test-backend-ops.cpp 322 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. #include <unordered_map>
  38. #ifdef __EMSCRIPTEN__
  39. # define N_THREADS 1
  40. #else
  41. # define N_THREADS std::thread::hardware_concurrency()
  42. #endif
  43. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  44. size_t nels = ggml_nelements(tensor);
  45. std::vector<float> data(nels);
  46. {
  47. // parallel initialization
  48. static const size_t n_threads = N_THREADS;
  49. // static RNG initialization (revisit if n_threads stops being constant)
  50. static std::vector<std::default_random_engine> generators = []() {
  51. std::random_device rd;
  52. std::vector<std::default_random_engine> vec;
  53. vec.reserve(n_threads);
  54. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  55. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  56. return vec;
  57. }();
  58. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  59. std::uniform_real_distribution<float> distribution(min, max);
  60. auto & gen = generators[ith];
  61. for (size_t i = start; i < end; i++) {
  62. data[i] = distribution(gen);
  63. }
  64. };
  65. if (n_threads == 1) {
  66. init_thread(0, 0, nels);
  67. } else {
  68. std::vector<std::future<void>> tasks;
  69. tasks.reserve(n_threads);
  70. for (size_t i = 0; i < n_threads; i++) {
  71. size_t start = i*nels/n_threads;
  72. size_t end = (i+1)*nels/n_threads;
  73. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  74. }
  75. for (auto & t : tasks) {
  76. t.get();
  77. }
  78. }
  79. }
  80. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  81. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  82. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  83. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  84. // dummy importance matrix
  85. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  86. const float * im = imatrix.data();
  87. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  88. // when the imatrix is optional, we want to test both quantization with and without imatrix
  89. // use one of the random numbers to decide
  90. if (data[0] > 0.5f*(min + max)) {
  91. im = nullptr;
  92. }
  93. }
  94. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  95. {
  96. // parallel quantization by block
  97. size_t blck_size = ggml_blck_size(tensor->type);
  98. size_t n_blocks = nels / blck_size;
  99. auto quantize_thread = [&](size_t start, size_t end) {
  100. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  101. start * blck_size, end - start, blck_size, im);
  102. };
  103. const size_t min_blocks_per_thread = 1;
  104. const size_t n_quant_threads = std::min<size_t>(std::max<size_t>(N_THREADS/2, 1),
  105. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  106. if (n_quant_threads == 1) {
  107. // single-threaded quantization: do all blocks in the current thread
  108. quantize_thread(0, n_blocks);
  109. } else {
  110. std::vector<std::future<void>> tasks;
  111. tasks.reserve(n_quant_threads);
  112. for (size_t i = 0; i < n_quant_threads; i++) {
  113. size_t start = i*n_blocks/n_quant_threads;
  114. size_t end = (i+1)*n_blocks/n_quant_threads;
  115. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  116. }
  117. for (auto & t : tasks) {
  118. t.get();
  119. }
  120. }
  121. }
  122. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  123. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  124. // This is going to create some weird integers though.
  125. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  126. } else if (tensor->type == GGML_TYPE_I64) {
  127. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  128. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  129. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  130. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  131. } else {
  132. GGML_ABORT("fatal error");
  133. }
  134. }
  135. // generate an F16 mask where certain blocks are randomly masked with -INF value
  136. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  137. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  138. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  139. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  140. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  141. std::random_device rd;
  142. std::mt19937 gen(rd());
  143. std::uniform_real_distribution<float> dis(min, max);
  144. for (size_t i = 0; i < data_f32.size(); i++) {
  145. data_f32[i] = dis(gen);
  146. }
  147. // block size
  148. const int blck0 = 128;
  149. const int blck1 = 64;
  150. // number of INF blocks
  151. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  152. for (int b = 0; b < n_inf_blocks; b++) {
  153. const int p3 = (rd() % ne3);
  154. const int p2 = (rd() % ne2);
  155. const int p1 = (rd() % ne1);
  156. const int p0 = (rd() % ne0);
  157. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  158. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  159. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  160. data_f32[idx + i0] = -INFINITY;
  161. }
  162. }
  163. }
  164. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  165. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  166. }
  167. // generate a lower triangular matrix
  168. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  169. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  170. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  171. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  172. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  173. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  174. std::random_device rd;
  175. std::mt19937 gen(rd());
  176. std::uniform_real_distribution<float> dis(min, max);
  177. for (int64_t i3 = 0; i3 < ne3; i3++) {
  178. for (int64_t i2 = 0; i2 < ne2; i2++) {
  179. for (int64_t i1 = 0; i1 < ne1; i1++) {
  180. for (int64_t i0 = 0; i0 < ne0; i0++) {
  181. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  182. if (i0 <= i1) {
  183. data_f32[idx] = dis(gen);
  184. } else {
  185. data_f32[idx] = 0.0f;
  186. }
  187. }
  188. }
  189. }
  190. }
  191. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  192. }
  193. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  194. std::vector<float> tv;
  195. tv.reserve(ggml_nelements(t));
  196. std::vector<uint8_t> buf(ggml_nbytes(t));
  197. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  198. const auto * tt = ggml_get_type_traits(t->type);
  199. size_t bs = ggml_blck_size(t->type);
  200. std::vector<float> vq(ggml_blck_size(t->type));
  201. bool quantized = ggml_is_quantized(t->type);
  202. // access elements by index to avoid gaps in views
  203. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  204. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  205. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  206. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  207. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  208. if (t->type == GGML_TYPE_F16) {
  209. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  210. } else if (t->type == GGML_TYPE_BF16) {
  211. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  212. } else if (t->type == GGML_TYPE_F32) {
  213. tv.push_back(*(float *) &buf[i]);
  214. } else if (t->type == GGML_TYPE_I64) {
  215. tv.push_back((float)*(int64_t *) &buf[i]);
  216. } else if (t->type == GGML_TYPE_I32) {
  217. tv.push_back((float)*(int32_t *) &buf[i]);
  218. } else if (t->type == GGML_TYPE_I16) {
  219. tv.push_back((float)*(int16_t *) &buf[i]);
  220. } else if (t->type == GGML_TYPE_I8) {
  221. tv.push_back((float)*(int8_t *) &buf[i]);
  222. } else if (quantized) {
  223. tt->to_float(&buf[i], vq.data(), bs);
  224. tv.insert(tv.end(), vq.begin(), vq.end());
  225. } else {
  226. GGML_ABORT("fatal error");
  227. }
  228. }
  229. }
  230. }
  231. }
  232. return tv;
  233. }
  234. // normalized mean squared error = mse(a, b) / mse(a, 0)
  235. static double nmse(const float * a, const float * b, size_t n) {
  236. double mse_a_b = 0.0;
  237. double mse_a_0 = 0.0;
  238. for (size_t i = 0; i < n; i++) {
  239. float a_i = a[i];
  240. float b_i = b[i];
  241. mse_a_b += (a_i - b_i) * (a_i - b_i);
  242. mse_a_0 += a_i * a_i;
  243. }
  244. return mse_a_b / mse_a_0;
  245. }
  246. // difference between 2 integer sets (Jaccard distance, 0 - no difference, 1 - no overlap)
  247. static double jdst(const int32_t * a, const int32_t * b, size_t n) {
  248. std::unordered_map<int32_t, size_t> set_a;
  249. std::unordered_map<int32_t, size_t> set_b;
  250. for (size_t i = 0; i < n; ++i) {
  251. set_a[a[i]]++;
  252. set_b[b[i]]++;
  253. }
  254. size_t diff = 0;
  255. for (const auto & p : set_a) {
  256. const int64_t na = p.second;
  257. const int64_t nb = set_b.find(p.first) != set_b.end() ? set_b.at(p.first) : 0;
  258. diff += std::abs(na - nb);
  259. }
  260. for (const auto & p : set_b) {
  261. if (set_a.find(p.first) == set_a.end()) {
  262. diff += p.second;
  263. }
  264. }
  265. return (double) diff / (2*n);
  266. }
  267. // maximum absolute asymmetry between a and b
  268. // asymmetry: (a - b) / (a + b)
  269. // This is more stable than relative error if one of the values fluctuates towards zero.
  270. // n: number of values to compare.
  271. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  272. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  273. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  274. double sum = 0.0f;
  275. size_t nvalid = 0;
  276. for (size_t i = 0; i < n; i++) {
  277. if (!expected_vals.empty()) {
  278. bool matches_any = false;
  279. for (const float & ev : expected_vals) {
  280. if (fabsf(a[i] - ev) < 1e-3f) {
  281. matches_any = true;
  282. break;
  283. }
  284. }
  285. if (!matches_any) {
  286. continue;
  287. }
  288. }
  289. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  290. sum += fabsf(asymm);
  291. nvalid++;
  292. }
  293. return sum/nvalid;
  294. }
  295. // utils for printing the variables of the test cases
  296. static std::string var_to_str(const std::string & x) {
  297. return x;
  298. }
  299. template<typename T>
  300. static std::string var_to_str(const T & x) {
  301. return std::to_string(x);
  302. }
  303. template<typename T, size_t N>
  304. static std::string var_to_str(const T (&x)[N]) {
  305. std::string s = "[";
  306. for (size_t i = 0; i < N; i++) {
  307. if (i > 0) {
  308. s += ",";
  309. }
  310. s += var_to_str(x[i]);
  311. }
  312. s += "]";
  313. return s;
  314. }
  315. template<typename T, size_t N>
  316. static std::string var_to_str(const std::array<T, N> & x) {
  317. std::string s = "[";
  318. for (size_t i = 0; i < N; i++) {
  319. if (i > 0) {
  320. s += ",";
  321. }
  322. s += var_to_str(x[i]);
  323. }
  324. s += "]";
  325. return s;
  326. }
  327. static std::string var_to_str(ggml_type type) {
  328. return ggml_type_name(type);
  329. }
  330. static std::string var_to_str(ggml_prec prec) {
  331. return prec == GGML_PREC_F32 ? "f32" : "def";
  332. }
  333. static std::string var_to_str(ggml_op_pool pool) {
  334. switch (pool) {
  335. case GGML_OP_POOL_AVG: return "avg";
  336. case GGML_OP_POOL_MAX: return "max";
  337. default: return std::to_string(pool);
  338. }
  339. }
  340. static std::string var_to_str(ggml_scale_mode mode) {
  341. switch (mode) {
  342. case GGML_SCALE_MODE_NEAREST: return "nearest";
  343. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  344. case GGML_SCALE_MODE_BICUBIC: return "bicubic";
  345. default: return std::to_string(mode);
  346. }
  347. }
  348. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  349. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  350. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  351. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  352. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  353. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  354. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  355. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  356. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  357. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  358. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  359. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  360. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  361. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  362. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  363. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  364. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  365. #ifdef GGML_USE_SYCL
  366. static bool inline _isinf(float f) {
  367. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  368. }
  369. #else
  370. static bool inline _isinf(float f) { return std::isinf(f); }
  371. #endif
  372. // accept FLT_MAX as infinity
  373. static bool isinf_or_max(float f) {
  374. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  375. }
  376. static bool ggml_is_view_op(enum ggml_op op) {
  377. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  378. }
  379. enum test_mode {
  380. MODE_TEST,
  381. MODE_PERF,
  382. MODE_GRAD,
  383. MODE_SUPPORT,
  384. };
  385. // Output format support similar to llama-bench
  386. enum output_formats { CONSOLE, SQL, CSV };
  387. static const char * output_format_str(output_formats format) {
  388. switch (format) {
  389. case CONSOLE:
  390. return "console";
  391. case SQL:
  392. return "sql";
  393. case CSV:
  394. return "csv";
  395. default:
  396. GGML_ABORT("invalid output format");
  397. }
  398. }
  399. static bool output_format_from_str(const std::string & s, output_formats & format) {
  400. if (s == "console") {
  401. format = CONSOLE;
  402. } else if (s == "sql") {
  403. format = SQL;
  404. } else if (s == "csv") {
  405. format = CSV;
  406. } else {
  407. return false;
  408. }
  409. return true;
  410. }
  411. // Test result structure for SQL output
  412. struct test_result {
  413. std::string test_time;
  414. std::string build_commit;
  415. std::string backend_name;
  416. std::string op_name;
  417. std::string op_params;
  418. std::string test_mode;
  419. bool supported;
  420. bool passed;
  421. std::string error_message;
  422. double time_us;
  423. double flops;
  424. double bandwidth_gb_s;
  425. size_t memory_kb;
  426. int n_runs;
  427. std::string device_description;
  428. std::string backend_reg_name;
  429. test_result() {
  430. // Initialize with default values
  431. time_us = 0.0;
  432. flops = 0.0;
  433. bandwidth_gb_s = 0.0;
  434. memory_kb = 0;
  435. n_runs = 0;
  436. supported = false;
  437. passed = false;
  438. // Set test time
  439. time_t t = time(NULL);
  440. char buf[32];
  441. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  442. test_time = buf;
  443. // Set build info
  444. build_commit = ggml_commit();
  445. }
  446. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  447. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  448. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  449. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  450. backend_name(backend_name),
  451. op_name(op_name),
  452. op_params(op_params),
  453. test_mode(test_mode),
  454. supported(supported),
  455. passed(passed),
  456. error_message(error_message),
  457. time_us(time_us),
  458. flops(flops),
  459. bandwidth_gb_s(bandwidth_gb_s),
  460. memory_kb(memory_kb),
  461. n_runs(n_runs),
  462. device_description(device_description),
  463. backend_reg_name(backend_reg_name) {
  464. // Set test time
  465. time_t t = time(NULL);
  466. char buf[32];
  467. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  468. test_time = buf;
  469. // Set build info
  470. build_commit = ggml_commit();
  471. }
  472. static const std::vector<std::string> & get_fields() {
  473. static const std::vector<std::string> fields = {
  474. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  475. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  476. "device_description", "backend_reg_name"
  477. };
  478. return fields;
  479. }
  480. enum field_type { STRING, BOOL, INT, FLOAT };
  481. static field_type get_field_type(const std::string & field) {
  482. if (field == "supported" || field == "passed") {
  483. return BOOL;
  484. }
  485. if (field == "memory_kb" || field == "n_runs") {
  486. return INT;
  487. }
  488. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  489. return FLOAT;
  490. }
  491. return STRING;
  492. }
  493. std::vector<std::string> get_values() const {
  494. return { test_time,
  495. build_commit,
  496. backend_name,
  497. op_name,
  498. op_params,
  499. test_mode,
  500. std::to_string(supported),
  501. std::to_string(passed),
  502. error_message,
  503. std::to_string(time_us),
  504. std::to_string(flops),
  505. std::to_string(bandwidth_gb_s),
  506. std::to_string(memory_kb),
  507. std::to_string(n_runs),
  508. device_description,
  509. backend_reg_name };
  510. }
  511. };
  512. // Printer classes for different output formats
  513. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  514. struct test_operation_info {
  515. std::string op_name;
  516. std::string op_params;
  517. std::string backend_name;
  518. test_status_t status = test_status_t::OK;
  519. std::string failure_reason;
  520. // Additional information fields that were previously in separate structs
  521. std::string error_component;
  522. std::string error_details;
  523. // Gradient info
  524. int64_t gradient_index = -1;
  525. std::string gradient_param_name;
  526. float gradient_value = 0.0f;
  527. // MAA error info
  528. double maa_error = 0.0;
  529. double maa_threshold = 0.0;
  530. // Flags for different types of information
  531. bool has_error = false;
  532. bool has_gradient_info = false;
  533. bool has_maa_error = false;
  534. bool is_compare_failure = false;
  535. bool is_large_tensor_skip = false;
  536. test_operation_info() = default;
  537. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  538. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  539. op_name(op_name),
  540. op_params(op_params),
  541. backend_name(backend_name),
  542. status(status),
  543. failure_reason(failure_reason) {}
  544. // Set error information
  545. void set_error(const std::string & component, const std::string & details) {
  546. has_error = true;
  547. error_component = component;
  548. error_details = details;
  549. if (status == test_status_t::OK) {
  550. status = test_status_t::FAIL;
  551. }
  552. }
  553. // Set gradient information
  554. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  555. has_gradient_info = true;
  556. gradient_index = index;
  557. gradient_param_name = param_name;
  558. gradient_value = value;
  559. if (status == test_status_t::OK) {
  560. status = test_status_t::FAIL;
  561. }
  562. }
  563. // Set MAA error information
  564. void set_maa_error(double error, double threshold) {
  565. has_maa_error = true;
  566. maa_error = error;
  567. maa_threshold = threshold;
  568. if (status == test_status_t::OK) {
  569. status = test_status_t::FAIL;
  570. }
  571. }
  572. // Set compare failure
  573. void set_compare_failure() {
  574. is_compare_failure = true;
  575. if (status == test_status_t::OK) {
  576. status = test_status_t::FAIL;
  577. }
  578. }
  579. // Set large tensor skip
  580. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  581. };
  582. struct test_summary_info {
  583. size_t tests_passed;
  584. size_t tests_total;
  585. bool is_backend_summary = false; // true for backend summary, false for test summary
  586. test_summary_info() = default;
  587. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  588. tests_passed(tests_passed),
  589. tests_total(tests_total),
  590. is_backend_summary(is_backend_summary) {}
  591. };
  592. struct testing_start_info {
  593. size_t device_count;
  594. testing_start_info() = default;
  595. testing_start_info(size_t device_count) : device_count(device_count) {}
  596. };
  597. struct backend_init_info {
  598. size_t device_index;
  599. size_t total_devices;
  600. std::string device_name;
  601. bool skipped = false;
  602. std::string skip_reason;
  603. std::string description;
  604. size_t memory_total_mb = 0;
  605. size_t memory_free_mb = 0;
  606. bool has_memory_info = false;
  607. backend_init_info() = default;
  608. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  609. const std::string & skip_reason = "", const std::string & description = "",
  610. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  611. device_index(device_index),
  612. total_devices(total_devices),
  613. device_name(device_name),
  614. skipped(skipped),
  615. skip_reason(skip_reason),
  616. description(description),
  617. memory_total_mb(memory_total_mb),
  618. memory_free_mb(memory_free_mb),
  619. has_memory_info(has_memory_info) {}
  620. };
  621. struct backend_status_info {
  622. std::string backend_name;
  623. test_status_t status;
  624. backend_status_info() = default;
  625. backend_status_info(const std::string & backend_name, test_status_t status) :
  626. backend_name(backend_name),
  627. status(status) {}
  628. };
  629. struct overall_summary_info {
  630. size_t backends_passed;
  631. size_t backends_total;
  632. bool all_passed;
  633. overall_summary_info() = default;
  634. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  635. backends_passed(backends_passed),
  636. backends_total(backends_total),
  637. all_passed(all_passed) {}
  638. };
  639. struct printer {
  640. virtual ~printer() {}
  641. FILE * fout = stdout;
  642. virtual void print_header() {}
  643. virtual void print_test_result(const test_result & result) = 0;
  644. virtual void print_footer() {}
  645. virtual void print_operation(const test_operation_info & info) { (void) info; }
  646. virtual void print_summary(const test_summary_info & info) { (void) info; }
  647. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  648. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  649. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  650. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  651. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  652. };
  653. struct console_printer : public printer {
  654. void print_test_result(const test_result & result) override {
  655. if (result.test_mode == "test") {
  656. print_test_console(result);
  657. } else if (result.test_mode == "perf") {
  658. print_perf_console(result);
  659. } else if (result.test_mode == "support") {
  660. print_support_console(result);
  661. }
  662. }
  663. void print_operation(const test_operation_info & info) override {
  664. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  665. fflush(stdout);
  666. // Handle large tensor skip first
  667. if (info.is_large_tensor_skip) {
