convert-hf-to-gguf.py 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None):
  53. if type(self) is Model:
  54. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  55. self.dir_model = dir_model
  56. self.ftype = ftype
  57. self.is_big_endian = is_big_endian
  58. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  59. self.use_temp_file = use_temp_file
  60. self.lazy = not eager
  61. self.model_name = model_name
  62. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  63. self.is_safetensors = len(self.part_names) > 0
  64. if not self.is_safetensors:
  65. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  66. self.hparams = Model.load_hparams(self.dir_model)
  67. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  68. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  69. self.tensor_names = None
  70. if self.ftype == gguf.LlamaFileType.GUESSED:
  71. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  72. _, first_tensor = next(self.get_tensors())
  73. if first_tensor.dtype == torch.float16:
  74. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  75. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  76. else:
  77. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  78. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  79. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  80. ftype_lw: str = ftype_up.lower()
  81. # allow templating the file name with the output ftype, useful with the "auto" ftype
  82. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  83. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  84. @classmethod
  85. def __init_subclass__(cls):
  86. # can't use an abstract property, because overriding it without type errors
  87. # would require using decorated functions instead of simply defining the property
  88. if "model_arch" not in cls.__dict__:
  89. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  90. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  91. key = next((k for k in keys if k in self.hparams), None)
  92. if key is not None:
  93. return self.hparams[key]
  94. if optional:
  95. return None
  96. raise KeyError(f"could not find any of: {keys}")
  97. def set_vocab(self):
  98. self._set_vocab_gpt2()
  99. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  100. tensor_names_from_parts: set[str] = set()
  101. if len(self.part_names) > 1:
  102. self.tensor_names = set()
  103. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  104. index_name += ".index.json"
  105. logger.info(f"gguf: loading model weight map from '{index_name}'")
  106. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  107. index: dict[str, Any] = json.load(f)
  108. weight_map = index.get("weight_map")
  109. if weight_map is None or not isinstance(weight_map, dict):
  110. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  111. self.tensor_names.update(weight_map.keys())
  112. else:
  113. self.tensor_names = tensor_names_from_parts
  114. for part_name in self.part_names:
  115. logger.info(f"gguf: loading model part '{part_name}'")
  116. ctx: ContextManager[Any]
  117. if self.is_safetensors:
  118. from safetensors import safe_open
  119. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  120. else:
  121. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  122. with ctx as model_part:
  123. tensor_names_from_parts.update(model_part.keys())
  124. for name in model_part.keys():
  125. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  126. if self.lazy:
  127. data = LazyTorchTensor.from_eager(data)
  128. yield name, data
  129. # only verify tensor name presence; it doesn't matter if they are not in the right files
  130. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  131. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  132. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  133. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  134. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  135. name: str = gguf.TENSOR_NAMES[key]
  136. if "{bid}" in name:
  137. assert bid is not None
  138. name = name.format(bid=bid)
  139. return name + suffix
  140. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  141. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  142. return False
  143. key_name: str = gguf.TENSOR_NAMES[key]
  144. if "{bid}" in key_name:
  145. if bid is None:
  146. return False
  147. key_name = key_name.format(bid=bid)
  148. else:
  149. if bid is not None:
  150. return False
  151. return name == (key_name + suffix)
  152. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  153. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  154. if new_name is None:
  155. raise ValueError(f"Can not map tensor {name!r}")
  156. return new_name
  157. def set_gguf_parameters(self):
  158. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  159. self.gguf_writer.add_block_count(self.block_count)
  160. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  161. self.gguf_writer.add_context_length(n_ctx)
  162. logger.info(f"gguf: context length = {n_ctx}")
  163. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  164. self.gguf_writer.add_embedding_length(n_embd)
  165. logger.info(f"gguf: embedding length = {n_embd}")
  166. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  167. self.gguf_writer.add_feed_forward_length(n_ff)
  168. logger.info(f"gguf: feed forward length = {n_ff}")
  169. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  170. self.gguf_writer.add_head_count(n_head)
  171. logger.info(f"gguf: head count = {n_head}")
  172. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  173. self.gguf_writer.add_head_count_kv(n_head_kv)
  174. logger.info(f"gguf: key-value head count = {n_head_kv}")
  175. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  176. self.gguf_writer.add_rope_freq_base(rope_theta)
  177. logger.info(f"gguf: rope theta = {rope_theta}")
  178. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  179. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  180. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  181. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  182. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  183. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  184. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  185. self.gguf_writer.add_expert_count(n_experts)
  186. logger.info(f"gguf: expert count = {n_experts}")
  187. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  188. self.gguf_writer.add_expert_used_count(n_experts_used)
  189. logger.info(f"gguf: experts used count = {n_experts_used}")
  190. self.gguf_writer.add_file_type(self.ftype)
  191. logger.info(f"gguf: file type = {self.ftype}")
  192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  193. del bid # unused
  194. return [(self.map_tensor_name(name), data_torch)]
  195. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  196. del name, new_name, bid, n_dims # unused
  197. return False
  198. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  199. del name, new_name, bid, n_dims # unused
  200. return False
  201. def write_tensors(self):
  202. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  203. for name, data_torch in self.get_tensors():
  204. # we don't need these
  205. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  206. continue
  207. old_dtype = data_torch.dtype
  208. # convert any unsupported data types to float32
  209. if data_torch.dtype not in (torch.float16, torch.float32):
  210. data_torch = data_torch.to(torch.float32)
  211. # use the first number-like part of the tensor name as the block id
  212. bid = None
  213. for part in name.split("."):
  214. if part.isdecimal():
  215. bid = int(part)
  216. break
  217. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  218. data: np.ndarray = data # type hint
  219. n_dims = len(data.shape)
  220. data_dtype = data.dtype
  221. data_qtype: gguf.GGMLQuantizationType | None = None
  222. # when both are True, f32 should win
  223. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  224. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  225. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  226. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  227. extra_f32 = any(cond for cond in (
  228. extra_f32,
  229. n_dims == 1,
  230. new_name.endswith("_norm.weight"),
  231. ))
  232. # Some tensor types are always in float32
  233. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  234. gguf.MODEL_TENSOR.FFN_GATE_INP,
  235. gguf.MODEL_TENSOR.POS_EMBD,
  236. gguf.MODEL_TENSOR.TOKEN_TYPES,
  237. ))
  238. # if f16 desired, convert any float32 2-dim weight tensors to float16
  239. extra_f16 = any(cond for cond in (
  240. extra_f16,
  241. (name.endswith(".weight") and n_dims >= 2),
  242. ))
  243. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  244. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  245. data = gguf.quantize_bf16(data)
  246. assert data.dtype == np.int16
  247. data_qtype = gguf.GGMLQuantizationType.BF16
  248. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  249. data = gguf.quantize_q8_0(data)
  250. assert data.dtype == np.uint8
  251. data_qtype = gguf.GGMLQuantizationType.Q8_0
  252. else: # default to float16 for quantized tensors
  253. if data_dtype != np.float16:
  254. data = data.astype(np.float16)
  255. data_qtype = gguf.GGMLQuantizationType.F16
  256. if data_qtype is None: # by default, convert to float32
  257. if data_dtype != np.float32:
  258. data = data.astype(np.float32)
  259. data_qtype = gguf.GGMLQuantizationType.F32
  260. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  261. # reverse shape to make it similar to the internal ggml dimension order
  262. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  263. # n_dims is implicit in the shape
  264. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  265. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  266. def write(self):
  267. self.write_tensors()
  268. self.gguf_writer.write_header_to_file(self.fname_out)
  269. self.gguf_writer.write_kv_data_to_file()
  270. self.gguf_writer.write_tensors_to_file(progress=True)
  271. self.gguf_writer.close()
  272. def write_vocab(self):
  273. self.gguf_writer.write_header_to_file(self.fname_out)
  274. self.gguf_writer.write_kv_data_to_file()
  275. self.gguf_writer.close()
  276. @staticmethod
  277. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  278. part_names: list[str] = []
  279. for filename in os.listdir(dir_model):
  280. if filename.startswith(prefix) and filename.endswith(suffix):
  281. part_names.append(filename)
  282. part_names.sort()
  283. return part_names
  284. @staticmethod
  285. def load_hparams(dir_model: Path):
  286. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  287. return json.load(f)
  288. @classmethod
  289. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  290. assert names
  291. def func(modelcls: AnyModel) -> AnyModel:
  292. for name in names:
  293. cls._model_classes[name] = modelcls
  294. return modelcls
  295. return func
  296. @classmethod
  297. def from_model_architecture(cls, arch: str) -> type[Model]:
  298. try:
  299. return cls._model_classes[arch]
  300. except KeyError:
  301. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  302. # used for GPT-2 BPE and WordPiece vocabs
  303. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  304. tokens: list[str] = []
  305. toktypes: list[int] = []
  306. from transformers import AutoTokenizer
  307. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  308. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  309. assert max(tokenizer.vocab.values()) < vocab_size
  310. tokpre = self.get_vocab_base_pre(tokenizer)
  311. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  312. added_vocab = tokenizer.get_added_vocab()
  313. for i in range(vocab_size):
  314. if i not in reverse_vocab:
  315. tokens.append(f"[PAD{i}]")
  316. toktypes.append(gguf.TokenType.USER_DEFINED)
  317. elif reverse_vocab[i] in added_vocab:
  318. tokens.append(reverse_vocab[i])
  319. if tokenizer.added_tokens_decoder[i].special:
  320. toktypes.append(gguf.TokenType.CONTROL)
  321. else:
  322. toktypes.append(gguf.TokenType.USER_DEFINED)
  323. else:
  324. tokens.append(reverse_vocab[i])
  325. toktypes.append(gguf.TokenType.NORMAL)
  326. return tokens, toktypes, tokpre
  327. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  328. # do not modify it manually!
  329. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  330. # Marker: Start get_vocab_base_pre
  331. def get_vocab_base_pre(self, tokenizer) -> str:
  332. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  333. # is specific for the BPE pre-tokenizer used by the model
  334. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  335. # use in llama.cpp to implement the same pre-tokenizer
  336. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  337. chktok = tokenizer.encode(chktxt)
  338. chkhsh = sha256(str(chktok).encode()).hexdigest()
  339. logger.debug(f"chktok: {chktok}")
  340. logger.debug(f"chkhsh: {chkhsh}")
  341. res = None
  342. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  343. # or pull the latest version of the model from Huggingface
  344. # don't edit the hashes manually!
