llama-bench.cpp 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<typename T, typename F>
  41. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  42. std::vector<std::string> str_values;
  43. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  44. return str_values;
  45. }
  46. template<typename T>
  47. static T avg(const std::vector<T> & v) {
  48. if (v.empty()) {
  49. return 0;
  50. }
  51. T sum = std::accumulate(v.begin(), v.end(), T(0));
  52. return sum / (T)v.size();
  53. }
  54. template<typename T>
  55. static T stdev(const std::vector<T> & v) {
  56. if (v.size() <= 1) {
  57. return 0;
  58. }
  59. T mean = avg(v);
  60. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  61. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  62. return stdev;
  63. }
  64. static std::string get_cpu_info() {
  65. std::string id;
  66. #ifdef __linux__
  67. FILE * f = fopen("/proc/cpuinfo", "r");
  68. if (f) {
  69. char buf[1024];
  70. while (fgets(buf, sizeof(buf), f)) {
  71. if (strncmp(buf, "model name", 10) == 0) {
  72. char * p = strchr(buf, ':');
  73. if (p) {
  74. p++;
  75. while (std::isspace(*p)) {
  76. p++;
  77. }
  78. while (std::isspace(p[strlen(p) - 1])) {
  79. p[strlen(p) - 1] = '\0';
  80. }
  81. id = p;
  82. break;
  83. }
  84. }
  85. }
  86. fclose(f);
  87. }
  88. #endif
  89. // TODO: other platforms
  90. return id;
  91. }
  92. static std::string get_gpu_info() {
  93. std::string id;
  94. #ifdef GGML_USE_CUDA
  95. int count = ggml_backend_cuda_get_device_count();
  96. for (int i = 0; i < count; i++) {
  97. char buf[128];
  98. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  99. id += buf;
  100. if (i < count - 1) {
  101. id += "/";
  102. }
  103. }
  104. #endif
  105. #ifdef GGML_USE_SYCL
  106. int count = ggml_backend_sycl_get_device_count();
  107. for (int i = 0; i < count; i++) {
  108. char buf[128];
  109. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  110. id += buf;
  111. if (i < count - 1) {
  112. id += "/";
  113. }
  114. }
  115. #endif
  116. // TODO: other backends
  117. return id;
  118. }
  119. // command line params
  120. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  121. static const char * output_format_str(output_formats format) {
  122. switch (format) {
  123. case NONE: return "none";
  124. case CSV: return "csv";
  125. case JSON: return "json";
  126. case MARKDOWN: return "md";
  127. case SQL: return "sql";
  128. default: GGML_ASSERT(!"invalid output format");
  129. }
  130. }
  131. static bool output_format_from_str(const std::string & s, output_formats & format) {
  132. if (s == "none") {
  133. format = NONE;
  134. } else if (s == "csv") {
  135. format = CSV;
  136. } else if (s == "json") {
  137. format = JSON;
  138. } else if (s == "md") {
  139. format = MARKDOWN;
  140. } else if (s == "sql") {
  141. format = SQL;
  142. } else {
  143. return false;
  144. }
  145. return true;
  146. }
  147. static const char * split_mode_str(llama_split_mode mode) {
  148. switch (mode) {
  149. case LLAMA_SPLIT_MODE_NONE: return "none";
  150. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  151. case LLAMA_SPLIT_MODE_ROW: return "row";
  152. default: GGML_ASSERT(!"invalid split mode");
  153. }
  154. }
  155. static std::string pair_str(const std::pair<int, int> & p) {
  156. static char buf[32];
  157. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  158. return buf;
  159. }
  160. struct cmd_params {
  161. std::vector<std::string> model;
  162. std::vector<int> n_prompt;
  163. std::vector<int> n_gen;
  164. std::vector<std::pair<int, int>> n_pg;
  165. std::vector<int> n_batch;
  166. std::vector<int> n_ubatch;
  167. std::vector<ggml_type> type_k;
  168. std::vector<ggml_type> type_v;
  169. std::vector<int> n_threads;
  170. std::vector<int> n_gpu_layers;
  171. std::vector<std::string> rpc_servers;
  172. std::vector<llama_split_mode> split_mode;
  173. std::vector<int> main_gpu;
  174. std::vector<bool> no_kv_offload;
  175. std::vector<bool> flash_attn;
  176. std::vector<std::vector<float>> tensor_split;
  177. std::vector<bool> use_mmap;
  178. std::vector<bool> embeddings;
  179. ggml_numa_strategy numa;
  180. int reps;
  181. bool verbose;
  182. output_formats output_format;
  183. output_formats output_format_stderr;
  184. };
  185. static const cmd_params cmd_params_defaults = {
  186. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  187. /* n_prompt */ {512},
  188. /* n_gen */ {128},
  189. /* n_pg */ {},
  190. /* n_batch */ {2048},
  191. /* n_ubatch */ {512},
  192. /* type_k */ {GGML_TYPE_F16},
  193. /* type_v */ {GGML_TYPE_F16},
  194. /* n_threads */ {cpu_get_num_math()},
  195. /* n_gpu_layers */ {99},
  196. /* rpc_servers */ {""},
  197. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  198. /* main_gpu */ {0},
  199. /* no_kv_offload */ {false},
  200. /* flash_attn */ {false},
  201. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  202. /* use_mmap */ {true},
  203. /* embeddings */ {false},
  204. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  205. /* reps */ 5,
  206. /* verbose */ false,
  207. /* output_format */ MARKDOWN,
  208. /* output_format_stderr */ NONE,
  209. };
  210. static void print_usage(int /* argc */, char ** argv) {
