test-backend-ops.cpp 316 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. // generate a lower triangular matrix
  153. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  154. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  155. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  156. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  157. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  158. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  159. std::random_device rd;
  160. std::mt19937 gen(rd());
  161. std::uniform_real_distribution<float> dis(min, max);
  162. for (int64_t i3 = 0; i3 < ne3; i3++) {
  163. for (int64_t i2 = 0; i2 < ne2; i2++) {
  164. for (int64_t i1 = 0; i1 < ne1; i1++) {
  165. for (int64_t i0 = 0; i0 < ne0; i0++) {
  166. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  167. if (i0 <= i1) {
  168. data_f32[idx] = dis(gen);
  169. } else {
  170. data_f32[idx] = 0.0f;
  171. }
  172. }
  173. }
  174. }
  175. }
  176. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  177. }
  178. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  179. std::vector<float> tv;
  180. tv.reserve(ggml_nelements(t));
  181. std::vector<uint8_t> buf(ggml_nbytes(t));
  182. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  183. const auto * tt = ggml_get_type_traits(t->type);
  184. size_t bs = ggml_blck_size(t->type);
  185. std::vector<float> vq(ggml_blck_size(t->type));
  186. bool quantized = ggml_is_quantized(t->type);
  187. // access elements by index to avoid gaps in views
  188. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  189. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  190. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  191. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  192. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  193. if (t->type == GGML_TYPE_F16) {
  194. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  195. } else if (t->type == GGML_TYPE_BF16) {
  196. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  197. } else if (t->type == GGML_TYPE_F32) {
  198. tv.push_back(*(float *) &buf[i]);
  199. } else if (t->type == GGML_TYPE_I64) {
  200. tv.push_back((float)*(int64_t *) &buf[i]);
  201. } else if (t->type == GGML_TYPE_I32) {
  202. tv.push_back((float)*(int32_t *) &buf[i]);
  203. } else if (t->type == GGML_TYPE_I16) {
  204. tv.push_back((float)*(int16_t *) &buf[i]);
  205. } else if (t->type == GGML_TYPE_I8) {
  206. tv.push_back((float)*(int8_t *) &buf[i]);
  207. } else if (quantized) {
  208. tt->to_float(&buf[i], vq.data(), bs);
  209. tv.insert(tv.end(), vq.begin(), vq.end());
  210. } else {
  211. GGML_ABORT("fatal error");
  212. }
  213. }
  214. }
  215. }
  216. }
  217. return tv;
  218. }
  219. // normalized mean squared error = mse(a, b) / mse(a, 0)
  220. static double nmse(const float * a, const float * b, size_t n) {
  221. double mse_a_b = 0.0;
  222. double mse_a_0 = 0.0;
  223. for (size_t i = 0; i < n; i++) {
  224. float a_i = a[i];
  225. float b_i = b[i];
  226. mse_a_b += (a_i - b_i) * (a_i - b_i);
  227. mse_a_0 += a_i * a_i;
  228. }
  229. return mse_a_b / mse_a_0;
  230. }
  231. // maximum absolute asymmetry between a and b
  232. // asymmetry: (a - b) / (a + b)
  233. // This is more stable than relative error if one of the values fluctuates towards zero.
  234. // n: number of values to compare.
  235. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  236. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  237. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  238. double sum = 0.0f;
  239. size_t nvalid = 0;
  240. for (size_t i = 0; i < n; i++) {
  241. if (!expected_vals.empty()) {
  242. bool matches_any = false;
  243. for (const float & ev : expected_vals) {
  244. if (fabsf(a[i] - ev) < 1e-3f) {
  245. matches_any = true;
  246. break;
  247. }
  248. }
  249. if (!matches_any) {
  250. continue;
  251. }
  252. }
  253. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  254. sum += fabsf(asymm);
  255. nvalid++;
  256. }
  257. return sum/nvalid;
  258. }
  259. // utils for printing the variables of the test cases
  260. static std::string var_to_str(const std::string & x) {
  261. return x;
  262. }
  263. template<typename T>
  264. static std::string var_to_str(const T & x) {
  265. return std::to_string(x);
  266. }
  267. template<typename T, size_t N>
  268. static std::string var_to_str(const T (&x)[N]) {
  269. std::string s = "[";
  270. for (size_t i = 0; i < N; i++) {
  271. if (i > 0) {
  272. s += ",";
  273. }
  274. s += var_to_str(x[i]);
  275. }
  276. s += "]";
  277. return s;
  278. }
  279. template<typename T, size_t N>
  280. static std::string var_to_str(const std::array<T, N> & x) {
  281. std::string s = "[";
  282. for (size_t i = 0; i < N; i++) {
  283. if (i > 0) {
  284. s += ",";
  285. }
  286. s += var_to_str(x[i]);
  287. }
  288. s += "]";
  289. return s;
  290. }
  291. static std::string var_to_str(ggml_type type) {
  292. return ggml_type_name(type);
  293. }
  294. static std::string var_to_str(ggml_prec prec) {
  295. return prec == GGML_PREC_F32 ? "f32" : "def";
  296. }
  297. static std::string var_to_str(ggml_op_pool pool) {
  298. switch (pool) {
  299. case GGML_OP_POOL_AVG: return "avg";
  300. case GGML_OP_POOL_MAX: return "max";
  301. default: return std::to_string(pool);
  302. }
  303. }
  304. static std::string var_to_str(ggml_scale_mode mode) {
  305. switch (mode) {
  306. case GGML_SCALE_MODE_NEAREST: return "nearest";
  307. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  308. case GGML_SCALE_MODE_BICUBIC: return "bicubic";
  309. default: return std::to_string(mode);
  310. }
  311. }
  312. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  313. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  314. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  315. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  316. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  317. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  318. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  319. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  320. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  321. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  322. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  323. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  324. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  325. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  326. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  327. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  328. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  329. #ifdef GGML_USE_SYCL
  330. static bool inline _isinf(float f) {
  331. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  332. }
  333. #else
  334. static bool inline _isinf(float f) { return std::isinf(f); }
  335. #endif
  336. // accept FLT_MAX as infinity
  337. static bool isinf_or_max(float f) {
  338. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  339. }
  340. static bool ggml_is_view_op(enum ggml_op op) {
  341. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  342. }
  343. enum test_mode {
  344. MODE_TEST,
  345. MODE_PERF,
  346. MODE_GRAD,
  347. MODE_SUPPORT,
  348. };
  349. // Output format support similar to llama-bench
  350. enum output_formats { CONSOLE, SQL, CSV };
  351. static const char * output_format_str(output_formats format) {
  352. switch (format) {
  353. case CONSOLE:
  354. return "console";
  355. case SQL:
  356. return "sql";
  357. case CSV:
  358. return "csv";
  359. default:
  360. GGML_ABORT("invalid output format");
  361. }
  362. }
  363. static bool output_format_from_str(const std::string & s, output_formats & format) {
  364. if (s == "console") {
  365. format = CONSOLE;
  366. } else if (s == "sql") {
  367. format = SQL;
  368. } else if (s == "csv") {
  369. format = CSV;
  370. } else {
  371. return false;
  372. }
  373. return true;
  374. }
  375. // Test result structure for SQL output
  376. struct test_result {
  377. std::string test_time;
  378. std::string build_commit;
  379. std::string backend_name;
  380. std::string op_name;
  381. std::string op_params;
  382. std::string test_mode;
  383. bool supported;
  384. bool passed;
  385. std::string error_message;
  386. double time_us;
  387. double flops;
  388. double bandwidth_gb_s;
  389. size_t memory_kb;
  390. int n_runs;
  391. std::string device_description;
  392. std::string backend_reg_name;
  393. test_result() {
  394. // Initialize with default values
  395. time_us = 0.0;
  396. flops = 0.0;
  397. bandwidth_gb_s = 0.0;
  398. memory_kb = 0;
  399. n_runs = 0;
  400. supported = false;
  401. passed = false;
  402. // Set test time
  403. time_t t = time(NULL);
  404. char buf[32];
  405. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  406. test_time = buf;
  407. // Set build info
  408. build_commit = ggml_commit();
  409. }
  410. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  411. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  412. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  413. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  414. backend_name(backend_name),
  415. op_name(op_name),
  416. op_params(op_params),
  417. test_mode(test_mode),
  418. supported(supported),
  419. passed(passed),
  420. error_message(error_message),
  421. time_us(time_us),
  422. flops(flops),
  423. bandwidth_gb_s(bandwidth_gb_s),
  424. memory_kb(memory_kb),
  425. n_runs(n_runs),
  426. device_description(device_description),
  427. backend_reg_name(backend_reg_name) {
  428. // Set test time
  429. time_t t = time(NULL);
  430. char buf[32];
  431. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  432. test_time = buf;
  433. // Set build info
  434. build_commit = ggml_commit();
  435. }
  436. static const std::vector<std::string> & get_fields() {
  437. static const std::vector<std::string> fields = {
  438. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  439. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  440. "device_description", "backend_reg_name"
  441. };
  442. return fields;
  443. }
  444. enum field_type { STRING, BOOL, INT, FLOAT };
  445. static field_type get_field_type(const std::string & field) {
  446. if (field == "supported" || field == "passed") {
  447. return BOOL;
  448. }
  449. if (field == "memory_kb" || field == "n_runs") {
  450. return INT;
  451. }
  452. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  453. return FLOAT;
  454. }
  455. return STRING;
  456. }
  457. std::vector<std::string> get_values() const {
  458. return { test_time,
  459. build_commit,
  460. backend_name,
  461. op_name,
  462. op_params,
  463. test_mode,
  464. std::to_string(supported),
  465. std::to_string(passed),
  466. error_message,
  467. std::to_string(time_us),
  468. std::to_string(flops),
  469. std::to_string(bandwidth_gb_s),
  470. std::to_string(memory_kb),
  471. std::to_string(n_runs),
  472. device_description,
  473. backend_reg_name };
  474. }
  475. };
  476. // Printer classes for different output formats
  477. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  478. struct test_operation_info {
  479. std::string op_name;
  480. std::string op_params;
  481. std::string backend_name;
  482. test_status_t status = test_status_t::OK;
  483. std::string failure_reason;
  484. // Additional information fields that were previously in separate structs
  485. std::string error_component;
  486. std::string error_details;
  487. // Gradient info
  488. int64_t gradient_index = -1;
  489. std::string gradient_param_name;
  490. float gradient_value = 0.0f;
  491. // MAA error info
  492. double maa_error = 0.0;
  493. double maa_threshold = 0.0;
  494. // Flags for different types of information
  495. bool has_error = false;
  496. bool has_gradient_info = false;
  497. bool has_maa_error = false;
  498. bool is_compare_failure = false;
  499. bool is_large_tensor_skip = false;
  500. test_operation_info() = default;
  501. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  502. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  503. op_name(op_name),
  504. op_params(op_params),
  505. backend_name(backend_name),
  506. status(status),
  507. failure_reason(failure_reason) {}
  508. // Set error information
  509. void set_error(const std::string & component, const std::string & details) {
  510. has_error = true;
  511. error_component = component;
  512. error_details = details;
  513. if (status == test_status_t::OK) {
  514. status = test_status_t::FAIL;
  515. }
  516. }
  517. // Set gradient information
  518. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  519. has_gradient_info = true;
  520. gradient_index = index;
  521. gradient_param_name = param_name;
  522. gradient_value = value;
  523. if (status == test_status_t::OK) {
  524. status = test_status_t::FAIL;
  525. }
  526. }
  527. // Set MAA error information
  528. void set_maa_error(double error, double threshold) {
  529. has_maa_error = true;
  530. maa_error = error;
  531. maa_threshold = threshold;
  532. if (status == test_status_t::OK) {
  533. status = test_status_t::FAIL;
  534. }
  535. }
  536. // Set compare failure
  537. void set_compare_failure() {
  538. is_compare_failure = true;
  539. if (status == test_status_t::OK) {
  540. status = test_status_t::FAIL;
  541. }
  542. }
  543. // Set large tensor skip
  544. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  545. };
  546. struct test_summary_info {
  547. size_t tests_passed;
  548. size_t tests_total;
  549. bool is_backend_summary = false; // true for backend summary, false for test summary
  550. test_summary_info() = default;
  551. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  552. tests_passed(tests_passed),
  553. tests_total(tests_total),
  554. is_backend_summary(is_backend_summary) {}
  555. };
  556. struct testing_start_info {
  557. size_t device_count;
  558. testing_start_info() = default;
  559. testing_start_info(size_t device_count) : device_count(device_count) {}
  560. };
  561. struct backend_init_info {
  562. size_t device_index;
  563. size_t total_devices;
  564. std::string device_name;
  565. bool skipped = false;
  566. std::string skip_reason;
  567. std::string description;
  568. size_t memory_total_mb = 0;
  569. size_t memory_free_mb = 0;
  570. bool has_memory_info = false;
  571. backend_init_info() = default;
  572. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  573. const std::string & skip_reason = "", const std::string & description = "",
  574. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  575. device_index(device_index),
  576. total_devices(total_devices),
  577. device_name(device_name),
  578. skipped(skipped),
  579. skip_reason(skip_reason),
  580. description(description),
  581. memory_total_mb(memory_total_mb),
  582. memory_free_mb(memory_free_mb),
  583. has_memory_info(has_memory_info) {}
  584. };
  585. struct backend_status_info {
  586. std::string backend_name;
  587. test_status_t status;
  588. backend_status_info() = default;
  589. backend_status_info(const std::string & backend_name, test_status_t status) :
  590. backend_name(backend_name),
  591. status(status) {}
  592. };
  593. struct overall_summary_info {
  594. size_t backends_passed;
  595. size_t backends_total;
  596. bool all_passed;
  597. overall_summary_info() = default;
  598. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  599. backends_passed(backends_passed),
  600. backends_total(backends_total),
  601. all_passed(all_passed) {}
  602. };
  603. struct printer {
  604. virtual ~printer() {}
  605. FILE * fout = stdout;
  606. virtual void print_header() {}
  607. virtual void print_test_result(const test_result & result) = 0;
  608. virtual void print_footer() {}
  609. virtual void print_operation(const test_operation_info & info) { (void) info; }
  610. virtual void print_summary(const test_summary_info & info) { (void) info; }
  611. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  612. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  613. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  614. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  615. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  616. };
  617. struct console_printer : public printer {
  618. void print_test_result(const test_result & result) override {
  619. if (result.test_mode == "test") {
  620. print_test_console(result);
  621. } else if (result.test_mode == "perf") {
  622. print_perf_console(result);
  623. } else if (result.test_mode == "support") {
  624. print_support_console(result);
  625. }
  626. }
  627. void print_operation(const test_operation_info & info) override {
  628. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  629. fflush(stdout);
  630. // Handle large tensor skip first
  631. if (info.is_large_tensor_skip) {
  632. printf("skipping large tensors for speed \n");
  633. return;
  634. }
  635. // Handle not supported status
  636. if (info.status == test_status_t::NOT_SUPPORTED) {
  637. if (!info.failure_reason.empty()) {
  638. printf("not supported [%s]\n", info.failure_reason.c_str());
  639. } else {
  640. printf("not supported [%s]\n", info.backend_name.c_str());
  641. }
  642. return;
  643. }
  644. // Handle errors and additional information
  645. if (info.has_error) {
  646. if (info.error_component == "allocation") {
  647. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  648. } else if (info.error_component == "backend") {
  649. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  650. } else {
  651. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  652. }
  653. }
  654. // Handle gradient info
  655. if (info.has_gradient_info) {
  656. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  657. info.gradient_param_name.c_str(), info.gradient_value);
  658. }
  659. // Handle MAA error
  660. if (info.has_maa_error) {
  661. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  662. }
  663. // Handle compare failure
  664. if (info.is_compare_failure) {
  665. printf("compare failed ");
  666. }
  667. // Print final status
  668. if (info.status == test_status_t::OK) {
  669. printf("\033[1;32mOK\033[0m\n");
  670. } else {
  671. printf("\033[1;31mFAIL\033[0m\n");
  672. }
  673. }
  674. void print_summary(const test_summary_info & info) override {
  675. if (info.is_backend_summary) {
  676. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  677. } else {
  678. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  679. }
  680. }
  681. void print_backend_status(const backend_status_info & info) override {
  682. printf(" Backend %s: ", info.backend_name.c_str());
  683. if (info.status == test_status_t::OK) {
  684. printf("\033[1;32mOK\033[0m\n");
  685. } else {
  686. printf("\033[1;31mFAIL\033[0m\n");
  687. }
  688. }
  689. void print_testing_start(const testing_start_info & info) override {
  690. printf("Testing %zu devices\n\n", info.device_count);
  691. }
  692. void print_backend_init(const backend_init_info & info) override {
  693. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  694. if (info.skipped) {
  695. printf(" %s\n", info.skip_reason.c_str());
  696. return;
  697. }
  698. if (!info.description.empty()) {
  699. printf(" Device description: %s\n", info.description.c_str());
  700. }
  701. if (info.has_memory_info) {
  702. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  703. }
  704. printf("\n");
  705. }
  706. void print_overall_summary(const overall_summary_info & info) override {
  707. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  708. if (info.all_passed) {
  709. printf("\033[1;32mOK\033[0m\n");
  710. } else {
  711. printf("\033[1;31mFAIL\033[0m\n");
  712. }
  713. }
  714. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  715. if (failed_tests.empty()) {
  716. return;
  717. }
  718. printf("\nFailing tests:\n");
  719. for (const auto & test_name : failed_tests) {
  720. printf(" %s\n", test_name.c_str());
  721. }
  722. }
  723. private:
  724. void print_test_console(const test_result & result) {
  725. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  726. fflush(stdout);
  727. if (!result.supported) {
  728. printf("not supported [%s] ", result.backend_name.c_str());
  729. printf("\n");
  730. return;
  731. }
  732. if (result.passed) {
  733. printf("\033[1;32mOK\033[0m\n");
  734. } else {
  735. printf("\033[1;31mFAIL\033[0m\n");
  736. }
  737. }
  738. void print_perf_console(const test_result & result) {
  739. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  740. fflush(stdout);
  741. if (!result.supported) {
  742. printf("not supported\n");
  743. return;
  744. }
  745. // align while also leaving some margin for variations in parameters
  746. int align = 8;
  747. int last = (len + align - 1) / align * align;
  748. if (last - len < 5) {
  749. last += align;
  750. }
  751. printf("%*s", last - len, "");
  752. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  753. if (result.flops > 0) {
  754. auto format_flops = [](double flops) -> std::string {
  755. char buf[256];
  756. if (flops >= 1e12) {
  757. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  758. } else if (flops >= 1e9) {
  759. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  760. } else if (flops >= 1e6) {
  761. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  762. } else {
  763. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  764. }
  765. return buf;
  766. };
  767. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  768. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  769. format_flops(result.flops).c_str());
  770. } else {
  771. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  772. }
  773. printf("\n");
  774. }
  775. void print_support_console(const test_result & result) {
  776. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  777. fflush(stdout);
  778. if (result.supported) {
  779. printf("\033[1;32mSUPPORTED\033[0m\n");
  780. } else {
  781. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  782. }
  783. }
  784. };
  785. struct sql_printer : public printer {
  786. static std::string get_sql_field_type(const std::string & field) {
  787. switch (test_result::get_field_type(field)) {
  788. case test_result::STRING:
  789. return "TEXT";
  790. case test_result::BOOL:
  791. case test_result::INT:
  792. return "INTEGER";
  793. case test_result::FLOAT:
  794. return "REAL";
  795. default:
  796. GGML_ABORT("invalid field type");
  797. }
  798. }
  799. void print_header() override {
  800. std::vector<std::string> fields = test_result::get_fields();
  801. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  802. for (size_t i = 0; i < fields.size(); i++) {
  803. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  804. i < fields.size() - 1 ? "," : "");
  805. }
  806. fprintf(fout, ");\n\n");
  807. }
  808. void print_test_result(const test_result & result) override {
  809. fprintf(fout, "INSERT INTO test_backend_ops (");
  810. std::vector<std::string> fields = test_result::get_fields();
  811. for (size_t i = 0; i < fields.size(); i++) {
  812. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  813. }
  814. fprintf(fout, ") VALUES (");
  815. std::vector<std::string> values = result.get_values();
  816. for (size_t i = 0; i < values.size(); i++) {
  817. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  818. }
  819. fprintf(fout, ");\n");
  820. }
  821. };
  822. struct csv_printer : public printer {
  823. void print_header() override {
  824. std::vector<std::string> fields = test_result::get_fields();
  825. std::vector<std::string> fields_csv = get_fields_csv();
  826. for (size_t i = 0; i < fields.size(); i++) {
  827. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  828. continue;
  829. }
  830. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  831. }
  832. printf("\n");
  833. }
  834. void print_test_result(const test_result & result) override {
  835. std::vector<std::string> values = result.get_values();
  836. std::vector<std::string> fields = test_result::get_fields();
  837. std::vector<std::string> fields_csv = get_fields_csv();
  838. for (size_t i = 0; i < values.size(); i++) {
  839. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  840. continue;
  841. }
  842. // Escape quotes and wrap in quotes for CSV
  843. std::string escaped_value = values[i];
  844. size_t pos = 0;
  845. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  846. escaped_value.replace(pos, 1, "\"\"");
  847. pos += 2;
  848. }
  849. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  850. }
  851. printf("\n");
  852. }
  853. static std::vector<std::string> get_fields_csv() {
  854. return {
  855. "op_name",
  856. "op_params",
  857. "supported",
  858. "error_message",
  859. "test_mode",
  860. "backend_reg_name",
  861. "backend_name",
  862. };
  863. }
  864. };
  865. static std::unique_ptr<printer> create_printer(output_formats format) {
  866. switch (format) {
  867. case CONSOLE:
  868. return std::make_unique<console_printer>();
  869. case SQL:
  870. return std::make_unique<sql_printer>();
  871. case CSV:
  872. return std::make_unique<csv_printer>();
  873. }
  874. GGML_ABORT("invalid output format");
  875. }
  876. struct test_case {
  877. virtual ~test_case() {}
  878. virtual std::string op_desc(ggml_tensor * t) {
  879. return ggml_op_desc(t);
  880. }
  881. virtual std::string vars() {
  882. return "";
  883. }
  884. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  885. virtual double max_nmse_err() {
  886. return 1e-7;
  887. }
  888. virtual double max_maa_err() {
  889. return 1e-4;
  890. }
  891. virtual float grad_eps() {
  892. return 1e-1f;
  893. }
  894. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  895. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  896. virtual bool grad_precise() {
  897. return false;
  898. }
  899. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  900. virtual int64_t grad_nmax() {
  901. return 10000;
  902. }
  903. // No effect if empty.