  345. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  346. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  347. res = "llama-bpe"
  348. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  349. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  350. res = "deepseek-llm"
  351. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  352. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  353. res = "deepseek-coder"
  354. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  355. # ref: https://huggingface.co/tiiuae/falcon-7b
  356. res = "falcon"
  357. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  358. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  359. res = "bert-bge"
  360. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  361. # ref: https://huggingface.co/mosaicml/mpt-7b
  362. res = "mpt"
  363. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  364. # ref: https://huggingface.co/bigcode/starcoder2-3b
  365. res = "starcoder"
  366. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  367. # ref: https://huggingface.co/openai-community/gpt2
  368. res = "gpt-2"
  369. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  370. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  371. res = "stablelm2"
  372. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  373. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  374. res = "refact"
  375. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  376. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  377. res = "command-r"
  378. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  379. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  380. res = "qwen2"
  381. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  382. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  383. res = "olmo"
  384. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  385. # ref: https://huggingface.co/databricks/dbrx-base
  386. res = "dbrx"
  387. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  388. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  389. res = "jina-v2-en"
  390. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  391. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  392. res = "jina-v2-es"
  393. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  394. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  395. res = "jina-v2-de"
  396. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  397. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  398. res = "smaug-bpe"
  399. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  400. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  401. res = "jina-v2-code"
  402. if res is None:
  403. logger.warning("\n")
  404. logger.warning("**************************************************************************************")
  405. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  406. logger.warning("** There are 2 possible reasons for this:")
  407. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  408. logger.warning("** - the pre-tokenization config has changed upstream")
  409. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  410. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  411. logger.warning("**")
  412. logger.warning(f"** chkhsh: {chkhsh}")
  413. logger.warning("**************************************************************************************")
  414. logger.warning("\n")
  415. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  416. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  417. logger.debug(f"chkhsh: {chkhsh}")
  418. return res
  419. # Marker: End get_vocab_base_pre
  420. def _set_vocab_gpt2(self) -> None:
  421. tokens, toktypes, tokpre = self.get_vocab_base()
  422. self.gguf_writer.add_tokenizer_model("gpt2")
  423. self.gguf_writer.add_tokenizer_pre(tokpre)
  424. self.gguf_writer.add_token_list(tokens)
  425. self.gguf_writer.add_token_types(toktypes)
  426. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  427. special_vocab.add_to_gguf(self.gguf_writer)
  428. def _set_vocab_qwen(self):
  429. dir_model = self.dir_model
  430. hparams = self.hparams
  431. tokens: list[str] = []
  432. toktypes: list[int] = []
  433. from transformers import AutoTokenizer
  434. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  435. vocab_size = hparams["vocab_size"]
  436. assert max(tokenizer.get_vocab().values()) < vocab_size
  437. tokpre = self.get_vocab_base_pre(tokenizer)
  438. merges = []
  439. vocab = {}
  440. mergeable_ranks = tokenizer.mergeable_ranks
  441. for token, rank in mergeable_ranks.items():
  442. vocab[QwenModel.token_bytes_to_string(token)] = rank
  443. if len(token) == 1:
  444. continue
  445. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  446. assert len(merged) == 2
  447. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  448. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  449. added_vocab = tokenizer.special_tokens
  450. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  451. for i in range(vocab_size):
  452. if i not in reverse_vocab:
  453. tokens.append(f"[PAD{i}]")
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. elif reverse_vocab[i] in added_vocab:
  456. tokens.append(reverse_vocab[i])
  457. toktypes.append(gguf.TokenType.CONTROL)
  458. else:
  459. tokens.append(reverse_vocab[i])
  460. toktypes.append(gguf.TokenType.NORMAL)
  461. self.gguf_writer.add_tokenizer_model("gpt2")
  462. self.gguf_writer.add_tokenizer_pre(tokpre)
  463. self.gguf_writer.add_token_list(tokens)
  464. self.gguf_writer.add_token_types(toktypes)
  465. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  466. special_vocab.merges = merges
  467. # only add special tokens when they were not already loaded from config.json
  468. if len(special_vocab.special_token_ids) == 0:
  469. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  470. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  471. # this one is usually not in config.json anyway
  472. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  473. special_vocab.add_to_gguf(self.gguf_writer)
  474. def _set_vocab_sentencepiece(self):
  475. from sentencepiece import SentencePieceProcessor
  476. tokenizer_path = self.dir_model / 'tokenizer.model'
  477. tokens: list[bytes] = []
  478. scores: list[float] = []
  479. toktypes: list[int] = []
  480. if not tokenizer_path.is_file():
  481. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  482. tokenizer = SentencePieceProcessor()
  483. tokenizer.LoadFromFile(str(tokenizer_path))
  484. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  485. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  486. scores: list[float] = [-10000.0] * vocab_size
  487. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  488. for token_id in range(tokenizer.vocab_size()):
  489. piece = tokenizer.IdToPiece(token_id)
  490. text = piece.encode("utf-8")
  491. score = tokenizer.GetScore(token_id)
  492. toktype = SentencePieceTokenTypes.NORMAL
  493. if tokenizer.IsUnknown(token_id):
  494. toktype = SentencePieceTokenTypes.UNKNOWN
  495. elif tokenizer.IsControl(token_id):
  496. toktype = SentencePieceTokenTypes.CONTROL
  497. elif tokenizer.IsUnused(token_id):
  498. toktype = SentencePieceTokenTypes.UNUSED
  499. elif tokenizer.IsByte(token_id):
  500. toktype = SentencePieceTokenTypes.BYTE
  501. tokens[token_id] = text
  502. scores[token_id] = score
  503. toktypes[token_id] = toktype
  504. added_tokens_file = self.dir_model / 'added_tokens.json'
  505. if added_tokens_file.is_file():
  506. with open(added_tokens_file, "r", encoding="utf-8") as f:
  507. added_tokens_json = json.load(f)
  508. for key in added_tokens_json:
  509. token_id = added_tokens_json[key]
  510. if (token_id >= vocab_size):
  511. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  512. continue
  513. tokens[token_id] = key.encode("utf-8")
  514. scores[token_id] = -1000.0
  515. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  516. if vocab_size > len(tokens):
  517. pad_count = vocab_size - len(tokens)
  518. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  519. for i in range(1, pad_count + 1):
  520. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  521. scores.append(-1000.0)
  522. toktypes.append(SentencePieceTokenTypes.UNUSED)
  523. self.gguf_writer.add_tokenizer_model("llama")
  524. self.gguf_writer.add_tokenizer_pre("default")
  525. self.gguf_writer.add_token_list(tokens)
  526. self.gguf_writer.add_token_scores(scores)
  527. self.gguf_writer.add_token_types(toktypes)
  528. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  529. special_vocab.add_to_gguf(self.gguf_writer)
  530. def _set_vocab_llama_hf(self):
  531. vocab = gguf.LlamaHfVocab(self.dir_model)
  532. tokens = []
  533. scores = []
  534. toktypes = []
  535. for text, score, toktype in vocab.all_tokens():
  536. tokens.append(text)
  537. scores.append(score)
  538. toktypes.append(toktype)
  539. assert len(tokens) == vocab.vocab_size
  540. self.gguf_writer.add_tokenizer_model("llama")
  541. self.gguf_writer.add_tokenizer_pre("default")
  542. self.gguf_writer.add_token_list(tokens)
  543. self.gguf_writer.add_token_scores(scores)
  544. self.gguf_writer.add_token_types(toktypes)
  545. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  546. special_vocab.add_to_gguf(self.gguf_writer)
  547. @Model.register("GPTNeoXForCausalLM")
  548. class GPTNeoXModel(Model):
  549. model_arch = gguf.MODEL_ARCH.GPTNEOX
  550. def set_gguf_parameters(self):
  551. block_count = self.hparams["num_hidden_layers"]
  552. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  553. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  554. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  555. self.gguf_writer.add_block_count(block_count)
  556. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  557. self.gguf_writer.add_rope_dimension_count(
  558. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  559. )
  560. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  561. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  562. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  564. del bid # unused
  565. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  566. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  567. tensors: list[tuple[str, Tensor]] = []
  568. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  569. # Map bloom-style qkv_linear to gpt-style qkv_linear
  570. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  571. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  572. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  573. data_torch = torch.cat(
  574. (
  575. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  576. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  577. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  578. ),
  579. dim=0,
  580. )
  581. logger.info("re-format attention.linear_qkv.weight")
  582. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  583. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  584. data_torch = torch.cat(
  585. (
  586. qkv_bias[:, 0, :].reshape((n_embed,)),
  587. qkv_bias[:, 1, :].reshape((n_embed,)),
  588. qkv_bias[:, 2, :].reshape((n_embed,)),
  589. ),
  590. dim=0,
  591. )
  592. logger.info("re-format attention.linear_qkv.bias")
  593. tensors.append((self.map_tensor_name(name), data_torch))
  594. return tensors
  595. @Model.register("BloomForCausalLM")
  596. class BloomModel(Model):
  597. model_arch = gguf.MODEL_ARCH.BLOOM
  598. def set_gguf_parameters(self):
  599. self.gguf_writer.add_name("Bloom")
  600. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  601. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  602. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  603. self.gguf_writer.add_embedding_length(n_embed)
  604. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  605. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  606. self.gguf_writer.add_head_count(n_head)
  607. self.gguf_writer.add_head_count_kv(n_head)
  608. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  609. self.gguf_writer.add_file_type(self.ftype)
  610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  611. del bid # unused
  612. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  613. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  614. name = re.sub(r'transformer\.', '', name)
  615. tensors: list[tuple[str, Tensor]] = []
  616. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  617. # Map bloom-style qkv_linear to gpt-style qkv_linear
  618. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  619. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  620. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  621. data_torch = torch.cat(
  622. (
  623. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  624. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  625. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  626. ),
  627. dim=0,
  628. )
  629. logger.info("re-format attention.linear_qkv.weight")
  630. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  631. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  632. data_torch = torch.cat(
  633. (
  634. qkv_bias[:, 0, :].reshape((n_embed,)),
  635. qkv_bias[:, 1, :].reshape((n_embed,)),
  636. qkv_bias[:, 2, :].reshape((n_embed,)),
  637. ),
  638. dim=0,
  639. )
  640. logger.info("re-format attention.linear_qkv.bias")
  641. tensors.append((self.map_tensor_name(name), data_torch))
  642. if name == "word_embeddings.weight":
  643. assert self.tensor_names is not None
  644. # TODO: tie them at runtime, don't duplicate in the model file
  645. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  646. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  647. return tensors
  648. @Model.register("MPTForCausalLM")
  649. class MPTModel(Model):
  650. model_arch = gguf.MODEL_ARCH.MPT
  651. def set_vocab(self):
  652. try:
  653. self._set_vocab_gpt2()
  654. except Exception:
  655. # Fallback for SEA-LION model
  656. self._set_vocab_sentencepiece()
  657. self.gguf_writer.add_add_bos_token(False)
  658. self.gguf_writer.add_pad_token_id(3)
  659. self.gguf_writer.add_eos_token_id(1)
  660. self.gguf_writer.add_unk_token_id(0)
  661. def set_gguf_parameters(self):
  662. block_count = self.hparams["n_layers"]
  663. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  664. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  665. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  666. self.gguf_writer.add_block_count(block_count)
  667. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  668. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  669. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  670. self.gguf_writer.add_head_count_kv(kv_n_heads)
  671. self.gguf_writer.add_layer_norm_eps(1e-5)
  672. if self.hparams["attn_config"]["clip_qkv"] is not None:
  673. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  674. if self.hparams["attn_config"]["alibi"]:
  675. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  676. else:
  677. self.gguf_writer.add_max_alibi_bias(0.0)
  678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  679. del bid # unused
  680. if "scales" in name:
  681. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  682. new_name = new_name.replace("scales", "act.scales")
  683. else:
  684. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  685. return [(new_name, data_torch)]
  686. @Model.register("OrionForCausalLM")
  687. class OrionModel(Model):
  688. model_arch = gguf.MODEL_ARCH.ORION
  689. def set_vocab(self):
  690. self._set_vocab_sentencepiece()
  691. def set_gguf_parameters(self):
  692. block_count = self.hparams["num_hidden_layers"]
  693. head_count = self.hparams["num_attention_heads"]
  694. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  695. hf_repo = self.hparams.get("_name_or_path", "")
  696. ctx_length = 0
  697. if "max_sequence_length" in self.hparams:
  698. ctx_length = self.hparams["max_sequence_length"]
  699. elif "max_position_embeddings" in self.hparams:
  700. ctx_length = self.hparams["max_position_embeddings"]
  701. elif "model_max_length" in self.hparams:
  702. ctx_length = self.hparams["model_max_length"]
  703. else:
  704. raise ValueError("gguf: can not find ctx length parameter.")