  211. printf("usage: %s [options]\n", argv[0]);
  212. printf("\n");
  213. printf("options:\n");
  214. printf(" -h, --help\n");
  215. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  216. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  217. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  218. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  219. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  220. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  221. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  222. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  223. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  224. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  225. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  226. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  227. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  228. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  229. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  230. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  231. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  232. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  233. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  234. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  235. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  236. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  237. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  238. printf("\n");
  239. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  240. }
  241. static ggml_type ggml_type_from_name(const std::string & s) {
  242. if (s == "f16") {
  243. return GGML_TYPE_F16;
  244. }
  245. if (s == "q8_0") {
  246. return GGML_TYPE_Q8_0;
  247. }
  248. if (s == "q4_0") {
  249. return GGML_TYPE_Q4_0;
  250. }
  251. if (s == "q4_1") {
  252. return GGML_TYPE_Q4_1;
  253. }
  254. if (s == "q5_0") {
  255. return GGML_TYPE_Q5_0;
  256. }
  257. if (s == "q5_1") {
  258. return GGML_TYPE_Q5_1;
  259. }
  260. if (s == "iq4_nl") {
  261. return GGML_TYPE_IQ4_NL;
  262. }
  263. return GGML_TYPE_COUNT;
  264. }
  265. static cmd_params parse_cmd_params(int argc, char ** argv) {
  266. cmd_params params;
  267. std::string arg;
  268. bool invalid_param = false;
  269. const std::string arg_prefix = "--";
  270. const char split_delim = ',';
  271. params.verbose = cmd_params_defaults.verbose;
  272. params.output_format = cmd_params_defaults.output_format;
  273. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  274. params.reps = cmd_params_defaults.reps;
  275. for (int i = 1; i < argc; i++) {
  276. arg = argv[i];
  277. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  278. std::replace(arg.begin(), arg.end(), '_', '-');
  279. }
  280. if (arg == "-h" || arg == "--help") {
  281. print_usage(argc, argv);
  282. exit(0);
  283. } else if (arg == "-m" || arg == "--model") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. auto p = string_split<std::string>(argv[i], split_delim);
  289. params.model.insert(params.model.end(), p.begin(), p.end());
  290. } else if (arg == "-p" || arg == "--n-prompt") {
  291. if (++i >= argc) {
  292. invalid_param = true;
  293. break;
  294. }
  295. auto p = string_split<int>(argv[i], split_delim);
  296. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  297. } else if (arg == "-n" || arg == "--n-gen") {
  298. if (++i >= argc) {
  299. invalid_param = true;
  300. break;
  301. }
  302. auto p = string_split<int>(argv[i], split_delim);
  303. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  304. } else if (arg == "-pg") {
  305. if (++i >= argc) {
  306. invalid_param = true;
  307. break;
  308. }
  309. auto p = string_split<std::string>(argv[i], ',');
  310. if (p.size() != 2) {
  311. invalid_param = true;
  312. break;
  313. }
  314. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  315. } else if (arg == "-b" || arg == "--batch-size") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. break;
  319. }
  320. auto p = string_split<int>(argv[i], split_delim);
  321. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  322. } else if (arg == "-ub" || arg == "--ubatch-size") {
  323. if (++i >= argc) {
  324. invalid_param = true;
  325. break;
  326. }
  327. auto p = string_split<int>(argv[i], split_delim);
  328. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  329. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  330. if (++i >= argc) {
  331. invalid_param = true;
  332. break;
  333. }
  334. auto p = string_split<std::string>(argv[i], split_delim);
  335. std::vector<ggml_type> types;
  336. for (const auto & t : p) {
  337. ggml_type gt = ggml_type_from_name(t);
  338. if (gt == GGML_TYPE_COUNT) {
  339. invalid_param = true;
  340. break;
  341. }
  342. types.push_back(gt);
  343. }
  344. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  345. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  346. if (++i >= argc) {
  347. invalid_param = true;
  348. break;
  349. }
  350. auto p = string_split<std::string>(argv[i], split_delim);
  351. std::vector<ggml_type> types;
  352. for (const auto & t : p) {
  353. ggml_type gt = ggml_type_from_name(t);
  354. if (gt == GGML_TYPE_COUNT) {
  355. invalid_param = true;
  356. break;
  357. }
