ggml-quants.c 606 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-impl.h"
  5. #define GGML_COMMON_IMPL_C
  6. #include "ggml-common.h"
  7. #include <math.h>
  8. #include <string.h>
  9. #include <assert.h>
  10. #include <float.h>
  11. #include <stdlib.h> // for qsort
  12. #include <stdio.h> // for GGML_ASSERT
  13. #define GROUP_MAX_EPS 1e-15f
  14. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  15. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  16. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  17. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  18. #if defined(_MSC_VER)
  19. // disable "possible loss of data" to avoid warnings for hundreds of casts
  20. // we should just be careful :)
  21. #pragma warning(disable: 4244 4267)
  22. #endif
  23. #define UNUSED GGML_UNUSED
  24. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  25. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  26. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  27. // multiply int8_t, add results pairwise twice
  28. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  29. // Get absolute values of x vectors
  30. const __m128i ax = _mm_sign_epi8(x, x);
  31. // Sign the values of the y vectors
  32. const __m128i sy = _mm_sign_epi8(y, x);
  33. // Perform multiplication and create 16-bit values
  34. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  35. const __m128i ones = _mm_set1_epi16(1);
  36. return _mm_madd_epi16(ones, dot);
  37. }
  38. #if __AVX__ || __AVX2__ || __AVX512F__
  39. // horizontally add 8 floats
  40. static inline float hsum_float_8(const __m256 x) {
  41. __m128 res = _mm256_extractf128_ps(x, 1);
  42. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  43. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  44. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  45. return _mm_cvtss_f32(res);
  46. }
  47. // horizontally add 8 int32_t
  48. static inline int hsum_i32_8(const __m256i a) {
  49. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  50. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  51. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  52. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  53. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  54. }
  55. // horizontally add 4 int32_t
  56. static inline int hsum_i32_4(const __m128i a) {
  57. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  58. const __m128i sum64 = _mm_add_epi32(hi64, a);
  59. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  60. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  61. }
  62. #if defined(__AVX2__) || defined(__AVX512F__)
  63. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  64. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  65. uint32_t x32;
  66. memcpy(&x32, x, sizeof(uint32_t));
  67. const __m256i shuf_mask = _mm256_set_epi64x(
  68. 0x0303030303030303, 0x0202020202020202,
  69. 0x0101010101010101, 0x0000000000000000);
  70. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  71. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  72. bytes = _mm256_or_si256(bytes, bit_mask);
  73. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  74. }
  75. // Unpack 32 4-bit fields into 32 bytes
  76. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  77. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  78. {
  79. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  80. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  81. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  82. return _mm256_and_si256(lowMask, bytes);
  83. }
  84. // add int16_t pairwise and return as float vector
  85. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  86. const __m256i ones = _mm256_set1_epi16(1);
  87. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  88. return _mm256_cvtepi32_ps(summed_pairs);
  89. }
  90. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  91. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  92. const __m256i zero = _mm256_setzero_si256();
  93. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  94. return _mm256_cvtepi32_ps(summed_pairs);
  95. #else
  96. // Perform multiplication and create 16-bit values
  97. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  98. return sum_i16_pairs_float(dot);
  99. #endif
  100. }
  101. // multiply int8_t, add results pairwise twice and return as float vector
  102. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  103. #if __AVXVNNIINT8__
  104. const __m256i zero = _mm256_setzero_si256();
  105. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  106. return _mm256_cvtepi32_ps(summed_pairs);
  107. #else
  108. // Get absolute values of x vectors
  109. const __m256i ax = _mm256_sign_epi8(x, x);
  110. // Sign the values of the y vectors
  111. const __m256i sy = _mm256_sign_epi8(y, x);
  112. return mul_sum_us8_pairs_float(ax, sy);
  113. #endif
  114. }
  115. static inline __m128i packNibbles( __m256i bytes )
  116. {
  117. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  118. #if __AVX512F__
  119. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  120. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  121. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  122. #else
  123. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  124. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  125. __m256i low = _mm256_and_si256( lowByte, bytes );
  126. high = _mm256_srli_epi16( high, 4 );
  127. bytes = _mm256_or_si256( low, high );
  128. // Compress uint16_t lanes into bytes
  129. __m128i r0 = _mm256_castsi256_si128( bytes );
  130. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  131. return _mm_packus_epi16( r0, r1 );
  132. #endif
  133. }
  134. #elif defined(__AVX__)
  135. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  136. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  137. uint32_t x32;
  138. memcpy(&x32, x, sizeof(uint32_t));
  139. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  140. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  141. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  142. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  143. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  144. bytesl = _mm_or_si128(bytesl, bit_mask);
  145. bytesh = _mm_or_si128(bytesh, bit_mask);
  146. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  147. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  148. return MM256_SET_M128I(bytesh, bytesl);
  149. }
  150. // Unpack 32 4-bit fields into 32 bytes
  151. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  152. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  153. {
  154. // Load 16 bytes from memory
  155. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  156. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  157. const __m128i lowMask = _mm_set1_epi8(0xF);
  158. tmpl = _mm_and_si128(lowMask, tmpl);
  159. tmph = _mm_and_si128(lowMask, tmph);
  160. return MM256_SET_M128I(tmph, tmpl);
  161. }
  162. // add int16_t pairwise and return as float vector
  163. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  164. const __m128i ones = _mm_set1_epi16(1);
  165. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  166. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  167. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  168. return _mm256_cvtepi32_ps(summed_pairs);
  169. }
  170. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  171. const __m128i axl = _mm256_castsi256_si128(ax);
  172. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  173. const __m128i syl = _mm256_castsi256_si128(sy);
  174. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  175. // Perform multiplication and create 16-bit values
  176. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  177. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  178. return sum_i16_pairs_float(doth, dotl);
  179. }
  180. // multiply int8_t, add results pairwise twice and return as float vector
  181. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  182. const __m128i xl = _mm256_castsi256_si128(x);
  183. const __m128i xh = _mm256_extractf128_si256(x, 1);
  184. const __m128i yl = _mm256_castsi256_si128(y);
  185. const __m128i yh = _mm256_extractf128_si256(y, 1);
  186. // Get absolute values of x vectors
  187. const __m128i axl = _mm_sign_epi8(xl, xl);
  188. const __m128i axh = _mm_sign_epi8(xh, xh);
  189. // Sign the values of the y vectors
  190. const __m128i syl = _mm_sign_epi8(yl, xl);
  191. const __m128i syh = _mm_sign_epi8(yh, xh);
  192. // Perform multiplication and create 16-bit values
  193. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  194. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  195. return sum_i16_pairs_float(doth, dotl);
  196. }
  197. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  198. {
  199. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  200. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  201. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  202. __m128i low = _mm_and_si128( lowByte, bytes1 );
  203. high = _mm_srli_epi16( high, 4 );
  204. bytes1 = _mm_or_si128( low, high );
  205. high = _mm_andnot_si128( lowByte, bytes2 );
  206. low = _mm_and_si128( lowByte, bytes2 );
  207. high = _mm_srli_epi16( high, 4 );
  208. bytes2 = _mm_or_si128( low, high );
  209. return _mm_packus_epi16( bytes1, bytes2);
  210. }
  211. #endif
  212. #elif defined(__SSSE3__)
  213. // horizontally add 4x4 floats
  214. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  215. __m128 res_0 =_mm_hadd_ps(a, b);
  216. __m128 res_1 =_mm_hadd_ps(c, d);
  217. __m128 res =_mm_hadd_ps(res_0, res_1);
  218. res =_mm_hadd_ps(res, res);
  219. res =_mm_hadd_ps(res, res);
  220. return _mm_cvtss_f32(res);
  221. }
  222. #endif // __AVX__ || __AVX2__ || __AVX512F__
  223. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  224. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  225. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  226. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  227. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  228. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  229. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  230. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  231. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  232. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  233. // precomputed tables for expanding 8bits to 8 bytes:
  234. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  235. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  236. #endif
  237. #if defined(__loongarch_asx)
  238. #ifdef __clang__
  239. #define VREGS_PREFIX "$vr"
  240. #define XREGS_PREFIX "$xr"
  241. #else // GCC
  242. #define VREGS_PREFIX "$f"
  243. #define XREGS_PREFIX "$f"
  244. #endif
  245. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  246. // Convert __m128i to __m256i
  247. static inline __m256i ____m256i(__m128i in) {
  248. __m256i out = __lasx_xvldi(0);
  249. __asm__ volatile (
  250. ".irp i," __ALL_REGS "\n\t"
  251. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  252. " .irp j," __ALL_REGS "\n\t"
  253. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  254. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  255. " .endif \n\t"
  256. " .endr \n\t"
  257. " .endif \n\t"
  258. ".endr \n\t"
  259. : [out] "+f" (out) : [in] "f" (in)
  260. );
  261. return out;
  262. }
  263. // Convert two __m128i to __m256i
  264. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  265. __m256i out;
  266. __asm__ volatile (
  267. ".irp i," __ALL_REGS "\n\t"
  268. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  269. " .irp j," __ALL_REGS "\n\t"
  270. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  271. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  272. " .endif \n\t"
  273. " .endr \n\t"
  274. " .endif \n\t"
  275. ".endr \n\t"
  276. ".ifnc %[out], %[hi] \n\t"
  277. ".irp i," __ALL_REGS "\n\t"
  278. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  279. " .irp j," __ALL_REGS "\n\t"
  280. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  281. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  282. " .endif \n\t"
  283. " .endr \n\t"
  284. " .endif \n\t"
  285. ".endr \n\t"
  286. ".endif \n\t"
  287. : [out] "=f" (out), [hi] "+f" (inhi)
  288. : [lo] "f" (inlo)
  289. );
  290. return out;
  291. }
  292. // Convert __m256i low part to __m128i
  293. static inline __m128i lasx_extracti128_lo(__m256i in) {
  294. __m128i out;
  295. __asm__ volatile (
  296. ".ifnc %[out], %[in] \n\t"
  297. ".irp i," __ALL_REGS "\n\t"
  298. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  299. " .irp j," __ALL_REGS "\n\t"
  300. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  301. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  302. " .endif \n\t"
  303. " .endr \n\t"
  304. " .endif \n\t"
  305. ".endr \n\t"
  306. ".endif \n\t"
  307. : [out] "=f" (out) : [in] "f" (in)
  308. );
  309. return out;
  310. }
  311. // Convert __m256i high part to __m128i
  312. static inline __m128i lasx_extracti128_hi(__m256i in) {
  313. __m128i out;
  314. __asm__ volatile (
  315. ".irp i," __ALL_REGS "\n\t"
  316. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  317. " .irp j," __ALL_REGS "\n\t"
  318. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  319. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  320. " .endif \n\t"
  321. " .endr \n\t"
  322. " .endif \n\t"
  323. ".endr \n\t"
  324. : [out] "=f" (out) : [in] "f" (in)
  325. );
  326. return out;
  327. }
  328. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  329. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  330. return (__m256i)__ret;
  331. }
  332. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  333. v4i32 __ret = {d, c, b, a};
  334. return (__m128i)__ret;
  335. }
  336. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  337. v4i64 __ret = {d, c, b, a};
  338. return (__m256i)__ret;
  339. }
  340. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  341. return lasx_set_q(x, y);
  342. }
  343. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  344. __m128i mask_f, zero, tmp0, tmp2, mask;
  345. int f = 0x8f;
  346. mask_f = __lsx_vreplgr2vr_b(f);
  347. zero = __lsx_vldi(0);
  348. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  349. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  350. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  351. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  352. return __lsx_vshuf_b(a, zero, tmp2);
  353. }
  354. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  355. __m256i mask_f, zero, tmp0, tmp2, mask;
  356. int f = 0x8f;
  357. mask_f = __lasx_xvreplgr2vr_b(f);
  358. zero = __lasx_xvldi(0);
  359. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  360. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  361. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  362. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  363. return __lasx_xvshuf_b(a, zero, tmp2);
  364. }
  365. static __m256i lasx_extu8_16(__m128i a) {
  366. __m128i zero = __lsx_vldi(0);
  367. __m128i vlo = __lsx_vilvl_b(zero, a);
  368. __m128i vhi = __lsx_vilvh_b(zero, a);
  369. return lasx_set_q(vhi, vlo);
  370. }
  371. static __m256i lasx_ext8_16(__m128i a) {
  372. __m128i sign = __lsx_vslti_b(a, 0);
  373. __m128i vlo = __lsx_vilvl_b(sign, a);
  374. __m128i vhi = __lsx_vilvh_b(sign, a);
  375. return lasx_set_q(vhi, vlo);
  376. }
  377. static __m256i lasx_ext16_32(__m128i a) {
  378. __m256i tmp1;
  379. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  380. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  381. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  382. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  383. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  384. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  385. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  386. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  387. return tmp1;
  388. }
  389. static __m128i lasx_extracti128( __m256i a, int pos) {
  390. __m128i ret;
  391. if( pos == 0)
  392. {
  393. ret = lasx_extracti128_lo(a);
  394. } else {
  395. ret = lasx_extracti128_hi(a);
  396. }
  397. return ret;
  398. }
  399. static __m128 lasx_extractf128( __m256 a, int pos) {
  400. __m128 ret;
  401. if( pos == 0)
  402. {
  403. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  404. } else {
  405. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  406. }
  407. return ret;
  408. }
  409. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  410. __m128i tmp1 = __lsx_vpickev_h(b, a);
  411. __m128i tmp2 = __lsx_vpickod_h(b, a);
  412. return __lsx_vadd_h(tmp1, tmp2);
  413. }
  414. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  415. __m128i tmp1 = __lsx_vpickev_w(b, a);
  416. __m128i tmp2 = __lsx_vpickod_w(b, a);
  417. return __lsx_vadd_w(tmp1, tmp2);
  418. }
  419. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  420. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  421. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  422. return __lsx_vfadd_s(tmp1, tmp2);
  423. }
  424. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  425. __m256i tmp1, tmp2;
  426. tmp1 = __lasx_xvmulwev_h_b(a, b);
  427. tmp2 = __lasx_xvmulwod_h_b(a, b);
  428. return __lasx_xvsadd_h(tmp1, tmp2);
  429. }
  430. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  431. __m256i tmp1, tmp2;
  432. tmp1 = __lasx_xvmulwev_w_h(a, b);
  433. tmp2 = __lasx_xvmulwod_w_h(a, b);
  434. return __lasx_xvadd_w(tmp1, tmp2);
  435. }
  436. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  437. __m256i tmp, tmp1;
  438. tmp = __lasx_xvsat_w(a, 15);
  439. tmp1 = __lasx_xvsat_w(b, 15);
  440. return __lasx_xvpickev_h(tmp1, tmp);
  441. }
  442. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  443. __m256i tmp, tmp1;
  444. tmp = __lasx_xvsat_h(a, 7);
  445. tmp1 = __lasx_xvsat_h(b, 7);
  446. return __lasx_xvpickev_b(tmp1, tmp);
  447. }
  448. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  449. __m128i tmp, tmp1;
  450. tmp = __lsx_vsat_w(a, 15);
  451. tmp1 = __lsx_vsat_w(b, 15);
  452. return __lsx_vpickev_h(tmp1, tmp);
  453. }
  454. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  455. __m128i tmp, tmp1;
  456. tmp = __lsx_vsat_h(a, 7);
  457. tmp1 = __lsx_vsat_h(b, 7);
  458. return __lsx_vpickev_b(tmp1, tmp);
  459. }
  460. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  461. __m128i tmp, tmp1;
  462. tmp = __lsx_vsat_hu(a, 7);
  463. tmp1 = __lsx_vsat_hu(b, 7);
  464. return __lsx_vpickev_b(tmp1, tmp);
  465. }
  466. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  467. __m128i tmp1, tmp2;
  468. tmp1 = __lsx_vmulwev_h_b(a, b);
  469. tmp2 = __lsx_vmulwod_h_b(a, b);
  470. return __lsx_vsadd_h(tmp1, tmp2);
  471. }
  472. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  473. __m128i tmp1, tmp2;
  474. tmp1 = __lsx_vmulwev_w_h(a, b);
  475. tmp2 = __lsx_vmulwod_w_h(a, b);
  476. return __lsx_vadd_w(tmp1, tmp2);
  477. }
  478. // multiply int8_t, add results pairwise twice
  479. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  480. // Get absolute values of x vectors
  481. const __m128i ax = __lsx_vsigncov_b(x, x);
  482. // Sign the values of the y vectors
  483. const __m128i sy = __lsx_vsigncov_b(x, y);
  484. // Perform multiplication and create 16-bit values
  485. const __m128i dot = lsx_maddubs_h(ax, sy);
  486. const __m128i ones = __lsx_vreplgr2vr_h(1);
  487. return lsx_madd_h(ones, dot);
  488. }
  489. // horizontally add 8 floats
  490. static inline float hsum_float_8(const __m256 x) {
  491. __m128 res = lasx_extractf128(x, 1);
  492. ft_union tmp;
  493. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  494. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  495. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  496. tmp.i = __lsx_vpickve2gr_w(res, 0);
  497. return tmp.f;
  498. }
  499. // horizontally add 8 int32_t
  500. static inline int hsum_i32_8(const __m256i a) {
  501. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  502. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  503. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  504. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  505. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  506. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  507. __m128i od = __lsx_vpickod_w(sum128, sum128);
  508. __m128i sum64 = __lsx_vadd_w(ev, od);
  509. int sum64_1, sum64_2;
  510. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  511. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  512. return sum64_1 + sum64_2;
  513. }
  514. // horizontally add 4 int32_t
  515. static inline int hsum_i32_4(const __m128i a) {
  516. __m128i ev = __lsx_vpickev_w(a, a);
  517. __m128i od = __lsx_vpickod_w(a, a);
  518. __m128i sum64 = __lsx_vadd_w(ev, od);
  519. int sum64_1, sum64_2;
  520. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  521. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  522. return sum64_1 + sum64_2;
  523. }
  524. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  525. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  526. uint32_t x32;
  527. memcpy(&x32, x, sizeof(uint32_t));
  528. const __m256i shuf_mask = lasx_set_d(
  529. 0x0303030303030303, 0x0202020202020202,
  530. 0x0101010101010101, 0x0000000000000000);
  531. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  532. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  533. bytes = __lasx_xvor_v(bytes, bit_mask);
  534. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  535. }
  536. // Unpack 32 4-bit fields into 32 bytes
  537. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  538. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  539. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  540. __m128i hi = __lsx_vsrli_h(lo, 4);
  541. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  542. }
  543. // add int16_t pairwise and return as float vector
  544. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  545. __m256i v = __lasx_xvpackod_h(x, x);
  546. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  547. return __lasx_xvffint_s_w(summed_pairs);
  548. }
  549. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  550. // Perform multiplication and create 16-bit values
  551. const __m256i dot = lasx_maddubs_h(ax, sy);
  552. return sum_i16_pairs_float(dot);
  553. }
  554. // multiply int8_t, add results pairwise twice and return as float vector
  555. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  556. // Get absolute values of x vectors
  557. const __m256i ax = __lasx_xvsigncov_b(x, x);
  558. // Sign the values of the y vectors
  559. const __m256i sy = __lasx_xvsigncov_b(x, y);
  560. return mul_sum_us8_pairs_float(ax, sy);
  561. }
  562. static inline __m128i packNibbles( __m256i bytes ) {
  563. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  564. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  565. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  566. __m256i low = __lasx_xvand_v(lowByte, bytes);
  567. high = __lasx_xvsrli_h(high, 4);
  568. bytes = __lasx_xvor_v(low, high);
  569. // Compress uint16_t lanes into bytes
  570. __m128i *r0 = (__m128i *)&bytes;
  571. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  572. __m128i *r1 = (__m128i *)&tmp_h128;
  573. __m128i zero = __lsx_vldi(0);
  574. __m128i tmp, tmp2, tmp3;
  575. tmp = __lsx_vmax_h(zero, *r0);
  576. tmp2 = __lsx_vsat_hu(tmp, 7);
  577. tmp = __lsx_vmax_h(zero, *r1);
  578. tmp3 = __lsx_vsat_hu(tmp, 7);
  579. return __lsx_vpickev_b(tmp3, tmp2);
  580. }
  581. #endif //__loongarch_asx
  582. // reference implementation for deterministic creation of model files
  583. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  584. static const int qk = QK4_0;
  585. assert(k % qk == 0);
  586. const int nb = k / qk;
  587. for (int i = 0; i < nb; i++) {
  588. float amax = 0.0f; // absolute max
  589. float max = 0.0f;
  590. for (int j = 0; j < qk; j++) {
  591. const float v = x[i*qk + j];
  592. if (amax < fabsf(v)) {
  593. amax = fabsf(v);
  594. max = v;
  595. }
  596. }
  597. const float d = max / -8;
  598. const float id = d ? 1.0f/d : 0.0f;
  599. y[i].d = GGML_FP32_TO_FP16(d);
  600. for (int j = 0; j < qk/2; ++j) {
  601. const float x0 = x[i*qk + 0 + j]*id;
  602. const float x1 = x[i*qk + qk/2 + j]*id;
  603. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  604. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  605. y[i].qs[j] = xi0;
  606. y[i].qs[j] |= xi1 << 4;
  607. }
  608. }
  609. }
  610. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  611. quantize_row_q4_0_reference(x, y, k);
  612. }
  613. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  614. const int qk = QK4_1;
  615. assert(k % qk == 0);
  616. const int nb = k / qk;
  617. for (int i = 0; i < nb; i++) {
  618. float min = FLT_MAX;
  619. float max = -FLT_MAX;
  620. for (int j = 0; j < qk; j++) {
  621. const float v = x[i*qk + j];
  622. if (v < min) min = v;
  623. if (v > max) max = v;
  624. }
  625. const float d = (max - min) / ((1 << 4) - 1);
  626. const float id = d ? 1.0f/d : 0.0f;
  627. y[i].d = GGML_FP32_TO_FP16(d);
  628. y[i].m = GGML_FP32_TO_FP16(min);
  629. for (int j = 0; j < qk/2; ++j) {
  630. const float x0 = (x[i*qk + 0 + j] - min)*id;
  631. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  632. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  633. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  634. y[i].qs[j] = xi0;
  635. y[i].qs[j] |= xi1 << 4;
  636. }
  637. }
  638. }
  639. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  640. quantize_row_q4_1_reference(x, y, k);
  641. }
  642. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  643. static const int qk = QK5_0;
  644. assert(k % qk == 0);
  645. const int nb = k / qk;
  646. for (int i = 0; i < nb; i++) {
  647. float amax = 0.0f; // absolute max
  648. float max = 0.0f;
  649. for (int j = 0; j < qk; j++) {
  650. const float v = x[i*qk + j];
  651. if (amax < fabsf(v)) {
  652. amax = fabsf(v);
  653. max = v;
  654. }
  655. }
  656. const float d = max / -16;
  657. const float id = d ? 1.0f/d : 0.0f;
  658. y[i].d = GGML_FP32_TO_FP16(d);
  659. uint32_t qh = 0;
  660. for (int j = 0; j < qk/2; ++j) {
  661. const float x0 = x[i*qk + 0 + j]*id;
  662. const float x1 = x[i*qk + qk/2 + j]*id;
  663. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  664. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  665. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  666. // get the 5-th bit and store it in qh at the right position
  667. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  668. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  669. }
  670. memcpy(&y[i].qh, &qh, sizeof(qh));
  671. }
  672. }
  673. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  674. quantize_row_q5_0_reference(x, y, k);
  675. }
  676. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  677. const int qk = QK5_1;
  678. assert(k % qk == 0);
  679. const int nb = k / qk;
  680. for (int i = 0; i < nb; i++) {
  681. float min = FLT_MAX;
  682. float max = -FLT_MAX;
  683. for (int j = 0; j < qk; j++) {
  684. const float v = x[i*qk + j];
  685. if (v < min) min = v;
  686. if (v > max) max = v;
  687. }
  688. const float d = (max - min) / ((1 << 5) - 1);
  689. const float id = d ? 1.0f/d : 0.0f;
  690. y[i].d = GGML_FP32_TO_FP16(d);
  691. y[i].m = GGML_FP32_TO_FP16(min);
  692. uint32_t qh = 0;
  693. for (int j = 0; j < qk/2; ++j) {
  694. const float x0 = (x[i*qk + 0 + j] - min)*id;
  695. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  696. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  697. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  698. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  699. // get the 5-th bit and store it in qh at the right position
  700. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  701. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  702. }
  703. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  704. }
  705. }
  706. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  707. quantize_row_q5_1_reference(x, y, k);
  708. }
  709. // reference implementation for deterministic creation of model files
  710. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  711. assert(k % QK8_0 == 0);
  712. const int nb = k / QK8_0;
  713. for (int i = 0; i < nb; i++) {
  714. float amax = 0.0f; // absolute max
  715. for (int j = 0; j < QK8_0; j++) {
  716. const float v = x[i*QK8_0 + j];
  717. amax = MAX(amax, fabsf(v));
  718. }
  719. const float d = amax / ((1 << 7) - 1);
  720. const float id = d ? 1.0f/d : 0.0f;
  721. y[i].d = GGML_FP32_TO_FP16(d);
  722. for (int j = 0; j < QK8_0; ++j) {
  723. const float x0 = x[i*QK8_0 + j]*id;
  724. y[i].qs[j] = roundf(x0);
  725. }
  726. }
  727. }
  728. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  729. assert(QK8_0 == 32);
  730. assert(k % QK8_0 == 0);
  731. const int nb = k / QK8_0;
  732. block_q8_0 * restrict y = vy;
  733. #if defined(__ARM_NEON)
  734. for (int i = 0; i < nb; i++) {
  735. float32x4_t srcv [8];
  736. float32x4_t asrcv[8];
  737. float32x4_t amaxv[8];
  738. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  739. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  740. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  741. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  742. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  743. const float amax = vmaxvq_f32(amaxv[0]);
  744. const float d = amax / ((1 << 7) - 1);
  745. const float id = d ? 1.0f/d : 0.0f;
  746. y[i].d = GGML_FP32_TO_FP16(d);
  747. for (int j = 0; j < 8; j++) {
  748. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  749. const int32x4_t vi = vcvtnq_s32_f32(v);
  750. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  751. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  752. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  753. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  754. }
  755. }
  756. #elif defined(__wasm_simd128__)
  757. for (int i = 0; i < nb; i++) {
  758. v128_t srcv [8];
  759. v128_t asrcv[8];
  760. v128_t amaxv[8];
  761. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  762. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  763. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  764. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  765. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  766. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  767. wasm_f32x4_extract_lane(amaxv[0], 1)),
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  769. wasm_f32x4_extract_lane(amaxv[0], 3)));
  770. const float d = amax / ((1 << 7) - 1);
  771. const float id = d ? 1.0f/d : 0.0f;
  772. y[i].d = GGML_FP32_TO_FP16(d);
  773. for (int j = 0; j < 8; j++) {
  774. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  775. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  776. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  777. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  778. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  779. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  780. }
  781. }
  782. #elif defined(__AVX2__) || defined(__AVX__)
  783. for (int i = 0; i < nb; i++) {
  784. // Load elements into 4 AVX vectors
  785. __m256 v0 = _mm256_loadu_ps( x );
  786. __m256 v1 = _mm256_loadu_ps( x + 8 );
  787. __m256 v2 = _mm256_loadu_ps( x + 16 );
  788. __m256 v3 = _mm256_loadu_ps( x + 24 );
  789. x += 32;
  790. // Compute max(abs(e)) for the block
  791. const __m256 signBit = _mm256_set1_ps( -0.0f );
  792. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  793. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  794. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  795. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  796. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  797. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  798. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  799. const float maxScalar = _mm_cvtss_f32( max4 );
  800. // Quantize these floats
  801. const float d = maxScalar / 127.f;
  802. y[i].d = GGML_FP32_TO_FP16(d);
  803. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  804. const __m256 mul = _mm256_set1_ps( id );
  805. // Apply the multiplier
  806. v0 = _mm256_mul_ps( v0, mul );
  807. v1 = _mm256_mul_ps( v1, mul );
  808. v2 = _mm256_mul_ps( v2, mul );
  809. v3 = _mm256_mul_ps( v3, mul );
  810. // Round to nearest integer
  811. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  812. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  813. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  814. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  815. // Convert floats to integers
  816. __m256i i0 = _mm256_cvtps_epi32( v0 );
  817. __m256i i1 = _mm256_cvtps_epi32( v1 );
  818. __m256i i2 = _mm256_cvtps_epi32( v2 );
  819. __m256i i3 = _mm256_cvtps_epi32( v3 );
  820. #if defined(__AVX2__)
  821. // Convert int32 to int16
  822. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  823. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  824. // Convert int16 to int8
  825. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  826. // We got our precious signed bytes, but the order is now wrong
  827. // These AVX2 pack instructions process 16-byte pieces independently
  828. // The following instruction is fixing the order
  829. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  830. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  831. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  832. #else
  833. // Since we don't have in AVX some necessary functions,
  834. // we split the registers in half and call AVX2 analogs from SSE
  835. __m128i ni0 = _mm256_castsi256_si128( i0 );
  836. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  837. __m128i ni2 = _mm256_castsi256_si128( i1 );
  838. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  839. __m128i ni4 = _mm256_castsi256_si128( i2 );
  840. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  841. __m128i ni6 = _mm256_castsi256_si128( i3 );
  842. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  843. // Convert int32 to int16
  844. ni0 = _mm_packs_epi32( ni0, ni1 );
  845. ni2 = _mm_packs_epi32( ni2, ni3 );
  846. ni4 = _mm_packs_epi32( ni4, ni5 );
  847. ni6 = _mm_packs_epi32( ni6, ni7 );
  848. // Convert int16 to int8
  849. ni0 = _mm_packs_epi16( ni0, ni2 );
  850. ni4 = _mm_packs_epi16( ni4, ni6 );
  851. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  852. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  853. #endif
  854. }
  855. #elif defined(__riscv_v_intrinsic)
  856. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  857. for (int i = 0; i < nb; i++) {
  858. // load elements
  859. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  860. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  861. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  862. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  863. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  868. // convert to integer
  869. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  870. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  871. // store result
  872. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  873. }
  874. #elif defined(__POWER9_VECTOR__)
  875. for (int i = 0; i < nb; i++) {
  876. vector float srcv [8];
  877. vector float asrcv[8];
  878. vector float amaxv[8];
  879. vector signed int vi[8];
  880. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  881. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  882. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  883. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  884. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  885. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  886. vec_extract(amaxv[0], 1)),
  887. MAX(vec_extract(amaxv[0], 2),
  888. vec_extract(amaxv[0], 3)));
  889. const float d = amax / ((1 << 7) - 1);
  890. const float id = d ? 1.0f/d : 0.0f;
  891. const vector float vid = vec_splats(id);
  892. y[i].d = GGML_FP32_TO_FP16(d);
  893. for (int j = 0; j < 8; j++) {
  894. const vector float v = vec_round(vec_mul(srcv[j], vid));
  895. vi[j] = vec_cts(v, 0);
  896. }
  897. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  898. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  899. #elif defined(__loongarch_asx)
  900. for (int i = 0; i < nb; i++) {
  901. ft_union fi;
  902. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  903. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  904. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  905. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  906. x += 32;
  907. // Compute max(abs(e)) for the block
  908. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  909. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  910. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  911. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  912. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  913. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  914. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  915. __m128 tmp = max4;
  916. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  917. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  918. const float max_scalar = fi.f;
  919. // Quantize these floats
  920. const float d = max_scalar / 127.f;
  921. y[i].d = GGML_FP32_TO_FP16(d);
  922. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  923. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  924. // Apply the multiplier
  925. v0 = __lasx_xvfmul_s( v0, mul );
  926. v1 = __lasx_xvfmul_s( v1, mul );
  927. v2 = __lasx_xvfmul_s( v2, mul );
  928. v3 = __lasx_xvfmul_s( v3, mul );
  929. // Round to nearest integer
  930. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  931. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  932. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  933. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  934. __m128i ni0 = lasx_extracti128( i0, 0 );
  935. __m128i ni1 = lasx_extracti128( i0, 1);
  936. __m128i ni2 = lasx_extracti128( i1, 0);
  937. __m128i ni3 = lasx_extracti128( i1, 1);
  938. __m128i ni4 = lasx_extracti128( i2, 0);
  939. __m128i ni5 = lasx_extracti128( i2, 1);
  940. __m128i ni6 = lasx_extracti128( i3, 0);
  941. __m128i ni7 = lasx_extracti128( i3, 1);
  942. // Convert int32 to int16
  943. ni0 = lsx_packs_w( ni0, ni1 );
  944. ni2 = lsx_packs_w( ni2, ni3 );
  945. ni4 = lsx_packs_w( ni4, ni5 );
  946. ni6 = lsx_packs_w( ni6, ni7 );
  947. // Convert int16 to int8
  948. ni0 = lsx_packs_h( ni0, ni2 );
  949. ni4 = lsx_packs_h( ni4, ni6 );
  950. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  951. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  952. }
  953. #else
  954. GGML_UNUSED(nb);
  955. // scalar
  956. quantize_row_q8_0_reference(x, y, k);
  957. #endif
  958. }
  959. // reference implementation for deterministic creation of model files
  960. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  961. assert(QK8_1 == 32);
  962. assert(k % QK8_1 == 0);
  963. const int nb = k / QK8_1;
  964. for (int i = 0; i < nb; i++) {
  965. float amax = 0.0f; // absolute max
  966. for (int j = 0; j < QK8_1; j++) {
  967. const float v = x[i*QK8_1 + j];
  968. amax = MAX(amax, fabsf(v));
  969. }
  970. const float d = amax / ((1 << 7) - 1);
  971. const float id = d ? 1.0f/d : 0.0f;
  972. y[i].d = GGML_FP32_TO_FP16(d);
  973. int sum = 0;
  974. for (int j = 0; j < QK8_1/2; ++j) {
  975. const float v0 = x[i*QK8_1 + j]*id;
  976. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  977. y[i].qs[ j] = roundf(v0);
  978. y[i].qs[QK8_1/2 + j] = roundf(v1);
  979. sum += y[i].qs[ j];
  980. sum += y[i].qs[QK8_1/2 + j];
  981. }
  982. y[i].s = GGML_FP32_TO_FP16(sum*d);
  983. }
  984. }
  985. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  986. assert(k % QK8_1 == 0);
  987. const int nb = k / QK8_1;
  988. block_q8_1 * restrict y = vy;
  989. #if defined(__ARM_NEON)
  990. for (int i = 0; i < nb; i++) {
  991. float32x4_t srcv [8];
  992. float32x4_t asrcv[8];
  993. float32x4_t amaxv[8];
  994. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  995. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  996. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  997. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  998. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  999. const float amax = vmaxvq_f32(amaxv[0]);
  1000. const float d = amax / ((1 << 7) - 1);
  1001. const float id = d ? 1.0f/d : 0.0f;
  1002. y[i].d = GGML_FP32_TO_FP16(d);
  1003. int32x4_t accv = vdupq_n_s32(0);
  1004. for (int j = 0; j < 8; j++) {
  1005. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1006. const int32x4_t vi = vcvtnq_s32_f32(v);
  1007. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1008. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1009. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1010. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1011. accv = vaddq_s32(accv, vi);
  1012. }
  1013. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1014. }
  1015. #elif defined(__wasm_simd128__)
  1016. for (int i = 0; i < nb; i++) {
  1017. v128_t srcv [8];
  1018. v128_t asrcv[8];
  1019. v128_t amaxv[8];
  1020. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1021. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1022. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1023. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1024. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1025. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1026. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1027. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1028. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1029. const float d = amax / ((1 << 7) - 1);
  1030. const float id = d ? 1.0f/d : 0.0f;
  1031. y[i].d = GGML_FP32_TO_FP16(d);
  1032. v128_t accv = wasm_i32x4_splat(0);
  1033. for (int j = 0; j < 8; j++) {
  1034. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1035. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1036. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1037. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1038. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1039. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1040. accv = wasm_i32x4_add(accv, vi);
  1041. }
  1042. y[i].s = GGML_FP32_TO_FP16(
  1043. d * (wasm_i32x4_extract_lane(accv, 0) +
  1044. wasm_i32x4_extract_lane(accv, 1) +
  1045. wasm_i32x4_extract_lane(accv, 2) +
  1046. wasm_i32x4_extract_lane(accv, 3)));
  1047. }
  1048. #elif defined(__AVX2__) || defined(__AVX__)
  1049. for (int i = 0; i < nb; i++) {
  1050. // Load elements into 4 AVX vectors
  1051. __m256 v0 = _mm256_loadu_ps( x );
  1052. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1053. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1054. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1055. x += 32;
  1056. // Compute max(abs(e)) for the block
  1057. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1058. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1059. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1060. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1061. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1062. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1063. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1064. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1065. const float max_scalar = _mm_cvtss_f32( max4 );
  1066. // Quantize these floats
  1067. const float d = max_scalar / 127.f;
  1068. y[i].d = GGML_FP32_TO_FP16(d);
  1069. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1070. const __m256 mul = _mm256_set1_ps( id );
  1071. // Apply the multiplier
  1072. v0 = _mm256_mul_ps( v0, mul );
  1073. v1 = _mm256_mul_ps( v1, mul );
  1074. v2 = _mm256_mul_ps( v2, mul );
  1075. v3 = _mm256_mul_ps( v3, mul );
  1076. // Round to nearest integer
  1077. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1078. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1079. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1080. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1081. // Convert floats to integers
  1082. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1083. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1084. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1085. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1086. #if defined(__AVX2__)
  1087. // Compute the sum of the quants and set y[i].s
  1088. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1089. // Convert int32 to int16
  1090. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1091. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1092. // Convert int16 to int8
  1093. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1094. // We got our precious signed bytes, but the order is now wrong
  1095. // These AVX2 pack instructions process 16-byte pieces independently
  1096. // The following instruction is fixing the order
  1097. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1098. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1099. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1100. #else
  1101. // Since we don't have in AVX some necessary functions,
  1102. // we split the registers in half and call AVX2 analogs from SSE
  1103. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1104. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1105. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1106. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1107. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1108. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1109. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1110. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1111. // Compute the sum of the quants and set y[i].s
  1112. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1113. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1114. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1115. // Convert int32 to int16
  1116. ni0 = _mm_packs_epi32( ni0, ni1 );
  1117. ni2 = _mm_packs_epi32( ni2, ni3 );
  1118. ni4 = _mm_packs_epi32( ni4, ni5 );
  1119. ni6 = _mm_packs_epi32( ni6, ni7 );
  1120. // Convert int16 to int8
  1121. ni0 = _mm_packs_epi16( ni0, ni2 );
  1122. ni4 = _mm_packs_epi16( ni4, ni6 );
  1123. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1124. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1125. #endif
  1126. }
  1127. #elif defined(__riscv_v_intrinsic)
  1128. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1129. for (int i = 0; i < nb; i++) {
  1130. // load elements
  1131. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1132. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1133. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1134. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1135. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1136. const float d = amax / ((1 << 7) - 1);
  1137. const float id = d ? 1.0f/d : 0.0f;
  1138. y[i].d = GGML_FP32_TO_FP16(d);
  1139. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1140. // convert to integer
  1141. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1142. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1143. // store result
  1144. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1145. // compute sum for y[i].s
  1146. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1147. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1148. // set y[i].s
  1149. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1150. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1151. }
  1152. #elif defined(__POWER9_VECTOR__)
  1153. for (int i = 0; i < nb; i++) {
  1154. vector float srcv [8];
  1155. vector float asrcv[8];
  1156. vector float amaxv[8];
  1157. vector signed int vi[8];
  1158. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1159. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1160. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1161. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1162. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1163. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1164. vec_extract(amaxv[0], 1)),
  1165. MAX(vec_extract(amaxv[0], 2),
  1166. vec_extract(amaxv[0], 3)));
  1167. const float d = amax / ((1 << 7) - 1);
  1168. const float id = d ? 1.0f/d : 0.0f;
  1169. const vector float vid = vec_splats(id);
  1170. y[i].d = GGML_FP32_TO_FP16(d);
  1171. vector int accv = vec_splats(0);
  1172. for (int j = 0; j < 8; j++) {
  1173. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1174. vi[j] = vec_cts(v, 0);
  1175. accv = vec_add(accv, vi[j]);
  1176. }
  1177. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1178. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1179. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1180. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1181. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1182. #elif defined(__loongarch_asx)
  1183. for (int i = 0; i < nb; i++) {
  1184. ft_union ft;
  1185. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1186. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1187. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1188. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1189. x += 32;
  1190. // Compute max(abs(e)) for the block
  1191. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1192. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1193. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1194. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1195. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1196. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1197. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1198. __m128 tmp = max4;
  1199. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1200. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1201. const float max_scalar = ft.f;
  1202. // Quantize these floats
  1203. const float d = max_scalar / 127.f;
  1204. y[i].d = GGML_FP32_TO_FP16(d);
  1205. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1206. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1207. // Apply the multiplier
  1208. v0 = __lasx_xvfmul_s( v0, mul );
  1209. v1 = __lasx_xvfmul_s( v1, mul );
  1210. v2 = __lasx_xvfmul_s( v2, mul );
  1211. v3 = __lasx_xvfmul_s( v3, mul );
  1212. // Round to nearest integer
  1213. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1214. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1215. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1216. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1217. __m128i ni0 = lasx_extracti128(i0, 0);
  1218. __m128i ni1 = lasx_extracti128( i0, 1);
  1219. __m128i ni2 = lasx_extracti128( i1, 0);
  1220. __m128i ni3 = lasx_extracti128( i1, 1);
  1221. __m128i ni4 = lasx_extracti128( i2, 0 );
  1222. __m128i ni5 = lasx_extracti128( i2, 1);
  1223. __m128i ni6 = lasx_extracti128( i3, 0);
  1224. __m128i ni7 = lasx_extracti128( i3, 1);
  1225. // Compute the sum of the quants and set y[i].s
  1226. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1227. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1228. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1229. // Convert int32 to int16
  1230. ni0 = lsx_packs_w( ni0, ni1 );
  1231. ni2 = lsx_packs_w( ni2, ni3 );
  1232. ni4 = lsx_packs_w( ni4, ni5 );
  1233. ni6 = lsx_packs_w( ni6, ni7 );
  1234. // Convert int16 to int8
  1235. ni0 = lsx_packs_h( ni0, ni2 );
  1236. ni4 = lsx_packs_h( ni4, ni6 );
  1237. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1238. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1239. }
  1240. #else
  1241. GGML_UNUSED(nb);
  1242. // scalar
  1243. quantize_row_q8_1_reference(x, y, k);
  1244. #endif
  1245. }
  1246. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1247. static const int qk = QK4_0;
  1248. assert(k % qk == 0);
  1249. const int nb = k / qk;
  1250. for (int i = 0; i < nb; i++) {
  1251. const float d = GGML_FP16_TO_FP32(x[i].d);
  1252. for (int j = 0; j < qk/2; ++j) {
  1253. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1254. const int x1 = (x[i].qs[j] >> 4) - 8;
  1255. y[i*qk + j + 0 ] = x0*d;
  1256. y[i*qk + j + qk/2] = x1*d;
  1257. }
  1258. }
  1259. }
  1260. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1261. static const int qk = QK4_1;
  1262. assert(k % qk == 0);
  1263. const int nb = k / qk;
  1264. for (int i = 0; i < nb; i++) {
  1265. const float d = GGML_FP16_TO_FP32(x[i].d);
  1266. const float m = GGML_FP16_TO_FP32(x[i].m);
  1267. for (int j = 0; j < qk/2; ++j) {
  1268. const int x0 = (x[i].qs[j] & 0x0F);
  1269. const int x1 = (x[i].qs[j] >> 4);
  1270. y[i*qk + j + 0 ] = x0*d + m;
  1271. y[i*qk + j + qk/2] = x1*d + m;
  1272. }
  1273. }
  1274. }
  1275. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1276. static const int qk = QK5_0;
  1277. assert(k % qk == 0);
  1278. const int nb = k / qk;
  1279. for (int i = 0; i < nb; i++) {
  1280. const float d = GGML_FP16_TO_FP32(x[i].d);
  1281. uint32_t qh;
  1282. memcpy(&qh, x[i].qh, sizeof(qh));
  1283. for (int j = 0; j < qk/2; ++j) {
  1284. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1285. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1286. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1287. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1288. y[i*qk + j + 0 ] = x0*d;
  1289. y[i*qk + j + qk/2] = x1*d;
  1290. }
  1291. }
  1292. }
  1293. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1294. static const int qk = QK5_1;
  1295. assert(k % qk == 0);
  1296. const int nb = k / qk;
  1297. for (int i = 0; i < nb; i++) {
  1298. const float d = GGML_FP16_TO_FP32(x[i].d);
  1299. const float m = GGML_FP16_TO_FP32(x[i].m);
  1300. uint32_t qh;
  1301. memcpy(&qh, x[i].qh, sizeof(qh));
  1302. for (int j = 0; j < qk/2; ++j) {
  1303. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1304. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1305. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1306. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1307. y[i*qk + j + 0 ] = x0*d + m;
  1308. y[i*qk + j + qk/2] = x1*d + m;
  1309. }
  1310. }
  1311. }
  1312. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1313. static const int qk = QK8_0;
  1314. assert(k % qk == 0);
  1315. const int nb = k / qk;
  1316. for (int i = 0; i < nb; i++) {
  1317. const float d = GGML_FP16_TO_FP32(x[i].d);
  1318. for (int j = 0; j < qk; ++j) {
  1319. y[i*qk + j] = x[i].qs[j]*d;
  1320. }
  1321. }
  1322. }
  1323. //
  1324. // 2-6 bit quantization in super-blocks
  1325. //
  1326. //
  1327. // ===================== Helper functions
  1328. //
  1329. static inline int nearest_int(float fval) {
  1330. assert(fval <= 4194303.f);
  1331. float val = fval + 12582912.f;
  1332. int i; memcpy(&i, &val, sizeof(int));
  1333. return (i & 0x007fffff) - 0x00400000;
  1334. }
  1335. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1336. const float * restrict qw) {
  1337. float max = 0;
  1338. float amax = 0;
  1339. for (int i = 0; i < n; ++i) {
  1340. float ax = fabsf(x[i]);
  1341. if (ax > amax) { amax = ax; max = x[i]; }
  1342. }
  1343. if (amax < GROUP_MAX_EPS) { // all zero
  1344. for (int i = 0; i < n; ++i) {
  1345. L[i] = 0;
  1346. }
  1347. return 0.f;
  1348. }
  1349. float iscale = -nmax / max;
  1350. if (rmse_type == 0) {
  1351. for (int i = 0; i < n; ++i) {
  1352. int l = nearest_int(iscale * x[i]);
  1353. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1354. }
  1355. return 1/iscale;
  1356. }
  1357. bool return_early = false;
  1358. if (rmse_type < 0) {
  1359. rmse_type = -rmse_type;
  1360. return_early = true;
  1361. }
  1362. float sumlx = 0;
  1363. float suml2 = 0;
  1364. #ifdef HAVE_BUGGY_APPLE_LINKER
  1365. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1366. for (volatile int i = 0; i < n; ++i) {
  1367. #else
  1368. for (int i = 0; i < n; ++i) {
  1369. #endif
  1370. int l = nearest_int(iscale * x[i]);
  1371. l = MAX(-nmax, MIN(nmax-1, l));
  1372. L[i] = l + nmax;
  1373. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1374. sumlx += w*x[i]*l;
  1375. suml2 += w*l*l;
  1376. }
  1377. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1378. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1379. float best = scale * sumlx;
  1380. for (int is = -9; is <= 9; ++is) {
  1381. if (is == 0) {
  1382. continue;
  1383. }
  1384. iscale = -(nmax + 0.1f*is) / max;
  1385. sumlx = suml2 = 0;
  1386. for (int i = 0; i < n; ++i) {
  1387. int l = nearest_int(iscale * x[i]);
  1388. l = MAX(-nmax, MIN(nmax-1, l));
  1389. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1390. sumlx += w*x[i]*l;
  1391. suml2 += w*l*l;
  1392. }
  1393. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1394. for (int i = 0; i < n; ++i) {
  1395. int l = nearest_int(iscale * x[i]);
  1396. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1397. }
  1398. scale = sumlx/suml2; best = scale*sumlx;
  1399. }
  1400. }
  1401. return scale;
  1402. }
  1403. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1404. float max = 0;
  1405. float amax = 0;
  1406. for (int i = 0; i < n; ++i) {
  1407. float ax = fabsf(x[i]);
  1408. if (ax > amax) { amax = ax; max = x[i]; }
  1409. }
  1410. if (amax < GROUP_MAX_EPS) { // all zero
  1411. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1412. return 0.f;
  1413. }
  1414. float iscale = -nmax / max;
  1415. if (do_rmse) {
  1416. float sumlx = 0;
  1417. float suml2 = 0;
  1418. for (int i = 0; i < n; ++i) {
  1419. int l = nearest_int(iscale * x[i]);
  1420. l = MAX(-nmax, MIN(nmax-1, l));
  1421. L[i] = l;
  1422. float w = x[i]*x[i];
  1423. sumlx += w*x[i]*l;
  1424. suml2 += w*l*l;
  1425. }
  1426. for (int itry = 0; itry < 5; ++itry) {
  1427. int n_changed = 0;
  1428. for (int i = 0; i < n; ++i) {