  705. self.gguf_writer.add_file_type(self.ftype)
  706. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  707. self.gguf_writer.add_source_hf_repo(hf_repo)
  708. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  709. self.gguf_writer.add_context_length(ctx_length)
  710. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  711. self.gguf_writer.add_block_count(block_count)
  712. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  713. self.gguf_writer.add_head_count(head_count)
  714. self.gguf_writer.add_head_count_kv(head_count_kv)
  715. # note: config provides rms norm but it is actually layer norm
  716. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  717. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  718. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  719. class BaichuanModel(Model):
  720. model_arch = gguf.MODEL_ARCH.BAICHUAN
  721. def set_vocab(self):
  722. self._set_vocab_sentencepiece()
  723. def set_gguf_parameters(self):
  724. block_count = self.hparams["num_hidden_layers"]
  725. head_count = self.hparams["num_attention_heads"]
  726. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  727. hf_repo = self.hparams.get("_name_or_path", "")
  728. ctx_length = 0
  729. if "max_sequence_length" in self.hparams:
  730. ctx_length = self.hparams["max_sequence_length"]
  731. elif "max_position_embeddings" in self.hparams:
  732. ctx_length = self.hparams["max_position_embeddings"]
  733. elif "model_max_length" in self.hparams:
  734. ctx_length = self.hparams["model_max_length"]
  735. else:
  736. raise ValueError("gguf: can not find ctx length parameter.")
  737. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  738. self.gguf_writer.add_source_hf_repo(hf_repo)
  739. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  740. self.gguf_writer.add_context_length(ctx_length)
  741. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  742. self.gguf_writer.add_block_count(block_count)
  743. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  744. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  745. self.gguf_writer.add_head_count(head_count)
  746. self.gguf_writer.add_head_count_kv(head_count_kv)
  747. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  748. self.gguf_writer.add_file_type(self.ftype)
  749. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  750. if self.hparams["rope_scaling"].get("type") == "linear":
  751. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  752. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  754. head_count = self.hparams["num_attention_heads"]
  755. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  756. tensors: list[tuple[str, Tensor]] = []
  757. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  758. logger.info(f"Unpacking and permuting layer {bid}")
  759. tensors = [
  760. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  761. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  762. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  763. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  764. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  765. self._reverse_hf_part(data_torch, 2)),
  766. ]
  767. else:
  768. tensors = [(self.map_tensor_name(name), data_torch)]
  769. return tensors
  770. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  771. if n_kv_head is not None and n_head != n_kv_head:
  772. n_head //= n_kv_head
  773. return (
  774. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  775. .swapaxes(1, 2)
  776. .reshape(weights.shape)
  777. )
  778. def _reverse_hf_permute_part(
  779. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  780. ) -> Tensor:
  781. r = weights.shape[0] // 3
  782. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  783. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  784. r = weights.shape[0] // 3
  785. return weights[r * n_part:r * n_part + r, ...]
  786. @Model.register("XverseForCausalLM")
  787. class XverseModel(Model):
  788. model_arch = gguf.MODEL_ARCH.XVERSE
  789. def set_vocab(self):
  790. assert (self.dir_model / "tokenizer.json").is_file()
  791. dir_model = self.dir_model
  792. hparams = self.hparams
  793. tokens: list[bytes] = []
  794. toktypes: list[int] = []
  795. from transformers import AutoTokenizer
  796. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  797. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  798. assert max(tokenizer.vocab.values()) < vocab_size
  799. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  800. added_vocab = tokenizer.get_added_vocab()
  801. for token_id in range(vocab_size):
  802. token_text = reverse_vocab[token_id].encode('utf-8')
  803. # replace "\x00" to string with length > 0
  804. if token_text == b"\x00":
  805. toktype = gguf.TokenType.BYTE # special
  806. token_text = f"<{token_text}>".encode('utf-8')
  807. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  808. toktype = gguf.TokenType.BYTE # special
  809. elif reverse_vocab[token_id] in added_vocab:
  810. if tokenizer.added_tokens_decoder[token_id].special:
  811. toktype = gguf.TokenType.CONTROL
  812. else:
  813. toktype = gguf.TokenType.USER_DEFINED
  814. else:
  815. toktype = gguf.TokenType.NORMAL
  816. tokens.append(token_text)
  817. toktypes.append(toktype)
  818. self.gguf_writer.add_tokenizer_model("llama")
  819. self.gguf_writer.add_tokenizer_pre("default")
  820. self.gguf_writer.add_token_list(tokens)
  821. self.gguf_writer.add_token_types(toktypes)
  822. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  823. special_vocab.add_to_gguf(self.gguf_writer)
  824. def set_gguf_parameters(self):
  825. block_count = self.hparams["num_hidden_layers"]
  826. head_count = self.hparams["num_attention_heads"]
  827. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  828. hf_repo = self.hparams.get("_name_or_path", "")
  829. ctx_length = 0
  830. if "max_sequence_length" in self.hparams:
  831. ctx_length = self.hparams["max_sequence_length"]
  832. elif "max_position_embeddings" in self.hparams:
  833. ctx_length = self.hparams["max_position_embeddings"]
  834. elif "model_max_length" in self.hparams:
  835. ctx_length = self.hparams["model_max_length"]
  836. else:
  837. raise ValueError("gguf: can not find ctx length parameter.")
  838. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  839. self.gguf_writer.add_source_hf_repo(hf_repo)
  840. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  841. self.gguf_writer.add_context_length(ctx_length)
  842. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  843. self.gguf_writer.add_block_count(block_count)
  844. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  845. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  846. self.gguf_writer.add_head_count(head_count)
  847. self.gguf_writer.add_head_count_kv(head_count_kv)
  848. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  849. self.gguf_writer.add_file_type(self.ftype)
  850. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  851. if self.hparams["rope_scaling"].get("type") == "linear":
  852. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  853. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  855. del bid # unused
  856. head_count = self.hparams["num_attention_heads"]
  857. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  858. # HF models permute some of the tensors, so we need to undo that
  859. if name.endswith("q_proj.weight"):
  860. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  861. if name.endswith("k_proj.weight"):
  862. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  863. return [(self.map_tensor_name(name), data_torch)]
  864. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  865. if n_kv_head is not None and n_head != n_kv_head:
  866. n_head //= n_kv_head
  867. return (
  868. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  869. .swapaxes(1, 2)
  870. .reshape(weights.shape)
  871. )
  872. @Model.register("FalconForCausalLM", "RWForCausalLM")
  873. class FalconModel(Model):
  874. model_arch = gguf.MODEL_ARCH.FALCON
  875. def set_gguf_parameters(self):
  876. block_count = self.hparams.get("num_hidden_layers")
  877. if block_count is None:
  878. block_count = self.hparams["n_layer"] # old name
  879. n_head = self.hparams.get("num_attention_heads")
  880. if n_head is None:
  881. n_head = self.hparams["n_head"] # old name
  882. n_head_kv = self.hparams.get("num_kv_heads")
  883. if n_head_kv is None:
  884. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  885. self.gguf_writer.add_name("Falcon")
  886. self.gguf_writer.add_context_length(2048) # not in config.json
  887. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  888. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  889. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  890. self.gguf_writer.add_block_count(block_count)
  891. self.gguf_writer.add_head_count(n_head)
  892. self.gguf_writer.add_head_count_kv(n_head_kv)
  893. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  894. self.gguf_writer.add_file_type(self.ftype)
  895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  896. del bid # unused
  897. # QKV tensor transform
  898. # The original query_key_value tensor contains n_head_kv "kv groups",
  899. # each consisting of n_head/n_head_kv query weights followed by one key
  900. # and one value weight (shared by all query heads in the kv group).
  901. # This layout makes it a big pain to work with in GGML.
  902. # So we rearrange them here,, so that we have n_head query weights
  903. # followed by n_head_kv key weights followed by n_head_kv value weights,
  904. # in contiguous fashion.
