| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563 |
- from __future__ import annotations
- from enum import Enum, IntEnum, auto
- from typing import Any
- #
- # constants
- #
- GGUF_MAGIC = 0x46554747 # "GGUF"
- GGUF_VERSION = 3
- GGUF_DEFAULT_ALIGNMENT = 32
- GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
- #
- # metadata keys
- #
- class Keys:
- class General:
- TYPE = "general.type"
- ARCHITECTURE = "general.architecture"
- QUANTIZATION_VERSION = "general.quantization_version"
- ALIGNMENT = "general.alignment"
- FILE_TYPE = "general.file_type"
- # Authorship Metadata
- NAME = "general.name"
- AUTHOR = "general.author"
- VERSION = "general.version"
- ORGANIZATION = "general.organization"
- FINETUNE = "general.finetune"
- BASENAME = "general.basename"
- DESCRIPTION = "general.description"
- QUANTIZED_BY = "general.quantized_by"
- SIZE_LABEL = "general.size_label"
- # Licensing details
- LICENSE = "general.license"
- LICENSE_NAME = "general.license.name"
- LICENSE_LINK = "general.license.link"
- # Typically represents the converted GGUF repo (Unless native)
- URL = "general.url" # Model Website/Paper
- DOI = "general.doi"
- UUID = "general.uuid"
- REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
- # Model Source during conversion
- SOURCE_URL = "general.source.url" # Model Website/Paper
- SOURCE_DOI = "general.source.doi"
- SOURCE_UUID = "general.source.uuid"
- SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
- # Base Model Source. There can be more than one source if it's a merged
- # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
- # tracing linage of models as it is finetuned or merged over time.
- BASE_MODEL_COUNT = "general.base_model.count"
- BASE_MODEL_NAME = "general.base_model.{id}.name"
- BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
- BASE_MODEL_VERSION = "general.base_model.{id}.version"
- BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
- BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
- BASE_MODEL_DOI = "general.base_model.{id}.doi"
- BASE_MODEL_UUID = "general.base_model.{id}.uuid"
- BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
- # Array based KV stores
- TAGS = "general.tags"
- LANGUAGES = "general.languages"
- DATASETS = "general.datasets"
- class LLM:
- VOCAB_SIZE = "{arch}.vocab_size"
- CONTEXT_LENGTH = "{arch}.context_length"
- EMBEDDING_LENGTH = "{arch}.embedding_length"
- BLOCK_COUNT = "{arch}.block_count"
- LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
- FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
- EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
- EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
- USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
- TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
- EXPERT_COUNT = "{arch}.expert_count"
- EXPERT_USED_COUNT = "{arch}.expert_used_count"
- EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
- EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
- POOLING_TYPE = "{arch}.pooling_type"
- LOGIT_SCALE = "{arch}.logit_scale"
- DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
- ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
- FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
- RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
- TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
- TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
- RESIDUAL_SCALE = "{arch}.residual_scale"
- EMBEDDING_SCALE = "{arch}.embedding_scale"
- class Attention:
- HEAD_COUNT = "{arch}.attention.head_count"
- HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
- MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
- CLAMP_KQV = "{arch}.attention.clamp_kqv"
- KEY_LENGTH = "{arch}.attention.key_length"
- VALUE_LENGTH = "{arch}.attention.value_length"
- LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
- LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
- CAUSAL = "{arch}.attention.causal"
- Q_LORA_RANK = "{arch}.attention.q_lora_rank"
- KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
- REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
- SLIDING_WINDOW = "{arch}.attention.sliding_window"
- SCALE = "{arch}.attention.scale"
- class Rope:
- DIMENSION_COUNT = "{arch}.rope.dimension_count"
- FREQ_BASE = "{arch}.rope.freq_base"
- SCALING_TYPE = "{arch}.rope.scaling.type"
- SCALING_FACTOR = "{arch}.rope.scaling.factor"
- SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
- SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
- SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
- SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
- class Split:
- LLM_KV_SPLIT_NO = "split.no"
- LLM_KV_SPLIT_COUNT = "split.count"
- LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
- class SSM:
- CONV_KERNEL = "{arch}.ssm.conv_kernel"
- INNER_SIZE = "{arch}.ssm.inner_size"
- STATE_SIZE = "{arch}.ssm.state_size"
- TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
- DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
- class WKV:
- HEAD_SIZE = "{arch}.wkv.head_size"
- class Tokenizer:
- MODEL = "tokenizer.ggml.model"
- PRE = "tokenizer.ggml.pre"
- LIST = "tokenizer.ggml.tokens"
- TOKEN_TYPE = "tokenizer.ggml.token_type"
- TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
- SCORES = "tokenizer.ggml.scores"
- MERGES = "tokenizer.ggml.merges"
- BOS_ID = "tokenizer.ggml.bos_token_id"
- EOS_ID = "tokenizer.ggml.eos_token_id"
- UNK_ID = "tokenizer.ggml.unknown_token_id"
- SEP_ID = "tokenizer.ggml.seperator_token_id"
- PAD_ID = "tokenizer.ggml.padding_token_id"
- CLS_ID = "tokenizer.ggml.cls_token_id"
- MASK_ID = "tokenizer.ggml.mask_token_id"
- ADD_BOS = "tokenizer.ggml.add_bos_token"
- ADD_EOS = "tokenizer.ggml.add_eos_token"
- ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
- REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
- PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
- HF_JSON = "tokenizer.huggingface.json"
- RWKV = "tokenizer.rwkv.world"
- CHAT_TEMPLATE = "tokenizer.chat_template"
- CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
- CHAT_TEMPLATES = "tokenizer.chat_templates"
- # FIM/Infill special tokens constants
- PREFIX_ID = "tokenizer.ggml.prefix_token_id"
- SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
- MIDDLE_ID = "tokenizer.ggml.middle_token_id"
- EOT_ID = "tokenizer.ggml.eot_token_id"
- EOM_ID = "tokenizer.ggml.eom_token_id"
- class Adapter:
- TYPE = "adapter.type"
- LORA_ALPHA = "adapter.lora.alpha"
- #
- # recommended mapping of model tensor names for storage in gguf
- #
- class GGUFType:
- MODEL = "model"
- ADAPTER = "adapter"
- class MODEL_ARCH(IntEnum):
- LLAMA = auto()
- FALCON = auto()
- BAICHUAN = auto()
- GROK = auto()
- GPT2 = auto()
- GPTJ = auto()
- GPTNEOX = auto()
- MPT = auto()
- STARCODER = auto()
- REFACT = auto()
- BERT = auto()
- NOMIC_BERT = auto()
- JINA_BERT_V2 = auto()
- BLOOM = auto()
- STABLELM = auto()
- QWEN = auto()
- QWEN2 = auto()
- QWEN2MOE = auto()
- PHI2 = auto()
- PHI3 = auto()
- PLAMO = auto()
- CODESHELL = auto()
- ORION = auto()
- INTERNLM2 = auto()
- MINICPM = auto()
- MINICPM3 = auto()
- GEMMA = auto()
- GEMMA2 = auto()
- STARCODER2 = auto()
- RWKV6 = auto()
- MAMBA = auto()
- XVERSE = auto()
- COMMAND_R = auto()
- DBRX = auto()
- OLMO = auto()
- OLMOE = auto()
- OPENELM = auto()
- ARCTIC = auto()
- DEEPSEEK2 = auto()
- CHATGLM = auto()
- BITNET = auto()
- T5 = auto()
- T5ENCODER = auto()
- JAIS = auto()
- NEMOTRON = auto()
- EXAONE = auto()
- GRANITE = auto()
- GRANITE_MOE = auto()
- class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- TOKEN_EMBD_NORM = auto()
- TOKEN_TYPES = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ROPE_FACTORS_LONG = auto()
- ROPE_FACTORS_SHORT = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_OUT_NORM = auto()
- ATTN_POST_NORM = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE_INP = auto()
- FFN_GATE_INP_SHEXP = auto()
- FFN_NORM = auto()
- FFN_PRE_NORM = auto()
- FFN_POST_NORM = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_ACT = auto()
- FFN_NORM_EXP = auto()
- FFN_GATE_EXP = auto()
- FFN_DOWN_EXP = auto()
- FFN_UP_EXP = auto()
- FFN_GATE_SHEXP = auto()
- FFN_DOWN_SHEXP = auto()
- FFN_UP_SHEXP = auto()
- ATTN_Q_NORM = auto()
- ATTN_K_NORM = auto()
- LAYER_OUT_NORM = auto()
- SSM_IN = auto()
- SSM_CONV1D = auto()
- SSM_X = auto()
- SSM_DT = auto()
- SSM_A = auto()
- SSM_D = auto()
- SSM_OUT = auto()
- TIME_MIX_W1 = auto()
- TIME_MIX_W2 = auto()
- TIME_MIX_LERP_X = auto()
- TIME_MIX_LERP_K = auto()
- TIME_MIX_LERP_V = auto()
- TIME_MIX_LERP_R = auto()
- TIME_MIX_LERP_G = auto()
- TIME_MIX_LERP_W = auto()
- TIME_MIX_FIRST = auto()
- TIME_MIX_DECAY = auto()
- TIME_MIX_DECAY_W1 = auto()
- TIME_MIX_DECAY_W2 = auto()
- TIME_MIX_KEY = auto()
- TIME_MIX_VALUE = auto()
- TIME_MIX_RECEPTANCE = auto()
- TIME_MIX_GATE = auto()
- TIME_MIX_LN = auto()
- TIME_MIX_OUTPUT = auto()
- CHANNEL_MIX_LERP_K = auto()
- CHANNEL_MIX_LERP_R = auto()
- CHANNEL_MIX_KEY = auto()
- CHANNEL_MIX_RECEPTANCE = auto()