  904. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  905. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  906. virtual std::vector<float> grad_expect() {
  907. return {};
  908. }
  909. virtual void initialize_tensors(ggml_context * ctx) {
  910. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  911. init_tensor_uniform(t);
  912. }
  913. }
  914. virtual size_t op_size(ggml_tensor * t) {
  915. size_t size = ggml_nbytes(t);
  916. // add source tensors
  917. for (int i = 0; i < GGML_MAX_SRC; i++) {
  918. if (t->src[i] != NULL) {
  919. size += ggml_nbytes(t->src[i]);
  920. }
  921. }
  922. return size;
  923. }
  924. virtual uint64_t op_flops(ggml_tensor * t) {
  925. GGML_UNUSED(t);
  926. return 0;
  927. }
  928. virtual bool run_whole_graph() { return false; }
  929. ggml_cgraph * gf = nullptr;
  930. ggml_cgraph * gb = nullptr;
  931. static const int sentinel_size = 1024;
  932. test_mode mode;
  933. std::vector<ggml_tensor *> sentinels;
  934. std::string current_op_name;
  935. void add_sentinel(ggml_context * ctx) {
  936. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  937. return;
  938. }
  939. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  940. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  941. sentinels.push_back(sentinel);
  942. }
  943. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  944. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  945. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  946. add_sentinel(ctx);
  947. return t;
  948. }
  949. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  950. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  951. add_sentinel(ctx);
  952. return t;
  953. }
  954. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  955. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  956. add_sentinel(ctx);
  957. return t;
  958. }
  959. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  960. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  961. add_sentinel(ctx);
  962. return t;
  963. }
  964. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  965. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  966. add_sentinel(ctx);
  967. return t;
  968. }
  969. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  970. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  971. if (op_names_filter) {
  972. const auto op_name = op_desc(op);
  973. const auto op_full_name = op_name + "(" + vars() + ")";
  974. std::string_view filter(op_names_filter);
  975. while (!filter.empty()) {
  976. auto comma_pos = filter.find_first_of(',');
  977. const auto lparen_pos = filter.find_first_of('(');
  978. if (lparen_pos < comma_pos) {
  979. auto rparen_pos = filter.find_first_of(')');
  980. comma_pos = filter.find_first_of(',', rparen_pos);
  981. const auto op_filter = filter.substr(0, comma_pos);
  982. if (op_filter == op_full_name) {
  983. return true;
  984. }
  985. } else {
  986. const auto op_filter = filter.substr(0, comma_pos);
  987. if (op_filter == op_name) {
  988. return true;
  989. }
  990. }
  991. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  992. }
  993. return false;
  994. } else {
  995. return true;
  996. }
  997. }
  998. test_status_t eval(ggml_backend_t backend1,
  999. ggml_backend_t backend2,
  1000. const char * op_names_filter,
  1001. printer * output_printer) {
  1002. mode = MODE_TEST;
  1003. ggml_init_params params = {
  1004. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1005. /* .mem_base = */ NULL,
  1006. /* .no_alloc = */ true,
  1007. };
  1008. ggml_context * ctx = ggml_init(params);
  1009. GGML_ASSERT(ctx);
  1010. gf = ggml_new_graph(ctx);
  1011. // pre-graph sentinel
  1012. add_sentinel(ctx);
  1013. ggml_tensor * out = build_graph(ctx);
  1014. current_op_name = op_desc(out);
  1015. if (!matches_filter(out, op_names_filter)) {
  1016. //printf(" %s: skipping\n", op_desc(out).c_str());
  1017. ggml_free(ctx);
  1018. return test_status_t::SKIPPED;
  1019. }
  1020. // check if the backends support the ops
  1021. bool supported = true;
  1022. for (ggml_backend_t backend : {backend1, backend2}) {
  1023. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1024. if (!ggml_backend_supports_op(backend, t)) {
  1025. supported = false;
  1026. break;
  1027. }
  1028. }
  1029. }
  1030. if (!supported) {
  1031. // Create test result for unsupported operation
  1032. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1033. false, false, "not supported");
  1034. if (output_printer) {
  1035. output_printer->print_test_result(result);
  1036. }
  1037. ggml_free(ctx);
  1038. return test_status_t::NOT_SUPPORTED;
  1039. }
  1040. // post-graph sentinel
  1041. add_sentinel(ctx);
  1042. // allocate
  1043. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1044. if (buf == NULL) {
  1045. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1046. ggml_free(ctx);
  1047. return test_status_t::FAIL;
  1048. }
  1049. // build graph
  1050. ggml_build_forward_expand(gf, out);
  1051. // add sentinels as graph nodes so that they are checked in the callback
  1052. for (ggml_tensor * sentinel : sentinels) {
  1053. ggml_graph_add_node(gf, sentinel);
  1054. }
  1055. // randomize tensors
  1056. initialize_tensors(ctx);
  1057. // compare
  1058. struct callback_userdata {
  1059. bool ok;
  1060. double max_err;
  1061. ggml_backend_t backend1;
  1062. ggml_backend_t backend2;
  1063. };
  1064. callback_userdata ud {
  1065. true,
  1066. max_nmse_err(),
  1067. backend1,
  1068. backend2
  1069. };
  1070. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1071. callback_userdata * ud = (callback_userdata *) user_data;
  1072. const char * bn1 = ggml_backend_name(ud->backend1);
  1073. const char * bn2 = ggml_backend_name(ud->backend2);
  1074. if (t1->op == GGML_OP_NONE) {
  1075. // sentinels must be unchanged
  1076. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1077. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1078. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1079. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1080. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1081. printf("sentinel mismatch: %s ", t1->name);
  1082. ud->ok = false;
  1083. return true;
  1084. }
  1085. }
  1086. std::vector<float> f1 = tensor_to_float(t1);
  1087. std::vector<float> f2 = tensor_to_float(t2);
  1088. for (size_t i = 0; i < f1.size(); i++) {
  1089. // check for nans
  1090. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1091. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1092. ud->ok = false;
  1093. return true;
  1094. }
  1095. // check for infs: both must be inf of the same sign, or both must be finite
  1096. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1097. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1098. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1099. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1100. ud->ok = false;
  1101. return true;
  1102. }
  1103. } else {
  1104. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1105. ud->ok = false;
  1106. return true;
  1107. }
  1108. }
  1109. }
  1110. double err = nmse(f1.data(), f2.data(), f1.size());
  1111. if (err > ud->max_err) {
  1112. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1113. //for (int i = 0; i < (int) f1.size(); i++) {
  1114. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1115. //}
  1116. //printf("\n");
  1117. //exit(1);
  1118. ud->ok = false;
  1119. }
  1120. return true;
  1121. GGML_UNUSED(index);
  1122. };
  1123. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1124. ggml_backend_buffer_free(buf);
  1125. ggml_free(ctx);
  1126. // Create test result
  1127. bool test_passed = ud.ok && cmp_ok;
  1128. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1129. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1130. error_msg);
  1131. if (output_printer) {
  1132. output_printer->print_test_result(result);
  1133. }
  1134. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1135. }
  1136. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1137. mode = MODE_PERF;
  1138. static const size_t graph_nodes = 8192;
  1139. ggml_init_params params = {
  1140. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1141. /* .mem_base = */ NULL,
  1142. /* .no_alloc = */ true,
  1143. };
  1144. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1145. GGML_ASSERT(ctx);
  1146. ggml_tensor * out = build_graph(ctx.get());
  1147. current_op_name = op_desc(out);
  1148. if (!matches_filter(out, op_names_filter)) {
  1149. //printf(" %s: skipping\n", op_desc(out).c_str());
  1150. return true;
  1151. }
  1152. if (!ggml_backend_supports_op(backend, out)) {
  1153. // Create test result for unsupported performance test
  1154. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1155. "not supported");
  1156. output_printer->print_test_result(result);
  1157. return true;
  1158. }
  1159. // allocate
  1160. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1161. if (buf == NULL) {
  1162. printf("failed to allocate tensors\n");
  1163. return false;
  1164. }
  1165. // randomize tensors
  1166. initialize_tensors(ctx.get());
  1167. // build graph
  1168. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1169. ggml_build_forward_expand(gf, out);
  1170. // warmup run
  1171. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1172. if (status != GGML_STATUS_SUCCESS) {
  1173. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1174. return false;
  1175. }
  1176. // determine number of runs
  1177. int n_runs;
  1178. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1179. if (op_flops(out) > 0) {
  1180. // based on flops
  1181. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1182. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1183. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1184. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1185. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1186. } else {
  1187. // based on memory size
  1188. const size_t GB = 1ULL << 30;
  1189. const size_t target_size_cpu = 8 * GB;
  1190. const size_t target_size_gpu = 32 * GB;
  1191. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1192. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1193. }
  1194. // duplicate the op
  1195. for (int i = 1; i < n_runs; i++) {
  1196. ggml_graph_add_node(gf, out);
  1197. }
  1198. // calculate memory
  1199. size_t mem = n_runs * op_size(out);
  1200. auto tensor_op_size = [](ggml_tensor * t) {
  1201. size_t size = ggml_nbytes(t);
  1202. // add source tensors
  1203. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1204. if (t->src[i] != NULL) {
  1205. size += ggml_nbytes(t->src[i]);
  1206. }
  1207. }
  1208. return size;
  1209. };
  1210. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1211. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1212. continue;
  1213. }
  1214. mem += tensor_op_size(ggml_graph_node(gf, i));
  1215. }
  1216. // run
  1217. int64_t total_time_us = 0;
  1218. int64_t total_mem = 0;
  1219. int total_runs = 0;
  1220. do {
  1221. int64_t start_time = ggml_time_us();
  1222. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1223. if (status != GGML_STATUS_SUCCESS) {
  1224. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1225. return false;
  1226. }
  1227. int64_t end_time = ggml_time_us();
  1228. total_time_us += end_time - start_time;
  1229. total_mem += mem;
  1230. total_runs += n_runs;
  1231. } while (total_time_us < 1000*1000); // run for at least 1 second
  1232. // Create test result
  1233. double avg_time_us = (double) total_time_us / total_runs;
  1234. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1235. double calculated_bandwidth =
  1236. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1237. size_t calculated_memory_kb = op_size(out) / 1024;
  1238. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1239. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1240. if (output_printer) {
  1241. output_printer->print_test_result(result);
  1242. }
  1243. return true;
  1244. }
  1245. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1246. mode = MODE_SUPPORT;
  1247. static const size_t graph_nodes = 8192;
  1248. ggml_init_params params = {
  1249. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1250. /* .mem_base = */ NULL,
  1251. /* .no_alloc = */ true,
  1252. };
  1253. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1254. GGML_ASSERT(ctx);
  1255. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1256. ggml_tensor * out = build_graph(ctx.get());
  1257. current_op_name = op_desc(out);
  1258. if (!matches_filter(out, op_names_filter)) {
  1259. return true;
  1260. }
  1261. bool supported = ggml_backend_supports_op(backend, out);
  1262. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1263. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1264. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1265. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1266. output_printer->print_test_result(result);
  1267. return true;
  1268. }
  1269. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1270. mode = MODE_GRAD;
  1271. const std::vector<float> expect = grad_expect();
  1272. ggml_init_params params = {
  1273. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1274. /* .mem_base = */ NULL,
  1275. /* .no_alloc = */ true,
  1276. };
  1277. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1278. GGML_ASSERT(ctx);
  1279. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1280. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1281. ggml_tensor * out = build_graph(ctx.get());
  1282. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1283. return true;
  1284. }
  1285. if (out->type != GGML_TYPE_F32) {
  1286. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1287. test_status_t::NOT_SUPPORTED,
  1288. out->name + std::string("->type != FP32")));
  1289. return true;
  1290. }
  1291. // Print operation info first
  1292. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1293. // check if the backend supports the ops
  1294. bool supported = true;
  1295. bool any_params = false;
  1296. std::string failure_reason;
  1297. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1298. if (!ggml_backend_supports_op(backend, t)) {
  1299. supported = false;
  1300. failure_reason = ggml_backend_name(backend);
  1301. break;
  1302. }
  1303. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1304. any_params = true;
  1305. if (t->type != GGML_TYPE_F32) {
  1306. supported = false;
  1307. failure_reason = std::string(t->name) + "->type != FP32";
  1308. break;
  1309. }
  1310. }
  1311. }
  1312. if (!any_params) {
  1313. supported = false;
  1314. failure_reason = op_desc(out);
  1315. }
  1316. if (!supported) {
  1317. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1318. test_status_t::NOT_SUPPORTED, failure_reason));
  1319. return true;
  1320. }
  1321. int64_t ngrads = 0;
  1322. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1323. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1324. ngrads += ggml_nelements(t);
  1325. }
  1326. }
  1327. if (ngrads > grad_nmax()) {
  1328. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1329. info.set_large_tensor_skip();
  1330. output_printer->print_operation(info);
  1331. return true;
  1332. }
  1333. if (!ggml_is_scalar(out)) {
  1334. out = ggml_sum(ctx.get(), out);
  1335. ggml_set_name(out, "sum_of_out");
  1336. }
  1337. ggml_set_loss(out);
  1338. ggml_build_forward_expand(gf, out);
  1339. ggml_graph_cpy(gf, gb);
  1340. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1341. if (expect.size() != 1 || expect[0] != 0.0f) {
  1342. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1343. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1344. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1345. }
  1346. }
  1347. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1348. if (!ggml_backend_supports_op(backend, t)) {
  1349. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1350. test_status_t::NOT_SUPPORTED,
  1351. ggml_backend_name(backend)));
  1352. supported = false;
  1353. break;
  1354. }
  1355. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1356. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1357. test_status_t::NOT_SUPPORTED,
  1358. std::string(t->name) + "->type != FP32"));
  1359. supported = false;
  1360. break;
  1361. }
  1362. }
  1363. if (!supported) {
  1364. return true;
  1365. }
  1366. // allocate
  1367. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1368. if (buf == NULL) {
  1369. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1370. info.set_error("allocation", "");
  1371. output_printer->print_operation(info);
  1372. return false;
  1373. }
  1374. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1375. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1376. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1377. if (status != GGML_STATUS_SUCCESS) {
  1378. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1379. return false;
  1380. }
  1381. status = ggml_backend_graph_compute(backend, gb);
  1382. if (status != GGML_STATUS_SUCCESS) {
  1383. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1384. return false;
  1385. }
  1386. bool ok = true;
  1387. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1388. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1389. continue;
  1390. }
  1391. const char * bn = ggml_backend_name(backend);
  1392. const int64_t ne = ggml_nelements(t);
  1393. std::vector<float> ga;
  1394. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1395. if (grad) {
  1396. ga = tensor_to_float(grad);
  1397. } else {
  1398. ga.resize(ne); // default value is 0.0f
  1399. }
  1400. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1401. // check for nans
  1402. if (!std::isfinite(ga[i])) {
  1403. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1404. info.set_gradient_info(i, bn, ga[i]);
  1405. output_printer->print_operation(info);
  1406. ok = false;
  1407. break;
  1408. }
  1409. }
  1410. if (!ok) {
  1411. break;
  1412. }
  1413. std::vector<float> gn(ne); // gradient numeric
  1414. GGML_ASSERT(ga.size() == gn.size());
  1415. std::vector<float> x0 = tensor_to_float(t); // original t data
  1416. GGML_ASSERT(ggml_is_scalar(out));
  1417. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1418. const float eps = grad_eps();
  1419. for (int64_t i = 0; i < ne; ++i) {
  1420. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1421. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1422. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1423. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1424. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1425. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1426. status = ggml_backend_graph_compute(backend, gf);
  1427. if (status != GGML_STATUS_SUCCESS) {
  1428. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1429. return false;
  1430. }
  1431. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1432. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1433. status = ggml_backend_graph_compute(backend, gf);
  1434. if (status != GGML_STATUS_SUCCESS) {
  1435. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1436. return false;
  1437. }
  1438. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1439. if (grad_precise()) {
  1440. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1441. status = ggml_backend_graph_compute(backend, gf);
  1442. if (status != GGML_STATUS_SUCCESS) {
  1443. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1444. return false;
  1445. }
  1446. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1447. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1448. status = ggml_backend_graph_compute(backend, gf);
  1449. if (status != GGML_STATUS_SUCCESS) {
  1450. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1451. return false;
  1452. }
  1453. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1454. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1455. } else {
  1456. gn[i] = (fu - fd) / (2.0f*eps);
  1457. }
  1458. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1459. }
  1460. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1461. if (err > max_maa_err()) {
  1462. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1463. info.set_maa_error(err, max_maa_err());
  1464. output_printer->print_operation(info);
  1465. ok = false;
  1466. break;
  1467. }
  1468. if (!ok) {
  1469. break;
  1470. }
  1471. }
  1472. // Create final test result
  1473. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1474. if (!ok) {
  1475. final_info.set_compare_failure();
  1476. }
  1477. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1478. output_printer->print_operation(final_info);
  1479. if (ok) {
  1480. return true;
  1481. }
  1482. return false;
  1483. }
  1484. };
  1485. // ###################################
  1486. // ## Section 2: GGML Op Defintions ##
  1487. // ###################################
  1488. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1489. // GGML_OP_EXAMPLE
  1490. struct test_example : public test_case {
  1491. // Always define these 2 or variants thereof:
  1492. const ggml_type type; // The type of the input tensors.
  1493. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1494. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1495. // Or they may need additional parameters.
  1496. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1497. // In most cases these are just the properties of the struct that you defined above.
  1498. // This is needed for info prints.
  1499. std::string vars() override {
  1500. return VARS_TO_STR2(type, ne);
  1501. }
  1502. // Define a constructor for the struct.
  1503. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1504. // and just use initializer lists.
  1505. test_example(ggml_type type = GGML_TYPE_F32,
  1506. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1507. : type(type), ne(ne) {}
  1508. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1509. ggml_tensor * build_graph(ggml_context * ctx) override {
  1510. // Step 1: create input tensors that don't depend on any other tensors:
  1511. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1512. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1513. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1514. ggml_set_name(b, "b");
  1515. // Step 2: use the op that you want to test in the GGML compute graph.
  1516. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1517. ggml_set_name(out, "out");
  1518. // Step 3: return the output tensor.
  1519. return out;
  1520. }
  1521. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1522. // immediately after you create the tensors.
  1523. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1524. };
  1525. // GGML_OP_UNARY
  1526. struct test_unary : public test_case {
  1527. const ggml_unary_op op;
  1528. const ggml_type type;
  1529. const std::array<int64_t, 4> ne_a;
  1530. int v; // view (1 : non-contiguous a)
  1531. std::string vars() override {
  1532. return VARS_TO_STR3(type, ne_a, v);
  1533. }
  1534. test_unary(ggml_unary_op op,
  1535. ggml_type type = GGML_TYPE_F32,
  1536. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1537. int v = 0)
  1538. : op(op), type(type), ne_a(ne_a), v(v) {}
  1539. ggml_tensor * build_graph(ggml_context * ctx) override {
  1540. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1541. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1542. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1543. ggml_tensor * a;
  1544. if (v & 1) {
  1545. auto ne = ne_a; ne[0] *= 3;
  1546. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1547. if (grad_supported) {
  1548. ggml_set_param(a);
  1549. }
  1550. ggml_set_name(a, "a");
  1551. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1552. ggml_set_name(a, "view_of_a");
  1553. } else {
  1554. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1555. if (grad_supported) {
  1556. ggml_set_param(a);
  1557. }
  1558. ggml_set_name(a, "a");
  1559. }
  1560. ggml_tensor * out = ggml_unary(ctx, a, op);
  1561. ggml_set_name(out, "out");
  1562. return out;
  1563. }
  1564. void initialize_tensors(ggml_context * ctx) override {
  1565. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1566. // test extended range of values to check for NaNs in GELU
  1567. init_tensor_uniform(t, -150.f, 150.f);
  1568. }
  1569. }
  1570. float grad_eps() override {
  1571. return 15.0f;
  1572. }
  1573. std::vector<float> grad_expect() override {
  1574. if (op == GGML_UNARY_OP_ABS) {
  1575. return {-1.0f, 1.0f};
  1576. }
  1577. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1578. return {0.0f};
  1579. }
  1580. if (op == GGML_UNARY_OP_RELU) {
  1581. return {0.0f, 1.0f};
  1582. }
  1583. return {};
  1584. }
  1585. };
  1586. // GGML_OP_GLU
  1587. struct test_glu : public test_case {
  1588. const ggml_glu_op op;
  1589. const ggml_type type;
  1590. const std::array<int64_t, 4> ne_a;
  1591. int v; // view (1 : non-contiguous a)
  1592. bool swapped;
  1593. std::string vars() override {
  1594. return VARS_TO_STR4(type, ne_a, v, swapped);
  1595. }
  1596. test_glu(ggml_glu_op op,
  1597. ggml_type type = GGML_TYPE_F32,
  1598. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1599. int v = 0,
  1600. bool swapped = false)
  1601. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1602. ggml_tensor * build_graph(ggml_context * ctx) override {
  1603. ggml_tensor * a;
  1604. if (v & 1) {
  1605. auto ne = ne_a; ne[0] *= 3;
  1606. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1607. ggml_set_name(a, "a");
  1608. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1609. ggml_set_name(a, "view_of_a");
  1610. } else {
  1611. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1612. ggml_set_name(a, "a");
  1613. }
  1614. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1615. ggml_set_name(out, "out");
  1616. return out;
  1617. }
  1618. void initialize_tensors(ggml_context * ctx) override {
  1619. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1620. // test extended range of values to check for NaNs in GELU
  1621. init_tensor_uniform(t, -150.f, 150.f);
  1622. }
  1623. }
  1624. };
  1625. struct test_glu_split : public test_case {
  1626. const ggml_glu_op op;
  1627. const ggml_type type;
  1628. const std::array<int64_t, 4> ne_a;
  1629. int v; // view (1 : non-contiguous a)
  1630. std::string vars() override {
  1631. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1632. }
  1633. test_glu_split(ggml_glu_op op,
  1634. ggml_type type = GGML_TYPE_F32,
  1635. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1636. int v = 0)
  1637. : op(op), type(type), ne_a(ne_a), v(v) {}
  1638. ggml_tensor * build_graph(ggml_context * ctx) override {
  1639. ggml_tensor * a;
  1640. ggml_tensor * b;
  1641. if (v & 1) {
  1642. auto ne = ne_a; ne[0] *= 3;
  1643. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1644. ggml_set_param(a);
  1645. ggml_set_name(a, "a");
  1646. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1647. ggml_set_name(a, "view_of_a");
  1648. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1649. ggml_set_param(b);
  1650. ggml_set_name(b, "b");
  1651. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1652. ggml_set_name(a, "view_of_b");
  1653. } else {
  1654. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1655. ggml_set_param(a);
  1656. ggml_set_name(a, "a");
  1657. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1658. ggml_set_param(b);
  1659. ggml_set_name(b, "b");
  1660. }
  1661. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1662. ggml_set_name(out, "out");
  1663. return out;
  1664. }
  1665. void initialize_tensors(ggml_context * ctx) override {
  1666. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1667. // test extended range of values to check for NaNs in GELU
  1668. init_tensor_uniform(t, -150.f, 150.f);
  1669. }
  1670. }
  1671. };
  1672. struct test_swiglu_oai : public test_case {
  1673. const ggml_type type;
  1674. const std::array<int64_t, 4> ne_a;
  1675. int v; // view (1 : non-contiguous a)
  1676. float alpha;
  1677. float limit;
  1678. std::string vars() override {
  1679. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1680. }
  1681. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1682. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1683. int v = 0,
  1684. float alpha = 1.702f,
  1685. float limit = 7.0f)
  1686. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1687. ggml_tensor * build_graph(ggml_context * ctx) override {
  1688. ggml_tensor * a;
  1689. ggml_tensor * b;
  1690. if (v & 1) {
  1691. auto ne = ne_a; ne[0] *= 3;
  1692. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1693. ggml_set_param(a);
  1694. ggml_set_name(a, "a");
  1695. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1696. ggml_set_name(a, "view_of_a");
  1697. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1698. ggml_set_param(b);
  1699. ggml_set_name(b, "b");
  1700. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1701. ggml_set_name(a, "view_of_b");
  1702. } else {
  1703. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1704. ggml_set_param(a);
  1705. ggml_set_name(a, "a");
  1706. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1707. ggml_set_param(b);
  1708. ggml_set_name(b, "b");
  1709. }
  1710. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1711. ggml_set_name(out, "out");
  1712. return out;
  1713. }
  1714. void initialize_tensors(ggml_context * ctx) override {
  1715. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1716. // test extended range of values to check for NaNs in GELU
  1717. init_tensor_uniform(t, -150.f, 150.f);
  1718. }
  1719. }
  1720. };
  1721. // GGML_OP_GET_ROWS
  1722. struct test_get_rows : public test_case {
  1723. const ggml_type type;
  1724. const int n; // cols
  1725. const int m; // rows
  1726. const int r; // rows to get
  1727. const int be1; // batch size
  1728. const int be2; // batch size
  1729. const bool v; // view (non-contiguous src1)
  1730. std::string vars() override {
  1731. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1732. }
  1733. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1734. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1735. ggml_tensor * build_graph(ggml_context * ctx) override {
  1736. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1737. ggml_set_name(in, "in");
  1738. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1739. ggml_set_name(rows, "rows");
  1740. if (v) {
  1741. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1742. ggml_set_name(rows, "view_of_rows");
  1743. }
  1744. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1745. if (grad_supported) {
  1746. ggml_set_param(in);
  1747. // rows is a constant input -> no gradients
  1748. }
  1749. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1750. ggml_set_name(out, "out");
  1751. return out;
  1752. }
  1753. void initialize_tensors(ggml_context * ctx) override {
  1754. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1755. if (t->type == GGML_TYPE_I32) {
  1756. if (ggml_is_view_op(t->op)) { continue; }
  1757. // rows
  1758. std::vector<int> data(r*be1*be2);
  1759. for (int i = 0; i < r*be1*be2; i++) {
  1760. data[i] = rand() % m;
  1761. }
  1762. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1763. } else {
  1764. init_tensor_uniform(t);
  1765. }
  1766. }
  1767. }
  1768. };
  1769. // GGML_OP_GET_ROWS_BACK
  1770. struct test_get_rows_back : public test_case {
  1771. const ggml_type type;
  1772. const int n; // cols
  1773. const int m; // rows
  1774. const int r; // rows to get
  1775. const int b; // batch size
  1776. const bool v; // view (non-contiguous src1)
  1777. std::string vars() override {
  1778. return VARS_TO_STR6(type, n, m, r, b, v);
  1779. }
  1780. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1781. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1782. ggml_tensor * build_graph(ggml_context * ctx) override {
  1783. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1784. ggml_set_name(in_forward, "in_forward");
  1785. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1786. ggml_set_name(rows, "rows");
  1787. if (v) {
  1788. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1789. ggml_set_name(rows, "view_of_rows");
  1790. }
  1791. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1792. ggml_set_name(grad, "grad");
  1793. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1794. ggml_set_name(out, "out");
  1795. return out;
  1796. }
  1797. void initialize_tensors(ggml_context * ctx) override {
  1798. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1799. if (t->type == GGML_TYPE_I32) {
  1800. if (ggml_is_view_op(t->op)) { continue; }
  1801. // rows
  1802. std::vector<int> data(r*b);
  1803. for (int i = 0; i < r*b; i++) {
  1804. data[i] = rand() % m;
  1805. }
  1806. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1807. } else {
  1808. init_tensor_uniform(t);
  1809. }
  1810. }
  1811. }
  1812. };
  1813. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1814. std::random_device rd;
  1815. std::default_random_engine rng(rd());
  1816. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1817. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1818. // generate a shuffled subset of row indices
  1819. std::vector<int64_t> data(num_rows);
  1820. for (int i = 0; i < num_rows; i++) {
  1821. data[i] = i;
  1822. }
  1823. std::shuffle(data.begin(), data.end(), rng);
  1824. data.resize(t->ne[0]);
  1825. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1826. if (t->type == GGML_TYPE_I32) {
  1827. // TODO: Make a template or something
  1828. std::vector<int32_t> data_i32(t->ne[0]);
  1829. for (int i = 0; i < t->ne[0]; i++) {
  1830. data_i32[i] = static_cast<int32_t>(data[i]);
  1831. }
  1832. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1833. } else {
  1834. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1835. }
  1836. }
  1837. }
  1838. }
  1839. // GGML_OP_SET_ROWS
  1840. struct test_set_rows : public test_case {
  1841. const ggml_type type;
  1842. const ggml_type type_idx;
  1843. const std::array<int64_t, 4> ne;
  1844. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1845. const int r; // rows to set
  1846. const bool v; // view (non-contiguous src1)
  1847. std::string vars() override {
  1848. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1849. }
  1850. test_set_rows(ggml_type type,
  1851. ggml_type type_idx,
  1852. std::array<int64_t, 4> ne,
  1853. std::array<int, 2> nr23,
  1854. int r, bool v = false)
  1855. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1856. ggml_tensor * build_graph(ggml_context * ctx) override {
  1857. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1858. ggml_set_name(dst, "dst");
  1859. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1860. ggml_set_name(src, "src");
  1861. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1862. ggml_set_name(row_idxs, "row_idxs");
  1863. if (v) {
  1864. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1865. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1866. ggml_set_name(row_idxs, "view_of_rows");
  1867. }
  1868. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1869. ggml_set_name(out, "out");
  1870. return out;
  1871. }
  1872. void initialize_tensors(ggml_context * ctx) override {
  1873. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1874. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1875. if (ggml_is_view_op(t->op)) {
  1876. continue;
  1877. }
  1878. init_set_rows_row_ids(t, ne[1]);
  1879. } else {
  1880. init_tensor_uniform(t);
  1881. }
  1882. }
  1883. }
  1884. double max_nmse_err() override {
  1885. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1886. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1887. // estimate what the max nmse error would be if one quantized value is
  1888. // off by one. The test values are distributed in [-1,1], so it'll be
  1889. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1890. // which is roughly 0.25 times the number of elements.