  668. printf("skipping large tensors for speed \n");
  669. return;
  670. }
  671. // Handle not supported status
  672. if (info.status == test_status_t::NOT_SUPPORTED) {
  673. if (!info.failure_reason.empty()) {
  674. printf("not supported [%s]\n", info.failure_reason.c_str());
  675. } else {
  676. printf("not supported [%s]\n", info.backend_name.c_str());
  677. }
  678. return;
  679. }
  680. // Handle errors and additional information
  681. if (info.has_error) {
  682. if (info.error_component == "allocation") {
  683. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  684. } else if (info.error_component == "backend") {
  685. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  686. } else {
  687. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  688. }
  689. }
  690. // Handle gradient info
  691. if (info.has_gradient_info) {
  692. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  693. info.gradient_param_name.c_str(), info.gradient_value);
  694. }
  695. // Handle MAA error
  696. if (info.has_maa_error) {
  697. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  698. }
  699. // Handle compare failure
  700. if (info.is_compare_failure) {
  701. printf("compare failed ");
  702. }
  703. // Print final status
  704. if (info.status == test_status_t::OK) {
  705. printf("\033[1;32mOK\033[0m\n");
  706. } else {
  707. printf("\033[1;31mFAIL\033[0m\n");
  708. }
  709. }
  710. void print_summary(const test_summary_info & info) override {
  711. if (info.is_backend_summary) {
  712. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  713. } else {
  714. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  715. }
  716. }
  717. void print_backend_status(const backend_status_info & info) override {
  718. printf(" Backend %s: ", info.backend_name.c_str());
  719. if (info.status == test_status_t::OK) {
  720. printf("\033[1;32mOK\033[0m\n");
  721. } else {
  722. printf("\033[1;31mFAIL\033[0m\n");
  723. }
  724. }
  725. void print_testing_start(const testing_start_info & info) override {
  726. printf("Testing %zu devices\n\n", info.device_count);
  727. }
  728. void print_backend_init(const backend_init_info & info) override {
  729. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  730. if (info.skipped) {
  731. printf(" %s\n", info.skip_reason.c_str());
  732. return;
  733. }
  734. if (!info.description.empty()) {
  735. printf(" Device description: %s\n", info.description.c_str());
  736. }
  737. if (info.has_memory_info) {
  738. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  739. }
  740. printf("\n");
  741. }
  742. void print_overall_summary(const overall_summary_info & info) override {
  743. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  744. if (info.all_passed) {
  745. printf("\033[1;32mOK\033[0m\n");
  746. } else {
  747. printf("\033[1;31mFAIL\033[0m\n");
  748. }
  749. }
  750. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  751. if (failed_tests.empty()) {
  752. return;
  753. }
  754. printf("\nFailing tests:\n");
  755. for (const auto & test_name : failed_tests) {
  756. printf(" %s\n", test_name.c_str());
  757. }
  758. }
  759. private:
  760. void print_test_console(const test_result & result) {
  761. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  762. fflush(stdout);
  763. if (!result.supported) {
  764. printf("not supported [%s] ", result.backend_name.c_str());
  765. printf("\n");
  766. return;
  767. }
  768. if (result.passed) {
  769. printf("\033[1;32mOK\033[0m\n");
  770. } else {
  771. printf("\033[1;31mFAIL\033[0m\n");
  772. }
  773. }
  774. void print_perf_console(const test_result & result) {
  775. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  776. fflush(stdout);
  777. if (!result.supported) {
  778. printf("not supported\n");
  779. return;
  780. }
  781. // align while also leaving some margin for variations in parameters
  782. int align = 8;
  783. int last = (len + align - 1) / align * align;
  784. if (last - len < 5) {
  785. last += align;
  786. }
  787. printf("%*s", last - len, "");
  788. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  789. if (result.flops > 0) {
  790. auto format_flops = [](double flops) -> std::string {
  791. char buf[256];
  792. if (flops >= 1e12) {
  793. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  794. } else if (flops >= 1e9) {
  795. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  796. } else if (flops >= 1e6) {
  797. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  798. } else {
  799. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  800. }
  801. return buf;
  802. };
  803. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  804. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  805. format_flops(result.flops).c_str());
  806. } else {
  807. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  808. }
  809. printf("\n");
  810. }
  811. void print_support_console(const test_result & result) {
  812. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  813. fflush(stdout);
  814. if (result.supported) {
  815. printf("\033[1;32mSUPPORTED\033[0m\n");
  816. } else {
  817. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  818. }
  819. }
  820. };
  821. struct sql_printer : public printer {
  822. static std::string get_sql_field_type(const std::string & field) {
  823. switch (test_result::get_field_type(field)) {
  824. case test_result::STRING:
  825. return "TEXT";
  826. case test_result::BOOL:
  827. case test_result::INT:
  828. return "INTEGER";
  829. case test_result::FLOAT:
  830. return "REAL";
  831. default:
  832. GGML_ABORT("invalid field type");
  833. }
  834. }
  835. void print_header() override {
  836. std::vector<std::string> fields = test_result::get_fields();
  837. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  838. for (size_t i = 0; i < fields.size(); i++) {
  839. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  840. i < fields.size() - 1 ? "," : "");
  841. }
  842. fprintf(fout, ");\n\n");
  843. }
  844. void print_test_result(const test_result & result) override {
  845. fprintf(fout, "INSERT INTO test_backend_ops (");
  846. std::vector<std::string> fields = test_result::get_fields();
  847. for (size_t i = 0; i < fields.size(); i++) {
  848. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  849. }
  850. fprintf(fout, ") VALUES (");
  851. std::vector<std::string> values = result.get_values();
  852. for (size_t i = 0; i < values.size(); i++) {
  853. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  854. }
  855. fprintf(fout, ");\n");
  856. }
  857. };
  858. struct csv_printer : public printer {
  859. void print_header() override {
  860. std::vector<std::string> fields = test_result::get_fields();
  861. std::vector<std::string> fields_csv = get_fields_csv();
  862. for (size_t i = 0; i < fields.size(); i++) {
  863. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  864. continue;
  865. }
  866. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  867. }
  868. printf("\n");
  869. }
  870. void print_test_result(const test_result & result) override {
  871. std::vector<std::string> values = result.get_values();
  872. std::vector<std::string> fields = test_result::get_fields();
  873. std::vector<std::string> fields_csv = get_fields_csv();
  874. for (size_t i = 0; i < values.size(); i++) {
  875. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  876. continue;
  877. }
  878. // Escape quotes and wrap in quotes for CSV
  879. std::string escaped_value = values[i];
  880. size_t pos = 0;
  881. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  882. escaped_value.replace(pos, 1, "\"\"");
  883. pos += 2;
  884. }
  885. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  886. }
  887. printf("\n");
  888. }
  889. static std::vector<std::string> get_fields_csv() {
  890. return {
  891. "op_name",
  892. "op_params",
  893. "supported",
  894. "error_message",
  895. "test_mode",
  896. "backend_reg_name",
  897. "backend_name",
  898. };
  899. }
  900. };
  901. static std::unique_ptr<printer> create_printer(output_formats format) {
  902. switch (format) {
  903. case CONSOLE:
  904. return std::make_unique<console_printer>();
  905. case SQL:
  906. return std::make_unique<sql_printer>();
  907. case CSV:
  908. return std::make_unique<csv_printer>();
  909. }
  910. GGML_ABORT("invalid output format");
  911. }
  912. struct test_case {
  913. virtual ~test_case() {}
  914. virtual std::string op_desc(ggml_tensor * t) {
  915. return ggml_op_desc(t);
  916. }
  917. virtual std::string vars() {
  918. return "";
  919. }
  920. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  921. virtual double max_nmse_err() {
  922. return 1e-7;
  923. }
  924. virtual double max_maa_err() {
  925. return 1e-4;
  926. }
  927. virtual double max_err() {
  928. return max_nmse_err();
  929. }
  930. virtual double err(const float * a, const float * b, size_t n) {
  931. return nmse(a, b, n);
  932. }
  933. virtual float grad_eps() {
  934. return 1e-1f;
  935. }
  936. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  937. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  938. virtual bool grad_precise() {
  939. return false;
  940. }
  941. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  942. virtual int64_t grad_nmax() {
  943. return 10000;
  944. }
  945. // No effect if empty.
  946. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  947. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  948. virtual std::vector<float> grad_expect() {
  949. return {};
  950. }
  951. virtual void initialize_tensors(ggml_context * ctx) {
  952. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  953. init_tensor_uniform(t);
  954. }
  955. }
  956. virtual size_t op_size(ggml_tensor * t) {
  957. size_t size = ggml_nbytes(t);
  958. // add source tensors
  959. for (int i = 0; i < GGML_MAX_SRC; i++) {
  960. if (t->src[i] != NULL) {
  961. size += ggml_nbytes(t->src[i]);
  962. }
  963. }
  964. return size;
  965. }
  966. virtual uint64_t op_flops(ggml_tensor * t) {
  967. GGML_UNUSED(t);
  968. return 0;
  969. }
  970. virtual bool run_whole_graph() { return false; }
  971. ggml_cgraph * gf = nullptr;
  972. ggml_cgraph * gb = nullptr;
  973. static const int sentinel_size = 1024;
  974. test_mode mode;
  975. std::vector<ggml_tensor *> sentinels;
  976. std::string current_op_name;
  977. void add_sentinel(ggml_context * ctx) {
  978. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  979. return;
  980. }
  981. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  982. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  983. sentinels.push_back(sentinel);
  984. }
  985. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  986. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  987. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  988. add_sentinel(ctx);
  989. return t;
  990. }
  991. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  992. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  993. add_sentinel(ctx);
  994. return t;
  995. }
  996. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  997. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  998. add_sentinel(ctx);
  999. return t;
  1000. }
  1001. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  1002. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  1003. add_sentinel(ctx);
  1004. return t;
  1005. }
  1006. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  1007. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  1008. add_sentinel(ctx);
  1009. return t;
  1010. }
  1011. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  1012. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  1013. if (op_names_filter) {
  1014. const auto op_name = op_desc(op);
  1015. const auto op_full_name = op_name + "(" + vars() + ")";
  1016. std::string_view filter(op_names_filter);
  1017. while (!filter.empty()) {
  1018. auto comma_pos = filter.find_first_of(',');
  1019. const auto lparen_pos = filter.find_first_of('(');
  1020. if (lparen_pos < comma_pos) {
  1021. auto rparen_pos = filter.find_first_of(')');
  1022. comma_pos = filter.find_first_of(',', rparen_pos);
  1023. const auto op_filter = filter.substr(0, comma_pos);
  1024. if (op_filter == op_full_name) {
  1025. return true;
  1026. }
  1027. } else {
  1028. const auto op_filter = filter.substr(0, comma_pos);
  1029. if (op_filter == op_name) {
  1030. return true;
  1031. }
  1032. }
  1033. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  1034. }
  1035. return false;
  1036. } else {
  1037. return true;
  1038. }
  1039. }
  1040. test_status_t eval(ggml_backend_t backend1,
  1041. ggml_backend_t backend2,
  1042. const char * op_names_filter,
  1043. printer * output_printer) {
  1044. mode = MODE_TEST;
  1045. ggml_init_params params = {
  1046. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1047. /* .mem_base = */ NULL,
  1048. /* .no_alloc = */ true,
  1049. };
  1050. ggml_context * ctx = ggml_init(params);
  1051. GGML_ASSERT(ctx);
  1052. gf = ggml_new_graph(ctx);
  1053. // pre-graph sentinel
  1054. add_sentinel(ctx);
  1055. ggml_tensor * out = build_graph(ctx);
  1056. current_op_name = op_desc(out);
  1057. if (!matches_filter(out, op_names_filter)) {
  1058. //printf(" %s: skipping\n", op_desc(out).c_str());
  1059. ggml_free(ctx);
  1060. return test_status_t::SKIPPED;
  1061. }
  1062. // check if the backends support the ops
  1063. bool supported = true;
  1064. for (ggml_backend_t backend : {backend1, backend2}) {
  1065. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1066. if (!ggml_backend_supports_op(backend, t)) {
  1067. supported = false;
  1068. break;
  1069. }
  1070. }
  1071. }
  1072. if (!supported) {
  1073. // Create test result for unsupported operation
  1074. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1075. false, false, "not supported");
  1076. if (output_printer) {
  1077. output_printer->print_test_result(result);
  1078. }
  1079. ggml_free(ctx);
  1080. return test_status_t::NOT_SUPPORTED;
  1081. }
  1082. // post-graph sentinel
  1083. add_sentinel(ctx);
  1084. // allocate
  1085. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1086. if (buf == NULL) {
  1087. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1088. ggml_free(ctx);
  1089. return test_status_t::FAIL;
  1090. }
  1091. // build graph
  1092. ggml_build_forward_expand(gf, out);
  1093. // add sentinels as graph nodes so that they are checked in the callback
  1094. for (ggml_tensor * sentinel : sentinels) {
  1095. ggml_graph_add_node(gf, sentinel);
  1096. }
  1097. // randomize tensors
  1098. initialize_tensors(ctx);
  1099. // compare
  1100. struct callback_userdata {
  1101. bool ok;
  1102. test_case * tc;
  1103. ggml_backend_t backend1;
  1104. ggml_backend_t backend2;
  1105. };
  1106. callback_userdata ud {
  1107. true,
  1108. this,
  1109. backend1,
  1110. backend2,
  1111. };
  1112. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1113. callback_userdata * ud = (callback_userdata *) user_data;
  1114. const char * bn1 = ggml_backend_name(ud->backend1);
  1115. const char * bn2 = ggml_backend_name(ud->backend2);
  1116. if (t1->op == GGML_OP_NONE) {
  1117. // sentinels must be unchanged
  1118. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1119. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1120. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1121. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1122. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1123. printf("sentinel mismatch: %s ", t1->name);
  1124. ud->ok = false;
  1125. return true;
  1126. }
  1127. }
  1128. std::vector<float> f1 = tensor_to_float(t1);
  1129. std::vector<float> f2 = tensor_to_float(t2);
  1130. for (size_t i = 0; i < f1.size(); i++) {
  1131. // check for nans
  1132. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1133. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1134. ud->ok = false;
  1135. return true;
  1136. }
  1137. // check for infs: both must be inf of the same sign, or both must be finite
  1138. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1139. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1140. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1141. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1142. ud->ok = false;
  1143. return true;
  1144. }
  1145. } else {
  1146. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1147. ud->ok = false;
  1148. return true;
  1149. }
  1150. }
  1151. }
  1152. double err = ud->tc->err(f1.data(), f2.data(), f1.size());
  1153. if (err > ud->tc->max_err()) {
  1154. printf("[%s] ERR = %.9f > %.9f ", ggml_op_desc(t1), err, ud->tc->max_err());
  1155. //for (int i = 0; i < (int) f1.size(); i++) {
  1156. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1157. //}
  1158. //printf("\n");
  1159. //exit(1);
  1160. ud->ok = false;
  1161. }
  1162. return true;
  1163. GGML_UNUSED(index);
  1164. };
  1165. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1166. ggml_backend_buffer_free(buf);
  1167. ggml_free(ctx);
  1168. // Create test result
  1169. bool test_passed = ud.ok && cmp_ok;
  1170. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1171. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1172. error_msg);
  1173. if (output_printer) {
  1174. output_printer->print_test_result(result);
  1175. }
  1176. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1177. }
  1178. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1179. mode = MODE_PERF;
  1180. static const size_t graph_nodes = 8192;
  1181. ggml_init_params params = {
  1182. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1183. /* .mem_base = */ NULL,
  1184. /* .no_alloc = */ true,
  1185. };
  1186. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1187. GGML_ASSERT(ctx);
  1188. ggml_tensor * out = build_graph(ctx.get());
  1189. current_op_name = op_desc(out);
  1190. if (!matches_filter(out, op_names_filter)) {
  1191. //printf(" %s: skipping\n", op_desc(out).c_str());
  1192. return true;
  1193. }
  1194. if (!ggml_backend_supports_op(backend, out)) {
  1195. // Create test result for unsupported performance test
  1196. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1197. "not supported");
  1198. output_printer->print_test_result(result);
  1199. return true;
  1200. }
  1201. // allocate
  1202. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1203. if (buf == NULL) {
  1204. printf("failed to allocate tensors\n");
  1205. return false;
  1206. }
  1207. // randomize tensors
  1208. initialize_tensors(ctx.get());
  1209. // build graph
  1210. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1211. ggml_build_forward_expand(gf, out);
  1212. // warmup run
  1213. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1214. if (status != GGML_STATUS_SUCCESS) {
  1215. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1216. return false;
  1217. }
  1218. // determine number of runs
  1219. int n_runs;
  1220. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1221. if (op_flops(out) > 0) {
  1222. // based on flops
  1223. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1224. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1225. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1226. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1227. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1228. } else {
  1229. // based on memory size
  1230. const size_t GB = 1ULL << 30;
  1231. const size_t target_size_cpu = 8 * GB;
  1232. const size_t target_size_gpu = 32 * GB;
  1233. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1234. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1235. }
  1236. // duplicate the op
  1237. for (int i = 1; i < n_runs; i++) {
  1238. ggml_graph_add_node(gf, out);
  1239. }
  1240. // calculate memory
  1241. size_t mem = n_runs * op_size(out);
  1242. auto tensor_op_size = [](ggml_tensor * t) {
  1243. size_t size = ggml_nbytes(t);
  1244. // add source tensors
  1245. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1246. if (t->src[i] != NULL) {
  1247. size += ggml_nbytes(t->src[i]);
  1248. }
  1249. }
  1250. return size;
  1251. };
  1252. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1253. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1254. continue;
  1255. }
  1256. mem += tensor_op_size(ggml_graph_node(gf, i));
  1257. }
  1258. // run
  1259. int64_t total_time_us = 0;
  1260. int64_t total_mem = 0;
  1261. int total_runs = 0;
  1262. do {
  1263. int64_t start_time = ggml_time_us();
  1264. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1265. if (status != GGML_STATUS_SUCCESS) {
  1266. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1267. return false;
  1268. }
  1269. int64_t end_time = ggml_time_us();
  1270. total_time_us += end_time - start_time;
  1271. total_mem += mem;
  1272. total_runs += n_runs;
  1273. } while (total_time_us < 1000*1000); // run for at least 1 second
  1274. // Create test result
  1275. double avg_time_us = (double) total_time_us / total_runs;
  1276. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1277. double calculated_bandwidth =
  1278. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1279. size_t calculated_memory_kb = op_size(out) / 1024;
  1280. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1281. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1282. if (output_printer) {
  1283. output_printer->print_test_result(result);
  1284. }
  1285. return true;
  1286. }
  1287. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1288. mode = MODE_SUPPORT;
  1289. static const size_t graph_nodes = 8192;
  1290. ggml_init_params params = {
  1291. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1292. /* .mem_base = */ NULL,
  1293. /* .no_alloc = */ true,
  1294. };
  1295. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1296. GGML_ASSERT(ctx);
  1297. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1298. ggml_tensor * out = build_graph(ctx.get());
  1299. current_op_name = op_desc(out);
  1300. if (!matches_filter(out, op_names_filter)) {
  1301. return true;
  1302. }
  1303. bool supported = ggml_backend_supports_op(backend, out);
  1304. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1305. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1306. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1307. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1308. output_printer->print_test_result(result);
  1309. return true;
  1310. }
  1311. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1312. mode = MODE_GRAD;
  1313. const std::vector<float> expect = grad_expect();
  1314. ggml_init_params params = {
  1315. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1316. /* .mem_base = */ NULL,
  1317. /* .no_alloc = */ true,
  1318. };
