tensor_mapping.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. ),
  24. # Token type embeddings
  25. MODEL_TENSOR.TOKEN_TYPES: (
  26. "embeddings.token_type_embeddings", # bert nomic-bert
  27. ),
  28. # Normalization of token embeddings
  29. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  30. "word_embeddings_layernorm", # bloom
  31. "embeddings.LayerNorm", # bert
  32. "emb_ln", # nomic-bert
  33. ),
  34. # Position embeddings
  35. MODEL_TENSOR.POS_EMBD: (
  36. "transformer.wpe", # gpt2
  37. "embeddings.position_embeddings", # bert
  38. "wpe", # gpt2
  39. ),
  40. # Output
  41. MODEL_TENSOR.OUTPUT: (
  42. "embed_out", # gptneox
  43. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
  44. "output", # llama-pth bloom internlm2
  45. "word_embeddings_for_head", # persimmon
  46. "lm_head.linear", # phi2
  47. ),
  48. # Output norm
  49. MODEL_TENSOR.OUTPUT_NORM: (
  50. "gpt_neox.final_layer_norm", # gptneox
  51. "transformer.ln_f", # gpt2 gpt-j falcon
  52. "model.norm", # llama-hf baichuan internlm2
  53. "norm", # llama-pth
  54. "transformer.norm_f", # mpt dbrx
  55. "ln_f", # refact bloom qwen gpt2
  56. "language_model.encoder.final_layernorm", # persimmon
  57. "model.final_layernorm", # persimmon
  58. "lm_head.ln", # phi2
  59. "model.norm_f", # mamba-qbert
  60. "backbone.norm_f", # mamba
  61. "transformer.rms_norm", # Grok
  62. ),
  63. # Rope frequencies
  64. MODEL_TENSOR.ROPE_FREQS: (
  65. "rope.freqs", # llama-pth
  66. ),
  67. }
  68. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  69. # Attention norm
  70. MODEL_TENSOR.ATTN_NORM: (
  71. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  72. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  73. "transformer.blocks.{bid}.norm_1", # mpt
  74. "transformer.h.{bid}.input_layernorm", # falcon7b
  75. "h.{bid}.input_layernorm", # bloom
  76. "transformer.h.{bid}.ln_mlp", # falcon40b
  77. "model.layers.{bid}.input_layernorm", # llama-hf
  78. "layers.{bid}.attention_norm", # llama-pth
  79. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  80. "model.layers.{bid}.ln1", # yi
  81. "h.{bid}.ln_1", # gpt2
  82. "transformer.h.{bid}.ln", # phi2
  83. "model.layers.layers.{bid}.norm", # plamo
  84. "model.layers.{bid}.attention_norm", # internlm2
  85. "model.layers.{bid}.norm", # mamba-qbert
  86. "backbone.layers.{bid}.norm", # mamba
  87. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  88. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  89. ),
  90. # Attention norm 2
  91. MODEL_TENSOR.ATTN_NORM_2: (
  92. "transformer.h.{bid}.ln_attn", # falcon40b
  93. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  94. ),
  95. # Attention query-key-value
  96. MODEL_TENSOR.ATTN_QKV: (
  97. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  98. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  99. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  100. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  101. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  102. "h.{bid}.self_attention.query_key_value", # bloom
  103. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  104. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  105. "h.{bid}.attn.c_attn", # gpt2
  106. "transformer.h.{bid}.mixer.Wqkv", # phi2
  107. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  108. "model.layers.{bid}.self_attn.qkv_proj" # phi3
  109. ),
  110. # Attention query
  111. MODEL_TENSOR.ATTN_Q: (
  112. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  113. "layers.{bid}.attention.wq", # llama-pth
  114. "encoder.layer.{bid}.attention.self.query", # bert
  115. "transformer.h.{bid}.attn.q_proj", # gpt-j
  116. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  117. "model.layers.{bid}.attention.wq", # internlm2
  118. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  119. ),
  120. # Attention key
  121. MODEL_TENSOR.ATTN_K: (
  122. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  123. "layers.{bid}.attention.wk", # llama-pth
  124. "encoder.layer.{bid}.attention.self.key", # bert
  125. "transformer.h.{bid}.attn.k_proj", # gpt-j
  126. "transformer.h.{bid}.attn.k", # refact
  127. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  128. "model.layers.{bid}.attention.wk", # internlm2
  129. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  130. ),
  131. # Attention value
  132. MODEL_TENSOR.ATTN_V: (
  133. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  134. "layers.{bid}.attention.wv", # llama-pth
  135. "encoder.layer.{bid}.attention.self.value", # bert
  136. "transformer.h.{bid}.attn.v_proj", # gpt-j
  137. "transformer.h.{bid}.attn.v", # refact
  138. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  139. "model.layers.{bid}.attention.wv", # internlm2
  140. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  141. ),
  142. # Attention output
  143. MODEL_TENSOR.ATTN_OUT: (
  144. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  145. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  146. "transformer.blocks.{bid}.attn.out_proj", # mpt
  147. "transformer.h.{bid}.self_attention.dense", # falcon
  148. "h.{bid}.self_attention.dense", # bloom
  149. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  150. "layers.{bid}.attention.wo", # llama-pth
  151. "encoder.layer.{bid}.attention.output.dense", # bert
  152. "transformer.h.{bid}.attn.out_proj", # gpt-j
  153. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  154. "model.layers.{bid}.self_attn.dense", # persimmon
  155. "h.{bid}.attn.c_proj", # gpt2
  156. "transformer.h.{bid}.mixer.out_proj", # phi2
  157. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  158. "model.layers.{bid}.attention.wo", # internlm2