- CHANNEL_MIX_VALUE = auto()
- ATTN_Q_A = auto()
- ATTN_Q_B = auto()
- ATTN_KV_A_MQA = auto()
- ATTN_KV_B = auto()
- ATTN_Q_A_NORM = auto()
- ATTN_KV_A_NORM = auto()
- FFN_SUB_NORM = auto()
- ATTN_SUB_NORM = auto()
- DEC_ATTN_NORM = auto()
- DEC_ATTN_Q = auto()
- DEC_ATTN_K = auto()
- DEC_ATTN_V = auto()
- DEC_ATTN_OUT = auto()
- DEC_ATTN_REL_B = auto()
- DEC_CROSS_ATTN_NORM = auto()
- DEC_CROSS_ATTN_Q = auto()
- DEC_CROSS_ATTN_K = auto()
- DEC_CROSS_ATTN_V = auto()
- DEC_CROSS_ATTN_OUT = auto()
- DEC_CROSS_ATTN_REL_B = auto()
- DEC_FFN_NORM = auto()
- DEC_FFN_GATE = auto()
- DEC_FFN_DOWN = auto()
- DEC_FFN_UP = auto()
- DEC_OUTPUT_NORM = auto()
- ENC_ATTN_NORM = auto()
- ENC_ATTN_Q = auto()
- ENC_ATTN_K = auto()
- ENC_ATTN_V = auto()
- ENC_ATTN_OUT = auto()
- ENC_ATTN_REL_B = auto()
- ENC_FFN_NORM = auto()
- ENC_FFN_GATE = auto()
- ENC_FFN_DOWN = auto()
- ENC_FFN_UP = auto()
- ENC_OUTPUT_NORM = auto()
- MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
- MODEL_ARCH.LLAMA: "llama",
- MODEL_ARCH.FALCON: "falcon",
- MODEL_ARCH.BAICHUAN: "baichuan",
- MODEL_ARCH.GROK: "grok",
- MODEL_ARCH.GPT2: "gpt2",
- MODEL_ARCH.GPTJ: "gptj",
- MODEL_ARCH.GPTNEOX: "gptneox",
- MODEL_ARCH.MPT: "mpt",
- MODEL_ARCH.STARCODER: "starcoder",
- MODEL_ARCH.REFACT: "refact",
- MODEL_ARCH.BERT: "bert",
- MODEL_ARCH.NOMIC_BERT: "nomic-bert",
- MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
- MODEL_ARCH.BLOOM: "bloom",
- MODEL_ARCH.STABLELM: "stablelm",
- MODEL_ARCH.QWEN: "qwen",
- MODEL_ARCH.QWEN2: "qwen2",
- MODEL_ARCH.QWEN2MOE: "qwen2moe",
- MODEL_ARCH.PHI2: "phi2",
- MODEL_ARCH.PHI3: "phi3",
- MODEL_ARCH.PLAMO: "plamo",
- MODEL_ARCH.CODESHELL: "codeshell",
- MODEL_ARCH.ORION: "orion",
- MODEL_ARCH.INTERNLM2: "internlm2",
- MODEL_ARCH.MINICPM: "minicpm",
- MODEL_ARCH.MINICPM3: "minicpm3",
- MODEL_ARCH.GEMMA: "gemma",
- MODEL_ARCH.GEMMA2: "gemma2",
- MODEL_ARCH.STARCODER2: "starcoder2",
- MODEL_ARCH.RWKV6: "rwkv6",
- MODEL_ARCH.MAMBA: "mamba",
- MODEL_ARCH.XVERSE: "xverse",
- MODEL_ARCH.COMMAND_R: "command-r",
- MODEL_ARCH.DBRX: "dbrx",
- MODEL_ARCH.OLMO: "olmo",
- MODEL_ARCH.OLMOE: "olmoe",
- MODEL_ARCH.OPENELM: "openelm",
- MODEL_ARCH.ARCTIC: "arctic",
- MODEL_ARCH.DEEPSEEK2: "deepseek2",
- MODEL_ARCH.CHATGLM: "chatglm",
- MODEL_ARCH.BITNET: "bitnet",
- MODEL_ARCH.T5: "t5",
- MODEL_ARCH.T5ENCODER: "t5encoder",
- MODEL_ARCH.JAIS: "jais",
- MODEL_ARCH.NEMOTRON: "nemotron",
- MODEL_ARCH.EXAONE: "exaone",
- MODEL_ARCH.GRANITE: "granite",
- MODEL_ARCH.GRANITE_MOE: "granitemoe",
- }
- TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
- MODEL_TENSOR.TOKEN_TYPES: "token_types",
- MODEL_TENSOR.POS_EMBD: "position_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
- MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
- MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
- MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
- MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
- MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
- MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
- MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
- MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
- MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
- MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
- MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
- MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
- MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
- MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
- MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
- MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
- MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
- MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
- MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
- MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
- MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
- MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
- MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
- MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
- MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
- MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
- MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
- MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
- MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
- MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
- MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
- MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
- MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
- MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
- MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
- MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
- MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
- MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
- MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
- MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
- MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
- MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
- MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
- MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
- MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
- MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
- MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
- MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
- MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
- MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
- MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
- MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
- MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
- MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
- MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
- MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
- MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
- MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
- MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
- MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
- MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
- MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
- MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
- MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
- MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
- MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
- MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
- MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
- MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
- MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
- MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
- MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
- MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
- MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
- MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
- MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
- MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
- MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
- MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
- MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
- }
- MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.GROK: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.GPTNEOX: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.FALCON: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_NORM_2,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BAICHUAN: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.STARCODER: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BERT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.TOKEN_TYPES,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.NOMIC_BERT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.TOKEN_TYPES,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.JINA_BERT_V2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.TOKEN_TYPES,
- MODEL_TENSOR.ATTN_NORM_2,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.MPT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_ACT,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.POS_EMBD,
- ],
- MODEL_ARCH.GPTJ: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.REFACT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BLOOM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.STABLELM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- ],
- MODEL_ARCH.QWEN: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.QWEN2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.QWEN2MOE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- MODEL_TENSOR.FFN_GATE_INP_SHEXP,
- MODEL_TENSOR.FFN_GATE_SHEXP,
- MODEL_TENSOR.FFN_DOWN_SHEXP,
- MODEL_TENSOR.FFN_UP_SHEXP,
- ],