  1891. double err_estimate = 1.0f/8.0f;
  1892. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1893. err_estimate /= 2.0f;
  1894. }
  1895. if (type == GGML_TYPE_Q8_0) {
  1896. err_estimate /= 8.0f;
  1897. }
  1898. err_estimate *= err_estimate;
  1899. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1900. return err_estimate;
  1901. }
  1902. return 1e-7;
  1903. }
  1904. };
  1905. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1906. struct test_rope_set_rows : public test_case {
  1907. const ggml_type type;
  1908. const ggml_type type_idx;
  1909. const std::array<int64_t, 4> ne;
  1910. int mode;
  1911. std::string vars() override {
  1912. return VARS_TO_STR4(type, type_idx, ne, mode);
  1913. }
  1914. std::string op_desc(ggml_tensor * t) override {
  1915. GGML_UNUSED(t);
  1916. return "ROPE_SET_ROWS";
  1917. }
  1918. bool run_whole_graph() override { return true; }
  1919. test_rope_set_rows(ggml_type type,
  1920. ggml_type type_idx,
  1921. std::array<int64_t, 4> ne,
  1922. int mode)
  1923. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1924. ggml_tensor * build_graph(ggml_context * ctx) override {
  1925. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1926. ggml_set_name(src, "src");
  1927. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1928. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1929. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1930. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1931. ggml_set_name(dst, "dst");
  1932. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1933. ggml_set_name(row_idxs, "row_idxs");
  1934. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1935. ggml_set_name(out, "out");
  1936. return out;
  1937. }
  1938. void initialize_tensors(ggml_context * ctx) override {
  1939. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1940. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1941. if (ggml_is_view_op(t->op)) {
  1942. continue;
  1943. }
  1944. init_set_rows_row_ids(t, ne[2]);
  1945. } else {
  1946. init_tensor_uniform(t);
  1947. }
  1948. }
  1949. }
  1950. };
  1951. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  1952. struct test_rms_norm_mul_rope : public test_case {
  1953. const std::array<int64_t, 4> ne;
  1954. const float eps;
  1955. const bool multi_add; // test a sequence of adds feeding into rms_norm
  1956. const bool set_rows;
  1957. int mode;
  1958. std::string op_desc(ggml_tensor * t) override {
  1959. GGML_UNUSED(t);
  1960. return "RMS_NORM_MUL_ROPE";
  1961. }
  1962. bool run_whole_graph() override { return true; }
  1963. std::string vars() override {
  1964. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  1965. }
  1966. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  1967. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  1968. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  1969. ggml_tensor * build_graph(ggml_context * ctx) override {
  1970. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1971. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1972. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1973. if (multi_add) {
  1974. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  1975. }
  1976. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  1977. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1978. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  1979. ggml_tensor * out;
  1980. if (set_rows) {
  1981. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1982. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1983. ggml_set_name(dst, "dst");
  1984. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  1985. ggml_set_name(row_idxs, "row_idxs");
  1986. out = ggml_set_rows(ctx, dst, view, row_idxs);
  1987. ggml_set_name(out, "out");
  1988. } else {
  1989. out = rope;
  1990. }
  1991. return out;
  1992. }
  1993. void initialize_tensors(ggml_context * ctx) override {
  1994. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1995. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1996. if (ggml_is_view_op(t->op)) {
  1997. continue;
  1998. }
  1999. init_set_rows_row_ids(t, ne[2]);
  2000. } else {
  2001. init_tensor_uniform(t);
  2002. }
  2003. }
  2004. }
  2005. };
  2006. // GGML_OP_ARGMAX
  2007. struct test_argmax : public test_case {
  2008. const ggml_type type;
  2009. const std::array<int64_t, 4> ne;
  2010. std::string vars() override {
  2011. return VARS_TO_STR2(type, ne);
  2012. }
  2013. test_argmax(ggml_type type = GGML_TYPE_F32,
  2014. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2015. : type(type), ne(ne) {}
  2016. ggml_tensor * build_graph(ggml_context * ctx) override {
  2017. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2018. ggml_set_name(a, "a");
  2019. ggml_tensor * out = ggml_argmax(ctx, a);
  2020. ggml_set_name(out, "out");
  2021. return out;
  2022. }
  2023. void initialize_tensors(ggml_context * ctx) override {
  2024. std::random_device rd;
  2025. std::default_random_engine rng(rd());
  2026. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2027. if (t->type == GGML_TYPE_F32) {
  2028. // initialize with unique values to avoid ties
  2029. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2030. std::vector<float> data(t->ne[0]);
  2031. for (int i = 0; i < t->ne[0]; i++) {
  2032. data[i] = i;
  2033. }
  2034. std::shuffle(data.begin(), data.end(), rng);
  2035. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2036. }
  2037. } else {
  2038. init_tensor_uniform(t);
  2039. }
  2040. }
  2041. }
  2042. double max_nmse_err() override {
  2043. return 0.0;
  2044. }
  2045. };
  2046. // GGML_OP_COUNT_EQUAL
  2047. struct test_count_equal : public test_case {
  2048. const ggml_type type;
  2049. const std::array<int64_t, 4> ne;
  2050. std::string vars() override {
  2051. return VARS_TO_STR2(type, ne);
  2052. }
  2053. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2054. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2055. : type(type), ne(ne) {}
  2056. ggml_tensor * build_graph(ggml_context * ctx) override {
  2057. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2058. ggml_set_name(a, "a");
  2059. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2060. ggml_set_name(a_argmax, "a_argmax");
  2061. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2062. ggml_set_name(b, "b");
  2063. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2064. ggml_set_name(b_argmax, "b_argmax");
  2065. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2066. ggml_set_name(out, "out");
  2067. return out;
  2068. }
  2069. double max_nmse_err() override {
  2070. return 0.0;
  2071. }
  2072. void initialize_tensors(ggml_context * ctx) override {
  2073. std::random_device rd;
  2074. std::default_random_engine rng(rd());
  2075. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2076. if (t->type == GGML_TYPE_F32) {
  2077. // initialize with unique values to avoid ties
  2078. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2079. std::vector<float> data(t->ne[0]);
  2080. for (int i = 0; i < t->ne[0]; i++) {
  2081. data[i] = i;
  2082. }
  2083. std::shuffle(data.begin(), data.end(), rng);
  2084. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2085. }
  2086. } else {
  2087. init_tensor_uniform(t);
  2088. }
  2089. }
  2090. }
  2091. };
  2092. // GGML_OP_REPEAT
  2093. struct test_repeat : public test_case {
  2094. const ggml_type type;
  2095. const std::array<int64_t, 4> ne;
  2096. const std::array<int, 4> nr;
  2097. std::string vars() override {
  2098. return VARS_TO_STR3(type, ne, nr);
  2099. }
  2100. size_t op_size(ggml_tensor * t) override {
  2101. return ggml_nbytes(t) * 2;
  2102. }
  2103. test_repeat(ggml_type type = GGML_TYPE_F32,
  2104. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2105. std::array<int, 4> nr = {2, 2, 2, 2})
  2106. : type(type), ne(ne), nr(nr) {}
  2107. ggml_tensor * build_graph(ggml_context * ctx) override {
  2108. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2109. ggml_set_name(target, "target");
  2110. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2111. ggml_set_param(src);
  2112. ggml_set_name(src, "src");
  2113. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2114. ggml_set_name(out, "out");
  2115. return out;
  2116. }
  2117. };
  2118. // GGML_OP_REPEAT_BACK
  2119. struct test_repeat_back : public test_case {
  2120. const ggml_type type;
  2121. const std::array<int64_t, 4> ne;
  2122. const std::array<int, 4> nr;
  2123. const bool v; // whether src is a noncontiguous view
  2124. std::string vars() override {
  2125. return VARS_TO_STR4(type, ne, nr, v);
  2126. }
  2127. size_t op_size(ggml_tensor * t) override {
  2128. return ggml_nbytes(t) * 2;
  2129. }
  2130. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2131. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2132. std::array<int, 4> nr = {2, 2, 2, 2},
  2133. bool v = false)
  2134. : type(type), ne(ne), nr(nr), v(v) {}
  2135. ggml_tensor * build_graph(ggml_context * ctx) override {
  2136. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2137. ggml_set_name(src, "src");
  2138. if (v) {
  2139. GGML_ASSERT(ne[0] % 2 == 0);
  2140. GGML_ASSERT(ne[1] % 2 == 0);
  2141. GGML_ASSERT(ne[2] % 2 == 0);
  2142. GGML_ASSERT(ne[3] % 2 == 0);
  2143. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2144. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2145. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2146. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2147. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2148. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2149. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2150. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2151. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2152. }
  2153. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2154. ggml_set_name(target, "target");
  2155. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2156. ggml_set_name(out, "out");
  2157. return out;
  2158. }
  2159. };
  2160. // GGML_OP_DUP
  2161. struct test_dup : public test_case {
  2162. const ggml_type type;
  2163. const std::array<int64_t, 4> ne;
  2164. const std::array<int64_t, 4> permute;
  2165. bool _use_permute;
  2166. std::string vars() override {
  2167. std::string v = VARS_TO_STR2(type, ne);
  2168. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2169. return v;
  2170. }
  2171. test_dup(ggml_type type = GGML_TYPE_F32,
  2172. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2173. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2174. : type(type), ne(ne), permute(permute),
  2175. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2176. ggml_tensor * build_graph(ggml_context * ctx) override {
  2177. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2178. ggml_set_param(src);
  2179. ggml_set_name(src, "src");
  2180. if (_use_permute) {
  2181. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2182. ggml_set_name(src, "src_permuted");
  2183. }
  2184. ggml_tensor * out = ggml_dup(ctx, src);
  2185. ggml_set_name(out, "out");
  2186. return out;
  2187. }
  2188. };
  2189. // GGML_OP_SET
  2190. struct test_set : public test_case {
  2191. const ggml_type type_src;
  2192. const ggml_type type_dst;
  2193. const std::array<int64_t, 4> ne;
  2194. const int dim;
  2195. std::string vars() override {
  2196. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2197. }
  2198. size_t op_size(ggml_tensor * t) override {
  2199. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2200. }
  2201. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2202. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2203. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2204. ggml_tensor * build_graph(ggml_context * ctx) override {
  2205. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2206. ggml_set_param(src);
  2207. ggml_set_name(src, "src");
  2208. auto ne_dst = ne;
  2209. for (int i = 0; i < dim; ++i) {
  2210. ne_dst[i] *= 2;
  2211. }
  2212. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2213. ggml_set_param(dst);
  2214. ggml_set_name(dst, "dst");
  2215. size_t offset = 0;
  2216. for (int i = 0; i < dim; ++i) {
  2217. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2218. }
  2219. ggml_tensor * out = ggml_set(ctx, dst, src,
  2220. // The backward pass requires setting a contiguous region:
  2221. src->nb[1], src->nb[2], src->nb[3], offset);
  2222. ggml_set_name(out, "out");
  2223. return out;
  2224. }
  2225. };
  2226. // GGML_OP_CPY
  2227. struct test_cpy : public test_case {
  2228. const ggml_type type_src;
  2229. const ggml_type type_dst;
  2230. const std::array<int64_t, 4> ne;
  2231. const std::array<int64_t, 4> permute_src;
  2232. const std::array<int64_t, 4> permute_dst;
  2233. bool _src_use_permute;
  2234. bool _dst_use_permute;
  2235. bool _src_transpose;
  2236. std::string vars() override {
  2237. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2238. }
  2239. double max_nmse_err() override {
  2240. if (type_src == type_dst) {
  2241. return 0.0;
  2242. }
  2243. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2244. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2245. // estimate what the max nmse error would be if one quantized value is
  2246. // off by one. The test values are distributed in [-150,150], so it'll be
  2247. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2248. // which is roughly 0.25*150^2 times the number of elements.
  2249. double err_estimate = 1.0f/8.0f * 150.0f;
  2250. if (type_dst == GGML_TYPE_IQ4_NL) {
  2251. // iq4_nl values are a bit more spread out
  2252. err_estimate *= 2.0f;
  2253. }
  2254. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2255. err_estimate /= 2.0f;
  2256. }
  2257. if (type_dst == GGML_TYPE_Q8_0) {
  2258. err_estimate /= 8.0f;
  2259. }
  2260. err_estimate *= err_estimate;
  2261. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2262. return err_estimate;
  2263. }
  2264. return 1e-6;
  2265. }
  2266. size_t op_size(ggml_tensor * t) override {
  2267. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2268. }
  2269. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2270. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2271. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2272. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2273. bool transpose_src = false)
  2274. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2275. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2276. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2277. _src_transpose(transpose_src){}
  2278. ggml_tensor * build_graph(ggml_context * ctx) override {
  2279. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2280. ggml_set_param(src);
  2281. ggml_set_name(src, "src");
  2282. if (_src_use_permute) {
  2283. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2284. ggml_set_name(src, "src_permuted");
  2285. }
  2286. if (_src_transpose) {
  2287. src = ggml_transpose(ctx, src);
  2288. ggml_set_name(src, "src_transposed");
  2289. }
  2290. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2291. ggml_set_name(dst, "dst");
  2292. if (_dst_use_permute) {
  2293. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2294. ggml_set_name(dst, "dst_permuted");
  2295. }
  2296. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2297. ggml_set_name(out, "out");
  2298. return out;
  2299. }
  2300. void initialize_tensors(ggml_context * ctx) override {
  2301. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2302. // test extended range of values to check if casting between f32 and i32 is consistent
  2303. init_tensor_uniform(t, -150.f, 150.f);
  2304. }
  2305. }
  2306. };
  2307. // GGML_OP_CONT
  2308. struct test_cont : public test_case {
  2309. const ggml_type type;
  2310. const std::array<int64_t, 4> ne;
  2311. bool use_view_slice;
  2312. std::string vars() override {
  2313. return VARS_TO_STR3(type, ne, use_view_slice);
  2314. }
  2315. test_cont(ggml_type type = GGML_TYPE_F32,
  2316. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2317. bool use_view_slice = false)
  2318. : type(type), ne(ne), use_view_slice(use_view_slice) {}
  2319. ggml_tensor * build_graph(ggml_context * ctx) override {
  2320. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2321. ggml_set_param(src);
  2322. ggml_set_name(src, "src");
  2323. ggml_tensor * dst;
  2324. if (use_view_slice) {
  2325. dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
  2326. src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
  2327. ggml_set_name(dst, "src_view_slice");
  2328. } else {
  2329. dst = ggml_transpose(ctx, src);
  2330. ggml_set_name(dst, "src_transposed");
  2331. }
  2332. ggml_tensor * out = ggml_cont(ctx, dst);
  2333. ggml_set_name(out, "out");
  2334. return out;
  2335. }
  2336. };
  2337. // GGML_OP_ADD
  2338. // GGML_OP_SUB
  2339. // GGML_OP_MUL
  2340. // GGML_OP_DIV
  2341. struct test_bin_bcast : public test_case {
  2342. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2343. op_t op;
  2344. const ggml_type type;
  2345. const std::array<int64_t, 4> ne;
  2346. const std::array<int, 4> nr;
  2347. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2348. bool run_whole_graph() override { return nf > 1; }
  2349. std::string vars() override {
  2350. return VARS_TO_STR4(type, ne, nr, nf);
  2351. }
  2352. size_t op_size(ggml_tensor * t) override {
  2353. return ggml_nbytes(t) * 3;
  2354. }
  2355. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2356. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2357. std::array<int, 4> nr = {1, 2, 1, 1},
  2358. int nf = 1)
  2359. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2360. ggml_tensor * build_graph(ggml_context * ctx) override {
  2361. GGML_ASSERT(nf <= 16);
  2362. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2363. ggml_set_name(a, "a");
  2364. ggml_tensor * b[16];
  2365. for (int i = 0; i < nf; ++i) {
  2366. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2367. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2368. }
  2369. // The backward pass supports broadcasting only for GGML_ADD:
  2370. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2371. if (grad_supported) {
  2372. ggml_set_param(a);
  2373. ggml_set_param(b[0]);
  2374. }
  2375. ggml_tensor * out = a;
  2376. for (int i = 0; i < nf; ++i) {
  2377. out = op(ctx, out, b[i]);
  2378. }
  2379. ggml_set_name(out, "out");
  2380. return out;
  2381. }
  2382. void initialize_tensors(ggml_context * ctx) override {
  2383. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2384. if (op == ggml_mul || op == ggml_div) {
  2385. // MUL and DIV have numerical issues around zero:
  2386. init_tensor_uniform(t, 0.9f, 1.1f);
  2387. } else {
  2388. init_tensor_uniform(t);
  2389. }
  2390. }
  2391. }
  2392. float grad_eps() override {
  2393. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2394. }
  2395. bool grad_precise() override {
  2396. return op == ggml_div;
  2397. }
  2398. double max_maa_err() override {
  2399. return op == ggml_add ? 1e-4 : 1e-3;
  2400. }
  2401. };
  2402. // GGML_OP_ADD_ID
  2403. struct test_add_id : public test_case {
  2404. const ggml_type type_a;
  2405. const ggml_type type_b;
  2406. const int64_t n_embd;
  2407. const int64_t n_experts;
  2408. const int64_t n_experts_used;
  2409. const int64_t n_token;
  2410. std::string vars() override {
  2411. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2412. }
  2413. size_t op_size(ggml_tensor * t) override {
  2414. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2415. }
  2416. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2417. ggml_type type_b = GGML_TYPE_F32,
  2418. int64_t n_embd = 128,
  2419. int64_t n_experts = 16,
  2420. int64_t n_experts_used = 8,
  2421. int64_t n_token = 10)
  2422. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2423. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2424. ggml_tensor * build_graph(ggml_context * ctx) override {
  2425. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2426. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2427. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2428. if (n_experts_used != n_experts) {
  2429. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2430. ggml_set_name(ids, "view_of_ids");
  2431. }
  2432. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2433. ggml_set_name(out, "out");
  2434. return out;
  2435. }
  2436. void initialize_tensors(ggml_context * ctx) override {
  2437. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2438. if (t->type == GGML_TYPE_I32) {
  2439. if (ggml_is_view_op(t->op)) { continue; }
  2440. std::random_device rd;
  2441. std::default_random_engine rng(rd());
  2442. // ids
  2443. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2444. std::vector<int32_t> data(t->ne[0]);
  2445. for (int i = 0; i < t->ne[0]; i++) {
  2446. data[i] = i % n_experts;
  2447. }
  2448. std::shuffle(data.begin(), data.end(), rng);
  2449. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2450. }
  2451. } else {
  2452. init_tensor_uniform(t);
  2453. }
  2454. }
  2455. }
  2456. };
  2457. // GGML_OP_ADD1
  2458. struct test_add1 : public test_case {
  2459. const ggml_type type;
  2460. const std::array<int64_t, 4> ne;
  2461. std::string vars() override {
  2462. return VARS_TO_STR2(type, ne);
  2463. }
  2464. test_add1(ggml_type type = GGML_TYPE_F32,
  2465. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2466. : type(type), ne(ne) {}
  2467. ggml_tensor * build_graph(ggml_context * ctx) override {
  2468. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2469. ggml_set_param(a);
  2470. ggml_set_name(a, "a");
  2471. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2472. // ggml_set_param(b); // TODO: implement
  2473. ggml_set_name(b, "b");
  2474. ggml_tensor * out = ggml_add1(ctx, a, b);
  2475. ggml_set_name(out, "out");
  2476. return out;
  2477. }
  2478. float grad_eps() override {
  2479. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2480. }
  2481. };
  2482. // GGML_OP_SCALE
  2483. struct test_scale : public test_case {
  2484. const ggml_type type;
  2485. const std::array<int64_t, 4> ne;
  2486. float scale;
  2487. float bias;
  2488. bool inplace;
  2489. std::string vars() override {
  2490. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2491. }
  2492. test_scale(ggml_type type = GGML_TYPE_F32,
  2493. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2494. float scale = 2.0f,
  2495. float bias = 0.0f,
  2496. bool inplace = false)
  2497. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2498. ggml_tensor * build_graph(ggml_context * ctx) override {
  2499. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2500. ggml_set_param(a);
  2501. ggml_set_name(a, "a");
  2502. ggml_tensor * out;
  2503. if (inplace) {
  2504. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2505. } else {
  2506. out = ggml_scale_bias(ctx, a, scale, bias);
  2507. }
  2508. ggml_set_name(out, "out");
  2509. return out;
  2510. }
  2511. };
  2512. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2513. struct test_softcap : public test_case {
  2514. const ggml_type type;
  2515. const std::array<int64_t, 4> ne;
  2516. float softcap;
  2517. std::string op_desc(ggml_tensor * t) override {
  2518. GGML_UNUSED(t);
  2519. return "SOFTCAP";
  2520. }
  2521. bool run_whole_graph() override { return true; }
  2522. std::string vars() override {
  2523. return VARS_TO_STR3(type, ne, softcap);
  2524. }
  2525. test_softcap(ggml_type type = GGML_TYPE_F32,
  2526. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2527. float softcap = 30.0f)
  2528. : type(type), ne(ne), softcap(softcap) {}
  2529. ggml_tensor * build_graph(ggml_context * ctx) override {
  2530. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2531. ggml_set_param(a);
  2532. ggml_set_name(a, "a");
  2533. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2534. ggml_set_name(out, "out");
  2535. return out;
  2536. }
  2537. };
  2538. // GGML_OP_SILU_BACK
  2539. struct test_silu_back : public test_case {
  2540. const ggml_type type;
  2541. const std::array<int64_t, 4> ne;
  2542. float eps;
  2543. std::string vars() override {
  2544. return VARS_TO_STR3(type, ne, eps);
  2545. }
  2546. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2547. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2548. float eps = 1e-6f)
  2549. : type(type), ne(ne), eps(eps) {}
  2550. ggml_tensor * build_graph(ggml_context * ctx) override {
  2551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2552. ggml_set_name(a, "a");
  2553. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2554. ggml_set_name(grad, "grad");
  2555. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2556. ggml_set_name(out, "out");
  2557. return out;
  2558. }
  2559. bool grad_precise() override {
  2560. return true;
  2561. }
  2562. };
  2563. // GGML_OP_NORM
  2564. struct test_norm : public test_case {
  2565. const ggml_type type;
  2566. const std::array<int64_t, 4> ne;
  2567. const bool v; // whether a is a non-contiguous view
  2568. const float eps;
  2569. std::string vars() override {
  2570. return VARS_TO_STR4(type, ne, v, eps);
  2571. }
  2572. test_norm(ggml_type type = GGML_TYPE_F32,
  2573. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2574. bool v = false,
  2575. float eps = 1e-6f)
  2576. : type(type), ne(ne), v(v), eps(eps) {}
  2577. ggml_tensor * build_graph(ggml_context * ctx) override {
  2578. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2579. ggml_set_name(a, "a");
  2580. if (v) {
  2581. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2582. ggml_set_name(a, "view of a");
  2583. }
  2584. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2585. ggml_set_name(out, "out");
  2586. return out;
  2587. }
  2588. };
  2589. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2590. struct test_norm_mul_add : public test_case {
  2591. const ggml_type type;
  2592. const std::array<int64_t, 4> ne;
  2593. float eps;
  2594. const bool broadcast;
  2595. std::string op_desc(ggml_tensor * t) override {
  2596. GGML_UNUSED(t);
  2597. return "NORM_MUL_ADD";
  2598. }
  2599. bool run_whole_graph() override { return true; }
  2600. std::string vars() override {
  2601. return VARS_TO_STR4(type, ne, eps, broadcast);
  2602. }
  2603. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2604. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2605. float eps = 1e-5f,
  2606. bool broadcast = false)
  2607. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2608. ggml_tensor * build_graph(ggml_context * ctx) override {
  2609. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2610. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2611. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2612. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2613. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2614. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2615. // Use a, w and b early to avoid OP_NONE in graph
  2616. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2617. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2618. ggml_tensor * m = ggml_mul(ctx, n, w);
  2619. ggml_tensor * out = ggml_add(ctx, m, b);
  2620. ggml_set_name(out, "out");
  2621. return out;
  2622. }
  2623. };
  2624. // GGML_OP_RMS_NORM
  2625. struct test_rms_norm : public test_case {
  2626. const ggml_type type;
  2627. const std::array<int64_t, 4> ne;
  2628. const bool v; // whether a is a non-contiguous view
  2629. const float eps;
  2630. const bool inplace; // whether to do the operation inplace
  2631. std::string vars() override {
  2632. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2633. }
  2634. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2635. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2636. bool v = false,
  2637. float eps = 1e-6f,
  2638. bool inplace = false)
  2639. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2640. ggml_tensor * build_graph(ggml_context * ctx) override {
  2641. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2642. ggml_set_param(a);
  2643. ggml_set_name(a, "a");
  2644. if (v) {
  2645. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2646. ggml_set_name(a, "view of a");
  2647. }
  2648. ggml_tensor * out;
  2649. if (inplace) {
  2650. out = ggml_rms_norm_inplace(ctx, a, eps);
  2651. } else {
  2652. out = ggml_rms_norm(ctx, a, eps);
  2653. }
  2654. ggml_set_name(out, "out");
  2655. return out;
  2656. }
  2657. void initialize_tensors(ggml_context * ctx) override {
  2658. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2659. init_tensor_uniform(t, -10.f, 10.f);
  2660. }
  2661. }
  2662. float grad_eps() override {
  2663. return 1.0f;
  2664. }
  2665. bool grad_precise() override {
  2666. return true;
  2667. }
  2668. };
  2669. // GGML_OP_RMS_NORM_BACK
  2670. struct test_rms_norm_back : public test_case {
  2671. const ggml_type type;
  2672. const std::array<int64_t, 4> ne;
  2673. const float eps;
  2674. std::string vars() override {
  2675. return VARS_TO_STR3(type, ne, eps);
  2676. }
  2677. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2678. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2679. float eps = 1e-6f)