  905. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  906. if "query_key_value" in name:
  907. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  908. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  909. head_dim = self.hparams["hidden_size"] // n_head
  910. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  911. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  912. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  913. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  914. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  915. return [(self.map_tensor_name(name), data_torch)]
  916. @Model.register("GPTBigCodeForCausalLM")
  917. class StarCoderModel(Model):
  918. model_arch = gguf.MODEL_ARCH.STARCODER
  919. def set_gguf_parameters(self):
  920. block_count = self.hparams["n_layer"]
  921. self.gguf_writer.add_name("StarCoder")
  922. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  923. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  924. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  925. self.gguf_writer.add_block_count(block_count)
  926. self.gguf_writer.add_head_count(self.hparams["n_head"])
  927. self.gguf_writer.add_head_count_kv(1)
  928. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  929. self.gguf_writer.add_file_type(self.ftype)
  930. @Model.register("GPTRefactForCausalLM")
  931. class RefactModel(Model):
  932. model_arch = gguf.MODEL_ARCH.REFACT
  933. def set_vocab(self):
  934. super().set_vocab()
  935. # TODO: how to determine special FIM tokens automatically?
  936. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  937. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  938. special_vocab._set_special_token("prefix", 1)
  939. special_vocab._set_special_token("suffix", 3)
  940. special_vocab._set_special_token("middle", 2)
  941. special_vocab._set_special_token("fsep", 4) # is this correct?
  942. special_vocab.add_to_gguf(self.gguf_writer)
  943. def set_gguf_parameters(self):
  944. hidden_dim = self.hparams["n_embd"]
  945. inner_dim = 4 * hidden_dim
  946. hidden_dim = int(2 * inner_dim / 3)
  947. multiple_of = 256
  948. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  949. block_count = self.hparams["n_layer"]
  950. self.gguf_writer.add_name("Refact")
  951. # refact uses Alibi. So this is from config.json which might be used by training.
  952. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  953. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  954. self.gguf_writer.add_feed_forward_length(ff_dim)
  955. self.gguf_writer.add_block_count(block_count)
  956. self.gguf_writer.add_head_count(self.hparams["n_head"])
  957. self.gguf_writer.add_head_count_kv(1)
  958. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  959. self.gguf_writer.add_file_type(self.ftype)
  960. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  961. hidden_dim = self.hparams["n_embd"]
  962. inner_dim = 4 * hidden_dim
  963. hidden_dim = int(2 * inner_dim / 3)
  964. multiple_of = 256
  965. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  966. n_head = self.hparams["n_head"]
  967. n_head_kv = 1
  968. head_dim = self.hparams["n_embd"] // n_head
  969. tensors: list[tuple[str, Tensor]] = []
  970. if bid is not None:
  971. if name == f"transformer.h.{bid}.attn.kv.weight":
  972. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  973. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  974. elif name == f"transformer.h.{bid}.attn.q.weight":
  975. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  976. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  977. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  978. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  979. if len(tensors) == 0:
  980. tensors.append((self.map_tensor_name(name), data_torch))
  981. return tensors
  982. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  983. class StableLMModel(Model):
  984. model_arch = gguf.MODEL_ARCH.STABLELM
  985. def set_vocab(self):
  986. if (self.dir_model / "tokenizer.json").is_file():
  987. self._set_vocab_gpt2()
  988. else:
  989. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  990. self._set_vocab_qwen()
  991. def set_gguf_parameters(self):
  992. hparams = self.hparams
  993. block_count = hparams["num_hidden_layers"]
  994. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  995. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  996. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  997. self.gguf_writer.add_block_count(block_count)
  998. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  999. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1000. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1001. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1002. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1003. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1004. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1005. self.gguf_writer.add_file_type(self.ftype)
  1006. _q_norms: list[dict[str, Tensor]] | None = None
  1007. _k_norms: list[dict[str, Tensor]] | None = None
  1008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1009. n_head = self.hparams["num_attention_heads"]
  1010. n_kv_head = self.hparams["num_key_value_heads"]
  1011. if name.find("q_layernorm.norms") != -1:
  1012. assert bid is not None
  1013. if self._q_norms is None:
  1014. self._q_norms = [{} for _ in range(self.block_count)]
  1015. self._q_norms[bid][name] = data_torch
  1016. if len(self._q_norms[bid]) >= n_head:
  1017. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1018. else:
  1019. return []
  1020. if name.find("k_layernorm.norms") != -1:
  1021. assert bid is not None
  1022. if self._k_norms is None:
  1023. self._k_norms = [{} for _ in range(self.block_count)]
  1024. self._k_norms[bid][name] = data_torch
  1025. if len(self._k_norms[bid]) >= n_kv_head:
  1026. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1027. else:
  1028. return []
  1029. return [(self.map_tensor_name(name), data_torch)]
  1030. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1031. datas: list[Tensor] = []
  1032. # extract the norms in order
  1033. for xid in range(n_head):
  1034. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1035. datas.append(norms[ename])
  1036. del norms[ename]
  1037. data_torch = torch.stack(datas, dim=0)
  1038. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1039. new_name = self.map_tensor_name(merged_name)
  1040. return [(new_name, data_torch)]
  1041. def write_tensors(self):
  1042. super().write_tensors()
  1043. if self._q_norms is not None or self._k_norms is not None:
  1044. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1045. norms = (
  1046. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1047. ) + (
  1048. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1049. )
  1050. if len(norms) > 0:
  1051. raise ValueError(f"Unprocessed norms: {norms}")
  1052. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1053. class LlamaModel(Model):
  1054. model_arch = gguf.MODEL_ARCH.LLAMA
  1055. def set_vocab(self):
  1056. try:
  1057. self. _set_vocab_sentencepiece()
  1058. except FileNotFoundError:
  1059. try:
  1060. self._set_vocab_llama_hf()
  1061. except (FileNotFoundError, TypeError):
  1062. # Llama 3
  1063. self._set_vocab_gpt2()
  1064. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1065. if self.hparams.get("vocab_size", 32000) == 32016:
  1066. special_vocab = gguf.SpecialVocab(
  1067. self.dir_model, load_merges=False,
  1068. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1069. )
  1070. special_vocab._set_special_token("prefix", 32007)
  1071. special_vocab._set_special_token("suffix", 32008)
  1072. special_vocab._set_special_token("middle", 32009)
  1073. special_vocab._set_special_token("eot", 32010)
  1074. special_vocab.add_to_gguf(self.gguf_writer)
  1075. def set_gguf_parameters(self):
  1076. super().set_gguf_parameters()
  1077. hparams = self.hparams
  1078. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1079. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1080. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1081. if self.hparams["rope_scaling"].get("type") == "linear":
  1082. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1083. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1084. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1085. if tokenizer_config_file.is_file():
  1086. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1087. tokenizer_config_json = json.load(f)
  1088. if "add_prefix_space" in tokenizer_config_json:
  1089. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1090. # Apply to granite small models only
  1091. if self.hparams.get("vocab_size", 32000) == 49152:
  1092. self.gguf_writer.add_add_bos_token(False)
  1093. @staticmethod
  1094. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1095. if n_head_kv is not None and n_head != n_head_kv:
  1096. n_head = n_head_kv
  1097. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1098. .swapaxes(1, 2)
  1099. .reshape(weights.shape))
  1100. _experts: list[dict[str, Tensor]] | None = None
  1101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1102. n_head = self.hparams["num_attention_heads"]
  1103. n_kv_head = self.hparams.get("num_key_value_heads")
  1104. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1105. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1106. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1107. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1108. # process the experts separately
  1109. if name.find("block_sparse_moe.experts") != -1:
  1110. n_experts = self.hparams["num_local_experts"]
  1111. assert bid is not None
  1112. if self._experts is None:
  1113. self._experts = [{} for _ in range(self.block_count)]
  1114. self._experts[bid][name] = data_torch
  1115. if len(self._experts[bid]) >= n_experts * 3:
  1116. tensors: list[tuple[str, Tensor]] = []
  1117. # merge the experts into a single 3d tensor
  1118. for wid in ["w1", "w2", "w3"]:
  1119. datas: list[Tensor] = []
  1120. for xid in range(n_experts):
  1121. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1122. datas.append(self._experts[bid][ename])
  1123. del self._experts[bid][ename]
  1124. data_torch = torch.stack(datas, dim=0)
  1125. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1126. new_name = self.map_tensor_name(merged_name)
  1127. tensors.append((new_name, data_torch))
  1128. return tensors
  1129. else:
  1130. return []
  1131. return [(self.map_tensor_name(name), data_torch)]
  1132. def write_tensors(self):
  1133. super().write_tensors()
  1134. if self._experts is not None:
  1135. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1136. experts = [k for d in self._experts for k in d.keys()]
  1137. if len(experts) > 0:
  1138. raise ValueError(f"Unprocessed experts: {experts}")
  1139. @Model.register("GrokForCausalLM")
  1140. class GrokModel(Model):
  1141. model_arch = gguf.MODEL_ARCH.GROK
  1142. def set_vocab(self):
  1143. self._set_vocab_sentencepiece()
  1144. def __init__(self, *args, **kwargs):
  1145. super().__init__(*args, **kwargs)
  1146. def set_gguf_parameters(self):
  1147. super().set_gguf_parameters()
  1148. self.gguf_writer.add_name("Grok")
  1149. _experts: list[dict[str, Tensor]] | None = None
  1150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1151. # process the experts separately
  1152. if name.find(".moe.") != -1:
  1153. n_experts = self.hparams["num_local_experts"]
  1154. assert bid is not None
  1155. if self._experts is None:
  1156. self._experts = [{} for _ in range(self.block_count)]
  1157. self._experts[bid][name] = data_torch
  1158. if len(self._experts[bid]) >= n_experts * 3:
  1159. tensors: list[tuple[str, Tensor]] = []
  1160. # merge the experts into a single 3d tensor
  1161. for wid in ["linear", "linear_1", "linear_v"]:
  1162. datas: list[Tensor] = []
  1163. for xid in range(n_experts):
  1164. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1165. datas.append(self._experts[bid][ename])
  1166. del self._experts[bid][ename]
  1167. data_torch = torch.stack(datas, dim=0)
  1168. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1169. new_name = self.map_tensor_name(merged_name)
  1170. tensors.append((new_name, data_torch))
  1171. return tensors
  1172. else:
  1173. return []