  358. types.push_back(gt);
  359. }
  360. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  361. } else if (arg == "-t" || arg == "--threads") {
  362. if (++i >= argc) {
  363. invalid_param = true;
  364. break;
  365. }
  366. auto p = string_split<int>(argv[i], split_delim);
  367. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  368. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  369. if (++i >= argc) {
  370. invalid_param = true;
  371. break;
  372. }
  373. auto p = string_split<int>(argv[i], split_delim);
  374. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  375. } else if (arg == "-rpc" || arg == "--rpc") {
  376. if (++i >= argc) {
  377. invalid_param = true;
  378. break;
  379. }
  380. params.rpc_servers.push_back(argv[i]);
  381. } else if (arg == "-sm" || arg == "--split-mode") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = string_split<std::string>(argv[i], split_delim);
  387. std::vector<llama_split_mode> modes;
  388. for (const auto & m : p) {
  389. llama_split_mode mode;
  390. if (m == "none") {
  391. mode = LLAMA_SPLIT_MODE_NONE;
  392. } else if (m == "layer") {
  393. mode = LLAMA_SPLIT_MODE_LAYER;
  394. } else if (m == "row") {
  395. mode = LLAMA_SPLIT_MODE_ROW;
  396. } else {
  397. invalid_param = true;
  398. break;
  399. }
  400. modes.push_back(mode);
  401. }
  402. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  403. } else if (arg == "-mg" || arg == "--main-gpu") {
  404. if (++i >= argc) {
  405. invalid_param = true;
  406. break;
  407. }
  408. params.main_gpu = string_split<int>(argv[i], split_delim);
  409. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  410. if (++i >= argc) {
  411. invalid_param = true;
  412. break;
  413. }
  414. auto p = string_split<bool>(argv[i], split_delim);
  415. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  416. } else if (arg == "--numa") {
  417. if (++i >= argc) {
  418. invalid_param = true;
  419. break;
  420. } else {
  421. std::string value(argv[i]);
  422. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  423. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  424. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  425. else { invalid_param = true; break; }
  426. }
  427. } else if (arg == "-fa" || arg == "--flash-attn") {
  428. if (++i >= argc) {
  429. invalid_param = true;
  430. break;
  431. }
  432. auto p = string_split<bool>(argv[i], split_delim);
  433. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  434. } else if (arg == "-mmp" || arg == "--mmap") {
  435. if (++i >= argc) {
  436. invalid_param = true;
  437. break;
  438. }
  439. auto p = string_split<bool>(argv[i], split_delim);
  440. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  441. } else if (arg == "-embd" || arg == "--embeddings") {
  442. if (++i >= argc) {
  443. invalid_param = true;
  444. break;
  445. }
  446. auto p = string_split<bool>(argv[i], split_delim);
  447. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  448. } else if (arg == "-ts" || arg == "--tensor-split") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  454. // split string by ; and /
  455. const std::regex regex{R"([;/]+)"};
  456. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  457. std::vector<std::string> split_arg{it, {}};
  458. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  459. std::vector<float> tensor_split(llama_max_devices());
  460. for (size_t i = 0; i < llama_max_devices(); ++i) {
  461. if (i < split_arg.size()) {
  462. tensor_split[i] = std::stof(split_arg[i]);
  463. } else {
  464. tensor_split[i] = 0.0f;
  465. }
  466. }
  467. params.tensor_split.push_back(tensor_split);
  468. }
  469. } else if (arg == "-r" || arg == "--repetitions") {
  470. if (++i >= argc) {
  471. invalid_param = true;
  472. break;
  473. }
  474. params.reps = std::stoi(argv[i]);
  475. } else if (arg == "-o" || arg == "--output") {
  476. if (++i >= argc) {
  477. invalid_param = true;
  478. break;
  479. }
  480. invalid_param = !output_format_from_str(argv[i], params.output_format);
  481. } else if (arg == "-oe" || arg == "--output-err") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  487. } else if (arg == "-v" || arg == "--verbose") {
  488. params.verbose = true;
  489. } else {
  490. invalid_param = true;
  491. break;
  492. }
  493. }
  494. if (invalid_param) {
  495. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  496. print_usage(argc, argv);
  497. exit(1);
  498. }
  499. // set defaults
  500. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  501. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  502. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  503. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  504. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  505. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  506. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  507. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  508. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  509. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  510. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  511. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  512. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  513. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  514. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  515. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  516. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  517. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  518. return params;