  1429. float w = x[i]*x[i];
  1430. float slx = sumlx - w*x[i]*L[i];
  1431. if (slx > 0) {
  1432. float sl2 = suml2 - w*L[i]*L[i];
  1433. int new_l = nearest_int(x[i] * sl2 / slx);
  1434. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1435. if (new_l != L[i]) {
  1436. slx += w*x[i]*new_l;
  1437. sl2 += w*new_l*new_l;
  1438. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1439. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1440. ++n_changed;
  1441. }
  1442. }
  1443. }
  1444. }
  1445. if (!n_changed) {
  1446. break;
  1447. }
  1448. }
  1449. for (int i = 0; i < n; ++i) {
  1450. L[i] += nmax;
  1451. }
  1452. return sumlx / suml2;
  1453. }
  1454. for (int i = 0; i < n; ++i) {
  1455. int l = nearest_int(iscale * x[i]);
  1456. l = MAX(-nmax, MIN(nmax-1, l));
  1457. L[i] = l + nmax;
  1458. }
  1459. return 1/iscale;
  1460. }
  1461. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1462. int ntry, float alpha) {
  1463. float min = x[0];
  1464. float max = x[0];
  1465. for (int i = 1; i < n; ++i) {
  1466. if (x[i] < min) min = x[i];
  1467. if (x[i] > max) max = x[i];
  1468. }
  1469. if (max == min) {
  1470. for (int i = 0; i < n; ++i) L[i] = 0;
  1471. *the_min = 0;
  1472. return 0.f;
  1473. }
  1474. if (min > 0) min = 0;
  1475. float iscale = nmax/(max - min);
  1476. float scale = 1/iscale;
  1477. for (int itry = 0; itry < ntry; ++itry) {
  1478. float sumlx = 0; int suml2 = 0;
  1479. bool did_change = false;
  1480. for (int i = 0; i < n; ++i) {
  1481. int l = nearest_int(iscale*(x[i] - min));
  1482. l = MAX(0, MIN(nmax, l));
  1483. if (l != L[i]) {
  1484. L[i] = l;
  1485. did_change = true;
  1486. }
  1487. sumlx += (x[i] - min)*l;
  1488. suml2 += l*l;
  1489. }
  1490. scale = sumlx/suml2;
  1491. float sum = 0;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += x[i] - scale*L[i];
  1494. }
  1495. min = alpha*min + (1 - alpha)*sum/n;
  1496. if (min > 0) min = 0;
  1497. iscale = 1/scale;
  1498. if (!did_change) break;
  1499. }
  1500. *the_min = -min;
  1501. return scale;
  1502. }
  1503. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1504. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1505. float rmin, float rdelta, int nstep, bool use_mad) {
  1506. float min = x[0];
  1507. float max = x[0];
  1508. float sum_w = weights[0];
  1509. float sum_x = sum_w * x[0];
  1510. #ifdef HAVE_BUGGY_APPLE_LINKER
  1511. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1512. for (volatile int i = 1; i < n; ++i) {
  1513. #else
  1514. for (int i = 1; i < n; ++i) {
  1515. #endif
  1516. if (x[i] < min) min = x[i];
  1517. if (x[i] > max) max = x[i];
  1518. float w = weights[i];
  1519. sum_w += w;
  1520. sum_x += w * x[i];
  1521. }
  1522. if (min > 0) min = 0;
  1523. if (max == min) {
  1524. for (int i = 0; i < n; ++i) L[i] = 0;
  1525. *the_min = -min;
  1526. return 0.f;
  1527. }
  1528. float iscale = nmax/(max - min);
  1529. float scale = 1/iscale;
  1530. float best_mad = 0;
  1531. for (int i = 0; i < n; ++i) {
  1532. int l = nearest_int(iscale*(x[i] - min));
  1533. L[i] = MAX(0, MIN(nmax, l));
  1534. float diff = scale * L[i] + min - x[i];
  1535. diff = use_mad ? fabsf(diff) : diff * diff;
  1536. float w = weights[i];
  1537. best_mad += w * diff;
  1538. }
  1539. if (nstep < 1) {
  1540. *the_min = -min;
  1541. return scale;
  1542. }
  1543. for (int is = 0; is <= nstep; ++is) {
  1544. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1545. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1546. for (int i = 0; i < n; ++i) {
  1547. int l = nearest_int(iscale*(x[i] - min));
  1548. l = MAX(0, MIN(nmax, l));
  1549. Laux[i] = l;
  1550. float w = weights[i];
  1551. sum_l += w*l;
  1552. sum_l2 += w*l*l;
  1553. sum_xl += w*l*x[i];
  1554. }
  1555. float D = sum_w * sum_l2 - sum_l * sum_l;
  1556. if (D > 0) {
  1557. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1558. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1559. if (this_min > 0) {
  1560. this_min = 0;
  1561. this_scale = sum_xl / sum_l2;
  1562. }
  1563. float mad = 0;
  1564. for (int i = 0; i < n; ++i) {
  1565. float diff = this_scale * Laux[i] + this_min - x[i];
  1566. diff = use_mad ? fabsf(diff) : diff * diff;
  1567. float w = weights[i];
  1568. mad += w * diff;
  1569. }
  1570. if (mad < best_mad) {
  1571. for (int i = 0; i < n; ++i) {
  1572. L[i] = Laux[i];
  1573. }
  1574. best_mad = mad;
  1575. scale = this_scale;
  1576. min = this_min;
  1577. }
  1578. }
  1579. }
  1580. *the_min = -min;
  1581. return scale;
  1582. }
  1583. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1584. if (j < 4) {
  1585. *d = q[j] & 63; *m = q[j + 4] & 63;
  1586. } else {
  1587. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1588. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1589. }
  1590. }
  1591. //========================- 2-bit (de)-quantization
  1592. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1593. assert(k % QK_K == 0);
  1594. const int nb = k / QK_K;
  1595. uint8_t L[QK_K];
  1596. uint8_t Laux[16];
  1597. float weights[16];
  1598. float mins[QK_K/16];
  1599. float scales[QK_K/16];
  1600. const float q4scale = 15.f;
  1601. for (int i = 0; i < nb; i++) {
  1602. float max_scale = 0; // as we are deducting the min, scales are always positive
  1603. float max_min = 0;
  1604. for (int j = 0; j < QK_K/16; ++j) {
  1605. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1606. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1607. float scale = scales[j];
  1608. if (scale > max_scale) {
  1609. max_scale = scale;
  1610. }
  1611. float min = mins[j];
  1612. if (min > max_min) {
  1613. max_min = min;
  1614. }
  1615. }
  1616. if (max_scale > 0) {
  1617. float iscale = q4scale/max_scale;
  1618. for (int j = 0; j < QK_K/16; ++j) {
  1619. int l = nearest_int(iscale*scales[j]);
  1620. y[i].scales[j] = l;
  1621. }
  1622. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1623. } else {
  1624. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1625. y[i].d = GGML_FP32_TO_FP16(0.f);
  1626. }
  1627. if (max_min > 0) {
  1628. float iscale = q4scale/max_min;
  1629. for (int j = 0; j < QK_K/16; ++j) {
  1630. int l = nearest_int(iscale*mins[j]);
  1631. y[i].scales[j] |= (l << 4);
  1632. }
  1633. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1634. } else {
  1635. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1636. }
  1637. for (int j = 0; j < QK_K/16; ++j) {
  1638. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1639. if (!d) continue;
  1640. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1641. for (int ii = 0; ii < 16; ++ii) {
  1642. int l = nearest_int((x[16*j + ii] + dm)/d);
  1643. l = MAX(0, MIN(3, l));
  1644. L[16*j + ii] = l;
  1645. }
  1646. }
  1647. for (int j = 0; j < QK_K; j += 128) {
  1648. for (int l = 0; l < 32; ++l) {
  1649. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1650. }
  1651. }
  1652. x += QK_K;
  1653. }
  1654. }
  1655. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1656. assert(k % QK_K == 0);
  1657. const int nb = k / QK_K;
  1658. for (int i = 0; i < nb; i++) {
  1659. const float d = GGML_FP16_TO_FP32(x[i].d);
  1660. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1661. const uint8_t * q = x[i].qs;
  1662. int is = 0;
  1663. float dl, ml;
  1664. for (int n = 0; n < QK_K; n += 128) {
  1665. int shift = 0;
  1666. for (int j = 0; j < 4; ++j) {
  1667. uint8_t sc = x[i].scales[is++];
  1668. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1669. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1670. sc = x[i].scales[is++];
  1671. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1672. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1673. shift += 2;
  1674. }
  1675. q += 32;
  1676. }
  1677. }
  1678. }
  1679. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1680. quantize_row_q2_K_reference(x, vy, k);
  1681. }
  1682. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1683. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1684. float rmin, float rdelta, int nstep, bool use_mad) {
  1685. float min = x[0];
  1686. float max = x[0];
  1687. float sum_w = weights ? weights[0] : x[0]*x[0];
  1688. float sum_x = sum_w * x[0];
  1689. #ifdef HAVE_BUGGY_APPLE_LINKER
  1690. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1691. for (volatile int i = 1; i < n; ++i) {
  1692. #else
  1693. for (int i = 1; i < n; ++i) {
  1694. #endif
  1695. if (x[i] < min) min = x[i];
  1696. if (x[i] > max) max = x[i];
  1697. float w = weights ? weights[i] : x[i]*x[i];
  1698. sum_w += w;
  1699. sum_x += w * x[i];
  1700. }
  1701. if (min > 0) {
  1702. min = 0;
  1703. }
  1704. if (max <= min) {
  1705. memset(L, 0, n);
  1706. *the_min = -min;
  1707. return 0.f;
  1708. }
  1709. float iscale = nmax/(max - min);
  1710. float scale = 1/iscale;
  1711. float best_mad = 0;
  1712. for (int i = 0; i < n; ++i) {
  1713. int l = nearest_int(iscale*(x[i] - min));
  1714. L[i] = MAX(0, MIN(nmax, l));
  1715. float diff = scale * L[i] + min - x[i];
  1716. diff = use_mad ? fabsf(diff) : diff*diff;
  1717. float w = weights ? weights[i] : x[i]*x[i];
  1718. best_mad += w * diff;
  1719. }
  1720. if (nstep < 1) {
  1721. *the_min = -min;
  1722. return scale;
  1723. }
  1724. for (int is = 0; is <= nstep; ++is) {
  1725. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1726. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1727. for (int i = 0; i < n; ++i) {
  1728. int l = nearest_int(iscale*(x[i] - min));
  1729. l = MAX(0, MIN(nmax, l));
  1730. Laux[i] = l;
  1731. float w = weights ? weights[i] : x[i]*x[i];
  1732. sum_l += w*l;
  1733. sum_l2 += w*l*l;
  1734. sum_xl += w*l*x[i];
  1735. }
  1736. float D = sum_w * sum_l2 - sum_l * sum_l;
  1737. if (D > 0) {
  1738. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1739. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1740. if (this_min > 0) {
  1741. this_min = 0;
  1742. this_scale = sum_xl / sum_l2;
  1743. }
  1744. float mad = 0;
  1745. for (int i = 0; i < n; ++i) {
  1746. float diff = this_scale * Laux[i] + this_min - x[i];
  1747. diff = use_mad ? fabsf(diff) : diff*diff;
  1748. float w = weights ? weights[i] : x[i]*x[i];
  1749. mad += w * diff;
  1750. }
  1751. if (mad < best_mad) {
  1752. for (int i = 0; i < n; ++i) {
  1753. L[i] = Laux[i];
  1754. }
  1755. best_mad = mad;
  1756. scale = this_scale;
  1757. min = this_min;
  1758. }
  1759. }
  1760. }
  1761. *the_min = -min;
  1762. return scale;
  1763. }
  1764. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1765. float max = 0;
  1766. for (int i = 0; i < n; ++i) {
  1767. max = MAX(max, x[i]);
  1768. }
  1769. if (!max) { // all zero
  1770. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1771. return 0.f;
  1772. }
  1773. float iscale = nmax / max;
  1774. for (int i = 0; i < n; ++i) {
  1775. L[i] = nearest_int(iscale * x[i]);
  1776. }
  1777. float scale = 1/iscale;
  1778. float best_mse = 0;
  1779. for (int i = 0; i < n; ++i) {
  1780. float diff = x[i] - scale*L[i];
  1781. float w = quant_weights[i];
  1782. best_mse += w*diff*diff;
  1783. }
  1784. for (int is = -4; is <= 4; ++is) {
  1785. if (is == 0) continue;
  1786. float iscale_is = (0.1f*is + nmax)/max;
  1787. float scale_is = 1/iscale_is;
  1788. float mse = 0;
  1789. for (int i = 0; i < n; ++i) {
  1790. int l = nearest_int(iscale_is*x[i]);
  1791. l = MIN(nmax, l);
  1792. float diff = x[i] - scale_is*l;
  1793. float w = quant_weights[i];
  1794. mse += w*diff*diff;
  1795. }
  1796. if (mse < best_mse) {
  1797. best_mse = mse;
  1798. iscale = iscale_is;
  1799. }
  1800. }
  1801. float sumlx = 0;
  1802. float suml2 = 0;
  1803. for (int i = 0; i < n; ++i) {
  1804. int l = nearest_int(iscale * x[i]);
  1805. l = MIN(nmax, l);
  1806. L[i] = l;
  1807. float w = quant_weights[i];
  1808. sumlx += w*x[i]*l;
  1809. suml2 += w*l*l;
  1810. }
  1811. for (int itry = 0; itry < 5; ++itry) {
  1812. int n_changed = 0;
  1813. for (int i = 0; i < n; ++i) {
  1814. float w = quant_weights[i];
  1815. float slx = sumlx - w*x[i]*L[i];
  1816. float sl2 = suml2 - w*L[i]*L[i];
  1817. if (slx > 0 && sl2 > 0) {
  1818. int new_l = nearest_int(x[i] * sl2 / slx);
  1819. new_l = MIN(nmax, new_l);
  1820. if (new_l != L[i]) {
  1821. slx += w*x[i]*new_l;
  1822. sl2 += w*new_l*new_l;
  1823. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1824. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1825. ++n_changed;
  1826. }
  1827. }
  1828. }
  1829. }
  1830. if (!n_changed) {
  1831. break;
  1832. }
  1833. }
  1834. return sumlx/suml2;
  1835. }
  1836. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1837. GGML_ASSERT(quant_weights);
  1838. assert(k % QK_K == 0);
  1839. const int nb = k / QK_K;
  1840. const bool requantize = true;
  1841. uint8_t L[QK_K];
  1842. uint8_t Laux[16];
  1843. float mins[QK_K/16];
  1844. float scales[QK_K/16];
  1845. float sw[QK_K/16];
  1846. float weight[16];
  1847. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1848. for (int i = 0; i < nb; i++) {
  1849. memset(sw, 0, QK_K/16*sizeof(float));
  1850. float sumx2 = 0;
  1851. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1852. float sigma2 = sumx2/QK_K;
  1853. for (int j = 0; j < QK_K/16; ++j) {
  1854. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1855. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1856. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1857. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1858. }
  1859. float dm, mm;
  1860. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1861. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1862. y[i].d = GGML_FP32_TO_FP16(dm);
  1863. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1864. dm = GGML_FP16_TO_FP32(y[i].d);
  1865. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1866. for (int j = 0; j < QK_K/16; ++j) {
  1867. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1868. }
  1869. if (requantize) {
  1870. for (int j = 0; j < QK_K/16; ++j) {
  1871. const float d = dm * (y[i].scales[j] & 0xF);
  1872. if (!d) continue;
  1873. const float m = mm * (y[i].scales[j] >> 4);
  1874. for (int ii = 0; ii < 16; ++ii) {
  1875. int l = nearest_int((x[16*j + ii] + m)/d);
  1876. l = MAX(0, MIN(3, l));
  1877. L[16*j + ii] = l;
  1878. }
  1879. }
  1880. }
  1881. for (int j = 0; j < QK_K; j += 128) {
  1882. for (int l = 0; l < 32; ++l) {
  1883. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1884. }
  1885. }
  1886. x += QK_K;
  1887. }
  1888. }
  1889. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1890. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1891. if (!quant_weights) {
  1892. quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1893. }
  1894. else {
  1895. char * qrow = (char *)dst;
  1896. for (int64_t row = 0; row < nrow; ++row) {
  1897. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1898. src += n_per_row;
  1899. qrow += row_size;
  1900. }
  1901. }
  1902. return nrow * row_size;
  1903. }
  1904. //========================= 3-bit (de)-quantization
  1905. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1906. assert(k % QK_K == 0);
  1907. const int nb = k / QK_K;
  1908. int8_t L[QK_K];
  1909. float scales[QK_K / 16];
  1910. for (int i = 0; i < nb; i++) {
  1911. float max_scale = 0;
  1912. float amax = 0;
  1913. for (int j = 0; j < QK_K/16; ++j) {
  1914. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1915. float scale = fabsf(scales[j]);
  1916. if (scale > amax) {
  1917. amax = scale; max_scale = scales[j];
  1918. }
  1919. }
  1920. memset(y[i].scales, 0, 12);
  1921. if (max_scale) {
  1922. float iscale = -32.f/max_scale;
  1923. for (int j = 0; j < QK_K/16; ++j) {
  1924. int8_t l = nearest_int(iscale*scales[j]);
  1925. l = MAX(-32, MIN(31, l)) + 32;
  1926. if (j < 8) {
  1927. y[i].scales[j] = l & 0xF;
  1928. } else {
  1929. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1930. }
  1931. l >>= 4;
  1932. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1933. }
  1934. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1935. } else {
  1936. y[i].d = GGML_FP32_TO_FP16(0.f);
  1937. }
  1938. int8_t sc;
  1939. for (int j = 0; j < QK_K/16; ++j) {
  1940. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1941. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1942. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1943. if (!d) {
  1944. continue;
  1945. }
  1946. for (int ii = 0; ii < 16; ++ii) {
  1947. int l = nearest_int(x[16*j + ii]/d);
  1948. l = MAX(-4, MIN(3, l));
  1949. L[16*j + ii] = l + 4;
  1950. }
  1951. }
  1952. memset(y[i].hmask, 0, QK_K/8);
  1953. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1954. int m = 0;
  1955. uint8_t hm = 1;
  1956. for (int j = 0; j < QK_K; ++j) {
  1957. if (L[j] > 3) {
  1958. y[i].hmask[m] |= hm;
  1959. L[j] -= 4;
  1960. }
  1961. if (++m == QK_K/8) {
  1962. m = 0; hm <<= 1;
  1963. }
  1964. }
  1965. for (int j = 0; j < QK_K; j += 128) {
  1966. for (int l = 0; l < 32; ++l) {
  1967. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1968. }
  1969. }
  1970. x += QK_K;
  1971. }
  1972. }
  1973. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1974. assert(k % QK_K == 0);
  1975. const int nb = k / QK_K;
  1976. const uint32_t kmask1 = 0x03030303;
  1977. const uint32_t kmask2 = 0x0f0f0f0f;
  1978. uint32_t aux[4];
  1979. const int8_t * scales = (const int8_t*)aux;
  1980. for (int i = 0; i < nb; i++) {
  1981. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1982. const uint8_t * restrict q = x[i].qs;
  1983. const uint8_t * restrict hm = x[i].hmask;
  1984. uint8_t m = 1;
  1985. memcpy(aux, x[i].scales, 12);
  1986. uint32_t tmp = aux[2];
  1987. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1988. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1989. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1990. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1991. int is = 0;
  1992. float dl;
  1993. for (int n = 0; n < QK_K; n += 128) {
  1994. int shift = 0;
  1995. for (int j = 0; j < 4; ++j) {
  1996. dl = d_all * (scales[is++] - 32);
  1997. for (int l = 0; l < 16; ++l) {
  1998. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1999. }
  2000. dl = d_all * (scales[is++] - 32);
  2001. for (int l = 0; l < 16; ++l) {
  2002. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2003. }
  2004. shift += 2;
  2005. m <<= 1;
  2006. }
  2007. q += 32;
  2008. }
  2009. }
  2010. }
  2011. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2012. quantize_row_q3_K_reference(x, vy, k);
  2013. }
  2014. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2015. assert(n_per_row % QK_K == 0);
  2016. const int nb = n_per_row / QK_K;
  2017. int8_t L[QK_K];
  2018. float scales[QK_K / 16];
  2019. float weight[16];
  2020. float sw[QK_K / 16];
  2021. int8_t Ls[QK_K / 16];
  2022. for (int i = 0; i < nb; i++) {
  2023. float sumx2 = 0;
  2024. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2025. float sigma2 = 2*sumx2/QK_K;
  2026. for (int j = 0; j < QK_K/16; ++j) {
  2027. if (quant_weights) {
  2028. const float * qw = quant_weights + QK_K * i + 16*j;
  2029. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2030. } else {
  2031. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2032. }
  2033. float sumw = 0;
  2034. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2035. sw[j] = sumw;
  2036. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2037. }
  2038. memset(y[i].scales, 0, 12);
  2039. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2040. for (int j = 0; j < QK_K/16; ++j) {
  2041. int l = Ls[j];
  2042. if (j < 8) {
  2043. y[i].scales[j] = l & 0xF;
  2044. } else {
  2045. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2046. }
  2047. l >>= 4;
  2048. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2049. }
  2050. y[i].d = GGML_FP32_TO_FP16(d_block);
  2051. int8_t sc;
  2052. for (int j = 0; j < QK_K/16; ++j) {
  2053. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2054. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2055. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2056. if (!d) {
  2057. continue;
  2058. }
  2059. for (int ii = 0; ii < 16; ++ii) {
  2060. int l = nearest_int(x[16*j + ii]/d);
  2061. l = MAX(-4, MIN(3, l));
  2062. L[16*j + ii] = l + 4;
  2063. }
  2064. }
  2065. memset(y[i].hmask, 0, QK_K/8);
  2066. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2067. int m = 0;
  2068. uint8_t hm = 1;
  2069. for (int j = 0; j < QK_K; ++j) {
  2070. if (L[j] > 3) {
  2071. y[i].hmask[m] |= hm;
  2072. L[j] -= 4;
  2073. }
  2074. if (++m == QK_K/8) {
  2075. m = 0; hm <<= 1;
  2076. }
  2077. }
  2078. for (int j = 0; j < QK_K; j += 128) {
  2079. for (int l = 0; l < 32; ++l) {
  2080. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2081. }
  2082. }
  2083. x += QK_K;
  2084. }
  2085. }
  2086. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2087. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2088. if (!quant_weights) {
  2089. quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2090. }
  2091. else {
  2092. char * qrow = (char *)dst;
  2093. for (int64_t row = 0; row < nrow; ++row) {
  2094. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2095. src += n_per_row;
  2096. qrow += row_size;
  2097. }
  2098. }
  2099. return nrow * row_size;
  2100. }
  2101. // ====================== 4-bit (de)-quantization
  2102. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2103. assert(k % QK_K == 0);
  2104. const int nb = k / QK_K;
  2105. uint8_t L[QK_K];
  2106. uint8_t Laux[32];
  2107. float weights[32];
  2108. float mins[QK_K/32];
  2109. float scales[QK_K/32];
  2110. for (int i = 0; i < nb; i++) {
  2111. float max_scale = 0; // as we are deducting the min, scales are always positive
  2112. float max_min = 0;
  2113. for (int j = 0; j < QK_K/32; ++j) {
  2114. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2115. float sum_x2 = 0;
  2116. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2117. float av_x = sqrtf(sum_x2/32);
  2118. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2119. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2120. float scale = scales[j];
  2121. if (scale > max_scale) {
  2122. max_scale = scale;
  2123. }
  2124. float min = mins[j];
  2125. if (min > max_min) {
  2126. max_min = min;
  2127. }
  2128. }
  2129. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2130. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2131. for (int j = 0; j < QK_K/32; ++j) {
  2132. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2133. uint8_t lm = nearest_int(inv_min*mins[j]);
  2134. ls = MIN(63, ls);
  2135. lm = MIN(63, lm);
  2136. if (j < 4) {
  2137. y[i].scales[j] = ls;
  2138. y[i].scales[j+4] = lm;
  2139. } else {
  2140. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2141. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2142. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2143. }
  2144. }
  2145. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2146. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2147. uint8_t sc, m;
  2148. for (int j = 0; j < QK_K/32; ++j) {
  2149. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2150. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2151. if (!d) continue;
  2152. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2153. for (int ii = 0; ii < 32; ++ii) {
  2154. int l = nearest_int((x[32*j + ii] + dm)/d);
  2155. l = MAX(0, MIN(15, l));
  2156. L[32*j + ii] = l;
  2157. }
  2158. }
  2159. uint8_t * q = y[i].qs;
  2160. for (int j = 0; j < QK_K; j += 64) {
  2161. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2162. q += 32;
  2163. }
  2164. x += QK_K;
  2165. }
  2166. }
  2167. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2168. assert(k % QK_K == 0);
  2169. const int nb = k / QK_K;
  2170. for (int i = 0; i < nb; i++) {
  2171. const uint8_t * q = x[i].qs;
  2172. const float d = GGML_FP16_TO_FP32(x[i].d);
  2173. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2174. int is = 0;
  2175. uint8_t sc, m;
  2176. for (int j = 0; j < QK_K; j += 64) {
  2177. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2178. const float d1 = d * sc; const float m1 = min * m;
  2179. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2180. const float d2 = d * sc; const float m2 = min * m;
  2181. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2182. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2183. q += 32; is += 2;
  2184. }
  2185. }
  2186. }
  2187. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2188. assert(k % QK_K == 0);
  2189. block_q4_K * restrict y = vy;
  2190. quantize_row_q4_K_reference(x, y, k);
  2191. }
  2192. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2193. assert(n_per_row % QK_K == 0);
  2194. const int64_t nb = n_per_row / QK_K;
  2195. uint8_t L[QK_K];
  2196. uint8_t Laux[32];
  2197. uint8_t Ls[QK_K/32];
  2198. uint8_t Lm[QK_K/32];
  2199. float weights[32];
  2200. float sw[QK_K/32];
  2201. float mins[QK_K/32];
  2202. float scales[QK_K/32];
  2203. for (int i = 0; i < nb; i++) {
  2204. float sum_x2 = 0;
  2205. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2206. float sigma2 = 2*sum_x2/QK_K;
  2207. float av_x = sqrtf(sigma2);
  2208. for (int j = 0; j < QK_K/32; ++j) {
  2209. if (quant_weights) {
  2210. const float * qw = quant_weights + QK_K*i + 32*j;
  2211. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2212. } else {
  2213. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2214. }
  2215. float sumw = 0;
  2216. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2217. sw[j] = sumw;
  2218. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2219. }
  2220. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2221. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2222. for (int j = 0; j < QK_K/32; ++j) {
  2223. uint8_t ls = Ls[j];
  2224. uint8_t lm = Lm[j];
  2225. if (j < 4) {
  2226. y[i].scales[j] = ls;
  2227. y[i].scales[j+4] = lm;
  2228. } else {
  2229. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2230. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2231. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2232. }
  2233. }
  2234. y[i].d = GGML_FP32_TO_FP16(d_block);
  2235. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2236. uint8_t sc, m;
  2237. for (int j = 0; j < QK_K/32; ++j) {
  2238. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2239. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2240. if (!d) continue;
  2241. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2242. for (int ii = 0; ii < 32; ++ii) {
  2243. int l = nearest_int((x[32*j + ii] + dm)/d);
  2244. l = MAX(0, MIN(15, l));
  2245. L[32*j + ii] = l;
  2246. }
  2247. }
  2248. uint8_t * q = y[i].qs;
  2249. for (int j = 0; j < QK_K; j += 64) {
  2250. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2251. q += 32;
  2252. }
  2253. x += QK_K;
  2254. }
  2255. }
  2256. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2257. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2258. if (!quant_weights) {
  2259. quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2260. }
  2261. else {
  2262. char * qrow = (char *)dst;
  2263. for (int64_t row = 0; row < nrow; ++row) {
  2264. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2265. src += n_per_row;
  2266. qrow += row_size;
  2267. }
  2268. }
  2269. return nrow * row_size;
  2270. }
  2271. // ====================== 5-bit (de)-quantization
  2272. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2273. assert(k % QK_K == 0);
  2274. const int64_t nb = k / QK_K;
  2275. uint8_t L[QK_K];
  2276. float mins[QK_K/32];
  2277. float scales[QK_K/32];
  2278. float weights[32];
  2279. uint8_t Laux[32];
  2280. for (int i = 0; i < nb; i++) {
  2281. float max_scale = 0; // as we are deducting the min, scales are always positive
  2282. float max_min = 0;
  2283. for (int j = 0; j < QK_K/32; ++j) {
  2284. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2285. float sum_x2 = 0;
  2286. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2287. float av_x = sqrtf(sum_x2/32);
  2288. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2289. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2290. float scale = scales[j];
  2291. if (scale > max_scale) {
  2292. max_scale = scale;
  2293. }
  2294. float min = mins[j];
  2295. if (min > max_min) {
  2296. max_min = min;
  2297. }
  2298. }
  2299. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2300. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2301. for (int j = 0; j < QK_K/32; ++j) {
  2302. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2303. uint8_t lm = nearest_int(inv_min*mins[j]);
  2304. ls = MIN(63, ls);
  2305. lm = MIN(63, lm);
  2306. if (j < 4) {
  2307. y[i].scales[j] = ls;
  2308. y[i].scales[j+4] = lm;
  2309. } else {
  2310. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2311. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2312. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2313. }
  2314. }
  2315. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2316. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2317. uint8_t sc, m;
  2318. for (int j = 0; j < QK_K/32; ++j) {
  2319. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2320. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2321. if (!d) continue;
  2322. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2323. for (int ii = 0; ii < 32; ++ii) {
  2324. int l = nearest_int((x[32*j + ii] + dm)/d);
  2325. l = MAX(0, MIN(31, l));
  2326. L[32*j + ii] = l;
  2327. }
  2328. }
  2329. uint8_t * restrict qh = y[i].qh;
  2330. uint8_t * restrict ql = y[i].qs;
  2331. memset(qh, 0, QK_K/8);
  2332. uint8_t m1 = 1, m2 = 2;
  2333. for (int n = 0; n < QK_K; n += 64) {
  2334. for (int j = 0; j < 32; ++j) {
  2335. int l1 = L[n + j];
  2336. if (l1 > 15) {
  2337. l1 -= 16; qh[j] |= m1;
  2338. }
  2339. int l2 = L[n + j + 32];
  2340. if (l2 > 15) {
  2341. l2 -= 16; qh[j] |= m2;
  2342. }
  2343. ql[j] = l1 | (l2 << 4);
  2344. }
  2345. m1 <<= 2; m2 <<= 2;
  2346. ql += 32;
  2347. }
  2348. x += QK_K;
  2349. }
  2350. }
  2351. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2352. assert(k % QK_K == 0);
  2353. const int64_t nb = k / QK_K;
  2354. for (int i = 0; i < nb; i++) {
  2355. const uint8_t * ql = x[i].qs;
  2356. const uint8_t * qh = x[i].qh;
  2357. const float d = GGML_FP16_TO_FP32(x[i].d);
  2358. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2359. int is = 0;
  2360. uint8_t sc, m;
  2361. uint8_t u1 = 1, u2 = 2;
  2362. for (int j = 0; j < QK_K; j += 64) {
  2363. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2364. const float d1 = d * sc; const float m1 = min * m;
  2365. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2366. const float d2 = d * sc; const float m2 = min * m;
  2367. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2368. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2369. ql += 32; is += 2;
  2370. u1 <<= 2; u2 <<= 2;
  2371. }
  2372. }
  2373. }
  2374. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2375. assert(k % QK_K == 0);
  2376. block_q5_K * restrict y = vy;
  2377. quantize_row_q5_K_reference(x, y, k);
  2378. }
  2379. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2380. assert(n_per_row % QK_K == 0);
  2381. const int64_t nb = n_per_row / QK_K;
  2382. uint8_t L[QK_K];
  2383. uint8_t Laux[32];
  2384. uint8_t Ls[QK_K/32];
  2385. uint8_t Lm[QK_K/32];
  2386. float mins[QK_K/32];
  2387. float scales[QK_K/32];
  2388. float sw[QK_K/32];
  2389. float weights[32];
  2390. for (int i = 0; i < nb; i++) {
  2391. float sum_x2 = 0;
  2392. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2393. float sigma2 = 2*sum_x2/QK_K;
  2394. float av_x = sqrtf(sigma2);
  2395. for (int j = 0; j < QK_K/32; ++j) {
  2396. if (quant_weights) {
  2397. const float * qw = quant_weights + QK_K*i + 32*j;
  2398. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2399. } else {
  2400. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2401. }
  2402. float sumw = 0;
  2403. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2404. sw[j] = sumw;
  2405. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2406. }
  2407. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2408. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2409. for (int j = 0; j < QK_K/32; ++j) {
  2410. uint8_t ls = Ls[j];
  2411. uint8_t lm = Lm[j];
  2412. ls = MIN(63, ls);
  2413. lm = MIN(63, lm);
  2414. if (j < 4) {
  2415. y[i].scales[j] = ls;
  2416. y[i].scales[j+4] = lm;
  2417. } else {
  2418. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2419. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2420. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2421. }
  2422. }
  2423. y[i].d = GGML_FP32_TO_FP16(d_block);
  2424. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2425. uint8_t sc, m;
  2426. for (int j = 0; j < QK_K/32; ++j) {
  2427. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2428. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2429. if (!d) continue;
  2430. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2431. for (int ii = 0; ii < 32; ++ii) {
  2432. int l = nearest_int((x[32*j + ii] + dm)/d);
  2433. l = MAX(0, MIN(31, l));
  2434. L[32*j + ii] = l;
  2435. }
  2436. }
  2437. uint8_t * restrict qh = y[i].qh;
  2438. uint8_t * restrict ql = y[i].qs;
  2439. memset(qh, 0, QK_K/8);
  2440. uint8_t m1 = 1, m2 = 2;
  2441. for (int n = 0; n < QK_K; n += 64) {
  2442. for (int j = 0; j < 32; ++j) {
  2443. int l1 = L[n + j];
  2444. if (l1 > 15) {
  2445. l1 -= 16; qh[j] |= m1;
  2446. }
  2447. int l2 = L[n + j + 32];
  2448. if (l2 > 15) {
  2449. l2 -= 16; qh[j] |= m2;
  2450. }
  2451. ql[j] = l1 | (l2 << 4);
  2452. }
  2453. m1 <<= 2; m2 <<= 2;
  2454. ql += 32;
  2455. }
  2456. x += QK_K;
  2457. }
  2458. }
  2459. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2460. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2461. if (!quant_weights) {
  2462. quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2463. }
  2464. else {
  2465. char * qrow = (char *)dst;
  2466. for (int64_t row = 0; row < nrow; ++row) {
  2467. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2468. src += n_per_row;
  2469. qrow += row_size;
  2470. }
  2471. }
  2472. return nrow * row_size;
  2473. }
  2474. // ====================== 6-bit (de)-quantization
  2475. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2476. assert(k % QK_K == 0);
  2477. const int64_t nb = k / QK_K;
  2478. int8_t L[QK_K];
  2479. float scales[QK_K/16];
  2480. for (int i = 0; i < nb; i++) {
  2481. float max_scale = 0;
  2482. float max_abs_scale = 0;
  2483. for (int ib = 0; ib < QK_K/16; ++ib) {
  2484. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2485. scales[ib] = scale;
  2486. const float abs_scale = fabsf(scale);
  2487. if (abs_scale > max_abs_scale) {
  2488. max_abs_scale = abs_scale;
  2489. max_scale = scale;
  2490. }
  2491. }
  2492. if (max_abs_scale < GROUP_MAX_EPS) {
  2493. memset(&y[i], 0, sizeof(block_q6_K));
  2494. y[i].d = GGML_FP32_TO_FP16(0.f);
  2495. x += QK_K;
  2496. continue;
  2497. }
  2498. float iscale = -128.f/max_scale;
  2499. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2500. for (int ib = 0; ib < QK_K/16; ++ib) {
  2501. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2502. }
  2503. for (int j = 0; j < QK_K/16; ++j) {
  2504. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2505. if (!d) {
  2506. continue;
  2507. }
  2508. for (int ii = 0; ii < 16; ++ii) {
  2509. int l = nearest_int(x[16*j + ii]/d);
  2510. l = MAX(-32, MIN(31, l));
  2511. L[16*j + ii] = l + 32;
  2512. }
  2513. }
  2514. uint8_t * restrict ql = y[i].ql;
  2515. uint8_t * restrict qh = y[i].qh;
  2516. for (int j = 0; j < QK_K; j += 128) {
  2517. for (int l = 0; l < 32; ++l) {
  2518. const uint8_t q1 = L[j + l + 0] & 0xF;
  2519. const uint8_t q2 = L[j + l + 32] & 0xF;
  2520. const uint8_t q3 = L[j + l + 64] & 0xF;
  2521. const uint8_t q4 = L[j + l + 96] & 0xF;
  2522. ql[l+ 0] = q1 | (q3 << 4);
  2523. ql[l+32] = q2 | (q4 << 4);
  2524. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2525. }
  2526. ql += 64;
  2527. qh += 32;
  2528. }
  2529. x += QK_K;
  2530. }
  2531. }
  2532. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2533. assert(k % QK_K == 0);
  2534. const int64_t nb = k / QK_K;
  2535. for (int i = 0; i < nb; i++) {
  2536. const float d = GGML_FP16_TO_FP32(x[i].d);
  2537. const uint8_t * restrict ql = x[i].ql;
  2538. const uint8_t * restrict qh = x[i].qh;
  2539. const int8_t * restrict sc = x[i].scales;
  2540. for (int n = 0; n < QK_K; n += 128) {
  2541. for (int l = 0; l < 32; ++l) {
  2542. int is = l/16;
  2543. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2544. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2545. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2546. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2547. y[l + 0] = d * sc[is + 0] * q1;
  2548. y[l + 32] = d * sc[is + 2] * q2;
  2549. y[l + 64] = d * sc[is + 4] * q3;
  2550. y[l + 96] = d * sc[is + 6] * q4;
  2551. }
  2552. y += 128;
  2553. ql += 64;
  2554. qh += 32;
  2555. sc += 8;
  2556. }
  2557. }
  2558. }
  2559. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2560. assert(k % QK_K == 0);
  2561. block_q6_K * restrict y = vy;
  2562. quantize_row_q6_K_reference(x, y, k);
  2563. }
  2564. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2565. assert(n_per_row % QK_K == 0);
  2566. const int64_t nb = n_per_row / QK_K;
  2567. int8_t L[QK_K];
  2568. float scales[QK_K/16];
  2569. //float weights[16];
  2570. for (int i = 0; i < nb; i++) {
  2571. //float sum_x2 = 0;
  2572. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2573. //float sigma2 = sum_x2/QK_K;
  2574. float max_scale = 0;
  2575. float max_abs_scale = 0;
  2576. for (int ib = 0; ib < QK_K/16; ++ib) {
  2577. float scale;
  2578. if (quant_weights) {
  2579. const float * qw = quant_weights + QK_K*i + 16*ib;
  2580. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2581. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2582. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2583. } else {
  2584. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2585. }
  2586. scales[ib] = scale;
  2587. const float abs_scale = fabsf(scale);
  2588. if (abs_scale > max_abs_scale) {
  2589. max_abs_scale = abs_scale;
  2590. max_scale = scale;
  2591. }
  2592. }
  2593. if (max_abs_scale < GROUP_MAX_EPS) {
  2594. memset(&y[i], 0, sizeof(block_q6_K));
  2595. y[i].d = GGML_FP32_TO_FP16(0.f);
  2596. x += QK_K;
  2597. continue;
  2598. }
  2599. float iscale = -128.f/max_scale;
  2600. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2601. for (int ib = 0; ib < QK_K/16; ++ib) {
  2602. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2603. }
  2604. for (int j = 0; j < QK_K/16; ++j) {
  2605. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2606. if (!d) {
  2607. continue;
  2608. }
  2609. for (int ii = 0; ii < 16; ++ii) {
  2610. int l = nearest_int(x[16*j + ii]/d);
  2611. l = MAX(-32, MIN(31, l));
  2612. L[16*j + ii] = l + 32;
  2613. }
  2614. }
  2615. uint8_t * restrict ql = y[i].ql;
  2616. uint8_t * restrict qh = y[i].qh;
  2617. for (int j = 0; j < QK_K; j += 128) {
  2618. for (int l = 0; l < 32; ++l) {
  2619. const uint8_t q1 = L[j + l + 0] & 0xF;
  2620. const uint8_t q2 = L[j + l + 32] & 0xF;
  2621. const uint8_t q3 = L[j + l + 64] & 0xF;
  2622. const uint8_t q4 = L[j + l + 96] & 0xF;
  2623. ql[l+ 0] = q1 | (q3 << 4);
  2624. ql[l+32] = q2 | (q4 << 4);
  2625. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2626. }
  2627. ql += 64;
  2628. qh += 32;
  2629. }
  2630. x += QK_K;
  2631. }
  2632. }
  2633. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2634. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2635. if (!quant_weights) {
  2636. quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2637. }
  2638. else {
  2639. char * qrow = (char *)dst;
  2640. for (int64_t row = 0; row < nrow; ++row) {
  2641. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2642. src += n_per_row;
  2643. qrow += row_size;
  2644. }
  2645. }
  2646. return nrow * row_size;
  2647. }
  2648. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2649. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2650. if (!quant_weights) {
  2651. quantize_row_q4_0_reference(x, y, n_per_row);
  2652. return;
  2653. }
  2654. float weight[QK4_0];
  2655. int8_t L[QK4_0];
  2656. float sum_x2 = 0;
  2657. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2658. float sigma2 = sum_x2/n_per_row;
  2659. const int64_t nb = n_per_row/QK4_0;
  2660. for (int ib = 0; ib < nb; ++ib) {
  2661. const float * xb = x + QK4_0 * ib;
  2662. const float * qw = quant_weights + QK4_0 * ib;
  2663. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2664. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2665. y[ib].d = GGML_FP32_TO_FP16(d);
  2666. for (int j = 0; j < 16; ++j) {
  2667. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2668. }
  2669. }
  2670. }
  2671. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2672. if (!quant_weights) {
  2673. quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2674. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2675. }
  2676. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2677. char * qrow = (char *)dst;
  2678. for (int64_t row = 0; row < nrow; ++row) {
  2679. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2680. src += n_per_row;
  2681. qrow += row_size;
  2682. }
  2683. return nrow * row_size;
  2684. }
  2685. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2686. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2687. if (!quant_weights) {
  2688. quantize_row_q4_1_reference(x, y, n_per_row);
  2689. return;
  2690. }
  2691. float weight[QK4_1];
  2692. uint8_t L[QK4_1], Laux[QK4_1];
  2693. float sum_x2 = 0;
  2694. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2695. float sigma2 = sum_x2/n_per_row;
  2696. const int64_t nb = n_per_row/QK4_1;
  2697. for (int ib = 0; ib < nb; ++ib) {
  2698. const float * xb = x + QK4_1 * ib;
  2699. const float * qw = quant_weights + QK4_1 * ib;
  2700. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2701. float min;
  2702. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2703. y[ib].d = GGML_FP32_TO_FP16(d);
  2704. y[ib].m = GGML_FP32_TO_FP16(-min);
  2705. for (int j = 0; j < 16; ++j) {
  2706. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2707. }
  2708. }
  2709. }
  2710. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2711. if (!quant_weights) {
  2712. quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2713. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2714. }
  2715. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2716. char * qrow = (char *)dst;
  2717. for (int64_t row = 0; row < nrow; ++row) {
  2718. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2719. src += n_per_row;
  2720. qrow += row_size;
  2721. }
  2722. return nrow * row_size;
  2723. }
  2724. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2725. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2726. if (!quant_weights) {
  2727. quantize_row_q5_0_reference(x, y, n_per_row);
  2728. return;
  2729. }
  2730. float weight[QK5_0];
  2731. int8_t L[QK5_0];
  2732. float sum_x2 = 0;
  2733. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2734. float sigma2 = sum_x2/n_per_row;
  2735. const int64_t nb = n_per_row/QK5_0;
  2736. for (int ib = 0; ib < nb; ++ib) {
  2737. const float * xb = x + QK5_0 * ib;
  2738. const float * qw = quant_weights + QK5_0 * ib;
  2739. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2740. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2741. y[ib].d = GGML_FP32_TO_FP16(d);
  2742. uint32_t qh = 0;
  2743. for (int j = 0; j < 16; ++j) {
  2744. const uint8_t xi0 = L[j];
  2745. const uint8_t xi1 = L[j+16];
  2746. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2747. // get the 5-th bit and store it in qh at the right position
  2748. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2749. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2750. }
  2751. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2752. }
  2753. }
  2754. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2755. if (!quant_weights) {
  2756. quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2757. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2758. }
  2759. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2760. char * qrow = (char *)dst;
  2761. for (int64_t row = 0; row < nrow; ++row) {
  2762. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2763. src += n_per_row;
  2764. qrow += row_size;
  2765. }
  2766. return nrow * row_size;
  2767. }
  2768. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2769. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2770. if (!quant_weights) {
  2771. quantize_row_q5_1_reference(x, y, n_per_row);
  2772. return;
  2773. }
  2774. float weight[QK5_1];
  2775. uint8_t L[QK5_1], Laux[QK5_1];
  2776. float sum_x2 = 0;
  2777. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2778. float sigma2 = sum_x2/n_per_row;
  2779. const int64_t nb = n_per_row/QK5_1;
  2780. for (int ib = 0; ib < nb; ++ib) {
  2781. const float * xb = x + QK5_1 * ib;
  2782. const float * qw = quant_weights + QK5_1 * ib;
  2783. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2784. float min;
  2785. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2786. y[ib].d = GGML_FP32_TO_FP16(d);
  2787. y[ib].m = GGML_FP32_TO_FP16(-min);
  2788. uint32_t qh = 0;
  2789. for (int j = 0; j < 16; ++j) {
  2790. const uint8_t xi0 = L[j];
  2791. const uint8_t xi1 = L[j+16];
  2792. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2793. // get the 5-th bit and store it in qh at the right position
  2794. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2795. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2796. }
  2797. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2798. }
  2799. }
  2800. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2801. if (!quant_weights) {
  2802. quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2803. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2804. }
  2805. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2806. char * qrow = (char *)dst;
  2807. for (int64_t row = 0; row < nrow; ++row) {
  2808. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2809. src += n_per_row;
  2810. qrow += row_size;
  2811. }
  2812. return nrow * row_size;
  2813. }
  2814. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2815. (void)quant_weights; // not used
  2816. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2817. quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2818. return nrow * row_size;
  2819. }
  2820. // ====================== "True" 2-bit (de)-quantization
  2821. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2822. assert(k % QK_K == 0);
  2823. const int64_t nb = k / QK_K;
  2824. uint32_t aux32[2];
  2825. const uint8_t * aux8 = (const uint8_t *)aux32;
  2826. for (int i = 0; i < nb; i++) {
  2827. const float d = GGML_FP16_TO_FP32(x[i].d);
  2828. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2829. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2830. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2831. for (int l = 0; l < 4; ++l) {
  2832. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2833. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2834. for (int j = 0; j < 8; ++j) {
  2835. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2836. }
  2837. y += 8;
  2838. }
  2839. }
  2840. }
  2841. }
  2842. // ====================== 2.3125 bpw (de)-quantization
  2843. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  2844. assert(k % QK_K == 0);
  2845. const int64_t nb = k / QK_K;
  2846. float db[2];
  2847. for (int i = 0; i < nb; i++) {
  2848. const float d = GGML_FP16_TO_FP32(x[i].d);
  2849. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2850. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2851. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2852. for (int l = 0; l < 4; ++l) {
  2853. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2854. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2855. for (int j = 0; j < 8; ++j) {
  2856. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2857. }
  2858. y += 8;
  2859. }
  2860. }
  2861. }
  2862. }
  2863. // ====================== 2.5625 bpw (de)-quantization
  2864. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  2865. assert(k % QK_K == 0);
  2866. const int64_t nb = k / QK_K;
  2867. float db[2];
  2868. for (int i = 0; i < nb; i++) {
  2869. const float d = GGML_FP16_TO_FP32(x[i].d);
  2870. const uint8_t * qs = x[i].qs;
  2871. const uint8_t * qh = x[i].qh;
  2872. const uint8_t * signs = qs + QK_K/8;
  2873. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2874. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2875. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2876. for (int l = 0; l < 4; ++l) {
  2877. const float dl = db[l/2];
  2878. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2879. for (int j = 0; j < 8; ++j) {
  2880. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2881. }
  2882. y += 8;
  2883. }
  2884. qs += 4;
  2885. signs += 4;
  2886. }
  2887. }
  2888. }
  2889. // ====================== 3.0625 bpw (de)-quantization
  2890. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  2891. assert(k % QK_K == 0);
  2892. const int64_t nb = k / QK_K;
  2893. uint32_t aux32;
  2894. for (int i = 0; i < nb; i++) {
  2895. const float d = GGML_FP16_TO_FP32(x[i].d);
  2896. const uint8_t * qs = x[i].qs;
  2897. const uint8_t * scales_and_signs = qs + QK_K/4;
  2898. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2899. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2900. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2901. for (int l = 0; l < 4; ++l) {
  2902. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2903. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2904. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2905. for (int j = 0; j < 4; ++j) {
  2906. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2907. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2908. }
  2909. y += 8;
  2910. }
  2911. qs += 8;
  2912. }
  2913. }
  2914. }
  2915. // ====================== 3.3125 bpw (de)-quantization
  2916. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  2917. assert(k % QK_K == 0);
  2918. const int64_t nb = k / QK_K;
  2919. for (int i = 0; i < nb; i++) {
  2920. const float d = GGML_FP16_TO_FP32(x[i].d);
  2921. const uint8_t * qs = x[i].qs;
  2922. const uint8_t * qh = x[i].qh;
  2923. const uint8_t * signs = x[i].signs;
  2924. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2925. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2926. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2927. for (int l = 0; l < 4; ++l) {
  2928. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2929. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2930. for (int j = 0; j < 4; ++j) {
  2931. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2932. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2933. }
  2934. y += 8;
  2935. }
  2936. qs += 8;
  2937. signs += 4;
  2938. for (int l = 0; l < 4; ++l) {
  2939. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2940. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2941. for (int j = 0; j < 4; ++j) {
  2942. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2943. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2944. }
  2945. y += 8;
  2946. }
  2947. qh += 2;
  2948. qs += 8;
  2949. signs += 4;
  2950. }
  2951. }
  2952. }
  2953. // ====================== 1.5625 bpw (de)-quantization
  2954. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  2955. assert(k % QK_K == 0);
  2956. const int64_t nb = k / QK_K;
  2957. for (int i = 0; i < nb; i++) {
  2958. const float d = GGML_FP16_TO_FP32(x[i].d);
  2959. const uint8_t * qs = x[i].qs;
  2960. const uint16_t * qh = x[i].qh;
  2961. for (int ib = 0; ib < QK_K/32; ++ib) {
  2962. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  2963. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  2964. for (int l = 0; l < 4; ++l) {
  2965. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  2966. for (int j = 0; j < 8; ++j) {
  2967. y[j] = dl * (grid[j] + delta);
  2968. }
  2969. y += 8;
  2970. }
  2971. qs += 4;
  2972. }
  2973. }
  2974. }
  2975. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  2976. assert(k % QK_K == 0);
  2977. const int64_t nb = k / QK_K;
  2978. float delta[4];
  2979. uint16_t idx[4];
  2980. iq1m_scale_t scale;
  2981. for (int i = 0; i < nb; i++) {
  2982. const uint16_t * sc = (const uint16_t *)x[i].scales;
  2983. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  2984. const float d = GGML_FP16_TO_FP32(scale.f16);
  2985. const uint8_t * qs = x[i].qs;
  2986. const uint8_t * qh = x[i].qh;
  2987. for (int ib = 0; ib < QK_K/32; ++ib) {
  2988. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  2989. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  2990. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  2991. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  2992. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  2993. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  2994. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2995. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2996. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2997. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2998. for (int l = 0; l < 2; ++l) {
  2999. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3000. for (int j = 0; j < 8; ++j) {
  3001. y[j] = dl1 * (grid[j] + delta[l]);
  3002. }
  3003. y += 8;
  3004. }
  3005. for (int l = 2; l < 4; ++l) {
  3006. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3007. for (int j = 0; j < 8; ++j) {
  3008. y[j] = dl2 * (grid[j] + delta[l]);
  3009. }
  3010. y += 8;
  3011. }
  3012. qs += 4;
  3013. qh += 2;
  3014. }
  3015. }
  3016. }
  3017. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3018. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3019. assert(k % QK4_NL == 0);
  3020. const int64_t nb = k / QK4_NL;
  3021. for (int i = 0; i < nb; i++) {
  3022. const uint8_t * qs = x[i].qs;
  3023. const float d = GGML_FP16_TO_FP32(x[i].d);
  3024. for (int j = 0; j < QK4_NL/2; ++j) {
  3025. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3026. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3027. }
  3028. y += QK4_NL;
  3029. qs += QK4_NL/2;
  3030. }
  3031. }
  3032. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3033. assert(k % QK_K == 0);
  3034. const int64_t nb = k / QK_K;
  3035. for (int i = 0; i < nb; i++) {
  3036. const uint8_t * qs = x[i].qs;
  3037. const float d = GGML_FP16_TO_FP32(x[i].d);
  3038. for (int ib = 0; ib < QK_K/32; ++ib) {
  3039. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3040. const float dl = d * (ls - 32);
  3041. for (int j = 0; j < 16; ++j) {
  3042. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3043. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3044. }
  3045. y += 32;
  3046. qs += 16;
  3047. }
  3048. }
  3049. }
  3050. //===================================== Q8_K ==============================================
  3051. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3052. assert(k % QK_K == 0);
  3053. const int64_t nb = k / QK_K;
  3054. for (int i = 0; i < nb; i++) {
  3055. float max = 0;
  3056. float amax = 0;
  3057. for (int j = 0; j < QK_K; ++j) {
  3058. float ax = fabsf(x[j]);
  3059. if (ax > amax) {
  3060. amax = ax; max = x[j];
  3061. }
  3062. }
  3063. if (!amax) {
  3064. y[i].d = 0;
  3065. memset(y[i].qs, 0, QK_K);
  3066. x += QK_K;
  3067. continue;
  3068. }
  3069. //const float iscale = -128.f/max;
  3070. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3071. const float iscale = -127.f/max;
  3072. for (int j = 0; j < QK_K; ++j) {
  3073. int v = nearest_int(iscale*x[j]);
  3074. y[i].qs[j] = MIN(127, v);
  3075. }
  3076. for (int j = 0; j < QK_K/16; ++j) {
  3077. int sum = 0;
  3078. for (int ii = 0; ii < 16; ++ii) {
  3079. sum += y[i].qs[j*16 + ii];
  3080. }
  3081. y[i].bsums[j] = sum;
  3082. }
  3083. y[i].d = 1/iscale;
  3084. x += QK_K;
  3085. }
  3086. }
  3087. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3088. assert(k % QK_K == 0);
  3089. const int64_t nb = k / QK_K;
  3090. for (int i = 0; i < nb; i++) {
  3091. for (int j = 0; j < QK_K; ++j) {
  3092. *y++ = x[i].d * x[i].qs[j];
  3093. }
  3094. }
  3095. }
  3096. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3097. quantize_row_q8_K_reference(x, y, k);
  3098. }
  3099. //===================================== Dot ptoducts =================================
  3100. //
  3101. // Helper functions
  3102. //
  3103. #if __AVX__ || __AVX2__ || __AVX512F__
  3104. // shuffles to pick the required scales in dot products
  3105. static inline __m256i get_scale_shuffle_q3k(int i) {
  3106. static const uint8_t k_shuffle[128] = {
  3107. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3108. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3109. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3110. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3111. };
  3112. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3113. }
  3114. static inline __m256i get_scale_shuffle_k4(int i) {
  3115. static const uint8_t k_shuffle[256] = {
  3116. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3117. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3118. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3119. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3120. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3121. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3122. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3123. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3124. };
  3125. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3126. }
  3127. static inline __m128i get_scale_shuffle(int i) {