  1174. return [(self.map_tensor_name(name), data_torch)]
  1175. @Model.register("DbrxForCausalLM")
  1176. class DbrxModel(Model):
  1177. model_arch = gguf.MODEL_ARCH.DBRX
  1178. def set_gguf_parameters(self):
  1179. ffn_config = self.hparams["ffn_config"]
  1180. attn_config = self.hparams["attn_config"]
  1181. self.gguf_writer.add_name(self.hparams["model_type"])
  1182. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1183. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1184. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1185. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1186. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1187. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1188. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1189. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1190. self.gguf_writer.add_file_type(self.ftype)
  1191. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1192. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1193. self.gguf_writer.add_layer_norm_eps(1e-5)
  1194. self.gguf_writer.add_file_type(self.ftype)
  1195. logger.info(f"gguf: file type = {self.ftype}")
  1196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1197. del bid # unused
  1198. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1199. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1200. n_embd = self.hparams["d_model"]
  1201. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1202. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1203. # But llama.cpp moe graph works differently
  1204. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1205. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1206. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1207. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1208. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1209. experts = False
  1210. for exp_tensor_name in exp_tensor_names.keys():
  1211. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1212. experts = True
  1213. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1214. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1215. data_torch = data_torch.permute(*permute_tensor)
  1216. break
  1217. # map tensor names
  1218. # In MoE models the ffn tensors are typically most of the model weights,
  1219. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1220. # Every other model has the weight names ending in .weight,
  1221. # let's assume that is the convention which is not the case for dbrx:
  1222. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1223. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1224. return [(new_name, data_torch)]
  1225. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1226. del name, new_name, bid # unused
  1227. return n_dims > 1
  1228. @Model.register("MiniCPMForCausalLM")
  1229. class MiniCPMModel(Model):
  1230. model_arch = gguf.MODEL_ARCH.MINICPM
  1231. def set_gguf_parameters(self):
  1232. block_count = self.hparams["num_hidden_layers"]
  1233. self.gguf_writer.add_name("MiniCPM")
  1234. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1235. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1236. self.gguf_writer.add_block_count(block_count)
  1237. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1238. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1239. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1240. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1241. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1242. self.gguf_writer.add_file_type(self.ftype)
  1243. def set_vocab(self):
  1244. self._set_vocab_llama_hf()
  1245. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1246. if n_kv_head is not None and n_head != n_kv_head:
  1247. n_head //= n_kv_head
  1248. return (
  1249. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1250. .swapaxes(1, 2)
  1251. .reshape(weights.shape)
  1252. )
  1253. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1254. del bid # unused
  1255. n_head = self.hparams["num_attention_heads"]
  1256. n_kv_head = self.hparams.get("num_key_value_heads")
  1257. # HF models permute some of the tensors, so we need to undo that
  1258. if name.endswith(("q_proj.weight")):
  1259. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1260. if name.endswith(("k_proj.weight")):
  1261. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1262. return [(self.map_tensor_name(name), data_torch)]
  1263. @Model.register("QWenLMHeadModel")
  1264. class QwenModel(Model):
  1265. model_arch = gguf.MODEL_ARCH.QWEN
  1266. @staticmethod
  1267. def token_bytes_to_string(b):
  1268. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1269. byte_encoder = bytes_to_unicode()
  1270. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1271. @staticmethod
  1272. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1273. parts = [bytes([b]) for b in token]
  1274. while True:
  1275. min_idx = None
  1276. min_rank = None
  1277. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1278. rank = mergeable_ranks.get(pair[0] + pair[1])
  1279. if rank is not None and (min_rank is None or rank < min_rank):
  1280. min_idx = i
  1281. min_rank = rank
  1282. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1283. break
  1284. assert min_idx is not None
  1285. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1286. return parts
  1287. def set_vocab(self):
  1288. self._set_vocab_qwen()
  1289. def set_gguf_parameters(self):
  1290. self.gguf_writer.add_name("Qwen")
  1291. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1292. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1293. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1294. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1295. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1296. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1297. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1298. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1299. self.gguf_writer.add_file_type(self.ftype)
  1300. @Model.register("Qwen2ForCausalLM")
  1301. class Qwen2Model(Model):
  1302. model_arch = gguf.MODEL_ARCH.QWEN2
  1303. def set_vocab(self):
  1304. try:
  1305. self._set_vocab_sentencepiece()
  1306. except FileNotFoundError:
  1307. self._set_vocab_gpt2()
  1308. @Model.register("Qwen2MoeForCausalLM")
  1309. class Qwen2MoeModel(Model):
  1310. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1311. def set_gguf_parameters(self):
  1312. super().set_gguf_parameters()
  1313. if (n_experts := self.hparams.get("num_experts")) is not None:
  1314. self.gguf_writer.add_expert_count(n_experts)
  1315. _experts: list[dict[str, Tensor]] | None = None
  1316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1317. # process the experts separately
  1318. if name.find("experts") != -1:
  1319. n_experts = self.hparams["num_experts"]
  1320. assert bid is not None
  1321. if self._experts is None:
  1322. self._experts = [{} for _ in range(self.block_count)]
  1323. self._experts[bid][name] = data_torch
  1324. if len(self._experts[bid]) >= n_experts * 3:
  1325. tensors: list[tuple[str, Tensor]] = []
  1326. # merge the experts into a single 3d tensor
  1327. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1328. datas: list[Tensor] = []
  1329. for xid in range(n_experts):
  1330. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1331. datas.append(self._experts[bid][ename])
  1332. del self._experts[bid][ename]
  1333. data_torch = torch.stack(datas, dim=0)
  1334. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1335. new_name = self.map_tensor_name(merged_name)
  1336. tensors.append((new_name, data_torch))
  1337. return tensors
  1338. else:
  1339. return []
  1340. return [(self.map_tensor_name(name), data_torch)]
  1341. def write_tensors(self):
  1342. super().write_tensors()
  1343. if self._experts is not None:
  1344. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1345. experts = [k for d in self._experts for k in d.keys()]
  1346. if len(experts) > 0:
  1347. raise ValueError(f"Unprocessed experts: {experts}")
  1348. @Model.register("GPT2LMHeadModel")
  1349. class GPT2Model(Model):
  1350. model_arch = gguf.MODEL_ARCH.GPT2
  1351. def set_gguf_parameters(self):
  1352. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1353. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1354. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1355. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1356. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1357. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1358. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1359. self.gguf_writer.add_file_type(self.ftype)
  1360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1361. del bid # unused
  1362. tensors: list[tuple[str, Tensor]] = []
  1363. # we don't need these
  1364. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1365. return tensors
  1366. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1367. data_torch = data_torch.transpose(1, 0)
  1368. new_name = self.map_tensor_name(name)
  1369. tensors.append((new_name, data_torch))
  1370. # note: GPT2 output is tied to (same as) wte in original model
  1371. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1372. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1373. return tensors
  1374. @Model.register("PhiForCausalLM")
  1375. class Phi2Model(Model):
  1376. model_arch = gguf.MODEL_ARCH.PHI2
  1377. def set_gguf_parameters(self):
  1378. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1379. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1380. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1381. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1382. self.gguf_writer.add_name("Phi2")
  1383. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1384. self.gguf_writer.add_embedding_length(n_embd)
  1385. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1386. self.gguf_writer.add_block_count(block_count)
  1387. self.gguf_writer.add_head_count(n_head)
  1388. self.gguf_writer.add_head_count_kv(n_head)
  1389. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1390. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1391. self.gguf_writer.add_file_type(self.ftype)
  1392. self.gguf_writer.add_add_bos_token(False)
  1393. @Model.register("Phi3ForCausalLM")
  1394. class Phi3MiniModel(Model):
  1395. model_arch = gguf.MODEL_ARCH.PHI3
  1396. def set_vocab(self):
  1397. from sentencepiece import SentencePieceProcessor
  1398. tokenizer_path = self.dir_model / 'tokenizer.model'
  1399. if not tokenizer_path.is_file():
  1400. raise ValueError(f'Error: Missing {tokenizer_path}')
  1401. tokenizer = SentencePieceProcessor()
  1402. tokenizer.LoadFromFile(str(tokenizer_path))
  1403. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1404. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1405. scores: list[float] = [-10000.0] * vocab_size
  1406. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1407. for token_id in range(tokenizer.vocab_size()):
  1408. piece = tokenizer.IdToPiece(token_id)
  1409. text = piece.encode("utf-8")
  1410. score = tokenizer.GetScore(token_id)
  1411. toktype = SentencePieceTokenTypes.NORMAL
  1412. if tokenizer.IsUnknown(token_id):
  1413. toktype = SentencePieceTokenTypes.UNKNOWN
  1414. elif tokenizer.IsControl(token_id):
  1415. toktype = SentencePieceTokenTypes.CONTROL
  1416. elif tokenizer.IsUnused(token_id):
  1417. toktype = SentencePieceTokenTypes.UNUSED
  1418. elif tokenizer.IsByte(token_id):
  1419. toktype = SentencePieceTokenTypes.BYTE
  1420. tokens[token_id] = text
  1421. scores[token_id] = score
  1422. toktypes[token_id] = toktype
  1423. added_tokens_file = self.dir_model / 'added_tokens.json'
  1424. if added_tokens_file.is_file():
  1425. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1426. added_tokens_json = json.load(f)
  1427. for key in added_tokens_json:
  1428. token_id = added_tokens_json[key]
  1429. if (token_id >= vocab_size):
  1430. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1431. continue
  1432. tokens[token_id] = key.encode("utf-8")
  1433. scores[token_id] = -1000.0
  1434. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1435. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1436. if tokenizer_config_file.is_file():
  1437. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1438. tokenizer_config_json = json.load(f)