  519. }
  520. struct cmd_params_instance {
  521. std::string model;
  522. int n_prompt;
  523. int n_gen;
  524. int n_batch;
  525. int n_ubatch;
  526. ggml_type type_k;
  527. ggml_type type_v;
  528. int n_threads;
  529. int n_gpu_layers;
  530. std::string rpc_servers;
  531. llama_split_mode split_mode;
  532. int main_gpu;
  533. bool no_kv_offload;
  534. bool flash_attn;
  535. std::vector<float> tensor_split;
  536. bool use_mmap;
  537. bool embeddings;
  538. llama_model_params to_llama_mparams() const {
  539. llama_model_params mparams = llama_model_default_params();
  540. mparams.n_gpu_layers = n_gpu_layers;
  541. if (!rpc_servers.empty()) {
  542. mparams.rpc_servers = rpc_servers.c_str();
  543. }
  544. mparams.split_mode = split_mode;
  545. mparams.main_gpu = main_gpu;
  546. mparams.tensor_split = tensor_split.data();
  547. mparams.use_mmap = use_mmap;
  548. return mparams;
  549. }
  550. bool equal_mparams(const cmd_params_instance & other) const {
  551. return model == other.model &&
  552. n_gpu_layers == other.n_gpu_layers &&
  553. rpc_servers == other.rpc_servers &&
  554. split_mode == other.split_mode &&
  555. main_gpu == other.main_gpu &&
  556. use_mmap == other.use_mmap &&
  557. tensor_split == other.tensor_split;
  558. }
  559. llama_context_params to_llama_cparams() const {
  560. llama_context_params cparams = llama_context_default_params();
  561. cparams.n_ctx = n_prompt + n_gen;
  562. cparams.n_batch = n_batch;
  563. cparams.n_ubatch = n_ubatch;
  564. cparams.type_k = type_k;
  565. cparams.type_v = type_v;
  566. cparams.offload_kqv = !no_kv_offload;
  567. cparams.flash_attn = flash_attn;
  568. cparams.embeddings = embeddings;
  569. return cparams;
  570. }
  571. };
  572. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  573. std::vector<cmd_params_instance> instances;
  574. // this ordering minimizes the number of times that each model needs to be reloaded
  575. for (const auto & m : params.model)
  576. for (const auto & nl : params.n_gpu_layers)
  577. for (const auto & rpc : params.rpc_servers)
  578. for (const auto & sm : params.split_mode)
  579. for (const auto & mg : params.main_gpu)
  580. for (const auto & ts : params.tensor_split)
  581. for (const auto & mmp : params.use_mmap)
  582. for (const auto & embd : params.embeddings)
  583. for (const auto & nb : params.n_batch)
  584. for (const auto & nub : params.n_ubatch)
  585. for (const auto & tk : params.type_k)
  586. for (const auto & tv : params.type_v)
  587. for (const auto & nkvo : params.no_kv_offload)
  588. for (const auto & fa : params.flash_attn)
  589. for (const auto & nt : params.n_threads) {
  590. for (const auto & n_prompt : params.n_prompt) {
  591. if (n_prompt == 0) {
  592. continue;
  593. }
  594. cmd_params_instance instance = {
  595. /* .model = */ m,
  596. /* .n_prompt = */ n_prompt,
  597. /* .n_gen = */ 0,
  598. /* .n_batch = */ nb,
  599. /* .n_ubatch = */ nub,
  600. /* .type_k = */ tk,
  601. /* .type_v = */ tv,
  602. /* .n_threads = */ nt,
  603. /* .n_gpu_layers = */ nl,
  604. /* .rpc_servers = */ rpc,
  605. /* .split_mode = */ sm,
  606. /* .main_gpu = */ mg,
  607. /* .no_kv_offload= */ nkvo,
  608. /* .flash_attn = */ fa,
  609. /* .tensor_split = */ ts,
  610. /* .use_mmap = */ mmp,
  611. /* .embeddings = */ embd,
  612. };
  613. instances.push_back(instance);
  614. }
  615. for (const auto & n_gen : params.n_gen) {
  616. if (n_gen == 0) {
  617. continue;
  618. }
  619. cmd_params_instance instance = {
  620. /* .model = */ m,
  621. /* .n_prompt = */ 0,
  622. /* .n_gen = */ n_gen,
  623. /* .n_batch = */ nb,
  624. /* .n_ubatch = */ nub,
  625. /* .type_k = */ tk,
  626. /* .type_v = */ tv,
  627. /* .n_threads = */ nt,
  628. /* .n_gpu_layers = */ nl,
  629. /* .rpc_servers = */ rpc,
  630. /* .split_mode = */ sm,
  631. /* .main_gpu = */ mg,
  632. /* .no_kv_offload= */ nkvo,
  633. /* .flash_attn = */ fa,
  634. /* .tensor_split = */ ts,
  635. /* .use_mmap = */ mmp,
  636. /* .embeddings = */ embd,
  637. };
  638. instances.push_back(instance);
  639. }
  640. for (const auto & n_pg : params.n_pg) {
  641. if (n_pg.first == 0 && n_pg.second == 0) {
  642. continue;
  643. }
  644. cmd_params_instance instance = {
  645. /* .model = */ m,
  646. /* .n_prompt = */ n_pg.first,
  647. /* .n_gen = */ n_pg.second,
  648. /* .n_batch = */ nb,
  649. /* .n_ubatch = */ nub,
  650. /* .type_k = */ tk,
  651. /* .type_v = */ tv,
  652. /* .n_threads = */ nt,
  653. /* .n_gpu_layers = */ nl,
  654. /* .rpc_servers = */ rpc,
  655. /* .split_mode = */ sm,
  656. /* .main_gpu = */ mg,
  657. /* .no_kv_offload= */ nkvo,
  658. /* .flash_attn = */ fa,
  659. /* .tensor_split = */ ts,
  660. /* .use_mmap = */ mmp,
  661. /* .embeddings = */ embd,
  662. };
  663. instances.push_back(instance);
  664. }
  665. }
  666. return instances;
  667. }
  668. struct test {
  669. static const std::string build_commit;
  670. static const int build_number;
  671. static const bool cuda;