  1319. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1320. GGML_ASSERT(ctx);
  1321. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1322. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1323. ggml_tensor * out = build_graph(ctx.get());
  1324. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1325. return true;
  1326. }
  1327. if (out->type != GGML_TYPE_F32) {
  1328. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1329. test_status_t::NOT_SUPPORTED,
  1330. out->name + std::string("->type != FP32")));
  1331. return true;
  1332. }
  1333. // Print operation info first
  1334. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1335. // check if the backend supports the ops
  1336. bool supported = true;
  1337. bool any_params = false;
  1338. std::string failure_reason;
  1339. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1340. if (!ggml_backend_supports_op(backend, t)) {
  1341. supported = false;
  1342. failure_reason = ggml_backend_name(backend);
  1343. break;
  1344. }
  1345. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1346. any_params = true;
  1347. if (t->type != GGML_TYPE_F32) {
  1348. supported = false;
  1349. failure_reason = std::string(t->name) + "->type != FP32";
  1350. break;
  1351. }
  1352. }
  1353. }
  1354. if (!any_params) {
  1355. supported = false;
  1356. failure_reason = op_desc(out);
  1357. }
  1358. if (!supported) {
  1359. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1360. test_status_t::NOT_SUPPORTED, failure_reason));
  1361. return true;
  1362. }
  1363. int64_t ngrads = 0;
  1364. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1365. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1366. ngrads += ggml_nelements(t);
  1367. }
  1368. }
  1369. if (ngrads > grad_nmax()) {
  1370. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1371. info.set_large_tensor_skip();
  1372. output_printer->print_operation(info);
  1373. return true;
  1374. }
  1375. if (!ggml_is_scalar(out)) {
  1376. out = ggml_sum(ctx.get(), out);
  1377. ggml_set_name(out, "sum_of_out");
  1378. }
  1379. ggml_set_loss(out);
  1380. ggml_build_forward_expand(gf, out);
  1381. ggml_graph_cpy(gf, gb);
  1382. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1383. if (expect.size() != 1 || expect[0] != 0.0f) {
  1384. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1385. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1386. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1387. }
  1388. }
  1389. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1390. if (!ggml_backend_supports_op(backend, t)) {
  1391. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1392. test_status_t::NOT_SUPPORTED,
  1393. ggml_backend_name(backend)));
  1394. supported = false;
  1395. break;
  1396. }
  1397. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1398. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1399. test_status_t::NOT_SUPPORTED,
  1400. std::string(t->name) + "->type != FP32"));
  1401. supported = false;
  1402. break;
  1403. }
  1404. }
  1405. if (!supported) {
  1406. return true;
  1407. }
  1408. // allocate
  1409. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1410. if (buf == NULL) {
  1411. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1412. info.set_error("allocation", "");
  1413. output_printer->print_operation(info);
  1414. return false;
  1415. }
  1416. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1417. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1418. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1419. if (status != GGML_STATUS_SUCCESS) {
  1420. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1421. return false;
  1422. }
  1423. status = ggml_backend_graph_compute(backend, gb);
  1424. if (status != GGML_STATUS_SUCCESS) {
  1425. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1426. return false;
  1427. }
  1428. bool ok = true;
  1429. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1430. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1431. continue;
  1432. }
  1433. const char * bn = ggml_backend_name(backend);
  1434. const int64_t ne = ggml_nelements(t);
  1435. std::vector<float> ga;
  1436. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1437. if (grad) {
  1438. ga = tensor_to_float(grad);
  1439. } else {
  1440. ga.resize(ne); // default value is 0.0f
  1441. }
  1442. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1443. // check for nans
  1444. if (!std::isfinite(ga[i])) {
  1445. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1446. info.set_gradient_info(i, bn, ga[i]);
  1447. output_printer->print_operation(info);
  1448. ok = false;
  1449. break;
  1450. }
  1451. }
  1452. if (!ok) {
  1453. break;
  1454. }
  1455. std::vector<float> gn(ne); // gradient numeric
  1456. GGML_ASSERT(ga.size() == gn.size());
  1457. std::vector<float> x0 = tensor_to_float(t); // original t data
  1458. GGML_ASSERT(ggml_is_scalar(out));
  1459. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1460. const float eps = grad_eps();
  1461. for (int64_t i = 0; i < ne; ++i) {
  1462. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1463. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1464. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1465. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1466. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1467. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1468. status = ggml_backend_graph_compute(backend, gf);
  1469. if (status != GGML_STATUS_SUCCESS) {
  1470. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1471. return false;
  1472. }
  1473. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1474. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1475. status = ggml_backend_graph_compute(backend, gf);
  1476. if (status != GGML_STATUS_SUCCESS) {
  1477. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1478. return false;
  1479. }
  1480. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1481. if (grad_precise()) {
  1482. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1483. status = ggml_backend_graph_compute(backend, gf);
  1484. if (status != GGML_STATUS_SUCCESS) {
  1485. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1486. return false;
  1487. }
  1488. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1489. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1490. status = ggml_backend_graph_compute(backend, gf);
  1491. if (status != GGML_STATUS_SUCCESS) {
  1492. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1493. return false;
  1494. }
  1495. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1496. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1497. } else {
  1498. gn[i] = (fu - fd) / (2.0f*eps);
  1499. }
  1500. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1501. }
  1502. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1503. if (err > max_maa_err()) {
  1504. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1505. info.set_maa_error(err, max_maa_err());
  1506. output_printer->print_operation(info);
  1507. ok = false;
  1508. break;
  1509. }
  1510. if (!ok) {
  1511. break;
  1512. }
  1513. }
  1514. // Create final test result
  1515. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1516. if (!ok) {
  1517. final_info.set_compare_failure();
  1518. }
  1519. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1520. output_printer->print_operation(final_info);
  1521. if (ok) {
  1522. return true;
  1523. }
  1524. return false;
  1525. }
  1526. };
  1527. // ###################################
  1528. // ## Section 2: GGML Op Defintions ##
  1529. // ###################################
  1530. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1531. // GGML_OP_EXAMPLE
  1532. struct test_example : public test_case {
  1533. // Always define these 2 or variants thereof:
  1534. const ggml_type type; // The type of the input tensors.
  1535. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1536. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1537. // Or they may need additional parameters.
  1538. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1539. // In most cases these are just the properties of the struct that you defined above.
  1540. // This is needed for info prints.
  1541. std::string vars() override {
  1542. return VARS_TO_STR2(type, ne);
  1543. }
  1544. // Define a constructor for the struct.
  1545. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1546. // and just use initializer lists.
  1547. test_example(ggml_type type = GGML_TYPE_F32,
  1548. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1549. : type(type), ne(ne) {}
  1550. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1551. ggml_tensor * build_graph(ggml_context * ctx) override {
  1552. // Step 1: create input tensors that don't depend on any other tensors:
  1553. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1554. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1555. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1556. ggml_set_name(b, "b");
  1557. // Step 2: use the op that you want to test in the GGML compute graph.
  1558. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1559. ggml_set_name(out, "out");
  1560. // Step 3: return the output tensor.
  1561. return out;
  1562. }
  1563. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1564. // immediately after you create the tensors.
  1565. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1566. };
  1567. // GGML_OP_UNARY
  1568. struct test_unary : public test_case {
  1569. const ggml_unary_op op;
  1570. const ggml_type type;
  1571. const std::array<int64_t, 4> ne_a;
  1572. int v; // view (1 : non-contiguous a)
  1573. std::string vars() override {
  1574. return VARS_TO_STR3(type, ne_a, v);
  1575. }
  1576. test_unary(ggml_unary_op op,
  1577. ggml_type type = GGML_TYPE_F32,
  1578. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1579. int v = 0)
  1580. : op(op), type(type), ne_a(ne_a), v(v) {}
  1581. ggml_tensor * build_graph(ggml_context * ctx) override {
  1582. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1583. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1584. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1585. ggml_tensor * a;
  1586. if (v & 1) {
  1587. auto ne = ne_a; ne[0] *= 3;
  1588. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1589. if (grad_supported) {
  1590. ggml_set_param(a);
  1591. }
  1592. ggml_set_name(a, "a");
  1593. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1594. ggml_set_name(a, "view_of_a");
  1595. } else {
  1596. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1597. if (grad_supported) {
  1598. ggml_set_param(a);
  1599. }
  1600. ggml_set_name(a, "a");
  1601. }
  1602. ggml_tensor * out = ggml_unary(ctx, a, op);
  1603. ggml_set_name(out, "out");
  1604. return out;
  1605. }
  1606. void initialize_tensors(ggml_context * ctx) override {
  1607. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1608. // test extended range of values to check for NaNs in GELU
  1609. init_tensor_uniform(t, -150.f, 150.f);
  1610. }
  1611. }
  1612. float grad_eps() override {
  1613. return 15.0f;
  1614. }
  1615. std::vector<float> grad_expect() override {
  1616. if (op == GGML_UNARY_OP_ABS) {
  1617. return {-1.0f, 1.0f};
  1618. }
  1619. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1620. return {0.0f};
  1621. }
  1622. if (op == GGML_UNARY_OP_RELU) {
  1623. return {0.0f, 1.0f};
  1624. }
  1625. return {};
  1626. }
  1627. };
  1628. // GGML_OP_GLU
  1629. struct test_glu : public test_case {
  1630. const ggml_glu_op op;
  1631. const ggml_type type;
  1632. const std::array<int64_t, 4> ne_a;
  1633. int v; // view (1 : non-contiguous a)
  1634. bool swapped;
  1635. std::string vars() override {
  1636. return VARS_TO_STR4(type, ne_a, v, swapped);
  1637. }
  1638. test_glu(ggml_glu_op op,
  1639. ggml_type type = GGML_TYPE_F32,
  1640. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1641. int v = 0,
  1642. bool swapped = false)
  1643. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1644. ggml_tensor * build_graph(ggml_context * ctx) override {
  1645. ggml_tensor * a;
  1646. if (v & 1) {
  1647. auto ne = ne_a; ne[0] *= 3;
  1648. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1649. ggml_set_name(a, "a");
  1650. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1651. ggml_set_name(a, "view_of_a");
  1652. } else {
  1653. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1654. ggml_set_name(a, "a");
  1655. }
  1656. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1657. ggml_set_name(out, "out");
  1658. return out;
  1659. }
  1660. void initialize_tensors(ggml_context * ctx) override {
  1661. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1662. // test extended range of values to check for NaNs in GELU
  1663. init_tensor_uniform(t, -150.f, 150.f);
  1664. }
  1665. }
  1666. };
  1667. struct test_glu_split : public test_case {
  1668. const ggml_glu_op op;
  1669. const ggml_type type;
  1670. const std::array<int64_t, 4> ne_a;
  1671. int v; // view (1 : non-contiguous a)
  1672. std::string vars() override {
  1673. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1674. }
  1675. test_glu_split(ggml_glu_op op,
  1676. ggml_type type = GGML_TYPE_F32,
  1677. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1678. int v = 0)
  1679. : op(op), type(type), ne_a(ne_a), v(v) {}
  1680. ggml_tensor * build_graph(ggml_context * ctx) override {
  1681. ggml_tensor * a;
  1682. ggml_tensor * b;
  1683. if (v & 1) {
  1684. auto ne = ne_a; ne[0] *= 3;
  1685. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1686. ggml_set_param(a);
  1687. ggml_set_name(a, "a");
  1688. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1689. ggml_set_name(a, "view_of_a");
  1690. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1691. ggml_set_param(b);
  1692. ggml_set_name(b, "b");
  1693. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1694. ggml_set_name(a, "view_of_b");
  1695. } else {
  1696. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1697. ggml_set_param(a);
  1698. ggml_set_name(a, "a");
  1699. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1700. ggml_set_param(b);
  1701. ggml_set_name(b, "b");
  1702. }
  1703. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1704. ggml_set_name(out, "out");
  1705. return out;
  1706. }
  1707. void initialize_tensors(ggml_context * ctx) override {
  1708. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1709. // test extended range of values to check for NaNs in GELU
  1710. init_tensor_uniform(t, -150.f, 150.f);
  1711. }
  1712. }
  1713. };
  1714. struct test_swiglu_oai : public test_case {
  1715. const ggml_type type;
  1716. const std::array<int64_t, 4> ne_a;
  1717. int v; // view (1 : non-contiguous a)
  1718. float alpha;
  1719. float limit;
  1720. std::string vars() override {
  1721. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1722. }
  1723. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1724. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1725. int v = 0,
  1726. float alpha = 1.702f,
  1727. float limit = 7.0f)
  1728. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1729. ggml_tensor * build_graph(ggml_context * ctx) override {
  1730. ggml_tensor * a;
  1731. ggml_tensor * b;
  1732. if (v & 1) {
  1733. auto ne = ne_a; ne[0] *= 3;
  1734. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1735. ggml_set_param(a);
  1736. ggml_set_name(a, "a");
  1737. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1738. ggml_set_name(a, "view_of_a");
  1739. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1740. ggml_set_param(b);
  1741. ggml_set_name(b, "b");
  1742. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1743. ggml_set_name(a, "view_of_b");
  1744. } else {
  1745. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1746. ggml_set_param(a);
  1747. ggml_set_name(a, "a");
  1748. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1749. ggml_set_param(b);
  1750. ggml_set_name(b, "b");
  1751. }
  1752. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1753. ggml_set_name(out, "out");
  1754. return out;
  1755. }
  1756. void initialize_tensors(ggml_context * ctx) override {
  1757. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1758. // test extended range of values to check for NaNs in GELU
  1759. init_tensor_uniform(t, -150.f, 150.f);
  1760. }
  1761. }
  1762. };
  1763. // GGML_OP_GET_ROWS
  1764. struct test_get_rows : public test_case {
  1765. const ggml_type type;
  1766. const int n; // cols
  1767. const int m; // rows
  1768. const int r; // rows to get
  1769. const int be1; // batch size
  1770. const int be2; // batch size
  1771. const bool v; // view (non-contiguous src1)
  1772. std::string vars() override {
  1773. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1774. }
  1775. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1776. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1777. ggml_tensor * build_graph(ggml_context * ctx) override {
  1778. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1779. ggml_set_name(in, "in");
  1780. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1781. ggml_set_name(rows, "rows");
  1782. if (v) {
  1783. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1784. ggml_set_name(rows, "view_of_rows");
  1785. }
  1786. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1787. if (grad_supported) {
  1788. ggml_set_param(in);
  1789. // rows is a constant input -> no gradients
  1790. }
  1791. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1792. ggml_set_name(out, "out");
  1793. return out;
  1794. }
  1795. void initialize_tensors(ggml_context * ctx) override {
  1796. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1797. if (t->type == GGML_TYPE_I32) {
  1798. if (ggml_is_view_op(t->op)) { continue; }
  1799. // rows
  1800. std::vector<int> data(r*be1*be2);
  1801. for (int i = 0; i < r*be1*be2; i++) {
  1802. data[i] = rand() % m;
  1803. }
  1804. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1805. } else {
  1806. init_tensor_uniform(t);
  1807. }
  1808. }
  1809. }
  1810. };
  1811. // GGML_OP_GET_ROWS_BACK
  1812. struct test_get_rows_back : public test_case {
  1813. const ggml_type type;
  1814. const int n; // cols
  1815. const int m; // rows
  1816. const int r; // rows to get
  1817. const int b; // batch size
  1818. const bool v; // view (non-contiguous src1)
  1819. std::string vars() override {
  1820. return VARS_TO_STR6(type, n, m, r, b, v);
  1821. }
  1822. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1823. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1824. ggml_tensor * build_graph(ggml_context * ctx) override {
  1825. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1826. ggml_set_name(in_forward, "in_forward");
  1827. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1828. ggml_set_name(rows, "rows");
  1829. if (v) {
  1830. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1831. ggml_set_name(rows, "view_of_rows");
  1832. }
  1833. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1834. ggml_set_name(grad, "grad");
  1835. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1836. ggml_set_name(out, "out");
  1837. return out;
  1838. }
  1839. void initialize_tensors(ggml_context * ctx) override {
  1840. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1841. if (t->type == GGML_TYPE_I32) {
  1842. if (ggml_is_view_op(t->op)) { continue; }
  1843. // rows
  1844. std::vector<int> data(r*b);
  1845. for (int i = 0; i < r*b; i++) {
  1846. data[i] = rand() % m;
  1847. }
  1848. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1849. } else {
  1850. init_tensor_uniform(t);
  1851. }
  1852. }
  1853. }
  1854. };
  1855. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1856. std::random_device rd;
  1857. std::default_random_engine rng(rd());
  1858. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1859. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1860. // generate a shuffled subset of row indices
  1861. std::vector<int64_t> data(num_rows);
  1862. for (int i = 0; i < num_rows; i++) {
  1863. data[i] = i;
  1864. }
  1865. std::shuffle(data.begin(), data.end(), rng);
  1866. data.resize(t->ne[0]);
  1867. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1868. if (t->type == GGML_TYPE_I32) {
  1869. // TODO: Make a template or something
  1870. std::vector<int32_t> data_i32(t->ne[0]);
  1871. for (int i = 0; i < t->ne[0]; i++) {
  1872. data_i32[i] = static_cast<int32_t>(data[i]);
  1873. }
  1874. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1875. } else {
  1876. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1877. }
  1878. }
  1879. }
  1880. }
  1881. // GGML_OP_SET_ROWS
  1882. struct test_set_rows : public test_case {
  1883. const ggml_type type;
  1884. const ggml_type type_idx;
  1885. const std::array<int64_t, 4> ne;
  1886. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1887. const int r; // rows to set
  1888. const bool v; // view (non-contiguous src1)
  1889. std::string vars() override {
  1890. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1891. }
  1892. test_set_rows(ggml_type type,
  1893. ggml_type type_idx,
  1894. std::array<int64_t, 4> ne,
  1895. std::array<int, 2> nr23,
  1896. int r, bool v = false)
  1897. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1898. ggml_tensor * build_graph(ggml_context * ctx) override {
  1899. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1900. ggml_set_name(dst, "dst");
  1901. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1902. ggml_set_name(src, "src");
  1903. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1904. ggml_set_name(row_idxs, "row_idxs");
  1905. if (v) {
  1906. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1907. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1908. ggml_set_name(row_idxs, "view_of_rows");
  1909. }
  1910. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1911. ggml_set_name(out, "out");
  1912. return out;
  1913. }
  1914. void initialize_tensors(ggml_context * ctx) override {
  1915. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1916. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1917. if (ggml_is_view_op(t->op)) {
  1918. continue;
  1919. }
  1920. init_set_rows_row_ids(t, ne[1]);
  1921. } else {
  1922. init_tensor_uniform(t);
  1923. }
  1924. }
  1925. }
  1926. double max_nmse_err() override {
  1927. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1928. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1929. // estimate what the max nmse error would be if one quantized value is
  1930. // off by one. The test values are distributed in [-1,1], so it'll be
  1931. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1932. // which is roughly 0.25 times the number of elements.