  1439. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1440. for token_id, foken_data in added_tokens_decoder.items():
  1441. token_id = int(token_id)
  1442. token = foken_data["content"].encode("utf-8")
  1443. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1444. assert tokens[token_id] == token
  1445. tokens[token_id] = token
  1446. scores[token_id] = -1000.0
  1447. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1448. if foken_data.get("special"):
  1449. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1450. tokenizer_file = self.dir_model / 'tokenizer.json'
  1451. if tokenizer_file.is_file():
  1452. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1453. tokenizer_json = json.load(f)
  1454. added_tokens = tokenizer_json.get("added_tokens", [])
  1455. for foken_data in added_tokens:
  1456. token_id = int(foken_data["id"])
  1457. token = foken_data["content"].encode("utf-8")
  1458. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1459. assert tokens[token_id] == token
  1460. tokens[token_id] = token
  1461. scores[token_id] = -1000.0
  1462. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1463. if foken_data.get("special"):
  1464. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1465. self.gguf_writer.add_tokenizer_model("llama")
  1466. self.gguf_writer.add_tokenizer_pre("default")
  1467. self.gguf_writer.add_token_list(tokens)
  1468. self.gguf_writer.add_token_scores(scores)
  1469. self.gguf_writer.add_token_types(toktypes)
  1470. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1471. special_vocab.add_to_gguf(self.gguf_writer)
  1472. def set_gguf_parameters(self):
  1473. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1474. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1475. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1476. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1477. rms_eps = self.find_hparam(["rms_norm_eps"])
  1478. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1479. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1480. rope_dims = n_embd // n_head
  1481. self.gguf_writer.add_name("Phi3")
  1482. self.gguf_writer.add_context_length(max_pos_embds)
  1483. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1484. self.gguf_writer.add_embedding_length(n_embd)
  1485. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1486. self.gguf_writer.add_block_count(block_count)
  1487. self.gguf_writer.add_head_count(n_head)
  1488. self.gguf_writer.add_head_count_kv(n_head_kv)
  1489. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1490. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1491. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1492. self.gguf_writer.add_file_type(self.ftype)
  1493. # write rope scaling for long context (128k) model
  1494. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1495. if (rope_scaling is None):
  1496. return
  1497. scale = max_pos_embds / orig_max_pos_embds
  1498. rope_scaling_type = rope_scaling.get('type', '').lower()
  1499. if len(rope_scaling_type) == 0:
  1500. raise KeyError('Missing the required key rope_scaling.type')
  1501. if rope_scaling_type == 'su':
  1502. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1503. elif rope_scaling_type == 'yarn':
  1504. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1505. else:
  1506. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1507. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1508. long_factors = rope_scaling.get('long_factor', None)
  1509. short_factors = rope_scaling.get('short_factor', None)
  1510. if long_factors is None or short_factors is None:
  1511. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1512. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1513. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1514. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1515. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1516. @Model.register("PlamoForCausalLM")
  1517. class PlamoModel(Model):
  1518. model_arch = gguf.MODEL_ARCH.PLAMO
  1519. def set_vocab(self):
  1520. self._set_vocab_sentencepiece()
  1521. def set_gguf_parameters(self):
  1522. hparams = self.hparams
  1523. block_count = hparams["num_hidden_layers"]
  1524. self.gguf_writer.add_name("PLaMo")
  1525. self.gguf_writer.add_context_length(4096) # not in config.json
  1526. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1527. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1528. self.gguf_writer.add_block_count(block_count)
  1529. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1530. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1531. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1532. self.gguf_writer.add_file_type(self.ftype)
  1533. def shuffle_attn_q_weight(self, data_torch):
  1534. assert data_torch.size() == (5120, 5120)
  1535. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1536. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1537. data_torch = torch.reshape(data_torch, (5120, 5120))
  1538. return data_torch
  1539. def shuffle_attn_output_weight(self, data_torch):
  1540. assert data_torch.size() == (5120, 5120)
  1541. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1542. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1543. data_torch = torch.reshape(data_torch, (5120, 5120))
  1544. return data_torch
  1545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1546. del bid # unused
  1547. new_name = self.map_tensor_name(name)
  1548. # shuffle for broadcasting of gqa in ggml_mul_mat
  1549. if new_name.endswith("attn_q.weight"):
  1550. data_torch = self.shuffle_attn_q_weight(data_torch)
  1551. elif new_name.endswith("attn_output.weight"):
  1552. data_torch = self.shuffle_attn_output_weight(data_torch)
  1553. return [(new_name, data_torch)]
  1554. @Model.register("CodeShellForCausalLM")
  1555. class CodeShellModel(Model):
  1556. model_arch = gguf.MODEL_ARCH.CODESHELL
  1557. def set_gguf_parameters(self):
  1558. block_count = self.hparams["n_layer"]
  1559. self.gguf_writer.add_name("CodeShell")
  1560. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1561. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1562. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1563. self.gguf_writer.add_block_count(block_count)
  1564. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1565. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1566. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1567. self.gguf_writer.add_file_type(self.ftype)
  1568. self.gguf_writer.add_rope_freq_base(10000.0)
  1569. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1570. self.gguf_writer.add_rope_scaling_factor(1.0)
  1571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1572. del bid # unused
  1573. new_name = self.map_tensor_name(name)
  1574. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1575. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1576. assert self.tensor_names is not None
  1577. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1578. # copy tok_embd.weight to output.weight
  1579. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1580. return tensors
  1581. @Model.register("InternLM2ForCausalLM")
  1582. class InternLM2Model(Model):
  1583. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1584. def set_vocab(self):
  1585. # (TODO): Is there a better way?
  1586. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1587. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1588. # recognized as an empty string in C++.
  1589. from sentencepiece import SentencePieceProcessor
  1590. from sentencepiece import sentencepiece_model_pb2 as model
  1591. tokenizer_path = self.dir_model / 'tokenizer.model'
  1592. tokens: list[bytes] = []
  1593. scores: list[float] = []
  1594. toktypes: list[int] = []
  1595. if not tokenizer_path.is_file():
  1596. logger.error(f'Error: Missing {tokenizer_path}')
  1597. sys.exit(1)
  1598. sentencepiece_model = model.ModelProto()
  1599. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1600. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1601. tokenizer = SentencePieceProcessor()
  1602. tokenizer.LoadFromFile(str(tokenizer_path))
  1603. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1604. for token_id in range(vocab_size):
  1605. piece = tokenizer.IdToPiece(token_id)
  1606. text = piece.encode("utf-8")
  1607. score = tokenizer.GetScore(token_id)
  1608. if text == b"\x00":
  1609. # (TODO): fixme
  1610. # Hack here and replace the \x00 characters.
  1611. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1612. text = "🐉".encode("utf-8")
  1613. toktype = SentencePieceTokenTypes.NORMAL
  1614. if tokenizer.IsUnknown(token_id):
  1615. toktype = SentencePieceTokenTypes.UNKNOWN
  1616. elif tokenizer.IsControl(token_id):
  1617. toktype = SentencePieceTokenTypes.CONTROL
  1618. elif tokenizer.IsUnused(token_id):
  1619. toktype = SentencePieceTokenTypes.UNUSED
  1620. elif tokenizer.IsByte(token_id):
  1621. toktype = SentencePieceTokenTypes.BYTE
  1622. tokens.append(text)
  1623. scores.append(score)
  1624. toktypes.append(toktype)
  1625. added_tokens_file = self.dir_model / 'added_tokens.json'
  1626. if added_tokens_file.is_file():
  1627. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1628. added_tokens_json = json.load(f)
  1629. for key in added_tokens_json:
  1630. tokens.append(key.encode("utf-8"))
  1631. scores.append(-1000.0)
  1632. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1633. self.gguf_writer.add_tokenizer_model("llama")
  1634. self.gguf_writer.add_tokenizer_pre("default")
  1635. self.gguf_writer.add_token_list(tokens)
  1636. self.gguf_writer.add_token_scores(scores)
  1637. self.gguf_writer.add_token_types(toktypes)
  1638. self.gguf_writer.add_add_space_prefix(add_prefix)
  1639. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1640. old_eos = special_vocab.special_token_ids["eos"]
  1641. if "chat" in os.path.basename(self.dir_model.absolute()):
  1642. # For the chat model, we replace the eos with '<|im_end|>'.
  1643. # TODO: this is a hack, should be fixed
  1644. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1645. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1646. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1647. in chat mode so that the conversation can end normally.")
  1648. special_vocab.add_to_gguf(self.gguf_writer)
  1649. def _try_get_sft_eos(self, tokenizer):
  1650. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1651. im_end_list = tokenizer.Encode('<|im_end|>')
  1652. eos_token = None
  1653. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1654. if len(unused_145_list) == 1:
  1655. eos_token = unused_145_list[0]
  1656. if len(im_end_list) == 1:
  1657. eos_token = im_end_list[0]
  1658. assert eos_token
  1659. return eos_token
  1660. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1661. if n_head_kv is not None and n_head != n_head_kv:
  1662. n_head = n_head_kv
  1663. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1664. .swapaxes(1, 2)
  1665. .reshape(weights.shape))
  1666. def set_gguf_parameters(self):
  1667. self.gguf_writer.add_name("InternLM2")
  1668. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1669. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1670. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1671. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1672. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1673. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1674. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1675. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1676. self.gguf_writer.add_file_type(self.ftype)
  1677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1678. num_heads = self.hparams["num_attention_heads"]
  1679. num_kv_heads = self.hparams["num_key_value_heads"]
  1680. hidden_size = self.hparams["hidden_size"]
  1681. q_per_kv = num_heads // num_kv_heads
  1682. head_dim = hidden_size // num_heads
  1683. num_groups = num_heads // q_per_kv
  1684. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1685. if re.match(qkv_pattern, name):
  1686. bid = re.findall(qkv_pattern, name)[0]
  1687. qkv = data_torch
  1688. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1689. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1690. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1691. # The model weights of q and k equire additional reshape.