  2680. : type(type), ne(ne), eps(eps) {}
  2681. ggml_tensor * build_graph(ggml_context * ctx) override {
  2682. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2683. ggml_set_name(a, "a");
  2684. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2685. ggml_set_name(b, "b");
  2686. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2687. ggml_set_name(out, "out");
  2688. return out;
  2689. }
  2690. void initialize_tensors(ggml_context * ctx) override {
  2691. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2692. init_tensor_uniform(t, -10.f, 10.f);
  2693. }
  2694. }
  2695. };
  2696. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2697. struct test_rms_norm_mul_add : public test_case {
  2698. const ggml_type type;
  2699. const std::array<int64_t, 4> ne;
  2700. const float eps;
  2701. const bool broadcast;
  2702. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2703. std::string op_desc(ggml_tensor * t) override {
  2704. GGML_UNUSED(t);
  2705. return "RMS_NORM_MUL_ADD";
  2706. }
  2707. bool run_whole_graph() override { return true; }
  2708. std::string vars() override {
  2709. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2710. }
  2711. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2712. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2713. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2714. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2715. ggml_tensor * build_graph(ggml_context * ctx) override {
  2716. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2717. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2718. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2719. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2720. ggml_set_param(a);
  2721. ggml_set_name(a, "a");
  2722. ggml_set_param(b);
  2723. ggml_set_name(b, "b");
  2724. ggml_set_param(c);
  2725. ggml_set_name(c, "c");
  2726. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2727. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2728. if (multi_add) {
  2729. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2730. }
  2731. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2732. ggml_set_name(out, "out");
  2733. return out;
  2734. }
  2735. void initialize_tensors(ggml_context * ctx) override {
  2736. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2737. init_tensor_uniform(t, -10.f, 10.f);
  2738. }
  2739. }
  2740. float grad_eps() override {
  2741. return 1.0f;
  2742. }
  2743. bool grad_precise() override {
  2744. return true;
  2745. }
  2746. };
  2747. // GGML_OP_SSM_CONV
  2748. struct test_ssm_conv : public test_case {
  2749. const ggml_type type;
  2750. const std::array<int64_t, 4> ne_a;
  2751. const std::array<int64_t, 4> ne_b;
  2752. std::string vars() override {
  2753. return VARS_TO_STR3(type, ne_a, ne_b);
  2754. }
  2755. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2756. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2757. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2758. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2759. ggml_tensor * build_graph(ggml_context * ctx) override {
  2760. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2761. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2762. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2763. return out;
  2764. }
  2765. };
  2766. // GGML_OP_SSM_SCAN
  2767. struct test_ssm_scan : public test_case {
  2768. const ggml_type type;
  2769. const int64_t d_state;
  2770. const int64_t head_dim;
  2771. const int64_t n_head;
  2772. const int64_t n_group;
  2773. const int64_t n_seq_tokens;
  2774. const int64_t n_seqs;
  2775. std::string vars() override {
  2776. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2777. }
  2778. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2779. int64_t d_state = 32,
  2780. int64_t head_dim = 1, // non-zero for Mamba-2
  2781. int64_t n_head = 32,
  2782. int64_t n_group = 1,
  2783. int64_t n_seq_tokens = 32,
  2784. int64_t n_seqs = 32)
  2785. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2786. ggml_tensor * build_graph(ggml_context * ctx) override {
  2787. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2788. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2789. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2790. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2791. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2792. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2793. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2794. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2795. return out;
  2796. }
  2797. // similar to test_mul_mat_id
  2798. void initialize_tensors(ggml_context * ctx) override {
  2799. std::random_device rd;
  2800. std::default_random_engine rng(rd());
  2801. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2802. if (t->type == GGML_TYPE_I32) {
  2803. if (ggml_is_view_op(t->op)) { continue; }
  2804. // ids
  2805. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2806. std::vector<int32_t> data(t->ne[0]);
  2807. for (int i = 0; i < t->ne[0]; i++) {
  2808. data[i] = i;
  2809. }
  2810. std::shuffle(data.begin(), data.end(), rng);
  2811. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2812. }
  2813. } else {
  2814. init_tensor_uniform(t);
  2815. }
  2816. }
  2817. }
  2818. };
  2819. // GGML_OP_RWKV_WKV6
  2820. struct test_rwkv_wkv6 : public test_case {
  2821. const ggml_type type;
  2822. const int64_t head_count;
  2823. const int64_t head_size;
  2824. const int64_t n_seq_tokens;
  2825. const int64_t n_seqs;
  2826. std::string vars() override {
  2827. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2828. }
  2829. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2830. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2831. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2832. ggml_tensor * build_graph(ggml_context * ctx) override {
  2833. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2834. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2835. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2836. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2837. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2838. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2839. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2840. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2841. return out;
  2842. }
  2843. };
  2844. // GGML_OP_GATED_LINEAR_ATTN
  2845. struct test_gla : public test_case {
  2846. const ggml_type type;
  2847. const int64_t head_count;
  2848. const int64_t head_size;
  2849. const int64_t n_seq_tokens;
  2850. const int64_t n_seqs;
  2851. std::string vars() override {
  2852. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2853. }
  2854. test_gla(ggml_type type = GGML_TYPE_F32,
  2855. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2856. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2857. ggml_tensor * build_graph(ggml_context * ctx) override {
  2858. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2859. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2860. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2861. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2862. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2863. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2864. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2865. return out;
  2866. }
  2867. };
  2868. // GGML_OP_RWKV_WKV7
  2869. struct test_rwkv_wkv7 : public test_case {
  2870. const ggml_type type;
  2871. const int64_t head_count;
  2872. const int64_t head_size;
  2873. const int64_t n_seq_tokens;
  2874. const int64_t n_seqs;
  2875. std::string vars() override {
  2876. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2877. }
  2878. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2879. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2880. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2881. ggml_tensor * build_graph(ggml_context * ctx) override {
  2882. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2883. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2884. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2885. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2886. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2887. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2888. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2889. // Outputs may become NaN with long seqlen without these normalization
  2890. a = ggml_l2_norm(ctx, a, 1e-7F);
  2891. b = ggml_l2_norm(ctx, b, 1e-7F);
  2892. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2893. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2894. return out;
  2895. }
  2896. };
  2897. // GGML_OP_MUL_MAT
  2898. struct test_mul_mat : public test_case {
  2899. const ggml_type type_a;
  2900. const ggml_type type_b;
  2901. const int64_t m;
  2902. const int64_t n;
  2903. const int64_t k;
  2904. const std::array<int64_t, 2> bs; // dims 3 and 4
  2905. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2906. const std::array<int64_t, 4> per; // permutation of dimensions
  2907. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2908. const uint32_t o; // number of outputs
  2909. std::string vars() override {
  2910. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2911. }
  2912. double max_nmse_err() override {
  2913. return 5e-4;
  2914. }
  2915. int64_t grad_nmax() override {
  2916. return 20000;
  2917. }
  2918. uint64_t op_flops(ggml_tensor * t) override {
  2919. GGML_UNUSED(t);
  2920. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2921. }
  2922. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2923. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2924. std::array<int64_t, 2> bs = {10, 10},
  2925. std::array<int64_t, 2> nr = {2, 2},
  2926. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2927. int64_t k_v = 0, uint32_t o = 1)
  2928. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2929. ggml_tensor * build_graph(ggml_context * ctx) override {
  2930. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2931. ggml_tensor * a;
  2932. ggml_tensor * b;
  2933. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2934. if (npermuted > 0) {
  2935. GGML_ASSERT(npermuted == 2);
  2936. GGML_ASSERT(k_v == 0); // not handled
  2937. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2938. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2939. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2940. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2941. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2942. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2943. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2944. if (!ggml_is_quantized(type_a)) {
  2945. if (bs[1] == 1 && nr[1] == 1) {
  2946. ggml_set_param(a);
  2947. }
  2948. ggml_set_param(b);
  2949. }
  2950. ggml_set_name(a, "a");
  2951. ggml_set_name(b, "b");
  2952. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2953. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2954. ggml_set_name(a, "a_permuted");
  2955. ggml_set_name(b, "b_permuted");
  2956. } else {
  2957. const int64_t k_physical = k_v == 0 ? k : k_v;
  2958. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  2959. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  2960. if (!ggml_is_quantized(type_a)) {
  2961. if (bs[1] == 1 && nr[1] == 1) {
  2962. ggml_set_param(a);
  2963. }
  2964. ggml_set_param(b);
  2965. }
  2966. if (k_v != 0) {
  2967. GGML_ASSERT(k_v > k);
  2968. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2969. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2970. }
  2971. ggml_set_name(a, "a");
  2972. ggml_set_name(b, "b");
  2973. }
  2974. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2975. ggml_set_name(out, "out");
  2976. for (uint32_t i = 1; i < o; ++i) {
  2977. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2978. ggml_set_name(out2, "out2");
  2979. out = ggml_add(ctx, out, out2);
  2980. }
  2981. return out;
  2982. }
  2983. bool run_whole_graph() override { return o > 1; }
  2984. std::string op_desc(ggml_tensor * t) override {
  2985. GGML_UNUSED(t);
  2986. return ggml_op_name(GGML_OP_MUL_MAT);
  2987. }
  2988. };
  2989. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  2990. std::random_device rd;
  2991. std::default_random_engine rng(rd());
  2992. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2993. if (t->type == GGML_TYPE_I32) {
  2994. if (ggml_is_view_op(t->op)) { continue; }
  2995. // ids
  2996. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2997. std::vector<int32_t> data(t->ne[0]);
  2998. for (int i = 0; i < t->ne[0]; i++) {
  2999. data[i] = i % n_mats;
  3000. }
  3001. std::shuffle(data.begin(), data.end(), rng);
  3002. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  3003. }
  3004. } else {
  3005. init_tensor_uniform(t);
  3006. }
  3007. }
  3008. }
  3009. // GGML_OP_MUL_MAT_ID
  3010. struct test_mul_mat_id : public test_case {
  3011. const ggml_type type_a;
  3012. const ggml_type type_b;
  3013. const int n_mats;
  3014. const int n_used;
  3015. const bool b; // broadcast b matrix
  3016. const int64_t m;
  3017. const int64_t n;
  3018. const int64_t k;
  3019. std::string vars() override {
  3020. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3021. }
  3022. double max_nmse_err() override {
  3023. return 5e-4;
  3024. }
  3025. uint64_t op_flops(ggml_tensor * t) override {
  3026. GGML_UNUSED(t);
  3027. return 2 * m * k * n * n_used;
  3028. }
  3029. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3030. int n_mats = 8, int n_used = 2, bool b = false,
  3031. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3032. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3033. m(m), n(n), k(k) {
  3034. GGML_ASSERT(n_used <= n_mats);
  3035. }
  3036. ggml_tensor * build_graph(ggml_context * ctx) override {
  3037. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3038. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3039. ggml_set_name(as, "as");
  3040. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3041. ggml_set_name(ids, "ids");
  3042. if (n_used != n_mats) {
  3043. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3044. ggml_set_name(ids, "view_of_ids");
  3045. }
  3046. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3047. ggml_set_name(b, "b");
  3048. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3049. ggml_set_name(out, "out");
  3050. return out;
  3051. }
  3052. void initialize_tensors(ggml_context * ctx) override {
  3053. init_mul_mat_id_tensors(ctx, n_mats);
  3054. }
  3055. };
  3056. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3057. struct test_mul_mat_id_fusion : public test_case {
  3058. const ggml_type type_a;
  3059. const ggml_type type_b;
  3060. const int n_mats;
  3061. const int n_used;
  3062. const bool b; // broadcast b matrix
  3063. const int64_t m;
  3064. const int64_t n;
  3065. const int64_t k;
  3066. const uint32_t o; // number of outputs
  3067. const bool mul;
  3068. std::string vars() override {
  3069. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3070. }
  3071. double max_nmse_err() override {
  3072. return 5e-4;
  3073. }
  3074. uint64_t op_flops(ggml_tensor * t) override {
  3075. GGML_UNUSED(t);
  3076. return 2 * m * k * n * n_used;
  3077. }
  3078. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3079. int n_mats = 8, int n_used = 2, bool b = false,
  3080. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3081. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3082. m(m), n(n), k(k), o(o), mul(mul) {
  3083. GGML_ASSERT(n_used <= n_mats);
  3084. }
  3085. ggml_tensor * build_graph(ggml_context * ctx) override {
  3086. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3087. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3088. ggml_set_name(as, "as");
  3089. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3090. ggml_set_name(ids, "ids");
  3091. if (n_used != n_mats) {
  3092. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3093. ggml_set_name(ids, "view_of_ids");
  3094. }
  3095. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3096. ggml_set_name(b, "b");
  3097. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3098. ggml_set_name(out, "out");
  3099. for (uint32_t i = 1; i < o; ++i) {
  3100. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3101. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3102. ggml_set_name(out2, "out2");
  3103. out = ggml_add(ctx, out, out2);
  3104. }
  3105. if (mul) {
  3106. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3107. ne[0] = 1;
  3108. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3109. out = ggml_mul(ctx, out, m);
  3110. }
  3111. return out;
  3112. }
  3113. void initialize_tensors(ggml_context * ctx) override {
  3114. init_mul_mat_id_tensors(ctx, n_mats);
  3115. }
  3116. bool run_whole_graph() override { return true; }
  3117. std::string op_desc(ggml_tensor * t) override {
  3118. GGML_UNUSED(t);
  3119. return "MUL_MAT_ID_FUSION";
  3120. }
  3121. };
  3122. // GGML_OP_OUT_PROD
  3123. struct test_out_prod : public test_case {
  3124. const ggml_type type_a;
  3125. const ggml_type type_b;
  3126. const int64_t m;
  3127. const int64_t n;
  3128. const int64_t k;
  3129. const std::array<int64_t, 2> bs; // dims 3 and 4
  3130. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3131. const bool trans_b;
  3132. std::string vars() override {
  3133. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3134. }
  3135. double max_nmse_err() override {
  3136. return 5e-4;
  3137. }
  3138. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3139. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3140. std::array<int64_t, 2> bs = {10, 10},
  3141. std::array<int64_t, 2> nr = {2, 2},
  3142. bool trans_b = false)
  3143. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3144. ggml_tensor * build_graph(ggml_context * ctx) override {
  3145. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3146. ggml_set_name(a, "a");
  3147. ggml_tensor * b;
  3148. if (trans_b) {
  3149. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3150. b = ggml_transpose(ctx, b);
  3151. } else {
  3152. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3153. }
  3154. ggml_set_name(b, "b");
  3155. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3156. ggml_set_name(out, "out");
  3157. return out;
  3158. }
  3159. };
  3160. // GGML_OP_SQR
  3161. struct test_sqr : public test_case {
  3162. const ggml_type type;
  3163. const std::array<int64_t, 4> ne;
  3164. std::string vars() override {
  3165. return VARS_TO_STR2(type, ne);
  3166. }
  3167. test_sqr(ggml_type type = GGML_TYPE_F32,
  3168. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3169. : type(type), ne(ne) {}
  3170. ggml_tensor * build_graph(ggml_context * ctx) override {
  3171. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3172. ggml_set_param(a);
  3173. ggml_set_name(a, "a");
  3174. ggml_tensor * out = ggml_sqr(ctx, a);
  3175. ggml_set_name(out, "out");
  3176. return out;
  3177. }
  3178. float grad_eps() override {
  3179. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3180. }
  3181. };
  3182. // GGML_OP_SQRT
  3183. struct test_sqrt : public test_case {
  3184. const ggml_type type;
  3185. const std::array<int64_t, 4> ne;
  3186. std::string vars() override {
  3187. return VARS_TO_STR2(type, ne);
  3188. }
  3189. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3190. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3191. : type(type), ne(ne) {}
  3192. ggml_tensor * build_graph(ggml_context * ctx) override {
  3193. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3194. ggml_set_param(a);
  3195. ggml_set_name(a, "a");
  3196. ggml_tensor * out = ggml_sqrt(ctx, a);
  3197. ggml_set_name(out, "out");
  3198. return out;
  3199. }
  3200. void initialize_tensors(ggml_context * ctx) override {
  3201. // fill with positive values
  3202. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3203. init_tensor_uniform(t, 50.0f, 100.0f);
  3204. }
  3205. }
  3206. float grad_eps() override {
  3207. return 20.0f;
  3208. }
  3209. bool grad_precise() override {
  3210. return true;
  3211. }
  3212. };
  3213. // GGML_OP_LOG
  3214. struct test_log : public test_case {
  3215. const ggml_type type;
  3216. const std::array<int64_t, 4> ne;
  3217. std::string vars() override {
  3218. return VARS_TO_STR2(type, ne);
  3219. }
  3220. test_log(ggml_type type = GGML_TYPE_F32,
  3221. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3222. : type(type), ne(ne) {}
  3223. ggml_tensor * build_graph(ggml_context * ctx) override {
  3224. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3225. ggml_set_param(a);
  3226. ggml_set_name(a, "a");
  3227. ggml_tensor * out = ggml_log(ctx, a);
  3228. ggml_set_name(out, "out");
  3229. return out;
  3230. }
  3231. void initialize_tensors(ggml_context * ctx) override {
  3232. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3233. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3234. init_tensor_uniform(t, 0.9f, 1.1f);
  3235. }
  3236. }
  3237. bool grad_precise() override {
  3238. return true;
  3239. }
  3240. };
  3241. // GGML_OP_SIN
  3242. struct test_sin : public test_case {
  3243. const ggml_type type;
  3244. const std::array<int64_t, 4> ne;
  3245. std::string vars() override {
  3246. return VARS_TO_STR2(type, ne);
  3247. }
  3248. test_sin(ggml_type type = GGML_TYPE_F32,
  3249. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3250. : type(type), ne(ne) {}
  3251. ggml_tensor * build_graph(ggml_context * ctx) override {
  3252. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3253. ggml_set_param(a);
  3254. ggml_set_name(a, "a");
  3255. ggml_tensor * out = ggml_sin(ctx, a);
  3256. ggml_set_name(out, "out");
  3257. return out;
  3258. }
  3259. void initialize_tensors(ggml_context * ctx) override {
  3260. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3261. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3262. }
  3263. }
  3264. double max_maa_err() override {
  3265. return 1e-3;
  3266. }
  3267. float grad_eps() override {
  3268. return 0.2f;
  3269. }
  3270. bool grad_precise() override {
  3271. return true;
  3272. }
  3273. };
  3274. // GGML_OP_COS
  3275. struct test_cos : public test_case {
  3276. const ggml_type type;
  3277. const std::array<int64_t, 4> ne;
  3278. std::string vars() override {
  3279. return VARS_TO_STR2(type, ne);
  3280. }
  3281. test_cos(ggml_type type = GGML_TYPE_F32,
  3282. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3283. : type(type), ne(ne) {}
  3284. ggml_tensor * build_graph(ggml_context * ctx) override {
  3285. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3286. ggml_set_param(a);
  3287. ggml_set_name(a, "a");
  3288. ggml_tensor * out = ggml_cos(ctx, a);
  3289. ggml_set_name(out, "out");
  3290. return out;
  3291. }
  3292. void initialize_tensors(ggml_context * ctx) override {
  3293. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3294. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3295. }
  3296. }
  3297. double max_maa_err() override {
  3298. return 1e-3;
  3299. }
  3300. float grad_eps() override {
  3301. return 0.2f;
  3302. }
  3303. bool grad_precise() override {
  3304. return true;
  3305. }
  3306. };
  3307. // GGML_OP_CLAMP
  3308. struct test_clamp : public test_case {
  3309. const ggml_type type;
  3310. const std::array<int64_t, 4> ne;
  3311. float min;
  3312. float max;
  3313. std::string vars() override {
  3314. return VARS_TO_STR4(type, ne, min, max);
  3315. }
  3316. test_clamp(ggml_type type = GGML_TYPE_F32,
  3317. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3318. float min = -0.5f, float max = 0.5f)
  3319. : type(type), ne(ne), min(min), max(max) {}
  3320. ggml_tensor * build_graph(ggml_context * ctx) override {
  3321. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3322. ggml_set_name(a, "a");
  3323. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3324. ggml_set_name(out, "out");
  3325. return out;
  3326. }
  3327. float grad_eps() override {
  3328. return 1e-2f;
  3329. }
  3330. std::vector<float> grad_expect() override {
  3331. return {0.0f, 1.0f};
  3332. }
  3333. };
  3334. // GGML_OP_FLOOR
  3335. struct test_floor : public test_case {
  3336. const ggml_type type;
  3337. const std::array<int64_t, 4> ne;
  3338. std::string vars() override {
  3339. return VARS_TO_STR2(type, ne);
  3340. }
  3341. test_floor(ggml_type type = GGML_TYPE_F32,
  3342. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3343. : type(type), ne(ne) {}
  3344. ggml_tensor * build_graph(ggml_context * ctx) override {
  3345. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3346. ggml_set_param(a);
  3347. ggml_set_name(a, "a");
  3348. ggml_tensor * out = ggml_floor(ctx, a);
  3349. ggml_set_name(out, "out");
  3350. return out;
  3351. }
  3352. void initialize_tensors(ggml_context * ctx) override {
  3353. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3354. init_tensor_uniform(t, -10.0f, 10.0f);
  3355. }
  3356. }
  3357. };
  3358. // GGML_OP_CEIL
  3359. struct test_ceil : public test_case {
  3360. const ggml_type type;
  3361. const std::array<int64_t, 4> ne;
  3362. std::string vars() override {
  3363. return VARS_TO_STR2(type, ne);
  3364. }
  3365. test_ceil(ggml_type type = GGML_TYPE_F32,
  3366. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3367. : type(type), ne(ne) {}
  3368. ggml_tensor * build_graph(ggml_context * ctx) override {
  3369. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3370. ggml_set_param(a);
  3371. ggml_set_name(a, "a");
  3372. ggml_tensor * out = ggml_ceil(ctx, a);
  3373. ggml_set_name(out, "out");
  3374. return out;
  3375. }
  3376. void initialize_tensors(ggml_context * ctx) override {
  3377. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3378. init_tensor_uniform(t, -10.0f, 10.0f);
  3379. }
  3380. }
  3381. };
  3382. // GGML_OP_ROUND
  3383. struct test_round : public test_case {
  3384. const ggml_type type;
  3385. const std::array<int64_t, 4> ne;
  3386. std::string vars() override {
  3387. return VARS_TO_STR2(type, ne);
  3388. }
  3389. test_round(ggml_type type = GGML_TYPE_F32,
  3390. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3391. : type(type), ne(ne) {}
  3392. ggml_tensor * build_graph(ggml_context * ctx) override {
  3393. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3394. ggml_set_param(a);
  3395. ggml_set_name(a, "a");
  3396. ggml_tensor * out = ggml_round(ctx, a);
  3397. ggml_set_name(out, "out");
  3398. return out;
  3399. }
  3400. void initialize_tensors(ggml_context * ctx) override {
  3401. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3402. init_tensor_uniform(t, -10.0f, 10.0f);
  3403. }
  3404. }
  3405. };
  3406. // GGML_OP_TRUNC
  3407. struct test_trunc : public test_case {
  3408. const ggml_type type;
  3409. const std::array<int64_t, 4> ne;
  3410. std::string vars() override {
  3411. return VARS_TO_STR2(type, ne);
  3412. }
  3413. test_trunc(ggml_type type = GGML_TYPE_F32,
  3414. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3415. : type(type), ne(ne) {}
  3416. ggml_tensor * build_graph(ggml_context * ctx) override {
  3417. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3418. ggml_set_param(a);
  3419. ggml_set_name(a, "a");
  3420. ggml_tensor * out = ggml_trunc(ctx, a);
  3421. ggml_set_name(out, "out");
  3422. return out;
  3423. }
  3424. void initialize_tensors(ggml_context * ctx) override {
  3425. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3426. init_tensor_uniform(t, -10.0f, 10.0f);
  3427. }
  3428. }
  3429. };
  3430. // GGML_OP_DIAG_MASK_INF
  3431. struct test_diag_mask_inf : public test_case {
  3432. const ggml_type type;
  3433. const std::array<int64_t, 4> ne;
  3434. const int n_past;
  3435. std::string vars() override {
  3436. return VARS_TO_STR3(type, ne, n_past);
  3437. }
  3438. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3439. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3440. int n_past = 5)
  3441. : type(type), ne(ne), n_past(n_past) {}
  3442. ggml_tensor * build_graph(ggml_context * ctx) override {
  3443. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3444. ggml_set_param(a);
  3445. ggml_set_name(a, "a");
  3446. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3447. ggml_set_name(out, "out");
  3448. return out;
  3449. }
  3450. };
  3451. // GGML_OP_SOFT_MAX
  3452. struct test_soft_max : public test_case {
  3453. const ggml_type type;
  3454. const std::array<int64_t, 4> ne;
  3455. const bool mask;
  3456. const bool sinks;
  3457. const ggml_type m_prec;
  3458. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3459. const float scale;
  3460. const float max_bias;
  3461. const bool inplace;
  3462. std::string vars() override {
  3463. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3464. }
  3465. // the 1024 test with bias occasionally fails:
  3466. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3467. virtual double max_nmse_err() override {
  3468. return 1e-6;
  3469. }
  3470. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3471. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3472. bool mask = false,