  1933. double err_estimate = 1.0f/8.0f;
  1934. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1935. err_estimate /= 2.0f;
  1936. }
  1937. if (type == GGML_TYPE_Q8_0) {
  1938. err_estimate /= 8.0f;
  1939. }
  1940. err_estimate *= err_estimate;
  1941. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1942. return err_estimate;
  1943. }
  1944. return 1e-7;
  1945. }
  1946. };
  1947. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1948. struct test_rope_set_rows : public test_case {
  1949. const ggml_type type;
  1950. const ggml_type type_idx;
  1951. const std::array<int64_t, 4> ne;
  1952. int mode;
  1953. std::string vars() override {
  1954. return VARS_TO_STR4(type, type_idx, ne, mode);
  1955. }
  1956. std::string op_desc(ggml_tensor * t) override {
  1957. GGML_UNUSED(t);
  1958. return "ROPE_SET_ROWS";
  1959. }
  1960. bool run_whole_graph() override { return true; }
  1961. test_rope_set_rows(ggml_type type,
  1962. ggml_type type_idx,
  1963. std::array<int64_t, 4> ne,
  1964. int mode)
  1965. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1966. ggml_tensor * build_graph(ggml_context * ctx) override {
  1967. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1968. ggml_set_name(src, "src");
  1969. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1970. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1971. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1972. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1973. ggml_set_name(dst, "dst");
  1974. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1975. ggml_set_name(row_idxs, "row_idxs");
  1976. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1977. ggml_set_name(out, "out");
  1978. return out;
  1979. }
  1980. void initialize_tensors(ggml_context * ctx) override {
  1981. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1982. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1983. if (ggml_is_view_op(t->op)) {
  1984. continue;
  1985. }
  1986. init_set_rows_row_ids(t, ne[2]);
  1987. } else {
  1988. init_tensor_uniform(t);
  1989. }
  1990. }
  1991. }
  1992. };
  1993. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  1994. struct test_rms_norm_mul_rope : public test_case {
  1995. const std::array<int64_t, 4> ne;
  1996. const float eps;
  1997. const bool multi_add; // test a sequence of adds feeding into rms_norm
  1998. const bool set_rows;
  1999. int mode;
  2000. std::string op_desc(ggml_tensor * t) override {
  2001. GGML_UNUSED(t);
  2002. return "RMS_NORM_MUL_ROPE";
  2003. }
  2004. bool run_whole_graph() override { return true; }
  2005. std::string vars() override {
  2006. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  2007. }
  2008. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  2009. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  2010. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  2011. ggml_tensor * build_graph(ggml_context * ctx) override {
  2012. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2013. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2014. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2015. if (multi_add) {
  2016. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2017. }
  2018. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2019. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  2020. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  2021. ggml_tensor * out;
  2022. if (set_rows) {
  2023. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  2024. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  2025. ggml_set_name(dst, "dst");
  2026. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  2027. ggml_set_name(row_idxs, "row_idxs");
  2028. out = ggml_set_rows(ctx, dst, view, row_idxs);
  2029. ggml_set_name(out, "out");
  2030. } else {
  2031. out = rope;
  2032. }
  2033. return out;
  2034. }
  2035. void initialize_tensors(ggml_context * ctx) override {
  2036. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2037. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  2038. if (ggml_is_view_op(t->op)) {
  2039. continue;
  2040. }
  2041. init_set_rows_row_ids(t, ne[2]);
  2042. } else {
  2043. init_tensor_uniform(t);
  2044. }
  2045. }
  2046. }
  2047. };
  2048. // GGML_OP_ARGMAX
  2049. struct test_argmax : public test_case {
  2050. const ggml_type type;
  2051. const std::array<int64_t, 4> ne;
  2052. std::string vars() override {
  2053. return VARS_TO_STR2(type, ne);
  2054. }
  2055. test_argmax(ggml_type type = GGML_TYPE_F32,
  2056. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2057. : type(type), ne(ne) {}
  2058. ggml_tensor * build_graph(ggml_context * ctx) override {
  2059. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2060. ggml_set_name(a, "a");
  2061. ggml_tensor * out = ggml_argmax(ctx, a);
  2062. ggml_set_name(out, "out");
  2063. return out;
  2064. }
  2065. void initialize_tensors(ggml_context * ctx) override {
  2066. std::random_device rd;
  2067. std::default_random_engine rng(rd());
  2068. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2069. if (t->type == GGML_TYPE_F32) {
  2070. // initialize with unique values to avoid ties
  2071. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2072. std::vector<float> data(t->ne[0]);
  2073. for (int i = 0; i < t->ne[0]; i++) {
  2074. data[i] = i;
  2075. }
  2076. std::shuffle(data.begin(), data.end(), rng);
  2077. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2078. }
  2079. } else {
  2080. init_tensor_uniform(t);
  2081. }
  2082. }
  2083. }
  2084. double max_nmse_err() override {
  2085. return 0.0;
  2086. }
  2087. };
  2088. // GGML_OP_COUNT_EQUAL
  2089. struct test_count_equal : public test_case {
  2090. const ggml_type type;
  2091. const std::array<int64_t, 4> ne;
  2092. std::string vars() override {
  2093. return VARS_TO_STR2(type, ne);
  2094. }
  2095. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2096. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2097. : type(type), ne(ne) {}
  2098. ggml_tensor * build_graph(ggml_context * ctx) override {
  2099. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2100. ggml_set_name(a, "a");
  2101. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2102. ggml_set_name(a_argmax, "a_argmax");
  2103. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2104. ggml_set_name(b, "b");
  2105. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2106. ggml_set_name(b_argmax, "b_argmax");
  2107. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2108. ggml_set_name(out, "out");
  2109. return out;
  2110. }
  2111. double max_nmse_err() override {
  2112. return 0.0;
  2113. }
  2114. void initialize_tensors(ggml_context * ctx) override {
  2115. std::random_device rd;
  2116. std::default_random_engine rng(rd());
  2117. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2118. if (t->type == GGML_TYPE_F32) {
  2119. // initialize with unique values to avoid ties
  2120. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2121. std::vector<float> data(t->ne[0]);
  2122. for (int i = 0; i < t->ne[0]; i++) {
  2123. data[i] = i;
  2124. }
  2125. std::shuffle(data.begin(), data.end(), rng);
  2126. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2127. }
  2128. } else {
  2129. init_tensor_uniform(t);
  2130. }
  2131. }
  2132. }
  2133. };
  2134. // GGML_OP_REPEAT
  2135. struct test_repeat : public test_case {
  2136. const ggml_type type;
  2137. const std::array<int64_t, 4> ne;
  2138. const std::array<int, 4> nr;
  2139. std::string vars() override {
  2140. return VARS_TO_STR3(type, ne, nr);
  2141. }
  2142. size_t op_size(ggml_tensor * t) override {
  2143. return ggml_nbytes(t) * 2;
  2144. }
  2145. test_repeat(ggml_type type = GGML_TYPE_F32,
  2146. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2147. std::array<int, 4> nr = {2, 2, 2, 2})
  2148. : type(type), ne(ne), nr(nr) {}
  2149. ggml_tensor * build_graph(ggml_context * ctx) override {
  2150. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2151. ggml_set_name(target, "target");
  2152. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2153. ggml_set_param(src);
  2154. ggml_set_name(src, "src");
  2155. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2156. ggml_set_name(out, "out");
  2157. return out;
  2158. }
  2159. };
  2160. // GGML_OP_REPEAT_BACK
  2161. struct test_repeat_back : public test_case {
  2162. const ggml_type type;
  2163. const std::array<int64_t, 4> ne;
  2164. const std::array<int, 4> nr;
  2165. const bool v; // whether src is a noncontiguous view
  2166. std::string vars() override {
  2167. return VARS_TO_STR4(type, ne, nr, v);
  2168. }
  2169. size_t op_size(ggml_tensor * t) override {
  2170. return ggml_nbytes(t) * 2;
  2171. }
  2172. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2173. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2174. std::array<int, 4> nr = {2, 2, 2, 2},
  2175. bool v = false)
  2176. : type(type), ne(ne), nr(nr), v(v) {}
  2177. ggml_tensor * build_graph(ggml_context * ctx) override {
  2178. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2179. ggml_set_name(src, "src");
  2180. if (v) {
  2181. GGML_ASSERT(ne[0] % 2 == 0);
  2182. GGML_ASSERT(ne[1] % 2 == 0);
  2183. GGML_ASSERT(ne[2] % 2 == 0);
  2184. GGML_ASSERT(ne[3] % 2 == 0);
  2185. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2186. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2187. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2188. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2189. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2190. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2191. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2192. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2193. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2194. }
  2195. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2196. ggml_set_name(target, "target");
  2197. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2198. ggml_set_name(out, "out");
  2199. return out;
  2200. }
  2201. };
  2202. // GGML_OP_DUP
  2203. struct test_dup : public test_case {
  2204. const ggml_type type;
  2205. const std::array<int64_t, 4> ne;
  2206. const std::array<int64_t, 4> permute;
  2207. bool _use_permute;
  2208. std::string vars() override {
  2209. std::string v = VARS_TO_STR2(type, ne);
  2210. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2211. return v;
  2212. }
  2213. test_dup(ggml_type type = GGML_TYPE_F32,
  2214. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2215. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2216. : type(type), ne(ne), permute(permute),
  2217. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2218. ggml_tensor * build_graph(ggml_context * ctx) override {
  2219. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2220. ggml_set_param(src);
  2221. ggml_set_name(src, "src");
  2222. if (_use_permute) {
  2223. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2224. ggml_set_name(src, "src_permuted");
  2225. }
  2226. ggml_tensor * out = ggml_dup(ctx, src);
  2227. ggml_set_name(out, "out");
  2228. return out;
  2229. }
  2230. };
  2231. // GGML_OP_SET
  2232. struct test_set : public test_case {
  2233. const ggml_type type_src;
  2234. const ggml_type type_dst;
  2235. const std::array<int64_t, 4> ne;
  2236. const int dim;
  2237. std::string vars() override {
  2238. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2239. }
  2240. size_t op_size(ggml_tensor * t) override {
  2241. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2242. }
  2243. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2244. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2245. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2246. ggml_tensor * build_graph(ggml_context * ctx) override {
  2247. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2248. ggml_set_param(src);
  2249. ggml_set_name(src, "src");
  2250. auto ne_dst = ne;
  2251. for (int i = 0; i < dim; ++i) {
  2252. ne_dst[i] *= 2;
  2253. }
  2254. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2255. ggml_set_param(dst);
  2256. ggml_set_name(dst, "dst");
  2257. size_t offset = 0;
  2258. for (int i = 0; i < dim; ++i) {
  2259. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2260. }
  2261. ggml_tensor * out = ggml_set(ctx, dst, src,
  2262. // The backward pass requires setting a contiguous region:
  2263. src->nb[1], src->nb[2], src->nb[3], offset);
  2264. ggml_set_name(out, "out");
  2265. return out;
  2266. }
  2267. };
  2268. // GGML_OP_CPY
  2269. struct test_cpy : public test_case {
  2270. const ggml_type type_src;
  2271. const ggml_type type_dst;
  2272. const std::array<int64_t, 4> ne;
  2273. const std::array<int64_t, 4> permute_src;
  2274. const std::array<int64_t, 4> permute_dst;
  2275. bool _src_use_permute;
  2276. bool _dst_use_permute;
  2277. bool _src_transpose;
  2278. std::string vars() override {
  2279. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2280. }
  2281. double max_nmse_err() override {
  2282. if (type_src == type_dst) {
  2283. return 0.0;
  2284. }
  2285. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2286. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2287. // estimate what the max nmse error would be if one quantized value is
  2288. // off by one. The test values are distributed in [-150,150], so it'll be
  2289. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2290. // which is roughly 0.25*150^2 times the number of elements.