  3128. static const uint8_t k_shuffle[128] = {
  3129. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3130. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3131. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3132. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3133. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3134. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3135. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3136. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3137. };
  3138. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3139. }
  3140. #elif defined(__loongarch_asx)
  3141. // shuffles to pick the required scales in dot products
  3142. static inline __m256i get_scale_shuffle_q3k(int i) {
  3143. static const uint8_t k_shuffle[128] = {
  3144. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3145. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3146. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3147. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3148. };
  3149. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3150. }
  3151. static inline __m256i get_scale_shuffle_k4(int i) {
  3152. static const uint8_t k_shuffle[256] = {
  3153. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3154. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3155. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3156. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3157. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3158. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3159. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3160. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3161. };
  3162. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3163. }
  3164. static inline __m128i get_scale_shuffle(int i) {
  3165. static const uint8_t k_shuffle[128] = {
  3166. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3167. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3168. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3169. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3170. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3171. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3172. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3173. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3174. };
  3175. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3176. }
  3177. #endif
  3178. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3179. const int qk = QK8_0;
  3180. const int nb = n / qk;
  3181. assert(n % qk == 0);
  3182. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3183. assert((nrc == 2) || (nrc == 1));
  3184. #else
  3185. assert(nrc == 1);
  3186. #endif
  3187. UNUSED(nrc);
  3188. UNUSED(bx);
  3189. UNUSED(by);
  3190. UNUSED(bs);
  3191. const block_q4_0 * restrict x = vx;
  3192. const block_q8_0 * restrict y = vy;
  3193. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3194. if (nrc == 2) {
  3195. const block_q4_0 * restrict vx0 = vx;
  3196. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3197. const block_q8_0 * restrict vy0 = vy;
  3198. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3199. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3200. for (int i = 0; i < nb; i++) {
  3201. const block_q4_0 * restrict b_x0 = &vx0[i];
  3202. const block_q4_0 * restrict b_x1 = &vx1[i];
  3203. const block_q8_0 * restrict b_y0 = &vy0[i];
  3204. const block_q8_0 * restrict b_y1 = &vy1[i];
  3205. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3206. const int8x16_t s8b = vdupq_n_s8(0x8);
  3207. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3208. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3209. // 4-bit -> 8-bit
  3210. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3211. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3212. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3213. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3214. // sub 8
  3215. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3216. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3217. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3218. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3219. // load y
  3220. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3221. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3222. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3223. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3224. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3225. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3226. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3227. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3228. float32x4_t scale = vld1q_f32(_scale);
  3229. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3230. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3231. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3232. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3233. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3234. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3235. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3236. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3237. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3238. l1, r1)), l2, r2)), l3, r3))), scale);
  3239. }
  3240. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3241. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3242. vst1_f32(s, vget_low_f32(sumv2));
  3243. vst1_f32(s + bs, vget_high_f32(sumv2));
  3244. return;
  3245. }
  3246. #endif
  3247. #if defined(__ARM_FEATURE_SVE)
  3248. const svbool_t ptrueh = svptrue_pat_b8(SV_VL16);
  3249. const svbool_t ptruel = svnot_b_z(svptrue_b8(), ptrueh);
  3250. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3251. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3252. assert(nb % 2 == 0); // TODO: handle odd nb
  3253. for (int i = 0; i < nb; i += 2) {
  3254. const block_q4_0 * restrict x0 = &x[i + 0];
  3255. const block_q4_0 * restrict x1 = &x[i + 1];
  3256. const block_q8_0 * restrict y0 = &y[i + 0];
  3257. const block_q8_0 * restrict y1 = &y[i + 1];
  3258. // load x
  3259. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3260. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3261. // 4-bit -> 8-bit
  3262. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx0r, 0x0F), 0x04));
  3263. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx1r, 0x0F), 0x04));
  3264. // sub 8
  3265. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3266. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3267. // load y
  3268. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3269. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3270. // dot product
  3271. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3272. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3273. }
  3274. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3275. #elif defined(__ARM_NEON)
  3276. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3277. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3278. assert(nb % 2 == 0); // TODO: handle odd nb
  3279. for (int i = 0; i < nb; i += 2) {
  3280. const block_q4_0 * restrict x0 = &x[i + 0];
  3281. const block_q4_0 * restrict x1 = &x[i + 1];
  3282. const block_q8_0 * restrict y0 = &y[i + 0];
  3283. const block_q8_0 * restrict y1 = &y[i + 1];
  3284. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3285. const int8x16_t s8b = vdupq_n_s8(0x8);
  3286. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3287. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3288. // 4-bit -> 8-bit
  3289. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3290. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3291. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3292. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3293. // sub 8
  3294. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3295. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3296. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3297. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3298. // load y
  3299. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3300. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3301. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3302. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3303. // dot product into int32x4_t
  3304. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3305. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3306. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3307. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3308. }
  3309. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3310. #elif defined(__AVX2__)
  3311. // Initialize accumulator with zeros
  3312. __m256 acc = _mm256_setzero_ps();
  3313. // Main loop
  3314. for (int i = 0; i < nb; ++i) {
  3315. /* Compute combined scale for the block */
  3316. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3317. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3318. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3319. const __m256i off = _mm256_set1_epi8( 8 );
  3320. qx = _mm256_sub_epi8( qx, off );
  3321. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3322. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3323. /* Multiply q with scale and accumulate */
  3324. acc = _mm256_fmadd_ps( d, q, acc );
  3325. }
  3326. *s = hsum_float_8(acc);
  3327. #elif defined(__AVX__)
  3328. // Initialize accumulator with zeros
  3329. __m256 acc = _mm256_setzero_ps();
  3330. // Main loop
  3331. for (int i = 0; i < nb; ++i) {
  3332. // Compute combined scale for the block
  3333. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3334. const __m128i lowMask = _mm_set1_epi8(0xF);
  3335. const __m128i off = _mm_set1_epi8(8);
  3336. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3337. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3338. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3339. bx_0 = _mm_sub_epi8(bx_0, off);
  3340. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3341. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3342. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3343. bx_0 = _mm_sub_epi8(bx_0, off);
  3344. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3345. // Convert int32_t to float
  3346. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3347. // Apply the scale, and accumulate
  3348. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3349. }
  3350. *s = hsum_float_8(acc);
  3351. #elif defined(__SSSE3__)
  3352. // set constants
  3353. const __m128i lowMask = _mm_set1_epi8(0xF);
  3354. const __m128i off = _mm_set1_epi8(8);
  3355. // Initialize accumulator with zeros
  3356. __m128 acc_0 = _mm_setzero_ps();
  3357. __m128 acc_1 = _mm_setzero_ps();
  3358. __m128 acc_2 = _mm_setzero_ps();
  3359. __m128 acc_3 = _mm_setzero_ps();
  3360. // First round without accumulation
  3361. {
  3362. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3363. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3364. // Compute combined scale for the block 0 and 1
  3365. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3366. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3367. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3368. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3369. bx_0 = _mm_sub_epi8(bx_0, off);
  3370. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3371. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3372. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3373. bx_1 = _mm_sub_epi8(bx_1, off);
  3374. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3375. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3376. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3377. // Compute combined scale for the block 2 and 3
  3378. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3379. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3380. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3381. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3382. bx_2 = _mm_sub_epi8(bx_2, off);
  3383. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3384. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3385. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3386. bx_3 = _mm_sub_epi8(bx_3, off);
  3387. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3388. // Convert int32_t to float
  3389. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3390. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3391. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3392. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3393. // Apply the scale
  3394. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3395. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3396. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3397. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3398. }
  3399. assert(nb % 2 == 0); // TODO: handle odd nb
  3400. // Main loop
  3401. for (int i = 2; i < nb; i+=2) {
  3402. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3403. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3404. // Compute combined scale for the block 0 and 1
  3405. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3406. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3407. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3408. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3409. bx_0 = _mm_sub_epi8(bx_0, off);
  3410. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3411. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3412. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3413. bx_1 = _mm_sub_epi8(bx_1, off);
  3414. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3415. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3416. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3417. // Compute combined scale for the block 2 and 3
  3418. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3419. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3420. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3421. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3422. bx_2 = _mm_sub_epi8(bx_2, off);
  3423. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3424. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3425. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3426. bx_3 = _mm_sub_epi8(bx_3, off);
  3427. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3428. // Convert int32_t to float
  3429. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3430. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3431. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3432. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3433. // Apply the scale
  3434. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3435. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3436. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3437. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3438. // Acummulate
  3439. acc_0 = _mm_add_ps(p0_d, acc_0);
  3440. acc_1 = _mm_add_ps(p1_d, acc_1);
  3441. acc_2 = _mm_add_ps(p2_d, acc_2);
  3442. acc_3 = _mm_add_ps(p3_d, acc_3);
  3443. }
  3444. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3445. #elif defined(__riscv_v_intrinsic)
  3446. float sumf = 0.0;
  3447. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3448. for (int i = 0; i < nb; i++) {
  3449. // load elements
  3450. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3451. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3452. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3453. // mask and store lower part of x, and then upper part
  3454. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3455. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3456. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3457. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3458. // subtract offset
  3459. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3460. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3461. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3462. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3463. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3464. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3465. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3466. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3467. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3468. }
  3469. *s = sumf;
  3470. #elif defined(__POWER9_VECTOR__)
  3471. const vector signed char lowMask = vec_splats((signed char)0xF);
  3472. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3473. const vector signed char v8 = vec_splats((signed char)0x8);
  3474. vector float vsumf0 = vec_splats(0.0f);
  3475. #pragma GCC unroll 4
  3476. for (int i = 0; i < nb; i++) {
  3477. __builtin_prefetch(x[i].qs, 0, 1);
  3478. __builtin_prefetch(y[i].qs, 0, 1);
  3479. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3480. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3481. vector float vd = vec_mul(vxd, vyd);
  3482. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3483. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3484. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3485. vector signed char q4x0 = vec_and(qxs, lowMask);
  3486. vector signed char q4x1 = vec_sr(qxs, v4);
  3487. q4x0 = vec_sub(q4x0, v8);
  3488. q4x1 = vec_sub(q4x1, v8);
  3489. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3490. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3491. qv0 = vec_add(qv0, qv1);
  3492. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3493. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3494. }
  3495. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3496. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3497. *s = vec_extract(vsumf0, 0);
  3498. #elif defined(__loongarch_asx)
  3499. // Initialize accumulator with zeros
  3500. __m256 acc = (__m256)__lasx_xvldi(0);
  3501. // Main loop
  3502. for (int i = 0; i < nb; ++i) {
  3503. /* Compute combined scale for the block */
  3504. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3505. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3506. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3507. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3508. qx = __lasx_xvsub_b( qx, off );
  3509. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  3510. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3511. /* Multiply q with scale and accumulate */
  3512. acc = __lasx_xvfmadd_s( d, q, acc );
  3513. }
  3514. *s = hsum_float_8(acc);
  3515. #elif defined(__loongarch_sx)
  3516. // set constants
  3517. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3518. const __m128i off = __lsx_vreplgr2vr_b(8);
  3519. // Initialize accumulator with zeros
  3520. __m128 acc_0 = __lsx_vldi(0);
  3521. __m128 acc_1 = __lsx_vldi(0);
  3522. __m128 acc_2 = __lsx_vldi(0);
  3523. __m128 acc_3 = __lsx_vldi(0);
  3524. // First round without accumulation
  3525. {
  3526. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3527. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3528. // Compute combined scale for the block 0 and 1
  3529. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3530. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[0].qs, 0);
  3531. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3532. __m128i by_0 = __lsx_vld((const __m128i *)y[0].qs, 0);
  3533. bx_0 = __lsx_vsub_b(bx_0, off);
  3534. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3535. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3536. __m128i by_1 = __lsx_vld((const __m128i *)(y[0].qs + 16), 0);
  3537. bx_1 = __lsx_vsub_b(bx_1, off);
  3538. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3539. // Compute combined scale for the block 2 and 3
  3540. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3541. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[1].qs, 0);
  3542. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3543. __m128i by_2 = __lsx_vld((const __m128i *)y[1].qs, 0);
  3544. bx_2 = __lsx_vsub_b(bx_2, off);
  3545. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3546. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3547. __m128i by_3 = __lsx_vld((const __m128i *)(y[1].qs + 16), 0);
  3548. bx_3 = __lsx_vsub_b(bx_3, off);
  3549. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3550. // Convert int32_t to float
  3551. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3552. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3553. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3554. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3555. // Apply the scale
  3556. acc_0 = __lsx_vfmul_s( d_0_1, p0 );
  3557. acc_1 = __lsx_vfmul_s( d_0_1, p1 );
  3558. acc_2 = __lsx_vfmul_s( d_2_3, p2 );
  3559. acc_3 = __lsx_vfmul_s( d_2_3, p3 );
  3560. }
  3561. assert(nb % 2 == 0); // TODO: handle odd nb
  3562. // Main loop
  3563. for (int i = 2; i < nb; i+=2) {
  3564. // Compute combined scale for the block 0 and 1
  3565. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3566. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[i].qs, 0);
  3567. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3568. __m128i by_0 = __lsx_vld((const __m128i *)y[i].qs, 0);
  3569. bx_0 = __lsx_vsub_b(bx_0, off);
  3570. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3571. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3572. __m128i by_1 = __lsx_vld((const __m128i *)(y[i].qs + 16), 0);
  3573. bx_1 = __lsx_vsub_b(bx_1, off);
  3574. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3575. //_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3576. //_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3577. // Compute combined scale for the block 2 and 3
  3578. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3579. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[i + 1].qs, 0);
  3580. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3581. __m128i by_2 = __lsx_vld((const __m128i *)y[i + 1].qs, 0);
  3582. bx_2 = __lsx_vsub_b(bx_2, off);
  3583. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3584. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3585. __m128i by_3 = __lsx_vld((const __m128i *)(y[i + 1].qs + 16), 0);
  3586. bx_3 = __lsx_vsub_b(bx_3, off);
  3587. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3588. // Convert int32_t to float
  3589. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3590. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3591. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3592. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3593. // Apply the scale
  3594. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3595. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3596. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3597. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3598. // Acummulate
  3599. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3600. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3601. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3602. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3603. }
  3604. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3605. #else
  3606. // scalar
  3607. float sumf = 0.0;
  3608. for (int i = 0; i < nb; i++) {
  3609. int sumi = 0;
  3610. for (int j = 0; j < qk/2; ++j) {
  3611. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3612. const int v1 = (x[i].qs[j] >> 4) - 8;
  3613. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3614. }
  3615. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3616. }
  3617. *s = sumf;
  3618. #endif
  3619. }
  3620. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3621. const int qk = QK8_1;
  3622. const int nb = n / qk;
  3623. assert(n % qk == 0);
  3624. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3625. assert((nrc == 2) || (nrc == 1));
  3626. #else
  3627. assert(nrc == 1);
  3628. #endif
  3629. UNUSED(nrc);
  3630. UNUSED(bx);
  3631. UNUSED(by);
  3632. UNUSED(bs);
  3633. const block_q4_1 * restrict x = vx;
  3634. const block_q8_1 * restrict y = vy;
  3635. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3636. if (nrc == 2) {
  3637. const block_q4_1 * restrict vx0 = vx;
  3638. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3639. const block_q8_1 * restrict vy0 = vy;
  3640. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3641. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3642. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3643. for (int i = 0; i < nb; i++) {
  3644. const block_q4_1 * restrict b_x0 = &vx0[i];
  3645. const block_q4_1 * restrict b_x1 = &vx1[i];
  3646. const block_q8_1 * restrict b_y0 = &vy0[i];
  3647. const block_q8_1 * restrict b_y1 = &vy1[i];
  3648. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3649. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3650. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3651. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3652. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3653. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3654. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3655. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3656. // 4-bit -> 8-bit
  3657. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3658. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3659. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3660. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3661. // load y
  3662. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3663. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3664. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3665. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3666. // mmla into int32x4_t
  3667. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3668. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3669. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3670. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3671. float32x4_t scale = vld1q_f32(_scale);
  3672. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3673. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3674. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3675. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3676. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3677. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3678. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3679. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3680. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3681. l1, r1)), l2, r2)), l3, r3))), scale);
  3682. }
  3683. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3684. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3685. sumv2 = vaddq_f32(sumv2, summs0);
  3686. vst1_f32(s, vget_low_f32(sumv2));
  3687. vst1_f32(s + bs, vget_high_f32(sumv2));
  3688. return;
  3689. }
  3690. #endif
  3691. // TODO: add WASM SIMD
  3692. #if defined(__ARM_NEON)
  3693. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3694. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3695. float summs = 0;
  3696. assert(nb % 2 == 0); // TODO: handle odd nb
  3697. for (int i = 0; i < nb; i += 2) {
  3698. const block_q4_1 * restrict x0 = &x[i + 0];
  3699. const block_q4_1 * restrict x1 = &x[i + 1];
  3700. const block_q8_1 * restrict y0 = &y[i + 0];
  3701. const block_q8_1 * restrict y1 = &y[i + 1];
  3702. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3703. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3704. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3705. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3706. // 4-bit -> 8-bit
  3707. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3708. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3709. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3710. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3711. // load y
  3712. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3713. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3714. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3715. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3716. // dot product into int32x4_t
  3717. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3718. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3719. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3720. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3721. }
  3722. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3723. #elif defined(__AVX2__) || defined(__AVX__)
  3724. // Initialize accumulator with zeros
  3725. __m256 acc = _mm256_setzero_ps();
  3726. float summs = 0;
  3727. // Main loop
  3728. for (int i = 0; i < nb; ++i) {
  3729. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3730. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3731. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3732. const __m256 d0v = _mm256_set1_ps( d0 );
  3733. const __m256 d1v = _mm256_set1_ps( d1 );
  3734. // Compute combined scales
  3735. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3736. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3737. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3738. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3739. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3740. // Accumulate d0*d1*x*y
  3741. #if defined(__AVX2__)
  3742. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3743. #else
  3744. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3745. #endif
  3746. }
  3747. *s = hsum_float_8(acc) + summs;
  3748. #elif defined(__riscv_v_intrinsic)
  3749. float sumf = 0.0;
  3750. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3751. for (int i = 0; i < nb; i++) {
  3752. // load elements
  3753. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3754. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3755. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3756. // mask and store lower part of x, and then upper part
  3757. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3758. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3759. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3760. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3761. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3762. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3763. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3764. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3765. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3766. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3767. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3768. }
  3769. *s = sumf;
  3770. #elif defined(__POWER9_VECTOR__)
  3771. const vector signed char lowMask = vec_splats((signed char)0xF);
  3772. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3773. vector float vsumf0 = vec_splats(0.0f);
  3774. #pragma GCC unroll 4
  3775. for (int i = 0; i < nb; i++) {
  3776. __builtin_prefetch(x[i].qs, 0, 1);
  3777. __builtin_prefetch(y[i].qs, 0, 1);
  3778. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3779. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3780. vector float vd = vec_mul(vxd, vyd);
  3781. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  3782. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f};
  3783. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3784. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3785. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3786. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3787. vector signed char q4x0 = vec_and(qxs, lowMask);
  3788. vector signed char q4x1 = vec_sr(qxs, v4);
  3789. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3790. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3791. qv0 = vec_add(qv0, qv1);
  3792. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3793. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3794. }
  3795. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3796. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3797. *s = vec_extract(vsumf0, 0);
  3798. #elif defined(__loongarch_asx)
  3799. // Initialize accumulator with zeros
  3800. __m256 acc = (__m256)__lasx_xvldi(0);
  3801. float summs = 0;
  3802. // Main loop
  3803. for (int i = 0; i < nb; ++i) {
  3804. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3805. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3806. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3807. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  3808. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  3809. // Compute combined scales
  3810. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  3811. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3812. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3813. const __m256i qy = __lasx_xvld( (const __m256i *)y[i].qs, 0);
  3814. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3815. // Accumulate d0*d1*x*y
  3816. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  3817. }
  3818. *s = hsum_float_8(acc) + summs;
  3819. #else
  3820. // scalar
  3821. float sumf = 0.0;
  3822. for (int i = 0; i < nb; i++) {
  3823. int sumi = 0;
  3824. for (int j = 0; j < qk/2; ++j) {
  3825. const int v0 = (x[i].qs[j] & 0x0F);
  3826. const int v1 = (x[i].qs[j] >> 4);
  3827. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3828. }
  3829. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3830. }
  3831. *s = sumf;
  3832. #endif
  3833. }
  3834. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3835. const int qk = QK8_0;
  3836. const int nb = n / qk;
  3837. assert(n % qk == 0);
  3838. assert(qk == QK5_0);
  3839. assert(nrc == 1);
  3840. UNUSED(nrc);
  3841. UNUSED(bx);
  3842. UNUSED(by);
  3843. UNUSED(bs);
  3844. const block_q5_0 * restrict x = vx;
  3845. const block_q8_0 * restrict y = vy;
  3846. #if defined(__ARM_NEON)
  3847. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3848. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3849. uint32_t qh0;
  3850. uint32_t qh1;
  3851. uint64_t tmp0[4];
  3852. uint64_t tmp1[4];
  3853. assert(nb % 2 == 0); // TODO: handle odd nb
  3854. for (int i = 0; i < nb; i += 2) {
  3855. const block_q5_0 * restrict x0 = &x[i];
  3856. const block_q5_0 * restrict x1 = &x[i + 1];
  3857. const block_q8_0 * restrict y0 = &y[i];
  3858. const block_q8_0 * restrict y1 = &y[i + 1];
  3859. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3860. // extract the 5th bit via lookup table ((!b) << 4)
  3861. memcpy(&qh0, x0->qh, sizeof(qh0));
  3862. memcpy(&qh1, x1->qh, sizeof(qh1));
  3863. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3864. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3865. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3866. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3867. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3868. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3869. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3870. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3871. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3872. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3873. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3874. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3875. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3876. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3877. // 4-bit -> 8-bit
  3878. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3879. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3880. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3881. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3882. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3883. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3884. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3885. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3886. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3887. // load y
  3888. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3889. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3890. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3891. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3892. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3893. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3894. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3895. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3896. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3897. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3898. }
  3899. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3900. #elif defined(__wasm_simd128__)
  3901. v128_t sumv = wasm_f32x4_splat(0.0f);
  3902. uint32_t qh;
  3903. uint64_t tmp[4];
  3904. // TODO: check if unrolling this is better
  3905. for (int i = 0; i < nb; ++i) {
  3906. const block_q5_0 * restrict x0 = &x[i];
  3907. const block_q8_0 * restrict y0 = &y[i];
  3908. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3909. // extract the 5th bit
  3910. memcpy(&qh, x0->qh, sizeof(qh));
  3911. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3912. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3913. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3914. tmp[3] = table_b2b_1[(qh >> 24) ];
  3915. const v128_t qhl = wasm_v128_load(tmp + 0);
  3916. const v128_t qhh = wasm_v128_load(tmp + 2);
  3917. const v128_t v0 = wasm_v128_load(x0->qs);
  3918. // 4-bit -> 8-bit
  3919. const v128_t v0l = wasm_v128_and (v0, m4b);
  3920. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3921. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3922. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3923. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3924. // load y
  3925. const v128_t v1l = wasm_v128_load(y0->qs);
  3926. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3927. // int8x16 -> int16x8
  3928. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3929. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3930. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3931. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3932. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3933. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3934. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3935. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3936. // dot product
  3937. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3938. wasm_i32x4_add(
  3939. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3940. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3941. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3942. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3943. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3944. }
  3945. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3946. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3947. #elif defined(__AVX2__)
  3948. // Initialize accumulator with zeros
  3949. __m256 acc = _mm256_setzero_ps();
  3950. // Main loop
  3951. for (int i = 0; i < nb; i++) {
  3952. /* Compute combined scale for the block */
  3953. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3954. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3955. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3956. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3957. qx = _mm256_or_si256(qx, bxhi);
  3958. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3959. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3960. /* Multiply q with scale and accumulate */
  3961. acc = _mm256_fmadd_ps(d, q, acc);
  3962. }
  3963. *s = hsum_float_8(acc);
  3964. #elif defined(__AVX__)
  3965. // Initialize accumulator with zeros
  3966. __m256 acc = _mm256_setzero_ps();
  3967. __m128i mask = _mm_set1_epi8((char)0xF0);
  3968. // Main loop
  3969. for (int i = 0; i < nb; i++) {
  3970. /* Compute combined scale for the block */
  3971. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3972. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3973. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3974. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3975. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3976. bxhil = _mm_andnot_si128(bxhil, mask);
  3977. bxhih = _mm_andnot_si128(bxhih, mask);
  3978. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3979. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3980. bxl = _mm_or_si128(bxl, bxhil);
  3981. bxh = _mm_or_si128(bxh, bxhih);
  3982. bx_0 = MM256_SET_M128I(bxh, bxl);
  3983. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3984. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3985. /* Multiply q with scale and accumulate */
  3986. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3987. }
  3988. *s = hsum_float_8(acc);
  3989. #elif defined(__riscv_v_intrinsic)
  3990. float sumf = 0.0;
  3991. uint32_t qh;
  3992. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3993. // These temporary registers are for masking and shift operations
  3994. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3995. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3996. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3997. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3998. for (int i = 0; i < nb; i++) {
  3999. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4000. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4001. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4002. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4003. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4004. // ((qh & (1u << (j + 16))) >> (j + 12));
  4005. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4006. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4007. // narrowing
  4008. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4009. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4010. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4011. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4012. // load
  4013. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4014. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4015. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4016. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4017. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4018. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4019. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4020. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4021. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4022. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4023. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4024. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4025. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4026. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4027. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4028. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4029. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4030. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4031. }
  4032. *s = sumf;
  4033. #elif defined(__POWER9_VECTOR__)
  4034. const vector signed char lowMask = vec_splats((signed char)0xF);
  4035. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4036. vector float vsumf0 = vec_splats(0.0f);
  4037. #pragma GCC unroll 4
  4038. for (int i = 0; i < nb; ++i) {
  4039. __builtin_prefetch(x[i].qs, 0, 1);
  4040. __builtin_prefetch(y[i].qs, 0, 1);
  4041. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4042. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4043. vector float vd = vec_mul(vxd, vyd);
  4044. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])};
  4045. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])};
  4046. vector signed char qh0 = (vector signed char)aux64x2_0;
  4047. vector signed char qh1 = (vector signed char)aux64x2_1;
  4048. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4049. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4050. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4051. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4052. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4053. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4054. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4055. qv0 = vec_add(qv0, qv1);
  4056. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4057. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4058. }
  4059. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4060. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4061. *s = vec_extract(vsumf0, 0);
  4062. #elif defined(__loongarch_asx)
  4063. // Initialize accumulator with zeros
  4064. __m256 acc = (__m256)__lasx_xvldi(0);
  4065. // Main loop
  4066. for (int i = 0; i < nb; i++) {
  4067. /* Compute combined scale for the block */
  4068. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); //FIXME
  4069. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4070. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4071. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4072. qx = __lasx_xvor_v(qx, bxhi);
  4073. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4074. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4075. /* Multiply q with scale and accumulate */
  4076. acc = __lasx_xvfmadd_s(d, q, acc);
  4077. }
  4078. *s = hsum_float_8(acc);
  4079. #else
  4080. // scalar
  4081. float sumf = 0.0;
  4082. for (int i = 0; i < nb; i++) {
  4083. uint32_t qh;
  4084. memcpy(&qh, x[i].qh, sizeof(qh));
  4085. int sumi = 0;
  4086. for (int j = 0; j < qk/2; ++j) {
  4087. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4088. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4089. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4090. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4091. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4092. }
  4093. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4094. }
  4095. *s = sumf;
  4096. #endif
  4097. }
  4098. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4099. const int qk = QK8_1;
  4100. const int nb = n / qk;
  4101. assert(n % qk == 0);
  4102. assert(qk == QK5_1);
  4103. assert(nrc == 1);
  4104. UNUSED(nrc);
  4105. UNUSED(bx);
  4106. UNUSED(by);
  4107. UNUSED(bs);
  4108. const block_q5_1 * restrict x = vx;
  4109. const block_q8_1 * restrict y = vy;
  4110. #if defined(__ARM_NEON)
  4111. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4112. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4113. float summs0 = 0.0f;
  4114. float summs1 = 0.0f;
  4115. uint32_t qh0;
  4116. uint32_t qh1;
  4117. uint64_t tmp0[4];
  4118. uint64_t tmp1[4];
  4119. assert(nb % 2 == 0); // TODO: handle odd nb
  4120. for (int i = 0; i < nb; i += 2) {
  4121. const block_q5_1 * restrict x0 = &x[i];
  4122. const block_q5_1 * restrict x1 = &x[i + 1];
  4123. const block_q8_1 * restrict y0 = &y[i];
  4124. const block_q8_1 * restrict y1 = &y[i + 1];
  4125. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4126. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4127. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4128. // extract the 5th bit via lookup table ((b) << 4)
  4129. memcpy(&qh0, x0->qh, sizeof(qh0));
  4130. memcpy(&qh1, x1->qh, sizeof(qh1));
  4131. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4132. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4133. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4134. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4135. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4136. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4137. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4138. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4139. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4140. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4141. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4142. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4143. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4144. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4145. // 4-bit -> 8-bit
  4146. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4147. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4148. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4149. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4150. // add high bit
  4151. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4152. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4153. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4154. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4155. // load y
  4156. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4157. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4158. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4159. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4160. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4161. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4162. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4163. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4164. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4165. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4166. }
  4167. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4168. #elif defined(__wasm_simd128__)
  4169. v128_t sumv = wasm_f32x4_splat(0.0f);
  4170. float summs = 0.0f;
  4171. uint32_t qh;
  4172. uint64_t tmp[4];
  4173. // TODO: check if unrolling this is better
  4174. for (int i = 0; i < nb; ++i) {
  4175. const block_q5_1 * restrict x0 = &x[i];
  4176. const block_q8_1 * restrict y0 = &y[i];
  4177. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4178. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4179. // extract the 5th bit
  4180. memcpy(&qh, x0->qh, sizeof(qh));
  4181. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4182. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4183. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4184. tmp[3] = table_b2b_0[(qh >> 24) ];
  4185. const v128_t qhl = wasm_v128_load(tmp + 0);
  4186. const v128_t qhh = wasm_v128_load(tmp + 2);
  4187. const v128_t v0 = wasm_v128_load(x0->qs);
  4188. // 4-bit -> 8-bit
  4189. const v128_t v0l = wasm_v128_and (v0, m4b);
  4190. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4191. // add high bit
  4192. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4193. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4194. // load y
  4195. const v128_t v1l = wasm_v128_load(y0->qs);
  4196. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4197. // int8x16 -> int16x8
  4198. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4199. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4200. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4201. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4202. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4203. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4204. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4205. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4206. // dot product
  4207. sumv = wasm_f32x4_add(sumv,
  4208. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4209. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4210. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4211. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4212. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4213. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4214. }
  4215. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4216. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4217. #elif defined(__AVX2__)
  4218. // Initialize accumulator with zeros
  4219. __m256 acc = _mm256_setzero_ps();
  4220. float summs = 0.0f;
  4221. // Main loop
  4222. for (int i = 0; i < nb; i++) {
  4223. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4224. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4225. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4226. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4227. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4228. qx = _mm256_or_si256(qx, bxhi);
  4229. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4230. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4231. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4232. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4233. }
  4234. *s = hsum_float_8(acc) + summs;
  4235. #elif defined(__AVX__)
  4236. // Initialize accumulator with zeros
  4237. __m256 acc = _mm256_setzero_ps();
  4238. __m128i mask = _mm_set1_epi8(0x10);
  4239. float summs = 0.0f;
  4240. // Main loop
  4241. for (int i = 0; i < nb; i++) {
  4242. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4243. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4244. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4245. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4246. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4247. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4248. bxhil = _mm_and_si128(bxhil, mask);
  4249. bxhih = _mm_and_si128(bxhih, mask);
  4250. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4251. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4252. bxl = _mm_or_si128(bxl, bxhil);
  4253. bxh = _mm_or_si128(bxh, bxhih);
  4254. bx_0 = MM256_SET_M128I(bxh, bxl);
  4255. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4256. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4257. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4258. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4259. }
  4260. *s = hsum_float_8(acc) + summs;
  4261. #elif defined(__riscv_v_intrinsic)
  4262. float sumf = 0.0;
  4263. uint32_t qh;
  4264. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4265. // temporary registers for shift operations
  4266. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4267. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4268. for (int i = 0; i < nb; i++) {
  4269. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4270. // load qh
  4271. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4272. // ((qh >> (j + 0)) << 4) & 0x10;
  4273. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4274. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4275. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4276. // ((qh >> (j + 12)) ) & 0x10;
  4277. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4278. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4279. // narrowing
  4280. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4281. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4282. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4283. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4284. // load
  4285. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4286. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4287. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4288. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4289. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4290. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4291. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4292. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4293. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4294. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4295. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4296. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4297. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4298. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4299. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4300. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4301. }
  4302. *s = sumf;
  4303. #elif defined(__POWER9_VECTOR__)
  4304. const vector signed char lowMask = vec_splats((signed char)0xF);
  4305. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4306. vector float vsumf0 = vec_splats(0.0f);
  4307. #pragma GCC unroll 4
  4308. for (int i = 0; i < nb; ++i) {
  4309. __builtin_prefetch(x[i].qs, 0, 1);
  4310. __builtin_prefetch(y[i].qs, 0, 1);
  4311. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4312. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4313. vector float vd = vec_mul(vxd, vyd);
  4314. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  4315. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f};
  4316. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4317. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])};
  4318. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])};
  4319. vector signed char qh0 = (vector signed char)aux64x2_0;
  4320. vector signed char qh1 = (vector signed char)aux64x2_1;
  4321. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4322. vector signed char q5x0 = vec_or(vec_and(qxs, lowMask), qh0);
  4323. vector signed char q5x1 = vec_or(vec_sr(qxs, v4), qh1);
  4324. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4325. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4326. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4327. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4328. qv0 = vec_add(qv0, qv1);
  4329. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4330. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4331. }
  4332. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4333. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4334. *s = vec_extract(vsumf0, 0);
  4335. #elif defined(__loongarch_asx)
  4336. // Initialize accumulator with zeros
  4337. __m256 acc = (__m256)__lasx_xvldi(0);
  4338. float summs = 0.0f;
  4339. // Main loop
  4340. for (int i = 0; i < nb; i++) {
  4341. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d));
  4342. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4343. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4344. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4345. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4346. qx = __lasx_xvor_v(qx, bxhi);
  4347. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[i].d));
  4348. const __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4349. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4350. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4351. }
  4352. *s = hsum_float_8(acc) + summs;
  4353. #else
  4354. // scalar
  4355. float sumf = 0.0;
  4356. for (int i = 0; i < nb; i++) {
  4357. uint32_t qh;
  4358. memcpy(&qh, x[i].qh, sizeof(qh));
  4359. int sumi = 0;
  4360. for (int j = 0; j < qk/2; ++j) {