  3473. bool sinks = false,
  3474. ggml_type m_prec = GGML_TYPE_F32,
  3475. std::array<int64_t, 2> nr23 = {1, 1},
  3476. float scale = 1.0f,
  3477. float max_bias = 0.0f,
  3478. bool inplace = false)
  3479. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3480. ggml_tensor * build_graph(ggml_context * ctx) override {
  3481. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3482. ggml_set_param(a);
  3483. ggml_set_name(a, "a");
  3484. ggml_tensor * mask = nullptr;
  3485. if (this->mask) {
  3486. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3487. ggml_set_name(mask, "mask");
  3488. }
  3489. ggml_tensor * sinks = nullptr;
  3490. if (this->sinks) {
  3491. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3492. ggml_set_name(sinks, "sinks");
  3493. }
  3494. ggml_tensor * out;
  3495. if (inplace) {
  3496. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3497. } else {
  3498. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3499. }
  3500. ggml_soft_max_add_sinks(out, sinks);
  3501. ggml_set_name(out, "out");
  3502. return out;
  3503. }
  3504. bool grad_precise() override {
  3505. return true;
  3506. }
  3507. };
  3508. // GGML_OP_SOFT_MAX_BACK
  3509. struct test_soft_max_back : public test_case {
  3510. const ggml_type type;
  3511. const std::array<int64_t, 4> ne;
  3512. const float scale;
  3513. const float max_bias;
  3514. std::string vars() override {
  3515. return VARS_TO_STR4(type, ne, scale, max_bias);
  3516. }
  3517. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3518. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3519. float scale = 1.0f,
  3520. float max_bias = 0.0f)
  3521. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3522. ggml_tensor * build_graph(ggml_context * ctx) override {
  3523. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3524. ggml_set_name(a, "a");
  3525. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3526. ggml_set_name(a, "a");
  3527. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3528. ggml_set_name(out, "out");
  3529. return out;
  3530. }
  3531. };
  3532. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3533. struct test_rope : public test_case {
  3534. const ggml_type type;
  3535. const std::array<int64_t, 4> ne_a;
  3536. int n_dims;
  3537. int mode;
  3538. int n_ctx; // used to generate positions
  3539. float fs; // freq_scale
  3540. float ef; // ext_factor
  3541. float af; // attn_factor
  3542. bool ff;
  3543. int v; // view (1 : non-contiguous a)
  3544. bool forward;
  3545. bool inplace;
  3546. std::string vars() override {
  3547. // forward can be inferred from the op, does not need to be printed
  3548. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3549. }
  3550. test_rope(ggml_type type = GGML_TYPE_F32,
  3551. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3552. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3553. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3554. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3555. ggml_tensor * build_graph(ggml_context * ctx) override {
  3556. ggml_tensor * a;
  3557. if (v & 1) {
  3558. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3559. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3560. if (forward) {
  3561. ggml_set_param(a);
  3562. }
  3563. ggml_set_name(a, "a");
  3564. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3565. ggml_set_name(a, "view_of_a");
  3566. } else {
  3567. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3568. if (forward) {
  3569. ggml_set_param(a);
  3570. }
  3571. ggml_set_name(a, "a");
  3572. }
  3573. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3574. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3575. ggml_tensor * pos;
  3576. if (is_mrope || is_vision) {
  3577. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3578. } else {
  3579. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3580. }
  3581. ggml_set_name(pos, "pos");
  3582. ggml_tensor * freq = nullptr;
  3583. if (ff) {
  3584. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3585. ggml_set_name(freq, "freq");
  3586. }
  3587. ggml_tensor * out;
  3588. if (is_mrope) {
  3589. if (is_vision) {
  3590. GGML_ASSERT(n_dims/4 > 0);
  3591. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3592. if (forward) {
  3593. if (inplace) {
  3594. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3595. } else {
  3596. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3597. }
  3598. } else {
  3599. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3600. }
  3601. } else {
  3602. GGML_ASSERT(n_dims/3 > 0);
  3603. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3604. if (forward) {
  3605. if (inplace) {
  3606. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3607. } else {
  3608. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3609. }
  3610. } else {
  3611. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3612. }
  3613. }
  3614. } else {
  3615. if (forward) {
  3616. if (inplace) {
  3617. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3618. } else {
  3619. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3620. }
  3621. } else {
  3622. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3623. }
  3624. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3625. }
  3626. ggml_set_name(out, "out");
  3627. return out;
  3628. }
  3629. void initialize_tensors(ggml_context * ctx) override {
  3630. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3631. if (t->type == GGML_TYPE_I32) {
  3632. // pos
  3633. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3634. std::vector<int> data(num_pos_ids);
  3635. for (int i = 0; i < num_pos_ids; i++) {
  3636. data[i] = rand() % n_ctx;
  3637. }
  3638. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3639. } else {
  3640. if (t->ne[0] == n_dims/2) {
  3641. // frequency factors in the range [0.9f, 1.1f]
  3642. init_tensor_uniform(t, 0.9f, 1.1f);
  3643. } else {
  3644. init_tensor_uniform(t);
  3645. }
  3646. }
  3647. }
  3648. }
  3649. double max_maa_err() override {
  3650. return 1e-3;
  3651. }
  3652. bool grad_precise() override {
  3653. return true;
  3654. }
  3655. };
  3656. // GGML_OP_POOL2D
  3657. struct test_pool2d : public test_case {
  3658. enum ggml_op_pool pool_type;
  3659. const ggml_type type_input;
  3660. const std::array<int64_t, 4> ne_input;
  3661. // kernel size
  3662. const int k0;
  3663. const int k1;
  3664. // stride
  3665. const int s0;
  3666. const int s1;
  3667. // padding
  3668. const int p0;
  3669. const int p1;
  3670. std::string vars() override {
  3671. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3672. }
  3673. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3674. ggml_type type_input = GGML_TYPE_F32,
  3675. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3676. int k0 = 3, int k1 = 3,
  3677. int s0 = 1, int s1 = 1,
  3678. int p0 = 1, int p1 = 1)
  3679. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3680. ggml_tensor * build_graph(ggml_context * ctx) override {
  3681. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3682. ggml_set_param(input);
  3683. ggml_set_name(input, "input");
  3684. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3685. ggml_set_name(out, "out");
  3686. return out;
  3687. }
  3688. };
  3689. // GGML_OP_CONV_TRANSPOSE_1D
  3690. struct test_conv_transpose_1d : public test_case {
  3691. const std::array<int64_t, 4> ne_input;
  3692. const std::array<int64_t, 4> ne_kernel;
  3693. const int s0; // stride
  3694. const int p0; // padding
  3695. const int d0; // dilation
  3696. std::string vars() override {
  3697. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3698. }
  3699. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3700. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3701. int s0 = 1, int p0 = 0, int d0 = 1)
  3702. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3703. ggml_tensor * build_graph(ggml_context * ctx) override {
  3704. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3705. ggml_set_name(input, "input");
  3706. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3707. ggml_set_name(kernel, "kernel");
  3708. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3709. ggml_set_name(out, "out");
  3710. return out;
  3711. }
  3712. };
  3713. // GGML_OP_CONV_TRANSPOSE_2D
  3714. struct test_conv_transpose_2d : public test_case {
  3715. const std::array<int64_t, 4> ne_input;
  3716. const std::array<int64_t, 4> ne_kernel;
  3717. const int stride;
  3718. std::string vars() override {
  3719. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3720. }
  3721. double max_nmse_err() override {
  3722. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3723. }
  3724. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3725. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3726. int stride = 1)
  3727. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3728. ggml_tensor * build_graph(ggml_context * ctx) override {
  3729. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3730. ggml_set_name(input, "input");
  3731. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3732. ggml_set_name(kernel, "kernel");
  3733. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3734. ggml_set_name(out, "out");
  3735. return out;
  3736. }
  3737. };
  3738. // GGML_OP_IM2COL
  3739. struct test_im2col : public test_case {
  3740. const ggml_type type_input;
  3741. const ggml_type type_kernel;
  3742. const ggml_type dst_type;
  3743. const std::array<int64_t, 4> ne_input;
  3744. const std::array<int64_t, 4> ne_kernel;
  3745. // stride
  3746. const int s0;
  3747. const int s1;
  3748. // padding
  3749. const int p0;
  3750. const int p1;
  3751. // dilation
  3752. const int d0;
  3753. const int d1;
  3754. // mode
  3755. const bool is_2D;
  3756. std::string vars() override {
  3757. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3758. }
  3759. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3760. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3761. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3762. int s0 = 1, int s1 = 1,
  3763. int p0 = 1, int p1 = 1,
  3764. int d0 = 1, int d1 = 1,
  3765. bool is_2D = true)
  3766. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3767. ggml_tensor * build_graph(ggml_context * ctx) override {
  3768. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3769. ggml_set_param(input);
  3770. ggml_set_name(input, "input");
  3771. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3772. ggml_set_name(kernel, "kernel");
  3773. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3774. ggml_set_name(out, "out");
  3775. return out;
  3776. }
  3777. };
  3778. // GGML_OP_IM2COL_3D
  3779. struct test_im2col_3d : public test_case {
  3780. const ggml_type type_input;
  3781. const ggml_type type_kernel;
  3782. const ggml_type dst_type;
  3783. const std::array<int64_t, 4> ne_input;
  3784. const std::array<int64_t, 4> ne_kernel;
  3785. // stride
  3786. const int s0;
  3787. const int s1;
  3788. const int s2;
  3789. // padding
  3790. const int p0;
  3791. const int p1;
  3792. const int p2;
  3793. // dilation
  3794. const int d0;
  3795. const int d1;
  3796. const int d2;
  3797. const int64_t IC;
  3798. const bool v;
  3799. std::string vars() override {
  3800. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3801. }
  3802. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3803. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3804. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3805. int64_t IC = 3,
  3806. int s0 = 1, int s1 = 1, int s2 = 1,
  3807. int p0 = 1, int p1 = 1, int p2 = 1,
  3808. int d0 = 1, int d1 = 1, int d2 = 1,
  3809. bool v = false)
  3810. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3811. ggml_tensor * build_graph(ggml_context * ctx) override {
  3812. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3813. ggml_set_param(input);
  3814. ggml_set_name(input, "input");
  3815. if (v) {
  3816. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3817. ggml_set_name(input, "view_of_input");
  3818. }
  3819. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3820. ggml_set_name(kernel, "kernel");
  3821. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3822. ggml_set_name(out, "out");
  3823. return out;
  3824. }
  3825. };
  3826. // CONV_2D
  3827. struct test_conv_2d : public test_case {
  3828. const std::array<int64_t, 4> ne_input;
  3829. const std::array<int64_t, 4> ne_kernel;
  3830. const ggml_type type_kernel;
  3831. const int stride0;
  3832. const int stride1;
  3833. const int padding0;
  3834. const int padding1;
  3835. const int dilation0;
  3836. const int dilation1;
  3837. // Whether the inputs are contiguous in the channel dim or the width dim
  3838. const bool cwhn;
  3839. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3840. // uses ggml_conv_2d:
  3841. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3842. // CONV_2D graph will be built, while
  3843. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3844. // IM2COL -> MUL_MM graph will be built.
  3845. std::string vars() override {
  3846. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3847. }
  3848. double max_nmse_err() override {
  3849. return 5e-4;
  3850. }
  3851. uint64_t op_flops(ggml_tensor * t) override {
  3852. GGML_UNUSED(t);
  3853. // Just counting matmul costs:
  3854. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3855. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3856. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3857. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3858. };
  3859. int64_t W = ne_input[0];
  3860. int64_t H = ne_input[1];
  3861. int64_t KW = ne_kernel[0];
  3862. int64_t KH = ne_kernel[1];
  3863. int64_t Cin = ne_kernel[2];
  3864. int64_t Cout = ne_kernel[3];
  3865. int64_t N = ne_input[3];
  3866. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3867. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3868. int64_t K = Cout;
  3869. int64_t CRS = Cin * KH * KW;
  3870. int64_t NPQ = N * OH * OW;
  3871. return K * NPQ * (2 * CRS - 1);
  3872. }
  3873. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3874. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3875. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3876. ne_input(ne_input),
  3877. ne_kernel(ne_kernel),
  3878. type_kernel(type_kernel),
  3879. stride0(stride0),
  3880. stride1(stride1),
  3881. padding0(padding0),
  3882. padding1(padding1),
  3883. dilation0(dilation0),
  3884. dilation1(dilation1),
  3885. cwhn(cwhn) {}
  3886. ggml_tensor * build_graph(ggml_context * ctx) override {
  3887. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3888. ggml_set_name(input, "input");
  3889. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3890. ggml_set_name(kernel, "kernel");
  3891. if (cwhn) {
  3892. // change memory layout to channel-most-contiguous (CWHN),
  3893. // then permute it back so NE matches the original input
  3894. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3895. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3896. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3897. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3898. }
  3899. ggml_tensor * out =
  3900. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3901. ggml_set_name(out, "out");
  3902. return out;
  3903. }
  3904. };
  3905. // GGML_OP_CONV_2D_DW
  3906. struct test_conv_2d_dw : public test_case {
  3907. const std::array<int64_t, 4> ne_input;
  3908. const std::array<int64_t, 4> ne_kernel;
  3909. const int stride;
  3910. const int padding;
  3911. const int dilation;
  3912. const bool cwhn;
  3913. std::string vars() override {
  3914. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3915. }
  3916. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3917. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3918. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3919. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3920. ggml_tensor * build_graph(ggml_context * ctx) override {
  3921. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3922. ggml_set_name(input, "input");
  3923. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3924. ggml_set_name(kernel, "kernel");
  3925. if (cwhn) {
  3926. // change memory layout to channel-most-contiguous (CWHN),
  3927. // then permute it back so NE matches the original input
  3928. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3929. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3930. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3931. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3932. }
  3933. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3934. ctx, kernel, input,
  3935. stride, stride, padding, padding, dilation, dilation);
  3936. ggml_set_name(out, "out");
  3937. return out;
  3938. }
  3939. };
  3940. // GGML_OP_CONV_3D
  3941. struct test_conv_3d : public test_case {
  3942. // Logical 5D dimensions
  3943. const int64_t N, IC, ID, IH, IW;
  3944. const int64_t OC, KD, KH, KW;
  3945. // Conv params
  3946. const int s0, s1, s2;
  3947. const int p0, p1, p2;
  3948. const int d0, d1, d2;
  3949. // Types
  3950. const ggml_type type_kernel;
  3951. std::string op_desc(ggml_tensor * t) override {
  3952. GGML_UNUSED(t);
  3953. return "CONV_3D";
  3954. }
  3955. std::string vars() override {
  3956. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3957. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3958. }
  3959. double max_nmse_err() override {
  3960. return 5e-4;
  3961. }
  3962. uint64_t op_flops(ggml_tensor * t) override {
  3963. GGML_UNUSED(t);
  3964. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3965. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3966. };
  3967. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3968. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3969. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3970. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3971. }
  3972. test_conv_3d(
  3973. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3974. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3975. int s0, int s1, int s2,
  3976. int p0, int p1, int p2,
  3977. int d0, int d1, int d2,
  3978. ggml_type type_kernel
  3979. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3980. OC(OC), KD(KD), KH(KH), KW(KW),
  3981. s0(s0), s1(s1), s2(s2),
  3982. p0(p0), p1(p1), p2(p2),
  3983. d0(d0), d1(d1), d2(d2),
  3984. type_kernel(type_kernel) {}
  3985. ggml_tensor * build_graph(ggml_context * ctx) override {
  3986. // GGML input tensor is packed as [W, H, D, C*N]
  3987. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3988. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3989. ggml_set_name(input, "input");
  3990. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3991. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3992. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3993. ggml_set_name(kernel, "kernel");
  3994. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3995. ggml_set_name(out, "out");
  3996. return out;
  3997. }
  3998. };
  3999. // GGML_OP_CONCAT
  4000. struct test_concat : public test_case {
  4001. const ggml_type type;
  4002. const std::array<int64_t, 4> ne_a;
  4003. const int64_t ne_b_d;
  4004. const int dim;
  4005. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  4006. std::string vars() override {
  4007. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  4008. }
  4009. test_concat(ggml_type type = GGML_TYPE_F32,
  4010. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4011. int64_t ne_b_d = 5,
  4012. int dim = 2, int v = 0)
  4013. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4014. ggml_tensor * build_graph(ggml_context * ctx) override {
  4015. auto ne_b = ne_a;
  4016. ne_b[dim] = ne_b_d;
  4017. ggml_tensor * a;
  4018. if (v & 1) {
  4019. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4020. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4021. ggml_set_name(a, "a");
  4022. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4023. ggml_set_name(a, "view_of_a");
  4024. } else {
  4025. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4026. ggml_set_name(a, "a");
  4027. }
  4028. ggml_tensor * b;
  4029. if (v & 2) {
  4030. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4031. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4032. ggml_set_name(b, "b");
  4033. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4034. ggml_set_name(b, "view_of_b");
  4035. } else {
  4036. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4037. ggml_set_name(b, "b");
  4038. }
  4039. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4040. ggml_set_name(out, "out");
  4041. return out;
  4042. }
  4043. };
  4044. // GGML_OP_ARGSORT
  4045. struct test_argsort : public test_case {
  4046. const ggml_type type;
  4047. const std::array<int64_t, 4> ne;
  4048. ggml_sort_order order;
  4049. std::string vars() override {
  4050. return VARS_TO_STR3(type, ne, order);
  4051. }
  4052. test_argsort(ggml_type type = GGML_TYPE_F32,
  4053. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4054. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4055. : type(type), ne(ne), order(order) {}
  4056. ggml_tensor * build_graph(ggml_context * ctx) override {
  4057. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4058. ggml_set_name(a, "a");
  4059. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4060. ggml_set_name(out, "out");
  4061. return out;
  4062. }
  4063. void initialize_tensors(ggml_context * ctx) override {
  4064. std::random_device rd;
  4065. std::default_random_engine rng(rd());
  4066. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4067. if (t->type == GGML_TYPE_I32) {
  4068. // indices
  4069. std::vector<int> data(ggml_nelements(t));
  4070. for (int i = 0; i < ggml_nelements(t); i++) {
  4071. data[i] = rand();
  4072. }
  4073. std::shuffle(data.begin(), data.end(), rng);
  4074. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4075. } else if (t->type == GGML_TYPE_F32) {
  4076. // initialize with unique values to avoid ties
  4077. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4078. std::vector<float> data(t->ne[0]);
  4079. for (int i = 0; i < t->ne[0]; i++) {
  4080. data[i] = i;
  4081. }
  4082. std::shuffle(data.begin(), data.end(), rng);
  4083. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4084. }
  4085. } else {
  4086. GGML_ABORT("fatal error");
  4087. }
  4088. }
  4089. }
  4090. };
  4091. struct test_topk_moe: public test_case {
  4092. const std::array<int64_t, 4> ne;
  4093. const int n_expert_used;
  4094. const bool with_norm;
  4095. const bool delayed_softmax;
  4096. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4097. int n_expert_used = 1,
  4098. bool with_norm = false,
  4099. bool delayed_softmax = false) :
  4100. ne(ne),
  4101. n_expert_used(n_expert_used),
  4102. with_norm(with_norm),
  4103. delayed_softmax(delayed_softmax) {
  4104. GGML_ASSERT(n_expert_used <= ne[0]);
  4105. GGML_ASSERT(!(with_norm && delayed_softmax));
  4106. }
  4107. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  4108. std::string op_desc(ggml_tensor * t) override {
  4109. GGML_UNUSED(t);
  4110. return "TOPK_MOE";
  4111. }
  4112. bool run_whole_graph() override { return true; }
  4113. ggml_tensor * build_graph(ggml_context * ctx) override {
  4114. const int n_expert = ne[0];
  4115. const int n_tokens = ne[1];
  4116. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4117. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  4118. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  4119. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4120. if (delayed_softmax) {
  4121. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4122. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  4123. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4124. }
  4125. if (with_norm) {
  4126. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4127. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  4128. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4129. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  4130. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4131. }
  4132. ggml_set_name(out, "out");
  4133. return out;
  4134. }
  4135. };
  4136. struct test_mul_mat_vec_fusion : public test_case {
  4137. const ggml_type type;
  4138. const ggml_glu_op glu_op;
  4139. const int64_t m;
  4140. const int64_t n;
  4141. const int64_t k;
  4142. const bool use_id;
  4143. const int n_mats;
  4144. const int n_used;
  4145. const bool b; // broadcast b matrix (only for use_id)
  4146. const bool with_bias;
  4147. const bool with_gate;
  4148. std::array<int64_t, 2> batch_dims;
  4149. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4150. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4151. std::array<int64_t, 2> batch_dims = {4, 2})
  4152. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4153. if (use_id) {
  4154. GGML_ASSERT(n_used <= n_mats);
  4155. }
  4156. }
  4157. std::string vars() override {
  4158. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4159. }
  4160. std::string op_desc(ggml_tensor * t) override {
  4161. GGML_UNUSED(t);
  4162. return "MUL_MAT_VEC_FUSION";
  4163. }
  4164. bool run_whole_graph() override { return true; }
  4165. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4166. ggml_tensor * out = nullptr;
  4167. if (with_gate) {
  4168. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4169. constexpr float alpha = 1.702f;
  4170. constexpr float limit = 7.0f;
  4171. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4172. } else {
  4173. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4174. }
  4175. }
  4176. return out;
  4177. }
  4178. ggml_tensor * build_graph(ggml_context * ctx) override {
  4179. if (!use_id) {
  4180. const int channels = batch_dims[0];
  4181. const int samples = batch_dims[1];
  4182. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4183. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4184. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4185. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4186. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4187. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4188. if (with_bias) {
  4189. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4190. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4191. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4192. }
  4193. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4194. if (with_bias && with_gate) {
  4195. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4196. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4197. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4198. }
  4199. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4200. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4201. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4202. out = ggml_add(ctx, out, bias2);
  4203. ggml_set_name(out, "out");
  4204. return out;
  4205. } else {
  4206. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4207. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4208. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4209. if (n_used != n_mats) {
  4210. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4211. }
  4212. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4213. ggml_set_name(cur, "cur");
  4214. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4215. if (with_bias) {
  4216. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4217. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4218. }
  4219. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4220. if (with_bias && with_gate) {
  4221. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4222. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4223. }
  4224. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4225. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4226. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4227. out = ggml_mul(ctx, out, scale);
  4228. ggml_set_name(out, "out");
  4229. return out;
  4230. }
  4231. }
  4232. void initialize_tensors(ggml_context * ctx) override {
  4233. if (!use_id) {
  4234. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4235. init_tensor_uniform(t);
  4236. }
  4237. } else {
  4238. init_mul_mat_id_tensors(ctx, n_mats);
  4239. }
  4240. }
  4241. double max_nmse_err() override {
  4242. return 5e-3;
  4243. }
  4244. };
  4245. // GGML_OP_SUM
  4246. struct test_sum : public test_case {
  4247. const ggml_type type;
  4248. const std::array<int64_t, 4> ne;
  4249. const std::array<int64_t, 4> permute;
  4250. bool _use_permute;
  4251. std::string vars() override {
  4252. std::string v = VARS_TO_STR2(type, ne);
  4253. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4254. return v;
  4255. }
  4256. test_sum(ggml_type type = GGML_TYPE_F32,
  4257. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4258. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4259. : type(type), ne(ne), permute(permute),
  4260. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4261. ggml_tensor * build_graph(ggml_context * ctx) override {
