazyNumpyTensor:
  3362. dtype = self._dtype_map[self.dtype]
  3363. return gguf.LazyNumpyTensor(
  3364. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3365. args=(self,),
  3366. func=(lambda s: s.numpy())
  3367. )
  3368. @classmethod
  3369. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3370. return torch.empty(size=shape, dtype=dtype, device="meta")
  3371. @classmethod
  3372. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3373. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3374. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3375. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3376. return cast(torch.Tensor, lazy)
  3377. @classmethod
  3378. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3379. del types # unused
  3380. if kwargs is None:
  3381. kwargs = {}
  3382. if func is torch.Tensor.numpy:
  3383. return args[0].numpy()
  3384. return cls._wrap_fn(func)(*args, **kwargs)
  3385. def parse_args() -> argparse.Namespace:
  3386. parser = argparse.ArgumentParser(
  3387. description="Convert a huggingface model to a GGML compatible file")
  3388. parser.add_argument(
  3389. "--vocab-only", action="store_true",
  3390. help="extract only the vocab",
  3391. )
  3392. parser.add_argument(
  3393. "--outfile", type=Path,
  3394. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3395. )
  3396. parser.add_argument(
  3397. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3398. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3399. )
  3400. parser.add_argument(
  3401. "--bigendian", action="store_true",
  3402. help="model is executed on big endian machine",
  3403. )
  3404. parser.add_argument(
  3405. "model", type=Path,
  3406. help="directory containing model file",
  3407. )
  3408. parser.add_argument(
  3409. "--use-temp-file", action="store_true",
  3410. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3411. )
  3412. parser.add_argument(
  3413. "--no-lazy", action="store_true",
  3414. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3415. )
  3416. parser.add_argument(
  3417. "--model-name", type=str, default=None,
  3418. help="name of the model",
  3419. )
  3420. parser.add_argument(
  3421. "--verbose", action="store_true",
  3422. help="increase output verbosity",
  3423. )
  3424. parser.add_argument(
  3425. "--split-max-tensors", type=int, default=0,
  3426. help="max tensors in each split",
  3427. )
  3428. parser.add_argument(
  3429. "--split-max-size", type=str, default="0",
  3430. help="max size per split N(M|G)",
  3431. )
  3432. parser.add_argument(
  3433. "--dry-run", action="store_true",
  3434. help="only print out a split plan and exit, without writing any new files",
  3435. )
  3436. parser.add_argument(
  3437. "--no-tensor-first-split", action="store_true",
  3438. help="do not add tensors to the first split (disabled by default)"
  3439. )
  3440. parser.add_argument(
  3441. "--metadata", type=Path,
  3442. help="Specify the path for an authorship metadata override file"
  3443. )
  3444. return parser.parse_args()
  3445. def split_str_to_n_bytes(split_str: str) -> int:
  3446. if split_str.endswith("K"):
  3447. n = int(split_str[:-1]) * 1000
  3448. elif split_str.endswith("M"):
  3449. n = int(split_str[:-1]) * 1000 * 1000
  3450. elif split_str.endswith("G"):
  3451. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3452. elif split_str.isnumeric():
  3453. n = int(split_str)
  3454. else:
  3455. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3456. if n < 0:
  3457. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3458. return n
  3459. def main() -> None:
  3460. args = parse_args()
  3461. if args.verbose:
  3462. logging.basicConfig(level=logging.DEBUG)
  3463. else:
  3464. logging.basicConfig(level=logging.INFO)
  3465. dir_model = args.model
  3466. if not dir_model.is_dir():
  3467. logger.error(f'Error: {args.model} is not a directory')
  3468. sys.exit(1)
  3469. ftype_map: dict[str, gguf.LlamaFileType] = {
  3470. "f32": gguf.LlamaFileType.ALL_F32,
  3471. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3472. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3473. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3474. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3475. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3476. "auto": gguf.LlamaFileType.GUESSED,
  3477. }
  3478. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3479. if args.use_temp_file and is_split:
  3480. logger.error("Error: Cannot use temp file when splitting")
  3481. sys.exit(1)
  3482. if args.outfile is not None:
  3483. fname_out = args.outfile
  3484. else:
  3485. fname_out = dir_model
  3486. logger.info(f"Loading model: {dir_model.name}")
  3487. hparams = Model.load_hparams(dir_model)
  3488. with torch.inference_mode():
  3489. output_type = ftype_map[args.outtype]
  3490. model_architecture = hparams["architectures"][0]
  3491. try:
  3492. model_class = Model.from_model_architecture(model_architecture)
  3493. except NotImplementedError:
  3494. logger.error(f"Model {model_architecture} is not supported")
  3495. sys.exit(1)
  3496. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3497. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3498. eager=args.no_lazy,
  3499. metadata_override=args.metadata, model_name=args.model_name,
  3500. split_max_tensors=args.split_max_tensors,
  3501. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3502. small_first_shard=args.no_tensor_first_split)
  3503. if args.vocab_only:
  3504. logger.info("Exporting model vocab...")
  3505. model_instance.write_vocab()
  3506. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3507. else:
  3508. logger.info("Exporting model...")
  3509. model_instance.write()
  3510. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3511. logger.info(f"Model successfully exported to {out_path}")
  3512. if __name__ == '__main__':
  3513. main()