- MODEL_ARCH.PLAMO: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.GPT2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.PHI2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.PHI3: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.CODESHELL: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.ORION: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.INTERNLM2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.MINICPM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.MINICPM3: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q_A,
- MODEL_TENSOR.ATTN_Q_B,
- MODEL_TENSOR.ATTN_KV_A_MQA,
- MODEL_TENSOR.ATTN_KV_B,
- MODEL_TENSOR.ATTN_Q_A_NORM,
- MODEL_TENSOR.ATTN_KV_A_NORM,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.GEMMA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_NORM,
- ],
- MODEL_ARCH.GEMMA2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_POST_NORM,
- MODEL_TENSOR.FFN_PRE_NORM,
- MODEL_TENSOR.FFN_POST_NORM,
- ],
- MODEL_ARCH.STARCODER2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.RWKV6: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_NORM_2,
- MODEL_TENSOR.TIME_MIX_W1,
- MODEL_TENSOR.TIME_MIX_W2,
- MODEL_TENSOR.TIME_MIX_LERP_X,
- MODEL_TENSOR.TIME_MIX_LERP_K,
- MODEL_TENSOR.TIME_MIX_LERP_V,
- MODEL_TENSOR.TIME_MIX_LERP_R,
- MODEL_TENSOR.TIME_MIX_LERP_G,
- MODEL_TENSOR.TIME_MIX_LERP_W,
- MODEL_TENSOR.TIME_MIX_FIRST,
- MODEL_TENSOR.TIME_MIX_DECAY,
- MODEL_TENSOR.TIME_MIX_DECAY_W1,
- MODEL_TENSOR.TIME_MIX_DECAY_W2,
- MODEL_TENSOR.TIME_MIX_KEY,
- MODEL_TENSOR.TIME_MIX_VALUE,
- MODEL_TENSOR.TIME_MIX_RECEPTANCE,
- MODEL_TENSOR.TIME_MIX_GATE,
- MODEL_TENSOR.TIME_MIX_LN,
- MODEL_TENSOR.TIME_MIX_OUTPUT,
- MODEL_TENSOR.CHANNEL_MIX_LERP_K,
- MODEL_TENSOR.CHANNEL_MIX_LERP_R,
- MODEL_TENSOR.CHANNEL_MIX_KEY,
- MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
- MODEL_TENSOR.CHANNEL_MIX_VALUE,
- ],
- MODEL_ARCH.MAMBA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.SSM_IN,
- MODEL_TENSOR.SSM_CONV1D,
- MODEL_TENSOR.SSM_X,
- MODEL_TENSOR.SSM_DT,
- MODEL_TENSOR.SSM_A,
- MODEL_TENSOR.SSM_D,
- MODEL_TENSOR.SSM_OUT,
- ],
- MODEL_ARCH.XVERSE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.COMMAND_R: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.ATTN_Q_NORM,
- ],
- MODEL_ARCH.DBRX: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.OLMO: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.OLMOE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- ],
- MODEL_ARCH.OPENELM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.ARCTIC: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_NORM_EXP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.DEEPSEEK2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_Q_A,
- MODEL_TENSOR.ATTN_Q_B,
- MODEL_TENSOR.ATTN_KV_A_MQA,
- MODEL_TENSOR.ATTN_KV_B,
- MODEL_TENSOR.ATTN_Q_A_NORM,
- MODEL_TENSOR.ATTN_KV_A_NORM,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- MODEL_TENSOR.FFN_GATE_SHEXP,
- MODEL_TENSOR.FFN_DOWN_SHEXP,
- MODEL_TENSOR.FFN_UP_SHEXP,
- ],
- MODEL_ARCH.CHATGLM : [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BITNET: [
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_SUB_NORM,
- MODEL_TENSOR.FFN_SUB_NORM,
- ],
- MODEL_ARCH.T5: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.DEC_ATTN_NORM,
- MODEL_TENSOR.DEC_ATTN_Q,
- MODEL_TENSOR.DEC_ATTN_K,
- MODEL_TENSOR.DEC_ATTN_V,
- MODEL_TENSOR.DEC_ATTN_OUT,
- MODEL_TENSOR.DEC_ATTN_REL_B,
- MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
- MODEL_TENSOR.DEC_CROSS_ATTN_Q,
- MODEL_TENSOR.DEC_CROSS_ATTN_K,
- MODEL_TENSOR.DEC_CROSS_ATTN_V,
- MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
- MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
- MODEL_TENSOR.DEC_FFN_NORM,
- MODEL_TENSOR.DEC_FFN_GATE,
- MODEL_TENSOR.DEC_FFN_DOWN,
- MODEL_TENSOR.DEC_FFN_UP,
- MODEL_TENSOR.DEC_OUTPUT_NORM,
- MODEL_TENSOR.ENC_ATTN_NORM,
- MODEL_TENSOR.ENC_ATTN_Q,
- MODEL_TENSOR.ENC_ATTN_K,
- MODEL_TENSOR.ENC_ATTN_V,
- MODEL_TENSOR.ENC_ATTN_OUT,
- MODEL_TENSOR.ENC_ATTN_REL_B,
- MODEL_TENSOR.ENC_FFN_NORM,
- MODEL_TENSOR.ENC_FFN_GATE,
- MODEL_TENSOR.ENC_FFN_DOWN,
- MODEL_TENSOR.ENC_FFN_UP,
- MODEL_TENSOR.ENC_OUTPUT_NORM,
- ],
- MODEL_ARCH.T5ENCODER: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ENC_ATTN_NORM,
- MODEL_TENSOR.ENC_ATTN_Q,
- MODEL_TENSOR.ENC_ATTN_K,
- MODEL_TENSOR.ENC_ATTN_V,
- MODEL_TENSOR.ENC_ATTN_OUT,
- MODEL_TENSOR.ENC_ATTN_REL_B,
- MODEL_TENSOR.ENC_FFN_NORM,
- MODEL_TENSOR.ENC_FFN_GATE,
- MODEL_TENSOR.ENC_FFN_DOWN,
- MODEL_TENSOR.ENC_FFN_UP,
- MODEL_TENSOR.ENC_OUTPUT_NORM,
- ],
- MODEL_ARCH.JAIS: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.NEMOTRON: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.EXAONE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.GRANITE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.GRANITE_MOE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- # TODO