  4262. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4263. ggml_set_param(a);
  4264. ggml_set_name(a, "a");
  4265. if (_use_permute) {
  4266. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4267. ggml_set_name(a, "a_permuted");
  4268. }
  4269. ggml_tensor * out = ggml_sum(ctx, a);
  4270. ggml_set_name(out, "out");
  4271. return out;
  4272. }
  4273. float grad_eps() override {
  4274. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4275. }
  4276. };
  4277. // GGML_OP_SUM_ROWS
  4278. struct test_sum_rows : public test_case {
  4279. const ggml_type type;
  4280. const std::array<int64_t, 4> ne;
  4281. const bool permute;
  4282. const bool slice;
  4283. std::string vars() override {
  4284. return VARS_TO_STR4(type, ne, permute, slice);
  4285. }
  4286. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4287. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4288. bool permute = false, bool slice = false)
  4289. : type(type), ne(ne), permute(permute), slice(slice) {}
  4290. ggml_tensor * build_graph(ggml_context * ctx) override {
  4291. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4292. ggml_set_param(a);
  4293. ggml_set_name(a, "a");
  4294. if (slice) {
  4295. a = ggml_view_4d(ctx, a,
  4296. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4297. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4298. }
  4299. if (permute) {
  4300. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4301. }
  4302. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4303. ggml_set_name(out, "out");
  4304. return out;
  4305. }
  4306. };
  4307. // GGML_OP_MEAN
  4308. struct test_mean : public test_case {
  4309. const ggml_type type;
  4310. const std::array<int64_t, 4> ne;
  4311. std::string vars() override {
  4312. return VARS_TO_STR2(type, ne);
  4313. }
  4314. test_mean(ggml_type type = GGML_TYPE_F32,
  4315. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4316. : type(type), ne(ne) {}
  4317. ggml_tensor * build_graph(ggml_context * ctx) override {
  4318. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4319. ggml_set_param(a);
  4320. ggml_set_name(a, "a");
  4321. ggml_tensor * out = ggml_mean(ctx, a);
  4322. ggml_set_name(out, "out");
  4323. return out;
  4324. }
  4325. float grad_eps() override {
  4326. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4327. }
  4328. };
  4329. // GGML_OP_UPSCALE
  4330. struct test_upscale : public test_case {
  4331. const ggml_type type;
  4332. const std::array<int64_t, 4> ne;
  4333. const int32_t scale_factor;
  4334. const bool transpose;
  4335. const ggml_scale_mode mode;
  4336. std::string vars() override {
  4337. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4338. }
  4339. test_upscale(ggml_type type = GGML_TYPE_F32,
  4340. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4341. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4342. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4343. ggml_tensor * build_graph(ggml_context * ctx) override {
  4344. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4345. ggml_set_name(a, "a");
  4346. if (transpose) {
  4347. a = ggml_transpose(ctx, a);
  4348. ggml_set_name(a, "a_transposed");
  4349. }
  4350. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4351. ggml_set_name(out, "out");
  4352. return out;
  4353. }
  4354. };
  4355. // GGML_OP_UPSCALE (via ggml_interpolate)
  4356. struct test_interpolate : public test_case {
  4357. const ggml_type type;
  4358. const std::array<int64_t, 4> ne;
  4359. const std::array<int64_t, 4> ne_tgt;
  4360. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4361. std::string vars() override {
  4362. ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
  4363. std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
  4364. return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
  4365. }
  4366. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4367. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4368. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4369. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4370. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4371. ggml_tensor * build_graph(ggml_context * ctx) override {
  4372. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4373. ggml_set_name(a, "a");
  4374. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4375. ggml_set_name(out, "out");
  4376. return out;
  4377. }
  4378. };
  4379. // GGML_OP_GROUP_NORM
  4380. struct test_group_norm : public test_case {
  4381. const ggml_type type;
  4382. const std::array<int64_t, 4> ne;
  4383. const int32_t num_groups;
  4384. const float eps;
  4385. std::string vars() override {
  4386. return VARS_TO_STR4(type, ne, num_groups, eps);
  4387. }
  4388. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4389. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4390. int32_t num_groups = 32,
  4391. float eps = 1e-6f)
  4392. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4393. ggml_tensor * build_graph(ggml_context * ctx) override {
  4394. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4395. ggml_set_name(a, "a");
  4396. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4397. ggml_set_name(out, "out");
  4398. return out;
  4399. }
  4400. };
  4401. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4402. struct test_group_norm_mul_add : public test_case {
  4403. const ggml_type type;
  4404. const std::array<int64_t, 4> ne;
  4405. int num_groups;
  4406. float eps;
  4407. std::string op_desc(ggml_tensor * t) override {
  4408. GGML_UNUSED(t);
  4409. return "GROUP_NORM_MUL_ADD";
  4410. }
  4411. bool run_whole_graph() override { return true; }
  4412. std::string vars() override {
  4413. return VARS_TO_STR4(type, ne, num_groups, eps);
  4414. }
  4415. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4416. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4417. int num_groups = 4,
  4418. float eps = 1e-5f)
  4419. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4420. ggml_tensor * build_graph(ggml_context * ctx) override {
  4421. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4422. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4423. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4424. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4425. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4426. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4427. ggml_tensor * m = ggml_mul(ctx, n, w);
  4428. ggml_tensor * out = ggml_add(ctx, m, b);
  4429. ggml_set_name(out, "out");
  4430. return out;
  4431. }
  4432. };
  4433. // GGML_OP_L2_NORM
  4434. struct test_l2_norm : public test_case {
  4435. const ggml_type type;
  4436. const std::array<int64_t, 4> ne;
  4437. const float eps;
  4438. std::string vars() override {
  4439. return VARS_TO_STR2(type, ne);
  4440. }
  4441. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4442. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4443. float eps = 1e-12f)
  4444. : type(type), ne(ne), eps(eps) {}
  4445. ggml_tensor * build_graph(ggml_context * ctx) override {
  4446. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4447. ggml_set_name(a, "a");
  4448. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4449. ggml_set_name(out, "out");
  4450. return out;
  4451. }
  4452. };
  4453. // GGML_OP_ACC
  4454. struct test_acc : public test_case {
  4455. const ggml_type type;
  4456. const std::array<int64_t, 4> ne_a;
  4457. const std::array<int64_t, 4> ne_b;
  4458. std::string vars() override {
  4459. return VARS_TO_STR3(type, ne_a, ne_b);
  4460. }
  4461. test_acc(ggml_type type = GGML_TYPE_F32,
  4462. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4463. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4464. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4465. ggml_tensor * build_graph(ggml_context * ctx) override {
  4466. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4467. ggml_set_param(a);
  4468. ggml_set_name(a, "a");
  4469. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4470. ggml_set_param(b);
  4471. ggml_set_name(b, "b");
  4472. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4473. ggml_set_name(out, "out");
  4474. return out;
  4475. }
  4476. };
  4477. // GGML_OP_PAD
  4478. struct test_pad : public test_case {
  4479. const ggml_type type;
  4480. const std::array<int64_t, 4> ne_a;
  4481. const int pad_0;
  4482. const int pad_1;
  4483. std::string vars() override {
  4484. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4485. }
  4486. test_pad(ggml_type type = GGML_TYPE_F32,
  4487. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4488. int pad_0 = 1, int pad_1 = 1)
  4489. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4490. ggml_tensor * build_graph(ggml_context * ctx) override {
  4491. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4492. ggml_set_name(a, "a");
  4493. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4494. ggml_set_name(out, "out");
  4495. return out;
  4496. }
  4497. };
  4498. // GGML_OP_PAD (with extension)
  4499. struct test_pad_ext : public test_case {
  4500. const ggml_type type;
  4501. const std::array<int64_t, 4> ne_a;
  4502. const int lp0;
  4503. const int rp0;
  4504. const int lp1;
  4505. const int rp1;
  4506. const int lp2;
  4507. const int rp2;
  4508. const int lp3;
  4509. const int rp3;
  4510. const bool v;
  4511. std::string vars() override {
  4512. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4513. }
  4514. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4515. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4516. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4517. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4518. bool v = false)
  4519. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4520. ggml_tensor * build_graph(ggml_context * ctx) override {
  4521. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4522. ggml_set_name(a, "a");
  4523. if (v) {
  4524. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4525. ggml_set_name(a, "view of a");
  4526. }
  4527. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4528. ggml_set_name(out, "out");
  4529. return out;
  4530. }
  4531. };
  4532. // GGML_OP_PAD_REFLECT_1D
  4533. struct test_pad_reflect_1d : public test_case {
  4534. const ggml_type type;
  4535. const std::array<int64_t, 4> ne_a;
  4536. const int pad_0;
  4537. const int pad_1;
  4538. std::string vars() override {
  4539. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4540. }
  4541. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4542. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4543. int pad_0 = 10, int pad_1 = 9)
  4544. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4545. ggml_tensor * build_graph(ggml_context * ctx) override {
  4546. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4547. ggml_set_name(a, "a");
  4548. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4549. ggml_set_name(out, "out");
  4550. return out;
  4551. }
  4552. };
  4553. // GGML_OP_ROLL
  4554. struct test_roll : public test_case {
  4555. const int shift0;
  4556. const int shift1;
  4557. const int shift3;
  4558. const int shift4;
  4559. std::string vars() override {
  4560. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4561. }
  4562. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4563. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4564. ggml_tensor * build_graph(ggml_context * ctx) override {
  4565. int64_t ne[4] = {10, 5, 4, 3};
  4566. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4567. ggml_set_name(a, "a");
  4568. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4569. ggml_set_name(out, "out");
  4570. return out;
  4571. }
  4572. };
  4573. // GGML_OP_ARANGE
  4574. struct test_arange : public test_case {
  4575. const ggml_type type;
  4576. const float start;
  4577. const float stop;
  4578. const float step;
  4579. std::string vars() override {
  4580. return VARS_TO_STR4(type, start, stop, step);
  4581. }
  4582. test_arange(ggml_type type = GGML_TYPE_F32,
  4583. float start = 0.f, float stop = 10.f, float step = 1.f)
  4584. : type(type), start(start), stop(stop), step(step) {}
  4585. ggml_tensor * build_graph(ggml_context * ctx) override {
  4586. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4587. ggml_set_name(out, "out");
  4588. return out;
  4589. }
  4590. };
  4591. // GGML_OP_TIMESTEP_EMBEDDING
  4592. struct test_timestep_embedding : public test_case {
  4593. const ggml_type type;
  4594. const std::array<int64_t, 4> ne_a;
  4595. const int dim;
  4596. const int max_period;
  4597. std::string vars() override {
  4598. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4599. }
  4600. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4601. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4602. int dim = 320, int max_period=10000)
  4603. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4604. ggml_tensor * build_graph(ggml_context * ctx) override {
  4605. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4606. ggml_set_name(a, "a");
  4607. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4608. ggml_set_name(out, "out");
  4609. return out;
  4610. }
  4611. };
  4612. // GGML_OP_LEAKY_RELU
  4613. struct test_leaky_relu : public test_case {
  4614. const ggml_type type;
  4615. const std::array<int64_t, 4> ne_a;
  4616. const float negative_slope;
  4617. std::string vars() override {
  4618. return VARS_TO_STR3(type, ne_a, negative_slope);
  4619. }
  4620. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4621. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4622. float negative_slope = 0.1f)
  4623. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4624. ggml_tensor * build_graph(ggml_context * ctx) override {
  4625. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4626. ggml_set_name(a, "a");
  4627. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4628. ggml_set_name(out, "out");
  4629. return out;
  4630. }
  4631. };
  4632. // GGML_OP_FLASH_ATTN_EXT
  4633. struct test_flash_attn_ext : public test_case {
  4634. const int64_t hsk; // K head size
  4635. const int64_t hsv; // V head size
  4636. const int64_t nh; // num heads
  4637. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4638. const int64_t kv; // kv size
  4639. const int64_t nb; // batch size
  4640. const bool mask; // use mask
  4641. const bool sinks; // use sinks
  4642. const float max_bias; // ALiBi
  4643. const float logit_softcap; // Gemma 2
  4644. const ggml_prec prec;
  4645. const ggml_type type_KV;
  4646. std::array<int32_t, 4> permute;
  4647. std::string vars() override {
  4648. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4649. }
  4650. double max_nmse_err() override {
  4651. return 5e-4;
  4652. }
  4653. uint64_t op_flops(ggml_tensor * t) override {
  4654. GGML_UNUSED(t);
  4655. // Just counting matmul costs:
  4656. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4657. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4658. }
  4659. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4660. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4661. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4662. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4663. ggml_tensor * build_graph(ggml_context * ctx) override {
  4664. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4665. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4666. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4667. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4668. int64_t ne_perm[4];
  4669. for (int i = 0; i < 4; ++i) {
  4670. ne_perm[permute[i]] = ne[i];
  4671. }
  4672. ggml_tensor * t;
  4673. if (is_view) {
  4674. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4675. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4676. } else {
  4677. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4678. }
  4679. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4680. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4681. }
  4682. return t;
  4683. };
  4684. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4685. ggml_set_name(q, "q");
  4686. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4687. ggml_set_name(k, "k");
  4688. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4689. ggml_set_name(v, "v");
  4690. ggml_tensor * m = nullptr;
  4691. if (mask) {
  4692. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4693. ggml_set_name(m, "m");
  4694. }
  4695. ggml_tensor * s = nullptr;
  4696. if (sinks) {
  4697. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4698. ggml_set_name(s, "s");
  4699. }
  4700. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4701. ggml_flash_attn_ext_add_sinks(out, s);
  4702. ggml_flash_attn_ext_set_prec (out, prec);
  4703. ggml_set_name(out, "out");
  4704. return out;
  4705. }
  4706. void initialize_tensors(ggml_context * ctx) override {
  4707. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4708. if (strcmp(t->name, "s") == 0) {
  4709. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4710. init_tensor_uniform(t, -10.0f, 10.0f);
  4711. } else if (strcmp(t->name, "m") == 0) {
  4712. init_tensor_kq_mask(t);
  4713. } else {
  4714. init_tensor_uniform(t);
  4715. }
  4716. }
  4717. }
  4718. bool grad_precise() override {
  4719. return true;
  4720. }
  4721. };
  4722. // GGML_OP_CROSS_ENTROPY_LOSS
  4723. struct test_cross_entropy_loss : public test_case {
  4724. const ggml_type type;
  4725. const std::array<int64_t, 4> ne;
  4726. std::string vars() override {
  4727. return VARS_TO_STR2(type, ne);
  4728. }
  4729. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4730. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4731. : type(type), ne(ne) {}
  4732. ggml_tensor * build_graph(ggml_context * ctx) override {
  4733. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4734. ggml_set_param(logits);
  4735. ggml_set_name(logits, "logits");
  4736. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4737. // The labels are assumed to be constant -> no gradients.
  4738. ggml_set_name(labels, "labels");
  4739. // Ensure labels add up to 1:
  4740. labels = ggml_soft_max(ctx, labels);
  4741. ggml_set_name(labels, "labels_normalized");
  4742. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4743. ggml_set_name(out, "out");
  4744. return out;
  4745. }
  4746. void initialize_tensors(ggml_context * ctx) override {
  4747. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4748. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4749. init_tensor_uniform(t, -100.0f, 100.0f);
  4750. }
  4751. }
  4752. float grad_eps() override {
  4753. return 1.0f;
  4754. }
  4755. bool grad_precise() override {
  4756. return true;
  4757. }
  4758. };
  4759. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4760. struct test_cross_entropy_loss_back : public test_case {
  4761. const ggml_type type;
  4762. const std::array<int64_t, 4> ne;
  4763. std::string vars() override {
  4764. return VARS_TO_STR2(type, ne);
  4765. }
  4766. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4767. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4768. : type(type), ne(ne) {}
  4769. ggml_tensor * build_graph(ggml_context * ctx) override {
  4770. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4771. ggml_set_name(grad, "grad");
  4772. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4773. ggml_set_name(logits, "logits");
  4774. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4775. ggml_set_name(labels, "labels");
  4776. // Ensure labels add up to 1:
  4777. labels = ggml_soft_max(ctx, labels);
  4778. ggml_set_name(labels, "labels_normalized");
  4779. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4780. ggml_set_name(out, "out");
  4781. return out;
  4782. }
  4783. };
  4784. // GGML_OP_OPT_STEP_ADAMW
  4785. struct test_opt_step_adamw : public test_case {
  4786. const ggml_type type;
  4787. const std::array<int64_t, 4> ne;
  4788. std::string vars() override {
  4789. return VARS_TO_STR2(type, ne);
  4790. }
  4791. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4792. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4793. : type(type), ne(ne) {}
  4794. ggml_tensor * build_graph(ggml_context * ctx) override {
  4795. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4796. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4797. ggml_set_name(a, "a");
  4798. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4799. ggml_set_name(grad, "grad");
  4800. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4801. ggml_set_name(grad_m, "grad_m");
  4802. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4803. ggml_set_name(grad_v, "grad_v");
  4804. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4805. ggml_set_name(adamw_params, "adamw_params");
  4806. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4807. ggml_set_name(out, "out");
  4808. return out;
  4809. }
  4810. void initialize_tensors(ggml_context * ctx) override {
  4811. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4812. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4813. }
  4814. }
  4815. bool grad_precise() override {
  4816. return true;
  4817. }
  4818. };
  4819. // GGML_OP_OPT_STEP_SGD
  4820. struct test_opt_step_sgd : public test_case {
  4821. const ggml_type type;
  4822. const std::array<int64_t, 4> ne;
  4823. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4824. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4825. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4826. : type(type), ne(ne) {}
  4827. ggml_tensor * build_graph(ggml_context * ctx) override {
  4828. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4829. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4830. ggml_set_name(a, "a");
  4831. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4832. ggml_set_name(grad, "grad");
  4833. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4834. ggml_set_name(sgd_params, "sgd_params");
  4835. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4836. ggml_set_name(out, "out");
  4837. return out;
  4838. }
  4839. void initialize_tensors(ggml_context * ctx) override {
  4840. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4841. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4842. }
  4843. }
  4844. bool grad_precise() override {
  4845. return true;
  4846. }
  4847. };
  4848. // GGML_OP_CUMSUM
  4849. struct test_cumsum : public test_case {
  4850. const ggml_type type;
  4851. const std::array<int64_t, 4> ne;
  4852. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4853. test_cumsum(ggml_type type = GGML_TYPE_F32,
  4854. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4855. : type(type), ne(ne) {}
  4856. ggml_tensor * build_graph(ggml_context * ctx) override {
  4857. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4858. ggml_set_param(a);
  4859. ggml_set_name(a, "a");
  4860. ggml_tensor * out = ggml_cumsum(ctx, a);
  4861. ggml_set_name(out, "out");
  4862. return out;
  4863. }
  4864. void initialize_tensors(ggml_context * ctx) override {
  4865. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4866. init_tensor_uniform(t, -1.0f, 1.0f);
  4867. }
  4868. }
  4869. };
  4870. // GGML_OP_XIELU
  4871. struct test_xielu : public test_case {
  4872. const ggml_type type;
  4873. const std::array<int64_t, 4> ne;
  4874. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4875. test_xielu(ggml_type type = GGML_TYPE_F32,
  4876. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4877. : type(type), ne(ne) {}
  4878. ggml_tensor * build_graph(ggml_context * ctx) override {
  4879. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4880. ggml_set_param(a);
  4881. ggml_set_name(a, "a");
  4882. float alpha_n = 4.0f;
  4883. float alpha_p = 20.0f;
  4884. float beta = 0.5f;
  4885. float eps = 0.0000001f;
  4886. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  4887. ggml_set_name(out, "out");
  4888. return out;
  4889. }
  4890. void initialize_tensors(ggml_context * ctx) override {
  4891. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4892. init_tensor_uniform(t, -1.0f, 1.0f);
  4893. }
  4894. }
  4895. };
  4896. // GGML_OP_TRI
  4897. struct test_tri : public test_case {
  4898. const ggml_type type;
  4899. const std::array<int64_t, 4> ne;
  4900. const ggml_tri_type tri_type;
  4901. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  4902. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  4903. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4904. : type(type), ne(ne), tri_type(tri_type) {
  4905. GGML_ASSERT(ne[0] == ne[1]);
  4906. }
  4907. ggml_tensor * build_graph(ggml_context * ctx) override {
  4908. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4909. ggml_set_param(a);
  4910. ggml_set_name(a, "a");
  4911. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  4912. ggml_set_name(out, "out");
  4913. return out;
  4914. }
  4915. void initialize_tensors(ggml_context * ctx) override {
  4916. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4917. init_tensor_uniform(t, -1.0f, 1.0f);
  4918. }
  4919. }
  4920. };
  4921. // GGML_OP_FILL
  4922. struct test_fill : public test_case {
  4923. const ggml_type type;
  4924. const std::array<int64_t, 4> ne;
  4925. float c;
  4926. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  4927. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  4928. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4929. : type(type), ne(ne), c(c) {}
  4930. ggml_tensor * build_graph(ggml_context * ctx) override {
  4931. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4932. ggml_set_param(a);
  4933. ggml_set_name(a, "a");
  4934. ggml_tensor * out = ggml_fill(ctx, a, c);
  4935. ggml_set_name(out, "out");
  4936. return out;
  4937. }
  4938. };
  4939. // GGML_OP_SOLVE_TRI
  4940. struct test_solve_tri : public test_case {
  4941. const ggml_type type;
  4942. const std::array<int64_t, 4> ne_lhs;
  4943. const std::array<int64_t, 4> ne_rhs;
  4944. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  4945. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  4946. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  4947. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  4948. )
  4949. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  4950. ggml_tensor * build_graph(ggml_context * ctx) override {
  4951. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  4952. ggml_set_param(a);
  4953. ggml_set_name(a, "a");
  4954. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  4955. ggml_set_param(b);
  4956. ggml_set_name(b, "b");
  4957. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  4958. ggml_set_name(out, "out");
  4959. return out;
  4960. }
  4961. void initialize_tensors(ggml_context * ctx) override {
  4962. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4963. if (strcmp(t->name, "a") == 0) {
  4964. // note: avoid zeros in the diagonal
  4965. init_tensor_tril(t, 0.1, 1.0f);
  4966. } else {
  4967. init_tensor_uniform(t, -1.0f, 1.0f);
  4968. }
  4969. }
  4970. }
  4971. };
  4972. enum llm_norm_type {
  4973. LLM_NORM,
  4974. LLM_NORM_RMS,
  4975. };
  4976. struct llama_hparams {
  4977. uint32_t n_vocab;
  4978. uint32_t n_embd;
  4979. uint32_t n_head;
  4980. uint32_t n_head_kv;
  4981. static constexpr uint32_t n_layer = 1;
  4982. uint32_t n_rot;
  4983. uint32_t n_embd_head; // dimension of values (d_v)
  4984. uint32_t n_ff;
  4985. float f_norm_eps;
  4986. float f_norm_rms_eps;
  4987. // cparams
  4988. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4989. static constexpr uint32_t n_ctx_orig = n_ctx;
  4990. // batch
  4991. int32_t n_tokens;
  4992. // llm_build_context
  4993. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4994. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4995. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4996. return n_embd_head * n_head_kv;
  4997. }
  4998. };
  4999. // LLM base class
  5000. struct test_llm : public test_case {
  5001. llama_hparams hp;
  5002. protected:
  5003. test_llm(llama_hparams hp)
  5004. : hp(std::move(hp)) {
  5005. }
  5006. public:
  5007. struct ggml_tensor * llm_build_norm(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * cur,
  5010. struct ggml_tensor * mw,
  5011. struct ggml_tensor * mb,
  5012. llm_norm_type type) {
  5013. switch (type) {
  5014. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5015. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5016. }
  5017. cur = ggml_mul(ctx, cur, mw);
  5018. if (mb) {
  5019. cur = ggml_add(ctx, cur, mb);
  5020. }
  5021. return cur;
  5022. }
  5023. void llm_build_kv_store(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * k_l,
  5026. struct ggml_tensor * v_l,
  5027. struct ggml_tensor * k_cur,
  5028. struct ggml_tensor * v_cur) {
  5029. // compute the transposed [n_tokens, n_embd] V matrix
  5030. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5031. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5032. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5033. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5034. ( hp.n_ctx)*ggml_element_size(v_l),
  5035. (hp.kv_head)*ggml_element_size(v_l));
  5036. // important: storing RoPE-ed version of K in the KV cache!