  4361. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4362. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4363. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4364. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4365. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4366. }
  4367. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4368. }
  4369. *s = sumf;
  4370. #endif
  4371. }
  4372. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4373. const int qk = QK8_0;
  4374. const int nb = n / qk;
  4375. assert(n % qk == 0);
  4376. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4377. assert((nrc == 2) || (nrc == 1));
  4378. #else
  4379. assert(nrc == 1);
  4380. #endif
  4381. UNUSED(nrc);
  4382. UNUSED(bx);
  4383. UNUSED(by);
  4384. UNUSED(bs);
  4385. const block_q8_0 * restrict x = vx;
  4386. const block_q8_0 * restrict y = vy;
  4387. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4388. if (nrc == 2) {
  4389. const block_q8_0 * restrict vx0 = vx;
  4390. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4391. const block_q8_0 * restrict vy0 = vy;
  4392. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4393. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4394. for (int i = 0; i < nb; i++) {
  4395. const block_q8_0 * restrict b_x0 = &vx0[i];
  4396. const block_q8_0 * restrict b_y0 = &vy0[i];
  4397. const block_q8_0 * restrict b_x1 = &vx1[i];
  4398. const block_q8_0 * restrict b_y1 = &vy1[i];
  4399. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4400. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4401. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4402. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4403. // load y
  4404. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4405. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4406. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4407. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4408. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4409. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4410. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4411. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4412. float32x4_t scale = vld1q_f32(_scale);
  4413. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4414. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4415. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4416. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4417. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4418. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4419. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4420. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4421. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4422. l1, r1)), l2, r2)), l3, r3))), scale);
  4423. }
  4424. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4425. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4426. vst1_f32(s, vget_low_f32(sumv2));
  4427. vst1_f32(s + bs, vget_high_f32(sumv2));
  4428. return;
  4429. }
  4430. #endif
  4431. #if defined(__ARM_FEATURE_SVE)
  4432. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4433. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4434. assert(nb % 2 == 0); // TODO: handle odd nb
  4435. for (int i = 0; i < nb; i += 2) {
  4436. const block_q8_0 * restrict x0 = &x[i + 0];
  4437. const block_q8_0 * restrict x1 = &x[i + 1];
  4438. const block_q8_0 * restrict y0 = &y[i + 0];
  4439. const block_q8_0 * restrict y1 = &y[i + 1];
  4440. // load x
  4441. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4442. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4443. // load y
  4444. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4445. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4446. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4447. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4448. }
  4449. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4450. #elif defined(__ARM_NEON)
  4451. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4452. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4453. assert(nb % 2 == 0); // TODO: handle odd nb
  4454. for (int i = 0; i < nb; i += 2) {
  4455. const block_q8_0 * restrict x0 = &x[i + 0];
  4456. const block_q8_0 * restrict x1 = &x[i + 1];
  4457. const block_q8_0 * restrict y0 = &y[i + 0];
  4458. const block_q8_0 * restrict y1 = &y[i + 1];
  4459. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4460. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4461. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4462. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4463. // load y
  4464. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4465. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4466. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4467. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4468. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4469. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4470. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4471. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4472. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4473. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4474. }
  4475. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4476. #elif defined(__AVX2__) || defined(__AVX__)
  4477. // Initialize accumulator with zeros
  4478. __m256 acc = _mm256_setzero_ps();
  4479. // Main loop
  4480. for (int i = 0; i < nb; ++i) {
  4481. // Compute combined scale for the block
  4482. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4483. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4484. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4485. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4486. // Multiply q with scale and accumulate
  4487. #if defined(__AVX2__)
  4488. acc = _mm256_fmadd_ps( d, q, acc );
  4489. #else
  4490. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4491. #endif
  4492. }
  4493. *s = hsum_float_8(acc);
  4494. #elif defined(__riscv_v_intrinsic)
  4495. float sumf = 0.0;
  4496. size_t vl = __riscv_vsetvl_e8m1(qk);
  4497. for (int i = 0; i < nb; i++) {
  4498. // load elements
  4499. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4500. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4501. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4502. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4503. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4504. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4505. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4506. }
  4507. *s = sumf;
  4508. #elif defined(__POWER9_VECTOR__)
  4509. vector float vsumf0 = vec_splats(0.0f);
  4510. #pragma GCC unroll 4
  4511. for (int i = 0; i < nb; i++) {
  4512. __builtin_prefetch(x[i].qs, 0, 1);
  4513. __builtin_prefetch(y[i].qs, 0, 1);
  4514. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4515. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4516. vector float vd = vec_mul(vxd, vyd);
  4517. vector signed char q8x0 = vec_xl( 0, x[i].qs);
  4518. vector signed char q8x1 = vec_xl(16, x[i].qs);
  4519. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4520. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4521. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4522. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4523. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4524. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4525. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackh(qv1));
  4526. vector signed int vsumi1 = vec_add(vec_unpackl(qv0), vec_unpackl(qv1));
  4527. vector signed int vsumi2 = vec_add(vec_unpackh(qv2), vec_unpackh(qv3));
  4528. vector signed int vsumi3 = vec_add(vec_unpackl(qv2), vec_unpackl(qv3));
  4529. vsumi0 = vec_add(vsumi0, vsumi2);
  4530. vsumi1 = vec_add(vsumi1, vsumi3);
  4531. vsumi0 = vec_add(vsumi0, vsumi1);
  4532. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4533. }
  4534. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4535. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4536. *s = vec_extract(vsumf0, 0);
  4537. #elif defined(__loongarch_asx)
  4538. // Initialize accumulator with zeros
  4539. __m256 acc = (__m256)__lasx_xvldi(0);
  4540. // Main loop
  4541. for (int i = 0; i < nb; ++i) {
  4542. // Compute combined scale for the block
  4543. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4544. __m256i qx = __lasx_xvld((const __m256i *)x[i].qs, 0);
  4545. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4546. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4547. // Multiply q with scale and accumulate
  4548. acc = __lasx_xvfmadd_s( d, q, acc );
  4549. }
  4550. *s = hsum_float_8(acc);
  4551. #else
  4552. // scalar
  4553. float sumf = 0.0;
  4554. for (int i = 0; i < nb; i++) {
  4555. int sumi = 0;
  4556. for (int j = 0; j < qk; j++) {
  4557. sumi += x[i].qs[j]*y[i].qs[j];
  4558. }
  4559. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4560. }
  4561. *s = sumf;
  4562. #endif
  4563. }
  4564. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4565. assert(nrc == 1);
  4566. UNUSED(nrc);
  4567. UNUSED(bx);
  4568. UNUSED(by);
  4569. UNUSED(bs);
  4570. const block_q2_K * restrict x = vx;
  4571. const block_q8_K * restrict y = vy;
  4572. const int nb = n / QK_K;
  4573. #ifdef __ARM_NEON
  4574. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4575. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4576. const int32x4_t vzero = vdupq_n_s32(0);
  4577. ggml_int8x16x2_t q2bytes;
  4578. uint8_t aux[16];
  4579. float sum = 0;
  4580. for (int i = 0; i < nb; ++i) {
  4581. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4582. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4583. const uint8_t * restrict q2 = x[i].qs;
  4584. const int8_t * restrict q8 = y[i].qs;
  4585. const uint8_t * restrict sc = x[i].scales;
  4586. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4587. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4588. vst1q_u8(aux, scales);
  4589. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4590. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4591. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4592. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4593. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4594. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4595. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4596. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4597. int isum = 0;
  4598. int is = 0;
  4599. // We use this macro instead of a function call because for some reason
  4600. // the code runs 2-3% slower, even if the function is declared inline
  4601. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4602. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4603. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4604. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4605. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4606. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4607. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4608. MULTIPLY_ACCUM_WITH_SCALE((index));
  4609. for (int j = 0; j < QK_K/128; ++j) {
  4610. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4611. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4612. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4613. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4614. MULTIPLY_ACCUM_WITH_SCALE(0);
  4615. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4616. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4617. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4618. is += 8;
  4619. }
  4620. sum += d * isum;
  4621. }
  4622. *s = sum;
  4623. #elif defined __AVX2__
  4624. const __m256i m3 = _mm256_set1_epi8(3);
  4625. const __m128i m4 = _mm_set1_epi8(0xF);
  4626. __m256 acc = _mm256_setzero_ps();
  4627. for (int i = 0; i < nb; ++i) {
  4628. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4629. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4630. const uint8_t * restrict q2 = x[i].qs;
  4631. const int8_t * restrict q8 = y[i].qs;
  4632. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4633. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4634. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4635. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4636. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4637. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4638. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4639. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4640. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4641. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4642. __m256i sumi = _mm256_setzero_si256();
  4643. for (int j = 0; j < QK_K/128; ++j) {
  4644. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4645. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4646. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4647. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4648. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4649. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4650. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4651. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4652. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4653. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4654. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4655. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4656. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4657. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4658. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4659. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4660. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4661. p0 = _mm256_add_epi32(p0, p1);
  4662. p2 = _mm256_add_epi32(p2, p3);
  4663. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4664. }
  4665. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4666. }
  4667. *s = hsum_float_8(acc);
  4668. #elif defined __AVX__
  4669. const __m128i m3 = _mm_set1_epi8(0x3);
  4670. const __m128i m4 = _mm_set1_epi8(0xF);
  4671. const __m128i m2 = _mm_set1_epi8(0x2);
  4672. __m256 acc = _mm256_setzero_ps();
  4673. for (int i = 0; i < nb; ++i) {
  4674. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4675. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4676. const uint8_t * restrict q2 = x[i].qs;
  4677. const int8_t * restrict q8 = y[i].qs;
  4678. // load mins and scales from block_q2_K.scales[QK_K/16]
  4679. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4680. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4681. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4682. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4683. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4684. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4685. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4686. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4687. // sumf += -dmin * summs in 32bits*8
  4688. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4689. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4690. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4691. const __m128i scales[2] = { scales_0, scales_1 };
  4692. __m128i sumi_0 = _mm_setzero_si128();
  4693. __m128i sumi_1 = _mm_setzero_si128();
  4694. for (int j = 0; j < QK_K/128; ++j) {
  4695. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4696. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4697. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4698. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4699. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4700. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4701. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4702. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4703. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4704. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4705. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4706. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4707. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4708. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4709. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4710. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4711. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4712. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4713. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4714. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4715. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4716. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4717. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4718. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4719. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4720. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4721. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4722. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4723. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4724. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4725. __m128i shuffle = _mm_set1_epi16(0x0100);
  4726. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4727. shuffle = _mm_add_epi16(shuffle, m2);
  4728. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4729. shuffle = _mm_add_epi16(shuffle, m2);
  4730. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4731. shuffle = _mm_add_epi16(shuffle, m2);
  4732. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4733. shuffle = _mm_add_epi16(shuffle, m2);
  4734. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4735. shuffle = _mm_add_epi16(shuffle, m2);
  4736. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4737. shuffle = _mm_add_epi16(shuffle, m2);
  4738. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4739. shuffle = _mm_add_epi16(shuffle, m2);
  4740. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4741. p0 = _mm_add_epi32(p0, p1);
  4742. p2 = _mm_add_epi32(p2, p3);
  4743. p4 = _mm_add_epi32(p4, p5);
  4744. p6 = _mm_add_epi32(p6, p7);
  4745. // isum in 32bits*4*2
  4746. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4747. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4748. }
  4749. // sumf += dall * isum - dmin * summs in 32bits
  4750. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4751. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4752. }
  4753. *s = hsum_float_8(acc);
  4754. #elif defined __riscv_v_intrinsic
  4755. float sumf = 0;
  4756. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4757. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4758. for (int i = 0; i < nb; ++i) {
  4759. const uint8_t * q2 = x[i].qs;
  4760. const int8_t * q8 = y[i].qs;
  4761. const uint8_t * sc = x[i].scales;
  4762. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4763. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4764. size_t vl = 16;
  4765. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4766. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4767. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4768. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4769. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4770. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4771. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4772. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4773. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4774. vl = 32;
  4775. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4776. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4777. uint8_t is=0;
  4778. int isum=0;
  4779. for (int j = 0; j < QK_K/128; ++j) {
  4780. // load Q2
  4781. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4782. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4783. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4784. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4785. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4786. // duplicate scale elements for product
  4787. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4788. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4789. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4790. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4791. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4792. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4793. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4794. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4795. // load Q8
  4796. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4797. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4798. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4799. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4800. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4801. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4802. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4803. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4804. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4805. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4806. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4807. q2+=32; q8+=128; is=8;
  4808. }
  4809. sumf += dall * isum;
  4810. }
  4811. *s = sumf;
  4812. #elif defined(__POWER9_VECTOR__)
  4813. const vector signed char lowMask = vec_splats((signed char)0x3);
  4814. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4815. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4816. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4817. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4818. vector float vsumf0 = vec_splats(0.0f);
  4819. vector float vsumf1 = vec_splats(0.0f);
  4820. vector float vsumf2 = vec_splats(0.0f);
  4821. vector float vsumf3 = vec_splats(0.0f);
  4822. for (int i = 0; i < nb; ++i) {
  4823. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4824. vector float vyd = vec_splats(y[i].d);
  4825. vector float vd = vec_mul(vxd, vyd);
  4826. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4827. vector float vdmin = vec_mul(vxmin, vyd);
  4828. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4829. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4830. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  4831. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4832. q2xmins = vec_sr(q2xmins, v4);
  4833. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  4834. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  4835. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4836. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4837. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  4838. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  4839. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4840. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4841. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4842. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4843. vector signed int vsumi0 = vec_splats((int32_t)0);
  4844. vector signed int vsumi1 = vec_splats((int32_t)0);
  4845. vector signed int vsumi2 = vec_splats((int32_t)0);
  4846. vector signed int vsumi3 = vec_splats((int32_t)0);
  4847. vector signed int vsumi4 = vec_splats((int32_t)0);
  4848. vector signed int vsumi5 = vec_splats((int32_t)0);
  4849. vector signed int vsumi6 = vec_splats((int32_t)0);
  4850. vector signed int vsumi7 = vec_splats((int32_t)0);
  4851. for (int j = 0; j < QK_K/128; ++j) {
  4852. __builtin_prefetch(q2, 0, 1);
  4853. __builtin_prefetch(q8, 0, 1);
  4854. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  4855. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  4856. q2 += 32;
  4857. vector signed char q2x00 = vec_and(qxs0, lowMask);
  4858. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4859. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4860. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4861. vector signed char q2x10 = vec_and(qxs1, lowMask);
  4862. vector signed char q2x11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4863. vector signed char q2x12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4864. vector signed char q2x13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4865. vector signed char q8y00 = vec_xl( 0, q8);
  4866. vector signed char q8y10 = vec_xl( 16, q8);
  4867. vector signed char q8y01 = vec_xl( 32, q8);
  4868. vector signed char q8y11 = vec_xl( 48, q8);
  4869. vector signed char q8y02 = vec_xl( 64, q8);
  4870. vector signed char q8y12 = vec_xl( 80, q8);
  4871. vector signed char q8y03 = vec_xl( 96, q8);
  4872. vector signed char q8y13 = vec_xl(112, q8);
  4873. q8 += 128;
  4874. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  4875. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  4876. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  4877. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  4878. vector signed short qv4 = vec_add(vec_mule(q2x10, q8y10), vec_mulo(q2x10, q8y10));
  4879. vector signed short qv5 = vec_add(vec_mule(q2x11, q8y11), vec_mulo(q2x11, q8y11));
  4880. vector signed short qv6 = vec_add(vec_mule(q2x12, q8y12), vec_mulo(q2x12, q8y12));
  4881. vector signed short qv7 = vec_add(vec_mule(q2x13, q8y13), vec_mulo(q2x13, q8y13));
  4882. vector signed short vscales_h = vec_unpackh(vscales);
  4883. vector signed short vs0 = vec_splat(vscales_h, 0);
  4884. vector signed short vs1 = vec_splat(vscales_h, 1);
  4885. vector signed short vs2 = vec_splat(vscales_h, 2);
  4886. vector signed short vs3 = vec_splat(vscales_h, 3);
  4887. vector signed short vs4 = vec_splat(vscales_h, 4);
  4888. vector signed short vs5 = vec_splat(vscales_h, 5);
  4889. vector signed short vs6 = vec_splat(vscales_h, 6);
  4890. vector signed short vs7 = vec_splat(vscales_h, 7);
  4891. vscales = vec_sld(vscales, vscales, 8);
  4892. qv0 = vec_mul(qv0, vs0);
  4893. qv1 = vec_mul(qv1, vs2);
  4894. qv2 = vec_mul(qv2, vs4);
  4895. qv3 = vec_mul(qv3, vs6);
  4896. qv0 = vec_madd(qv4, vs1, qv0);
  4897. qv1 = vec_madd(qv5, vs3, qv1);
  4898. qv2 = vec_madd(qv6, vs5, qv2);
  4899. qv3 = vec_madd(qv7, vs7, qv3);
  4900. vsumi0 = vec_add(vec_unpackh(qv0), vsumi0);
  4901. vsumi1 = vec_add(vec_unpackh(qv1), vsumi1);
  4902. vsumi2 = vec_add(vec_unpackh(qv2), vsumi2);
  4903. vsumi3 = vec_add(vec_unpackh(qv3), vsumi3);
  4904. vsumi4 = vec_add(vec_unpackl(qv0), vsumi4);
  4905. vsumi5 = vec_add(vec_unpackl(qv1), vsumi5);
  4906. vsumi6 = vec_add(vec_unpackl(qv2), vsumi6);
  4907. vsumi7 = vec_add(vec_unpackl(qv3), vsumi7);
  4908. }
  4909. vsumi0 = vec_add(vsumi0, vsumi4);
  4910. vsumi1 = vec_add(vsumi1, vsumi5);
  4911. vsumi2 = vec_add(vsumi2, vsumi6);
  4912. vsumi3 = vec_add(vsumi3, vsumi7);
  4913. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4914. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4915. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4916. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4917. }
  4918. vsumf0 = vec_add(vsumf0, vsumf2);
  4919. vsumf1 = vec_add(vsumf1, vsumf3);
  4920. vsumf0 = vec_add(vsumf0, vsumf1);
  4921. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4922. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4923. *s = vec_extract(vsumf0, 0);
  4924. #elif defined __loongarch_asx
  4925. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4926. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  4927. __m256 acc = (__m256)__lasx_xvldi(0);
  4928. for (int i = 0; i < nb; ++i) {
  4929. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4930. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4931. const uint8_t * restrict q2 = x[i].qs;
  4932. const int8_t * restrict q8 = y[i].qs;
  4933. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  4934. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  4935. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  4936. const __m256i mins = lasx_ext8_16(mins8);
  4937. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  4938. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  4939. const __m256i all_scales = lasx_ext8_16(scales8);
  4940. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4941. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4942. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4943. __m256i sumi = __lasx_xvldi(0);
  4944. for (int j = 0; j < QK_K/128; ++j) {
  4945. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  4946. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4947. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4948. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4949. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4950. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  4951. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  4952. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  4953. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  4954. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  4955. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  4956. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  4957. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  4958. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  4959. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  4960. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  4961. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  4962. p0 = __lasx_xvadd_w(p0, p1);
  4963. p2 = __lasx_xvadd_w(p2, p3);
  4964. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  4965. }
  4966. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  4967. }
  4968. *s = hsum_float_8(acc);
  4969. #else
  4970. float sumf = 0;
  4971. for (int i = 0; i < nb; ++i) {
  4972. const uint8_t * q2 = x[i].qs;
  4973. const int8_t * q8 = y[i].qs;
  4974. const uint8_t * sc = x[i].scales;
  4975. int summs = 0;
  4976. for (int j = 0; j < 16; ++j) {
  4977. summs += y[i].bsums[j] * (sc[j] >> 4);
  4978. }
  4979. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4980. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4981. int isum = 0;
  4982. int is = 0;
  4983. int d;
  4984. for (int k = 0; k < QK_K/128; ++k) {
  4985. int shift = 0;
  4986. for (int j = 0; j < 4; ++j) {
  4987. d = sc[is++] & 0xF;
  4988. int isuml = 0;
  4989. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4990. isum += d * isuml;
  4991. d = sc[is++] & 0xF;
  4992. isuml = 0;
  4993. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4994. isum += d * isuml;
  4995. shift += 2;
  4996. q8 += 32;
  4997. }
  4998. q2 += 32;
  4999. }
  5000. sumf += dall * isum - dmin * summs;
  5001. }
  5002. *s = sumf;
  5003. #endif
  5004. }
  5005. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5006. assert(n % QK_K == 0);
  5007. assert(nrc == 1);
  5008. UNUSED(nrc);
  5009. UNUSED(bx);
  5010. UNUSED(by);
  5011. UNUSED(bs);
  5012. const uint32_t kmask1 = 0x03030303;
  5013. const uint32_t kmask2 = 0x0f0f0f0f;
  5014. const block_q3_K * restrict x = vx;
  5015. const block_q8_K * restrict y = vy;
  5016. const int nb = n / QK_K;
  5017. #ifdef __ARM_NEON
  5018. uint32_t aux[3];
  5019. uint32_t utmp[4];
  5020. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5021. const int32x4_t vzero = vdupq_n_s32(0);
  5022. const uint8x16_t m0 = vdupq_n_u8(1);
  5023. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5024. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5025. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5026. const int8_t m32 = 32;
  5027. ggml_int8x16x4_t q3bytes;
  5028. float sum = 0;
  5029. for (int i = 0; i < nb; ++i) {
  5030. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5031. const uint8_t * restrict q3 = x[i].qs;
  5032. const uint8_t * restrict qh = x[i].hmask;
  5033. const int8_t * restrict q8 = y[i].qs;
  5034. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5035. ggml_uint8x16x4_t q3h;
  5036. int32_t isum = 0;
  5037. // Set up scales
  5038. memcpy(aux, x[i].scales, 12);
  5039. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5040. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5041. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5042. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5043. int8_t * scale = (int8_t *)utmp;
  5044. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5045. for (int j = 0; j < QK_K/128; ++j) {
  5046. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5047. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5048. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5049. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5050. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5051. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5052. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5053. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5054. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5055. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5056. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5057. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5058. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5059. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5060. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5061. scale += 4;
  5062. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5063. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5064. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5065. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5066. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5067. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5068. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5069. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5070. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5071. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5072. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5073. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5074. scale += 4;
  5075. if (j == 0) {
  5076. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5077. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5078. }
  5079. }
  5080. sum += d * isum;
  5081. }
  5082. *s = sum;
  5083. #elif defined __AVX2__
  5084. const __m256i m3 = _mm256_set1_epi8(3);
  5085. const __m256i mone = _mm256_set1_epi8(1);
  5086. const __m128i m32 = _mm_set1_epi8(32);
  5087. __m256 acc = _mm256_setzero_ps();
  5088. uint32_t aux[3];
  5089. for (int i = 0; i < nb; ++i) {
  5090. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5091. const uint8_t * restrict q3 = x[i].qs;
  5092. const int8_t * restrict q8 = y[i].qs;
  5093. // Set up scales
  5094. memcpy(aux, x[i].scales, 12);
  5095. __m128i scales128 = _mm_set_epi32(
  5096. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5097. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5098. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5099. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5100. scales128 = _mm_sub_epi8(scales128, m32);
  5101. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5102. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5103. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5104. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5105. // high bit
  5106. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5107. // integer accumulator
  5108. __m256i sumi = _mm256_setzero_si256();
  5109. int bit = 0;
  5110. int is = 0;
  5111. for (int j = 0; j < QK_K/128; ++j) {
  5112. // load low 2 bits
  5113. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5114. // prepare low and high bits
  5115. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5116. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5117. ++bit;
  5118. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5119. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5120. ++bit;
  5121. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5122. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5123. ++bit;
  5124. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5125. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5126. ++bit;
  5127. // load Q8 quants
  5128. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5129. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5130. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5131. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5132. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5133. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5134. // and 2 if the high bit was set)
  5135. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5136. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5137. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5138. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5139. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5140. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5141. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5142. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5143. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5144. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5145. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5146. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5147. // multiply with scales
  5148. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5149. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5150. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5151. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5152. // accumulate
  5153. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5154. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5155. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5156. }
  5157. // multiply with block scale and accumulate
  5158. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5159. }
  5160. *s = hsum_float_8(acc);
  5161. #elif defined __AVX__
  5162. const __m128i m3 = _mm_set1_epi8(3);
  5163. const __m128i mone = _mm_set1_epi8(1);
  5164. const __m128i m32 = _mm_set1_epi8(32);
  5165. const __m128i m2 = _mm_set1_epi8(2);
  5166. __m256 acc = _mm256_setzero_ps();
  5167. const uint32_t *aux;
  5168. for (int i = 0; i < nb; ++i) {
  5169. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5170. const uint8_t * restrict q3 = x[i].qs;
  5171. const int8_t * restrict q8 = y[i].qs;
  5172. // Set up scales
  5173. aux = (const uint32_t *)x[i].scales;
  5174. __m128i scales128 = _mm_set_epi32(
  5175. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5176. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5177. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5178. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5179. scales128 = _mm_sub_epi8(scales128, m32);
  5180. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5181. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5182. const __m128i scales[2] = { scales_0, scales_1 };
  5183. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5184. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5185. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5186. // integer accumulator
  5187. __m128i sumi_0 = _mm_setzero_si128();
  5188. __m128i sumi_1 = _mm_setzero_si128();
  5189. for (int j = 0; j < QK_K/128; ++j) {
  5190. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5191. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5192. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5193. // prepare low and high bits
  5194. const int bit = j << 2;
  5195. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5196. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5197. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5198. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5199. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5200. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5201. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5202. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5203. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5204. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5205. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5206. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5207. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5208. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5209. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5210. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5211. // load Q8 quants from block_q8_K.qs[QK_K]
  5212. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5213. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5214. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5215. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5216. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5217. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5218. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5219. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5220. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5221. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5222. // and 2 if the high bit was set)
  5223. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5224. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5225. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5226. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5227. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5228. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5229. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5230. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5231. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5232. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5233. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5234. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5235. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5236. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5237. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5238. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5239. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5240. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5241. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5242. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5243. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5244. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5245. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5246. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5247. // multiply with scales
  5248. __m128i shuffle = _mm_set1_epi16(0x0100);
  5249. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5250. shuffle = _mm_add_epi16(shuffle, m2);
  5251. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5252. shuffle = _mm_add_epi16(shuffle, m2);
  5253. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5254. shuffle = _mm_add_epi16(shuffle, m2);
  5255. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5256. shuffle = _mm_add_epi16(shuffle, m2);
  5257. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5258. shuffle = _mm_add_epi16(shuffle, m2);
  5259. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5260. shuffle = _mm_add_epi16(shuffle, m2);
  5261. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5262. shuffle = _mm_add_epi16(shuffle, m2);
  5263. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5264. // accumulate
  5265. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5266. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5267. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5268. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5269. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5270. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5271. }
  5272. // multiply with block scale and accumulate
  5273. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5274. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5275. }
  5276. *s = hsum_float_8(acc);
  5277. #elif defined __riscv_v_intrinsic
  5278. uint32_t aux[3];
  5279. uint32_t utmp[4];
  5280. float sumf = 0;
  5281. for (int i = 0; i < nb; ++i) {
  5282. const uint8_t * restrict q3 = x[i].qs;
  5283. const uint8_t * restrict qh = x[i].hmask;
  5284. const int8_t * restrict q8 = y[i].qs;
  5285. memcpy(aux, x[i].scales, 12);
  5286. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5287. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5288. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5289. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5290. int8_t * scale = (int8_t *)utmp;
  5291. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5292. size_t vl = 32;
  5293. uint8_t m = 1;
  5294. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5295. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5296. int sum_t = 0;
  5297. for (int j = 0; j < QK_K; j += 128) {
  5298. vl = 32;
  5299. // load Q3
  5300. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5301. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5302. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5303. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5304. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5305. // compute mask for subtraction
  5306. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5307. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5308. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5309. m <<= 1;
  5310. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5311. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5312. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5313. m <<= 1;
  5314. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5315. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5316. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5317. m <<= 1;
  5318. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5319. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5320. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5321. m <<= 1;
  5322. // load Q8 and take product with Q3
  5323. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5324. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5325. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5326. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5327. vl = 16;
  5328. // retrieve lane to multiply with scale
  5329. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5330. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5331. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5332. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5333. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5334. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5335. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5336. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5337. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5338. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5339. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5340. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5341. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5342. q3 += 32; q8 += 128; scale += 8;
  5343. }
  5344. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5345. sumf += d*sum_t;
  5346. }
  5347. *s = sumf;
  5348. #elif defined(__POWER9_VECTOR__)
  5349. const vector signed char lowMask = vec_splats((signed char)0x3);
  5350. const vector signed char v1 = vec_splats((signed char)0x1);
  5351. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5352. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5353. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5354. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5355. const vector signed char off = vec_splats((signed char)0x20);
  5356. vector float vsumf0 = vec_splats(0.0f);
  5357. vector float vsumf1 = vec_splats(0.0f);
  5358. vector float vsumf2 = vec_splats(0.0f);
  5359. vector float vsumf3 = vec_splats(0.0f);
  5360. for (int i = 0; i < nb; ++i) {
  5361. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5362. vector float vyd = vec_splats(y[i].d);
  5363. vector float vd = vec_mul(vxd, vyd);
  5364. uint32_t aux[3];
  5365. uint32_t utmp[4];
  5366. memcpy(aux, x[i].scales, 12);
  5367. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5368. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5369. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5370. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5371. vector signed char vscales = (vector signed char)vec_xl( 0, utmp);
  5372. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5373. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5374. vscales = vec_sub(vscales, off);
  5375. vector signed int vsumi0 = vec_splats((int32_t)0);
  5376. vector signed int vsumi1 = vec_splats((int32_t)0);
  5377. vector signed int vsumi2 = vec_splats((int32_t)0);
  5378. vector signed int vsumi3 = vec_splats((int32_t)0);
  5379. vector signed int vsumi4 = vec_splats((int32_t)0);
  5380. vector signed int vsumi5 = vec_splats((int32_t)0);
  5381. vector signed int vsumi6 = vec_splats((int32_t)0);
  5382. vector signed int vsumi7 = vec_splats((int32_t)0);
  5383. const uint8_t * restrict q3 = x[i].qs;
  5384. const int8_t * restrict q8 = y[i].qs;
  5385. for (int j = 0; j < QK_K/128; ++j) {
  5386. __builtin_prefetch(q3, 0, 1);
  5387. __builtin_prefetch(q8, 0, 1);
  5388. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5389. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5390. q3 += 32;
  5391. //the low 2 bits
  5392. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5393. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5394. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5395. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5396. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5397. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5398. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5399. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5400. //the 3rd bit
  5401. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5402. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5403. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5404. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5405. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5406. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5407. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5408. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5409. qxhs0 = vec_sr(qxhs0, v4);
  5410. qxhs1 = vec_sr(qxhs1, v4);
  5411. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5412. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5413. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5414. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5415. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5416. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5417. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5418. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5419. vector signed char q8y00 = vec_xl( 0, q8);
  5420. vector signed char q8y10 = vec_xl( 16, q8);
  5421. vector signed char q8y01 = vec_xl( 32, q8);
  5422. vector signed char q8y11 = vec_xl( 48, q8);
  5423. vector signed char q8y02 = vec_xl( 64, q8);
  5424. vector signed char q8y12 = vec_xl( 80, q8);
  5425. vector signed char q8y03 = vec_xl( 96, q8);
  5426. vector signed char q8y13 = vec_xl(112, q8);
  5427. q8 += 128;
  5428. vector signed short vscales_h = vec_unpackh(vscales);
  5429. vector signed short vs0 = vec_splat(vscales_h, 0);
  5430. vector signed short vs1 = vec_splat(vscales_h, 1);
  5431. vector signed short vs2 = vec_splat(vscales_h, 2);
  5432. vector signed short vs3 = vec_splat(vscales_h, 3);
  5433. vector signed short vs4 = vec_splat(vscales_h, 4);
  5434. vector signed short vs5 = vec_splat(vscales_h, 5);
  5435. vector signed short vs6 = vec_splat(vscales_h, 6);
  5436. vector signed short vs7 = vec_splat(vscales_h, 7);
  5437. vscales = vec_sld(vscales, vscales, 8);
  5438. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5439. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5440. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5441. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5442. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5443. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5444. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5445. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5446. vector signed int vsum0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  5447. vector signed int vsum1 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  5448. vector signed int vsum2 = vec_add(vec_mule(qv02, vs4), vec_mulo(qv02, vs4));
  5449. vector signed int vsum3 = vec_add(vec_mule(qv03, vs6), vec_mulo(qv03, vs6));
  5450. vector signed int vsum4 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  5451. vector signed int vsum5 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  5452. vector signed int vsum6 = vec_add(vec_mule(qv12, vs5), vec_mulo(qv12, vs5));
  5453. vector signed int vsum7 = vec_add(vec_mule(qv13, vs7), vec_mulo(qv13, vs7));
  5454. vsumi0 = vec_add(vsum0, vsumi0);
  5455. vsumi1 = vec_add(vsum1, vsumi1);
  5456. vsumi2 = vec_add(vsum2, vsumi2);
  5457. vsumi3 = vec_add(vsum3, vsumi3);
  5458. vsumi4 = vec_add(vsum4, vsumi4);
  5459. vsumi5 = vec_add(vsum5, vsumi5);
  5460. vsumi6 = vec_add(vsum6, vsumi6);
  5461. vsumi7 = vec_add(vsum7, vsumi7);
  5462. }
  5463. vsumi0 = vec_add(vsumi0, vsumi4);
  5464. vsumi1 = vec_add(vsumi1, vsumi5);
  5465. vsumi2 = vec_add(vsumi2, vsumi6);
  5466. vsumi3 = vec_add(vsumi3, vsumi7);
  5467. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5468. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5469. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5470. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5471. }
  5472. vsumf0 = vec_add(vsumf0, vsumf2);
  5473. vsumf1 = vec_add(vsumf1, vsumf3);
  5474. vsumf0 = vec_add(vsumf0, vsumf1);
  5475. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5476. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5477. *s = vec_extract(vsumf0, 0);
  5478. #elif defined __loongarch_asx
  5479. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5480. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5481. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  5482. __m256 acc = (__m256)__lasx_xvldi(0);
  5483. uint32_t aux[3];
  5484. for (int i = 0; i < nb; ++i) {
  5485. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5486. const uint8_t * restrict q3 = x[i].qs;
  5487. const int8_t * restrict q8 = y[i].qs;
  5488. // Set up scales
  5489. memcpy(aux, x[i].scales, 12);
  5490. __m128i scales128 = lsx_set_w(
  5491. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5492. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5493. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5494. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5495. scales128 = __lsx_vsub_b(scales128, m32);
  5496. const __m256i all_scales = lasx_ext8_16(scales128);
  5497. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5498. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5499. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5500. // high bit
  5501. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  5502. // integer accumulator
  5503. __m256i sumi = __lasx_xvldi(0);
  5504. int bit = 0;
  5505. int is = 0;
  5506. __m256i xvbit;
  5507. for (int j = 0; j < QK_K/128; ++j) {
  5508. // load low 2 bits
  5509. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  5510. xvbit = __lasx_xvreplgr2vr_h(bit);
  5511. // prepare low and high bits
  5512. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  5513. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5514. ++bit;
  5515. xvbit = __lasx_xvreplgr2vr_h(bit);
  5516. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  5517. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5518. ++bit;
  5519. xvbit = __lasx_xvreplgr2vr_h(bit);
  5520. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  5521. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5522. ++bit;
  5523. xvbit = __lasx_xvreplgr2vr_h(bit);
  5524. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  5525. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5526. ++bit;
  5527. // load Q8 quants
  5528. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5529. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5530. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5531. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5532. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  5533. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5534. // and 2 if the high bit was set)
  5535. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  5536. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  5537. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  5538. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  5539. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  5540. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  5541. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  5542. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  5543. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5544. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5545. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5546. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5547. // multiply with scales
  5548. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5549. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5550. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5551. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5552. // accumulate
  5553. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  5554. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  5555. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  5556. }
  5557. // multiply with block scale and accumulate
  5558. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  5559. }
  5560. *s = hsum_float_8(acc);
  5561. #else
  5562. // scalar version
  5563. // This function is written like this so the compiler can manage to vectorize most of it
  5564. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5565. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5566. // The ideal situation would be if we could just write the code once, and the compiler would
  5567. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5568. // write vectorized versions for AVX, ARM_NEON, etc.