  2291. double err_estimate = 1.0f/8.0f * 150.0f;
  2292. if (type_dst == GGML_TYPE_IQ4_NL) {
  2293. // iq4_nl values are a bit more spread out
  2294. err_estimate *= 2.0f;
  2295. }
  2296. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2297. err_estimate /= 2.0f;
  2298. }
  2299. if (type_dst == GGML_TYPE_Q8_0) {
  2300. err_estimate /= 8.0f;
  2301. }
  2302. err_estimate *= err_estimate;
  2303. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2304. return err_estimate;
  2305. }
  2306. return 1e-6;
  2307. }
  2308. size_t op_size(ggml_tensor * t) override {
  2309. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2310. }
  2311. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2312. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2313. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2314. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2315. bool transpose_src = false)
  2316. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2317. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2318. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2319. _src_transpose(transpose_src){}
  2320. ggml_tensor * build_graph(ggml_context * ctx) override {
  2321. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2322. ggml_set_param(src);
  2323. ggml_set_name(src, "src");
  2324. if (_src_use_permute) {
  2325. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2326. ggml_set_name(src, "src_permuted");
  2327. }
  2328. if (_src_transpose) {
  2329. src = ggml_transpose(ctx, src);
  2330. ggml_set_name(src, "src_transposed");
  2331. }
  2332. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2333. ggml_set_name(dst, "dst");
  2334. if (_dst_use_permute) {
  2335. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2336. ggml_set_name(dst, "dst_permuted");
  2337. }
  2338. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2339. ggml_set_name(out, "out");
  2340. return out;
  2341. }
  2342. void initialize_tensors(ggml_context * ctx) override {
  2343. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2344. // test extended range of values to check if casting between f32 and i32 is consistent
  2345. init_tensor_uniform(t, -150.f, 150.f);
  2346. }
  2347. }
  2348. };
  2349. // GGML_OP_CONT
  2350. struct test_cont : public test_case {
  2351. const ggml_type type;
  2352. const std::array<int64_t, 4> ne;
  2353. bool use_view_slice;
  2354. std::string vars() override {
  2355. return VARS_TO_STR3(type, ne, use_view_slice);
  2356. }
  2357. test_cont(ggml_type type = GGML_TYPE_F32,
  2358. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2359. bool use_view_slice = false)
  2360. : type(type), ne(ne), use_view_slice(use_view_slice) {}
  2361. ggml_tensor * build_graph(ggml_context * ctx) override {
  2362. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2363. ggml_set_param(src);
  2364. ggml_set_name(src, "src");
  2365. ggml_tensor * dst;
  2366. if (use_view_slice) {
  2367. dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
  2368. src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
  2369. ggml_set_name(dst, "src_view_slice");
  2370. } else {
  2371. dst = ggml_transpose(ctx, src);
  2372. ggml_set_name(dst, "src_transposed");
  2373. }
  2374. ggml_tensor * out = ggml_cont(ctx, dst);
  2375. ggml_set_name(out, "out");
  2376. return out;
  2377. }
  2378. };
  2379. // GGML_OP_ADD
  2380. // GGML_OP_SUB
  2381. // GGML_OP_MUL
  2382. // GGML_OP_DIV
  2383. struct test_bin_bcast : public test_case {
  2384. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2385. op_t op;
  2386. const ggml_type type;
  2387. const std::array<int64_t, 4> ne;
  2388. const std::array<int, 4> nr;
  2389. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2390. bool run_whole_graph() override { return nf > 1; }
  2391. std::string vars() override {
  2392. return VARS_TO_STR4(type, ne, nr, nf);
  2393. }
  2394. size_t op_size(ggml_tensor * t) override {
  2395. return ggml_nbytes(t) * 3;
  2396. }
  2397. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2398. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2399. std::array<int, 4> nr = {1, 2, 1, 1},
  2400. int nf = 1)
  2401. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2402. ggml_tensor * build_graph(ggml_context * ctx) override {
  2403. GGML_ASSERT(nf <= 16);
  2404. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2405. ggml_set_name(a, "a");
  2406. ggml_tensor * b[16];
  2407. for (int i = 0; i < nf; ++i) {
  2408. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2409. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2410. }
  2411. // The backward pass supports broadcasting only for GGML_ADD:
  2412. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2413. if (grad_supported) {
  2414. ggml_set_param(a);
  2415. ggml_set_param(b[0]);
  2416. }
  2417. ggml_tensor * out = a;
  2418. for (int i = 0; i < nf; ++i) {
  2419. out = op(ctx, out, b[i]);
  2420. }
  2421. ggml_set_name(out, "out");
  2422. return out;
  2423. }
  2424. void initialize_tensors(ggml_context * ctx) override {
  2425. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2426. if (op == ggml_mul || op == ggml_div) {
  2427. // MUL and DIV have numerical issues around zero:
  2428. init_tensor_uniform(t, 0.9f, 1.1f);
  2429. } else {
  2430. init_tensor_uniform(t);
  2431. }
  2432. }
  2433. }
  2434. float grad_eps() override {
  2435. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2436. }
  2437. bool grad_precise() override {
  2438. return op == ggml_div;
  2439. }
  2440. double max_maa_err() override {
  2441. return op == ggml_add ? 1e-4 : 1e-3;
  2442. }
  2443. };
  2444. // GGML_OP_ADD_ID
  2445. struct test_add_id : public test_case {
  2446. const ggml_type type_a;
  2447. const ggml_type type_b;
  2448. const int64_t n_embd;
  2449. const int64_t n_experts;
  2450. const int64_t n_experts_used;
  2451. const int64_t n_token;
  2452. std::string vars() override {
  2453. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2454. }
  2455. size_t op_size(ggml_tensor * t) override {
  2456. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2457. }
  2458. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2459. ggml_type type_b = GGML_TYPE_F32,
  2460. int64_t n_embd = 128,
  2461. int64_t n_experts = 16,
  2462. int64_t n_experts_used = 8,
  2463. int64_t n_token = 10)
  2464. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2465. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2466. ggml_tensor * build_graph(ggml_context * ctx) override {
  2467. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2468. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2469. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2470. if (n_experts_used != n_experts) {
  2471. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2472. ggml_set_name(ids, "view_of_ids");
  2473. }
  2474. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2475. ggml_set_name(out, "out");
  2476. return out;
  2477. }
  2478. void initialize_tensors(ggml_context * ctx) override {
  2479. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2480. if (t->type == GGML_TYPE_I32) {
  2481. if (ggml_is_view_op(t->op)) { continue; }
  2482. std::random_device rd;
  2483. std::default_random_engine rng(rd());
  2484. // ids
  2485. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2486. std::vector<int32_t> data(t->ne[0]);
  2487. for (int i = 0; i < t->ne[0]; i++) {
  2488. data[i] = i % n_experts;
  2489. }
  2490. std::shuffle(data.begin(), data.end(), rng);
  2491. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2492. }
  2493. } else {
  2494. init_tensor_uniform(t);
  2495. }
  2496. }
  2497. }
  2498. };
  2499. // GGML_OP_ADD1
  2500. struct test_add1 : public test_case {
  2501. const ggml_type type;
  2502. const std::array<int64_t, 4> ne;
  2503. std::string vars() override {
  2504. return VARS_TO_STR2(type, ne);
  2505. }
  2506. test_add1(ggml_type type = GGML_TYPE_F32,
  2507. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2508. : type(type), ne(ne) {}
  2509. ggml_tensor * build_graph(ggml_context * ctx) override {
  2510. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2511. ggml_set_param(a);
  2512. ggml_set_name(a, "a");
  2513. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2514. // ggml_set_param(b); // TODO: implement
  2515. ggml_set_name(b, "b");
  2516. ggml_tensor * out = ggml_add1(ctx, a, b);
  2517. ggml_set_name(out, "out");
  2518. return out;
  2519. }
  2520. float grad_eps() override {
  2521. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2522. }
  2523. };
  2524. // GGML_OP_SCALE
  2525. struct test_scale : public test_case {
  2526. const ggml_type type;
  2527. const std::array<int64_t, 4> ne;
  2528. float scale;
  2529. float bias;
  2530. bool inplace;
  2531. std::string vars() override {
  2532. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2533. }
  2534. test_scale(ggml_type type = GGML_TYPE_F32,
  2535. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2536. float scale = 2.0f,
  2537. float bias = 0.0f,
  2538. bool inplace = false)
  2539. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2540. ggml_tensor * build_graph(ggml_context * ctx) override {
  2541. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2542. ggml_set_param(a);
  2543. ggml_set_name(a, "a");
  2544. ggml_tensor * out;
  2545. if (inplace) {
  2546. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2547. } else {
  2548. out = ggml_scale_bias(ctx, a, scale, bias);
  2549. }
  2550. ggml_set_name(out, "out");
  2551. return out;
  2552. }
  2553. };
  2554. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2555. struct test_softcap : public test_case {
  2556. const ggml_type type;
  2557. const std::array<int64_t, 4> ne;
  2558. float softcap;
  2559. std::string op_desc(ggml_tensor * t) override {
  2560. GGML_UNUSED(t);
  2561. return "SOFTCAP";
  2562. }
  2563. bool run_whole_graph() override { return true; }
  2564. std::string vars() override {
  2565. return VARS_TO_STR3(type, ne, softcap);
  2566. }
  2567. test_softcap(ggml_type type = GGML_TYPE_F32,
  2568. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2569. float softcap = 30.0f)
  2570. : type(type), ne(ne), softcap(softcap) {}
  2571. ggml_tensor * build_graph(ggml_context * ctx) override {
  2572. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2573. ggml_set_param(a);
  2574. ggml_set_name(a, "a");
  2575. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2576. ggml_set_name(out, "out");
  2577. return out;
  2578. }
  2579. };
  2580. // GGML_OP_SILU_BACK
  2581. struct test_silu_back : public test_case {
  2582. const ggml_type type;
  2583. const std::array<int64_t, 4> ne;
  2584. float eps;
  2585. std::string vars() override {
  2586. return VARS_TO_STR3(type, ne, eps);
  2587. }
  2588. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2589. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2590. float eps = 1e-6f)
  2591. : type(type), ne(ne), eps(eps) {}
  2592. ggml_tensor * build_graph(ggml_context * ctx) override {
  2593. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2594. ggml_set_name(a, "a");
  2595. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2596. ggml_set_name(grad, "grad");
  2597. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2598. ggml_set_name(out, "out");
  2599. return out;
  2600. }
  2601. bool grad_precise() override {
  2602. return true;
  2603. }
  2604. };
  2605. // GGML_OP_NORM
  2606. struct test_norm : public test_case {
  2607. const ggml_type type;
  2608. const std::array<int64_t, 4> ne;
  2609. const bool v; // whether a is a non-contiguous view
  2610. const float eps;
  2611. std::string vars() override {
  2612. return VARS_TO_STR4(type, ne, v, eps);
  2613. }
  2614. test_norm(ggml_type type = GGML_TYPE_F32,
  2615. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2616. bool v = false,
  2617. float eps = 1e-6f)
  2618. : type(type), ne(ne), v(v), eps(eps) {}
  2619. ggml_tensor * build_graph(ggml_context * ctx) override {
  2620. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2621. ggml_set_name(a, "a");
  2622. if (v) {
  2623. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2624. ggml_set_name(a, "view of a");
  2625. }
  2626. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2627. ggml_set_name(out, "out");
  2628. return out;
  2629. }
  2630. };
  2631. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2632. struct test_norm_mul_add : public test_case {
  2633. const ggml_type type;
  2634. const std::array<int64_t, 4> ne;
  2635. float eps;
  2636. const bool broadcast;
  2637. std::string op_desc(ggml_tensor * t) override {
  2638. GGML_UNUSED(t);
  2639. return "NORM_MUL_ADD";
  2640. }
  2641. bool run_whole_graph() override { return true; }
  2642. std::string vars() override {
  2643. return VARS_TO_STR4(type, ne, eps, broadcast);
  2644. }
  2645. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2646. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2647. float eps = 1e-5f,
  2648. bool broadcast = false)
  2649. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2650. ggml_tensor * build_graph(ggml_context * ctx) override {
  2651. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2652. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2653. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2654. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2655. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2656. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2657. // Use a, w and b early to avoid OP_NONE in graph
  2658. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2659. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2660. ggml_tensor * m = ggml_mul(ctx, n, w);
  2661. ggml_tensor * out = ggml_add(ctx, m, b);
  2662. ggml_set_name(out, "out");
  2663. return out;
  2664. }
  2665. };
  2666. // GGML_OP_RMS_NORM
  2667. struct test_rms_norm : public test_case {
  2668. const ggml_type type;
  2669. const std::array<int64_t, 4> ne;
  2670. const bool v; // whether a is a non-contiguous view
  2671. const float eps;
  2672. const bool inplace; // whether to do the operation inplace
  2673. std::string vars() override {
  2674. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2675. }
  2676. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2677. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2678. bool v = false,
  2679. float eps = 1e-6f,
  2680. bool inplace = false)
  2681. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2682. ggml_tensor * build_graph(ggml_context * ctx) override {
  2683. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2684. ggml_set_param(a);
  2685. ggml_set_name(a, "a");
  2686. if (v) {
  2687. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2688. ggml_set_name(a, "view of a");
  2689. }
  2690. ggml_tensor * out;
  2691. if (inplace) {
  2692. out = ggml_rms_norm_inplace(ctx, a, eps);
  2693. } else {
  2694. out = ggml_rms_norm(ctx, a, eps);
  2695. }
  2696. ggml_set_name(out, "out");
  2697. return out;
  2698. }
  2699. void initialize_tensors(ggml_context * ctx) override {
  2700. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2701. init_tensor_uniform(t, -10.f, 10.f);
  2702. }
  2703. }
  2704. float grad_eps() override {
  2705. return 1.0f;
  2706. }
  2707. bool grad_precise() override {
  2708. return true;
  2709. }
  2710. };
  2711. // GGML_OP_RMS_NORM_BACK
  2712. struct test_rms_norm_back : public test_case {
  2713. const ggml_type type;
  2714. const std::array<int64_t, 4> ne;
  2715. const float eps;
  2716. std::string vars() override {
  2717. return VARS_TO_STR3(type, ne, eps);
  2718. }
  2719. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2720. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2721. float eps = 1e-6f)
  2722. : type(type), ne(ne), eps(eps) {}
  2723. ggml_tensor * build_graph(ggml_context * ctx) override {
  2724. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2725. ggml_set_name(a, "a");
  2726. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2727. ggml_set_name(b, "b");
  2728. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2729. ggml_set_name(out, "out");
  2730. return out;
  2731. }
  2732. void initialize_tensors(ggml_context * ctx) override {
  2733. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2734. init_tensor_uniform(t, -10.f, 10.f);
  2735. }
  2736. }
  2737. };
  2738. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2739. struct test_rms_norm_mul_add : public test_case {
  2740. const ggml_type type;
  2741. const std::array<int64_t, 4> ne;
  2742. const float eps;
  2743. const bool broadcast;
  2744. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2745. std::string op_desc(ggml_tensor * t) override {
  2746. GGML_UNUSED(t);
  2747. return "RMS_NORM_MUL_ADD";
  2748. }
  2749. bool run_whole_graph() override { return true; }
  2750. std::string vars() override {
  2751. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2752. }
  2753. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2754. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2755. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2756. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2757. ggml_tensor * build_graph(ggml_context * ctx) override {
  2758. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2759. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2760. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2761. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2762. ggml_set_param(a);
  2763. ggml_set_name(a, "a");
  2764. ggml_set_param(b);
  2765. ggml_set_name(b, "b");
  2766. ggml_set_param(c);
  2767. ggml_set_name(c, "c");
  2768. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2769. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2770. if (multi_add) {
  2771. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2772. }
  2773. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2774. ggml_set_name(out, "out");
  2775. return out;
  2776. }
  2777. void initialize_tensors(ggml_context * ctx) override {
  2778. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2779. init_tensor_uniform(t, -10.f, 10.f);
  2780. }
  2781. }
  2782. float grad_eps() override {
  2783. return 1.0f;
  2784. }
  2785. bool grad_precise() override {
  2786. return true;
  2787. }
  2788. };
  2789. // GGML_OP_SSM_CONV
  2790. struct test_ssm_conv : public test_case {
  2791. const ggml_type type;
  2792. const std::array<int64_t, 4> ne_a;
  2793. const std::array<int64_t, 4> ne_b;
  2794. std::string vars() override {
  2795. return VARS_TO_STR3(type, ne_a, ne_b);
  2796. }
  2797. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2798. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2799. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2800. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2801. ggml_tensor * build_graph(ggml_context * ctx) override {
  2802. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2803. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2804. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2805. return out;
  2806. }
  2807. };
  2808. // GGML_OP_SSM_SCAN
  2809. struct test_ssm_scan : public test_case {
  2810. const ggml_type type;
  2811. const int64_t d_state;
  2812. const int64_t head_dim;
  2813. const int64_t n_head;
  2814. const int64_t n_group;
  2815. const int64_t n_seq_tokens;
  2816. const int64_t n_seqs;
  2817. std::string vars() override {
  2818. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2819. }
  2820. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2821. int64_t d_state = 32,
  2822. int64_t head_dim = 1, // non-zero for Mamba-2
  2823. int64_t n_head = 32,
  2824. int64_t n_group = 1,
  2825. int64_t n_seq_tokens = 32,
  2826. int64_t n_seqs = 32)
  2827. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2828. ggml_tensor * build_graph(ggml_context * ctx) override {
  2829. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2830. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2831. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2832. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2833. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2834. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2835. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2836. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2837. return out;
  2838. }
  2839. // similar to test_mul_mat_id
  2840. void initialize_tensors(ggml_context * ctx) override {
  2841. std::random_device rd;
  2842. std::default_random_engine rng(rd());
  2843. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2844. if (t->type == GGML_TYPE_I32) {
  2845. if (ggml_is_view_op(t->op)) { continue; }
  2846. // ids
  2847. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2848. std::vector<int32_t> data(t->ne[0]);
  2849. for (int i = 0; i < t->ne[0]; i++) {
  2850. data[i] = i;
  2851. }
  2852. std::shuffle(data.begin(), data.end(), rng);
  2853. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2854. }
  2855. } else {
  2856. init_tensor_uniform(t);
  2857. }
  2858. }
  2859. }
  2860. };
  2861. // GGML_OP_RWKV_WKV6
  2862. struct test_rwkv_wkv6 : public test_case {
  2863. const ggml_type type;
  2864. const int64_t head_count;
  2865. const int64_t head_size;
  2866. const int64_t n_seq_tokens;
  2867. const int64_t n_seqs;
  2868. std::string vars() override {
  2869. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2870. }
  2871. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2872. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2873. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2874. ggml_tensor * build_graph(ggml_context * ctx) override {