  672. static const bool vulkan;
  673. static const bool kompute;
  674. static const bool metal;
  675. static const bool sycl;
  676. static const bool rpc;
  677. static const bool gpu_blas;
  678. static const bool blas;
  679. static const std::string cpu_info;
  680. static const std::string gpu_info;
  681. std::string model_filename;
  682. std::string model_type;
  683. uint64_t model_size;
  684. uint64_t model_n_params;
  685. int n_batch;
  686. int n_ubatch;
  687. int n_threads;
  688. ggml_type type_k;
  689. ggml_type type_v;
  690. int n_gpu_layers;
  691. llama_split_mode split_mode;
  692. int main_gpu;
  693. bool no_kv_offload;
  694. bool flash_attn;
  695. std::vector<float> tensor_split;
  696. bool use_mmap;
  697. bool embeddings;
  698. int n_prompt;
  699. int n_gen;
  700. std::string test_time;
  701. std::vector<uint64_t> samples_ns;
  702. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  703. model_filename = inst.model;
  704. char buf[128];
  705. llama_model_desc(lmodel, buf, sizeof(buf));
  706. model_type = buf;
  707. model_size = llama_model_size(lmodel);
  708. model_n_params = llama_model_n_params(lmodel);
  709. n_batch = inst.n_batch;
  710. n_ubatch = inst.n_ubatch;
  711. n_threads = inst.n_threads;
  712. type_k = inst.type_k;
  713. type_v = inst.type_v;
  714. n_gpu_layers = inst.n_gpu_layers;
  715. split_mode = inst.split_mode;
  716. main_gpu = inst.main_gpu;
  717. no_kv_offload = inst.no_kv_offload;
  718. flash_attn = inst.flash_attn;
  719. tensor_split = inst.tensor_split;
  720. use_mmap = inst.use_mmap;
  721. embeddings = inst.embeddings;
  722. n_prompt = inst.n_prompt;
  723. n_gen = inst.n_gen;
  724. // RFC 3339 date-time format
  725. time_t t = time(NULL);
  726. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  727. test_time = buf;
  728. (void) ctx;
  729. }
  730. uint64_t avg_ns() const {
  731. return ::avg(samples_ns);
  732. }
  733. uint64_t stdev_ns() const {
  734. return ::stdev(samples_ns);
  735. }
  736. std::vector<double> get_ts() const {
  737. int n_tokens = n_prompt + n_gen;
  738. std::vector<double> ts;
  739. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  740. return ts;
  741. }
  742. double avg_ts() const {
  743. return ::avg(get_ts());
  744. }
  745. double stdev_ts() const {
  746. return ::stdev(get_ts());
  747. }
  748. static std::string get_backend() {
  749. if (cuda) {
  750. return GGML_CUDA_NAME;
  751. }
  752. if (vulkan) {
  753. return "Vulkan";
  754. }
  755. if (kompute) {
  756. return "Kompute";
  757. }
  758. if (metal) {
  759. return "Metal";
  760. }
  761. if (sycl) {
  762. return GGML_SYCL_NAME;
  763. }
  764. if (rpc) {
  765. return "RPC";
  766. }
  767. if (gpu_blas) {
  768. return "GPU BLAS";
  769. }
  770. if (blas) {
  771. return "BLAS";
  772. }
  773. return "CPU";
  774. }
  775. static const std::vector<std::string> & get_fields() {
  776. static const std::vector<std::string> fields = {
  777. "build_commit", "build_number",
  778. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  779. "cpu_info", "gpu_info",
  780. "model_filename", "model_type", "model_size", "model_n_params",
  781. "n_batch", "n_ubatch",
  782. "n_threads", "type_k", "type_v",
  783. "n_gpu_layers", "split_mode",
  784. "main_gpu", "no_kv_offload", "flash_attn",
  785. "tensor_split", "use_mmap", "embeddings",
  786. "n_prompt", "n_gen", "test_time",
  787. "avg_ns", "stddev_ns",
  788. "avg_ts", "stddev_ts"
  789. };
  790. return fields;
  791. }
  792. enum field_type {STRING, BOOL, INT, FLOAT};
  793. static field_type get_field_type(const std::string & field) {
  794. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  795. field == "n_threads" ||
  796. field == "model_size" || field == "model_n_params" ||
  797. field == "n_gpu_layers" || field == "main_gpu" ||
  798. field == "n_prompt" || field == "n_gen" ||
  799. field == "avg_ns" || field == "stddev_ns") {
  800. return INT;
  801. }
  802. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  803. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  804. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  805. return BOOL;
  806. }
  807. if (field == "avg_ts" || field == "stddev_ts") {
  808. return FLOAT;
  809. }
  810. return STRING;
  811. }
  812. std::vector<std::string> get_values() const {
  813. std::string tensor_split_str;
  814. int max_nonzero = 0;
  815. for (size_t i = 0; i < llama_max_devices(); i++) {
  816. if (tensor_split[i] > 0) {
  817. max_nonzero = i;
  818. }
  819. }
  820. for (int i = 0; i <= max_nonzero; i++) {
  821. char buf[32];
  822. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  823. tensor_split_str += buf;
  824. if (i < max_nonzero) {
  825. tensor_split_str += "/";
  826. }
  827. }
  828. std::vector<std::string> values = {
  829. build_commit, std::to_string(build_number),
  830. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  831. std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
  832. cpu_info, gpu_info,
  833. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  834. std::to_string(n_batch), std::to_string(n_ubatch),