  5569. int8_t aux8[QK_K];
  5570. int16_t aux16[8];
  5571. float sums [8];
  5572. int32_t aux32[8];
  5573. memset(sums, 0, 8*sizeof(float));
  5574. uint32_t auxs[4];
  5575. const int8_t * scales = (const int8_t*)auxs;
  5576. float sumf = 0;
  5577. for (int i = 0; i < nb; ++i) {
  5578. const uint8_t * restrict q3 = x[i].qs;
  5579. const uint8_t * restrict hm = x[i].hmask;
  5580. const int8_t * restrict q8 = y[i].qs;
  5581. memset(aux32, 0, 8*sizeof(int32_t));
  5582. int8_t * restrict a = aux8;
  5583. uint8_t m = 1;
  5584. for (int j = 0; j < QK_K; j += 128) {
  5585. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5586. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5587. a += 32; m <<= 1;
  5588. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5589. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5590. a += 32; m <<= 1;
  5591. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5592. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5593. a += 32; m <<= 1;
  5594. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5595. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5596. a += 32; m <<= 1;
  5597. q3 += 32;
  5598. }
  5599. a = aux8;
  5600. memcpy(auxs, x[i].scales, 12);
  5601. uint32_t tmp = auxs[2];
  5602. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5603. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5604. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5605. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5606. for (int j = 0; j < QK_K/16; ++j) {
  5607. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5608. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5609. q8 += 8; a += 8;
  5610. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5611. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5612. q8 += 8; a += 8;
  5613. }
  5614. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5615. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5616. }
  5617. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5618. *s = sumf;
  5619. #endif
  5620. }
  5621. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5622. assert(n % QK_K == 0);
  5623. assert(nrc == 1);
  5624. UNUSED(nrc);
  5625. UNUSED(bx);
  5626. UNUSED(by);
  5627. UNUSED(bs);
  5628. const block_q4_K * restrict x = vx;
  5629. const block_q8_K * restrict y = vy;
  5630. const int nb = n / QK_K;
  5631. static const uint32_t kmask1 = 0x3f3f3f3f;
  5632. static const uint32_t kmask2 = 0x0f0f0f0f;
  5633. static const uint32_t kmask3 = 0x03030303;
  5634. uint32_t utmp[4];
  5635. #ifdef __ARM_NEON
  5636. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5637. const int32x4_t mzero = vdupq_n_s32(0);
  5638. ggml_int8x16x2_t q4bytes;
  5639. ggml_int8x16x2_t q8bytes;
  5640. float sumf = 0;
  5641. for (int i = 0; i < nb; ++i) {
  5642. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5643. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5644. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5645. memcpy(utmp, x[i].scales, 12);
  5646. uint32x2_t mins8 = { 0 };
  5647. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5648. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5649. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5650. utmp[0] &= kmask1;
  5651. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5652. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5653. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5654. sumf -= dmin * vaddvq_s32(prod);
  5655. const uint8_t * scales = (const uint8_t *)utmp;
  5656. const uint8_t * restrict q4 = x[i].qs;
  5657. const int8_t * restrict q8 = y[i].qs;
  5658. int32_t sumi1 = 0;
  5659. int32_t sumi2 = 0;
  5660. for (int j = 0; j < QK_K/64; ++j) {
  5661. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5662. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5663. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5664. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5665. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5666. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5667. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5668. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5669. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5670. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5671. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5672. }
  5673. sumf += d * (sumi1 + sumi2);
  5674. }
  5675. *s = sumf;
  5676. #elif defined __AVX2__
  5677. const __m256i m4 = _mm256_set1_epi8(0xF);
  5678. __m256 acc = _mm256_setzero_ps();
  5679. __m128 acc_m = _mm_setzero_ps();
  5680. for (int i = 0; i < nb; ++i) {
  5681. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5682. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5683. memcpy(utmp, x[i].scales, 12);
  5684. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5685. const uint32_t uaux = utmp[1] & kmask1;
  5686. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5687. utmp[2] = uaux;
  5688. utmp[0] &= kmask1;
  5689. const uint8_t * restrict q4 = x[i].qs;
  5690. const int8_t * restrict q8 = y[i].qs;
  5691. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5692. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5693. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5694. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5695. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5696. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5697. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5698. __m256i sumi = _mm256_setzero_si256();
  5699. for (int j = 0; j < QK_K/64; ++j) {
  5700. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5701. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5702. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5703. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5704. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5705. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5706. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5707. p16l = _mm256_madd_epi16(scale_l, p16l);
  5708. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5709. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5710. p16h = _mm256_madd_epi16(scale_h, p16h);
  5711. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5712. sumi = _mm256_add_epi32(sumi, sumj);
  5713. }
  5714. __m256 vd = _mm256_set1_ps(d);
  5715. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5716. }
  5717. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5718. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5719. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5720. #elif defined __AVX__
  5721. const __m128i m4 = _mm_set1_epi8(0xF);
  5722. const __m128i m2 = _mm_set1_epi8(0x2);
  5723. __m256 acc = _mm256_setzero_ps();
  5724. __m128 acc_m = _mm_setzero_ps();
  5725. for (int i = 0; i < nb; ++i) {
  5726. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5727. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5728. const uint8_t * restrict q4 = x[i].qs;
  5729. const int8_t * restrict q8 = y[i].qs;
  5730. memcpy(utmp, x[i].scales, 12);
  5731. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5732. const uint32_t uaux = utmp[1] & kmask1;
  5733. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5734. utmp[2] = uaux;
  5735. utmp[0] &= kmask1;
  5736. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5737. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5738. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5739. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5740. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5741. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5742. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5743. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5744. __m128i sumi_0 = _mm_setzero_si128();
  5745. __m128i sumi_1 = _mm_setzero_si128();
  5746. __m128i shuffle = _mm_set1_epi16(0x0100);
  5747. for (int j = 0; j < QK_K/64; ++j) {
  5748. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5749. shuffle = _mm_add_epi16(shuffle, m2);
  5750. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5751. shuffle = _mm_add_epi16(shuffle, m2);
  5752. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5753. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5754. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5755. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5756. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5757. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5758. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5759. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5760. p16l = _mm_madd_epi16(scale_l, p16l);
  5761. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5762. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5763. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5764. p16l = _mm_madd_epi16(scale_l, p16l);
  5765. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5766. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5767. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5768. p16h = _mm_madd_epi16(scale_h, p16h);
  5769. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5770. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5771. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5772. p16h = _mm_madd_epi16(scale_h, p16h);
  5773. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5774. }
  5775. __m256 vd = _mm256_set1_ps(d);
  5776. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5777. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5778. }
  5779. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5780. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5781. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5782. #elif defined __riscv_v_intrinsic
  5783. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5784. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5785. float sumf = 0;
  5786. for (int i = 0; i < nb; ++i) {
  5787. size_t vl = 8;
  5788. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5789. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5790. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5791. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5792. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5793. memcpy(utmp, x[i].scales, 12);
  5794. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5795. const uint32_t uaux = utmp[1] & kmask1;
  5796. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5797. utmp[2] = uaux;
  5798. utmp[0] &= kmask1;
  5799. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5800. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5801. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5802. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5803. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5804. const uint8_t * restrict q4 = x[i].qs;
  5805. const int8_t * restrict q8 = y[i].qs;
  5806. vl = 32;
  5807. int32_t sum_1 = 0;
  5808. int32_t sum_2 = 0;
  5809. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5810. for (int j = 0; j < QK_K/64; ++j) {
  5811. // load Q4
  5812. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5813. // load Q8 and multiply it with lower Q4 nibble
  5814. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5815. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5816. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5817. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5818. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5819. // load Q8 and multiply it with upper Q4 nibble
  5820. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5821. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5822. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5823. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5824. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5825. q4 += 32; q8 += 64;
  5826. }
  5827. sumf += d*(sum_1 + sum_2);
  5828. }
  5829. *s = sumf;
  5830. #elif defined(__POWER9_VECTOR__)
  5831. const vector signed char lowMask = vec_splats((signed char)0xF);
  5832. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5833. vector float vsumf0 = vec_splats(0.0f);
  5834. vector float vsumf1 = vec_splats(0.0f);
  5835. vector float vsumf2 = vec_splats(0.0f);
  5836. vector float vsumf3 = vec_splats(0.0f);
  5837. for (int i = 0; i < nb; ++i) {
  5838. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5839. vector float vyd = vec_splats(y[i].d);
  5840. vector float vd = vec_mul(vxd, vyd);
  5841. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5842. vector float vdmin = vec_mul(vxmin, vyd);
  5843. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5844. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5845. memcpy(utmp, x[i].scales, 12);
  5846. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5847. const uint32_t uaux = utmp[1] & kmask1;
  5848. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5849. utmp[2] = uaux;
  5850. utmp[0] &= kmask1;
  5851. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  5852. vector signed short vscales = vec_unpackh(utmps);
  5853. vector signed short q4xmins = vec_unpackl(utmps);
  5854. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  5855. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  5856. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  5857. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  5858. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  5859. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  5860. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5861. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5862. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5863. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5864. vector signed int vsumi0 = vec_splats((int32_t)0);
  5865. vector signed int vsumi1 = vec_splats((int32_t)0);
  5866. vector signed int vsumi2 = vec_splats((int32_t)0);
  5867. vector signed int vsumi3 = vec_splats((int32_t)0);
  5868. vector signed int vsumi4 = vec_splats((int32_t)0);
  5869. vector signed int vsumi5 = vec_splats((int32_t)0);
  5870. vector signed int vsumi6 = vec_splats((int32_t)0);
  5871. vector signed int vsumi7 = vec_splats((int32_t)0);
  5872. const uint8_t * restrict q4 = x[i].qs;
  5873. const int8_t * restrict q8 = y[i].qs;
  5874. for (int j = 0; j < QK_K/64; j+=2) {
  5875. __builtin_prefetch(q4, 0, 1);
  5876. __builtin_prefetch(q8, 0, 1);
  5877. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  5878. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  5879. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  5880. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  5881. q4 += 64;
  5882. vector signed char q4x00 = vec_and(qxs0, lowMask);
  5883. vector signed char q4x01 = vec_sr(qxs0, v4);
  5884. vector signed char q4x10 = vec_and(qxs1, lowMask);
  5885. vector signed char q4x11 = vec_sr(qxs1, v4);
  5886. vector signed char q4x20 = vec_and(qxs2, lowMask);
  5887. vector signed char q4x21 = vec_sr(qxs2, v4);
  5888. vector signed char q4x30 = vec_and(qxs3, lowMask);
  5889. vector signed char q4x31 = vec_sr(qxs3, v4);
  5890. vector signed char q8y00 = vec_xl( 0, q8);
  5891. vector signed char q8y10 = vec_xl( 16, q8);
  5892. vector signed char q8y01 = vec_xl( 32, q8);
  5893. vector signed char q8y11 = vec_xl( 48, q8);
  5894. vector signed char q8y20 = vec_xl( 64, q8);
  5895. vector signed char q8y30 = vec_xl( 80, q8);
  5896. vector signed char q8y21 = vec_xl( 96, q8);
  5897. vector signed char q8y31 = vec_xl(112, q8);
  5898. q8 += 128;
  5899. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  5900. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  5901. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  5902. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  5903. vector signed short qv20 = vec_add(vec_mule(q4x20, q8y20), vec_mulo(q4x20, q8y20));
  5904. vector signed short qv21 = vec_add(vec_mule(q4x21, q8y21), vec_mulo(q4x21, q8y21));
  5905. vector signed short qv30 = vec_add(vec_mule(q4x30, q8y30), vec_mulo(q4x30, q8y30));
  5906. vector signed short qv31 = vec_add(vec_mule(q4x31, q8y31), vec_mulo(q4x31, q8y31));
  5907. vector signed short vs0 = vec_splat(vscales, 0);
  5908. vector signed short vs1 = vec_splat(vscales, 1);
  5909. vector signed short vs2 = vec_splat(vscales, 2);
  5910. vector signed short vs3 = vec_splat(vscales, 3);
  5911. vscales = vec_sld(vscales, vscales, 8);
  5912. qv00 = vec_add(qv00, qv10);
  5913. qv10 = vec_add(qv01, qv11);
  5914. qv20 = vec_add(qv20, qv30);
  5915. qv30 = vec_add(qv21, qv31);
  5916. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  5917. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  5918. vsumi2 = vec_add(vec_mule(qv10, vs1), vsumi2);
  5919. vsumi3 = vec_add(vec_mulo(qv10, vs1), vsumi3);
  5920. vsumi4 = vec_add(vec_mule(qv20, vs2), vsumi4);
  5921. vsumi5 = vec_add(vec_mulo(qv20, vs2), vsumi5);
  5922. vsumi6 = vec_add(vec_mule(qv30, vs3), vsumi6);
  5923. vsumi7 = vec_add(vec_mulo(qv30, vs3), vsumi7);
  5924. }
  5925. vsumi0 = vec_add(vsumi0, vsumi4);
  5926. vsumi1 = vec_add(vsumi1, vsumi5);
  5927. vsumi2 = vec_add(vsumi2, vsumi6);
  5928. vsumi3 = vec_add(vsumi3, vsumi7);
  5929. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5930. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5931. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5932. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5933. }
  5934. vsumf0 = vec_add(vsumf0, vsumf2);
  5935. vsumf1 = vec_add(vsumf1, vsumf3);
  5936. vsumf0 = vec_add(vsumf0, vsumf1);
  5937. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5938. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5939. *s = vec_extract(vsumf0, 0);
  5940. #elif defined __loongarch_asx
  5941. GGML_UNUSED(kmask1);
  5942. GGML_UNUSED(kmask2);
  5943. GGML_UNUSED(kmask3);
  5944. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5945. __m256 acc = (__m256)__lasx_xvldi(0);
  5946. __m128 acc_m = (__m128)__lsx_vldi(0);
  5947. for (int i = 0; i < nb; ++i) {
  5948. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5949. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5950. memcpy(utmp, x[i].scales, 12);
  5951. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5952. const uint32_t uaux = utmp[1] & kmask1;
  5953. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5954. utmp[2] = uaux;
  5955. utmp[0] &= kmask1;
  5956. const uint8_t * restrict q4 = x[i].qs;
  5957. const int8_t * restrict q8 = y[i].qs;
  5958. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5959. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5960. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5961. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5962. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  5963. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5964. const __m256i scales = lasx_insertf128(sc128, sc128);
  5965. __m256i sumi = __lasx_xvldi(0);
  5966. for (int j = 0; j < QK_K/64; ++j) {
  5967. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5968. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5969. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5970. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  5971. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  5972. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5973. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  5974. p16l = lasx_madd_h(scale_l, p16l);
  5975. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5976. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  5977. p16h = lasx_madd_h(scale_h, p16h);
  5978. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  5979. sumi = __lasx_xvadd_w(sumi, sumj);
  5980. }
  5981. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5982. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5983. }
  5984. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  5985. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  5986. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  5987. ft_union fi;
  5988. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  5989. *s = hsum_float_8(acc) + fi.f ;
  5990. #else
  5991. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5992. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5993. int8_t aux8[QK_K];
  5994. int16_t aux16[8];
  5995. float sums [8];
  5996. int32_t aux32[8];
  5997. memset(sums, 0, 8*sizeof(float));
  5998. float sumf = 0;
  5999. for (int i = 0; i < nb; ++i) {
  6000. const uint8_t * restrict q4 = x[i].qs;
  6001. const int8_t * restrict q8 = y[i].qs;
  6002. memset(aux32, 0, 8*sizeof(int32_t));
  6003. int8_t * restrict a = aux8;
  6004. for (int j = 0; j < QK_K/64; ++j) {
  6005. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6006. a += 32;
  6007. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6008. a += 32; q4 += 32;
  6009. }
  6010. memcpy(utmp, x[i].scales, 12);
  6011. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6012. const uint32_t uaux = utmp[1] & kmask1;
  6013. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6014. utmp[2] = uaux;
  6015. utmp[0] &= kmask1;
  6016. int sumi = 0;
  6017. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6018. a = aux8;
  6019. int is = 0;
  6020. for (int j = 0; j < QK_K/32; ++j) {
  6021. int32_t scale = scales[is++];
  6022. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6023. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6024. q8 += 8; a += 8;
  6025. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6026. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6027. q8 += 8; a += 8;
  6028. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6029. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6030. q8 += 8; a += 8;
  6031. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6032. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6033. q8 += 8; a += 8;
  6034. }
  6035. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6036. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6037. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6038. sumf -= dmin * sumi;
  6039. }
  6040. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6041. *s = sumf;
  6042. #endif
  6043. }
  6044. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6045. assert(n % QK_K == 0);
  6046. assert(nrc == 1);
  6047. UNUSED(nrc);
  6048. UNUSED(bx);
  6049. UNUSED(by);
  6050. UNUSED(bs);
  6051. const block_q5_K * restrict x = vx;
  6052. const block_q8_K * restrict y = vy;
  6053. const int nb = n / QK_K;
  6054. static const uint32_t kmask1 = 0x3f3f3f3f;
  6055. static const uint32_t kmask2 = 0x0f0f0f0f;
  6056. static const uint32_t kmask3 = 0x03030303;
  6057. uint32_t utmp[4];
  6058. #ifdef __ARM_NEON
  6059. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6060. const uint8x16_t mone = vdupq_n_u8(1);
  6061. const uint8x16_t mtwo = vdupq_n_u8(2);
  6062. const int32x4_t mzero = vdupq_n_s32(0);
  6063. ggml_int8x16x4_t q5bytes;
  6064. float sumf = 0;
  6065. for (int i = 0; i < nb; ++i) {
  6066. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6067. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6068. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6069. memcpy(utmp, x[i].scales, 12);
  6070. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6071. const uint32_t uaux = utmp[1] & kmask1;
  6072. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6073. utmp[2] = uaux;
  6074. utmp[0] &= kmask1;
  6075. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6076. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6077. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6078. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6079. int32_t sumi_mins = vaddvq_s32(prod);
  6080. const uint8_t * scales = (const uint8_t *)utmp;
  6081. const uint8_t * restrict q5 = x[i].qs;
  6082. const uint8_t * restrict qh = x[i].qh;
  6083. const int8_t * restrict q8 = y[i].qs;
  6084. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6085. ggml_uint8x16x4_t q5h;
  6086. int32_t sumi = 0;
  6087. for (int j = 0; j < QK_K/64; ++j) {
  6088. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6089. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6090. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6091. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6092. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6093. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6094. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6095. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6096. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6097. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6098. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6099. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6100. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6101. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6102. }
  6103. sumf += d * sumi - dmin * sumi_mins;
  6104. }
  6105. *s = sumf;
  6106. #elif defined __AVX2__
  6107. const __m256i m4 = _mm256_set1_epi8(0xF);
  6108. const __m128i mzero = _mm_setzero_si128();
  6109. const __m256i mone = _mm256_set1_epi8(1);
  6110. __m256 acc = _mm256_setzero_ps();
  6111. float summs = 0.f;
  6112. for (int i = 0; i < nb; ++i) {
  6113. const uint8_t * restrict q5 = x[i].qs;
  6114. const int8_t * restrict q8 = y[i].qs;
  6115. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6116. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6117. memcpy(utmp, x[i].scales, 12);
  6118. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6119. const uint32_t uaux = utmp[1] & kmask1;
  6120. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6121. utmp[2] = uaux;
  6122. utmp[0] &= kmask1;
  6123. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6124. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6125. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6126. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6127. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6128. summs += dmin * _mm_extract_epi32(hsum, 0);
  6129. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6130. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6131. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6132. __m256i hmask = mone;
  6133. __m256i sumi = _mm256_setzero_si256();
  6134. int bit = 0;
  6135. for (int j = 0; j < QK_K/64; ++j) {
  6136. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6137. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6138. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6139. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6140. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6141. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6142. hmask = _mm256_slli_epi16(hmask, 1);
  6143. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6144. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6145. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6146. hmask = _mm256_slli_epi16(hmask, 1);
  6147. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6148. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6149. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6150. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6151. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6152. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6153. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6154. }
  6155. __m256 vd = _mm256_set1_ps(d);
  6156. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6157. }
  6158. *s = hsum_float_8(acc) + summs;
  6159. #elif defined __AVX__
  6160. const __m128i m4 = _mm_set1_epi8(0xF);
  6161. const __m128i mzero = _mm_setzero_si128();
  6162. const __m128i mone = _mm_set1_epi8(1);
  6163. const __m128i m2 = _mm_set1_epi8(2);
  6164. __m256 acc = _mm256_setzero_ps();
  6165. float summs = 0.f;
  6166. for (int i = 0; i < nb; ++i) {
  6167. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6168. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6169. const uint8_t * restrict q5 = x[i].qs;
  6170. const int8_t * restrict q8 = y[i].qs;
  6171. memcpy(utmp, x[i].scales, 12);
  6172. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6173. const uint32_t uaux = utmp[1] & kmask1;
  6174. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6175. utmp[2] = uaux;
  6176. utmp[0] &= kmask1;
  6177. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6178. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6179. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6180. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6181. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6182. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6183. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6184. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6185. summs += dmin * _mm_extract_epi32(hsum, 0);
  6186. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6187. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6188. __m128i hmask = mone;
  6189. __m128i sumi_0 = _mm_setzero_si128();
  6190. __m128i sumi_1 = _mm_setzero_si128();
  6191. int bit = 0;
  6192. __m128i shuffle = _mm_set1_epi16(0x0100);
  6193. for (int j = 0; j < QK_K/64; ++j) {
  6194. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6195. shuffle = _mm_add_epi16(shuffle, m2);
  6196. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6197. shuffle = _mm_add_epi16(shuffle, m2);
  6198. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6199. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6200. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6201. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6202. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6203. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6204. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6205. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6206. hmask = _mm_slli_epi16(hmask, 1);
  6207. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6208. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6209. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6210. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6211. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6212. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6213. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6214. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6215. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6216. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6217. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6218. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6219. hmask = _mm_slli_epi16(hmask, 1);
  6220. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6221. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6222. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6223. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6224. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6225. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6226. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6227. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6228. }
  6229. __m256 vd = _mm256_set1_ps(d);
  6230. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6231. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6232. }
  6233. *s = hsum_float_8(acc) + summs;
  6234. #elif defined __riscv_v_intrinsic
  6235. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6236. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6237. float sumf = 0;
  6238. float sums = 0.0;
  6239. size_t vl;
  6240. for (int i = 0; i < nb; ++i) {
  6241. vl = 8;
  6242. const uint8_t * restrict q5 = x[i].qs;
  6243. const uint8_t * restrict hm = x[i].qh;
  6244. const int8_t * restrict q8 = y[i].qs;
  6245. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6246. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6247. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6248. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6249. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6250. memcpy(utmp, x[i].scales, 12);
  6251. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6252. const uint32_t uaux = utmp[1] & kmask1;
  6253. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6254. utmp[2] = uaux;
  6255. utmp[0] &= kmask1;
  6256. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6257. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6258. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6259. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6260. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6261. vl = 32;
  6262. int32_t aux32 = 0;
  6263. int is = 0;
  6264. uint8_t m = 1;
  6265. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6266. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6267. for (int j = 0; j < QK_K/64; ++j) {
  6268. // load Q5 and Q8
  6269. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6270. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6271. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6272. // compute mask for addition
  6273. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6274. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6275. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6276. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6277. m <<= 1;
  6278. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6279. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6280. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6281. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6282. m <<= 1;
  6283. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6284. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6285. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6286. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6287. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6288. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6289. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6290. q5 += 32; q8 += 64;
  6291. }
  6292. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6293. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6294. }
  6295. *s = sumf+sums;
  6296. #elif defined(__POWER9_VECTOR__)
  6297. const vector signed char lowMask = vec_splats((signed char)0xF);
  6298. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6299. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6300. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6301. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6302. vector float vsumf0 = vec_splats(0.0f);
  6303. vector float vsumf1 = vec_splats(0.0f);
  6304. vector float vsumf2 = vec_splats(0.0f);
  6305. vector float vsumf3 = vec_splats(0.0f);
  6306. for (int i = 0; i < nb; ++i) {
  6307. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6308. vector float vyd = vec_splats(y[i].d);
  6309. vector float vd = vec_mul(vxd, vyd);
  6310. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6311. vector float vdmin = vec_mul(vxmin, vyd);
  6312. memcpy(utmp, x[i].scales, 12);
  6313. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6314. const uint32_t uaux = utmp[1] & kmask1;
  6315. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6316. utmp[2] = uaux;
  6317. utmp[0] &= kmask1;
  6318. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6319. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6320. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  6321. vector signed short vscales = vec_unpackh(utmps);
  6322. vector signed short q5xmins = vec_unpackl(utmps);
  6323. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6324. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6325. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6326. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6327. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6328. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6329. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6330. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6331. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6332. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6333. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6334. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6335. vector signed int vsumi0 = vec_splats((int32_t)0);
  6336. vector signed int vsumi1 = vec_splats((int32_t)0);
  6337. vector signed int vsumi2 = vec_splats((int32_t)0);
  6338. vector signed int vsumi3 = vec_splats((int32_t)0);
  6339. const uint8_t * restrict q5 = x[i].qs;
  6340. const int8_t * restrict q8 = y[i].qs;
  6341. for (int j = 0; j < QK_K/64; ++j) {
  6342. __builtin_prefetch(q5, 0, 1);
  6343. __builtin_prefetch(q8, 0, 1);
  6344. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  6345. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  6346. q5 += 32;
  6347. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6348. vector signed char qxs01 = vec_sr(qxs0, v4);
  6349. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6350. vector signed char qxs11 = vec_sr(qxs1, v4);
  6351. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  6352. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  6353. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  6354. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  6355. qxhs0 = vec_sr(qxhs0, v2);
  6356. qxhs1 = vec_sr(qxhs1, v2);
  6357. vector signed char q5x00 = vec_or(q5h00, qxs00);
  6358. vector signed char q5x01 = vec_or(q5h01, qxs01);
  6359. vector signed char q5x10 = vec_or(q5h10, qxs10);
  6360. vector signed char q5x11 = vec_or(q5h11, qxs11);
  6361. vector signed char q8y00 = vec_xl( 0, q8);
  6362. vector signed char q8y10 = vec_xl(16, q8);
  6363. vector signed char q8y01 = vec_xl(32, q8);
  6364. vector signed char q8y11 = vec_xl(48, q8);
  6365. q8 += 64;
  6366. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  6367. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  6368. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  6369. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  6370. vector signed short vs0 = vec_splat(vscales, 0);
  6371. vector signed short vs1 = vec_splat(vscales, 1);
  6372. vscales = vec_sld(vscales, vscales, 12);
  6373. qv00 = vec_add(qv00, qv10);
  6374. qv01 = vec_add(qv01, qv11);
  6375. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6376. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6377. vsumi2 = vec_add(vec_mule(qv01, vs1), vsumi2);
  6378. vsumi3 = vec_add(vec_mulo(qv01, vs1), vsumi3);
  6379. }
  6380. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6381. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6382. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6383. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6384. }
  6385. vsumf0 = vec_add(vsumf0, vsumf2);
  6386. vsumf1 = vec_add(vsumf1, vsumf3);
  6387. vsumf0 = vec_add(vsumf0, vsumf1);
  6388. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6389. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6390. *s = vec_extract(vsumf0, 0);
  6391. #elif defined __loongarch_asx
  6392. GGML_UNUSED(kmask1);
  6393. GGML_UNUSED(kmask2);
  6394. GGML_UNUSED(kmask3);
  6395. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6396. const __m128i mzero = __lsx_vldi(0);
  6397. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6398. __m256 acc = (__m256)__lasx_xvldi(0);
  6399. float summs = 0.f;
  6400. for (int i = 0; i < nb; ++i) {
  6401. const uint8_t * restrict q5 = x[i].qs;
  6402. const int8_t * restrict q8 = y[i].qs;
  6403. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6404. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6405. memcpy(utmp, x[i].scales, 12);
  6406. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6407. const uint32_t uaux = utmp[1] & kmask1;
  6408. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6409. utmp[2] = uaux;
  6410. utmp[0] &= kmask1;
  6411. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6412. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6413. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6414. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6415. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  6416. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  6417. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6418. const __m256i scales = lasx_insertf128(sc128, sc128);
  6419. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  6420. __m256i hmask = mone;
  6421. __m256i sumi = __lasx_xvldi(0);
  6422. int bit = 0;
  6423. __m256i xvbit;
  6424. for (int j = 0; j < QK_K/64; ++j) {
  6425. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6426. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6427. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  6428. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6429. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  6430. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6431. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  6432. hmask = __lasx_xvslli_h(hmask, 1);
  6433. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6434. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  6435. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6436. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  6437. hmask = __lasx_xvslli_h(hmask, 1);
  6438. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6439. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6440. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  6441. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  6442. p16_0 = lasx_madd_h(scale_0, p16_0);
  6443. p16_1 = lasx_madd_h(scale_1, p16_1);
  6444. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6445. }
  6446. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6447. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6448. }
  6449. *s = hsum_float_8(acc) + summs;
  6450. #else
  6451. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6452. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6453. int8_t aux8[QK_K];
  6454. int16_t aux16[8];
  6455. float sums [8];
  6456. int32_t aux32[8];
  6457. memset(sums, 0, 8*sizeof(float));
  6458. float sumf = 0;
  6459. for (int i = 0; i < nb; ++i) {
  6460. const uint8_t * restrict q4 = x[i].qs;
  6461. const uint8_t * restrict hm = x[i].qh;
  6462. const int8_t * restrict q8 = y[i].qs;
  6463. memset(aux32, 0, 8*sizeof(int32_t));
  6464. int8_t * restrict a = aux8;
  6465. uint8_t m = 1;
  6466. for (int j = 0; j < QK_K/64; ++j) {
  6467. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6468. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6469. a += 32; m <<= 1;
  6470. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6471. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6472. a += 32; m <<= 1;
  6473. q4 += 32;
  6474. }
  6475. memcpy(utmp, x[i].scales, 12);
  6476. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6477. const uint32_t uaux = utmp[1] & kmask1;
  6478. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6479. utmp[2] = uaux;
  6480. utmp[0] &= kmask1;
  6481. int sumi = 0;
  6482. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6483. a = aux8;
  6484. int is = 0;
  6485. for (int j = 0; j < QK_K/32; ++j) {
  6486. int32_t scale = scales[is++];
  6487. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6488. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6489. q8 += 8; a += 8;
  6490. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6491. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6492. q8 += 8; a += 8;
  6493. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6494. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6495. q8 += 8; a += 8;
  6496. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6497. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6498. q8 += 8; a += 8;
  6499. }
  6500. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6501. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6502. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6503. sumf -= dmin * sumi;
  6504. }
  6505. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6506. *s = sumf;
  6507. #endif
  6508. }
  6509. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6510. assert(n % QK_K == 0);
  6511. assert(nrc == 1);
  6512. UNUSED(nrc);
  6513. UNUSED(bx);
  6514. UNUSED(by);
  6515. UNUSED(bs);
  6516. const block_q6_K * restrict x = vx;
  6517. const block_q8_K * restrict y = vy;
  6518. const int nb = n / QK_K;
  6519. #ifdef __ARM_NEON
  6520. float sum = 0;
  6521. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6522. const int32x4_t vzero = vdupq_n_s32(0);
  6523. //const int8x16_t m32s = vdupq_n_s8(32);
  6524. const uint8x16_t mone = vdupq_n_u8(3);
  6525. ggml_int8x16x4_t q6bytes;
  6526. ggml_uint8x16x4_t q6h;
  6527. for (int i = 0; i < nb; ++i) {
  6528. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6529. const uint8_t * restrict q6 = x[i].ql;
  6530. const uint8_t * restrict qh = x[i].qh;
  6531. const int8_t * restrict q8 = y[i].qs;
  6532. const int8_t * restrict scale = x[i].scales;
  6533. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6534. const int8x16_t scales = vld1q_s8(scale);
  6535. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6536. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6537. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6538. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6539. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6540. int32_t isum_mins = vaddvq_s32(prod);
  6541. int32_t isum = 0;
  6542. for (int j = 0; j < QK_K/128; ++j) {
  6543. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6544. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6545. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6546. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6547. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6548. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6549. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6550. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6551. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6552. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6553. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6554. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6555. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6556. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6557. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6558. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6559. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6560. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6561. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6562. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6563. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6564. scale += 4;
  6565. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6566. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6567. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6568. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6569. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6570. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6571. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6572. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6573. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6574. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6575. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6576. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6577. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6578. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6579. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6580. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6581. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6582. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6583. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6584. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6585. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6586. scale += 4;
  6587. }
  6588. //sum += isum * d_all * y[i].d;
  6589. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6590. }
  6591. *s = sum;
  6592. #elif defined __AVX2__
  6593. const __m256i m4 = _mm256_set1_epi8(0xF);
  6594. const __m256i m2 = _mm256_set1_epi8(3);
  6595. const __m256i m32s = _mm256_set1_epi8(32);
  6596. __m256 acc = _mm256_setzero_ps();
  6597. for (int i = 0; i < nb; ++i) {
  6598. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6599. const uint8_t * restrict q4 = x[i].ql;
  6600. const uint8_t * restrict qh = x[i].qh;
  6601. const int8_t * restrict q8 = y[i].qs;
  6602. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6603. __m256i sumi = _mm256_setzero_si256();
  6604. int is = 0;
  6605. for (int j = 0; j < QK_K/128; ++j) {
  6606. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6607. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6608. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6609. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6610. is += 4;
  6611. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6612. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6613. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6614. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6615. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6616. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6617. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6618. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6619. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6620. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6621. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6622. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6623. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6624. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6625. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6626. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6627. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6628. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6629. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6630. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6631. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6632. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6633. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6634. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6635. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6636. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6637. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6638. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6639. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6640. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6641. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6642. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6643. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6644. }
  6645. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6646. }
  6647. *s = hsum_float_8(acc);
  6648. #elif defined __AVX__
  6649. const __m128i m4 = _mm_set1_epi8(0xF);
  6650. const __m128i m3 = _mm_set1_epi8(3);
  6651. const __m128i m32s = _mm_set1_epi8(32);
  6652. const __m128i m2 = _mm_set1_epi8(2);
  6653. __m256 acc = _mm256_setzero_ps();
  6654. for (int i = 0; i < nb; ++i) {
  6655. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6656. const uint8_t * restrict q4 = x[i].ql;
  6657. const uint8_t * restrict qh = x[i].qh;
  6658. const int8_t * restrict q8 = y[i].qs;
  6659. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6660. __m128i sumi_0 = _mm_setzero_si128();
  6661. __m128i sumi_1 = _mm_setzero_si128();
  6662. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6663. for (int j = 0; j < QK_K/128; ++j) {
  6664. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6665. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6666. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6667. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6668. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6669. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6670. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6671. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6672. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6673. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6674. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6675. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6676. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6677. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6678. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6679. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6680. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6681. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6682. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6683. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6684. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6685. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6686. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6687. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6688. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6689. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6690. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6691. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6692. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6693. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6694. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6695. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6696. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6697. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6698. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6699. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6700. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6701. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6702. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6703. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6704. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6705. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6706. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6707. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6708. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6709. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6710. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6711. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6712. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6713. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6714. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6715. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6716. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6717. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6718. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6719. shuffle = _mm_add_epi8(shuffle, m2);
  6720. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6721. shuffle = _mm_add_epi8(shuffle, m2);
  6722. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6723. shuffle = _mm_add_epi8(shuffle, m2);
  6724. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6725. shuffle = _mm_add_epi8(shuffle, m2);
  6726. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6727. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6728. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6729. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6730. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6731. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6732. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6733. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6734. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6735. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6736. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6737. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6738. }
  6739. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6740. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6741. }
  6742. *s = hsum_float_8(acc);
  6743. #elif defined __riscv_v_intrinsic
  6744. float sumf = 0;
  6745. for (int i = 0; i < nb; ++i) {
  6746. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6747. const uint8_t * restrict q6 = x[i].ql;
  6748. const uint8_t * restrict qh = x[i].qh;
  6749. const int8_t * restrict q8 = y[i].qs;
  6750. const int8_t * restrict scale = x[i].scales;
  6751. size_t vl;
  6752. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6753. int sum_t = 0;
  6754. int is = 0;
  6755. for (int j = 0; j < QK_K/128; ++j) {
  6756. vl = 32;
  6757. // load qh
  6758. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6759. // load Q6
  6760. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6761. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6762. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6763. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6764. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6765. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6766. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6767. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6768. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6769. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6770. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6771. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6772. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6773. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6774. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6775. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6776. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6777. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6778. // load Q8 and take product
  6779. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6780. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6781. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6782. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6783. vl = 16;
  6784. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6785. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6786. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6787. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6788. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6789. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6790. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6791. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6792. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6793. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6794. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6795. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6796. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6797. q6 += 64; qh += 32; q8 += 128; is=8;
  6798. }
  6799. sumf += d * sum_t;
  6800. }
  6801. *s = sumf;
  6802. #elif defined(__POWER9_VECTOR__)
  6803. const vector signed char lowMask = vec_splats((signed char)0xF);
  6804. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6805. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6806. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6807. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6808. const vector signed char off = vec_splats((signed char)0x20);
  6809. vector float vsumf0 = vec_splats(0.0f);
  6810. vector float vsumf1 = vec_splats(0.0f);
  6811. vector float vsumf2 = vec_splats(0.0f);
  6812. vector float vsumf3 = vec_splats(0.0f);
  6813. for (int i = 0; i < nb; ++i) {
  6814. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6815. vector float vyd = vec_splats(y[i].d);
  6816. vector float vd = vec_mul(vxd, vyd);
  6817. vector signed int vsumi0 = vec_splats((int32_t)0);
  6818. vector signed int vsumi1 = vec_splats((int32_t)0);
  6819. vector signed int vsumi2 = vec_splats((int32_t)0);
  6820. vector signed int vsumi3 = vec_splats((int32_t)0);
  6821. vector signed int vsumi4 = vec_splats((int32_t)0);
  6822. vector signed int vsumi5 = vec_splats((int32_t)0);
  6823. vector signed int vsumi6 = vec_splats((int32_t)0);
  6824. vector signed int vsumi7 = vec_splats((int32_t)0);
  6825. const uint8_t * restrict q6 = x[i].ql;
  6826. const uint8_t * restrict qh = x[i].qh;
  6827. const int8_t * restrict qs = x[i].scales;
  6828. const int8_t * restrict q8 = y[i].qs;
  6829. for (int j = 0; j < QK_K/128; ++j) {
  6830. __builtin_prefetch(q6, 0, 0);
  6831. __builtin_prefetch(qh, 0, 0);
  6832. __builtin_prefetch(q8, 0, 0);
  6833. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  6834. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  6835. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  6836. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  6837. q6 += 64;
  6838. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6839. vector signed char qxs01 = vec_sr(qxs0, v4);
  6840. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6841. vector signed char qxs11 = vec_sr(qxs1, v4);
  6842. vector signed char qxs20 = vec_and(qxs2, lowMask);
  6843. vector signed char qxs21 = vec_sr(qxs2, v4);
  6844. vector signed char qxs30 = vec_and(qxs3, lowMask);
  6845. vector signed char qxs31 = vec_sr(qxs3, v4);
  6846. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  6847. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  6848. qh += 32;
  6849. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  6850. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  6851. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  6852. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  6853. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  6854. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  6855. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  6856. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  6857. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  6858. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  6859. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  6860. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  6861. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  6862. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  6863. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  6864. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  6865. vector signed char q8y00 = vec_xl( 0, q8);
  6866. vector signed char q8y10 = vec_xl( 16, q8);
  6867. vector signed char q8y20 = vec_xl( 32, q8);
  6868. vector signed char q8y30 = vec_xl( 48, q8);
  6869. vector signed char q8y01 = vec_xl( 64, q8);
  6870. vector signed char q8y11 = vec_xl( 80, q8);
  6871. vector signed char q8y21 = vec_xl( 96, q8);
  6872. vector signed char q8y31 = vec_xl(112, q8);
  6873. q8 += 128;
  6874. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  6875. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  6876. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  6877. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  6878. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  6879. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  6880. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  6881. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  6882. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  6883. qs += 8;
  6884. vector signed short vs0 = vec_splat(vscales, 0);
  6885. vector signed short vs1 = vec_splat(vscales, 1);
  6886. vector signed short vs2 = vec_splat(vscales, 2);
  6887. vector signed short vs3 = vec_splat(vscales, 3);
  6888. vector signed short vs4 = vec_splat(vscales, 4);
  6889. vector signed short vs5 = vec_splat(vscales, 5);
  6890. vector signed short vs6 = vec_splat(vscales, 6);
  6891. vector signed short vs7 = vec_splat(vscales, 7);
  6892. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6893. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6894. vsumi2 = vec_add(vec_mule(qv01, vs4), vsumi2);
  6895. vsumi3 = vec_add(vec_mulo(qv01, vs4), vsumi3);
  6896. vsumi4 = vec_add(vec_mule(qv10, vs1), vsumi4);
  6897. vsumi5 = vec_add(vec_mulo(qv10, vs1), vsumi5);
  6898. vsumi6 = vec_add(vec_mule(qv11, vs5), vsumi6);
  6899. vsumi7 = vec_add(vec_mulo(qv11, vs5), vsumi7);
  6900. vsumi0 = vec_add(vec_mule(qv20, vs2), vsumi0);
  6901. vsumi1 = vec_add(vec_mulo(qv20, vs2), vsumi1);
  6902. vsumi2 = vec_add(vec_mule(qv21, vs6), vsumi2);
  6903. vsumi3 = vec_add(vec_mulo(qv21, vs6), vsumi3);
  6904. vsumi4 = vec_add(vec_mule(qv30, vs3), vsumi4);
  6905. vsumi5 = vec_add(vec_mulo(qv30, vs3), vsumi5);
  6906. vsumi6 = vec_add(vec_mule(qv31, vs7), vsumi6);
  6907. vsumi7 = vec_add(vec_mulo(qv31, vs7), vsumi7);
  6908. }
  6909. vsumi0 = vec_add(vsumi0, vsumi4);
  6910. vsumi1 = vec_add(vsumi1, vsumi5);
  6911. vsumi2 = vec_add(vsumi2, vsumi6);
  6912. vsumi3 = vec_add(vsumi3, vsumi7);
  6913. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6914. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6915. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6916. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6917. }
  6918. vsumf0 = vec_add(vsumf0, vsumf2);
  6919. vsumf1 = vec_add(vsumf1, vsumf3);
  6920. vsumf0 = vec_add(vsumf0, vsumf1);
  6921. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6922. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6923. *s = vec_extract(vsumf0, 0);
  6924. #elif defined __loongarch_asx
  6925. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6926. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  6927. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  6928. __m256 acc = (__m256)__lasx_xvldi(0);
  6929. for (int i = 0; i < nb; ++i) {
  6930. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6931. const uint8_t * restrict q4 = x[i].ql;
  6932. const uint8_t * restrict qh = x[i].qh;
  6933. const int8_t * restrict q8 = y[i].qs;
  6934. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  6935. __m256i sumi = __lasx_xvldi(0);
  6936. int is = 0;
  6937. for (int j = 0; j < QK_K/128; ++j) {
  6938. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  6939. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  6940. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  6941. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  6942. is += 4;
  6943. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6944. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6945. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  6946. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  6947. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  6948. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  6949. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  6950. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  6951. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  6952. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  6953. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  6954. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6955. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6956. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6957. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6958. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  6959. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  6960. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  6961. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  6962. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  6963. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  6964. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  6965. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  6966. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6967. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6968. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6969. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6970. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  6971. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  6972. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  6973. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  6974. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6975. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  6976. }
  6977. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  6978. }
  6979. *s = hsum_float_8(acc);
  6980. #else
  6981. int8_t aux8[QK_K];
  6982. int16_t aux16[8];
  6983. float sums [8];
  6984. int32_t aux32[8];
  6985. memset(sums, 0, 8*sizeof(float));
  6986. float sumf = 0;
  6987. for (int i = 0; i < nb; ++i) {
  6988. const uint8_t * restrict q4 = x[i].ql;
  6989. const uint8_t * restrict qh = x[i].qh;
  6990. const int8_t * restrict q8 = y[i].qs;
  6991. memset(aux32, 0, 8*sizeof(int32_t));
  6992. int8_t * restrict a = aux8;
  6993. for (int j = 0; j < QK_K; j += 128) {
  6994. for (int l = 0; l < 32; ++l) {
  6995. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6996. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6997. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6998. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6999. }
  7000. a += 128;
  7001. q4 += 64;
  7002. qh += 32;
  7003. }
  7004. a = aux8;
  7005. int is = 0;
  7006. for (int j = 0; j < QK_K/16; ++j) {
  7007. int scale = x[i].scales[is++];
  7008. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7009. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7010. q8 += 8; a += 8;
  7011. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7012. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7013. q8 += 8; a += 8;
  7014. }
  7015. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7016. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7017. }
  7018. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7019. *s = sumf;
  7020. #endif
  7021. }
  7022. #if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  7023. static const int8_t keven_signs_q2xs[1024] = {
  7024. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7025. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7026. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7027. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7028. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7029. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7030. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7031. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7032. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7033. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7034. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7035. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7036. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7037. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7038. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7039. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7040. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7041. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7042. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7043. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7044. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7045. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7046. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7047. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7048. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7049. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7050. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7051. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7052. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7053. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7054. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7055. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7056. };
  7057. #endif
  7058. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7059. assert(n % QK_K == 0);
  7060. assert(nrc == 1);
  7061. UNUSED(nrc);
  7062. UNUSED(bx);
  7063. UNUSED(by);
  7064. UNUSED(bs);
  7065. const block_iq2_xxs * restrict x = vx;
  7066. const block_q8_K * restrict y = vy;
  7067. const int nb = n / QK_K;
  7068. #if defined(__ARM_NEON)
  7069. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7070. uint32_t aux32[4];
  7071. const uint8_t * aux8 = (const uint8_t *)aux32;
  7072. ggml_int8x16x4_t q2u;
  7073. ggml_int8x16x4_t q2s;
  7074. ggml_int8x16x4_t q8b;
  7075. float sumf = 0;
  7076. for (int i = 0; i < nb; ++i) {
  7077. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7078. const uint16_t * restrict q2 = x[i].qs;
  7079. const int8_t * restrict q8 = y[i].qs;
  7080. float sumf1 = 0, sumf2 = 0;
  7081. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7082. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7083. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7084. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7085. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7086. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7087. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7088. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7089. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7090. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7091. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7092. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7093. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7094. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7095. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7096. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7097. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7098. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7099. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7100. }
  7101. sumf += d*(sumf1 + sumf2);
  7102. }
  7103. *s = 0.25f * sumf;
  7104. #elif defined(__AVX2__)
  7105. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7106. uint32_t aux32[4];
  7107. const uint8_t * aux8 = (const uint8_t *)aux32;
  7108. __m256 accumf = _mm256_setzero_ps();
  7109. for (int i = 0; i < nb; ++i) {
  7110. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7111. const uint16_t * restrict q2 = x[i].qs;
  7112. const int8_t * restrict q8 = y[i].qs;
  7113. __m256i sumi1 = _mm256_setzero_si256();
  7114. __m256i sumi2 = _mm256_setzero_si256();