  1692. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1693. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1694. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1695. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1696. # v = rearrange(v, " o g n i -> o (g n i)").T
  1697. v = v.reshape((v.shape[0], -1)).T
  1698. return [
  1699. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1700. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1701. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1702. ]
  1703. else:
  1704. return [(self.map_tensor_name(name), data_torch)]
  1705. @Model.register("BertModel", "CamembertModel")
  1706. class BertModel(Model):
  1707. model_arch = gguf.MODEL_ARCH.BERT
  1708. def __init__(self, *args, **kwargs):
  1709. super().__init__(*args, **kwargs)
  1710. self.vocab_size = None
  1711. def set_gguf_parameters(self):
  1712. super().set_gguf_parameters()
  1713. self.gguf_writer.add_causal_attention(False)
  1714. # get pooling path
  1715. pooling_path = None
  1716. module_path = self.dir_model / "modules.json"
  1717. if module_path.is_file():
  1718. with open(module_path, encoding="utf-8") as f:
  1719. modules = json.load(f)
  1720. for mod in modules:
  1721. if mod["type"] == "sentence_transformers.models.Pooling":
  1722. pooling_path = mod["path"]
  1723. break
  1724. # get pooling type
  1725. if pooling_path is not None:
  1726. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1727. pooling = json.load(f)
  1728. if pooling["pooling_mode_mean_tokens"]:
  1729. pooling_type = gguf.PoolingType.MEAN
  1730. elif pooling["pooling_mode_cls_token"]:
  1731. pooling_type = gguf.PoolingType.CLS
  1732. else:
  1733. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1734. self.gguf_writer.add_pooling_type(pooling_type)
  1735. def set_vocab(self):
  1736. tokens, toktypes, tokpre = self.get_vocab_base()
  1737. self.vocab_size = len(tokens)
  1738. # we need this to validate the size of the token_type embeddings
  1739. # though currently we are passing all zeros to the token_type embeddings
  1740. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1741. # convert to phantom space vocab
  1742. def phantom(tok):
  1743. if tok.startswith("[") and tok.endswith("]"):
  1744. return tok
  1745. if tok.startswith("##"):
  1746. return tok[2:]
  1747. return "\u2581" + tok
  1748. tokens = list(map(phantom, tokens))
  1749. # add vocab to gguf
  1750. self.gguf_writer.add_tokenizer_model("bert")
  1751. self.gguf_writer.add_tokenizer_pre(tokpre)
  1752. self.gguf_writer.add_token_list(tokens)
  1753. self.gguf_writer.add_token_types(toktypes)
  1754. # handle special tokens
  1755. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1756. special_vocab.add_to_gguf(self.gguf_writer)
  1757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1758. del bid # unused
  1759. # we are only using BERT for embeddings so we don't need the pooling layer
  1760. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1761. return [] # we don't need these
  1762. return [(self.map_tensor_name(name), data_torch)]
  1763. @Model.register("NomicBertModel")
  1764. class NomicBertModel(BertModel):
  1765. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1766. def __init__(self, *args, **kwargs):
  1767. super().__init__(*args, **kwargs)
  1768. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1769. self.hparams["n_ctx"] = 2048
  1770. # SwigLU activation
  1771. assert self.hparams["activation_function"] == "swiglu"
  1772. # this doesn't do anything in the HF version
  1773. assert self.hparams["causal"] is False
  1774. # no bias tensors
  1775. assert self.hparams["qkv_proj_bias"] is False
  1776. assert self.hparams["mlp_fc1_bias"] is False
  1777. assert self.hparams["mlp_fc2_bias"] is False
  1778. # norm at end of layer
  1779. assert self.hparams["prenorm"] is False
  1780. # standard RoPE
  1781. assert self.hparams["rotary_emb_fraction"] == 1.0
  1782. assert self.hparams["rotary_emb_interleaved"] is False
  1783. assert self.hparams["rotary_emb_scale_base"] is None
  1784. def set_gguf_parameters(self):
  1785. super().set_gguf_parameters()
  1786. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1787. @Model.register("GemmaForCausalLM")
  1788. class GemmaModel(Model):
  1789. model_arch = gguf.MODEL_ARCH.GEMMA
  1790. def set_vocab(self):
  1791. self._set_vocab_sentencepiece()
  1792. # TODO: these special tokens should be exported only for the CodeGemma family
  1793. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1794. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1795. special_vocab._set_special_token("prefix", 67)
  1796. special_vocab._set_special_token("suffix", 69)
  1797. special_vocab._set_special_token("middle", 68)
  1798. special_vocab._set_special_token("fsep", 70)
  1799. special_vocab._set_special_token("eot", 107)
  1800. special_vocab.add_to_gguf(self.gguf_writer)
  1801. def set_gguf_parameters(self):
  1802. hparams = self.hparams
  1803. block_count = hparams["num_hidden_layers"]
  1804. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1805. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1806. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1807. self.gguf_writer.add_block_count(block_count)
  1808. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1809. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1810. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1811. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1812. self.gguf_writer.add_key_length(hparams["head_dim"])
  1813. self.gguf_writer.add_value_length(hparams["head_dim"])
  1814. self.gguf_writer.add_file_type(self.ftype)
  1815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1816. del bid # unused
  1817. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1818. # To prevent errors, skip loading lm_head.weight.
  1819. if name == "lm_head.weight":
  1820. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1821. return []
  1822. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1823. if name.endswith("norm.weight"):
  1824. data_torch = data_torch + 1
  1825. return [(self.map_tensor_name(name), data_torch)]
  1826. @Model.register("Starcoder2ForCausalLM")
  1827. class StarCoder2Model(Model):
  1828. model_arch = gguf.MODEL_ARCH.STARCODER2
  1829. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1830. class MambaModel(Model):
  1831. model_arch = gguf.MODEL_ARCH.MAMBA
  1832. def set_vocab(self):
  1833. vocab_size = self.hparams["vocab_size"]
  1834. # Round vocab size to next multiple of 8
  1835. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1836. # pad using ceiling division
  1837. # ref: https://stackoverflow.com/a/17511341/22827863
  1838. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1839. self.hparams["vocab_size"] = vocab_size
  1840. if (self.dir_model / "tokenizer.json").is_file():
  1841. self._set_vocab_gpt2()
  1842. elif (self.dir_model / "tokenizer.model").is_file():
  1843. self._set_vocab_sentencepiece()
  1844. else:
  1845. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1846. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1847. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1848. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1849. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1850. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1851. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1852. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1853. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1854. assert field
  1855. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1856. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1857. assert field
  1858. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1859. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1860. assert field
  1861. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1862. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1863. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1864. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1865. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1866. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1867. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1868. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1869. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1870. def set_gguf_parameters(self):
  1871. d_model = self.find_hparam(["hidden_size", "d_model"])
  1872. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1873. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1874. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1875. # ceiling division
  1876. # ref: https://stackoverflow.com/a/17511341/22827863
  1877. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1878. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1879. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1880. # Fail early for models which don't have a block expansion factor of 2
  1881. assert d_inner == 2 * d_model
  1882. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1883. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1884. self.gguf_writer.add_embedding_length(d_model)
  1885. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1886. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1887. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1888. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1889. self.gguf_writer.add_ssm_inner_size(d_inner)
  1890. self.gguf_writer.add_ssm_state_size(d_state)
  1891. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1892. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1893. self.gguf_writer.add_file_type(self.ftype)
  1894. _tok_embd = None
  1895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1896. del bid # unused
  1897. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1898. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1899. new_name = self.map_tensor_name(name)
  1900. if name.endswith(".A_log"):
  1901. logger.debug("A_log --> A ==> " + new_name)
  1902. data_torch = -torch.exp(data_torch)
  1903. # assuming token_embd.weight is seen before output.weight
  1904. if self._tok_embd is not None and new_name == output_name:
  1905. if torch.equal(self._tok_embd, data_torch):
  1906. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1907. return []
  1908. elif new_name == tok_embd_name:
  1909. self._tok_embd = data_torch
  1910. return [(new_name, data_torch)]
  1911. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1912. del n_dims # unused
  1913. return bid is not None and new_name in (
  1914. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1915. gguf.MODEL_TENSOR.SSM_CONV1D,
  1916. gguf.MODEL_TENSOR.SSM_X,
  1917. gguf.MODEL_TENSOR.SSM_DT,
  1918. gguf.MODEL_TENSOR.SSM_A,
  1919. gguf.MODEL_TENSOR.SSM_D,
  1920. ]
  1921. )
  1922. @Model.register("CohereForCausalLM")
  1923. class CommandR2Model(Model):
  1924. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1925. def __init__(self, *args, **kwargs):
  1926. super().__init__(*args, **kwargs)
  1927. # max_position_embeddings = 8192 in config.json but model was actually
  1928. # trained on 128k context length
  1929. # aya-23 models don't have model_max_length specified
  1930. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  1931. def set_gguf_parameters(self):
  1932. super().set_gguf_parameters()
  1933. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1934. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1935. @Model.register("OlmoForCausalLM")
  1936. @Model.register("OLMoForCausalLM")
  1937. class OlmoModel(Model):
  1938. model_arch = gguf.MODEL_ARCH.OLMO
  1939. def set_gguf_parameters(self):
  1940. super().set_gguf_parameters()
  1941. self.gguf_writer.add_layer_norm_eps(1e-5)
  1942. clip_qkv = self.hparams.get("clip_qkv")
  1943. if clip_qkv is not None:
  1944. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1945. # Same as super class, but permuting q_proj, k_proj
  1946. # Copied from: LlamaModel
  1947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1948. del bid # unused
  1949. n_head = self.hparams["num_attention_heads"]
  1950. n_kv_head = self.hparams.get("num_key_value_heads")
  1951. if name.endswith("q_proj.weight"):
  1952. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1953. if name.endswith("k_proj.weight"):
  1954. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1955. return [(self.map_tensor_name(name), data_torch)]
  1956. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1957. class JinaBertV2Model(BertModel):
  1958. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1959. def __init__(self, *args, **kwargs):
  1960. super().__init__(*args, **kwargs)
  1961. self.intermediate_size = self.hparams["intermediate_size"]
  1962. def get_tensors(self):
  1963. for name, data in super().get_tensors():
  1964. if 'gated_layer' in name:
  1965. d1 = data[:self.intermediate_size, :]
  1966. name1 = name.replace('gated_layers', 'gated_layers_w')
  1967. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  1968. d2 = data[self.intermediate_size:, :]
  1969. name2 = name.replace('gated_layers', 'gated_layers_v')
  1970. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  1971. yield name1, d1
  1972. yield name2, d2
  1973. continue
  1974. yield name, data
  1975. def set_vocab(self, *args, **kwargs):
  1976. tokenizer_class = 'BertTokenizer'
  1977. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1978. tokenizer_class = json.load(f)['tokenizer_class']
  1979. if tokenizer_class == 'BertTokenizer':
  1980. super().set_vocab()
  1981. elif tokenizer_class == 'RobertaTokenizer':
  1982. self._set_vocab_gpt2()
  1983. self.gguf_writer.add_token_type_count(2)
  1984. else:
  1985. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1986. self.gguf_writer.add_add_bos_token(True)
  1987. self.gguf_writer.add_add_eos_token(True)
  1988. @Model.register("ArcticForCausalLM")
  1989. class ArcticModel(Model):
  1990. model_arch = gguf.MODEL_ARCH.ARCTIC
  1991. def set_vocab(self):
  1992. # The reason for using a custom implementation here is that the
  1993. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  1994. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  1995. from sentencepiece import SentencePieceProcessor
  1996. tokenizer_path = self.dir_model / 'tokenizer.model'
  1997. if not tokenizer_path.is_file():
  1998. logger.error(f'Error: Missing {tokenizer_path}')
  1999. sys.exit(1)
  2000. # Read the whole vocabulary from the tokenizer.model file
  2001. tokenizer = SentencePieceProcessor()
  2002. tokenizer.LoadFromFile(str(tokenizer_path))
  2003. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2004. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2005. scores: list[float] = [-10000.0] * vocab_size
  2006. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2007. for token_id in range(tokenizer.vocab_size()):
  2008. piece = tokenizer.IdToPiece(token_id)
  2009. text = piece.encode("utf-8")
  2010. score = tokenizer.GetScore(token_id)
  2011. toktype = SentencePieceTokenTypes.NORMAL
  2012. if tokenizer.IsUnknown(token_id):
  2013. toktype = SentencePieceTokenTypes.UNKNOWN
  2014. elif tokenizer.IsControl(token_id):
  2015. toktype = SentencePieceTokenTypes.CONTROL
  2016. elif tokenizer.IsUnused(token_id):
  2017. toktype = SentencePieceTokenTypes.UNUSED
  2018. elif tokenizer.IsByte(token_id):
  2019. toktype = SentencePieceTokenTypes.BYTE
  2020. tokens[token_id] = text
  2021. scores[token_id] = score
  2022. toktypes[token_id] = toktype
  2023. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2024. # of information about added/redefined tokens and modify them accordingly.