  835. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  836. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  837. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  838. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  839. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  840. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  841. std::to_string(avg_ts()), std::to_string(stdev_ts())
  842. };
  843. return values;
  844. }
  845. std::map<std::string, std::string> get_map() const {
  846. std::map<std::string, std::string> map;
  847. auto fields = get_fields();
  848. auto values = get_values();
  849. std::transform(fields.begin(), fields.end(), values.begin(),
  850. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  851. return map;
  852. }
  853. };
  854. const std::string test::build_commit = LLAMA_COMMIT;
  855. const int test::build_number = LLAMA_BUILD_NUMBER;
  856. const bool test::cuda = !!ggml_cpu_has_cuda();
  857. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  858. const bool test::kompute = !!ggml_cpu_has_kompute();
  859. const bool test::metal = !!ggml_cpu_has_metal();
  860. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  861. const bool test::blas = !!ggml_cpu_has_blas();
  862. const bool test::sycl = !!ggml_cpu_has_sycl();
  863. const bool test::rpc = !!ggml_cpu_has_rpc();
  864. const std::string test::cpu_info = get_cpu_info();
  865. const std::string test::gpu_info = get_gpu_info();
  866. struct printer {
  867. virtual ~printer() {}
  868. FILE * fout;
  869. virtual void print_header(const cmd_params & params) { (void) params; }
  870. virtual void print_test(const test & t) = 0;
  871. virtual void print_footer() { }
  872. };
  873. struct csv_printer : public printer {
  874. static std::string escape_csv(const std::string & field) {
  875. std::string escaped = "\"";
  876. for (auto c : field) {
  877. if (c == '"') {
  878. escaped += "\"";
  879. }
  880. escaped += c;
  881. }
  882. escaped += "\"";
  883. return escaped;
  884. }
  885. void print_header(const cmd_params & params) override {
  886. std::vector<std::string> fields = test::get_fields();
  887. fprintf(fout, "%s\n", join(fields, ",").c_str());
  888. (void) params;
  889. }
  890. void print_test(const test & t) override {
  891. std::vector<std::string> values = t.get_values();
  892. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  893. fprintf(fout, "%s\n", join(values, ",").c_str());
  894. }
  895. };
  896. struct json_printer : public printer {
  897. bool first = true;
  898. static std::string escape_json(const std::string & value) {
  899. std::string escaped;
  900. for (auto c : value) {
  901. if (c == '"') {
  902. escaped += "\\\"";
  903. } else if (c == '\\') {
  904. escaped += "\\\\";
  905. } else if (c <= 0x1f) {
  906. char buf[8];
  907. snprintf(buf, sizeof(buf), "\\u%04x", c);
  908. escaped += buf;
  909. } else {
  910. escaped += c;
  911. }
  912. }
  913. return escaped;
  914. }
  915. static std::string format_value(const std::string & field, const std::string & value) {
  916. switch (test::get_field_type(field)) {
  917. case test::STRING:
  918. return "\"" + escape_json(value) + "\"";
  919. case test::BOOL:
  920. return value == "0" ? "false" : "true";
  921. default:
  922. return value;
  923. }
  924. }
  925. void print_header(const cmd_params & params) override {
  926. fprintf(fout, "[\n");
  927. (void) params;
  928. }
  929. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  930. assert(fields.size() == values.size());
  931. for (size_t i = 0; i < fields.size(); i++) {
  932. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  933. }
  934. }
  935. void print_test(const test & t) override {
  936. if (first) {
  937. first = false;
  938. } else {
  939. fprintf(fout, ",\n");
  940. }
  941. fprintf(fout, " {\n");
  942. print_fields(test::get_fields(), t.get_values());
  943. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  944. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  945. fprintf(fout, " }");
  946. fflush(fout);
  947. }
  948. void print_footer() override {
  949. fprintf(fout, "\n]\n");
  950. }
  951. };
  952. struct markdown_printer : public printer {
  953. std::vector<std::string> fields;
  954. static int get_field_width(const std::string & field) {
  955. if (field == "model") {
  956. return -30;
  957. }
  958. if (field == "t/s") {
  959. return 16;
  960. }
  961. if (field == "size" || field == "params") {
  962. return 10;
  963. }
  964. if (field == "n_gpu_layers") {
  965. return 3;
  966. }
  967. if (field == "n_threads") {
  968. return 7;
  969. }
  970. if (field == "n_batch") {
  971. return 7;
  972. }
  973. if (field == "n_ubatch") {
  974. return 8;
  975. }
  976. if (field == "type_k" || field == "type_v") {
  977. return 6;
  978. }
  979. if (field == "split_mode") {
  980. return 5;
  981. }
  982. if (field == "flash_attn") {
  983. return 2;
  984. }
  985. if (field == "use_mmap") {
  986. return 4;
  987. }
  988. if (field == "test") {
  989. return 13;
  990. }
  991. int width = std::max((int)field.length(), 10);
  992. if (test::get_field_type(field) == test::STRING) {
  993. return -width;
  994. }
  995. return width;
  996. }
  997. static std::string get_field_display_name(const std::string & field) {
  998. if (field == "n_gpu_layers") {
  999. return "ngl";
  1000. }
  1001. if (field == "split_mode") {
  1002. return "sm";