  7115. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7116. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7117. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7118. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7119. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7120. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7121. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7122. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7123. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7124. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7125. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7126. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7127. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7128. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7129. const uint16_t ls1 = aux32[1] >> 28;
  7130. const uint16_t ls2 = aux32[3] >> 28;
  7131. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7132. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7133. sumi1 = _mm256_add_epi32(sumi1, p1);
  7134. sumi2 = _mm256_add_epi32(sumi2, p2);
  7135. }
  7136. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7137. }
  7138. *s = 0.125f * hsum_float_8(accumf);
  7139. #elif defined(__POWER9_VECTOR__)
  7140. vector float vsumf0 = vec_splats(0.0f);
  7141. vector float vsumf1 = vec_splats(0.0f);
  7142. vector float vsumf2 = vec_splats(0.0f);
  7143. vector float vsumf3 = vec_splats(0.0f);
  7144. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7145. for (int i = 0; i < nb; ++i) {
  7146. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7147. vector float vyd = vec_splats(y[i].d);
  7148. vector float vd = vec_mul(vxd, vyd);
  7149. vector signed int vsumi0 = vec_splats((int32_t)0);
  7150. vector signed int vsumi1 = vec_splats((int32_t)0);
  7151. vector signed int vsumi2 = vec_splats((int32_t)0);
  7152. vector signed int vsumi3 = vec_splats((int32_t)0);
  7153. vector signed int vsumi4 = vec_splats((int32_t)0);
  7154. vector signed int vsumi5 = vec_splats((int32_t)0);
  7155. vector signed int vsumi6 = vec_splats((int32_t)0);
  7156. vector signed int vsumi7 = vec_splats((int32_t)0);
  7157. const uint16_t * restrict q2 = x[i].qs;
  7158. const int8_t * restrict q8 = y[i].qs;
  7159. for (int j = 0; j < QK_K/32; j += 2) {
  7160. __builtin_prefetch(q2, 0, 1);
  7161. __builtin_prefetch(q8, 0, 1);
  7162. uint32_t aux32[4];
  7163. const uint8_t * aux8 = (const uint8_t *)aux32;
  7164. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7165. q2 += 8;
  7166. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7167. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7168. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7169. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7170. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7171. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7172. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7173. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7174. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7175. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7176. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7177. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7178. vector signed char q8y0 = vec_xl( 0, q8);
  7179. vector signed char q8y1 = vec_xl(16, q8);
  7180. vector signed char q8y2 = vec_xl(32, q8);
  7181. vector signed char q8y3 = vec_xl(48, q8);
  7182. q8 += 64;
  7183. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7184. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7185. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7186. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7187. const uint16_t ls0 = aux32[1] >> 28;
  7188. const uint16_t ls1 = aux32[3] >> 28;
  7189. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7190. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7191. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  7192. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  7193. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  7194. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  7195. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  7196. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  7197. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  7198. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  7199. }
  7200. vsumi0 = vec_add(vsumi0, vsumi4);
  7201. vsumi1 = vec_add(vsumi1, vsumi5);
  7202. vsumi2 = vec_add(vsumi2, vsumi6);
  7203. vsumi3 = vec_add(vsumi3, vsumi7);
  7204. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7205. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7206. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7207. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7208. }
  7209. vsumf0 = vec_add(vsumf0, vsumf2);
  7210. vsumf1 = vec_add(vsumf1, vsumf3);
  7211. vsumf0 = vec_add(vsumf0, vsumf1);
  7212. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7213. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7214. *s = 0.125f * vec_extract(vsumf0, 0);
  7215. #elif defined(__loongarch_asx)
  7216. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7217. uint32_t aux32[4];
  7218. const uint8_t * aux8 = (const uint8_t *)aux32;
  7219. __m256 accumf = (__m256)__lasx_xvldi(0);
  7220. for (int i = 0; i < nb; ++i) {
  7221. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7222. const uint16_t * restrict q2 = x[i].qs;
  7223. const int8_t * restrict q8 = y[i].qs;
  7224. __m256i sumi1 = __lasx_xvldi(0);
  7225. __m256i sumi2 = __lasx_xvldi(0);
  7226. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7227. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7228. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7229. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7230. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7231. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7232. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7233. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7234. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7235. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7236. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7237. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7238. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7239. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7240. const uint16_t ls1 = aux32[1] >> 28;
  7241. const uint16_t ls2 = aux32[3] >> 28;
  7242. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7243. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7244. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7245. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7246. }
  7247. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7248. }
  7249. *s = 0.125f * hsum_float_8(accumf);
  7250. #else
  7251. uint32_t aux32[2];
  7252. const uint8_t * aux8 = (const uint8_t *)aux32;
  7253. float sumf = 0.f;
  7254. for (int i = 0; i < nb; ++i) {
  7255. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7256. const uint16_t * restrict q2 = x[i].qs;
  7257. const int8_t * restrict q8 = y[i].qs;
  7258. int32_t bsum = 0;
  7259. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7260. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7261. q2 += 4;
  7262. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7263. int32_t sumi = 0;
  7264. for (int l = 0; l < 4; ++l) {
  7265. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7266. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7267. for (int j = 0; j < 8; ++j) {
  7268. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7269. }
  7270. q8 += 8;
  7271. }
  7272. bsum += sumi * ls;
  7273. }
  7274. sumf += d * bsum;
  7275. }
  7276. *s = 0.125f * sumf;
  7277. #endif
  7278. }
  7279. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7280. assert(n % QK_K == 0);
  7281. assert(nrc == 1);
  7282. UNUSED(nrc);
  7283. UNUSED(bx);
  7284. UNUSED(by);
  7285. UNUSED(bs);
  7286. const block_iq2_xs * restrict x = vx;
  7287. const block_q8_K * restrict y = vy;
  7288. const int nb = n / QK_K;
  7289. #if defined(__ARM_NEON)
  7290. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7291. ggml_int8x16x4_t q2u;
  7292. ggml_int8x16x4_t q2s;
  7293. ggml_int8x16x4_t q8b;
  7294. int32x4x4_t scales32;
  7295. float sumf = 0;
  7296. for (int i = 0; i < nb; ++i) {
  7297. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7298. const uint16_t * restrict q2 = x[i].qs;
  7299. const int8_t * restrict q8 = y[i].qs;
  7300. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7301. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7302. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7303. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7304. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7305. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7306. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7307. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7308. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7309. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7310. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7311. int32x4_t sumi = vdupq_n_s32(0);
  7312. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7313. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7314. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7315. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7316. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7317. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7318. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7319. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7320. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7321. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7322. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7323. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7324. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7325. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7326. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7327. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7328. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7329. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7330. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7331. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7332. q2 += 8;
  7333. }
  7334. sumf += d*vaddvq_s32(sumi);
  7335. }
  7336. *s = 0.125f * sumf;
  7337. #elif defined(__AVX2__)
  7338. const __m256i mone = _mm256_set1_epi8(1);
  7339. static const char block_sign_shuffle_mask_1[32] = {
  7340. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7341. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7342. };
  7343. static const char block_sign_shuffle_mask_2[32] = {
  7344. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7345. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7346. };
  7347. static const uint8_t bit_selector_mask_bytes[32] = {
  7348. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7349. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7350. };
  7351. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7352. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7353. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7354. static const uint8_t k_bit_helper[32] = {
  7355. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7356. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7357. };
  7358. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7359. const __m256i m511 = _mm256_set1_epi16(511);
  7360. const __m128i m4 = _mm_set1_epi8(0xf);
  7361. const __m128i m1 = _mm_set1_epi8(1);
  7362. uint64_t aux64;
  7363. // somewhat hacky, but gives a significant boost in performance
  7364. __m256i aux_gindex;
  7365. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7366. __m256 accumf = _mm256_setzero_ps();
  7367. for (int i = 0; i < nb; ++i) {
  7368. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7369. const uint16_t * restrict q2 = x[i].qs;
  7370. const int8_t * restrict q8 = y[i].qs;
  7371. memcpy(&aux64, x[i].scales, 8);
  7372. __m128i stmp = _mm_set1_epi64x(aux64);
  7373. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7374. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7375. __m256i sumi1 = _mm256_setzero_si256();
  7376. __m256i sumi2 = _mm256_setzero_si256();
  7377. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7378. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7379. aux_gindex = _mm256_and_si256(q2_data, m511);
  7380. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7381. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7382. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7383. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7384. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7385. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7386. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7387. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7388. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7389. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7390. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7391. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7392. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7393. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7394. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7395. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7396. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7397. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7398. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7399. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  7400. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  7401. __m256i signs;
  7402. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7403. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7404. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7405. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7406. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7407. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7408. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7409. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7410. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7411. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7412. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7413. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7414. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7415. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7416. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7417. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7418. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7419. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7420. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7421. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7422. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7423. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7424. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7425. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7426. }
  7427. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7428. }
  7429. *s = 0.125f * hsum_float_8(accumf);
  7430. #elif defined(__loongarch_asx)
  7431. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7432. static const char block_sign_shuffle_mask_1[32] = {
  7433. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7434. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7435. };
  7436. static const char block_sign_shuffle_mask_2[32] = {
  7437. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7438. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7439. };
  7440. static const uint8_t bit_selector_mask_bytes[32] = {
  7441. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7442. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7443. };
  7444. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  7445. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  7446. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  7447. static const uint8_t k_bit_helper[32] = {
  7448. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7449. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7450. };
  7451. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  7452. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  7453. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7454. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7455. uint64_t aux64;
  7456. // somewhat hacky, but gives a significant boost in performance
  7457. __m256i aux_gindex;
  7458. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7459. __m256 accumf = (__m256)__lasx_xvldi(0);
  7460. for (int i = 0; i < nb; ++i) {
  7461. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7462. const uint16_t * restrict q2 = x[i].qs;
  7463. const int8_t * restrict q8 = y[i].qs;
  7464. memcpy(&aux64, x[i].scales, 8);
  7465. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  7466. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  7467. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  7468. __m256i sumi1 = __lasx_xvldi(0);
  7469. __m256i sumi2 = __lasx_xvldi(0);
  7470. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7471. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  7472. aux_gindex = __lasx_xvand_v(q2_data, m511);
  7473. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  7474. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  7475. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  7476. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  7477. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  7478. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7479. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7480. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7481. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7482. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7483. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7484. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7485. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7486. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7487. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7488. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7489. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7490. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  7491. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  7492. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  7493. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  7494. __m256i signs;
  7495. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  7496. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7497. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  7498. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  7499. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7500. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  7501. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  7502. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7503. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  7504. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  7505. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7506. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  7507. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7508. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7509. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  7510. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  7511. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  7512. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  7513. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  7514. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  7515. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  7516. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  7517. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  7518. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  7519. }
  7520. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7521. }
  7522. *s = 0.125f * hsum_float_8(accumf);
  7523. #elif defined(__POWER9_VECTOR__)
  7524. vector float vsumf0 = vec_splats(0.0f);
  7525. vector float vsumf1 = vec_splats(0.0f);
  7526. vector float vsumf2 = vec_splats(0.0f);
  7527. vector float vsumf3 = vec_splats(0.0f);
  7528. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7529. for (int i = 0; i < nb; ++i) {
  7530. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7531. vector float vyd = vec_splats(y[i].d);
  7532. vector float vd = vec_mul(vxd, vyd);
  7533. vector signed int vsumi0 = vec_splats((int32_t)0);
  7534. vector signed int vsumi1 = vec_splats((int32_t)0);
  7535. vector signed int vsumi2 = vec_splats((int32_t)0);
  7536. vector signed int vsumi3 = vec_splats((int32_t)0);
  7537. vector signed int vsumi4 = vec_splats((int32_t)0);
  7538. vector signed int vsumi5 = vec_splats((int32_t)0);
  7539. vector signed int vsumi6 = vec_splats((int32_t)0);
  7540. vector signed int vsumi7 = vec_splats((int32_t)0);
  7541. const uint16_t * restrict q2 = x[i].qs;
  7542. const uint8_t * restrict sc = x[i].scales;
  7543. const int8_t * restrict q8 = y[i].qs;
  7544. for (int j = 0; j < QK_K/64; ++j) {
  7545. __builtin_prefetch(q2, 0, 1);
  7546. __builtin_prefetch(q8, 0, 1);
  7547. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  7548. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  7549. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  7550. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  7551. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  7552. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  7553. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  7554. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  7555. q2 += 8;
  7556. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7557. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7558. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7559. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7560. vector signed char q8y0 = vec_xl( 0, q8);
  7561. vector signed char q8y1 = vec_xl(16, q8);
  7562. vector signed char q8y2 = vec_xl(32, q8);
  7563. vector signed char q8y3 = vec_xl(48, q8);
  7564. q8 += 64;
  7565. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7566. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7567. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7568. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7569. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7570. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7571. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7572. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7573. sc += 2;
  7574. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7575. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7576. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7577. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7578. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  7579. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  7580. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  7581. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  7582. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  7583. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  7584. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  7585. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  7586. }
  7587. vsumi0 = vec_add(vsumi0, vsumi4);
  7588. vsumi1 = vec_add(vsumi1, vsumi5);
  7589. vsumi2 = vec_add(vsumi2, vsumi6);
  7590. vsumi3 = vec_add(vsumi3, vsumi7);
  7591. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7592. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7593. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7594. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7595. }
  7596. vsumf0 = vec_add(vsumf0, vsumf2);
  7597. vsumf1 = vec_add(vsumf1, vsumf3);
  7598. vsumf0 = vec_add(vsumf0, vsumf1);
  7599. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7600. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7601. *s = 0.125f * vec_extract(vsumf0, 0);
  7602. #else
  7603. float sumf = 0.f;
  7604. for (int i = 0; i < nb; ++i) {
  7605. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7606. const uint16_t * restrict q2 = x[i].qs;
  7607. const uint8_t * restrict sc = x[i].scales;
  7608. const int8_t * restrict q8 = y[i].qs;
  7609. int32_t bsum = 0;
  7610. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7611. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7612. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7613. int32_t sumi = 0;
  7614. for (int l = 0; l < 2; ++l) {
  7615. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7616. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7617. for (int j = 0; j < 8; ++j) {
  7618. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7619. }
  7620. q8 += 8;
  7621. }
  7622. bsum += sumi * ls1;
  7623. sumi = 0;
  7624. for (int l = 2; l < 4; ++l) {
  7625. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7626. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7627. for (int j = 0; j < 8; ++j) {
  7628. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7629. }
  7630. q8 += 8;
  7631. }
  7632. bsum += sumi * ls2;
  7633. q2 += 4;
  7634. }
  7635. sumf += d * bsum;
  7636. }
  7637. *s = 0.125f * sumf;
  7638. #endif
  7639. }
  7640. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7641. assert(n % QK_K == 0);
  7642. assert(nrc == 1);
  7643. UNUSED(nrc);
  7644. UNUSED(bx);
  7645. UNUSED(by);
  7646. UNUSED(bs);
  7647. const block_iq2_s * restrict x = vx;
  7648. const block_q8_K * restrict y = vy;
  7649. const int nb = n / QK_K;
  7650. #if defined(__ARM_NEON)
  7651. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7652. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7653. };
  7654. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7655. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7656. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7657. const uint8x16_t m1 = vdupq_n_u8(1);
  7658. const int32x4_t vzero = vdupq_n_s32(0);
  7659. uint8x16x2_t vs;
  7660. ggml_int8x16x4_t q2s;
  7661. ggml_int8x16x4_t q8b;
  7662. float sumf = 0;
  7663. for (int i = 0; i < nb; ++i) {
  7664. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7665. const uint8_t * restrict qs = x[i].qs;
  7666. const uint8_t * restrict qh = x[i].qh;
  7667. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7668. const int8_t * restrict q8 = y[i].qs;
  7669. int sumi1 = 0, sumi2 = 0;
  7670. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7671. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7672. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7673. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7674. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7675. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7676. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7677. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7678. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7679. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7680. qs += 8;
  7681. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7682. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7683. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7684. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7685. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7686. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7687. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7688. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7689. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7690. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7691. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7692. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7693. signs += 4;
  7694. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7695. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7696. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7697. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7698. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7699. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7700. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7701. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7702. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7703. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7704. }
  7705. sumf += d*(sumi1 + sumi2);
  7706. }
  7707. *s = 0.125f * sumf;
  7708. #elif defined(__AVX2__)
  7709. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7710. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7711. };
  7712. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7713. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7714. };
  7715. const __m128i m4 = _mm_set1_epi8(0xf);
  7716. const __m128i m1 = _mm_set1_epi8(1);
  7717. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7718. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7719. uint64_t aux64;
  7720. __m256 accumf = _mm256_setzero_ps();
  7721. for (int i = 0; i < nb; ++i) {
  7722. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7723. const uint8_t * restrict qs = x[i].qs;
  7724. const uint8_t * restrict qh = x[i].qh;
  7725. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7726. const int8_t * restrict q8 = y[i].qs;
  7727. memcpy(&aux64, x[i].scales, 8);
  7728. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7729. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7730. __m256i sumi1 = _mm256_setzero_si256();
  7731. __m256i sumi2 = _mm256_setzero_si256();
  7732. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7733. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7734. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7735. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7736. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7737. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7738. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7739. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7740. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7741. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7742. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7743. qs += 8;
  7744. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7745. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7746. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7747. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7748. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7749. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7750. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7751. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7752. signs += 4;
  7753. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7754. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7755. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7756. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7757. sumi1 = _mm256_add_epi32(sumi1, p1);
  7758. sumi2 = _mm256_add_epi32(sumi2, p2);
  7759. }
  7760. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7761. }
  7762. *s = 0.125f * hsum_float_8(accumf);
  7763. #elif defined(__POWER9_VECTOR__)
  7764. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7765. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7766. };
  7767. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7768. vector float vsumf0 = vec_splats(0.0f);
  7769. vector float vsumf1 = vec_splats(0.0f);
  7770. vector float vsumf2 = vec_splats(0.0f);
  7771. vector float vsumf3 = vec_splats(0.0f);
  7772. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7773. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7774. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7775. for (int i = 0; i < nb; ++i) {
  7776. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7777. vector float vyd = vec_splats(y[i].d);
  7778. vector float vd = vec_mul(vxd, vyd);
  7779. vector signed int vsumi0 = vec_splats((int32_t)0);
  7780. vector signed int vsumi1 = vec_splats((int32_t)0);
  7781. vector signed int vsumi2 = vec_splats((int32_t)0);
  7782. vector signed int vsumi3 = vec_splats((int32_t)0);
  7783. vector signed int vsumi4 = vec_splats((int32_t)0);
  7784. vector signed int vsumi5 = vec_splats((int32_t)0);
  7785. vector signed int vsumi6 = vec_splats((int32_t)0);
  7786. vector signed int vsumi7 = vec_splats((int32_t)0);
  7787. const uint8_t * restrict q2 = x[i].qs;
  7788. const uint8_t * restrict qh = x[i].qh;
  7789. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7790. const uint8_t * restrict sc = x[i].scales;
  7791. const int8_t * restrict q8 = y[i].qs;
  7792. for (int j = 0; j < QK_K/32; j += 2) {
  7793. __builtin_prefetch(q2, 0, 1);
  7794. __builtin_prefetch(q8, 0, 1);
  7795. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  7796. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  7797. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  7798. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  7799. q2 += 8;
  7800. qh += 2;
  7801. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7802. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7803. signs += 4;
  7804. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7805. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7806. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  7807. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  7808. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7809. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7810. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7811. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7812. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  7813. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  7814. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  7815. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  7816. vector signed char q8y0 = vec_xl( 0, q8);
  7817. vector signed char q8y1 = vec_xl(16, q8);
  7818. vector signed char q8y2 = vec_xl(32, q8);
  7819. vector signed char q8y3 = vec_xl(48, q8);
  7820. q8 += 64;
  7821. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7822. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7823. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7824. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7825. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7826. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7827. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7828. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7829. sc += 2;
  7830. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7831. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7832. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7833. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7834. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  7835. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  7836. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  7837. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  7838. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  7839. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  7840. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  7841. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  7842. }
  7843. vsumi0 = vec_add(vsumi0, vsumi4);
  7844. vsumi1 = vec_add(vsumi1, vsumi5);
  7845. vsumi2 = vec_add(vsumi2, vsumi6);
  7846. vsumi3 = vec_add(vsumi3, vsumi7);
  7847. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7848. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7849. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7850. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7851. }
  7852. vsumf0 = vec_add(vsumf0, vsumf2);
  7853. vsumf1 = vec_add(vsumf1, vsumf3);
  7854. vsumf0 = vec_add(vsumf0, vsumf1);
  7855. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7856. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7857. *s = 0.125f * vec_extract(vsumf0, 0);
  7858. #elif defined(__loongarch_asx)
  7859. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7860. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7861. };
  7862. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7863. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7864. };
  7865. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7866. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7867. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  7868. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  7869. uint64_t aux64;
  7870. __m256 accumf = (__m256)__lasx_xvldi(0);
  7871. for (int i = 0; i < nb; ++i) {
  7872. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7873. const uint8_t * restrict qs = x[i].qs;
  7874. const uint8_t * restrict qh = x[i].qh;
  7875. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7876. const int8_t * restrict q8 = y[i].qs;
  7877. __m128i tmp1;
  7878. memcpy(&aux64, x[i].scales, 8);
  7879. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  7880. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  7881. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  7882. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7883. __m256i sumi1 = __lasx_xvldi(0);
  7884. __m256i sumi2 = __lasx_xvldi(0);
  7885. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7886. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7887. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7888. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7889. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7890. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7891. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7892. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7893. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7894. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7895. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7896. qs += 8;
  7897. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  7898. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7899. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  7900. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  7901. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  7902. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7903. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  7904. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  7905. signs += 4;
  7906. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7907. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7908. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  7909. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  7910. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7911. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7912. }
  7913. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7914. }
  7915. *s = 0.125f * hsum_float_8(accumf);
  7916. #else
  7917. float sumf = 0;
  7918. for (int i = 0; i < nb; i++) {
  7919. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7920. const int8_t * q8 = y[i].qs;
  7921. const uint8_t * qs = x[i].qs;
  7922. const uint8_t * qh = x[i].qh;
  7923. const uint8_t * signs = qs + QK_K/8;
  7924. int bsum = 0;
  7925. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7926. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7927. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7928. int sumi1 = 0, sumi2 = 0;
  7929. for (int l = 0; l < 2; ++l) {
  7930. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7931. for (int j = 0; j < 8; ++j) {
  7932. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7933. }
  7934. q8 += 8;
  7935. }
  7936. for (int l = 2; l < 4; ++l) {
  7937. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7938. for (int j = 0; j < 8; ++j) {
  7939. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7940. }
  7941. q8 += 8;
  7942. }
  7943. bsum += ls1 * sumi1 + ls2 * sumi2;
  7944. qs += 4;
  7945. signs += 4;
  7946. }
  7947. sumf += d * bsum;
  7948. }
  7949. *s = 0.125f * sumf;
  7950. #endif
  7951. }
  7952. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7953. assert(n % QK_K == 0);
  7954. assert(nrc == 1);
  7955. UNUSED(nrc);
  7956. UNUSED(bx);
  7957. UNUSED(by);
  7958. UNUSED(bs);
  7959. const block_iq3_xxs * restrict x = vx;
  7960. const block_q8_K * restrict y = vy;
  7961. const int nb = n / QK_K;
  7962. #if defined(__ARM_NEON)
  7963. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7964. uint32_t aux32[2];
  7965. ggml_int8x16x4_t q3s;
  7966. ggml_int8x16x4_t q8b;
  7967. float sumf = 0;
  7968. for (int i = 0; i < nb; ++i) {
  7969. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7970. const uint8_t * restrict q3 = x[i].qs;
  7971. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7972. const int8_t * restrict q8 = y[i].qs;
  7973. float sumf1 = 0, sumf2 = 0;
  7974. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7975. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7976. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7977. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7978. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7979. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7980. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7981. q3 += 16;
  7982. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7983. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7984. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7985. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7986. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7987. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7988. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7989. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7990. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7991. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7992. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7993. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7994. }
  7995. sumf += d*(sumf1 + sumf2);
  7996. }
  7997. *s = 0.5f * sumf;
  7998. #elif defined(__AVX2__)
  7999. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8000. uint32_t aux32[2];
  8001. __m256 accumf = _mm256_setzero_ps();
  8002. for (int i = 0; i < nb; ++i) {
  8003. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8004. const uint8_t * restrict q3 = x[i].qs;
  8005. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8006. const int8_t * restrict q8 = y[i].qs;
  8007. __m256i sumi1 = _mm256_setzero_si256();
  8008. __m256i sumi2 = _mm256_setzero_si256();
  8009. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8010. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8011. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8012. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8013. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8014. q3 += 8;
  8015. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8016. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8017. q3 += 8;
  8018. memcpy(aux32, gas, 8); gas += 8;
  8019. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8020. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8021. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8022. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8023. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8024. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8025. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8026. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8027. const uint16_t ls1 = aux32[0] >> 28;
  8028. const uint16_t ls2 = aux32[1] >> 28;
  8029. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8030. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8031. sumi1 = _mm256_add_epi32(sumi1, p1);
  8032. sumi2 = _mm256_add_epi32(sumi2, p2);
  8033. }
  8034. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8035. }
  8036. *s = 0.25f * hsum_float_8(accumf);
  8037. #elif defined(__POWER9_VECTOR__)
  8038. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8039. vector float vsumf0 = vec_splats(0.0f);
  8040. vector float vsumf1 = vec_splats(0.0f);
  8041. vector float vsumf2 = vec_splats(0.0f);
  8042. vector float vsumf3 = vec_splats(0.0f);
  8043. for (int i = 0; i < nb; ++i) {
  8044. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8045. vector float vyd = vec_splats(y[i].d);
  8046. vector float vd = vec_mul(vxd, vyd);
  8047. vector signed int vsumi0 = vec_splats((int32_t)0);
  8048. vector signed int vsumi1 = vec_splats((int32_t)0);
  8049. vector signed int vsumi2 = vec_splats((int32_t)0);
  8050. vector signed int vsumi3 = vec_splats((int32_t)0);
  8051. vector signed int vsumi4 = vec_splats((int32_t)0);
  8052. vector signed int vsumi5 = vec_splats((int32_t)0);
  8053. vector signed int vsumi6 = vec_splats((int32_t)0);
  8054. vector signed int vsumi7 = vec_splats((int32_t)0);
  8055. const uint8_t * restrict q3 = x[i].qs;
  8056. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8057. const int8_t * restrict q8 = y[i].qs;
  8058. #pragma GCC unroll 1
  8059. for (int j = 0; j < QK_K/32; j += 2) {
  8060. __builtin_prefetch(q3, 0, 1);
  8061. __builtin_prefetch(q8, 0, 1);
  8062. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8063. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8064. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8065. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8066. q3 += 16;
  8067. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8068. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8069. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8070. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  8071. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  8072. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  8073. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  8074. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  8075. vector signed char q8y0 = vec_xl( 0, q8);
  8076. vector signed char q8y1 = vec_xl(16, q8);
  8077. vector signed char q8y2 = vec_xl(32, q8);
  8078. vector signed char q8y3 = vec_xl(48, q8);
  8079. q8 += 64;
  8080. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8081. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8082. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8083. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8084. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  8085. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  8086. signs += 2;
  8087. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8088. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8089. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8090. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8091. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8092. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8093. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8094. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8095. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8096. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8097. }
  8098. vsumi0 = vec_add(vsumi0, vsumi4);
  8099. vsumi1 = vec_add(vsumi1, vsumi5);
  8100. vsumi2 = vec_add(vsumi2, vsumi6);
  8101. vsumi3 = vec_add(vsumi3, vsumi7);
  8102. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8103. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8104. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8105. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8106. }
  8107. vsumf0 = vec_add(vsumf0, vsumf2);
  8108. vsumf1 = vec_add(vsumf1, vsumf3);
  8109. vsumf0 = vec_add(vsumf0, vsumf1);
  8110. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8111. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8112. *s = 0.25f * vec_extract(vsumf0, 0);
  8113. #elif defined(__loongarch_asx)
  8114. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8115. uint32_t aux32[2];
  8116. __m256 accumf = (__m256)__lasx_xvldi(0);
  8117. for (int i = 0; i < nb; ++i) {
  8118. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8119. const uint8_t * restrict q3 = x[i].qs;
  8120. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8121. const int8_t * restrict q8 = y[i].qs;
  8122. __m256i sumi1 = __lasx_xvldi(0);
  8123. __m256i sumi2 = __lasx_xvldi(0);
  8124. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8125. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8126. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8127. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8128. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8129. q3 += 8;
  8130. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8131. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8132. q3 += 8;
  8133. memcpy(aux32, gas, 8); gas += 8;
  8134. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8135. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8136. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8137. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8138. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  8139. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  8140. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8141. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8142. const uint16_t ls1 = aux32[0] >> 28;
  8143. const uint16_t ls2 = aux32[1] >> 28;
  8144. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8145. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8146. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8147. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8148. }
  8149. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8150. }
  8151. *s = 0.25f * hsum_float_8(accumf);
  8152. #else
  8153. uint32_t aux32;
  8154. float sumf = 0.f;
  8155. for (int i = 0; i < nb; ++i) {
  8156. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8157. const uint8_t * restrict q3 = x[i].qs;
  8158. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8159. const int8_t * restrict q8 = y[i].qs;
  8160. int32_t bsum = 0;
  8161. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8162. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  8163. const uint32_t ls = 2*(aux32 >> 28) + 1;
  8164. int32_t sumi = 0;
  8165. for (int l = 0; l < 4; ++l) {
  8166. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8167. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8168. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8169. for (int j = 0; j < 4; ++j) {
  8170. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8171. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8172. }
  8173. q8 += 8;
  8174. }
  8175. q3 += 8;
  8176. bsum += sumi * ls;
  8177. }
  8178. sumf += d * bsum;
  8179. }
  8180. *s = 0.25f * sumf;
  8181. #endif
  8182. }
  8183. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8184. assert(n % QK_K == 0);
  8185. assert(nrc == 1);
  8186. UNUSED(nrc);
  8187. UNUSED(bx);
  8188. UNUSED(by);
  8189. UNUSED(bs);
  8190. const block_iq3_s * restrict x = vx;
  8191. const block_q8_K * restrict y = vy;
  8192. const int nb = n / QK_K;
  8193. #if defined(__ARM_NEON)
  8194. typedef union {
  8195. uint16x8_t vec_index;
  8196. uint16_t index[8];
  8197. } vec_index_t;
  8198. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8199. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8200. };
  8201. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8202. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  8203. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8204. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8205. const int16x8_t hshift = vld1q_s16(k_shift);
  8206. const uint16x8_t m256 = vdupq_n_u16(256);
  8207. const uint8x16_t m1 = vdupq_n_u8(1);
  8208. uint8x16x2_t vs;
  8209. ggml_int8x16x4_t q3s;
  8210. ggml_int8x16x4_t q8b;
  8211. vec_index_t idx;
  8212. uint32_t scales32[2];
  8213. const uint8_t * scales8 = (const uint8_t *)scales32;
  8214. float sumf = 0;
  8215. for (int i = 0; i < nb; ++i) {
  8216. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8217. const uint8_t * restrict qs = x[i].qs;
  8218. const uint8_t * restrict qh = x[i].qh;
  8219. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8220. const int8_t * restrict q8 = y[i].qs;
  8221. memcpy(scales32, x[i].scales, 4);
  8222. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  8223. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  8224. int sumi1 = 0, sumi2 = 0;
  8225. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8226. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8227. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  8228. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  8229. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8230. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8231. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8232. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8233. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  8234. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8235. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8236. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8237. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8238. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8239. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8240. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8241. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8242. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8243. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  8244. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  8245. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8246. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8247. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8248. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8249. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8250. signs += 4;
  8251. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  8252. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  8253. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8254. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8255. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  8256. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  8257. }
  8258. sumf += d*(sumi1 + sumi2);
  8259. }
  8260. *s = sumf;
  8261. #elif defined(__AVX2__)
  8262. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8263. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8264. };
  8265. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8266. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8267. };
  8268. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8269. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8270. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  8271. const __m256i idx_mask = _mm256_set1_epi32(256);
  8272. typedef union {
  8273. __m256i vec[2];
  8274. uint32_t index[16];
  8275. } index_t;
  8276. index_t idx;
  8277. __m256 accumf = _mm256_setzero_ps();
  8278. for (int i = 0; i < nb; ++i) {
  8279. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8280. const uint8_t * restrict qs = x[i].qs;
  8281. const uint8_t * restrict qh = x[i].qh;
  8282. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8283. const int8_t * restrict q8 = y[i].qs;
  8284. __m256i sumi1 = _mm256_setzero_si256();
  8285. __m256i sumi2 = _mm256_setzero_si256();
  8286. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8287. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8288. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8289. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  8290. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  8291. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  8292. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  8293. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  8294. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  8295. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  8296. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8297. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8298. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8299. const __m256i q2_1 = _mm256_set_epi32(
  8300. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8301. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8302. );
  8303. const __m256i q2_2 = _mm256_set_epi32(
  8304. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8305. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8306. );
  8307. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8308. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8309. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8310. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8311. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8312. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8313. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8314. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8315. signs += 4;
  8316. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8317. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8318. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8319. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8320. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8321. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8322. sumi1 = _mm256_add_epi32(sumi1, p1);
  8323. sumi2 = _mm256_add_epi32(sumi2, p2);
  8324. }
  8325. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8326. }
  8327. *s = hsum_float_8(accumf);
  8328. #elif defined(__POWER9_VECTOR__)
  8329. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8330. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8331. };
  8332. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8333. vector float vsumf0 = vec_splats(0.0f);
  8334. vector float vsumf1 = vec_splats(0.0f);
  8335. vector float vsumf2 = vec_splats(0.0f);
  8336. vector float vsumf3 = vec_splats(0.0f);
  8337. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8338. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8339. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8340. for (int i = 0; i < nb; ++i) {
  8341. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8342. vector float vyd = vec_splats(y[i].d);
  8343. vector float vd = vec_mul(vxd, vyd);
  8344. const uint8_t * restrict q3 = x[i].qs;
  8345. const uint8_t * restrict qh = x[i].qh;
  8346. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  8347. const uint8_t * restrict sc = x[i].scales;
  8348. const int8_t * restrict q8 = y[i].qs;
  8349. vector signed int vsumi0 = vec_splats((int32_t)0);
  8350. vector signed int vsumi1 = vec_splats((int32_t)0);
  8351. vector signed int vsumi2 = vec_splats((int32_t)0);
  8352. vector signed int vsumi3 = vec_splats((int32_t)0);
  8353. vector signed int vsumi4 = vec_splats((int32_t)0);
  8354. vector signed int vsumi5 = vec_splats((int32_t)0);
  8355. vector signed int vsumi6 = vec_splats((int32_t)0);
  8356. vector signed int vsumi7 = vec_splats((int32_t)0);
  8357. for (int j = 0; j < QK_K/32; j += 2) {
  8358. __builtin_prefetch(q3, 0, 1);
  8359. __builtin_prefetch(q8, 0, 1);
  8360. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  8361. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  8362. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  8363. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  8364. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  8365. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  8366. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  8367. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  8368. q3 += 16;
  8369. qh += 2;
  8370. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8371. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8372. signs += 4;
  8373. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8374. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8375. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  8376. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  8377. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8378. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8379. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8380. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8381. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  8382. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  8383. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  8384. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  8385. vector signed char q8y0 = vec_xl( 0, q8);
  8386. vector signed char q8y1 = vec_xl(16, q8);
  8387. vector signed char q8y2 = vec_xl(32, q8);
  8388. vector signed char q8y3 = vec_xl(48, q8);
  8389. q8 += 64;
  8390. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8391. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8392. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8393. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8394. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8395. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8396. sc ++;
  8397. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8398. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8399. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8400. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8401. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8402. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8403. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8404. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8405. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8406. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8407. }
  8408. vsumi0 = vec_add(vsumi0, vsumi4);
  8409. vsumi1 = vec_add(vsumi1, vsumi5);
  8410. vsumi2 = vec_add(vsumi2, vsumi6);
  8411. vsumi3 = vec_add(vsumi3, vsumi7);
  8412. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8413. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8414. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8415. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8416. }
  8417. vsumf0 = vec_add(vsumf0, vsumf2);
  8418. vsumf1 = vec_add(vsumf1, vsumf3);
  8419. vsumf0 = vec_add(vsumf0, vsumf1);
  8420. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8421. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8422. *s = vec_extract(vsumf0, 0);
  8423. #elif defined(__loongarch_asx)
  8424. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8425. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8426. };
  8427. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8428. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8429. };
  8430. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8431. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8432. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  8433. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  8434. typedef union {
  8435. __m256i vec[2];
  8436. uint32_t index[16];
  8437. } index_t;
  8438. index_t idx;
  8439. __m256 accumf = (__m256)__lasx_xvldi(0);
  8440. for (int i = 0; i < nb; ++i) {
  8441. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8442. const uint8_t * restrict qs = x[i].qs;
  8443. const uint8_t * restrict qh = x[i].qh;
  8444. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8445. const int8_t * restrict q8 = y[i].qs;
  8446. __m256i sumi1 = __lasx_xvldi(0);
  8447. __m256i sumi2 = __lasx_xvldi(0);
  8448. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8449. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8450. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8451. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  8452. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  8453. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  8454. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  8455. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  8456. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  8457. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  8458. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8459. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8460. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8461. const __m256i q2_1 = lasx_set_w(
  8462. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8463. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8464. );
  8465. const __m256i q2_2 = lasx_set_w(
  8466. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8467. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8468. );
  8469. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  8470. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8471. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8472. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8473. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  8474. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8475. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8476. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8477. signs += 4;
  8478. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8479. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8480. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8481. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8482. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8483. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8484. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8485. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8486. }
  8487. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8488. }
  8489. *s = hsum_float_8(accumf);
  8490. #else
  8491. float sumf = 0.f;
  8492. for (int i = 0; i < nb; ++i) {
  8493. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8494. const uint8_t * restrict qs = x[i].qs;
  8495. const uint8_t * restrict qh = x[i].qh;
  8496. const uint8_t * restrict signs = x[i].signs;
  8497. const int8_t * restrict q8 = y[i].qs;
  8498. int32_t bsum = 0;
  8499. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8500. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8501. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8502. int32_t sumi = 0;
  8503. for (int l = 0; l < 4; ++l) {
  8504. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8505. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8506. for (int j = 0; j < 4; ++j) {
  8507. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8508. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8509. }
  8510. q8 += 8;
  8511. }
  8512. qs += 8;
  8513. signs += 4;
  8514. bsum += sumi * ls1;
  8515. sumi = 0;
  8516. for (int l = 0; l < 4; ++l) {
  8517. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8518. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8519. for (int j = 0; j < 4; ++j) {
  8520. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8521. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8522. }
  8523. q8 += 8;
  8524. }
  8525. qs += 8;
  8526. signs += 4;
  8527. bsum += sumi * ls2;
  8528. }
  8529. sumf += d * bsum;
  8530. }
  8531. *s = sumf;
  8532. #endif
  8533. }
  8534. #if defined(__AVX2__)
  8535. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8536. const __m256i ax = _mm256_sign_epi8(x, x);
  8537. const __m256i sy = _mm256_sign_epi8(y, x);
  8538. return _mm256_maddubs_epi16(ax, sy);
  8539. }
  8540. #elif defined(__loongarch_asx)
  8541. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8542. const __m256i ax = __lasx_xvsigncov_b(x, x);
  8543. const __m256i sy = __lasx_xvsigncov_b(x, y);
  8544. __m256i tmp1, tmp2, tmp3;
  8545. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  8546. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  8547. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  8548. return __lasx_xvsat_h(tmp3, 15);
  8549. }
  8550. #endif
  8551. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8552. assert(n % QK_K == 0);
  8553. assert(nrc == 1);
  8554. UNUSED(nrc);
  8555. UNUSED(bx);
  8556. UNUSED(by);
  8557. UNUSED(bs);
  8558. const block_iq1_s * restrict x = vx;
  8559. const block_q8_K * restrict y = vy;
  8560. const int nb = n / QK_K;
  8561. #if defined __ARM_NEON
  8562. ggml_int8x16x4_t q1b;
  8563. ggml_int8x16x4_t q8b;
  8564. float sumf = 0;
  8565. for (int i = 0; i < nb; ++i) {
  8566. const int8_t * q8 = y[i].qs;
  8567. const uint8_t * qs = x[i].qs;
  8568. const uint16_t * qh = x[i].qh;
  8569. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  8570. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8571. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  8572. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  8573. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  8574. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  8575. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  8576. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  8577. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  8578. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  8579. qs += 8;
  8580. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8581. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  8582. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  8583. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8584. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8585. sumi1 += vaddvq_s32(p1) * ls1;
  8586. sumi2 += vaddvq_s32(p2) * ls2;
  8587. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  8588. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  8589. }
  8590. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  8591. }
  8592. *s = sumf;
  8593. #elif defined __AVX2__
  8594. __m256 accum = _mm256_setzero_ps();
  8595. float accum1 = 0;
  8596. for (int i = 0; i < nb; ++i) {
  8597. const int8_t * q8 = y[i].qs;
  8598. const uint8_t * qs = x[i].qs;
  8599. const uint16_t * qh = x[i].qh;
  8600. __m256i sumi = _mm256_setzero_si256();
  8601. int sumi1 = 0;
  8602. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8603. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  8604. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8605. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  8606. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8607. qs += 8;
  8608. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8609. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8610. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8611. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8612. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8613. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8614. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  8615. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  8616. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  8617. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8618. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8619. }
  8620. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8621. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  8622. accum1 += d * sumi1;
  8623. }
  8624. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8625. #elif defined(__POWER9_VECTOR__)
  8626. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  8627. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  8628. vector float vsumf0 = vec_splats(0.0f);
  8629. vector float vsumf1 = vec_splats(0.0f);
  8630. vector float vsumf2 = vec_splats(0.0f);
  8631. vector float vsumf3 = vec_splats(0.0f);
  8632. for (int i = 0; i < nb; ++i) {
  8633. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8634. vector float vyd = vec_splats(y[i].d);
  8635. vector float vd = vec_mul(vxd, vyd);
  8636. vector signed int vsumi0 = vec_splats((int32_t)0);
  8637. vector signed int vsumi1 = vec_splats((int32_t)0);
  8638. vector signed int vsumi2 = vec_splats((int32_t)0);
  8639. vector signed int vsumi3 = vec_splats((int32_t)0);
  8640. vector signed int vsumi4 = vec_splats((int32_t)0);
  8641. vector signed int vsumi5 = vec_splats((int32_t)0);
  8642. vector signed int vsumi6 = vec_splats((int32_t)0);
  8643. vector signed int vsumi7 = vec_splats((int32_t)0);
  8644. vector signed int vsumi8 = vec_splats((int32_t)0);
  8645. const uint8_t * restrict q1 = x[i].qs;
  8646. const uint16_t * restrict qh = x[i].qh;
  8647. const int8_t * restrict q8 = y[i].qs;
  8648. const int16_t * restrict qs = y[i].bsums;
  8649. for (int j = 0; j < QK_K/32; j += 2) {
  8650. __builtin_prefetch(q1, 0, 1);
  8651. __builtin_prefetch(qh, 0, 1);
  8652. __builtin_prefetch(q8, 0, 1);
  8653. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  8654. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  8655. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  8656. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  8657. q1 += 8;
  8658. vector signed char q1x0 = (vector signed char)aux64x2_0;
  8659. vector signed char q1x1 = (vector signed char)aux64x2_1;
  8660. vector signed char q1x2 = (vector signed char)aux64x2_2;
  8661. vector signed char q1x3 = (vector signed char)aux64x2_3;
  8662. vector signed char q8y0 = vec_xl( 0, q8);
  8663. vector signed char q8y1 = vec_xl(16, q8);
  8664. vector signed char q8y2 = vec_xl(32, q8);
  8665. vector signed char q8y3 = vec_xl(48, q8);
  8666. q8 += 64;
  8667. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  8668. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  8669. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  8670. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  8671. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  8672. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  8673. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8674. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8675. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  8676. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8677. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8678. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8679. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8680. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8681. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8682. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8683. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8684. vector signed short q8ysums = vec_xl_len(qs, 8);
  8685. qs += 4;
  8686. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  8687. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  8688. qh += 2;
  8689. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  8690. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  8691. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  8692. }
  8693. vsumi0 = vec_add(vsumi0, vsumi4);
  8694. vsumi1 = vec_add(vsumi1, vsumi5);
  8695. vsumi2 = vec_add(vsumi2, vsumi6);
  8696. vsumi3 = vec_add(vsumi3, vsumi7);
  8697. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8698. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8699. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8700. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8701. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  8702. }