  2875. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2876. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2877. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2878. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2879. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2880. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2881. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2882. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2883. return out;
  2884. }
  2885. };
  2886. // GGML_OP_GATED_LINEAR_ATTN
  2887. struct test_gla : public test_case {
  2888. const ggml_type type;
  2889. const int64_t head_count;
  2890. const int64_t head_size;
  2891. const int64_t n_seq_tokens;
  2892. const int64_t n_seqs;
  2893. std::string vars() override {
  2894. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2895. }
  2896. test_gla(ggml_type type = GGML_TYPE_F32,
  2897. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2898. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2899. ggml_tensor * build_graph(ggml_context * ctx) override {
  2900. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2901. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2902. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2903. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2904. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2905. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2906. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2907. return out;
  2908. }
  2909. };
  2910. // GGML_OP_RWKV_WKV7
  2911. struct test_rwkv_wkv7 : public test_case {
  2912. const ggml_type type;
  2913. const int64_t head_count;
  2914. const int64_t head_size;
  2915. const int64_t n_seq_tokens;
  2916. const int64_t n_seqs;
  2917. std::string vars() override {
  2918. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2919. }
  2920. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2921. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2922. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2923. ggml_tensor * build_graph(ggml_context * ctx) override {
  2924. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2925. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2926. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2927. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2928. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2929. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2930. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2931. // Outputs may become NaN with long seqlen without these normalization
  2932. a = ggml_l2_norm(ctx, a, 1e-7F);
  2933. b = ggml_l2_norm(ctx, b, 1e-7F);
  2934. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2935. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2936. return out;
  2937. }
  2938. };
  2939. // GGML_OP_MUL_MAT
  2940. struct test_mul_mat : public test_case {
  2941. const ggml_type type_a;
  2942. const ggml_type type_b;
  2943. const int64_t m;
  2944. const int64_t n;
  2945. const int64_t k;
  2946. const std::array<int64_t, 2> bs; // dims 3 and 4
  2947. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2948. const std::array<int64_t, 4> per; // permutation of dimensions
  2949. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2950. const uint32_t o; // number of outputs
  2951. std::string vars() override {
  2952. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2953. }
  2954. double max_nmse_err() override {
  2955. return 5e-4;
  2956. }
  2957. int64_t grad_nmax() override {
  2958. return 20000;
  2959. }
  2960. uint64_t op_flops(ggml_tensor * t) override {
  2961. GGML_UNUSED(t);
  2962. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2963. }
  2964. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2965. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2966. std::array<int64_t, 2> bs = {10, 10},
  2967. std::array<int64_t, 2> nr = {2, 2},
  2968. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2969. int64_t k_v = 0, uint32_t o = 1)
  2970. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2971. ggml_tensor * build_graph(ggml_context * ctx) override {
  2972. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2973. ggml_tensor * a;
  2974. ggml_tensor * b;
  2975. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2976. if (npermuted > 0) {
  2977. GGML_ASSERT(npermuted == 2);
  2978. GGML_ASSERT(k_v == 0); // not handled
  2979. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2980. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2981. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2982. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2983. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2984. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2985. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2986. if (!ggml_is_quantized(type_a)) {
  2987. if (bs[1] == 1 && nr[1] == 1) {
  2988. ggml_set_param(a);
  2989. }
  2990. ggml_set_param(b);
  2991. }
  2992. ggml_set_name(a, "a");
  2993. ggml_set_name(b, "b");
  2994. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2995. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2996. ggml_set_name(a, "a_permuted");
  2997. ggml_set_name(b, "b_permuted");
  2998. } else {
  2999. const int64_t k_physical = k_v == 0 ? k : k_v;
  3000. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  3001. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  3002. if (!ggml_is_quantized(type_a)) {
  3003. if (bs[1] == 1 && nr[1] == 1) {
  3004. ggml_set_param(a);
  3005. }
  3006. ggml_set_param(b);
  3007. }
  3008. if (k_v != 0) {
  3009. GGML_ASSERT(k_v > k);
  3010. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  3011. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  3012. }
  3013. ggml_set_name(a, "a");
  3014. ggml_set_name(b, "b");
  3015. }
  3016. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  3017. ggml_set_name(out, "out");
  3018. for (uint32_t i = 1; i < o; ++i) {
  3019. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  3020. ggml_set_name(out2, "out2");
  3021. out = ggml_add(ctx, out, out2);
  3022. }
  3023. return out;
  3024. }
  3025. bool run_whole_graph() override { return o > 1; }
  3026. std::string op_desc(ggml_tensor * t) override {
  3027. GGML_UNUSED(t);
  3028. return ggml_op_name(GGML_OP_MUL_MAT);
  3029. }
  3030. };
  3031. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  3032. std::random_device rd;
  3033. std::default_random_engine rng(rd());
  3034. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3035. if (t->type == GGML_TYPE_I32) {
  3036. if (ggml_is_view_op(t->op)) { continue; }
  3037. // ids
  3038. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3039. std::vector<int32_t> data(t->ne[0]);
  3040. for (int i = 0; i < t->ne[0]; i++) {
  3041. data[i] = i % n_mats;
  3042. }
  3043. std::shuffle(data.begin(), data.end(), rng);
  3044. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  3045. }
  3046. } else {
  3047. init_tensor_uniform(t);
  3048. }
  3049. }
  3050. }
  3051. // GGML_OP_MUL_MAT_ID
  3052. struct test_mul_mat_id : public test_case {
  3053. const ggml_type type_a;
  3054. const ggml_type type_b;
  3055. const int n_mats;
  3056. const int n_used;
  3057. const bool b; // broadcast b matrix
  3058. const int64_t m;
  3059. const int64_t n;
  3060. const int64_t k;
  3061. std::string vars() override {
  3062. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3063. }
  3064. double max_nmse_err() override {
  3065. return 5e-4;
  3066. }
  3067. uint64_t op_flops(ggml_tensor * t) override {
  3068. GGML_UNUSED(t);
  3069. return 2 * m * k * n * n_used;
  3070. }
  3071. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3072. int n_mats = 8, int n_used = 2, bool b = false,
  3073. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3074. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3075. m(m), n(n), k(k) {
  3076. GGML_ASSERT(n_used <= n_mats);
  3077. }
  3078. ggml_tensor * build_graph(ggml_context * ctx) override {
  3079. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3080. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3081. ggml_set_name(as, "as");
  3082. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3083. ggml_set_name(ids, "ids");
  3084. if (n_used != n_mats) {
  3085. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3086. ggml_set_name(ids, "view_of_ids");
  3087. }
  3088. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3089. ggml_set_name(b, "b");
  3090. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3091. ggml_set_name(out, "out");
  3092. return out;
  3093. }
  3094. void initialize_tensors(ggml_context * ctx) override {
  3095. init_mul_mat_id_tensors(ctx, n_mats);
  3096. }
  3097. };
  3098. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3099. struct test_mul_mat_id_fusion : public test_case {
  3100. const ggml_type type_a;
  3101. const ggml_type type_b;
  3102. const int n_mats;
  3103. const int n_used;
  3104. const bool b; // broadcast b matrix
  3105. const int64_t m;
  3106. const int64_t n;
  3107. const int64_t k;
  3108. const uint32_t o; // number of outputs
  3109. const bool mul;
  3110. std::string vars() override {
  3111. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3112. }
  3113. double max_nmse_err() override {
  3114. return 5e-4;
  3115. }
  3116. uint64_t op_flops(ggml_tensor * t) override {
  3117. GGML_UNUSED(t);
  3118. return 2 * m * k * n * n_used;
  3119. }
  3120. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3121. int n_mats = 8, int n_used = 2, bool b = false,
  3122. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3123. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3124. m(m), n(n), k(k), o(o), mul(mul) {
  3125. GGML_ASSERT(n_used <= n_mats);
  3126. }
  3127. ggml_tensor * build_graph(ggml_context * ctx) override {
  3128. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3129. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3130. ggml_set_name(as, "as");
  3131. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3132. ggml_set_name(ids, "ids");
  3133. if (n_used != n_mats) {
  3134. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3135. ggml_set_name(ids, "view_of_ids");
  3136. }
  3137. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3138. ggml_set_name(b, "b");
  3139. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3140. ggml_set_name(out, "out");
  3141. for (uint32_t i = 1; i < o; ++i) {
  3142. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3143. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3144. ggml_set_name(out2, "out2");
  3145. out = ggml_add(ctx, out, out2);
  3146. }
  3147. if (mul) {
  3148. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3149. ne[0] = 1;
  3150. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3151. out = ggml_mul(ctx, out, m);
  3152. }
  3153. return out;
  3154. }
  3155. void initialize_tensors(ggml_context * ctx) override {
  3156. init_mul_mat_id_tensors(ctx, n_mats);
  3157. }
  3158. bool run_whole_graph() override { return true; }
  3159. std::string op_desc(ggml_tensor * t) override {
  3160. GGML_UNUSED(t);
  3161. return "MUL_MAT_ID_FUSION";
  3162. }
  3163. };
  3164. // GGML_OP_OUT_PROD
  3165. struct test_out_prod : public test_case {
  3166. const ggml_type type_a;
  3167. const ggml_type type_b;
  3168. const int64_t m;
  3169. const int64_t n;
  3170. const int64_t k;
  3171. const std::array<int64_t, 2> bs; // dims 3 and 4
  3172. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3173. const bool trans_b;
  3174. std::string vars() override {
  3175. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3176. }
  3177. double max_nmse_err() override {
  3178. return 5e-4;
  3179. }
  3180. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3181. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3182. std::array<int64_t, 2> bs = {10, 10},
  3183. std::array<int64_t, 2> nr = {2, 2},
  3184. bool trans_b = false)
  3185. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3186. ggml_tensor * build_graph(ggml_context * ctx) override {
  3187. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3188. ggml_set_name(a, "a");
  3189. ggml_tensor * b;
  3190. if (trans_b) {
  3191. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3192. b = ggml_transpose(ctx, b);
  3193. } else {
  3194. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3195. }
  3196. ggml_set_name(b, "b");
  3197. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3198. ggml_set_name(out, "out");
  3199. return out;
  3200. }
  3201. };
  3202. // GGML_OP_SQR
  3203. struct test_sqr : public test_case {
  3204. const ggml_type type;
  3205. const std::array<int64_t, 4> ne;
  3206. std::string vars() override {
  3207. return VARS_TO_STR2(type, ne);
  3208. }
  3209. test_sqr(ggml_type type = GGML_TYPE_F32,
  3210. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3211. : type(type), ne(ne) {}
  3212. ggml_tensor * build_graph(ggml_context * ctx) override {
  3213. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3214. ggml_set_param(a);
  3215. ggml_set_name(a, "a");
  3216. ggml_tensor * out = ggml_sqr(ctx, a);
  3217. ggml_set_name(out, "out");
  3218. return out;
  3219. }
  3220. float grad_eps() override {
  3221. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3222. }
  3223. };
  3224. // GGML_OP_SQRT
  3225. struct test_sqrt : public test_case {
  3226. const ggml_type type;
  3227. const std::array<int64_t, 4> ne;
  3228. std::string vars() override {
  3229. return VARS_TO_STR2(type, ne);
  3230. }
  3231. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3232. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3233. : type(type), ne(ne) {}
  3234. ggml_tensor * build_graph(ggml_context * ctx) override {
  3235. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3236. ggml_set_param(a);
  3237. ggml_set_name(a, "a");
  3238. ggml_tensor * out = ggml_sqrt(ctx, a);
  3239. ggml_set_name(out, "out");
  3240. return out;
  3241. }
  3242. void initialize_tensors(ggml_context * ctx) override {
  3243. // fill with positive values
  3244. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3245. init_tensor_uniform(t, 50.0f, 100.0f);
  3246. }
  3247. }
  3248. float grad_eps() override {
  3249. return 20.0f;
  3250. }
  3251. bool grad_precise() override {
  3252. return true;
  3253. }
  3254. };
  3255. // GGML_OP_LOG
  3256. struct test_log : public test_case {
  3257. const ggml_type type;
  3258. const std::array<int64_t, 4> ne;
  3259. std::string vars() override {
  3260. return VARS_TO_STR2(type, ne);
  3261. }
  3262. test_log(ggml_type type = GGML_TYPE_F32,
  3263. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3264. : type(type), ne(ne) {}
  3265. ggml_tensor * build_graph(ggml_context * ctx) override {
  3266. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3267. ggml_set_param(a);
  3268. ggml_set_name(a, "a");
  3269. ggml_tensor * out = ggml_log(ctx, a);
  3270. ggml_set_name(out, "out");
  3271. return out;
  3272. }
  3273. void initialize_tensors(ggml_context * ctx) override {
  3274. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3275. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3276. init_tensor_uniform(t, 0.9f, 1.1f);
  3277. }
  3278. }
  3279. bool grad_precise() override {
  3280. return true;
  3281. }
  3282. };
  3283. // GGML_OP_SIN
  3284. struct test_sin : public test_case {
  3285. const ggml_type type;
  3286. const std::array<int64_t, 4> ne;
  3287. std::string vars() override {
  3288. return VARS_TO_STR2(type, ne);
  3289. }
  3290. test_sin(ggml_type type = GGML_TYPE_F32,
  3291. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3292. : type(type), ne(ne) {}
  3293. ggml_tensor * build_graph(ggml_context * ctx) override {
  3294. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3295. ggml_set_param(a);
  3296. ggml_set_name(a, "a");
  3297. ggml_tensor * out = ggml_sin(ctx, a);
  3298. ggml_set_name(out, "out");
  3299. return out;
  3300. }
  3301. void initialize_tensors(ggml_context * ctx) override {
  3302. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3303. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3304. }
  3305. }
  3306. double max_maa_err() override {
  3307. return 1e-3;
  3308. }
  3309. float grad_eps() override {
  3310. return 0.2f;
  3311. }
  3312. bool grad_precise() override {
  3313. return true;
  3314. }
  3315. };
  3316. // GGML_OP_COS
  3317. struct test_cos : public test_case {
  3318. const ggml_type type;
  3319. const std::array<int64_t, 4> ne;
  3320. std::string vars() override {
  3321. return VARS_TO_STR2(type, ne);
  3322. }
  3323. test_cos(ggml_type type = GGML_TYPE_F32,
  3324. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3325. : type(type), ne(ne) {}
  3326. ggml_tensor * build_graph(ggml_context * ctx) override {
  3327. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3328. ggml_set_param(a);
  3329. ggml_set_name(a, "a");
  3330. ggml_tensor * out = ggml_cos(ctx, a);
  3331. ggml_set_name(out, "out");
  3332. return out;
  3333. }
  3334. void initialize_tensors(ggml_context * ctx) override {
  3335. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3336. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3337. }
  3338. }
  3339. double max_maa_err() override {
  3340. return 1e-3;
  3341. }
  3342. float grad_eps() override {
  3343. return 0.2f;
  3344. }
  3345. bool grad_precise() override {
  3346. return true;
  3347. }
  3348. };
  3349. // GGML_OP_CLAMP
  3350. struct test_clamp : public test_case {
  3351. const ggml_type type;
  3352. const std::array<int64_t, 4> ne;
  3353. float min;
  3354. float max;
  3355. std::string vars() override {
  3356. return VARS_TO_STR4(type, ne, min, max);
  3357. }
  3358. test_clamp(ggml_type type = GGML_TYPE_F32,
  3359. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3360. float min = -0.5f, float max = 0.5f)
  3361. : type(type), ne(ne), min(min), max(max) {}
  3362. ggml_tensor * build_graph(ggml_context * ctx) override {
  3363. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3364. ggml_set_name(a, "a");
  3365. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3366. ggml_set_name(out, "out");
  3367. return out;
  3368. }
  3369. float grad_eps() override {
  3370. return 1e-2f;
  3371. }
  3372. std::vector<float> grad_expect() override {
  3373. return {0.0f, 1.0f};
  3374. }
  3375. };
  3376. // GGML_OP_FLOOR
  3377. struct test_floor : public test_case {
  3378. const ggml_type type;
  3379. const std::array<int64_t, 4> ne;
  3380. std::string vars() override {
  3381. return VARS_TO_STR2(type, ne);
  3382. }
  3383. test_floor(ggml_type type = GGML_TYPE_F32,
  3384. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3385. : type(type), ne(ne) {}
  3386. ggml_tensor * build_graph(ggml_context * ctx) override {
  3387. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3388. ggml_set_param(a);
  3389. ggml_set_name(a, "a");
  3390. ggml_tensor * out = ggml_floor(ctx, a);
  3391. ggml_set_name(out, "out");
  3392. return out;
  3393. }
  3394. void initialize_tensors(ggml_context * ctx) override {
  3395. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3396. init_tensor_uniform(t, -10.0f, 10.0f);
  3397. }
  3398. }
  3399. };
  3400. // GGML_OP_CEIL
  3401. struct test_ceil : public test_case {
  3402. const ggml_type type;
  3403. const std::array<int64_t, 4> ne;
  3404. std::string vars() override {
  3405. return VARS_TO_STR2(type, ne);
  3406. }
  3407. test_ceil(ggml_type type = GGML_TYPE_F32,
  3408. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3409. : type(type), ne(ne) {}
  3410. ggml_tensor * build_graph(ggml_context * ctx) override {
  3411. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3412. ggml_set_param(a);
  3413. ggml_set_name(a, "a");
  3414. ggml_tensor * out = ggml_ceil(ctx, a);
  3415. ggml_set_name(out, "out");
  3416. return out;
  3417. }
  3418. void initialize_tensors(ggml_context * ctx) override {
  3419. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3420. init_tensor_uniform(t, -10.0f, 10.0f);
  3421. }
  3422. }
  3423. };
  3424. // GGML_OP_ROUND
  3425. struct test_round : public test_case {
  3426. const ggml_type type;
  3427. const std::array<int64_t, 4> ne;
  3428. std::string vars() override {
  3429. return VARS_TO_STR2(type, ne);
  3430. }
  3431. test_round(ggml_type type = GGML_TYPE_F32,
  3432. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3433. : type(type), ne(ne) {}
  3434. ggml_tensor * build_graph(ggml_context * ctx) override {
  3435. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3436. ggml_set_param(a);
  3437. ggml_set_name(a, "a");
  3438. ggml_tensor * out = ggml_round(ctx, a);
  3439. ggml_set_name(out, "out");
  3440. return out;
  3441. }
  3442. void initialize_tensors(ggml_context * ctx) override {
  3443. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3444. init_tensor_uniform(t, -10.0f, 10.0f);
  3445. }
  3446. }
  3447. };
  3448. // GGML_OP_TRUNC
  3449. struct test_trunc : public test_case {
  3450. const ggml_type type;
  3451. const std::array<int64_t, 4> ne;
  3452. std::string vars() override {
  3453. return VARS_TO_STR2(type, ne);
  3454. }
  3455. test_trunc(ggml_type type = GGML_TYPE_F32,
  3456. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3457. : type(type), ne(ne) {}
  3458. ggml_tensor * build_graph(ggml_context * ctx) override {
  3459. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3460. ggml_set_param(a);
  3461. ggml_set_name(a, "a");
  3462. ggml_tensor * out = ggml_trunc(ctx, a);
  3463. ggml_set_name(out, "out");
  3464. return out;
  3465. }
  3466. void initialize_tensors(ggml_context * ctx) override {
  3467. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3468. init_tensor_uniform(t, -10.0f, 10.0f);
  3469. }
  3470. }
  3471. };
  3472. // GGML_OP_DIAG_MASK_INF
  3473. struct test_diag_mask_inf : public test_case {
  3474. const ggml_type type;
  3475. const std::array<int64_t, 4> ne;
  3476. const int n_past;
  3477. std::string vars() override {