  1003. }
  1004. if (field == "n_threads") {
  1005. return "threads";
  1006. }
  1007. if (field == "no_kv_offload") {
  1008. return "nkvo";
  1009. }
  1010. if (field == "flash_attn") {
  1011. return "fa";
  1012. }
  1013. if (field == "use_mmap") {
  1014. return "mmap";
  1015. }
  1016. if (field == "embeddings") {
  1017. return "embd";
  1018. }
  1019. if (field == "tensor_split") {
  1020. return "ts";
  1021. }
  1022. return field;
  1023. }
  1024. void print_header(const cmd_params & params) override {
  1025. // select fields to print
  1026. fields.emplace_back("model");
  1027. fields.emplace_back("size");
  1028. fields.emplace_back("params");
  1029. fields.emplace_back("backend");
  1030. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1031. if (!is_cpu_backend) {
  1032. fields.emplace_back("n_gpu_layers");
  1033. }
  1034. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1035. fields.emplace_back("n_threads");
  1036. }
  1037. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1038. fields.emplace_back("n_batch");
  1039. }
  1040. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1041. fields.emplace_back("n_ubatch");
  1042. }
  1043. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1044. fields.emplace_back("type_k");
  1045. }
  1046. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1047. fields.emplace_back("type_v");
  1048. }
  1049. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1050. fields.emplace_back("main_gpu");
  1051. }
  1052. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1053. fields.emplace_back("split_mode");
  1054. }
  1055. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1056. fields.emplace_back("no_kv_offload");
  1057. }
  1058. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1059. fields.emplace_back("flash_attn");
  1060. }
  1061. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1062. fields.emplace_back("tensor_split");
  1063. }
  1064. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1065. fields.emplace_back("use_mmap");
  1066. }
  1067. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1068. fields.emplace_back("embeddings");
  1069. }
  1070. fields.emplace_back("test");
  1071. fields.emplace_back("t/s");
  1072. fprintf(fout, "|");
  1073. for (const auto & field : fields) {
  1074. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1075. }
  1076. fprintf(fout, "\n");
  1077. fprintf(fout, "|");
  1078. for (const auto & field : fields) {
  1079. int width = get_field_width(field);
  1080. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1081. }
  1082. fprintf(fout, "\n");
  1083. }
  1084. void print_test(const test & t) override {
  1085. std::map<std::string, std::string> vmap = t.get_map();
  1086. fprintf(fout, "|");
  1087. for (const auto & field : fields) {
  1088. std::string value;
  1089. char buf[128];
  1090. if (field == "model") {
  1091. value = t.model_type;
  1092. } else if (field == "size") {
  1093. if (t.model_size < 1024*1024*1024) {
  1094. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1095. } else {
  1096. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1097. }
  1098. value = buf;
  1099. } else if (field == "params") {
  1100. if (t.model_n_params < 1000*1000*1000) {
  1101. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1102. } else {
  1103. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1104. }
  1105. value = buf;
  1106. } else if (field == "backend") {
  1107. value = test::get_backend();
  1108. } else if (field == "test") {
  1109. if (t.n_prompt > 0 && t.n_gen == 0) {
  1110. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1111. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1112. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1113. } else {
  1114. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1115. }
  1116. value = buf;
  1117. } else if (field == "t/s") {
  1118. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1119. value = buf;
  1120. } else if (vmap.find(field) != vmap.end()) {
  1121. value = vmap.at(field);
  1122. } else {
  1123. assert(false);
  1124. exit(1);
  1125. }
  1126. int width = get_field_width(field);
  1127. if (field == "t/s") {
  1128. // HACK: the utf-8 character is 2 bytes
  1129. width += 1;
  1130. }
  1131. fprintf(fout, " %*s |", width, value.c_str());
  1132. }
  1133. fprintf(fout, "\n");
  1134. }
  1135. void print_footer() override {
  1136. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1137. }
  1138. };
  1139. struct sql_printer : public printer {
  1140. static std::string get_sql_field_type(const std::string & field) {
  1141. switch (test::get_field_type(field)) {
  1142. case test::STRING:
  1143. return "TEXT";
  1144. case test::BOOL:
  1145. case test::INT:
  1146. return "INTEGER";
  1147. case test::FLOAT:
  1148. return "REAL";
  1149. default:
  1150. assert(false);
  1151. exit(1);
  1152. }
  1153. }
  1154. void print_header(const cmd_params & params) override {
  1155. std::vector<std::string> fields = test::get_fields();
  1156. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1157. for (size_t i = 0; i < fields.size(); i++) {
  1158. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1159. }
  1160. fprintf(fout, ");\n");
  1161. fprintf(fout, "\n");
  1162. (void) params;
