| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- from __future__ import annotations
- from typing import Callable, Sequence
- from numpy.typing import DTypeLike
- from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
- from .lazy import LazyNumpyTensor
- import numpy as np
- def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
- block_size, type_size = GGML_QUANT_SIZES[quant_type]
- if shape[-1] % block_size != 0:
- raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
- return (*shape[:-1], shape[-1] // block_size * type_size)
- def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
- block_size, type_size = GGML_QUANT_SIZES[quant_type]
- if shape[-1] % type_size != 0:
- raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
- return (*shape[:-1], shape[-1] // type_size * block_size)
- # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
- def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
- n = n.astype(np.float32, copy=False).view(np.int32)
- # force nan to quiet
- n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
- # flush subnormals to zero
- n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
- # round to nearest even
- n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
- return n.astype(np.int16)
- # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
- def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
- rows = arr.reshape((-1, arr.shape[-1]))
- osize = 1
- for dim in oshape:
- osize *= dim
- out = np.empty(shape=osize, dtype=otype)
- # compute over groups of 16 rows (arbitrary, but seems good for performance)
- n_groups = rows.shape[0] // 16
- np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
- return out.reshape(oshape)
- def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
- return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
- __quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
- def quantize_bf16(n: np.ndarray):
- if type(n) is LazyNumpyTensor:
- return __quantize_bf16_lazy(n)
- else:
- return __quantize_bf16_array(n)
- __q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
- def can_quantize_to_q8_0(n: np.ndarray) -> bool:
- return n.shape[-1] % __q8_block_size == 0
- # round away from zero
- # ref: https://stackoverflow.com/a/59143326/22827863
- def np_roundf(n: np.ndarray) -> np.ndarray:
- a = abs(n)
- floored = np.floor(a)
- b = floored + np.floor(2 * (a - floored))
- return np.sign(n) * b
- def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
- return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
- # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
- def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
- shape = n.shape
- assert shape[-1] % __q8_block_size == 0
- n_blocks = n.size // __q8_block_size
- blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
- d = abs(blocks).max(axis=1, keepdims=True) / 127
- with np.errstate(divide="ignore"):
- id = np.where(d == 0, 0, 1 / d)
- qs = np_roundf(blocks * id)
- # (n_blocks, 2)
- d = d.astype(np.float16).view(np.uint8)
- # (n_blocks, block_size)
- qs = qs.astype(np.int8).view(np.uint8)
- assert d.shape[1] + qs.shape[1] == __q8_type_size
- return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
- def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
- return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
- __quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
- __quantize_q8_0_array,
- meta_noop=(np.uint8, __quantize_q8_0_shape_change),
- )
- def quantize_q8_0(data: np.ndarray):
- if type(data) is LazyNumpyTensor:
- return __quantize_q8_0_lazy(data)
- else:
- return __quantize_q8_0_array(data)
|