- }
- # tensors that will not be serialized
- MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.BAICHUAN: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.QWEN: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.CODESHELL: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.ORION: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.STARCODER2: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.XVERSE: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.DEEPSEEK2: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.CHATGLM: [
- MODEL_TENSOR.ROPE_FREQS,
- ],
- MODEL_ARCH.NEMOTRON: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- }
- #
- # types
- #
- class TokenType(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- class RopeScalingType(Enum):
- NONE = 'none'
- LINEAR = 'linear'
- YARN = 'yarn'
- class PoolingType(IntEnum):
- NONE = 0
- MEAN = 1
- CLS = 2
- class GGMLQuantizationType(IntEnum):
- F32 = 0
- F16 = 1
- Q4_0 = 2
- Q4_1 = 3
- Q5_0 = 6
- Q5_1 = 7
- Q8_0 = 8
- Q8_1 = 9
- Q2_K = 10
- Q3_K = 11
- Q4_K = 12
- Q5_K = 13
- Q6_K = 14
- Q8_K = 15
- IQ2_XXS = 16
- IQ2_XS = 17
- IQ3_XXS = 18
- IQ1_S = 19
- IQ4_NL = 20
- IQ3_S = 21
- IQ2_S = 22
- IQ4_XS = 23
- I8 = 24
- I16 = 25
- I32 = 26
- I64 = 27
- F64 = 28
- IQ1_M = 29
- BF16 = 30
- Q4_0_4_4 = 31
- Q4_0_4_8 = 32
- Q4_0_8_8 = 33
- TQ1_0 = 34
- TQ2_0 = 35
- # TODO: add GGMLFileType from ggml_ftype in ggml.h
- # from llama_ftype in llama.h
- # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
- class LlamaFileType(IntEnum):
- ALL_F32 = 0
- MOSTLY_F16 = 1 # except 1d tensors
- MOSTLY_Q4_0 = 2 # except 1d tensors
- MOSTLY_Q4_1 = 3 # except 1d tensors
- # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
- # MOSTLY_Q4_2 = 5 # support has been removed
- # MOSTLY_Q4_3 = 6 # support has been removed
- MOSTLY_Q8_0 = 7 # except 1d tensors
- MOSTLY_Q5_0 = 8 # except 1d tensors
- MOSTLY_Q5_1 = 9 # except 1d tensors
- MOSTLY_Q2_K = 10 # except 1d tensors
- MOSTLY_Q3_K_S = 11 # except 1d tensors
- MOSTLY_Q3_K_M = 12 # except 1d tensors
- MOSTLY_Q3_K_L = 13 # except 1d tensors
- MOSTLY_Q4_K_S = 14 # except 1d tensors
- MOSTLY_Q4_K_M = 15 # except 1d tensors
- MOSTLY_Q5_K_S = 16 # except 1d tensors
- MOSTLY_Q5_K_M = 17 # except 1d tensors
- MOSTLY_Q6_K = 18 # except 1d tensors
- MOSTLY_IQ2_XXS = 19 # except 1d tensors
- MOSTLY_IQ2_XS = 20 # except 1d tensors
- MOSTLY_Q2_K_S = 21 # except 1d tensors
- MOSTLY_IQ3_XS = 22 # except 1d tensors
- MOSTLY_IQ3_XXS = 23 # except 1d tensors
- MOSTLY_IQ1_S = 24 # except 1d tensors
- MOSTLY_IQ4_NL = 25 # except 1d tensors
- MOSTLY_IQ3_S = 26 # except 1d tensors
- MOSTLY_IQ3_M = 27 # except 1d tensors
- MOSTLY_IQ2_S = 28 # except 1d tensors
- MOSTLY_IQ2_M = 29 # except 1d tensors
- MOSTLY_IQ4_XS = 30 # except 1d tensors
- MOSTLY_IQ1_M = 31 # except 1d tensors
- MOSTLY_BF16 = 32 # except 1d tensors
- MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
- MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
- MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
- MOSTLY_TQ1_0 = 36 # except 1d tensors
- MOSTLY_TQ2_0 = 37 # except 1d tensors
- GUESSED = 1024 # not specified in the model file
- class GGUFEndian(IntEnum):
- LITTLE = 0
- BIG = 1
- class GGUFValueType(IntEnum):
- UINT8 = 0
- INT8 = 1
- UINT16 = 2
- INT16 = 3
- UINT32 = 4
- INT32 = 5
- FLOAT32 = 6
- BOOL = 7
- STRING = 8
- ARRAY = 9
- UINT64 = 10
- INT64 = 11
- FLOAT64 = 12
- @staticmethod
- def get_type(val: Any) -> GGUFValueType:
- if isinstance(val, (str, bytes, bytearray)):
- return GGUFValueType.STRING
- elif isinstance(val, list):
- return GGUFValueType.ARRAY
- elif isinstance(val, float):
- return GGUFValueType.FLOAT32
- elif isinstance(val, bool):
- return GGUFValueType.BOOL
- elif isinstance(val, int):
- return GGUFValueType.INT32
- # TODO: need help with 64-bit types in Python
- else:
- raise ValueError(f"Unknown type: {type(val)}")
- # Items here are (block size, type size)
- QK_K = 256
- GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
- GGMLQuantizationType.F32: (1, 4),
- GGMLQuantizationType.F16: (1, 2),
- GGMLQuantizationType.Q4_0: (32, 2 + 16),
- GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
- GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
- GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
- GGMLQuantizationType.Q8_0: (32, 2 + 32),
- GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
- GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
- GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
- GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
- GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
- GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
- GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
- GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
- GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
- GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
- GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
- GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
- GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
- GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
- GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
- GGMLQuantizationType.I8: (1, 1),
- GGMLQuantizationType.I16: (1, 2),
- GGMLQuantizationType.I32: (1, 4),
- GGMLQuantizationType.I64: (1, 8),
- GGMLQuantizationType.F64: (1, 8),
- GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
- GGMLQuantizationType.BF16: (1, 2),
- GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
- GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
- GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
- GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
- GGMLQuantizationType.TQ2_0: (256, 2 + 64),
- }
- # Aliases for backward compatibility.
- # general
- KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
- KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
- KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
- KEY_GENERAL_NAME = Keys.General.NAME
- KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
- KEY_GENERAL_URL = Keys.General.URL
- KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
- KEY_GENERAL_LICENSE = Keys.General.LICENSE
- KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
- KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
- # LLM
- KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
- KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
- KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
- KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
- KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
- KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
- KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
- # attention
- KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
- KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
- KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
- KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
- KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
- KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
- # RoPE
- KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
- KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
- KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
- KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
- KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
- KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
- # SSM
- KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
- KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
- KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
- KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
- KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
- # tokenization
- KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
- KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
- KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
- KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
- KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
- KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
- KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
- KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
- KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
- KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
- KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
- KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
- KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
- KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
- KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
- KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
- KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
- KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
- KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
- KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|