  8703. vsumf0 = vec_add(vsumf0, vsumf2);
  8704. vsumf1 = vec_add(vsumf1, vsumf3);
  8705. vsumf0 = vec_add(vsumf0, vsumf1);
  8706. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8707. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8708. *s = vec_extract(vsumf0, 0);
  8709. #elif defined(__loongarch_asx)
  8710. __m256 accum = (__m256)__lasx_xvldi(0);
  8711. float accum1 = 0;
  8712. for (int i = 0; i < nb; ++i) {
  8713. const int8_t * q8 = y[i].qs;
  8714. const uint8_t * qs = x[i].qs;
  8715. const uint16_t * qh = x[i].qh;
  8716. __m256i sumi = __lasx_xvldi(0);
  8717. int sumi1 = 0;
  8718. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8719. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  8720. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  8721. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  8722. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  8723. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  8724. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  8725. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  8726. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  8727. qs += 8;
  8728. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8729. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8730. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8731. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8732. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8733. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8734. __m256i tmp1, tmp5, tmp6;
  8735. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  8736. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  8737. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  8738. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  8739. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  8740. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  8741. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  8742. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  8743. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  8744. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8745. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8746. }
  8747. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8748. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  8749. accum1 += d * sumi1;
  8750. }
  8751. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8752. #else
  8753. float sumf = 0;
  8754. for (int i = 0; i < nb; i++) {
  8755. const int8_t * q8 = y[i].qs;
  8756. const uint8_t * qs = x[i].qs;
  8757. const uint16_t * qh = x[i].qh;
  8758. int sumi = 0, sumi1 = 0;
  8759. for (int ib = 0; ib < QK_K/32; ++ib) {
  8760. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  8761. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  8762. int lsum = 0;
  8763. for (int l = 0; l < 4; ++l) {
  8764. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  8765. for (int j = 0; j < 8; ++j) {
  8766. lsum += q8[j] * grid[j];
  8767. }
  8768. q8 += 8;
  8769. }
  8770. sumi += ls * lsum;
  8771. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  8772. qs += 4;
  8773. }
  8774. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  8775. }
  8776. *s = sumf;
  8777. #endif
  8778. }
  8779. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8780. assert(n % QK_K == 0);
  8781. assert(nrc == 1);
  8782. UNUSED(nrc);
  8783. UNUSED(bx);
  8784. UNUSED(by);
  8785. UNUSED(bs);
  8786. const block_iq1_m * restrict x = vx;
  8787. const block_q8_K * restrict y = vy;
  8788. const int nb = n / QK_K;
  8789. iq1m_scale_t scale;
  8790. #if defined __ARM_NEON
  8791. const int32x4_t mask = vdupq_n_s32(0x7);
  8792. const int32x4_t mone = vdupq_n_s32(1);
  8793. const int32x4_t mzero = vdupq_n_s32(0);
  8794. ggml_int8x16x4_t deltas;
  8795. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  8796. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  8797. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  8798. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  8799. ggml_int8x16x4_t q1b;
  8800. ggml_int8x16x4_t q8b;
  8801. uint32_t aux32;
  8802. const uint8_t * aux8 = (const uint8_t *)&aux32;
  8803. float sumf = 0;
  8804. for (int i = 0; i < nb; ++i) {
  8805. const int8_t * q8 = y[i].qs;
  8806. const uint8_t * qs = x[i].qs;
  8807. const uint8_t * qh = x[i].qh;
  8808. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8809. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8810. int32x4_t sumi1 = mzero;
  8811. int32x4_t sumi2 = mzero;
  8812. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8813. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  8814. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  8815. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  8816. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  8817. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  8818. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  8819. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  8820. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  8821. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8822. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  8823. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  8824. const int32x4_t p12 = vpaddq_s32(p1, p2);
  8825. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  8826. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  8827. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  8828. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  8829. const int32x4_t p34 = vpaddq_s32(p3, p4);
  8830. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  8831. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  8832. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  8833. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  8834. qs += 8; qh += 4;
  8835. }
  8836. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  8837. }
  8838. *s = sumf;
  8839. #elif defined __AVX2__
  8840. const __m256i mask = _mm256_set1_epi16(0x7);
  8841. const __m256i mone = _mm256_set1_epi16(1);
  8842. __m256 accum1 = _mm256_setzero_ps();
  8843. __m256 accum2 = _mm256_setzero_ps();
  8844. for (int i = 0; i < nb; ++i) {
  8845. const int8_t * q8 = y[i].qs;
  8846. const uint8_t * qs = x[i].qs;
  8847. const uint8_t * qh = x[i].qh;
  8848. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8849. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8850. __m256i sumi1 = _mm256_setzero_si256();
  8851. __m256i sumi2 = _mm256_setzero_si256();
  8852. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8853. const __m256i q1b_1 = _mm256_set_epi64x(
  8854. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  8855. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  8856. );
  8857. const __m256i q1b_2 = _mm256_set_epi64x(
  8858. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  8859. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  8860. );
  8861. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8862. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8863. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8864. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8865. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8866. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8867. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8868. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8869. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8870. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8871. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8872. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8873. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  8874. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  8875. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  8876. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  8877. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  8878. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  8879. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  8880. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  8881. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  8882. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  8883. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  8884. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  8885. qs += 8; qh += 4;
  8886. }
  8887. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8888. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  8889. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  8890. }
  8891. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8892. #else
  8893. int sum1[2], sum2[2], delta[4];
  8894. float sumf = 0;
  8895. for (int i = 0; i < nb; i++) {
  8896. const int8_t * q8 = y[i].qs;
  8897. const uint8_t * qs = x[i].qs;
  8898. const uint8_t * qh = x[i].qh;
  8899. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8900. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8901. int sumi1 = 0, sumi2 = 0;
  8902. for (int ib = 0; ib < QK_K/32; ++ib) {
  8903. delta[0] = qh[0] & 0x08 ? -1 : 1;
  8904. delta[1] = qh[0] & 0x80 ? -1 : 1;
  8905. delta[2] = qh[1] & 0x08 ? -1 : 1;
  8906. delta[3] = qh[1] & 0x80 ? -1 : 1;
  8907. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  8908. for (int l = 0; l < 4; ++l) {
  8909. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  8910. int lsum1 = 0, lsum2 = 0;
  8911. for (int j = 0; j < 8; ++j) {
  8912. lsum1 += q8[j] * grid[j];
  8913. lsum2 += q8[j];
  8914. }
  8915. q8 += 8;
  8916. sum1[l/2] += lsum1;
  8917. sum2[l/2] += lsum2*delta[l];
  8918. }
  8919. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  8920. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  8921. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  8922. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  8923. qs += 4;
  8924. qh += 2;
  8925. }
  8926. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  8927. }
  8928. *s = sumf;
  8929. #endif
  8930. }
  8931. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8932. assert(nrc == 1);
  8933. UNUSED(nrc);
  8934. UNUSED(bx);
  8935. UNUSED(by);
  8936. UNUSED(bs);
  8937. assert(n % QK4_NL == 0);
  8938. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8939. const block_iq4_nl * restrict x = vx;
  8940. const block_q8_0 * restrict y = vy;
  8941. const int nb = n / QK4_NL;
  8942. #if defined __ARM_NEON
  8943. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8944. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8945. uint8x16x2_t q4bits;
  8946. int8x16x4_t q4b;
  8947. int8x16x4_t q8b;
  8948. int32x4_t prod_1, prod_2;
  8949. float sumf = 0;
  8950. for (int ib = 0; ib < nb; ib += 2) {
  8951. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  8952. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  8953. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  8954. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  8955. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  8956. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  8957. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8958. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8959. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8960. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8961. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8962. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8963. sumf +=
  8964. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  8965. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  8966. }
  8967. *s = sumf;
  8968. #elif defined __AVX2__
  8969. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8970. const __m128i m4b = _mm_set1_epi8(0x0f);
  8971. const __m256i mone = _mm256_set1_epi16(1);
  8972. __m256 accum1 = _mm256_setzero_ps();
  8973. __m256 accum2 = _mm256_setzero_ps();
  8974. for (int ib = 0; ib < nb; ib += 2) {
  8975. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  8976. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  8977. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  8978. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  8979. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8980. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8981. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8982. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8983. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8984. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8985. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8986. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8987. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  8988. _mm256_cvtepi32_ps(p_1), accum1);
  8989. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  8990. _mm256_cvtepi32_ps(p_2), accum2);
  8991. y += 2;
  8992. x += 2;
  8993. }
  8994. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8995. #elif defined(__POWER9_VECTOR__)
  8996. const vector signed char lowMask = vec_splats((signed char)0xF);
  8997. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8998. vector float vsumf0 = vec_splats(0.0f);
  8999. vector float vsumf1 = vec_splats(0.0f);
  9000. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9001. #pragma GCC unroll 4
  9002. for (int ib = 0; ib < nb; ++ib) {
  9003. __builtin_prefetch(x[ib].qs, 0, 1);
  9004. __builtin_prefetch(y[ib].qs, 0, 1);
  9005. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  9006. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  9007. vector float vd = vec_mul(vxd, vyd);
  9008. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  9009. vector signed char q4x0 = vec_and(qxs, lowMask);
  9010. vector signed char q4x1 = vec_sr(qxs, v4);
  9011. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  9012. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  9013. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  9014. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  9015. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  9016. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  9017. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  9018. vector signed int vsumi1 = vec_add(vec_unpackh(qv1), vec_unpackl(qv1));
  9019. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9020. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9021. }
  9022. vsumf0 = vec_add(vsumf0, vsumf1);
  9023. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9024. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9025. *s = vec_extract(vsumf0, 0);
  9026. #elif defined (__loongarch_asx)
  9027. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9028. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9029. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  9030. __m256 accum1 = (__m256)__lasx_xvldi(0);
  9031. __m256 accum2 = (__m256)__lasx_xvldi(0);
  9032. for (int ib = 0; ib < nb; ib += 2) {
  9033. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[0].qs, 0);
  9034. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[1].qs, 0);
  9035. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[0].qs, 0);
  9036. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[1].qs, 0);
  9037. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  9038. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  9039. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  9040. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  9041. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9042. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9043. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  9044. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  9045. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9046. __lasx_xvffint_s_w(p_1), accum1);
  9047. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9048. __lasx_xvffint_s_w(p_2), accum2);
  9049. y += 2;
  9050. x += 2;
  9051. }
  9052. *s = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  9053. #else
  9054. float sumf = 0;
  9055. for (int ib = 0; ib < nb; ++ib) {
  9056. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  9057. int sumi1 = 0, sumi2 = 0;
  9058. for (int j = 0; j < QK4_NL/2; ++j) {
  9059. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  9060. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  9061. }
  9062. sumf += d * (sumi1 + sumi2);
  9063. }
  9064. *s = sumf;
  9065. #endif
  9066. }
  9067. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9068. assert(nrc == 1);
  9069. UNUSED(nrc);
  9070. UNUSED(bx);
  9071. UNUSED(by);
  9072. UNUSED(bs);
  9073. assert(n % QK_K == 0);
  9074. const block_iq4_xs * restrict x = vx;
  9075. const block_q8_K * restrict y = vy;
  9076. const int nb = n / QK_K;
  9077. #if defined __ARM_NEON
  9078. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9079. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9080. ggml_uint8x16x2_t q4bits;
  9081. ggml_int8x16x4_t q4b;
  9082. ggml_int8x16x4_t q8b;
  9083. int32x4_t prod_1, prod_2;
  9084. float sumf = 0;
  9085. for (int ibl = 0; ibl < nb; ++ibl) {
  9086. const int8_t * q8 = y[ibl].qs;
  9087. const uint8_t * q4 = x[ibl].qs;
  9088. uint16_t h = x[ibl].scales_h;
  9089. int sumi1 = 0, sumi2 = 0;
  9090. for (int ib = 0; ib < QK_K/64; ++ib) {
  9091. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  9092. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9093. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9094. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9095. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9096. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9097. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9098. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9099. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  9100. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  9101. h >>= 4;
  9102. sumi1 += vaddvq_s32(prod_1) * ls1;
  9103. sumi2 += vaddvq_s32(prod_2) * ls2;
  9104. }
  9105. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  9106. }
  9107. *s = sumf;
  9108. #elif defined __AVX2__
  9109. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9110. const __m128i m4b = _mm_set1_epi8(0x0f);
  9111. __m256 accum = _mm256_setzero_ps();
  9112. for (int ibl = 0; ibl < nb; ++ibl) {
  9113. const uint8_t * qs = x[ibl].qs;
  9114. const int8_t * q8 = y[ibl].qs;
  9115. uint16_t sh = x[ibl].scales_h;
  9116. __m256i sumi1 = _mm256_setzero_si256();
  9117. __m256i sumi2 = _mm256_setzero_si256();
  9118. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9119. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9120. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9121. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9122. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9123. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9124. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9125. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9126. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9127. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9128. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9129. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9130. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9131. sh >>= 4;
  9132. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  9133. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  9134. sumi1 = _mm256_add_epi32(p_1, sumi1);
  9135. sumi2 = _mm256_add_epi32(p_2, sumi2);
  9136. }
  9137. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9138. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  9139. }
  9140. *s = hsum_float_8(accum);
  9141. #elif defined(__POWER9_VECTOR__)
  9142. const vector signed char lowMask = vec_splats((signed char)0xF);
  9143. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9144. vector float vsumf0 = vec_splats(0.0f);
  9145. vector float vsumf1 = vec_splats(0.0f);
  9146. vector float vsumf2 = vec_splats(0.0f);
  9147. vector float vsumf3 = vec_splats(0.0f);
  9148. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9149. for (int ibl = 0; ibl < nb; ++ibl) {
  9150. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  9151. vector float vyd = vec_splats(y[ibl].d);
  9152. vector float vd = vec_mul(vxd, vyd);
  9153. vector signed int vsumi0 = vec_splats((int32_t)0);
  9154. vector signed int vsumi1 = vec_splats((int32_t)0);
  9155. vector signed int vsumi2 = vec_splats((int32_t)0);
  9156. vector signed int vsumi3 = vec_splats((int32_t)0);
  9157. vector signed int vsumi4 = vec_splats((int32_t)0);
  9158. vector signed int vsumi5 = vec_splats((int32_t)0);
  9159. vector signed int vsumi6 = vec_splats((int32_t)0);
  9160. vector signed int vsumi7 = vec_splats((int32_t)0);
  9161. uint16_t h = x[ibl].scales_h;
  9162. const uint8_t * restrict q4 = x[ibl].qs;
  9163. const uint8_t * restrict sc = x[ibl].scales_l;
  9164. const int8_t * restrict q8 = y[ibl].qs;
  9165. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  9166. __builtin_prefetch(q4, 0, 1);
  9167. __builtin_prefetch(q8, 0, 1);
  9168. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  9169. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  9170. q4 += 32;
  9171. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  9172. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  9173. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  9174. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  9175. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  9176. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  9177. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  9178. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  9179. vector signed char q8y0 = vec_xl( 0, q8);
  9180. vector signed char q8y1 = vec_xl(16, q8);
  9181. vector signed char q8y2 = vec_xl(32, q8);
  9182. vector signed char q8y3 = vec_xl(48, q8);
  9183. q8 += 64;
  9184. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  9185. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  9186. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  9187. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  9188. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  9189. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  9190. h >>= 4;
  9191. sc ++;
  9192. vector signed short vscales01 = vec_splats((int16_t)ls0);
  9193. vector signed short vscales23 = vec_splats((int16_t)ls1);
  9194. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  9195. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  9196. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  9197. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  9198. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  9199. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  9200. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  9201. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  9202. }
  9203. vsumi0 = vec_add(vsumi0, vsumi4);
  9204. vsumi1 = vec_add(vsumi1, vsumi5);
  9205. vsumi2 = vec_add(vsumi2, vsumi6);
  9206. vsumi3 = vec_add(vsumi3, vsumi7);
  9207. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9208. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9209. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9210. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9211. }
  9212. vsumf0 = vec_add(vsumf0, vsumf2);
  9213. vsumf1 = vec_add(vsumf1, vsumf3);
  9214. vsumf0 = vec_add(vsumf0, vsumf1);
  9215. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9216. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9217. *s = vec_extract(vsumf0, 0);
  9218. #elif defined(__loongarch_asx)
  9219. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9220. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9221. __m256 accum = (__m256)__lasx_xvldi(0);
  9222. __m256i tmp1;
  9223. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  9224. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  9225. for (int ibl = 0; ibl < nb; ++ibl) {
  9226. const uint8_t * qs = x[ibl].qs;
  9227. const int8_t * q8 = y[ibl].qs;
  9228. uint16_t sh = x[ibl].scales_h;
  9229. __m256i sumi1 = __lasx_xvldi(0);
  9230. __m256i sumi2 = __lasx_xvldi(0);
  9231. __m128i zero = __lsx_vldi(0);
  9232. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9233. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9234. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9235. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9236. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9237. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  9238. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9239. mask = __lsx_vsle_b(zero, tmp2);
  9240. tmp3 = __lsx_vand_v(tmp0, mask);
  9241. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9242. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  9243. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9244. mask = __lsx_vsle_b(zero, tmp2);
  9245. tmp4 = __lsx_vand_v(tmp0, mask);
  9246. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9247. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  9248. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  9249. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9250. mask = __lsx_vsle_b(zero, tmp2);
  9251. tmp3 = __lsx_vand_v(tmp0, mask);
  9252. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9253. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  9254. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9255. mask = __lsx_vsle_b(zero, tmp2);
  9256. tmp4 = __lsx_vand_v(tmp0, mask);
  9257. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9258. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  9259. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9260. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9261. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9262. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9263. sh >>= 4;
  9264. __m256i tmp5, tmp6;
  9265. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9266. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  9267. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  9268. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  9269. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9270. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  9271. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  9272. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  9273. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  9274. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  9275. }
  9276. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9277. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  9278. }
  9279. *s = hsum_float_8(accum);
  9280. #else
  9281. float sumf = 0;
  9282. for (int ibl = 0; ibl < nb; ++ibl) {
  9283. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  9284. uint16_t h = x[ibl].scales_h;
  9285. const uint8_t * qs = x[ibl].qs;
  9286. const int8_t * q8 = y[ibl].qs;
  9287. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9288. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  9289. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  9290. h >>= 4;
  9291. const float d1 = d4d8*(ls1 - 32);
  9292. const float d2 = d4d8*(ls2 - 32);
  9293. int sumi1 = 0, sumi2 = 0;
  9294. for (int j = 0; j < 16; ++j) {
  9295. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9296. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9297. }
  9298. sumf += d1 * (sumi1 + sumi2);
  9299. qs += 16;
  9300. q8 += 32;
  9301. sumi1 = sumi2 = 0;
  9302. for (int j = 0; j < 16; ++j) {
  9303. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9304. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9305. }
  9306. sumf += d2 * (sumi1 + sumi2);
  9307. qs += 16;
  9308. q8 += 32;
  9309. }
  9310. }
  9311. *s = sumf;
  9312. #endif
  9313. }
  9314. // ================================ IQ2 quantization =============================================
  9315. typedef struct {
  9316. uint64_t * grid;
  9317. int * map;
  9318. uint16_t * neighbours;
  9319. } iq2_entry_t;
  9320. static iq2_entry_t iq2_data[4] = {
  9321. {NULL, NULL, NULL},
  9322. {NULL, NULL, NULL},
  9323. {NULL, NULL, NULL},
  9324. {NULL, NULL, NULL},
  9325. };
  9326. static inline int iq2_data_index(enum ggml_type type) {
  9327. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9328. return type == GGML_TYPE_IQ2_XXS ? 0 :
  9329. type == GGML_TYPE_IQ2_XS ? 1 :
  9330. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  9331. }
  9332. static inline int iq2_grid_size(enum ggml_type type) {
  9333. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9334. return type == GGML_TYPE_IQ2_XXS ? 256 :
  9335. type == GGML_TYPE_IQ2_XS ? 512 :
  9336. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  9337. }
  9338. static int iq2_compare_func(const void * left, const void * right) {
  9339. const int * l = (const int *)left;
  9340. const int * r = (const int *)right;
  9341. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9342. }
  9343. void iq2xs_init_impl(enum ggml_type type) {
  9344. const int gindex = iq2_data_index(type);
  9345. const int grid_size = iq2_grid_size(type);
  9346. if (iq2_data[gindex].grid) {
  9347. return;
  9348. }
  9349. static const uint16_t kgrid_2bit_256[256] = {
  9350. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  9351. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  9352. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  9353. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  9354. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  9355. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  9356. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  9357. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  9358. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  9359. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  9360. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  9361. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  9362. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  9363. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  9364. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  9365. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  9366. };
  9367. static const uint16_t kgrid_2bit_512[512] = {
  9368. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9369. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  9370. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  9371. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  9372. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  9373. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  9374. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  9375. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  9376. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  9377. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  9378. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  9379. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  9380. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  9381. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  9382. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  9383. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  9384. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  9385. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  9386. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  9387. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  9388. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  9389. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  9390. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  9391. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  9392. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  9393. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  9394. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  9395. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  9396. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  9397. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  9398. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  9399. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  9400. };
  9401. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  9402. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  9403. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  9404. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  9405. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  9406. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  9407. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  9408. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  9409. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  9410. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  9411. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  9412. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  9413. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  9414. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  9415. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  9416. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  9417. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  9418. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  9419. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  9420. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  9421. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  9422. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  9423. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  9424. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  9425. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  9426. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  9427. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  9428. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  9429. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  9430. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  9431. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  9432. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  9433. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  9434. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  9435. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  9436. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  9437. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  9438. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  9439. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  9440. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  9441. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  9442. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  9443. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  9444. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  9445. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  9446. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  9447. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  9448. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  9449. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  9450. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  9451. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  9452. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  9453. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  9454. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  9455. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  9456. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  9457. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  9458. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  9459. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  9460. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  9461. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  9462. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  9463. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  9464. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  9465. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  9466. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  9467. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  9468. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  9469. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  9470. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  9471. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  9472. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  9473. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  9474. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  9475. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  9476. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  9477. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  9478. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  9479. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  9480. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  9481. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  9482. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  9483. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  9484. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  9485. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  9486. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  9487. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  9488. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  9489. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  9490. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  9491. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  9492. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  9493. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  9494. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  9495. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  9496. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  9497. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  9498. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  9499. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  9500. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  9501. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  9502. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  9503. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  9504. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  9505. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  9506. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  9507. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  9508. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  9509. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  9510. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  9511. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  9512. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  9513. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  9514. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  9515. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  9516. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  9517. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  9518. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  9519. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  9520. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  9521. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  9522. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  9523. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  9524. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  9525. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  9526. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  9527. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  9528. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  9529. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  9530. };
  9531. static const uint16_t kgrid_2bit_1024[1024] = {
  9532. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9533. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  9534. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  9535. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  9536. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  9537. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  9538. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  9539. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  9540. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  9541. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  9542. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  9543. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  9544. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  9545. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  9546. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  9547. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  9548. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  9549. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  9550. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  9551. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  9552. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  9553. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  9554. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  9555. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  9556. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  9557. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  9558. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  9559. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  9560. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  9561. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  9562. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  9563. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  9564. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  9565. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  9566. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  9567. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  9568. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  9569. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  9570. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  9571. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  9572. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  9573. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  9574. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  9575. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  9576. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  9577. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  9578. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  9579. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  9580. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  9581. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  9582. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  9583. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  9584. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  9585. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  9586. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  9587. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  9588. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  9589. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  9590. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  9591. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  9592. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  9593. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  9594. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  9595. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  9596. };
  9597. const int kmap_size = 43692;
  9598. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  9599. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  9600. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  9601. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  9602. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  9603. uint64_t * kgrid_q2xs;
  9604. int * kmap_q2xs;
  9605. uint16_t * kneighbors_q2xs;
  9606. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  9607. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  9608. for (int k = 0; k < grid_size; ++k) {
  9609. int8_t * pos = (int8_t *)(the_grid + k);
  9610. for (int i = 0; i < 8; ++i) {
  9611. int l = (kgrid[k] >> 2*i) & 0x3;
  9612. pos[i] = 2*l + 1;
  9613. }
  9614. }
  9615. kgrid_q2xs = the_grid;
  9616. iq2_data[gindex].grid = the_grid;
  9617. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  9618. iq2_data[gindex].map = kmap_q2xs;
  9619. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  9620. uint64_t aux64;
  9621. uint8_t * aux8 = (uint8_t *)&aux64;
  9622. for (int i = 0; i < grid_size; ++i) {
  9623. aux64 = kgrid_q2xs[i];
  9624. uint16_t index = 0;
  9625. for (int k=0; k<8; ++k) {
  9626. uint16_t q = (aux8[k] - 1)/2;
  9627. index |= (q << 2*k);
  9628. }
  9629. kmap_q2xs[index] = i;
  9630. }
  9631. int8_t pos[8];
  9632. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  9633. int num_neighbors = 0, num_not_in_map = 0;
  9634. for (int i = 0; i < kmap_size; ++i) {
  9635. if (kmap_q2xs[i] >= 0) continue;
  9636. ++num_not_in_map;
  9637. for (int k = 0; k < 8; ++k) {
  9638. int l = (i >> 2*k) & 0x3;
  9639. pos[k] = 2*l + 1;
  9640. }
  9641. for (int j = 0; j < grid_size; ++j) {
  9642. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9643. int d2 = 0;
  9644. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9645. dist2[2*j+0] = d2;
  9646. dist2[2*j+1] = j;
  9647. }
  9648. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9649. int n = 0; int d2 = dist2[0];
  9650. int nhave = 1;
  9651. for (int j = 0; j < grid_size; ++j) {
  9652. if (dist2[2*j] > d2) {
  9653. if (nhave == nwant) break;
  9654. d2 = dist2[2*j];
  9655. ++nhave;
  9656. }
  9657. ++n;
  9658. }
  9659. num_neighbors += n;
  9660. }
  9661. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  9662. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  9663. iq2_data[gindex].neighbours = kneighbors_q2xs;
  9664. int counter = 0;
  9665. for (int i = 0; i < kmap_size; ++i) {
  9666. if (kmap_q2xs[i] >= 0) continue;
  9667. for (int k = 0; k < 8; ++k) {
  9668. int l = (i >> 2*k) & 0x3;
  9669. pos[k] = 2*l + 1;
  9670. }
  9671. for (int j = 0; j < grid_size; ++j) {
  9672. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9673. int d2 = 0;
  9674. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9675. dist2[2*j+0] = d2;
  9676. dist2[2*j+1] = j;
  9677. }
  9678. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9679. kmap_q2xs[i] = -(counter + 1);
  9680. int d2 = dist2[0];
  9681. uint16_t * start = &kneighbors_q2xs[counter++];
  9682. int n = 0, nhave = 1;
  9683. for (int j = 0; j < grid_size; ++j) {
  9684. if (dist2[2*j] > d2) {
  9685. if (nhave == nwant) break;
  9686. d2 = dist2[2*j];
  9687. ++nhave;
  9688. }
  9689. kneighbors_q2xs[counter++] = dist2[2*j+1];
  9690. ++n;
  9691. }
  9692. *start = n;
  9693. }
  9694. free(dist2);
  9695. }
  9696. void iq2xs_free_impl(enum ggml_type type) {
  9697. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9698. const int gindex = iq2_data_index(type);
  9699. if (iq2_data[gindex].grid) {
  9700. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  9701. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  9702. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  9703. }
  9704. }
  9705. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9706. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  9707. int num_neighbors = neighbours[0];
  9708. GGML_ASSERT(num_neighbors > 0);
  9709. float best_d2 = FLT_MAX;
  9710. int grid_index = -1;
  9711. for (int j = 1; j <= num_neighbors; ++j) {
  9712. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9713. float d2 = 0;
  9714. for (int i = 0; i < 8; ++i) {
  9715. float q = pg[i];
  9716. float diff = scale*q - xval[i];
  9717. d2 += weight[i]*diff*diff;
  9718. }
  9719. if (d2 < best_d2) {
  9720. best_d2 = d2; grid_index = neighbours[j];
  9721. }
  9722. }
  9723. GGML_ASSERT(grid_index >= 0);
  9724. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9725. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9726. return grid_index;
  9727. }
  9728. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  9729. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  9730. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9731. const int * kmap_q2xs = iq2_data[gindex].map;
  9732. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9733. GGML_ASSERT(quant_weights && "missing quantization weights");
  9734. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9735. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9736. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9737. GGML_ASSERT(n%QK_K == 0);
  9738. const int kMaxQ = 3;
  9739. const int64_t nbl = n/QK_K;
  9740. block_iq2_xxs * y = vy;
  9741. float scales[QK_K/32];
  9742. float weight[32];
  9743. float xval[32];
  9744. int8_t L[32];
  9745. int8_t Laux[32];
  9746. float waux[32];
  9747. uint8_t block_signs[4];
  9748. uint32_t q2[2*(QK_K/32)];
  9749. for (int ibl = 0; ibl < nbl; ++ibl) {
  9750. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9751. memset(q2, 0, QK_K/4);
  9752. float max_scale = 0;
  9753. const float * xbl = x + QK_K*ibl;
  9754. float sumx2 = 0;
  9755. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9756. float sigma2 = sumx2/QK_K;
  9757. for (int ib = 0; ib < QK_K/32; ++ib) {
  9758. const float * xb = xbl + 32*ib;
  9759. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  9760. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9761. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  9762. for (int k = 0; k < 4; ++k) {
  9763. int nflip = 0;
  9764. uint8_t s = 0;
  9765. for (int i = 0; i < 8; ++i) {
  9766. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9767. else {
  9768. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  9769. }
  9770. }
  9771. if (nflip%2) {
  9772. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  9773. for (int i = 1; i < 8; ++i) {
  9774. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  9775. if (ax < min) {
  9776. min = ax; imin = i;
  9777. }
  9778. }
  9779. xval[8*k+imin] = -xval[8*k+imin];
  9780. s ^= (1 << imin);
  9781. }
  9782. block_signs[k] = s & 127;
  9783. }
  9784. float max = xval[0];
  9785. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  9786. if (max < GROUP_MAX_EPS) {
  9787. scales[ib] = 0;
  9788. memset(L, 0, 32);
  9789. continue;
  9790. }
  9791. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  9792. float eff_max = scale*kMaxQ;
  9793. float best = 0;
  9794. for (int is = -6; is <= 6; ++is) {
  9795. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  9796. float this_scale = 1/id;
  9797. for (int k = 0; k < 4; ++k) {
  9798. for (int i = 0; i < 8; ++i) {
  9799. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9800. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9801. }
  9802. uint16_t u = 0;
  9803. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  9804. int grid_index = kmap_q2xs[u];
  9805. if (grid_index < 0) {
  9806. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9807. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  9808. }
  9809. }
  9810. float sumqx = 0, sumq2 = 0;
  9811. for (int i = 0; i < 32; ++i) {
  9812. float w = weight[i];
  9813. float q = 2*Laux[i] + 1;
  9814. sumqx += w*xval[i]*q;
  9815. sumq2 += w*q*q;
  9816. }
  9817. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9818. scale = sumqx/sumq2; best = scale*sumqx;
  9819. memcpy(L, Laux, 32);
  9820. }
  9821. }
  9822. if (scale > 0) {
  9823. float id = 1/scale;
  9824. for (int k = 0; k < 4; ++k) {
  9825. uint16_t u = 0;
  9826. for (int i = 0; i < 8; ++i) {
  9827. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9828. l = MAX(0, MIN(kMaxQ-1, l));
  9829. u |= (l << 2*i);
  9830. }
  9831. int grid_index = kmap_q2xs[u];
  9832. if (grid_index < 0) {
  9833. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9834. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  9835. }
  9836. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  9837. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  9838. }
  9839. float sumqx = 0, sumq2 = 0;
  9840. for (int i = 0; i < 32; ++i) {
  9841. float w = weight[i];
  9842. float q = 2*L[i] + 1;
  9843. sumqx += w*xval[i]*q;
  9844. sumq2 += w*q*q;
  9845. }
  9846. if (sumq2 > 0) scale = sumqx/sumq2;
  9847. }
  9848. if (scale < 0) {
  9849. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9850. // and correspondingly flip quant signs.
  9851. scale = -scale;
  9852. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  9853. }
  9854. for (int k = 0; k < 4; ++k) {
  9855. uint16_t u = 0;
  9856. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  9857. int grid_index = kmap_q2xs[u];
  9858. if (grid_index < 0) {
  9859. printf("Oops: found point %u not on grid:", u);
  9860. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  9861. printf("\n");
  9862. GGML_ASSERT(false);
  9863. }
  9864. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  9865. q2[2*ib+1] |= (block_signs[k] << 7*k);
  9866. }
  9867. GGML_ASSERT(scale >= 0);
  9868. scales[ib] = scale;
  9869. max_scale = MAX(max_scale, scale);
  9870. }
  9871. if (!max_scale) {
  9872. memset(y[ibl].qs, 0, QK_K/4);
  9873. continue;
  9874. }
  9875. float d = max_scale/31;
  9876. y[ibl].d = GGML_FP32_TO_FP16(d);
  9877. float id = 1/d;
  9878. for (int ib = 0; ib < QK_K/32; ++ib) {
  9879. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9880. l = MAX(0, MIN(15, l));
  9881. q2[2*ib+1] |= ((uint32_t)l << 28);
  9882. }
  9883. memcpy(y[ibl].qs, q2, QK_K/4);
  9884. }
  9885. }
  9886. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  9887. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  9888. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9889. const int * kmap_q2xs = iq2_data[gindex].map;
  9890. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9891. GGML_ASSERT(quant_weights && "missing quantization weights");
  9892. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9893. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9894. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9895. GGML_ASSERT(n%QK_K == 0);
  9896. const int kMaxQ = 3;
  9897. const int64_t nbl = n/QK_K;
  9898. block_iq2_xs * y = vy;
  9899. float scales[QK_K/16];
  9900. float weight[16];
  9901. float xval[16];
  9902. int8_t L[16];
  9903. int8_t Laux[16];
  9904. float waux[16];
  9905. bool is_on_grid[2];
  9906. bool is_on_grid_aux[2];
  9907. uint8_t block_signs[2];
  9908. uint16_t q2[2*(QK_K/16)];
  9909. for (int ibl = 0; ibl < nbl; ++ibl) {
  9910. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9911. memset(q2, 0, QK_K/4);
  9912. memset(y[ibl].scales, 0, QK_K/32);
  9913. float max_scale = 0;
  9914. const float * xbl = x + QK_K*ibl;
  9915. float sumx2 = 0;
  9916. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9917. float sigma2 = sumx2/QK_K;
  9918. for (int ib = 0; ib < QK_K/16; ++ib) {
  9919. const float * xb = xbl + 16*ib;
  9920. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  9921. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9922. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  9923. for (int k = 0; k < 2; ++k) {
  9924. int nflip = 0;
  9925. uint8_t s = 0;
  9926. for (int i = 0; i < 8; ++i) {
  9927. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9928. else {
  9929. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  9930. }
  9931. }
  9932. if (nflip%2) {
  9933. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  9934. for (int i = 1; i < 8; ++i) {
  9935. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  9936. if (ax < min) {
  9937. min = ax; imin = i;
  9938. }
  9939. }
  9940. xval[8*k+imin] = -xval[8*k+imin];
  9941. s ^= (1 << imin);
  9942. }
  9943. block_signs[k] = s & 127;
  9944. }
  9945. float max = xval[0];
  9946. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  9947. if (max < GROUP_MAX_EPS) {
  9948. scales[ib] = 0;
  9949. memset(L, 0, 16);
  9950. continue;
  9951. }
  9952. float best = 0;
  9953. float scale = max/(2*kMaxQ-1);
  9954. is_on_grid[0] = is_on_grid[1] = true;
  9955. for (int is = -9; is <= 9; ++is) {
  9956. float id = (2*kMaxQ-1+is*0.1f)/max;
  9957. float this_scale = 1/id;
  9958. for (int k = 0; k < 2; ++k) {
  9959. for (int i = 0; i < 8; ++i) {
  9960. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9961. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9962. }
  9963. uint16_t u = 0;
  9964. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  9965. int grid_index = kmap_q2xs[u];
  9966. is_on_grid_aux[k] = true;
  9967. if (grid_index < 0) {
  9968. is_on_grid_aux[k] = false;
  9969. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9970. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  9971. }
  9972. }
  9973. float sumqx = 0, sumq2 = 0;
  9974. for (int i = 0; i < 16; ++i) {
  9975. float w = weight[i];
  9976. float q = 2*Laux[i] + 1;
  9977. sumqx += w*xval[i]*q;
  9978. sumq2 += w*q*q;
  9979. }
  9980. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9981. scale = sumqx/sumq2; best = scale*sumqx;
  9982. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  9983. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9984. }
  9985. }
  9986. int n_not_ongrid = 0;
  9987. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9988. if (n_not_ongrid > 0 && scale > 0) {
  9989. float id = 1/scale;
  9990. for (int k = 0; k < 2; ++k) {
  9991. if (is_on_grid[k]) continue;
  9992. uint16_t u = 0;
  9993. for (int i = 0; i < 8; ++i) {
  9994. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9995. l = MAX(0, MIN(kMaxQ-1, l));
  9996. u |= (l << 2*i);
  9997. L[8*k + i] = l;
  9998. }
  9999. int grid_index = kmap_q2xs[u];
  10000. if (grid_index < 0) {
  10001. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10002. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10003. }
  10004. }
  10005. float sumqx = 0, sumq2 = 0;
  10006. for (int i = 0; i < 16; ++i) {
  10007. float w = weight[i];
  10008. float q = 2*L[i] + 1;
  10009. sumqx += w*xval[i]*q;
  10010. sumq2 += w*q*q;
  10011. }
  10012. if (sumq2 > 0) scale = sumqx/sumq2;
  10013. }
  10014. if (scale < 0) {
  10015. scale = -scale;
  10016. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10017. }
  10018. for (int k = 0; k < 2; ++k) {
  10019. uint16_t u = 0;
  10020. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10021. int grid_index = kmap_q2xs[u];
  10022. if (grid_index < 0) {
  10023. printf("Oops: found point %u not on grid:", u);
  10024. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10025. printf("\n");
  10026. GGML_ASSERT(false);
  10027. }
  10028. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  10029. }
  10030. GGML_ASSERT(scale >= 0);
  10031. scales[ib] = scale;
  10032. max_scale = MAX(max_scale, scale);
  10033. }
  10034. if (!max_scale) {
  10035. memset(y[ibl].qs, 0, QK_K/4);
  10036. continue;
  10037. }
  10038. float d = max_scale/31;
  10039. y[ibl].d = GGML_FP32_TO_FP16(d);
  10040. float id = 1/d;
  10041. for (int ib = 0; ib < QK_K/16; ++ib) {
  10042. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10043. l = MAX(0, MIN(15, l));
  10044. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10045. else y[ibl].scales[ib/2] |= (l << 4);
  10046. }
  10047. memcpy(y[ibl].qs, q2, QK_K/4);
  10048. }
  10049. }
  10050. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10051. GGML_ASSERT(n_per_row%QK_K == 0);
  10052. int64_t nblock = n_per_row/QK_K;
  10053. char * qrow = (char *)dst;
  10054. for (int64_t row = 0; row < nrow; ++row) {
  10055. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  10056. src += n_per_row;
  10057. qrow += nblock*sizeof(block_iq2_xxs);
  10058. }
  10059. return nrow * nblock * sizeof(block_iq2_xxs);
  10060. }
  10061. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10062. GGML_ASSERT(n_per_row%QK_K == 0);
  10063. int64_t nblock = n_per_row/QK_K;
  10064. char * qrow = (char *)dst;
  10065. for (int64_t row = 0; row < nrow; ++row) {
  10066. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  10067. src += n_per_row;
  10068. qrow += nblock*sizeof(block_iq2_xs);
  10069. }
  10070. return nrow * nblock * sizeof(block_iq2_xs);
  10071. }
  10072. //
  10073. // ============================================= 3-bit using D4 lattice
  10074. //
  10075. typedef struct {
  10076. uint32_t * grid;
  10077. int * map;
  10078. uint16_t * neighbours;
  10079. } iq3_entry_t;
  10080. static iq3_entry_t iq3_data[2] = {
  10081. {NULL, NULL, NULL},
  10082. {NULL, NULL, NULL},
  10083. };
  10084. static inline int iq3_data_index(int grid_size) {
  10085. (void)grid_size;
  10086. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10087. return grid_size == 256 ? 0 : 1;
  10088. }
  10089. static int iq3_compare_func(const void * left, const void * right) {
  10090. const int * l = (const int *)left;
  10091. const int * r = (const int *)right;
  10092. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10093. }
  10094. void iq3xs_init_impl(int grid_size) {
  10095. const int gindex = iq3_data_index(grid_size);
  10096. if (iq3_data[gindex].grid) {
  10097. return;
  10098. }
  10099. static const uint16_t kgrid_256[256] = {
  10100. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  10101. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  10102. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  10103. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  10104. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  10105. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  10106. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  10107. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  10108. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  10109. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  10110. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  10111. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  10112. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  10113. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  10114. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  10115. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  10116. };
  10117. static const uint16_t kgrid_512[512] = {
  10118. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  10119. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  10120. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  10121. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  10122. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  10123. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  10124. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  10125. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  10126. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  10127. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  10128. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  10129. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  10130. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  10131. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  10132. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  10133. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  10134. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  10135. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  10136. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  10137. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  10138. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  10139. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  10140. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  10141. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  10142. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  10143. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  10144. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  10145. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  10146. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  10147. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  10148. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  10149. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  10150. };
  10151. const int kmap_size = 4096;
  10152. const int nwant = grid_size == 256 ? 2 : 3;
  10153. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  10154. uint32_t * kgrid_q3xs;
  10155. int * kmap_q3xs;
  10156. uint16_t * kneighbors_q3xs;
  10157. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10158. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  10159. for (int k = 0; k < grid_size; ++k) {
  10160. int8_t * pos = (int8_t *)(the_grid + k);
  10161. for (int i = 0; i < 4; ++i) {
  10162. int l = (kgrid[k] >> 3*i) & 0x7;
  10163. pos[i] = 2*l + 1;
  10164. }
  10165. }
  10166. kgrid_q3xs = the_grid;
  10167. iq3_data[gindex].grid = the_grid;
  10168. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  10169. iq3_data[gindex].map = kmap_q3xs;
  10170. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  10171. uint32_t aux32;
  10172. uint8_t * aux8 = (uint8_t *)&aux32;
  10173. for (int i = 0; i < grid_size; ++i) {
  10174. aux32 = kgrid_q3xs[i];
  10175. uint16_t index = 0;
  10176. for (int k=0; k<4; ++k) {
  10177. uint16_t q = (aux8[k] - 1)/2;
  10178. index |= (q << 3*k);
  10179. }
  10180. kmap_q3xs[index] = i;
  10181. }
  10182. int8_t pos[4];
  10183. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10184. int num_neighbors = 0, num_not_in_map = 0;
  10185. for (int i = 0; i < kmap_size; ++i) {
  10186. if (kmap_q3xs[i] >= 0) continue;
  10187. ++num_not_in_map;
  10188. for (int k = 0; k < 4; ++k) {
  10189. int l = (i >> 3*k) & 0x7;
  10190. pos[k] = 2*l + 1;
  10191. }
  10192. for (int j = 0; j < grid_size; ++j) {
  10193. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10194. int d2 = 0;
  10195. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10196. dist2[2*j+0] = d2;
  10197. dist2[2*j+1] = j;
  10198. }
  10199. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10200. int n = 0; int d2 = dist2[0];
  10201. int nhave = 1;
  10202. for (int j = 0; j < grid_size; ++j) {
  10203. if (dist2[2*j] > d2) {
  10204. if (nhave == nwant) break;
  10205. d2 = dist2[2*j];
  10206. ++nhave;
  10207. }
  10208. ++n;
  10209. }
  10210. num_neighbors += n;
  10211. }
  10212. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10213. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10214. iq3_data[gindex].neighbours = kneighbors_q3xs;
  10215. int counter = 0;
  10216. for (int i = 0; i < kmap_size; ++i) {
  10217. if (kmap_q3xs[i] >= 0) continue;
  10218. for (int k = 0; k < 4; ++k) {
  10219. int l = (i >> 3*k) & 0x7;
  10220. pos[k] = 2*l + 1;
  10221. }
  10222. for (int j = 0; j < grid_size; ++j) {
  10223. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10224. int d2 = 0;
  10225. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10226. dist2[2*j+0] = d2;
  10227. dist2[2*j+1] = j;
  10228. }
  10229. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10230. kmap_q3xs[i] = -(counter + 1);
  10231. int d2 = dist2[0];
  10232. uint16_t * start = &kneighbors_q3xs[counter++];
  10233. int n = 0, nhave = 1;
  10234. for (int j = 0; j < grid_size; ++j) {
  10235. if (dist2[2*j] > d2) {
  10236. if (nhave == nwant) break;
  10237. d2 = dist2[2*j];
  10238. ++nhave;
  10239. }
  10240. kneighbors_q3xs[counter++] = dist2[2*j+1];
  10241. ++n;
  10242. }
  10243. *start = n;
  10244. }
  10245. free(dist2);
  10246. }
  10247. void iq3xs_free_impl(int grid_size) {
  10248. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10249. const int gindex = iq3_data_index(grid_size);
  10250. if (iq3_data[gindex].grid) {
  10251. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  10252. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  10253. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  10254. }
  10255. }
  10256. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  10257. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10258. int num_neighbors = neighbours[0];
  10259. GGML_ASSERT(num_neighbors > 0);
  10260. float best_d2 = FLT_MAX;
  10261. int grid_index = -1;
  10262. for (int j = 1; j <= num_neighbors; ++j) {
  10263. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10264. float d2 = 0;
  10265. for (int i = 0; i < 4; ++i) {
  10266. float q = pg[i];
  10267. float diff = scale*q - xval[i];
  10268. d2 += weight[i]*diff*diff;
  10269. }
  10270. if (d2 < best_d2) {
  10271. best_d2 = d2; grid_index = neighbours[j];
  10272. }
  10273. }
  10274. GGML_ASSERT(grid_index >= 0);
  10275. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10276. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  10277. return grid_index;
  10278. }
  10279. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  10280. const float * restrict quant_weights) {
  10281. const int gindex = iq3_data_index(grid_size);
  10282. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10283. const int * kmap_q3xs = iq3_data[gindex].map;
  10284. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10285. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10286. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10287. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10288. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10289. GGML_ASSERT(n%QK_K == 0);
  10290. const int kMaxQ = 8;
  10291. const int64_t nbl = n/QK_K;
  10292. ggml_fp16_t * dh;
  10293. uint8_t * qs;
  10294. int block_size;
  10295. if (grid_size == 256) {
  10296. block_iq3_xxs * y = vy;
  10297. dh = &y->d;
  10298. qs = y->qs;
  10299. block_size = sizeof(block_iq3_xxs);
  10300. } else {
  10301. block_iq3_s * y = vy;
  10302. dh = &y->d;
  10303. qs = y->qs;
  10304. block_size = sizeof(block_iq3_s);
  10305. }
  10306. int quant_size = block_size - sizeof(ggml_fp16_t);
  10307. float scales[QK_K/32];
  10308. float weight[32];
  10309. float xval[32];
  10310. int8_t L[32];
  10311. int8_t Laux[32];
  10312. float waux[32];
  10313. bool is_on_grid[8];
  10314. bool is_on_grid_aux[8];
  10315. uint8_t block_signs[8];
  10316. uint8_t q3[3*(QK_K/8)+QK_K/32];
  10317. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  10318. uint8_t * qh = q3 + 3*(QK_K/8);
  10319. for (int ibl = 0; ibl < nbl; ++ibl) {
  10320. dh[0] = GGML_FP32_TO_FP16(0.f);
  10321. memset(q3, 0, 3*QK_K/8+QK_K/32);
  10322. float max_scale = 0;
  10323. const float * xbl = x + QK_K*ibl;
  10324. float sumx2 = 0;
  10325. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10326. float sigma2 = 2*sumx2/QK_K;
  10327. for (int ib = 0; ib < QK_K/32; ++ib) {
  10328. const float * xb = xbl + 32*ib;
  10329. if (quant_weights) {
  10330. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10331. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10332. } else {
  10333. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  10334. }
  10335. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10336. for (int k = 0; k < 4; ++k) {
  10337. int nflip = 0;
  10338. uint8_t s = 0;
  10339. for (int i = 0; i < 8; ++i) {
  10340. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10341. else {
  10342. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10343. }
  10344. }
  10345. if (nflip%2) {
  10346. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10347. for (int i = 1; i < 8; ++i) {
  10348. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10349. if (ax < min) {
  10350. min = ax; imin = i;
  10351. }
  10352. }
  10353. xval[8*k+imin] = -xval[8*k+imin];
  10354. s ^= (1 << imin);
  10355. }
  10356. block_signs[k] = s & 127;
  10357. }
  10358. float max = xval[0];
  10359. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10360. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  10361. scales[ib] = 0;
  10362. memset(L, 0, 32);
  10363. continue;
  10364. }
  10365. float best = 0;
  10366. float scale = max/(2*kMaxQ-1);
  10367. for (int is = -15; is <= 15; ++is) {
  10368. float id = (2*kMaxQ-1+is*0.2f)/max;
  10369. float this_scale = 1/id;
  10370. for (int k = 0; k < 8; ++k) {
  10371. for (int i = 0; i < 4; ++i) {
  10372. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10373. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10374. }
  10375. uint16_t u = 0;
  10376. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10377. int grid_index = kmap_q3xs[u];
  10378. is_on_grid_aux[k] = true;
  10379. if (grid_index < 0) {
  10380. is_on_grid_aux[k] = false;
  10381. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10382. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10383. }
  10384. }
  10385. float sumqx = 0, sumq2 = 0;
  10386. for (int i = 0; i < 32; ++i) {
  10387. float w = weight[i];
  10388. float q = 2*Laux[i] + 1;
  10389. sumqx += w*xval[i]*q;
  10390. sumq2 += w*q*q;
  10391. }
  10392. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10393. scale = sumqx/sumq2; best = scale*sumqx;
  10394. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  10395. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10396. }
  10397. }
  10398. int n_not_ongrid = 0;
  10399. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10400. if (n_not_ongrid > 0 && scale > 0) {
  10401. float id = 1/scale;
  10402. for (int k = 0; k < 8; ++k) {
  10403. if (is_on_grid[k]) continue;
  10404. uint16_t u = 0;
  10405. for (int i = 0; i < 4; ++i) {
  10406. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10407. l = MAX(0, MIN(kMaxQ-1, l));
  10408. u |= (l << 3*i);
  10409. }
  10410. int grid_index = kmap_q3xs[u];
  10411. if (grid_index < 0) {
  10412. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10413. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10414. }
  10415. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10416. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10417. }
  10418. float sumqx = 0, sumq2 = 0;
  10419. for (int i = 0; i < 32; ++i) {
  10420. float w = weight[i];
  10421. float q = 2*L[i] + 1;
  10422. sumqx += w*xval[i]*q;
  10423. sumq2 += w*q*q;
  10424. }
  10425. if (sumq2 > 0) scale = sumqx/sumq2;
  10426. }
  10427. if (scale < 0) {
  10428. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10429. // and correspondingly flip quant signs.