  3478. return VARS_TO_STR3(type, ne, n_past);
  3479. }
  3480. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3481. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3482. int n_past = 5)
  3483. : type(type), ne(ne), n_past(n_past) {}
  3484. ggml_tensor * build_graph(ggml_context * ctx) override {
  3485. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3486. ggml_set_param(a);
  3487. ggml_set_name(a, "a");
  3488. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3489. ggml_set_name(out, "out");
  3490. return out;
  3491. }
  3492. };
  3493. // GGML_OP_SOFT_MAX
  3494. struct test_soft_max : public test_case {
  3495. const ggml_type type;
  3496. const std::array<int64_t, 4> ne;
  3497. const bool mask;
  3498. const bool sinks;
  3499. const ggml_type m_prec;
  3500. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3501. const float scale;
  3502. const float max_bias;
  3503. const bool inplace;
  3504. std::string vars() override {
  3505. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3506. }
  3507. // the 1024 test with bias occasionally fails:
  3508. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3509. virtual double max_nmse_err() override {
  3510. return 1e-6;
  3511. }
  3512. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3513. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3514. bool mask = false,
  3515. bool sinks = false,
  3516. ggml_type m_prec = GGML_TYPE_F32,
  3517. std::array<int64_t, 2> nr23 = {1, 1},
  3518. float scale = 1.0f,
  3519. float max_bias = 0.0f,
  3520. bool inplace = false)
  3521. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3522. ggml_tensor * build_graph(ggml_context * ctx) override {
  3523. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3524. ggml_set_param(a);
  3525. ggml_set_name(a, "a");
  3526. ggml_tensor * mask = nullptr;
  3527. if (this->mask) {
  3528. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3529. ggml_set_name(mask, "mask");
  3530. }
  3531. ggml_tensor * sinks = nullptr;
  3532. if (this->sinks) {
  3533. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3534. ggml_set_name(sinks, "sinks");
  3535. }
  3536. ggml_tensor * out;
  3537. if (inplace) {
  3538. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3539. } else {
  3540. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3541. }
  3542. ggml_soft_max_add_sinks(out, sinks);
  3543. ggml_set_name(out, "out");
  3544. return out;
  3545. }
  3546. bool grad_precise() override {
  3547. return true;
  3548. }
  3549. };
  3550. // GGML_OP_SOFT_MAX_BACK
  3551. struct test_soft_max_back : public test_case {
  3552. const ggml_type type;
  3553. const std::array<int64_t, 4> ne;
  3554. const float scale;
  3555. const float max_bias;
  3556. std::string vars() override {
  3557. return VARS_TO_STR4(type, ne, scale, max_bias);
  3558. }
  3559. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3560. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3561. float scale = 1.0f,
  3562. float max_bias = 0.0f)
  3563. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3564. ggml_tensor * build_graph(ggml_context * ctx) override {
  3565. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3566. ggml_set_name(a, "a");
  3567. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3568. ggml_set_name(a, "a");
  3569. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3570. ggml_set_name(out, "out");
  3571. return out;
  3572. }
  3573. };
  3574. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3575. struct test_rope : public test_case {
  3576. const ggml_type type;
  3577. const std::array<int64_t, 4> ne_a;
  3578. int n_dims;
  3579. int mode;
  3580. int n_ctx; // used to generate positions
  3581. float fs; // freq_scale
  3582. float ef; // ext_factor
  3583. float af; // attn_factor
  3584. bool ff;
  3585. int v; // view (1 : non-contiguous a)
  3586. bool forward;
  3587. bool inplace;
  3588. std::string vars() override {
  3589. // forward can be inferred from the op, does not need to be printed
  3590. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3591. }
  3592. test_rope(ggml_type type = GGML_TYPE_F32,
  3593. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3594. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3595. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3596. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3597. ggml_tensor * build_graph(ggml_context * ctx) override {
  3598. ggml_tensor * a;
  3599. if (v & 1) {
  3600. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3601. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3602. if (forward) {
  3603. ggml_set_param(a);
  3604. }
  3605. ggml_set_name(a, "a");
  3606. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3607. ggml_set_name(a, "view_of_a");
  3608. } else {
  3609. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3610. if (forward) {
  3611. ggml_set_param(a);
  3612. }
  3613. ggml_set_name(a, "a");
  3614. }
  3615. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3616. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3617. ggml_tensor * pos;
  3618. if (is_mrope || is_vision) {
  3619. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3620. } else {
  3621. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3622. }
  3623. ggml_set_name(pos, "pos");
  3624. ggml_tensor * freq = nullptr;
  3625. if (ff) {
  3626. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3627. ggml_set_name(freq, "freq");
  3628. }
  3629. ggml_tensor * out;
  3630. if (is_mrope) {
  3631. if (is_vision) {
  3632. GGML_ASSERT(n_dims/4 > 0);
  3633. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3634. if (forward) {
  3635. if (inplace) {
  3636. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3637. } else {
  3638. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3639. }
  3640. } else {
  3641. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3642. }
  3643. } else {
  3644. GGML_ASSERT(n_dims/3 > 0);
  3645. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3646. if (forward) {
  3647. if (inplace) {
  3648. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3649. } else {
  3650. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3651. }
  3652. } else {
  3653. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3654. }
  3655. }
  3656. } else {
  3657. if (forward) {
  3658. if (inplace) {
  3659. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3660. } else {
  3661. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3662. }
  3663. } else {
  3664. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3665. }
  3666. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3667. }
  3668. ggml_set_name(out, "out");
  3669. return out;
  3670. }
  3671. void initialize_tensors(ggml_context * ctx) override {
  3672. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3673. if (t->type == GGML_TYPE_I32) {
  3674. // pos
  3675. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3676. std::vector<int> data(num_pos_ids);
  3677. for (int i = 0; i < num_pos_ids; i++) {
  3678. data[i] = rand() % n_ctx;
  3679. }
  3680. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3681. } else {
  3682. if (t->ne[0] == n_dims/2) {
  3683. // frequency factors in the range [0.9f, 1.1f]
  3684. init_tensor_uniform(t, 0.9f, 1.1f);
  3685. } else {
  3686. init_tensor_uniform(t);
  3687. }
  3688. }
  3689. }
  3690. }
  3691. double max_maa_err() override {
  3692. return 1e-3;
  3693. }
  3694. bool grad_precise() override {
  3695. return true;
  3696. }
  3697. };
  3698. // GGML_OP_POOL2D
  3699. struct test_pool2d : public test_case {
  3700. enum ggml_op_pool pool_type;
  3701. const ggml_type type_input;
  3702. const std::array<int64_t, 4> ne_input;
  3703. // kernel size
  3704. const int k0;
  3705. const int k1;
  3706. // stride
  3707. const int s0;
  3708. const int s1;
  3709. // padding
  3710. const int p0;
  3711. const int p1;
  3712. std::string vars() override {
  3713. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3714. }
  3715. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3716. ggml_type type_input = GGML_TYPE_F32,
  3717. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3718. int k0 = 3, int k1 = 3,
  3719. int s0 = 1, int s1 = 1,
  3720. int p0 = 1, int p1 = 1)
  3721. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3722. ggml_tensor * build_graph(ggml_context * ctx) override {
  3723. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3724. ggml_set_param(input);
  3725. ggml_set_name(input, "input");
  3726. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3727. ggml_set_name(out, "out");
  3728. return out;
  3729. }
  3730. };
  3731. // GGML_OP_CONV_TRANSPOSE_1D
  3732. struct test_conv_transpose_1d : public test_case {
  3733. const std::array<int64_t, 4> ne_input;
  3734. const std::array<int64_t, 4> ne_kernel;
  3735. const int s0; // stride
  3736. const int p0; // padding
  3737. const int d0; // dilation
  3738. std::string vars() override {
  3739. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3740. }
  3741. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3742. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3743. int s0 = 1, int p0 = 0, int d0 = 1)
  3744. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3745. ggml_tensor * build_graph(ggml_context * ctx) override {
  3746. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3747. ggml_set_name(input, "input");
  3748. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3749. ggml_set_name(kernel, "kernel");
  3750. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3751. ggml_set_name(out, "out");
  3752. return out;
  3753. }
  3754. };
  3755. // GGML_OP_CONV_TRANSPOSE_2D
  3756. struct test_conv_transpose_2d : public test_case {
  3757. const std::array<int64_t, 4> ne_input;
  3758. const std::array<int64_t, 4> ne_kernel;
  3759. const int stride;
  3760. std::string vars() override {
  3761. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3762. }
  3763. double max_nmse_err() override {
  3764. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3765. }
  3766. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3767. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3768. int stride = 1)
  3769. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3770. ggml_tensor * build_graph(ggml_context * ctx) override {
  3771. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3772. ggml_set_name(input, "input");
  3773. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3774. ggml_set_name(kernel, "kernel");
  3775. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3776. ggml_set_name(out, "out");
  3777. return out;
  3778. }
  3779. };
  3780. // GGML_OP_IM2COL
  3781. struct test_im2col : public test_case {
  3782. const ggml_type type_input;
  3783. const ggml_type type_kernel;
  3784. const ggml_type dst_type;
  3785. const std::array<int64_t, 4> ne_input;
  3786. const std::array<int64_t, 4> ne_kernel;
  3787. // stride
  3788. const int s0;
  3789. const int s1;
  3790. // padding
  3791. const int p0;
  3792. const int p1;
  3793. // dilation
  3794. const int d0;
  3795. const int d1;
  3796. // mode
  3797. const bool is_2D;
  3798. std::string vars() override {
  3799. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3800. }
  3801. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3802. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3803. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3804. int s0 = 1, int s1 = 1,
  3805. int p0 = 1, int p1 = 1,
  3806. int d0 = 1, int d1 = 1,
  3807. bool is_2D = true)
  3808. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3809. ggml_tensor * build_graph(ggml_context * ctx) override {
  3810. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3811. ggml_set_param(input);
  3812. ggml_set_name(input, "input");
  3813. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3814. ggml_set_name(kernel, "kernel");
  3815. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3816. ggml_set_name(out, "out");
  3817. return out;
  3818. }
  3819. };
  3820. // GGML_OP_IM2COL_3D
  3821. struct test_im2col_3d : public test_case {
  3822. const ggml_type type_input;
  3823. const ggml_type type_kernel;
  3824. const ggml_type dst_type;
  3825. const std::array<int64_t, 4> ne_input;
  3826. const std::array<int64_t, 4> ne_kernel;
  3827. // stride
  3828. const int s0;
  3829. const int s1;
  3830. const int s2;
  3831. // padding
  3832. const int p0;
  3833. const int p1;
  3834. const int p2;
  3835. // dilation
  3836. const int d0;
  3837. const int d1;
  3838. const int d2;
  3839. const int64_t IC;
  3840. const bool v;
  3841. std::string vars() override {
  3842. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3843. }
  3844. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3845. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3846. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3847. int64_t IC = 3,
  3848. int s0 = 1, int s1 = 1, int s2 = 1,
  3849. int p0 = 1, int p1 = 1, int p2 = 1,
  3850. int d0 = 1, int d1 = 1, int d2 = 1,
  3851. bool v = false)
  3852. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3853. ggml_tensor * build_graph(ggml_context * ctx) override {
  3854. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3855. ggml_set_param(input);
  3856. ggml_set_name(input, "input");
  3857. if (v) {
  3858. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3859. ggml_set_name(input, "view_of_input");
  3860. }
  3861. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3862. ggml_set_name(kernel, "kernel");
  3863. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3864. ggml_set_name(out, "out");
  3865. return out;
  3866. }
  3867. };
  3868. // CONV_2D
  3869. struct test_conv_2d : public test_case {
  3870. const std::array<int64_t, 4> ne_input;
  3871. const std::array<int64_t, 4> ne_kernel;
  3872. const ggml_type type_kernel;
  3873. const int stride0;
  3874. const int stride1;
  3875. const int padding0;
  3876. const int padding1;
  3877. const int dilation0;
  3878. const int dilation1;
  3879. // Whether the inputs are contiguous in the channel dim or the width dim
  3880. const bool cwhn;
  3881. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3882. // uses ggml_conv_2d:
  3883. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3884. // CONV_2D graph will be built, while
  3885. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3886. // IM2COL -> MUL_MM graph will be built.
  3887. std::string vars() override {
  3888. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3889. }
  3890. double max_nmse_err() override {
  3891. return 5e-4;
  3892. }
  3893. uint64_t op_flops(ggml_tensor * t) override {
  3894. GGML_UNUSED(t);
  3895. // Just counting matmul costs:
  3896. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3897. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3898. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3899. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3900. };
  3901. int64_t W = ne_input[0];
  3902. int64_t H = ne_input[1];
  3903. int64_t KW = ne_kernel[0];
  3904. int64_t KH = ne_kernel[1];
  3905. int64_t Cin = ne_kernel[2];
  3906. int64_t Cout = ne_kernel[3];
  3907. int64_t N = ne_input[3];
  3908. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3909. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3910. int64_t K = Cout;
  3911. int64_t CRS = Cin * KH * KW;
  3912. int64_t NPQ = N * OH * OW;
  3913. return K * NPQ * (2 * CRS - 1);
  3914. }
  3915. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3916. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3917. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3918. ne_input(ne_input),
  3919. ne_kernel(ne_kernel),
  3920. type_kernel(type_kernel),
  3921. stride0(stride0),
  3922. stride1(stride1),
  3923. padding0(padding0),
  3924. padding1(padding1),
  3925. dilation0(dilation0),
  3926. dilation1(dilation1),
  3927. cwhn(cwhn) {}
  3928. ggml_tensor * build_graph(ggml_context * ctx) override {
  3929. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3930. ggml_set_name(input, "input");
  3931. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3932. ggml_set_name(kernel, "kernel");
  3933. if (cwhn) {
  3934. // change memory layout to channel-most-contiguous (CWHN),
  3935. // then permute it back so NE matches the original input
  3936. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3937. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3938. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3939. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3940. }
  3941. ggml_tensor * out =
  3942. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3943. ggml_set_name(out, "out");
  3944. return out;
  3945. }
  3946. };
  3947. // GGML_OP_CONV_2D_DW
  3948. struct test_conv_2d_dw : public test_case {
  3949. const std::array<int64_t, 4> ne_input;
  3950. const std::array<int64_t, 4> ne_kernel;
  3951. const int stride;
  3952. const int padding;
  3953. const int dilation;
  3954. const bool cwhn;
  3955. std::string vars() override {
  3956. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3957. }
  3958. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3959. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3960. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3961. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3962. ggml_tensor * build_graph(ggml_context * ctx) override {
  3963. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3964. ggml_set_name(input, "input");
  3965. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3966. ggml_set_name(kernel, "kernel");
  3967. if (cwhn) {
  3968. // change memory layout to channel-most-contiguous (CWHN),
  3969. // then permute it back so NE matches the original input
  3970. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3971. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3972. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3973. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3974. }
  3975. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3976. ctx, kernel, input,
  3977. stride, stride, padding, padding, dilation, dilation);
  3978. ggml_set_name(out, "out");
  3979. return out;
  3980. }
  3981. };
  3982. // GGML_OP_CONV_3D
  3983. struct test_conv_3d : public test_case {
  3984. // Logical 5D dimensions
  3985. const int64_t N, IC, ID, IH, IW;
  3986. const int64_t OC, KD, KH, KW;
  3987. // Conv params
  3988. const int s0, s1, s2;
  3989. const int p0, p1, p2;
  3990. const int d0, d1, d2;
  3991. // Types
  3992. const ggml_type type_kernel;
  3993. std::string op_desc(ggml_tensor * t) override {
  3994. GGML_UNUSED(t);
  3995. return "CONV_3D";
  3996. }
  3997. std::string vars() override {
  3998. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3999. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  4000. }
  4001. double max_nmse_err() override {
  4002. return 5e-4;
  4003. }
  4004. uint64_t op_flops(ggml_tensor * t) override {
  4005. GGML_UNUSED(t);
  4006. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4007. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4008. };
  4009. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  4010. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  4011. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  4012. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  4013. }
  4014. test_conv_3d(
  4015. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  4016. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  4017. int s0, int s1, int s2,
  4018. int p0, int p1, int p2,
  4019. int d0, int d1, int d2,
  4020. ggml_type type_kernel
  4021. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  4022. OC(OC), KD(KD), KH(KH), KW(KW),
  4023. s0(s0), s1(s1), s2(s2),
  4024. p0(p0), p1(p1), p2(p2),
  4025. d0(d0), d1(d1), d2(d2),
  4026. type_kernel(type_kernel) {}
  4027. ggml_tensor * build_graph(ggml_context * ctx) override {
  4028. // GGML input tensor is packed as [W, H, D, C*N]
  4029. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  4030. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  4031. ggml_set_name(input, "input");
  4032. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  4033. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  4034. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  4035. ggml_set_name(kernel, "kernel");
  4036. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  4037. ggml_set_name(out, "out");
  4038. return out;
  4039. }
  4040. };
  4041. // GGML_OP_CONCAT
  4042. struct test_concat : public test_case {
  4043. const ggml_type type;
  4044. const std::array<int64_t, 4> ne_a;
  4045. const int64_t ne_b_d;
  4046. const int dim;
  4047. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  4048. std::string vars() override {
  4049. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  4050. }
  4051. test_concat(ggml_type type = GGML_TYPE_F32,
  4052. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4053. int64_t ne_b_d = 5,
  4054. int dim = 2, int v = 0)
  4055. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4056. ggml_tensor * build_graph(ggml_context * ctx) override {
  4057. auto ne_b = ne_a;
  4058. ne_b[dim] = ne_b_d;
  4059. ggml_tensor * a;
  4060. if (v & 1) {
  4061. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4062. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4063. ggml_set_name(a, "a");
  4064. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4065. ggml_set_name(a, "view_of_a");
  4066. } else {
  4067. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4068. ggml_set_name(a, "a");
  4069. }
  4070. ggml_tensor * b;
  4071. if (v & 2) {
  4072. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4073. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4074. ggml_set_name(b, "b");
  4075. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4076. ggml_set_name(b, "view_of_b");