  159. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  160. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  161. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  162. ),
  163. # Attention output norm
  164. MODEL_TENSOR.ATTN_OUT_NORM: (
  165. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  166. "encoder.layers.{bid}.norm1", # nomic-bert
  167. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  168. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  169. ),
  170. # Rotary embeddings
  171. MODEL_TENSOR.ATTN_ROT_EMBD: (
  172. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  173. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  174. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  175. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  176. ),
  177. # Feed-forward norm
  178. MODEL_TENSOR.FFN_NORM: (
  179. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  180. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  181. "h.{bid}.post_attention_layernorm", # bloom
  182. "transformer.blocks.{bid}.norm_2", # mpt
  183. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  184. "layers.{bid}.ffn_norm", # llama-pth
  185. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  186. "model.layers.{bid}.ln2", # yi
  187. "h.{bid}.ln_2", # gpt2
  188. "model.layers.{bid}.ffn_norm", # internlm2
  189. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  190. ),
  191. MODEL_TENSOR.FFN_GATE_INP: (
  192. "layers.{bid}.feed_forward.gate", # mixtral
  193. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  194. "model.layers.{bid}.mlp.gate", # qwen2moe
  195. "transformer.decoder_layer.{bid}.router", # Grok
  196. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  197. ),
  198. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  199. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  200. ),
  201. # Feed-forward up
  202. MODEL_TENSOR.FFN_UP: (
  203. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  204. "transformer.h.{bid}.mlp.c_fc", # gpt2
  205. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  206. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  207. "h.{bid}.mlp.dense_h_to_4h", # bloom
  208. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  209. "layers.{bid}.feed_forward.w3", # llama-pth
  210. "encoder.layer.{bid}.intermediate.dense", # bert
  211. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  212. "transformer.h.{bid}.mlp.linear_3", # refact
  213. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  214. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  215. "transformer.h.{bid}.mlp.w1", # qwen
  216. "h.{bid}.mlp.c_fc", # gpt2
  217. "transformer.h.{bid}.mlp.fc1", # phi2
  218. "model.layers.{bid}.mlp.fc1", # phi2
  219. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  220. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  221. "model.layers.{bid}.feed_forward.w3", # internlm2
  222. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  223. "model.layers.{bid}.mlp.c_fc", # starcoder2
  224. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  225. "model.layers.{bid}.residual_mlp.w3", # arctic
  226. ),
  227. MODEL_TENSOR.FFN_UP_EXP: (
  228. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  229. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  230. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  231. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  232. ),
  233. MODEL_TENSOR.FFN_UP_SHEXP: (
  234. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  235. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  236. ),
  237. # AWQ-activation gate
  238. MODEL_TENSOR.FFN_ACT: (
  239. "transformer.blocks.{bid}.ffn.act", # mpt
  240. ),
  241. # Feed-forward gate
  242. MODEL_TENSOR.FFN_GATE: (
  243. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  244. "layers.{bid}.feed_forward.w1", # llama-pth
  245. "transformer.h.{bid}.mlp.w2", # qwen
  246. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  247. "model.layers.{bid}.feed_forward.w1", # internlm2
  248. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  249. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  250. "transformer.h.{bid}.mlp.linear_1", # refact
  251. "model.layers.{bid}.residual_mlp.w1", # arctic
  252. ),
  253. MODEL_TENSOR.FFN_GATE_EXP: (
  254. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  255. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  256. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  257. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  258. ),
  259. MODEL_TENSOR.FFN_GATE_SHEXP: (
  260. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  261. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  262. ),
  263. # Feed-forward down
  264. MODEL_TENSOR.FFN_DOWN: (
  265. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  266. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  267. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  268. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  269. "h.{bid}.mlp.dense_4h_to_h", # bloom
  270. "model.layers.{bid}.mlp.down_proj", # llama-hf
  271. "layers.{bid}.feed_forward.w2", # llama-pth
  272. "encoder.layer.{bid}.output.dense", # bert
  273. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  274. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  275. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  276. "h.{bid}.mlp.c_proj", # gpt2
  277. "transformer.h.{bid}.mlp.fc2", # phi2
  278. "model.layers.{bid}.mlp.fc2", # phi2
  279. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  280. "model.layers.{bid}.feed_forward.w2", # internlm2
  281. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  282. "model.layers.{bid}.mlp.c_proj", # starcoder2