  10430. scale = -scale;
  10431. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10432. }
  10433. for (int k = 0; k < 8; ++k) {
  10434. uint16_t u = 0;
  10435. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10436. int grid_index = kmap_q3xs[u];
  10437. if (grid_index < 0) {
  10438. printf("Oops: found point %u not on grid:", u);
  10439. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10440. printf("\n");
  10441. GGML_ASSERT(false);
  10442. }
  10443. if (grid_size == 256) {
  10444. q3[8*ib+k] = grid_index;
  10445. } else {
  10446. q3[8*ib+k] = grid_index & 255;
  10447. qh[ib] |= ((grid_index >> 8) << k);
  10448. }
  10449. }
  10450. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  10451. GGML_ASSERT(scale >= 0);
  10452. scales[ib] = scale;
  10453. max_scale = MAX(max_scale, scale);
  10454. }
  10455. if (!max_scale) {
  10456. memset(qs, 0, quant_size);
  10457. dh += block_size/sizeof(ggml_fp16_t);
  10458. qs += block_size;
  10459. continue;
  10460. }
  10461. float d = max_scale/31;
  10462. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  10463. float id = 1/d;
  10464. for (int ib = 0; ib < QK_K/32; ++ib) {
  10465. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10466. l = MAX(0, MIN(15, l));
  10467. scales_and_signs[ib] |= ((uint32_t)l << 28);
  10468. }
  10469. memcpy(qs, q3, quant_size);
  10470. dh += block_size/sizeof(ggml_fp16_t);
  10471. qs += block_size;
  10472. }
  10473. }
  10474. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10475. GGML_ASSERT(n_per_row%QK_K == 0);
  10476. int64_t nblock = n_per_row/QK_K;
  10477. char * qrow = (char *)dst;
  10478. for (int64_t row = 0; row < nrow; ++row) {
  10479. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  10480. src += n_per_row;
  10481. qrow += nblock*sizeof(block_iq3_xxs);
  10482. }
  10483. return nrow * nblock * sizeof(block_iq3_xxs);
  10484. }
  10485. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  10486. assert(k % QK_K == 0);
  10487. block_iq3_xxs * restrict y = vy;
  10488. quantize_row_iq3_xxs_reference(x, y, k);
  10489. }
  10490. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  10491. assert(k % QK_K == 0);
  10492. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  10493. }
  10494. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  10495. const float * restrict quant_weights,
  10496. float * scales,
  10497. float * weight,
  10498. float * xval,
  10499. int8_t * L,
  10500. int8_t * Laux,
  10501. float * waux,
  10502. bool * is_on_grid,
  10503. bool * is_on_grid_aux,
  10504. uint8_t * block_signs) {
  10505. const int gindex = iq3_data_index(512);
  10506. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10507. const int * kmap_q3xs = iq3_data[gindex].map;
  10508. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10509. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10510. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10511. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10512. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10513. GGML_ASSERT(n%QK_K == 0);
  10514. const int kMaxQ = 8;
  10515. const int64_t nbl = n/QK_K;
  10516. block_iq3_s * y = vy;
  10517. const int bs4 = block_size/4;
  10518. const int bs8 = block_size/8;
  10519. for (int ibl = 0; ibl < nbl; ++ibl) {
  10520. memset(&y[ibl], 0, sizeof(block_iq3_s));
  10521. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10522. uint8_t * qs = y[ibl].qs;
  10523. uint8_t * qh = y[ibl].qh;
  10524. uint8_t * signs = y[ibl].signs;
  10525. float max_scale = 0;
  10526. const float * xbl = x + QK_K*ibl;
  10527. float sumx2 = 0;
  10528. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10529. float sigma2 = 2*sumx2/QK_K;
  10530. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10531. const float * xb = xbl + block_size*ib;
  10532. if (quant_weights) {
  10533. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10534. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10535. } else {
  10536. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  10537. }
  10538. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  10539. for (int k = 0; k < bs8; ++k) {
  10540. uint8_t s = 0;
  10541. for (int i = 0; i < 8; ++i) {
  10542. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10543. else {
  10544. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  10545. }
  10546. }
  10547. block_signs[k] = s;
  10548. }
  10549. float max = xval[0];
  10550. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  10551. if (!max) {
  10552. scales[ib] = 0;
  10553. continue;
  10554. }
  10555. float best = 0;
  10556. float scale = max/(2*kMaxQ-1);
  10557. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  10558. for (int is = -9; is <= 9; ++is) {
  10559. float id = (2*kMaxQ-1+is*0.2f)/max;
  10560. float this_scale = 1/id;
  10561. for (int k = 0; k < bs4; ++k) {
  10562. for (int i = 0; i < 4; ++i) {
  10563. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10564. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10565. }
  10566. uint16_t u = 0;
  10567. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10568. int grid_index = kmap_q3xs[u];
  10569. is_on_grid_aux[k] = true;
  10570. if (grid_index < 0) {
  10571. is_on_grid_aux[k] = false;
  10572. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10573. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10574. }
  10575. }
  10576. float sumqx = 0, sumq2 = 0;
  10577. for (int i = 0; i < block_size; ++i) {
  10578. float w = weight[i];
  10579. float q = 2*Laux[i] + 1;
  10580. sumqx += w*xval[i]*q;
  10581. sumq2 += w*q*q;
  10582. }
  10583. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10584. scale = sumqx/sumq2; best = scale*sumqx;
  10585. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  10586. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10587. }
  10588. }
  10589. int n_not_ongrid = 0;
  10590. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10591. if (n_not_ongrid > 0 && scale > 0) {
  10592. float id = 1/scale;
  10593. for (int k = 0; k < bs4; ++k) {
  10594. //if (is_on_grid[k]) continue;
  10595. uint16_t u = 0;
  10596. for (int i = 0; i < 4; ++i) {
  10597. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10598. l = MAX(0, MIN(kMaxQ-1, l));
  10599. u |= (l << 3*i);
  10600. }
  10601. int grid_index = kmap_q3xs[u];
  10602. if (grid_index < 0) {
  10603. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10604. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10605. }
  10606. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10607. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10608. }
  10609. float sumqx = 0, sumq2 = 0;
  10610. for (int i = 0; i < block_size; ++i) {
  10611. float w = weight[i];
  10612. float q = 2*L[i] + 1;
  10613. sumqx += w*xval[i]*q;
  10614. sumq2 += w*q*q;
  10615. }
  10616. if (sumq2 > 0) scale = sumqx/sumq2;
  10617. }
  10618. if (scale < 0) {
  10619. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10620. // and correspondingly flip quant signs.
  10621. scale = -scale;
  10622. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  10623. }
  10624. for (int k = 0; k < bs4; ++k) {
  10625. uint16_t u = 0;
  10626. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10627. int grid_index = kmap_q3xs[u];
  10628. if (grid_index < 0) {
  10629. printf("Oops: found point %u not on grid:", u);
  10630. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10631. printf("\n");
  10632. GGML_ASSERT(false);
  10633. }
  10634. qs[k] = grid_index & 255;
  10635. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  10636. }
  10637. qs += bs4;
  10638. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  10639. signs += bs8;
  10640. GGML_ASSERT(scale >= 0);
  10641. scales[ib] = scale;
  10642. max_scale = MAX(max_scale, scale);
  10643. }
  10644. if (!max_scale) {
  10645. continue;
  10646. }
  10647. float d = max_scale/31;
  10648. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  10649. float id = 1/d;
  10650. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  10651. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  10652. l1 = MAX(0, MIN(15, l1));
  10653. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  10654. l2 = MAX(0, MIN(15, l2));
  10655. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  10656. }
  10657. }
  10658. }
  10659. #define IQ3S_BLOCK_SIZE 32
  10660. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10661. GGML_ASSERT(n_per_row%QK_K == 0);
  10662. int64_t nblock = n_per_row/QK_K;
  10663. float scales[QK_K/IQ3S_BLOCK_SIZE];
  10664. float weight[IQ3S_BLOCK_SIZE];
  10665. float xval[IQ3S_BLOCK_SIZE];
  10666. int8_t L[IQ3S_BLOCK_SIZE];
  10667. int8_t Laux[IQ3S_BLOCK_SIZE];
  10668. float waux[IQ3S_BLOCK_SIZE];
  10669. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  10670. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  10671. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  10672. char * qrow = (char *)dst;
  10673. for (int64_t row = 0; row < nrow; ++row) {
  10674. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  10675. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  10676. src += n_per_row;
  10677. qrow += nblock*sizeof(block_iq3_s);
  10678. }
  10679. return nrow * nblock * sizeof(block_iq3_s);
  10680. }
  10681. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  10682. assert(k % QK_K == 0);
  10683. block_iq3_s * restrict y = vy;
  10684. quantize_row_iq3_s_reference(x, y, k);
  10685. }
  10686. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  10687. assert(k % QK_K == 0);
  10688. quantize_iq3_s(x, y, 1, k, NULL);
  10689. }
  10690. // =================================== 1.5 bpw ===================================================
  10691. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10692. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  10693. int num_neighbors = neighbours[0];
  10694. GGML_ASSERT(num_neighbors > 0);
  10695. float best_score = 0;
  10696. int grid_index = -1;
  10697. for (int j = 1; j <= num_neighbors; ++j) {
  10698. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10699. float sumqx = 0, sumq2 = 0;
  10700. for (int i = 0; i < 8; ++i) {
  10701. float q = (pg[i] - 3)/2;
  10702. float w = weight[i];
  10703. sumqx += w*q*xval[i];
  10704. sumq2 += w*q*q;
  10705. }
  10706. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10707. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  10708. grid_index = neighbours[j];
  10709. }
  10710. }
  10711. if (grid_index < 0) {
  10712. for (int i = 0; i < ngrid; ++i) {
  10713. const int8_t * grid_i = (const int8_t *)(grid + i);
  10714. float sumqx = 0, sumq2 = 0;
  10715. for (int j = 0; j < 8; ++j) {
  10716. float w = weight[j];
  10717. float q = (grid_i[j] - 3)/2;
  10718. sumqx += w*q*xval[j];
  10719. sumq2 += w*q*q;
  10720. }
  10721. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10722. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  10723. grid_index = i;
  10724. }
  10725. }
  10726. }
  10727. if (grid_index < 0) {
  10728. printf("Oops, did not find grid point\n");
  10729. printf("Have %d neighbours\n", num_neighbors);
  10730. for (int j = 1; j <= num_neighbors; ++j) {
  10731. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10732. float sumqx = 0, sumq2 = 0;
  10733. for (int i = 0; i < 8; ++i) {
  10734. float q = (pg[i] - 3)/2;
  10735. float w = weight[i];
  10736. sumqx += w*q*xval[i];
  10737. sumq2 += w*q*q;
  10738. }
  10739. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  10740. }
  10741. }
  10742. GGML_ASSERT(grid_index >= 0);
  10743. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  10744. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  10745. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  10746. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10747. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10748. return grid_index;
  10749. }
  10750. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10751. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  10752. int num_neighbors = neighbours[0];
  10753. GGML_ASSERT(num_neighbors > 0);
  10754. float best_score = FLT_MAX;
  10755. int grid_index = -1;
  10756. for (int j = 1; j <= num_neighbors; ++j) {
  10757. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10758. float d2 = 0;
  10759. for (int i = 0; i < 8; ++i) {
  10760. float q = xg[(pg[i] - 1)/2];
  10761. float w = weight[i];
  10762. float diff = scale*q - xval[i];
  10763. d2 += w*diff*diff;
  10764. }
  10765. if (d2 < best_score) {
  10766. best_score = d2;
  10767. grid_index = neighbours[j];
  10768. }
  10769. }
  10770. if (grid_index < 0) {
  10771. for (int i = 0; i < ngrid; ++i) {
  10772. const int8_t * grid_i = (const int8_t *)(grid + i);
  10773. float d2 = 0;
  10774. for (int j = 0; j < 8; ++j) {
  10775. float w = weight[j];
  10776. float q = xg[(grid_i[j] - 1)/2];
  10777. float diff = scale*q - xval[i];
  10778. d2 += w*diff*diff;
  10779. }
  10780. if (d2 < best_score) {
  10781. best_score = d2;
  10782. grid_index = i;
  10783. }
  10784. }
  10785. }
  10786. if (grid_index < 0) {
  10787. printf("Oops, did not find grid point\n");
  10788. printf("Have %d neighbours\n", num_neighbors);
  10789. for (int j = 1; j <= num_neighbors; ++j) {
  10790. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10791. float sumqx = 0, sumq2 = 0;
  10792. for (int i = 0; i < 8; ++i) {
  10793. float q = xg[(pg[i] - 1)/2];
  10794. float w = weight[i];
  10795. sumqx += w*q*xval[i];
  10796. sumq2 += w*q*q;
  10797. }
  10798. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  10799. }
  10800. }
  10801. GGML_ASSERT(grid_index >= 0);
  10802. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10803. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10804. return grid_index;
  10805. }
  10806. static int iq1_sort_helper(const void * left, const void * right) {
  10807. const float * l = left;
  10808. const float * r = right;
  10809. return *l < *r ? -1 : *l > *r ? 1 : 0;
  10810. }
  10811. #define IQ1S_BLOCK_SIZE 32
  10812. #define IQ1M_BLOCK_SIZE 16
  10813. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  10814. float * scales,
  10815. float * weight,
  10816. float * sumx,
  10817. float * sumw,
  10818. float * pairs,
  10819. int8_t * L,
  10820. uint16_t * index,
  10821. int8_t * shifts) {
  10822. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  10823. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10824. const int * kmap_q2xs = iq2_data[gindex].map;
  10825. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10826. GGML_ASSERT(quant_weights && "missing quantization weights");
  10827. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10828. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10829. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10830. GGML_ASSERT(n%QK_K == 0);
  10831. block_iq1_s * y = vy;
  10832. const int64_t nbl = n/QK_K;
  10833. const int block_size = IQ1S_BLOCK_SIZE;
  10834. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  10835. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  10836. int * idx = (int *)(pairs + 1);
  10837. for (int ibl = 0; ibl < nbl; ++ibl) {
  10838. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10839. memset(y[ibl].qs, 0, QK_K/8);
  10840. memset(y[ibl].qh, 0, QK_K/16);
  10841. float max_scale = 0;
  10842. const float * xbl = x + QK_K*ibl;
  10843. float sumx2 = 0;
  10844. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10845. float sigma2 = 2*sumx2/QK_K;
  10846. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10847. const float * xb = xbl + block_size*ib;
  10848. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10849. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10850. float max = fabsf(xb[0]);
  10851. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  10852. if (max < GROUP_MAX_EPS_IQ1_S) {
  10853. scales[ib] = 0;
  10854. memset(L, 1, block_size);
  10855. continue;
  10856. }
  10857. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  10858. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  10859. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  10860. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  10861. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  10862. // for each possible and score for each split.
  10863. for (int j = 0; j < block_size; ++j) {
  10864. pairs[2*j] = xb[j];
  10865. idx[2*j] = j;
  10866. }
  10867. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  10868. {
  10869. sumx[0] = sumw[0] = 0;
  10870. for (int j = 0; j < block_size; ++j) {
  10871. int i = idx[2*j];
  10872. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  10873. sumw[j+1] = sumw[j] + weight[i];
  10874. }
  10875. }
  10876. float best_score = 0, scale = max;
  10877. int besti1 = -1, besti2 = -1, best_shift = 0;
  10878. for (int i1 = 0; i1 <= block_size; ++i1) {
  10879. for (int i2 = i1; i2 <= block_size; ++i2) {
  10880. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  10881. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  10882. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10883. scale = sumqx/sumq2; best_score = scale*sumqx;
  10884. besti1 = i1; besti2 = i2; best_shift = 1;
  10885. }
  10886. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  10887. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  10888. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10889. scale = sumqx/sumq2; best_score = scale*sumqx;
  10890. besti1 = i1; besti2 = i2; best_shift = -1;
  10891. }
  10892. }
  10893. }
  10894. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  10895. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  10896. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  10897. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  10898. if (scale < 0) {
  10899. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  10900. scale = -scale; best_shift = -best_shift;
  10901. }
  10902. bool all_on_grid = true;
  10903. const float * xx = best_shift == 1 ? x_p : x_m;
  10904. for (int k = 0; k < block_size/8; ++k) {
  10905. uint16_t u = 0;
  10906. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  10907. int grid_index = kmap_q2xs[u];
  10908. if (grid_index < 0) {
  10909. all_on_grid = false;
  10910. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10911. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  10912. GGML_ASSERT(grid_index >= 0);
  10913. }
  10914. index[k] = grid_index;
  10915. }
  10916. if (!all_on_grid) {
  10917. float sumqx = 0, sumq2 = 0;
  10918. for (int k = 0; k < block_size/8; ++k) {
  10919. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  10920. for (int j = 0; j < 8; ++j) {
  10921. float w = weight[8*k + j];
  10922. float q = xx[(pg[j] - 1)/2];
  10923. sumqx += w*q*xb[8*k+j];
  10924. sumq2 += w*q*q;
  10925. }
  10926. }
  10927. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  10928. }
  10929. uint16_t h = 0;
  10930. for (int k = 0; k < block_size/8; ++k) {
  10931. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  10932. h |= (index[k] >> 8) << 3*k;
  10933. }
  10934. y[ibl].qh[ib] = h;
  10935. GGML_ASSERT(scale >= 0);
  10936. scales[ib] = scale;
  10937. shifts[ib] = best_shift;
  10938. max_scale = MAX(max_scale, scale);
  10939. }
  10940. if (!max_scale) {
  10941. continue;
  10942. }
  10943. float d = max_scale/15;
  10944. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  10945. float id = 1/d;
  10946. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10947. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10948. l = MAX(0, MIN(7, l));
  10949. if (shifts[ib] == -1) l |= 8;
  10950. y[ibl].qh[ib] |= (l << 12);
  10951. }
  10952. }
  10953. }
  10954. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10955. GGML_ASSERT(n_per_row%QK_K == 0);
  10956. float scales[QK_K/IQ1S_BLOCK_SIZE];
  10957. float weight[IQ1S_BLOCK_SIZE];
  10958. int8_t L[IQ1S_BLOCK_SIZE];
  10959. float sumx[IQ1S_BLOCK_SIZE+1];
  10960. float sumw[IQ1S_BLOCK_SIZE+1];
  10961. float pairs[2*IQ1S_BLOCK_SIZE];
  10962. uint16_t index[IQ1S_BLOCK_SIZE/8];
  10963. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  10964. int64_t nblock = n_per_row/QK_K;
  10965. char * qrow = (char *)dst;
  10966. for (int64_t row = 0; row < nrow; ++row) {
  10967. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  10968. src += n_per_row;
  10969. qrow += nblock*sizeof(block_iq1_s);
  10970. }
  10971. return nrow * nblock * sizeof(block_iq1_s);
  10972. }
  10973. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  10974. float * scales,
  10975. float * weight,
  10976. float * pairs,
  10977. int8_t * L,
  10978. uint16_t * index,
  10979. int8_t * shifts) {
  10980. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  10981. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10982. const int * kmap_q2xs = iq2_data[gindex].map;
  10983. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10984. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10985. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10986. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10987. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10988. GGML_ASSERT(n%QK_K == 0);
  10989. block_iq1_m * y = vy;
  10990. const int64_t nbl = n/QK_K;
  10991. const int block_size = IQ1M_BLOCK_SIZE;
  10992. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  10993. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  10994. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  10995. int * idx = (int *)(pairs + 1);
  10996. float sumqx[4], sumq2[4];
  10997. iq1m_scale_t s;
  10998. const float * xx;
  10999. for (int ibl = 0; ibl < nbl; ++ibl) {
  11000. memset(y[ibl].qs, 0, QK_K/8);
  11001. memset(y[ibl].qh, 0, QK_K/16);
  11002. memset(y[ibl].scales, 0, QK_K/32);
  11003. float max_scale = 0;
  11004. const float * xbl = x + QK_K*ibl;
  11005. float sumx2 = 0;
  11006. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11007. float sigma2 = 2*sumx2/QK_K;
  11008. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11009. const float * xb = xbl + block_size*ib;
  11010. if (quant_weights) {
  11011. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11012. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11013. } else {
  11014. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11015. }
  11016. float max = fabsf(xb[0]);
  11017. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11018. if (max < GROUP_MAX_EPS_IQ1_M) {
  11019. scales[ib] = 0;
  11020. memset(L, 1, block_size);
  11021. continue;
  11022. }
  11023. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11024. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11025. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11026. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11027. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11028. // for each possible and score for each split.
  11029. for (int j = 0; j < block_size; ++j) {
  11030. pairs[2*j] = xb[j];
  11031. idx[2*j] = j;
  11032. }
  11033. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11034. float best_score = 0, scale = max;
  11035. int besti1 = -1, besti2 = -1, best_k = -1;
  11036. // 0: +, +
  11037. // 1: +, -
  11038. // 2: -, +
  11039. // 3: -, -
  11040. for (int i1 = 0; i1 <= block_size; ++i1) {
  11041. for (int i2 = i1; i2 <= block_size; ++i2) {
  11042. memset(sumqx, 0, 4*sizeof(float));
  11043. memset(sumq2, 0, 4*sizeof(float));
  11044. for (int j = 0; j < i1; ++j) {
  11045. int i = idx[2*j];
  11046. if (i < block_size/2) {
  11047. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11048. sumqx[1] += weight[i]*x_p[0]*xb[i];
  11049. sumqx[2] += weight[i]*x_m[0]*xb[i];
  11050. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11051. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11052. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  11053. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  11054. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11055. } else {
  11056. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11057. sumqx[2] += weight[i]*x_p[0]*xb[i];
  11058. sumqx[1] += weight[i]*x_m[0]*xb[i];
  11059. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11060. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11061. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  11062. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  11063. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11064. }
  11065. }
  11066. for (int j = i1; j < i2; ++j) {
  11067. int i = idx[2*j];
  11068. if (i < block_size/2) {
  11069. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11070. sumqx[1] += weight[i]*x_p[1]*xb[i];
  11071. sumqx[2] += weight[i]*x_m[1]*xb[i];
  11072. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11073. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11074. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  11075. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  11076. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11077. } else {
  11078. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11079. sumqx[2] += weight[i]*x_p[1]*xb[i];
  11080. sumqx[1] += weight[i]*x_m[1]*xb[i];
  11081. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11082. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11083. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  11084. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  11085. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11086. }
  11087. }
  11088. for (int j = i2; j < block_size; ++j) {
  11089. int i = idx[2*j];
  11090. if (i < block_size/2) {
  11091. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11092. sumqx[1] += weight[i]*x_p[2]*xb[i];
  11093. sumqx[2] += weight[i]*x_m[2]*xb[i];
  11094. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11095. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11096. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  11097. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  11098. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11099. } else {
  11100. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11101. sumqx[2] += weight[i]*x_p[2]*xb[i];
  11102. sumqx[1] += weight[i]*x_m[2]*xb[i];
  11103. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11104. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11105. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  11106. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  11107. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11108. }
  11109. }
  11110. for (int k = 0; k < 4; ++k) {
  11111. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  11112. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  11113. besti1 = i1; besti2 = i2; best_k = k;
  11114. }
  11115. }
  11116. }
  11117. }
  11118. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  11119. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11120. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11121. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11122. if (scale < 0) {
  11123. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11124. scale = -scale;
  11125. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  11126. }
  11127. bool all_on_grid = true;
  11128. for (int k = 0; k < block_size/8; ++k) {
  11129. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11130. else xx = best_k%2 == 0 ? x_p : x_m;
  11131. uint16_t u = 0;
  11132. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11133. int grid_index = kmap_q2xs[u];
  11134. if (grid_index < 0) {
  11135. all_on_grid = false;
  11136. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11137. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11138. GGML_ASSERT(grid_index >= 0);
  11139. }
  11140. index[k] = grid_index;
  11141. }
  11142. if (!all_on_grid) {
  11143. float sumqx_f = 0, sumq2_f = 0;
  11144. for (int k = 0; k < block_size/8; ++k) {
  11145. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11146. else xx = best_k%2 == 0 ? x_p : x_m;
  11147. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11148. for (int j = 0; j < 8; ++j) {
  11149. float w = weight[8*k + j];
  11150. float q = xx[(pg[j] - 1)/2];
  11151. sumqx_f += w*q*xb[8*k+j];
  11152. sumq2_f += w*q*q;
  11153. }
  11154. }
  11155. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  11156. }
  11157. y[ibl].qs[2*ib + 0] = index[0] & 255;
  11158. y[ibl].qs[2*ib + 1] = index[1] & 255;
  11159. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  11160. GGML_ASSERT(scale >= 0);
  11161. scales[ib] = scale;
  11162. shifts[ib] = best_k;
  11163. max_scale = MAX(max_scale, scale);
  11164. }
  11165. if (!max_scale) {
  11166. continue;
  11167. }
  11168. uint16_t * sc = (uint16_t *)y[ibl].scales;
  11169. float d = max_scale/15;
  11170. float id = 1/d;
  11171. float sumqx_f = 0, sumq2_f = 0;
  11172. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11173. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  11174. l = MAX(0, MIN(7, l));
  11175. sc[ib/4] |= (l << 3*(ib%4));
  11176. y[ibl].qh[ib] |= masks[shifts[ib]];
  11177. const float * xb = xbl + block_size*ib;
  11178. if (quant_weights) {
  11179. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11180. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11181. } else {
  11182. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11183. }
  11184. for (int k = 0; k < block_size/8; ++k) {
  11185. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  11186. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  11187. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  11188. for (int j = 0; j < 8; ++j) {
  11189. float w = weight[8*k + j];
  11190. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  11191. sumqx_f += w*q*xb[8*k+j];
  11192. sumq2_f += w*q*q;
  11193. }
  11194. }
  11195. }
  11196. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  11197. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  11198. sc[0] |= ((s.u16 & 0x000f) << 12);
  11199. sc[1] |= ((s.u16 & 0x00f0) << 8);
  11200. sc[2] |= ((s.u16 & 0x0f00) << 4);
  11201. sc[3] |= ((s.u16 & 0xf000) << 0);
  11202. }
  11203. }
  11204. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11205. GGML_ASSERT(n_per_row%QK_K == 0);
  11206. float scales[QK_K/IQ1M_BLOCK_SIZE];
  11207. float weight[IQ1M_BLOCK_SIZE];
  11208. int8_t L[IQ1M_BLOCK_SIZE];
  11209. float pairs[2*IQ1M_BLOCK_SIZE];
  11210. uint16_t index[IQ1M_BLOCK_SIZE/8];
  11211. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  11212. int64_t nblock = n_per_row/QK_K;
  11213. char * qrow = (char *)dst;
  11214. for (int64_t row = 0; row < nrow; ++row) {
  11215. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  11216. src += n_per_row;
  11217. qrow += nblock*sizeof(block_iq1_m);
  11218. }
  11219. return nrow * nblock * sizeof(block_iq1_m);
  11220. }
  11221. // ============================ 4-bit non-linear quants
  11222. static inline int best_index_int8(int n, const int8_t * val, float x) {
  11223. if (x <= val[0]) return 0;
  11224. if (x >= val[n-1]) return n-1;
  11225. int ml = 0, mu = n-1;
  11226. while (mu-ml > 1) {
  11227. int mav = (ml+mu)/2;
  11228. if (x < val[mav]) mu = mav; else ml = mav;
  11229. }
  11230. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  11231. }
  11232. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  11233. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  11234. float * scales, float * weight, uint8_t * L,
  11235. const int8_t * values,
  11236. const float * quant_weights,
  11237. const int ntry) {
  11238. float sigma2 = 0;
  11239. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  11240. sigma2 *= 2.f/super_block_size;
  11241. memset(q4, 0, super_block_size/2);
  11242. dh[0] = GGML_FP32_TO_FP16(0.f);
  11243. float max_scale = 0, amax_scale = 0;
  11244. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11245. const float * xb = x + ib*block_size;
  11246. uint8_t * Lb = L + ib*block_size;
  11247. if (quant_weights) {
  11248. const float * qw = quant_weights + ib*block_size;
  11249. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  11250. } else {
  11251. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  11252. }
  11253. float amax = 0, max = 0;
  11254. for (int j = 0; j < block_size; ++j) {
  11255. float ax = fabsf(xb[j]);
  11256. if (ax > amax) {
  11257. amax = ax; max = xb[j];
  11258. }
  11259. }
  11260. if (amax < GROUP_MAX_EPS) {
  11261. scales[ib] = 0;
  11262. continue;
  11263. }
  11264. float d = ntry > 0 ? -max/values[0] : max/values[0];
  11265. float id = 1/d;
  11266. float sumqx = 0, sumq2 = 0;
  11267. for (int j = 0; j < block_size; ++j) {
  11268. float al = id*xb[j];
  11269. int l = best_index_int8(16, values, al);
  11270. Lb[j] = l;
  11271. float q = values[l];
  11272. float w = weight[j];
  11273. sumqx += w*q*xb[j];
  11274. sumq2 += w*q*q;
  11275. }
  11276. d = sumqx/sumq2;
  11277. float best = d*sumqx;
  11278. for (int itry = -ntry; itry <= ntry; ++itry) {
  11279. id = (itry + values[0])/max;
  11280. sumqx = sumq2 = 0;
  11281. for (int j = 0; j < block_size; ++j) {
  11282. float al = id*xb[j];
  11283. int l = best_index_int8(16, values, al);
  11284. float q = values[l];
  11285. float w = weight[j];
  11286. sumqx += w*q*xb[j];
  11287. sumq2 += w*q*q;
  11288. }
  11289. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11290. d = sumqx/sumq2; best = d * sumqx;
  11291. }
  11292. }
  11293. scales[ib] = d;
  11294. float abs_d = fabsf(d);
  11295. if (abs_d > amax_scale) {
  11296. amax_scale = abs_d; max_scale = d;
  11297. }
  11298. }
  11299. if (super_block_size/block_size > 1) {
  11300. int nb = super_block_size/block_size;
  11301. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  11302. float d = -max_scale/32;
  11303. dh[0] = GGML_FP32_TO_FP16(d);
  11304. float id = d ? 1/d : 0.f;
  11305. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11306. int l = nearest_int(id*scales[ib]);
  11307. l = MAX(-32, MIN(31, l));
  11308. float dl = d * l;
  11309. float idl = dl ? 1/dl : 0.f;
  11310. uint8_t * Lb = L + ib*block_size;
  11311. const float * xb = x + ib*block_size;
  11312. for (int j = 0; j < block_size; ++j) {
  11313. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  11314. }
  11315. l += 32;
  11316. uint8_t l_l = l & 0xf;
  11317. uint8_t l_h = l >> 4;
  11318. if (ib%2 == 0) scales_l[ib/2] = l_l;
  11319. else scales_l[ib/2] |= (l_l << 4);
  11320. scales_h[ib/8] |= (l_h << 2*(ib%8));
  11321. }
  11322. } else {
  11323. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  11324. if (ntry > 0) {
  11325. float id = scales[0] ? 1/scales[0] : 0;
  11326. for (int j = 0; j < super_block_size; ++j) {
  11327. L[j] = best_index_int8(16, values, id*x[j]);
  11328. }
  11329. }
  11330. }
  11331. for (int i = 0; i < super_block_size/32; ++i) {
  11332. for (int j = 0; j < 16; ++j) {
  11333. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  11334. }
  11335. }
  11336. }
  11337. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11338. GGML_ASSERT(n_per_row%QK4_NL == 0);
  11339. int64_t nblock = n_per_row/QK4_NL;
  11340. char * qrow = (char *)dst;
  11341. uint8_t L[QK4_NL];
  11342. float weight[QK4_NL];
  11343. uint16_t unused_h;
  11344. uint8_t * unused_l = NULL;
  11345. float scale;
  11346. for (int64_t row = 0; row < nrow; ++row) {
  11347. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  11348. for (int ibl = 0; ibl < nblock; ++ibl) {
  11349. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  11350. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11351. &scale, weight, L, kvalues_iq4nl, qw, 7);
  11352. }
  11353. src += n_per_row;
  11354. qrow += nblock*sizeof(block_iq4_nl);
  11355. }
  11356. return nrow * nblock * sizeof(block_iq4_nl);
  11357. }
  11358. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  11359. GGML_ASSERT(k%QK4_NL == 0);
  11360. int64_t nblock = k/QK4_NL;
  11361. uint8_t L[QK4_NL];
  11362. float weight[QK4_NL];
  11363. uint16_t unused_h;
  11364. uint8_t * unused_l = NULL;
  11365. float scale;
  11366. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  11367. for (int ibl = 0; ibl < nblock; ++ibl) {
  11368. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11369. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  11370. }
  11371. }
  11372. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  11373. assert(k % QK4_NL == 0);
  11374. quantize_row_iq4_nl(x, y, k);
  11375. }
  11376. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11377. GGML_ASSERT(n_per_row%QK_K == 0);
  11378. int64_t nblock = n_per_row/QK_K;
  11379. char * qrow = (char *)dst;
  11380. uint8_t L[QK_K];
  11381. float weight[32];
  11382. float scales[QK_K/32];
  11383. for (int64_t row = 0; row < nrow; ++row) {
  11384. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  11385. for (int ibl = 0; ibl < nblock; ++ibl) {
  11386. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  11387. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  11388. scales, weight, L, kvalues_iq4nl, qw, 7);
  11389. }
  11390. src += n_per_row;
  11391. qrow += nblock*sizeof(block_iq4_xs);
  11392. }
  11393. return nrow * nblock * sizeof(block_iq4_xs);
  11394. }
  11395. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  11396. assert(k % QK_K == 0);
  11397. block_iq4_xs * restrict y = vy;
  11398. quantize_row_iq4_xs_reference(x, y, k);
  11399. }
  11400. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  11401. assert(k % QK_K == 0);
  11402. quantize_iq4_xs(x, y, 1, k, NULL);
  11403. }
  11404. // =============================== 2.5625 bpw
  11405. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11406. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  11407. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11408. const int * kmap_q2xs = iq2_data[gindex].map;
  11409. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11410. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11411. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11412. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11413. GGML_ASSERT(n%QK_K == 0);
  11414. const int kMaxQ = 3;
  11415. const int64_t nbl = n/QK_K;
  11416. block_iq2_s * y = vy;
  11417. float scales[QK_K/16];
  11418. float weight[16];
  11419. float xval[16];
  11420. int8_t L[16];
  11421. int8_t Laux[16];
  11422. float waux[16];
  11423. bool is_on_grid[2];
  11424. bool is_on_grid_aux[2];
  11425. uint8_t block_signs[2];
  11426. for (int ibl = 0; ibl < nbl; ++ibl) {
  11427. memset(&y[ibl], 0, sizeof(block_iq2_s));
  11428. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11429. float max_scale = 0;
  11430. const float * xbl = x + QK_K*ibl;
  11431. float sumx2 = 0;
  11432. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11433. float sigma2 = 2*sumx2/QK_K;
  11434. for (int ib = 0; ib < QK_K/16; ++ib) {
  11435. const float * xb = xbl + 16*ib;
  11436. if (quant_weights) {
  11437. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11438. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11439. } else {
  11440. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  11441. }
  11442. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11443. for (int k = 0; k < 2; ++k) {
  11444. uint8_t s = 0;
  11445. for (int i = 0; i < 8; ++i) {
  11446. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11447. else {
  11448. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11449. }
  11450. }
  11451. block_signs[k] = s;
  11452. }
  11453. float max = xval[0];
  11454. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11455. if (max < GROUP_MAX_EPS_IQ2_S) {
  11456. scales[ib] = 0;
  11457. continue;
  11458. }
  11459. float best = 0;
  11460. float scale = max/(2*kMaxQ-1);
  11461. is_on_grid[0] = is_on_grid[1] = true;
  11462. for (int is = -9; is <= 9; ++is) {
  11463. float id = (2*kMaxQ-1+is*0.1f)/max;
  11464. float this_scale = 1/id;
  11465. for (int k = 0; k < 2; ++k) {
  11466. for (int i = 0; i < 8; ++i) {
  11467. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11468. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11469. }
  11470. uint16_t u = 0;
  11471. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11472. int grid_index = kmap_q2xs[u];
  11473. is_on_grid_aux[k] = true;
  11474. if (grid_index < 0) {
  11475. is_on_grid_aux[k] = false;
  11476. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11477. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11478. }
  11479. }
  11480. float sumqx = 0, sumq2 = 0;
  11481. for (int i = 0; i < 16; ++i) {
  11482. float w = weight[i];
  11483. float q = 2*Laux[i] + 1;
  11484. sumqx += w*xval[i]*q;
  11485. sumq2 += w*q*q;
  11486. }
  11487. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11488. scale = sumqx/sumq2; best = scale*sumqx;
  11489. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11490. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11491. }
  11492. }
  11493. int n_not_ongrid = 0;
  11494. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11495. if (n_not_ongrid > 0 && scale > 0) {
  11496. float id = 1/scale;
  11497. for (int k = 0; k < 2; ++k) {
  11498. if (is_on_grid[k]) continue;
  11499. uint16_t u = 0;
  11500. for (int i = 0; i < 8; ++i) {
  11501. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11502. l = MAX(0, MIN(kMaxQ-1, l));
  11503. u |= (l << 2*i);
  11504. L[8*k + i] = l;
  11505. }
  11506. int grid_index = kmap_q2xs[u];
  11507. if (grid_index < 0) {
  11508. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11509. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11510. }
  11511. }
  11512. float sumqx = 0, sumq2 = 0;
  11513. for (int i = 0; i < 16; ++i) {
  11514. float w = weight[i];
  11515. float q = 2*L[i] + 1;
  11516. sumqx += w*xval[i]*q;
  11517. sumq2 += w*q*q;
  11518. }
  11519. if (sumq2 > 0) scale = sumqx/sumq2;
  11520. }
  11521. if (scale < 0) {
  11522. scale = -scale;
  11523. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  11524. }
  11525. for (int k = 0; k < 2; ++k) {
  11526. uint16_t u = 0;
  11527. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11528. int grid_index = kmap_q2xs[u];
  11529. if (grid_index < 0) {
  11530. printf("Oops: found point %u not on grid:", u);
  11531. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11532. printf("\n");
  11533. GGML_ASSERT(false);
  11534. }
  11535. const int i8 = 2*ib + k;
  11536. y[ibl].qs[i8] = grid_index & 255;
  11537. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  11538. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  11539. }
  11540. GGML_ASSERT(scale >= 0);
  11541. scales[ib] = scale;
  11542. max_scale = MAX(max_scale, scale);
  11543. }
  11544. if (!max_scale) {
  11545. continue;
  11546. }
  11547. float d = max_scale/31;
  11548. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  11549. float id = 1/d;
  11550. for (int ib = 0; ib < QK_K/16; ++ib) {
  11551. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11552. l = MAX(0, MIN(15, l));
  11553. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11554. else y[ibl].scales[ib/2] |= (l << 4);
  11555. }
  11556. }
  11557. }
  11558. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11559. GGML_ASSERT(n_per_row%QK_K == 0);
  11560. int64_t nblock = n_per_row/QK_K;
  11561. char * qrow = (char *)dst;
  11562. for (int64_t row = 0; row < nrow; ++row) {
  11563. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  11564. src += n_per_row;
  11565. qrow += nblock*sizeof(block_iq2_s);
  11566. }
  11567. return nrow * nblock * sizeof(block_iq2_s);
  11568. }
  11569. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  11570. assert(k % QK_K == 0);
  11571. quantize_iq2_s(x, y, 1, k, NULL);
  11572. }
  11573. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  11574. assert(k % QK_K == 0);
  11575. block_iq2_s * restrict y = vy;
  11576. quantize_row_iq2_s_reference(x, y, k);
  11577. }
  11578. static bool validate_float(float f, size_t i) {
  11579. if (isinf(f)) {
  11580. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11581. return false;
  11582. }
  11583. if (isnan(f)) {
  11584. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11585. return false;
  11586. }
  11587. return true;
  11588. }
  11589. static bool isinf_fp16(ggml_fp16_t f) {
  11590. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  11591. }
  11592. static bool isnan_fp16(ggml_fp16_t f) {
  11593. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  11594. }
  11595. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  11596. if (isinf_fp16(f)) {
  11597. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11598. return false;
  11599. }
  11600. if (isnan_fp16(f)) {
  11601. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11602. return false;
  11603. }
  11604. return true;
  11605. }
  11606. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  11607. const type * q = (const type *) (data); \
  11608. for (size_t i = 0; i < (nb); ++i) { \
  11609. if (!validate_fp16(q[i].d, i)) { \
  11610. return false; \
  11611. } \
  11612. }
  11613. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  11614. const type * q = (const type *) (data); \
  11615. for (size_t i = 0; i < (nb); ++i) { \
  11616. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  11617. return false; \
  11618. } \
  11619. }
  11620. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  11621. if (type < 0 || type >= GGML_TYPE_COUNT) {
  11622. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  11623. return false;
  11624. }
  11625. if (nbytes % ggml_type_size(type) != 0) {
  11626. fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
  11627. return false;
  11628. }
  11629. const size_t nb = nbytes/ggml_type_size(type);
  11630. switch (type) {
  11631. case GGML_TYPE_BF16:
  11632. {
  11633. int nans = 0;
  11634. int infs = 0;
  11635. const unsigned short * f = (const unsigned short *) data;
  11636. for (size_t i = 0; i < nb; ++i) {
  11637. nans += (f[i] & 0x7fff) > 0x7f80;
  11638. infs += (f[i] & 0x7fff) == 0x7f80;
  11639. }
  11640. if (nans) {
  11641. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  11642. return false;
  11643. }
  11644. if (infs) {
  11645. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  11646. return false;
  11647. }
  11648. } break;
  11649. case GGML_TYPE_F16:
  11650. {
  11651. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  11652. size_t i = 0;
  11653. #if defined(__AVX2__)
  11654. for (; i + 15 < nb; i += 16) {
  11655. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  11656. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  11657. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  11658. int mask = _mm256_movemask_epi8(cmp);
  11659. if (mask) {
  11660. for (size_t j = 0; j < 16; ++j) {
  11661. if (!validate_fp16(f[i + j], i + j)) {
  11662. return false;
  11663. }
  11664. }
  11665. GGML_UNREACHABLE();
  11666. }
  11667. }
  11668. #elif defined(__ARM_NEON)
  11669. for (; i + 7 < nb; i += 8) {
  11670. uint16x8_t v = vld1q_u16(f + i);
  11671. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  11672. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  11673. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  11674. if (mask) {
  11675. for (size_t j = 0; j < 8; ++j) {
  11676. if (!validate_fp16(f[i + j], i + j)) {
  11677. return false;
  11678. }
  11679. }
  11680. GGML_UNREACHABLE();
  11681. }
  11682. }
  11683. #endif
  11684. for (; i < nb; ++i) {
  11685. if (!validate_fp16(f[i], i)) {
  11686. return false;
  11687. }
  11688. }
  11689. } break;
  11690. case GGML_TYPE_F32:
  11691. {
  11692. const float * f = (const float *) data;
  11693. size_t i = 0;
  11694. #if defined(__AVX2__)
  11695. for (; i + 7 < nb; i += 8) {
  11696. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  11697. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  11698. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  11699. int mask = _mm256_movemask_epi8(cmp);
  11700. if (mask) {
  11701. for (size_t j = 0; j < 8; ++j) {
  11702. if (!validate_float(f[i + j], i + j)) {
  11703. return false;
  11704. }
  11705. }
  11706. GGML_UNREACHABLE();
  11707. }
  11708. }
  11709. #elif defined(__ARM_NEON)
  11710. for (; i + 3 < nb; i += 4) {
  11711. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  11712. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  11713. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  11714. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  11715. if (mask) {
  11716. for (size_t j = 0; j < 4; ++j) {
  11717. if (!validate_float(f[i + j], i + j)) {
  11718. return false;
  11719. }
  11720. }
  11721. GGML_UNREACHABLE();
  11722. }
  11723. }
  11724. #endif
  11725. for (; i < nb; ++i) {
  11726. if (!validate_float(f[i], i)) {
  11727. return false;
  11728. }
  11729. }
  11730. } break;
  11731. case GGML_TYPE_F64:
  11732. {
  11733. const double * f = (const double *) data;
  11734. for (size_t i = 0; i < nb; ++i) {
  11735. if (!validate_float(f[i], i)) {
  11736. return false;
  11737. }
  11738. }
  11739. } break;
  11740. case GGML_TYPE_Q4_0:
  11741. {
  11742. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  11743. } break;
  11744. case GGML_TYPE_Q4_1:
  11745. {
  11746. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  11747. } break;
  11748. case GGML_TYPE_Q5_0:
  11749. {
  11750. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  11751. } break;
  11752. case GGML_TYPE_Q5_1:
  11753. {
  11754. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  11755. } break;
  11756. case GGML_TYPE_Q8_0:
  11757. {
  11758. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  11759. } break;
  11760. case GGML_TYPE_Q2_K:
  11761. {
  11762. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  11763. } break;
  11764. case GGML_TYPE_Q3_K:
  11765. {
  11766. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  11767. } break;
  11768. case GGML_TYPE_Q4_K:
  11769. {
  11770. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  11771. } break;
  11772. case GGML_TYPE_Q5_K:
  11773. {
  11774. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  11775. } break;
  11776. case GGML_TYPE_Q6_K:
  11777. {
  11778. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  11779. } break;
  11780. case GGML_TYPE_Q8_K:
  11781. {
  11782. const block_q8_K * q = (const block_q8_K *) data;
  11783. for (size_t i = 0; i < nb; ++i) {
  11784. if (!validate_float(q[i].d, i)) {
  11785. return false;
  11786. }
  11787. }
  11788. } break;
  11789. case GGML_TYPE_IQ1_S:
  11790. {
  11791. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  11792. } break;
  11793. case GGML_TYPE_IQ1_M:
  11794. {
  11795. const block_iq1_m * q = (const block_iq1_m *) data;
  11796. for (size_t i = 0; i < nb; ++i) {
  11797. iq1m_scale_t scale;
  11798. const uint16_t * sc = (const uint16_t *)q[i].scales;
  11799. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  11800. if (!validate_fp16(scale.f16, i)) {
  11801. return false;
  11802. }
  11803. }
  11804. } break;
  11805. case GGML_TYPE_IQ2_XXS:
  11806. {
  11807. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  11808. } break;
  11809. case GGML_TYPE_IQ2_XS:
  11810. {
  11811. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  11812. } break;
  11813. case GGML_TYPE_IQ2_S:
  11814. {
  11815. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  11816. } break;
  11817. case GGML_TYPE_IQ3_XXS:
  11818. {
  11819. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  11820. } break;
  11821. case GGML_TYPE_IQ3_S:
  11822. {
  11823. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  11824. } break;
  11825. case GGML_TYPE_IQ4_XS:
  11826. {
  11827. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  11828. } break;
  11829. case GGML_TYPE_IQ4_NL:
  11830. {
  11831. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  11832. } break;
  11833. case GGML_TYPE_I8:
  11834. case GGML_TYPE_I16:
  11835. case GGML_TYPE_I32:
  11836. case GGML_TYPE_I64:
  11837. // nothing to validate
  11838. break;
  11839. default:
  11840. {
  11841. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  11842. return false;
  11843. }
  11844. }
  11845. return true;
  11846. }