  5037. ggml_cpy(ctx, k_cur, k_cache_view);
  5038. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5039. }
  5040. struct ggml_tensor * llm_build_kqv(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * k_l,
  5043. struct ggml_tensor * v_l,
  5044. struct ggml_tensor * q_cur,
  5045. struct ggml_tensor * kq_mask,
  5046. float kq_scale) {
  5047. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5048. struct ggml_tensor * k =
  5049. ggml_view_3d(ctx, k_l,
  5050. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5051. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5052. ggml_row_size(k_l->type, hp.n_embd_head),
  5053. 0);
  5054. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5055. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5056. // split cached v into n_head heads
  5057. struct ggml_tensor * v =
  5058. ggml_view_3d(ctx, v_l,
  5059. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5060. ggml_element_size(v_l)*hp.n_ctx,
  5061. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5062. 0);
  5063. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5064. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5065. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5066. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5067. cur = ggml_mul_mat(ctx, wo, cur);
  5068. return cur;
  5069. }
  5070. void initialize_tensors(ggml_context * ctx) override {
  5071. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5072. if (t->type == GGML_TYPE_I32) {
  5073. // pos
  5074. std::vector<int> data(hp.n_tokens);
  5075. for (int i = 0; i < hp.n_tokens; i++) {
  5076. data[i] = rand() % hp.n_ctx;
  5077. }
  5078. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5079. } else {
  5080. init_tensor_uniform(t);
  5081. }
  5082. }
  5083. }
  5084. };
  5085. // Llama
  5086. struct test_llama : public test_llm {
  5087. static constexpr float freq_base = 10000.0f;
  5088. static constexpr float freq_scale = 1.0f;
  5089. static constexpr float ext_factor = 0.0f;
  5090. static constexpr float attn_factor = 1.0f;
  5091. static constexpr float beta_fast = 32.0f;
  5092. static constexpr float beta_slow = 1.0f;
  5093. bool fused;
  5094. std::string op_desc(ggml_tensor * t) override {
  5095. GGML_UNUSED(t);
  5096. return "LLAMA";
  5097. }
  5098. std::string vars() override {
  5099. auto n_tokens = hp.n_tokens;
  5100. return VARS_TO_STR1(n_tokens);
  5101. }
  5102. double max_nmse_err() override {
  5103. return 2e-3;
  5104. }
  5105. bool run_whole_graph() override { return fused; }
  5106. test_llama(int n_tokens = 1, bool fused = false)
  5107. : test_llm({
  5108. /*n_vocab =*/ 32000,
  5109. /*n_embd =*/ 3200,
  5110. /*n_head =*/ 32,
  5111. /*n_head_kv =*/ 32,
  5112. /*n_rot =*/ 100,
  5113. /*n_embd_head =*/ 100,
  5114. /*n_ff =*/ 8640,
  5115. /*f_norm_eps =*/ 0.f,
  5116. /*f_norm_rms_eps =*/ 1e-5f,
  5117. /*n_tokens =*/ n_tokens,
  5118. })
  5119. , fused(fused)
  5120. {
  5121. }
  5122. ggml_tensor * build_graph(ggml_context * ctx) override {
  5123. struct ggml_tensor * cur;
  5124. struct ggml_tensor * inpL;
  5125. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5126. // inp_pos - contains the positions
  5127. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5128. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5129. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5130. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5131. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5132. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5133. struct ggml_tensor * inpSA = inpL;
  5134. // norm
  5135. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5136. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5137. // self-attention
  5138. {
  5139. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5140. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5141. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5142. // compute Q and K and RoPE them
  5143. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5144. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5145. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5146. Qcur = ggml_rope_ext(
  5147. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5148. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5149. ext_factor, attn_factor, beta_fast, beta_slow
  5150. );
  5151. Kcur = ggml_rope_ext(
  5152. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5153. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5154. ext_factor, attn_factor, beta_fast, beta_slow
  5155. );
  5156. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5157. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5158. }
  5159. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5160. // feed-forward network
  5161. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5162. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5163. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5164. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5165. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5166. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5167. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5168. cur = ggml_silu(ctx, cur);
  5169. cur = ggml_mul(ctx, cur, tmp);
  5170. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5171. cur = ggml_add(ctx, cur, ffn_inp);
  5172. // input for next layer
  5173. inpL = cur;
  5174. }
  5175. cur = inpL;
  5176. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5177. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5178. // lm_head
  5179. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5180. cur = ggml_mul_mat(ctx, output, cur);
  5181. return cur;
  5182. }
  5183. };
  5184. // Falcon
  5185. struct test_falcon : public test_llm {
  5186. static constexpr float freq_base = 10000.0f;
  5187. static constexpr float freq_scale = 1.0f;
  5188. static constexpr float ext_factor = 0.0f;
  5189. static constexpr float attn_factor = 1.0f;
  5190. static constexpr float beta_fast = 32.0f;
  5191. static constexpr float beta_slow = 1.0f;
  5192. std::string op_desc(ggml_tensor * t) override {
  5193. GGML_UNUSED(t);
  5194. return "FALCON";
  5195. }
  5196. std::string vars() override {
  5197. auto n_tokens = hp.n_tokens;
  5198. return VARS_TO_STR1(n_tokens);
  5199. }
  5200. double max_nmse_err() override {
  5201. return 2e-3;
  5202. }
  5203. test_falcon(int n_tokens = 1)
  5204. : test_llm({
  5205. /*n_vocab =*/ 32000,
  5206. /*n_embd =*/ 3200,
  5207. /*n_head =*/ 50,
  5208. /*n_head_kv =*/ 1,
  5209. /*n_rot =*/ 64,
  5210. /*n_embd_head =*/ 64,
  5211. /*n_ff =*/ 8640,
  5212. /*f_norm_eps =*/ 1e-5f,
  5213. /*f_norm_rms_eps =*/ 0.f,
  5214. /*n_tokens =*/ n_tokens,
  5215. }) {
  5216. }
  5217. ggml_tensor * build_graph(ggml_context * ctx) override {
  5218. struct ggml_tensor * cur;
  5219. struct ggml_tensor * inpL;
  5220. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5221. // inp_pos - contains the positions
  5222. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5223. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5224. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5225. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5226. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5227. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5228. // norm
  5229. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5230. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5231. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5232. // self-attention
  5233. {
  5234. cur = attn_norm;
  5235. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5236. cur = ggml_mul_mat(ctx, wqkv, cur);
  5237. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5238. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5239. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5240. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5241. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5242. // using mode = 2 for neox mode
  5243. Qcur = ggml_rope_ext(
  5244. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5245. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5246. );
  5247. Kcur = ggml_rope_ext(
  5248. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5249. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5250. );
  5251. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5252. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5253. }
  5254. struct ggml_tensor * ffn_inp = cur;
  5255. // feed forward
  5256. {
  5257. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5258. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5259. cur = attn_norm;
  5260. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5261. cur = ggml_gelu(ctx, cur);
  5262. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5263. }
  5264. cur = ggml_add(ctx, cur, ffn_inp);
  5265. cur = ggml_add(ctx, cur, inpL);
  5266. // input for next layer
  5267. inpL = cur;
  5268. }
  5269. cur = inpL;
  5270. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5271. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5272. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5273. // lm_head
  5274. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5275. cur = ggml_mul_mat(ctx, output, cur);
  5276. return cur;
  5277. }
  5278. };
  5279. // ###########################################
  5280. // ## Section 3: GGML Op Test Instantiation ##
  5281. // ###########################################
  5282. static const ggml_type all_types[] = {
  5283. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5284. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5285. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5286. GGML_TYPE_Q8_0,
  5287. GGML_TYPE_MXFP4,
  5288. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5289. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5290. GGML_TYPE_Q6_K,
  5291. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5292. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5293. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5294. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5295. };
  5296. static const ggml_type base_types[] = {
  5297. GGML_TYPE_F32, GGML_TYPE_F16,
  5298. GGML_TYPE_Q8_0, // for I8MM tests
  5299. GGML_TYPE_Q4_0,
  5300. GGML_TYPE_Q4_1, // for I8MM tests
  5301. GGML_TYPE_Q4_K,
  5302. GGML_TYPE_MXFP4, // TODO: or "other"
  5303. GGML_TYPE_IQ2_XXS
  5304. };
  5305. static const ggml_type other_types[] = {
  5306. GGML_TYPE_Q4_1,
  5307. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5308. GGML_TYPE_Q8_0,
  5309. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5310. GGML_TYPE_Q5_K,
  5311. GGML_TYPE_Q6_K,
  5312. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5313. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5314. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5315. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5316. GGML_TYPE_BF16,
  5317. };
  5318. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5319. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5320. std::vector<std::unique_ptr<test_case>> test_cases;
  5321. std::default_random_engine rng(0);
  5322. // unary ops
  5323. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5324. for (int v : {0, 1}) {
  5325. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5326. if (op == GGML_UNARY_OP_XIELU) {
  5327. continue; // need extra params, separate test
  5328. }
  5329. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5330. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5331. }
  5332. }
  5333. }
  5334. // glu ops
  5335. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5336. for (int v : {0, 1}) {
  5337. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5338. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5339. // SWIGLU_OAI is handled separately
  5340. continue;
  5341. }
  5342. for (bool swapped : {false, true}) {
  5343. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5344. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5345. }
  5346. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5347. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5348. }
  5349. }
  5350. }
  5351. for (int v : {0, 1}) {
  5352. for (float alpha : {.5f, 1.702f}) {
  5353. for (float limit : {2.0f, 7.0f}) {
  5354. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5355. }
  5356. }
  5357. }
  5358. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5359. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5360. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5361. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5362. }
  5363. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5364. for (ggml_type type : all_types) {
  5365. for (int b : {1, 7}) {
  5366. for (bool v : {false, true}) {
  5367. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5368. }
  5369. }
  5370. }
  5371. for (int b : {1, 7}) {
  5372. for (bool v : {false, true}) {
  5373. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5374. }
  5375. }
  5376. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5377. for (ggml_type type : all_types) {
  5378. for (bool v : {false, true}) {
  5379. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5380. }
  5381. }
  5382. for (bool v : {false, true}) {
  5383. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5384. }
  5385. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5386. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5387. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5388. for (ggml_type type : all_types) {
  5389. for (int b : {1, 7}) {
  5390. for (bool v : {false, true}) {
  5391. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5392. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5393. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5394. if (ggml_blck_size(type) == 1) {
  5395. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5396. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5397. }
  5398. }
  5399. }
  5400. }
  5401. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5402. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5403. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5404. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5405. }
  5406. }
  5407. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5408. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5409. for (int k0 : {1, 3}) {
  5410. for (int k1 : {1, 3}) {
  5411. for (int s0 : {1, 2}) {
  5412. for (int s1 : {1, 2}) {
  5413. for (int p0 : {0, 1}) {
  5414. for (int p1 : {0, 1}) {
  5415. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5416. }
  5417. }
  5418. }
  5419. }
  5420. }
  5421. }
  5422. }
  5423. }
  5424. #if 0
  5425. // >4GB im2col destination. Too slow to run by default.
  5426. // Test cases taken from Wan2.1 T2V 1.3B.
  5427. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5428. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5429. #endif
  5430. // im2col 1D
  5431. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5432. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5433. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5434. for (int s0 : {1, 3}) {
  5435. for (int p0 : {0, 3}) {
  5436. for (int d0 : {1, 3}) {
  5437. test_cases.emplace_back(new test_im2col(
  5438. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5439. s0, 0, p0, 0, d0, 0, false));
  5440. }
  5441. }
  5442. }
  5443. // im2col 2D
  5444. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5445. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5446. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5447. for (int s0 : {1, 3}) {
  5448. for (int s1 : {1, 3}) {
  5449. for (int p0 : {0, 3}) {
  5450. for (int p1 : {0, 3}) {
  5451. for (int d0 : {1, 3}) {
  5452. for (int d1 : {1, 3}) {
  5453. test_cases.emplace_back(new test_im2col(
  5454. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5455. s0, s1, p0, p1, d0, d1, true));
  5456. }
  5457. }
  5458. }
  5459. }
  5460. }
  5461. }
  5462. // extra tests for im2col 2D
  5463. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5464. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5465. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5466. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5467. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5468. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5469. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5470. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5471. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5472. // im2col 3D
  5473. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5474. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5475. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5476. for (int s0 : {1, 3}) {
  5477. for (int s1 : {1, 3}) {
  5478. for (int s2 : {1, 3}) {
  5479. for (int p0 : {0, 3}) {
  5480. for (int p1 : {0, 3}) {
  5481. for (int p2 : {0, 3}) {
  5482. for (int d0 : {1, 3}) {
  5483. for (int d1 : {1, 3}) {
  5484. for (int d2 : {1, 3}) {
  5485. for (int IC : {1, 3}) {
  5486. for (bool v : {false, true}) {
  5487. test_cases.emplace_back(new test_im2col_3d(
  5488. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5489. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. }
  5497. }
  5498. }
  5499. }
  5500. }
  5501. // Conv_2D test cases
  5502. #ifdef DETAILED_TESTS
  5503. // Probably we do not have enough time to execute these in the pipeline.
  5504. uint32_t iwh_idx = 0;
  5505. uint32_t kwh_idx = 1;
  5506. uint32_t Cout_idx = 2;
  5507. uint32_t Cin_idx = 3;
  5508. uint32_t B_idx = 4;
  5509. std::vector<std::array<int, 5>> cases = {
  5510. //{IWH, KWH, Cout, Cin, B}
  5511. // K=CRS=NPQ=4096 conv_2d matmul performance
  5512. {19, 4, 4096, 256, 16},
  5513. // K=128, CRS=128, NPQ=4096
  5514. { 19, 4, 128, 8, 16},
  5515. // K=130, CRS=128, NPQ=4096
  5516. { 19, 4, 130, 8, 16},
  5517. // Edge case: K x CRS is small
  5518. { 19, 2, 4, 4, 16},
  5519. // A ConvNet's first layer
  5520. { 224, 3, 8, 3, 1 },
  5521. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5522. { 224, 2, 8, 1, 1 },
  5523. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5524. { 224, 2, 8, 1, 8 },
  5525. // A middle layer of a ConvNet
  5526. { 58, 3, 64, 32, 1 },
  5527. // A middle layer of a ConvNet, several images in the batch
  5528. { 58, 3, 64, 32, 8 },
  5529. // A deep layer of a ConvNet, several images in the batch
  5530. { 16, 3, 256, 128, 8 }
  5531. };
  5532. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5533. for (auto act_case : cases) {
  5534. test_cases.emplace_back(new test_conv_2d(
  5535. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5536. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5537. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5538. }
  5539. }
  5540. #endif
  5541. // CONV_2D:
  5542. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5543. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5544. };
  5545. //uint32_t s0 = 3;
  5546. uint32_t s1 = 5;
  5547. uint32_t p0 = 5;
  5548. //uint32_t p1 = 2;
  5549. uint32_t d0 = 2;
  5550. uint32_t d1 = 4;
  5551. for (uint32_t s0 : { 1, 3 }) {
  5552. for (uint32_t p1 : { 2, 5 }) {
  5553. for (uint32_t Cin : { 1, 25 }) {
  5554. for (uint32_t Cout : { 1, 12 }) {
  5555. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5556. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5557. for (uint32_t H : { 1, 133 }) {
  5558. for (uint32_t W : { 1, 141 }) {
  5559. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5560. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5561. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5562. test_cases.emplace_back(new test_conv_2d(
  5563. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5564. }
  5565. }
  5566. }
  5567. }
  5568. }
  5569. }
  5570. }
  5571. }
  5572. }
  5573. }
  5574. // sycl backend will limit task global_range < MAX_INT
  5575. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5576. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5577. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5578. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5579. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5580. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5581. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5582. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5583. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5584. // CONV_3D
  5585. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5586. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5587. };
  5588. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5589. for (int N : {1, 2}) {
  5590. for (int IC : {1, 3}) {
  5591. for (int OC : {1, 4}) {
  5592. for (int s0 : {1, 2}) {
  5593. for (int p1 : {0, 1}) {
  5594. for (int d2 : {1, 2}) {
  5595. int64_t IW = 20, IH = 22, ID = 18;
  5596. int64_t KW = 3, KH = 3, KD = 3;
  5597. int s1 = s0, s2 = s0;
  5598. int p0 = p1, p2 = p1;
  5599. int d0 = d2, d1 = d2;
  5600. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5601. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5602. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5603. continue;
  5604. }
  5605. test_cases.emplace_back(new test_conv_3d(
  5606. N, IC, ID, IH, IW,
  5607. OC, KD, KH, KW,
  5608. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5609. kernel_type));
  5610. // Asymmetric kernel and params
  5611. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5612. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5613. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5614. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5615. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5616. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5617. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5618. continue;
  5619. }
  5620. test_cases.emplace_back(new test_conv_3d(
  5621. N, IC, ID, IH, IW,
  5622. OC, asym_KD, asym_KH, asym_KW,
  5623. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5624. kernel_type));
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. // Case with kernel size 1
  5632. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5633. }
  5634. for(uint32_t Cout : {1, 9}){
  5635. for(uint32_t Cin : {1, 7}){
  5636. for(uint32_t K : {1, 3, 1337}){
  5637. for(uint32_t L : {1, 2, 13}){
  5638. for(uint32_t s0: {1, 2, 3}){
  5639. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5640. }
  5641. }
  5642. }
  5643. }
  5644. }
  5645. test_cases.emplace_back(new test_conv_transpose_1d());
  5646. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5647. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5648. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5649. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5650. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5651. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5652. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5653. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5654. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5655. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5656. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5657. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5658. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5659. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5660. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5661. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5662. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5663. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5664. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5665. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5666. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5667. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5668. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5669. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5670. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5671. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5672. }
  5673. for (bool view : {false, true}) {
  5674. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5675. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5676. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5677. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5678. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5679. }
  5680. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5681. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5682. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5683. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5684. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5685. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5686. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5687. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5688. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5689. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5690. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5691. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5692. }
  5693. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5694. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5695. }
  5696. // same-type copy
  5697. for (ggml_type type : all_types) {
  5698. const auto nk = ggml_blck_size(type);
  5699. for (int k = 1; k < 4; ++k) {
  5700. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5701. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5702. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5703. }
  5704. }
  5705. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5706. for (ggml_type type_dst : all_types) {
  5707. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5708. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5709. }
  5710. }
  5711. for (ggml_type type_src : all_types) {
  5712. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5713. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5714. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5715. }
  5716. }
  5717. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5718. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5719. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5720. }
  5721. }
  5722. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5723. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5724. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5725. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5726. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5727. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5728. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5729. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5730. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5731. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5732. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5733. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5734. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5735. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5736. for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
  5737. for (bool use_view_slice : { true, false }) {
  5738. for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
  5739. {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
  5740. if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
  5741. continue; // TODO: add after WebGPU is fixed
  5742. }
  5743. test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
  5744. }
  5745. }
  5746. }
  5747. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5748. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5749. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5750. }
  5751. };
  5752. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5753. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5754. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5755. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5756. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5757. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5758. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5759. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5760. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5761. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5762. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5763. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5764. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5765. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5766. // test case for k_bin_bcast_unravel in CUDA backend
  5767. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5768. // stable diffusion
  5769. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5770. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5771. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5772. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5773. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5774. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5775. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5776. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5777. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5778. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5779. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5780. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5781. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5782. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5783. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5784. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5785. }
  5786. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5787. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5788. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5789. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5790. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5791. // fusion
  5792. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5793. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5794. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5795. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5796. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5797. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5798. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5799. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5800. test_cases.emplace_back(new test_add1());
  5801. test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
  5802. test_cases.emplace_back(new test_scale());
  5803. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5804. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5805. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5806. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5807. test_cases.emplace_back(new test_silu_back());
  5808. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5809. for (bool v : {false, true}) {
  5810. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5811. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5812. }
  5813. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5814. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5815. }
  5816. // in-place tests
  5817. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5818. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5819. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5820. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5821. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5822. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5823. }
  5824. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5825. for (bool multi_add : {false, true}) {
  5826. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5827. }
  5828. }
  5829. for (auto multi_add : {false, true}) {
  5830. for (auto set_rows : {false, true}) {
  5831. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  5832. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5833. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5834. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  5835. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5836. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5837. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5838. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5839. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5840. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5841. }
  5842. }
  5843. }
  5844. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5845. for (int64_t d_conv : {3, 4}) {
  5846. for (int64_t d_inner: {1024, 1536, 2048}) {
  5847. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5848. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5849. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5850. }
  5851. }
  5852. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5853. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5854. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5855. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5856. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5857. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5858. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5859. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5860. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5861. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5862. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5863. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5864. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5865. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5866. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5867. #if 0
  5868. // > 4GB A matrix. Too slow to be enabled by default.