  283. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  284. "model.layers.{bid}.residual_mlp.w2", # arctic
  285. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  286. ),
  287. MODEL_TENSOR.FFN_DOWN_EXP: (
  288. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  289. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  290. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  291. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  292. ),
  293. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  294. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  295. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  296. ),
  297. MODEL_TENSOR.ATTN_Q_NORM: (
  298. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  299. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  300. "model.layers.{bid}.self_attn.q_norm", # cohere
  301. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  302. "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
  303. ),
  304. MODEL_TENSOR.ATTN_K_NORM: (
  305. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  306. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  307. "model.layers.{bid}.self_attn.k_norm", # cohere
  308. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  309. "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
  310. ),
  311. MODEL_TENSOR.ROPE_FREQS: (
  312. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  313. ),
  314. MODEL_TENSOR.LAYER_OUT_NORM: (
  315. "encoder.layer.{bid}.output.LayerNorm", # bert
  316. "encoder.layers.{bid}.norm2", # nomic-bert
  317. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  318. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  319. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  320. ),
  321. MODEL_TENSOR.SSM_IN: (
  322. "model.layers.{bid}.in_proj",
  323. "backbone.layers.{bid}.mixer.in_proj",
  324. ),
  325. MODEL_TENSOR.SSM_CONV1D: (
  326. "model.layers.{bid}.conv1d",
  327. "backbone.layers.{bid}.mixer.conv1d",
  328. ),
  329. MODEL_TENSOR.SSM_X: (
  330. "model.layers.{bid}.x_proj",
  331. "backbone.layers.{bid}.mixer.x_proj",
  332. ),
  333. MODEL_TENSOR.SSM_DT: (
  334. "model.layers.{bid}.dt_proj",
  335. "backbone.layers.{bid}.mixer.dt_proj",
  336. ),
  337. MODEL_TENSOR.SSM_A: (
  338. "model.layers.{bid}.A_log",
  339. "backbone.layers.{bid}.mixer.A_log",
  340. ),
  341. MODEL_TENSOR.SSM_D: (
  342. "model.layers.{bid}.D",
  343. "backbone.layers.{bid}.mixer.D",
  344. ),
  345. MODEL_TENSOR.SSM_OUT: (
  346. "model.layers.{bid}.out_proj",
  347. "backbone.layers.{bid}.mixer.out_proj",
  348. ),
  349. MODEL_TENSOR.ATTN_Q_A: (
  350. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  351. ),
  352. MODEL_TENSOR.ATTN_Q_B: (
  353. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  354. ),
  355. MODEL_TENSOR.ATTN_KV_A_MQA: (
  356. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  357. ),
  358. MODEL_TENSOR.ATTN_KV_B: (
  359. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  360. ),
  361. MODEL_TENSOR.ATTN_Q_A_NORM: (
  362. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  363. ),
  364. MODEL_TENSOR.ATTN_KV_A_NORM: (
  365. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  366. ),
  367. }
  368. # architecture-specific block mappings
  369. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  370. MODEL_ARCH.ARCTIC: {
  371. MODEL_TENSOR.FFN_NORM: (
  372. "model.layers.{bid}.residual_layernorm",
  373. ),
  374. MODEL_TENSOR.FFN_NORM_EXP: (
  375. "model.layers.{bid}.post_attention_layernorm",
  376. ),
  377. },
  378. }
  379. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  380. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  381. self.mapping = {}
  382. for tensor, keys in self.mappings_cfg.items():
  383. if tensor not in MODEL_TENSORS[arch]:
  384. continue
  385. tensor_name = TENSOR_NAMES[tensor]
  386. self.mapping[tensor_name] = (tensor, tensor_name)
  387. for key in keys:
  388. self.mapping[key] = (tensor, tensor_name)
  389. if arch in self.arch_block_mappings_cfg:
  390. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  391. for bid in range(n_blocks):
  392. for tensor, keys in self.block_mappings_cfg.items():
  393. if tensor not in MODEL_TENSORS[arch]:
  394. continue
  395. # TODO: make this configurable
  396. n_experts = 160
  397. for xid in range(n_experts):
  398. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  399. self.mapping[tensor_name] = (tensor, tensor_name)
  400. for key in keys:
  401. key = key.format(bid = bid, xid = xid)
  402. self.mapping[key] = (tensor, tensor_name)
  403. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  404. result = self.mapping.get(key)
  405. if result is not None:
  406. return result
  407. for suffix in try_suffixes:
  408. if key.endswith(suffix):
  409. result = self.mapping.get(key[:-len(suffix)])
  410. if result is not None:
  411. return result[0], result[1] + suffix
  412. return None
  413. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  414. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  415. if result is None:
  416. return None
  417. return result[1]
  418. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  419. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  420. if result is None:
  421. return None
  422. return result[0]
  423. def __getitem__(self, key: str) -> str:
  424. try:
  425. return self.mapping[key][1]
  426. except KeyError:
  427. raise KeyError(key)
  428. def __contains__(self, key: str) -> bool:
  429. return key in self.mapping
  430. def __repr__(self) -> str:
  431. return repr(self.mapping)
  432. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  433. return TensorNameMap(arch, n_blocks)