  1163. }
  1164. void print_test(const test & t) override {
  1165. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1166. fprintf(fout, "VALUES (");
  1167. std::vector<std::string> values = t.get_values();
  1168. for (size_t i = 0; i < values.size(); i++) {
  1169. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1170. }
  1171. fprintf(fout, ");\n");
  1172. }
  1173. };
  1174. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1175. llama_set_n_threads(ctx, n_threads, n_threads);
  1176. const llama_model * model = llama_get_model(ctx);
  1177. const int32_t n_vocab = llama_n_vocab(model);
  1178. std::vector<llama_token> tokens(n_batch);
  1179. int n_processed = 0;
  1180. while (n_processed < n_prompt) {
  1181. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1182. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1183. for (int i = 1; i < n_tokens; i++) {
  1184. tokens[i] = std::rand() % n_vocab;
  1185. }
  1186. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1187. n_processed += n_tokens;
  1188. }
  1189. llama_synchronize(ctx);
  1190. }
  1191. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1192. llama_set_n_threads(ctx, n_threads, n_threads);
  1193. const llama_model * model = llama_get_model(ctx);
  1194. const int32_t n_vocab = llama_n_vocab(model);
  1195. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1196. for (int i = 0; i < n_gen; i++) {
  1197. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1198. llama_synchronize(ctx);
  1199. token = std::rand() % n_vocab;
  1200. }
  1201. }
  1202. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1203. (void) level;
  1204. (void) text;
  1205. (void) user_data;
  1206. }
  1207. static std::unique_ptr<printer> create_printer(output_formats format) {
  1208. switch (format) {
  1209. case NONE:
  1210. return nullptr;
  1211. case CSV:
  1212. return std::unique_ptr<printer>(new csv_printer());
  1213. case JSON:
  1214. return std::unique_ptr<printer>(new json_printer());
  1215. case MARKDOWN:
  1216. return std::unique_ptr<printer>(new markdown_printer());
  1217. case SQL:
  1218. return std::unique_ptr<printer>(new sql_printer());
  1219. }
  1220. GGML_ASSERT(false);
  1221. }
  1222. int main(int argc, char ** argv) {
  1223. // try to set locale for unicode characters in markdown
  1224. setlocale(LC_CTYPE, ".UTF-8");
  1225. #if !defined(NDEBUG)
  1226. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1227. #endif
  1228. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1229. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1230. #endif
  1231. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1232. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1233. #endif
  1234. cmd_params params = parse_cmd_params(argc, argv);
  1235. // initialize llama.cpp
  1236. if (!params.verbose) {
  1237. llama_log_set(llama_null_log_callback, NULL);
  1238. }
  1239. llama_backend_init();
  1240. llama_numa_init(params.numa);
  1241. // initialize printer
  1242. std::unique_ptr<printer> p = create_printer(params.output_format);
  1243. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1244. if (p) {
  1245. p->fout = stdout;
  1246. p->print_header(params);
  1247. }
  1248. if (p_err) {
  1249. p_err->fout = stderr;
  1250. p_err->print_header(params);
  1251. }
  1252. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1253. llama_model * lmodel = nullptr;
  1254. const cmd_params_instance * prev_inst = nullptr;
  1255. for (const auto & inst : params_instances) {
  1256. // keep the same model between tests when possible
  1257. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1258. if (lmodel) {
  1259. llama_free_model(lmodel);
  1260. }
  1261. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1262. if (lmodel == NULL) {
  1263. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1264. return 1;
  1265. }
  1266. prev_inst = &inst;
  1267. }
  1268. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1269. if (ctx == NULL) {
  1270. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1271. llama_free_model(lmodel);
  1272. return 1;
  1273. }
  1274. test t(inst, lmodel, ctx);
  1275. llama_kv_cache_clear(ctx);
  1276. // warmup run
  1277. if (t.n_prompt > 0) {
  1278. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1279. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1280. }
  1281. if (t.n_gen > 0) {
  1282. test_gen(ctx, 1, 0, t.n_threads);
  1283. }
  1284. for (int i = 0; i < params.reps; i++) {
  1285. llama_kv_cache_clear(ctx);
  1286. uint64_t t_start = get_time_ns();
  1287. if (t.n_prompt > 0) {
  1288. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1289. }
  1290. if (t.n_gen > 0) {
  1291. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1292. }
  1293. uint64_t t_ns = get_time_ns() - t_start;
  1294. t.samples_ns.push_back(t_ns);
  1295. }
  1296. if (p) {
  1297. p->print_test(t);
  1298. fflush(p->fout);
  1299. }
  1300. if (p_err) {
  1301. p_err->print_test(t);
  1302. fflush(p_err->fout);
  1303. }
  1304. llama_print_timings(ctx);
  1305. llama_free(ctx);
  1306. }
  1307. llama_free_model(lmodel);
  1308. if (p) {
  1309. p->print_footer();
  1310. }
  1311. if (p_err) {
  1312. p_err->print_footer();
  1313. }
  1314. llama_backend_free();
  1315. return 0;
  1316. }