  2025. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2026. if tokenizer_config_file.is_file():
  2027. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2028. tokenizer_config_json = json.load(f)
  2029. if "added_tokens_decoder" in tokenizer_config_json:
  2030. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2031. for token_id, token_json in added_tokens_decoder.items():
  2032. token_id = int(token_id)
  2033. if (token_id >= vocab_size):
  2034. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2035. continue
  2036. token_content = token_json["content"]
  2037. token_type = SentencePieceTokenTypes.USER_DEFINED
  2038. token_score = -10000.0
  2039. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2040. # Set the score to 0.0 as in the original tokenizer.model
  2041. if ("special" in token_json) and token_json["special"]:
  2042. if token_content == tokenizer_config_json["unk_token"]:
  2043. token_type = SentencePieceTokenTypes.UNKNOWN
  2044. else:
  2045. token_type = SentencePieceTokenTypes.CONTROL
  2046. token_score = 0.0
  2047. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2048. tokens[token_id] = token_content.encode("utf-8")
  2049. toktypes[token_id] = token_type
  2050. scores[token_id] = token_score
  2051. self.gguf_writer.add_tokenizer_model("llama")
  2052. self.gguf_writer.add_tokenizer_pre("default")
  2053. self.gguf_writer.add_token_list(tokens)
  2054. self.gguf_writer.add_token_scores(scores)
  2055. self.gguf_writer.add_token_types(toktypes)
  2056. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2057. special_vocab.add_to_gguf(self.gguf_writer)
  2058. def set_gguf_parameters(self):
  2059. super().set_gguf_parameters()
  2060. hparams = self.hparams
  2061. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2062. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2063. _experts: list[dict[str, Tensor]] | None = None
  2064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2065. n_head = self.hparams["num_attention_heads"]
  2066. n_kv_head = self.hparams.get("num_key_value_heads")
  2067. if name.endswith("q_proj.weight"):
  2068. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2069. if name.endswith("k_proj.weight"):
  2070. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2071. # process the experts separately
  2072. if name.find("block_sparse_moe.experts") != -1:
  2073. n_experts = self.hparams["num_local_experts"]
  2074. assert bid is not None
  2075. if self._experts is None:
  2076. self._experts = [{} for _ in range(self.block_count)]
  2077. self._experts[bid][name] = data_torch
  2078. if len(self._experts[bid]) >= n_experts * 3:
  2079. tensors: list[tuple[str, Tensor]] = []
  2080. # merge the experts into a single 3d tensor
  2081. for wid in ["w1", "w2", "w3"]:
  2082. datas: list[Tensor] = []
  2083. for xid in range(n_experts):
  2084. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2085. datas.append(self._experts[bid][ename])
  2086. del self._experts[bid][ename]
  2087. data_torch = torch.stack(datas, dim=0)
  2088. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2089. new_name = self.map_tensor_name(merged_name)
  2090. tensors.append((new_name, data_torch))
  2091. return tensors
  2092. else:
  2093. return []
  2094. return [(self.map_tensor_name(name), data_torch)]
  2095. def write_tensors(self):
  2096. super().write_tensors()
  2097. if self._experts is not None:
  2098. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2099. experts = [k for d in self._experts for k in d.keys()]
  2100. if len(experts) > 0:
  2101. raise ValueError(f"Unprocessed experts: {experts}")
  2102. @Model.register("DeepseekV2ForCausalLM")
  2103. class DeepseekV2Model(Model):
  2104. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2105. def set_vocab(self):
  2106. self._set_vocab_gpt2()
  2107. def set_gguf_parameters(self):
  2108. super().set_gguf_parameters()
  2109. hparams = self.hparams
  2110. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2111. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2112. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2113. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2114. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2115. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2116. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2117. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2118. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2119. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2120. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2121. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2122. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2123. if self.hparams["rope_scaling"].get("type") == "yarn":
  2124. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2125. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2126. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2127. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2128. _experts: list[dict[str, Tensor]] | None = None
  2129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2130. # process the experts separately
  2131. if name.find("mlp.experts") != -1:
  2132. n_experts = self.hparams["n_routed_experts"]
  2133. assert bid is not None
  2134. if self._experts is None:
  2135. self._experts = [{} for _ in range(self.block_count)]
  2136. self._experts[bid][name] = data_torch
  2137. if len(self._experts[bid]) >= n_experts * 3:
  2138. tensors: list[tuple[str, Tensor]] = []
  2139. # merge the experts into a single 3d tensor
  2140. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2141. datas: list[Tensor] = []
  2142. for xid in range(n_experts):
  2143. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2144. datas.append(self._experts[bid][ename])
  2145. del self._experts[bid][ename]
  2146. data_torch = torch.stack(datas, dim=0)
  2147. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2148. new_name = self.map_tensor_name(merged_name)
  2149. tensors.append((new_name, data_torch))
  2150. return tensors
  2151. else:
  2152. return []
  2153. return [(self.map_tensor_name(name), data_torch)]
  2154. def write_tensors(self):
  2155. super().write_tensors()
  2156. if self._experts is not None:
  2157. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2158. experts = [k for d in self._experts for k in d.keys()]
  2159. if len(experts) > 0:
  2160. raise ValueError(f"Unprocessed experts: {experts}")
  2161. ###### CONVERSION LOGIC ######
  2162. # tree of lazy tensors
  2163. class LazyTorchTensor(gguf.LazyBase):
  2164. _tensor_type = torch.Tensor
  2165. # to keep the type-checker happy
  2166. dtype: torch.dtype
  2167. shape: torch.Size
  2168. # only used when converting a torch.Tensor to a np.ndarray
  2169. _dtype_map: dict[torch.dtype, type] = {
  2170. torch.float16: np.float16,
  2171. torch.float32: np.float32,
  2172. }
  2173. def numpy(self) -> gguf.LazyNumpyTensor:
  2174. dtype = self._dtype_map[self.dtype]
  2175. return gguf.LazyNumpyTensor(
  2176. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2177. lazy=self._lazy,
  2178. args=(self,),
  2179. func=(lambda s: s[0].numpy())
  2180. )
  2181. @classmethod
  2182. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2183. return torch.empty(size=shape, dtype=dtype, device="meta")
  2184. @classmethod
  2185. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2186. del types # unused
  2187. if kwargs is None:
  2188. kwargs = {}
  2189. if func is torch.Tensor.numpy:
  2190. return args[0].numpy()
  2191. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2192. def parse_args() -> argparse.Namespace:
  2193. parser = argparse.ArgumentParser(
  2194. description="Convert a huggingface model to a GGML compatible file")
  2195. parser.add_argument(
  2196. "--vocab-only", action="store_true",
  2197. help="extract only the vocab",
  2198. )
  2199. parser.add_argument(
  2200. "--awq-path", type=Path, default=None,
  2201. help="Path to scale awq cache file",
  2202. )
  2203. parser.add_argument(
  2204. "--outfile", type=Path,
  2205. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2206. )
  2207. parser.add_argument(
  2208. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2209. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2210. )
  2211. parser.add_argument(
  2212. "--bigendian", action="store_true",
  2213. help="model is executed on big endian machine",
  2214. )
  2215. parser.add_argument(
  2216. "model", type=Path,
  2217. help="directory containing model file",
  2218. )
  2219. parser.add_argument(
  2220. "--use-temp-file", action="store_true",
  2221. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2222. )
  2223. parser.add_argument(
  2224. "--no-lazy", action="store_true",
  2225. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2226. )
  2227. parser.add_argument(
  2228. "--model-name", type=str, default=None,
  2229. help="name of the model",
  2230. )
  2231. parser.add_argument(
  2232. "--verbose", action="store_true",
  2233. help="increase output verbosity",
  2234. )
  2235. return parser.parse_args()
  2236. def main() -> None:
  2237. args = parse_args()
  2238. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2239. dir_model = args.model
  2240. if args.awq_path:
  2241. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2242. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2243. tmp_model_path = args.model / "weighted_model"
  2244. dir_model = tmp_model_path
  2245. if tmp_model_path.is_dir():
  2246. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2247. else:
  2248. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2249. logger.info("Saving new weighted model ...")
  2250. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2251. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2252. if not dir_model.is_dir():
  2253. logger.error(f'Error: {args.model} is not a directory')
  2254. sys.exit(1)
  2255. ftype_map: dict[str, gguf.LlamaFileType] = {
  2256. "f32": gguf.LlamaFileType.ALL_F32,
  2257. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2258. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2259. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2260. "auto": gguf.LlamaFileType.GUESSED,
  2261. }
  2262. if args.outfile is not None:
  2263. fname_out = args.outfile
  2264. else:
  2265. # output in the same directory as the model by default
  2266. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2267. logger.info(f"Loading model: {dir_model.name}")
  2268. hparams = Model.load_hparams(dir_model)
  2269. with torch.inference_mode():
  2270. try:
  2271. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2272. except NotImplementedError:
  2273. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2274. sys.exit(1)
  2275. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name)
  2276. logger.info("Set model parameters")
  2277. model_instance.set_gguf_parameters()
  2278. logger.info("Set model tokenizer")
  2279. model_instance.set_vocab()
  2280. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2281. if args.vocab_only:
  2282. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2283. model_instance.write_vocab()
  2284. else:
  2285. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2286. model_instance.write()
  2287. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2288. if __name__ == '__main__':
  2289. main()