  5869. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5870. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5871. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5872. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5873. #endif
  5874. for (ggml_type type_a : all_types) {
  5875. for (int i = 1; i < 10; ++i) {
  5876. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5877. }
  5878. }
  5879. #if 0
  5880. {
  5881. // Test paths in OpenCL
  5882. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5883. std::vector<int> ks = {896, 1536, 4096};
  5884. for (auto n : ns) {
  5885. for (auto k : ks) {
  5886. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5887. }
  5888. }
  5889. }
  5890. #endif
  5891. #if 1
  5892. for (ggml_type type_a : base_types) {
  5893. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5894. std::vector<int> ks = { 256 };
  5895. if (ggml_blck_size(type_a) == 1) {
  5896. ks.push_back(4);
  5897. }
  5898. for (auto k : ks) {
  5899. // test cases without permutation
  5900. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5901. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5902. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5903. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5904. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5905. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5906. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5907. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5908. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5909. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5910. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5911. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5912. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5913. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5914. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5915. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5916. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5917. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5918. // test cases with permutation
  5919. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5920. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5921. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5922. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5923. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5924. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5925. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5926. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5927. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5928. }
  5929. // test cases with large ne00/ne10 to cover stream-k fixup
  5930. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5931. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5932. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5933. // test cases with large batch size
  5934. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5935. }
  5936. }
  5937. for (ggml_type type_a : other_types) {
  5938. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5939. if (ggml_blck_size(type_a) != 256) {
  5940. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5941. }
  5942. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5943. }
  5944. }
  5945. #else
  5946. // m = a rows
  5947. // n = b rows
  5948. // k = cols
  5949. std::uniform_int_distribution<> dist_m(1, 128);
  5950. std::uniform_int_distribution<> dist_n(16, 128);
  5951. std::uniform_int_distribution<> dist_k(1, 16);
  5952. for (int i = 0; i < 1000; i++) {
  5953. for (ggml_type type_a : all_types) {
  5954. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5955. int m = dist_m(rng);
  5956. int n = dist_n(rng);
  5957. int k = dist_k(rng) * ggml_blck_size(type_a);
  5958. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5959. }
  5960. }
  5961. }
  5962. #endif
  5963. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5964. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5965. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5966. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5967. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5968. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5969. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5970. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5971. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  5972. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5973. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  5974. #if 0
  5975. // test the mat-mat path for Metal
  5976. for (int k = 1; k < 512; ++k) {
  5977. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5978. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5979. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5980. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5981. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5982. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5983. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5984. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5985. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5986. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5987. }
  5988. #endif
  5989. for (auto bs2 : {1,3}) {
  5990. for (auto bs : {1,2,4,8}) {
  5991. for (auto nr : {1,4}) {
  5992. for (uint32_t m = 0; m < 2; ++m) {
  5993. for (uint32_t k = 0; k < 2; ++k) {
  5994. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5995. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5996. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  5997. }
  5998. }
  5999. }
  6000. }
  6001. }
  6002. }
  6003. // sycl backend will limit task global_range < MAX_INT
  6004. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  6005. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  6006. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  6007. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  6008. // test large experts*tokens
  6009. for (bool b : {false, true}) {
  6010. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  6011. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  6012. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6013. }
  6014. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6015. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6016. // gpt-oss issue with Vulkan mmq_id
  6017. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6018. for (ggml_type type_a : base_types) {
  6019. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6020. for (int n_mats : {4, 8}) {
  6021. for (int n_used : {1, 2, 4}) {
  6022. for (bool b : {false, true}) {
  6023. for (int n : {1, 4, 5, 17, 32, 129}) {
  6024. int m = 512;
  6025. int k = 256;
  6026. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. }
  6033. for (ggml_type type_a : other_types) {
  6034. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6035. for (int n_mats : {4}) {
  6036. for (int n_used : {2}) {
  6037. for (bool b : {false}) {
  6038. for (int n : {1, 32}) {
  6039. int m = 512;
  6040. int k = 256;
  6041. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6042. }
  6043. }
  6044. }
  6045. }
  6046. }
  6047. }
  6048. for (int bs : {1, 4, 512}) {
  6049. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6050. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6051. // test with mul after (ffn_moe_weighted)
  6052. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6053. }
  6054. }
  6055. }
  6056. for (ggml_type type_a : base_types) {
  6057. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6058. for (int n : {1, 16}) {
  6059. for (int k : {1, 16}) {
  6060. for (int bs2 : {1, 3}) {
  6061. for (int bs3 : {1, 3}) {
  6062. for (int nr2 : {1, 2}) {
  6063. for (int nr3 : {1, 2}) {
  6064. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6065. }
  6066. }
  6067. }
  6068. }
  6069. }
  6070. }
  6071. }
  6072. }
  6073. // add_id
  6074. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6075. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6076. for (int n_mats : {4, 8}) {
  6077. for (int n_used : {1, 2, 4}) {
  6078. for (int n_embd : {32, 129}) {
  6079. for (int n_token : {1, 32, 129}) {
  6080. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6081. }
  6082. }
  6083. }
  6084. }
  6085. }
  6086. }
  6087. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6088. test_cases.emplace_back(new test_sqr (type));
  6089. test_cases.emplace_back(new test_sqrt (type));
  6090. test_cases.emplace_back(new test_log (type));
  6091. test_cases.emplace_back(new test_sin (type));
  6092. test_cases.emplace_back(new test_cos (type));
  6093. test_cases.emplace_back(new test_clamp (type));
  6094. test_cases.emplace_back(new test_leaky_relu(type));
  6095. test_cases.emplace_back(new test_floor (type));
  6096. test_cases.emplace_back(new test_ceil (type));
  6097. test_cases.emplace_back(new test_round (type));
  6098. test_cases.emplace_back(new test_trunc (type));
  6099. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6100. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6101. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6102. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6103. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6104. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6105. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6106. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6107. test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
  6108. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6109. test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
  6110. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6111. test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
  6112. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6113. test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
  6114. }
  6115. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6116. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6117. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6118. #if 0
  6119. std::uniform_int_distribution<> dist_ne1(1, 50);
  6120. int exponent = 1;
  6121. while (exponent < (1 << 17)) {
  6122. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6123. for (int n = 0; n < 10; ++n) {
  6124. int64_t ne0 = dist_ne0(rng);
  6125. int64_t ne1 = dist_ne1(rng);
  6126. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6127. }
  6128. exponent <<= 1;
  6129. }
  6130. #endif
  6131. for (bool mask : {false, true}) {
  6132. for (bool sinks : {false, true}) {
  6133. for (float max_bias : {0.0f, 8.0f}) {
  6134. if (!mask && max_bias > 0.0f) continue;
  6135. for (float scale : {1.0f, 0.1f}) {
  6136. for (int64_t ne0 : {16, 1024}) {
  6137. for (int64_t ne1 : {16, 1024}) {
  6138. if (mask) {
  6139. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6140. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6141. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6142. if (ne0 <= 32 && ne1 <= 32) {
  6143. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6144. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6145. }
  6146. }
  6147. } else {
  6148. /* The precision of mask here doesn't matter as boolean mask is false */
  6149. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6150. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6151. }
  6152. }
  6153. }
  6154. }
  6155. }
  6156. // inplace tests
  6157. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6158. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6159. }
  6160. }
  6161. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6162. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6163. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6164. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6165. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6166. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6167. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6168. for (float max_bias : {0.0f, 8.0f}) {
  6169. for (float scale : {1.0f, 0.1f}) {
  6170. for (int64_t ne0 : {16, 1024}) {
  6171. for (int64_t ne1 : {16, 1024}) {
  6172. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6173. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6174. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6175. }
  6176. }
  6177. }
  6178. }
  6179. for (bool fw : {true, false}) { // fw == forward
  6180. bool all = true;
  6181. for (float fs : { 1.0f, 1.4245f }) {
  6182. for (float ef : { 0.0f, 0.7465f }) {
  6183. for (float af : { 1.0f, 1.4245f }) {
  6184. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6185. for (bool ff : {false, true}) { // freq_factors
  6186. for (float v : { 0, 1 }) {
  6187. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6188. if (all) {
  6189. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6190. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6191. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6192. }
  6193. if (all) {
  6194. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6195. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6196. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6197. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6198. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6199. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6200. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6201. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6202. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6203. }
  6204. if (all) {
  6205. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6206. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6207. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6208. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6209. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6210. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6211. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6212. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6213. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6214. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6215. }
  6216. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6217. }
  6218. }
  6219. all = false;
  6220. }
  6221. }
  6222. }
  6223. }
  6224. }
  6225. // single inplace test per type/mode/ff
  6226. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6227. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6228. for (bool ff : {false, true}) {
  6229. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6230. }
  6231. }
  6232. }
  6233. for (int v : { 0, 1, 2, 3 }) {
  6234. for (int dim : { 0, 1, 2, 3, }) {
  6235. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6236. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6237. }
  6238. }
  6239. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6240. for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
  6241. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
  6242. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
  6243. }
  6244. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6245. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6246. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6247. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6248. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6249. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6250. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6251. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6252. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6253. }
  6254. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6255. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6256. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6257. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6258. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6259. }
  6260. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6261. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6262. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6263. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6264. }
  6265. test_cases.emplace_back(new test_sum());
  6266. test_cases.emplace_back(new test_sum_rows());
  6267. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6268. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6269. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6270. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6271. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6272. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6273. test_cases.emplace_back(new test_mean());
  6274. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6275. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6276. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6277. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6278. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6279. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6280. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6281. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6282. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6283. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6284. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6285. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6286. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6287. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6288. test_cases.emplace_back(new test_acc());
  6289. test_cases.emplace_back(new test_pad());
  6290. test_cases.emplace_back(new test_pad_ext());
  6291. test_cases.emplace_back(new test_pad_reflect_1d());
  6292. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6293. test_cases.emplace_back(new test_roll());
  6294. test_cases.emplace_back(new test_arange());
  6295. test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
  6296. test_cases.emplace_back(new test_timestep_embedding());
  6297. test_cases.emplace_back(new test_leaky_relu());
  6298. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6299. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6300. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6301. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6302. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6303. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6304. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6305. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6306. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6307. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6308. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6309. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6310. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6311. test_cases.emplace_back(new test_xielu());
  6312. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6313. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6314. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6315. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6316. test_cases.emplace_back(new test_fill(0.0f));
  6317. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6318. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6319. test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
  6320. test_cases.emplace_back(new test_solve_tri());
  6321. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6322. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6323. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6324. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6325. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6326. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6327. for (bool v : {false, true}) {
  6328. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6329. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6330. }
  6331. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6332. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6333. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6334. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6335. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6336. for (bool mask : { true, false } ) {
  6337. for (bool sinks : { true, false } ) {
  6338. for (float max_bias : { 0.0f, 8.0f }) {
  6339. if (!mask && max_bias > 0.0f) continue;
  6340. for (float logit_softcap : {0.0f, 10.0f}) {
  6341. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6342. for (int nh : { 4, }) {
  6343. for (int nr3 : { 1, 3, }) {
  6344. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6345. for (int nr2 : { 1, 4, 16 }) {
  6346. if (nr2 == 16 && hsk != 128) continue;
  6347. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6348. for (int kv : { 113, 512, 1024, }) {
  6349. if (nr2 != 1 && kv != 512) continue;
  6350. for (int nb : { 1, 3, 32, 35, }) {
  6351. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6352. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6353. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6354. test_cases.emplace_back(new test_flash_attn_ext(
  6355. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6356. // run fewer test cases permuted
  6357. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6358. test_cases.emplace_back(new test_flash_attn_ext(
  6359. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6360. }
  6361. }
  6362. }
  6363. }
  6364. }
  6365. }
  6366. }
  6367. }
  6368. }
  6369. }
  6370. }
  6371. }
  6372. }
  6373. }
  6374. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6375. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6376. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6377. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6378. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6379. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6380. for (ggml_type type : base_types) {
  6381. for (bool with_gate : {false, true}) {
  6382. for (bool use_id : {false, true}) {
  6383. for (bool b : {false, true}) {
  6384. if (!use_id && b) {
  6385. continue;
  6386. }
  6387. for (bool with_bias : {false, true}) {
  6388. if (!with_gate && !with_bias) {
  6389. continue;
  6390. }
  6391. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6392. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6393. continue;
  6394. }
  6395. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6396. continue;
  6397. }
  6398. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6399. use_id, 16, 8, b, with_bias, with_gate));
  6400. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6401. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6402. }
  6403. }
  6404. }
  6405. }
  6406. }
  6407. }
  6408. for (bool with_norm : {false, true}) {
  6409. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6410. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6411. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6412. }
  6413. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6414. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6415. #if 0
  6416. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6417. test_cases.emplace_back(new test_llama(2, true));
  6418. test_cases.emplace_back(new test_llama(1));
  6419. test_cases.emplace_back(new test_llama(2));
  6420. test_cases.emplace_back(new test_falcon(1));
  6421. test_cases.emplace_back(new test_falcon(2));
  6422. #endif
  6423. return test_cases;
  6424. }
  6425. // Test cases for performance evaluation: should be representative of real-world use cases
  6426. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6427. std::vector<std::unique_ptr<test_case>> test_cases;
  6428. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6429. uint32_t iwh_idx = 0;
  6430. uint32_t kwh_idx = 1;
  6431. uint32_t Cout_idx = 2;
  6432. uint32_t Cin_idx = 3;
  6433. uint32_t B_idx = 4;
  6434. std::vector<std::array<int, 5>> cases = {
  6435. //{IWH, KWH, Cout, Cin, B}
  6436. // K=CRS=NPQ=4096 conv2d matmul performance
  6437. {19, 4, 4096, 256, 16},
  6438. // K=128, CRS=128, NPQ=4096
  6439. { 19, 4, 128, 8, 16},
  6440. // K=130, CRS=128, NPQ=4096
  6441. { 19, 4, 130, 8, 16},
  6442. // Edge case: K x CRS is small
  6443. { 19, 2, 4, 4, 16},
  6444. // A ConvNet's first layer
  6445. { 224, 3, 8, 3, 1 },
  6446. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6447. { 224, 2, 8, 1, 1 },
  6448. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6449. { 224, 2, 8, 1, 8 },
  6450. // A middle layer of a ConvNet
  6451. { 58, 3, 64, 32, 1 },
  6452. // A middle layer of a ConvNet, several images in the batch
  6453. { 58, 3, 64, 32, 8 },
  6454. // A deep layer of a ConvNet, several images in the batch
  6455. { 16, 3, 512, 128, 8 },
  6456. };
  6457. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6458. for (auto act_case : cases) {
  6459. // Direct CONV_2D
  6460. test_cases.emplace_back(new test_conv_2d(
  6461. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6462. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6463. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6464. }
  6465. }
  6466. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6467. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6468. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6469. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6470. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6471. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6472. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6473. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6474. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6475. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6476. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6477. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6478. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6479. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6480. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6481. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6482. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6483. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6484. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6485. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6486. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6487. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6488. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6489. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6490. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6491. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6492. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6493. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6494. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6495. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6496. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6497. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6498. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6499. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6500. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6501. for (ggml_type type_a : all_types) {
  6502. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6503. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6504. }
  6505. }
  6506. }
  6507. // qwen3-30b-a3b
  6508. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6509. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6510. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6511. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
  6512. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6513. }
  6514. }
  6515. }
  6516. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6517. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6518. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6519. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
  6520. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6521. }
  6522. }
  6523. }
  6524. // gpt-oss-20b
  6525. for (int bs : {1, 4, 8, 512}) {
  6526. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6527. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6528. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
  6529. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6530. }
  6531. }
  6532. }
  6533. for (int K : {3, 5}) {
  6534. for (int IC : {256, 2560}) {
  6535. for (int IW_IH : {32, 64, 256}) {
  6536. if (IC == 2560 && IW_IH == 256) {
  6537. // too big
  6538. continue;
  6539. }
  6540. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6541. }
  6542. }
  6543. }
  6544. for (int kv : { 4096, 8192, 16384, }) {
  6545. for (int hs : { 64, 128, }) {
  6546. for (int nr : { 1, 4, }) {
  6547. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6548. }
  6549. }
  6550. }
  6551. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6552. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6553. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6554. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6555. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6556. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6557. for (int n_token : {1, 512}) {
  6558. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6559. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6560. }
  6561. for (bool fw : {true, false}) { // fw == forward
  6562. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6563. for (bool ff : {false, true}) { // freq_factors
  6564. for (float v : { 0, 1 }) {
  6565. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  6566. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  6567. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  6568. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  6569. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6570. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6571. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6572. }
  6573. }
  6574. }
  6575. }
  6576. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6577. { 8192, 1, 1, 1 },
  6578. { 8192, 8192, 1, 1 },
  6579. { 128, 8192, 1, 1 },
  6580. };
  6581. for (auto it: reduce_rows_cases){
  6582. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6583. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6584. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6585. }
  6586. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  6587. return test_cases;
  6588. }
  6589. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6590. printer * output_printer) {
  6591. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6592. if (params_filter == nullptr) {
  6593. return;
  6594. }
  6595. std::regex params_filter_regex(params_filter);
  6596. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6597. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6598. it = test_cases.erase(it);
  6599. continue;
  6600. }
  6601. it++;
  6602. }
  6603. };
  6604. if (mode == MODE_TEST) {
  6605. auto test_cases = make_test_cases_eval();
  6606. filter_test_cases(test_cases, params_filter);
  6607. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6608. if (backend_cpu == NULL) {
  6609. test_operation_info info("", "", "CPU");
  6610. info.set_error("backend", "Failed to initialize CPU backend");
  6611. output_printer->print_operation(info);
  6612. return false;
  6613. }
  6614. size_t n_ok = 0;
  6615. size_t tests_run = 0;
  6616. std::vector<std::string> failed_tests;
  6617. for (auto & test : test_cases) {
  6618. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6619. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6620. continue;
  6621. }
  6622. tests_run++;
  6623. if (status == test_status_t::OK) {
  6624. n_ok++;
  6625. } else if (status == test_status_t::FAIL) {
  6626. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6627. }
  6628. }
  6629. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6630. output_printer->print_failed_tests(failed_tests);
  6631. ggml_backend_free(backend_cpu);
  6632. return n_ok == tests_run;
  6633. }
  6634. if (mode == MODE_GRAD) {
  6635. auto test_cases = make_test_cases_eval();
  6636. filter_test_cases(test_cases, params_filter);
  6637. size_t n_ok = 0;
  6638. for (auto & test : test_cases) {
  6639. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6640. n_ok++;
  6641. }
  6642. }
  6643. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6644. return n_ok == test_cases.size();
  6645. }
  6646. if (mode == MODE_PERF) {
  6647. auto test_cases = make_test_cases_perf();
  6648. filter_test_cases(test_cases, params_filter);
  6649. for (auto & test : test_cases) {
  6650. test->eval_perf(backend, op_names_filter, output_printer);
  6651. }
  6652. return true;
  6653. }
  6654. if (mode == MODE_SUPPORT) {
  6655. auto test_cases = make_test_cases_eval();
  6656. filter_test_cases(test_cases, params_filter);
  6657. // Filter out fusion cases
  6658. test_cases.erase(
  6659. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6660. return tc->run_whole_graph();
  6661. }),
  6662. test_cases.end()
  6663. );
  6664. for (auto & test : test_cases) {
  6665. test->eval_support(backend, op_names_filter, output_printer);
  6666. }
  6667. return true;
  6668. }
  6669. GGML_ABORT("fatal error");
  6670. }
  6671. static void list_all_ops() {
  6672. printf("GGML operations:\n");
  6673. std::set<std::string> all_ops;
  6674. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6675. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6676. }
  6677. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6678. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6679. }
  6680. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6681. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6682. }
  6683. for (const auto & op : all_ops) {
  6684. printf(" %s\n", op.c_str());
  6685. }
  6686. printf("\nTotal: %zu operations\n", all_ops.size());
  6687. }
  6688. static void show_test_coverage() {
  6689. std::set<std::string> all_ops;
  6690. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6691. auto op = (enum ggml_op)i;
  6692. if (op == GGML_OP_VIEW ||
  6693. op == GGML_OP_RESHAPE ||
  6694. op == GGML_OP_PERMUTE ||
  6695. op == GGML_OP_TRANSPOSE ||
  6696. op == GGML_OP_CONT ||
  6697. op == GGML_OP_GLU ||
  6698. op == GGML_OP_UNARY) {
  6699. continue;
  6700. }
  6701. all_ops.insert(ggml_op_name(op));
  6702. }
  6703. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6704. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6705. }
  6706. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6707. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6708. }
  6709. auto test_cases = make_test_cases_eval();
  6710. // Filter out fusion cases
  6711. test_cases.erase(
  6712. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6713. return tc->run_whole_graph();
  6714. }),
  6715. test_cases.end()
  6716. );
  6717. std::set<std::string> tested_ops;
  6718. ggml_init_params params = {
  6719. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6720. /* .mem_base = */ NULL,
  6721. /* .no_alloc = */ true,
  6722. };
  6723. for (auto & test_case : test_cases) {
  6724. ggml_context * ctx = ggml_init(params);
  6725. if (ctx) {
  6726. test_case->mode = MODE_TEST;
  6727. ggml_tensor * out = test_case->build_graph(ctx);
  6728. if (out && out->op != GGML_OP_NONE) {
  6729. if (out->op == GGML_OP_UNARY) {
  6730. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6731. } else if (out->op == GGML_OP_GLU) {
  6732. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6733. } else {
  6734. tested_ops.insert(ggml_op_name(out->op));
  6735. }
  6736. }
  6737. ggml_free(ctx);
  6738. }
  6739. }
  6740. std::set<std::string> covered_ops;
  6741. std::set<std::string> uncovered_ops;
  6742. for (const auto & op : all_ops) {
  6743. if (tested_ops.count(op) > 0) {
  6744. covered_ops.insert(op);
  6745. } else {
  6746. uncovered_ops.insert(op);
  6747. }
  6748. }
  6749. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6750. for (const auto & op : covered_ops) {
  6751. printf(" ✓ %s\n", op.c_str());
  6752. }
  6753. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6754. for (const auto & op : uncovered_ops) {
  6755. printf(" ✗ %s\n", op.c_str());
  6756. }
  6757. printf("\nCoverage Summary:\n");
  6758. printf(" Total operations: %zu\n", all_ops.size());
  6759. printf(" Tested operations: %zu\n", covered_ops.size());
  6760. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6761. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6762. }
  6763. static void usage(char ** argv) {
  6764. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6765. printf(" valid modes:\n");
  6766. printf(" - test (default, compare with CPU backend for correctness)\n");
  6767. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6768. printf(" - perf (performance evaluation)\n");
  6769. printf(" - support (probe backend operation support)\n");
  6770. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6771. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6772. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6773. printf(" --list-ops lists all available GGML operations\n");
  6774. printf(" --show-coverage shows test coverage\n");
  6775. }
  6776. int main(int argc, char ** argv) {
  6777. test_mode mode = MODE_TEST;
  6778. output_formats output_format = CONSOLE;
  6779. const char * op_names_filter = nullptr;
  6780. const char * backend_filter = nullptr;
  6781. const char * params_filter = nullptr;
  6782. for (int i = 1; i < argc; i++) {
  6783. if (strcmp(argv[i], "test") == 0) {
  6784. mode = MODE_TEST;
  6785. } else if (strcmp(argv[i], "perf") == 0) {
  6786. mode = MODE_PERF;
  6787. } else if (strcmp(argv[i], "grad") == 0) {
  6788. mode = MODE_GRAD;
  6789. } else if (strcmp(argv[i], "support") == 0) {
  6790. mode = MODE_SUPPORT;
  6791. } else if (strcmp(argv[i], "-o") == 0) {
  6792. if (i + 1 < argc) {
  6793. op_names_filter = argv[++i];
  6794. } else {
  6795. usage(argv);
  6796. return 1;
  6797. }
  6798. } else if (strcmp(argv[i], "-b") == 0) {
  6799. if (i + 1 < argc) {
  6800. backend_filter = argv[++i];
  6801. } else {
  6802. usage(argv);
  6803. return 1;
  6804. }
  6805. } else if (strcmp(argv[i], "-p") == 0) {
  6806. if (i + 1 < argc) {
  6807. params_filter = argv[++i];
  6808. } else {
  6809. usage(argv);
  6810. return 1;
  6811. }
  6812. } else if (strcmp(argv[i], "--output") == 0) {
  6813. if (i + 1 < argc) {
  6814. if (!output_format_from_str(argv[++i], output_format)) {
  6815. usage(argv);
  6816. return 1;
  6817. }
  6818. } else {
  6819. usage(argv);
  6820. return 1;
  6821. }
  6822. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6823. list_all_ops();
  6824. return 0;
  6825. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6826. show_test_coverage();
  6827. return 0;
  6828. } else {
  6829. usage(argv);
  6830. return 1;
  6831. }
  6832. }
  6833. // load and enumerate backends
  6834. ggml_backend_load_all();
  6835. // Create printer for output format
  6836. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6837. if (output_printer) {
  6838. output_printer->print_header();
  6839. }
  6840. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6841. size_t n_ok = 0;
  6842. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6843. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6844. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6845. output_printer->print_backend_init(
  6846. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6847. n_ok++;
  6848. continue;
  6849. }
  6850. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6851. output_printer->print_backend_init(backend_init_info(
  6852. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6853. n_ok++;
  6854. continue;
  6855. }
  6856. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6857. GGML_ASSERT(backend != NULL);
  6858. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6859. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6860. if (ggml_backend_set_n_threads_fn) {
  6861. // TODO: better value for n_threads
  6862. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6863. }
  6864. size_t free, total; // NOLINT
  6865. ggml_backend_dev_memory(dev, &free, &total);
  6866. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6867. false, "", ggml_backend_dev_description(dev),
  6868. total / 1024 / 1024, free / 1024 / 1024, true));
  6869. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6870. if (ok) {
  6871. n_ok++;
  6872. }
  6873. output_printer->print_backend_status(
  6874. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6875. ggml_backend_free(backend);
  6876. }
  6877. ggml_quantize_free();
  6878. if (output_printer) {
  6879. output_printer->print_footer();
  6880. }
  6881. output_printer->print_overall_summary(
  6882. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6883. if (n_ok != ggml_backend_dev_count()) {
  6884. return 1;
  6885. }
  6886. return 0;
  6887. }