  4077. } else {
  4078. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4079. ggml_set_name(b, "b");
  4080. }
  4081. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4082. ggml_set_name(out, "out");
  4083. return out;
  4084. }
  4085. };
  4086. // GGML_OP_ARGSORT
  4087. struct test_argsort : public test_case {
  4088. const ggml_type type;
  4089. const std::array<int64_t, 4> ne;
  4090. ggml_sort_order order;
  4091. std::string vars() override {
  4092. return VARS_TO_STR3(type, ne, order);
  4093. }
  4094. test_argsort(ggml_type type = GGML_TYPE_F32,
  4095. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4096. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4097. : type(type), ne(ne), order(order) {}
  4098. ggml_tensor * build_graph(ggml_context * ctx) override {
  4099. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4100. ggml_set_name(a, "a");
  4101. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4102. ggml_set_name(out, "out");
  4103. return out;
  4104. }
  4105. void initialize_tensors(ggml_context * ctx) override {
  4106. std::random_device rd;
  4107. std::default_random_engine rng(rd());
  4108. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4109. if (t->type == GGML_TYPE_I32) {
  4110. // indices
  4111. std::vector<int> data(ggml_nelements(t));
  4112. for (int i = 0; i < ggml_nelements(t); i++) {
  4113. data[i] = rand();
  4114. }
  4115. std::shuffle(data.begin(), data.end(), rng);
  4116. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4117. } else if (t->type == GGML_TYPE_F32) {
  4118. // initialize with unique values to avoid ties
  4119. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4120. std::vector<float> data(t->ne[0]);
  4121. for (int i = 0; i < t->ne[0]; i++) {
  4122. data[i] = i;
  4123. }
  4124. std::shuffle(data.begin(), data.end(), rng);
  4125. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4126. }
  4127. } else {
  4128. GGML_ABORT("fatal error");
  4129. }
  4130. }
  4131. }
  4132. };
  4133. // GGML_OP_TOP_K
  4134. struct test_top_k : public test_case {
  4135. const ggml_type type;
  4136. const std::array<int64_t, 4> ne;
  4137. const int k;
  4138. std::string vars() override {
  4139. return VARS_TO_STR3(type, ne, k);
  4140. }
  4141. test_top_k(ggml_type type = GGML_TYPE_F32,
  4142. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4143. int k = 4)
  4144. : type(type), ne(ne), k(k) {}
  4145. double max_err() override {
  4146. return 0.0;
  4147. }
  4148. double err(const float * a, const float * b, size_t n) override {
  4149. std::vector<int32_t> ia(n);
  4150. std::vector<int32_t> ib(n);
  4151. double diff = 0.0f;
  4152. for (size_t i = 0; i < n; i++) {
  4153. ia[i] = (int32_t) a[i];
  4154. ib[i] = (int32_t) b[i];
  4155. // penalize the result if the data is not integer valued
  4156. diff += std::fabs(a[i] - ia[i]);
  4157. diff += std::fabs(b[i] - ib[i]);
  4158. }
  4159. return diff + jdst(ia.data(), ib.data(), n);
  4160. }
  4161. ggml_tensor * build_graph(ggml_context * ctx) override {
  4162. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4163. ggml_set_name(a, "a");
  4164. ggml_tensor * out = ggml_top_k(ctx, a, k);
  4165. ggml_set_name(out, "out");
  4166. return out;
  4167. }
  4168. void initialize_tensors(ggml_context * ctx) override {
  4169. std::random_device rd;
  4170. std::default_random_engine rng(rd());
  4171. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4172. // initialize with unique values to avoid ties
  4173. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4174. std::vector<float> data(t->ne[0]);
  4175. for (int i = 0; i < t->ne[0]; i++) {
  4176. data[i] = i;
  4177. }
  4178. std::shuffle(data.begin(), data.end(), rng);
  4179. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4180. }
  4181. }
  4182. }
  4183. };
  4184. struct test_topk_moe : public test_case {
  4185. const std::array<int64_t, 4> ne;
  4186. const int n_expert_used;
  4187. const bool with_norm;
  4188. const bool delayed_softmax;
  4189. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4190. int n_expert_used = 1,
  4191. bool with_norm = false,
  4192. bool delayed_softmax = false) :
  4193. ne(ne),
  4194. n_expert_used(n_expert_used),
  4195. with_norm(with_norm),
  4196. delayed_softmax(delayed_softmax) {
  4197. GGML_ASSERT(n_expert_used <= ne[0]);
  4198. GGML_ASSERT(!(with_norm && delayed_softmax));
  4199. }
  4200. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  4201. std::string op_desc(ggml_tensor * t) override {
  4202. GGML_UNUSED(t);
  4203. return "TOPK_MOE";
  4204. }
  4205. bool run_whole_graph() override { return true; }
  4206. ggml_tensor * build_graph(ggml_context * ctx) override {
  4207. const int n_expert = ne[0];
  4208. const int n_tokens = ne[1];
  4209. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4210. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  4211. ggml_tensor * selected_experts = ggml_argsort_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  4212. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4213. if (delayed_softmax) {
  4214. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4215. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  4216. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4217. }
  4218. if (with_norm) {
  4219. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4220. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  4221. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4222. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  4223. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4224. }
  4225. ggml_set_name(out, "out");
  4226. return out;
  4227. }
  4228. };
  4229. struct test_mul_mat_vec_fusion : public test_case {
  4230. const ggml_type type;
  4231. const ggml_glu_op glu_op;
  4232. const int64_t m;
  4233. const int64_t n;
  4234. const int64_t k;
  4235. const bool use_id;
  4236. const int n_mats;
  4237. const int n_used;
  4238. const bool b; // broadcast b matrix (only for use_id)
  4239. const bool with_bias;
  4240. const bool with_gate;
  4241. std::array<int64_t, 2> batch_dims;
  4242. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4243. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4244. std::array<int64_t, 2> batch_dims = {4, 2})
  4245. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4246. if (use_id) {
  4247. GGML_ASSERT(n_used <= n_mats);
  4248. }
  4249. }
  4250. std::string vars() override {
  4251. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4252. }
  4253. std::string op_desc(ggml_tensor * t) override {
  4254. GGML_UNUSED(t);
  4255. return "MUL_MAT_VEC_FUSION";
  4256. }
  4257. bool run_whole_graph() override { return true; }
  4258. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4259. ggml_tensor * out = nullptr;
  4260. if (with_gate) {
  4261. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4262. constexpr float alpha = 1.702f;
  4263. constexpr float limit = 7.0f;
  4264. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4265. } else {
  4266. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4267. }
  4268. }
  4269. return out;
  4270. }
  4271. ggml_tensor * build_graph(ggml_context * ctx) override {
  4272. if (!use_id) {
  4273. const int channels = batch_dims[0];
  4274. const int samples = batch_dims[1];
  4275. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4276. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4277. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4278. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4279. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4280. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4281. if (with_bias) {
  4282. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4283. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4284. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4285. }
  4286. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4287. if (with_bias && with_gate) {
  4288. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4289. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4290. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4291. }
  4292. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4293. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4294. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4295. out = ggml_add(ctx, out, bias2);
  4296. ggml_set_name(out, "out");
  4297. return out;
  4298. } else {
  4299. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4300. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4301. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4302. if (n_used != n_mats) {
  4303. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4304. }
  4305. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4306. ggml_set_name(cur, "cur");
  4307. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4308. if (with_bias) {
  4309. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4310. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4311. }
  4312. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4313. if (with_bias && with_gate) {
  4314. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4315. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4316. }
  4317. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4318. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4319. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4320. out = ggml_mul(ctx, out, scale);
  4321. ggml_set_name(out, "out");
  4322. return out;
  4323. }
  4324. }
  4325. void initialize_tensors(ggml_context * ctx) override {
  4326. if (!use_id) {
  4327. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4328. init_tensor_uniform(t);
  4329. }
  4330. } else {
  4331. init_mul_mat_id_tensors(ctx, n_mats);
  4332. }
  4333. }
  4334. double max_nmse_err() override {
  4335. return 5e-3;
  4336. }
  4337. };
  4338. // GGML_OP_SUM
  4339. struct test_sum : public test_case {
  4340. const ggml_type type;
  4341. const std::array<int64_t, 4> ne;
  4342. const std::array<int64_t, 4> permute;
  4343. bool _use_permute;
  4344. std::string vars() override {
  4345. std::string v = VARS_TO_STR2(type, ne);
  4346. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4347. return v;
  4348. }
  4349. test_sum(ggml_type type = GGML_TYPE_F32,
  4350. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4351. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4352. : type(type), ne(ne), permute(permute),
  4353. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4354. ggml_tensor * build_graph(ggml_context * ctx) override {
  4355. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4356. ggml_set_param(a);
  4357. ggml_set_name(a, "a");
  4358. if (_use_permute) {
  4359. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4360. ggml_set_name(a, "a_permuted");
  4361. }
  4362. ggml_tensor * out = ggml_sum(ctx, a);
  4363. ggml_set_name(out, "out");
  4364. return out;
  4365. }
  4366. float grad_eps() override {
  4367. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4368. }
  4369. };
  4370. // GGML_OP_SUM_ROWS
  4371. struct test_sum_rows : public test_case {
  4372. const ggml_type type;
  4373. const std::array<int64_t, 4> ne;
  4374. const bool permute;
  4375. const bool slice;
  4376. std::string vars() override {
  4377. return VARS_TO_STR4(type, ne, permute, slice);
  4378. }
  4379. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4380. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4381. bool permute = false, bool slice = false)
  4382. : type(type), ne(ne), permute(permute), slice(slice) {}
  4383. ggml_tensor * build_graph(ggml_context * ctx) override {
  4384. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4385. ggml_set_param(a);
  4386. ggml_set_name(a, "a");
  4387. if (slice) {
  4388. a = ggml_view_4d(ctx, a,
  4389. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4390. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4391. }
  4392. if (permute) {
  4393. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4394. }
  4395. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4396. ggml_set_name(out, "out");
  4397. return out;
  4398. }
  4399. };
  4400. // GGML_OP_MEAN
  4401. struct test_mean : public test_case {
  4402. const ggml_type type;
  4403. const std::array<int64_t, 4> ne;
  4404. std::string vars() override {
  4405. return VARS_TO_STR2(type, ne);
  4406. }
  4407. test_mean(ggml_type type = GGML_TYPE_F32,
  4408. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4409. : type(type), ne(ne) {}
  4410. ggml_tensor * build_graph(ggml_context * ctx) override {
  4411. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4412. ggml_set_param(a);
  4413. ggml_set_name(a, "a");
  4414. ggml_tensor * out = ggml_mean(ctx, a);
  4415. ggml_set_name(out, "out");
  4416. return out;
  4417. }
  4418. float grad_eps() override {
  4419. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4420. }
  4421. };
  4422. // GGML_OP_UPSCALE
  4423. struct test_upscale : public test_case {
  4424. const ggml_type type;
  4425. const std::array<int64_t, 4> ne;
  4426. const int32_t scale_factor;
  4427. const bool transpose;
  4428. const ggml_scale_mode mode;
  4429. std::string vars() override {
  4430. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4431. }
  4432. test_upscale(ggml_type type = GGML_TYPE_F32,
  4433. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4434. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4435. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4436. ggml_tensor * build_graph(ggml_context * ctx) override {
  4437. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4438. ggml_set_name(a, "a");
  4439. if (transpose) {
  4440. a = ggml_transpose(ctx, a);
  4441. ggml_set_name(a, "a_transposed");
  4442. }
  4443. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4444. ggml_set_name(out, "out");
  4445. return out;
  4446. }
  4447. };
  4448. // GGML_OP_UPSCALE (via ggml_interpolate)
  4449. struct test_interpolate : public test_case {
  4450. const ggml_type type;
  4451. const std::array<int64_t, 4> ne;
  4452. const std::array<int64_t, 4> ne_tgt;
  4453. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4454. std::string vars() override {
  4455. ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
  4456. std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
  4457. return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
  4458. }
  4459. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4460. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4461. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4462. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4463. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4464. ggml_tensor * build_graph(ggml_context * ctx) override {
  4465. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4466. ggml_set_name(a, "a");
  4467. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4468. ggml_set_name(out, "out");
  4469. return out;
  4470. }
  4471. };
  4472. // GGML_OP_GROUP_NORM
  4473. struct test_group_norm : public test_case {
  4474. const ggml_type type;
  4475. const std::array<int64_t, 4> ne;
  4476. const int32_t num_groups;
  4477. const float eps;
  4478. std::string vars() override {
  4479. return VARS_TO_STR4(type, ne, num_groups, eps);
  4480. }
  4481. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4482. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4483. int32_t num_groups = 32,
  4484. float eps = 1e-6f)
  4485. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4486. ggml_tensor * build_graph(ggml_context * ctx) override {
  4487. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4488. ggml_set_name(a, "a");
  4489. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4490. ggml_set_name(out, "out");
  4491. return out;
  4492. }
  4493. };
  4494. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4495. struct test_group_norm_mul_add : public test_case {
  4496. const ggml_type type;
  4497. const std::array<int64_t, 4> ne;
  4498. int num_groups;
  4499. float eps;
  4500. std::string op_desc(ggml_tensor * t) override {
  4501. GGML_UNUSED(t);
  4502. return "GROUP_NORM_MUL_ADD";
  4503. }
  4504. bool run_whole_graph() override { return true; }
  4505. std::string vars() override {
  4506. return VARS_TO_STR4(type, ne, num_groups, eps);
  4507. }
  4508. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4509. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4510. int num_groups = 4,
  4511. float eps = 1e-5f)
  4512. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4513. ggml_tensor * build_graph(ggml_context * ctx) override {
  4514. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4515. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4516. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4517. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4518. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4519. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4520. ggml_tensor * m = ggml_mul(ctx, n, w);
  4521. ggml_tensor * out = ggml_add(ctx, m, b);
  4522. ggml_set_name(out, "out");
  4523. return out;
  4524. }
  4525. };
  4526. // GGML_OP_L2_NORM
  4527. struct test_l2_norm : public test_case {
  4528. const ggml_type type;
  4529. const std::array<int64_t, 4> ne;
  4530. const float eps;
  4531. std::string vars() override {
  4532. return VARS_TO_STR2(type, ne);
  4533. }
  4534. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4535. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4536. float eps = 1e-12f)
  4537. : type(type), ne(ne), eps(eps) {}
  4538. ggml_tensor * build_graph(ggml_context * ctx) override {
  4539. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4540. ggml_set_name(a, "a");
  4541. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4542. ggml_set_name(out, "out");
  4543. return out;
  4544. }
  4545. };
  4546. // GGML_OP_ACC
  4547. struct test_acc : public test_case {
  4548. const ggml_type type;
  4549. const std::array<int64_t, 4> ne_a;
  4550. const std::array<int64_t, 4> ne_b;
  4551. std::string vars() override {
  4552. return VARS_TO_STR3(type, ne_a, ne_b);
  4553. }
  4554. test_acc(ggml_type type = GGML_TYPE_F32,
  4555. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4556. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4557. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4558. ggml_tensor * build_graph(ggml_context * ctx) override {
  4559. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4560. ggml_set_param(a);
  4561. ggml_set_name(a, "a");
  4562. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4563. ggml_set_param(b);
  4564. ggml_set_name(b, "b");
  4565. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4566. ggml_set_name(out, "out");
  4567. return out;
  4568. }
  4569. };
  4570. // GGML_OP_PAD
  4571. struct test_pad : public test_case {
  4572. const ggml_type type;
  4573. const std::array<int64_t, 4> ne_a;
  4574. const int pad_0;
  4575. const int pad_1;
  4576. std::string vars() override {
  4577. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4578. }
  4579. test_pad(ggml_type type = GGML_TYPE_F32,
  4580. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4581. int pad_0 = 1, int pad_1 = 1)
  4582. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4583. ggml_tensor * build_graph(ggml_context * ctx) override {
  4584. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4585. ggml_set_name(a, "a");
  4586. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4587. ggml_set_name(out, "out");
  4588. return out;
  4589. }
  4590. };
  4591. // GGML_OP_PAD (with extension)
  4592. struct test_pad_ext : public test_case {
  4593. const ggml_type type;
  4594. const std::array<int64_t, 4> ne_a;
  4595. const int lp0;
  4596. const int rp0;
  4597. const int lp1;
  4598. const int rp1;
  4599. const int lp2;
  4600. const int rp2;
  4601. const int lp3;
  4602. const int rp3;
  4603. const bool v;
  4604. std::string vars() override {
  4605. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4606. }
  4607. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4608. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4609. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4610. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4611. bool v = false)
  4612. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4613. ggml_tensor * build_graph(ggml_context * ctx) override {
  4614. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4615. ggml_set_name(a, "a");
  4616. if (v) {
  4617. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4618. ggml_set_name(a, "view of a");
  4619. }
  4620. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4621. ggml_set_name(out, "out");
  4622. return out;
  4623. }
  4624. };
  4625. // GGML_OP_PAD_REFLECT_1D
  4626. struct test_pad_reflect_1d : public test_case {
  4627. const ggml_type type;
  4628. const std::array<int64_t, 4> ne_a;
  4629. const int pad_0;
  4630. const int pad_1;
  4631. std::string vars() override {
  4632. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4633. }
  4634. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4635. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4636. int pad_0 = 10, int pad_1 = 9)
  4637. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4638. ggml_tensor * build_graph(ggml_context * ctx) override {
  4639. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4640. ggml_set_name(a, "a");
  4641. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4642. ggml_set_name(out, "out");
  4643. return out;
  4644. }
  4645. };
  4646. // GGML_OP_ROLL
  4647. struct test_roll : public test_case {
  4648. const int shift0;
  4649. const int shift1;
  4650. const int shift3;
  4651. const int shift4;
  4652. std::string vars() override {
  4653. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4654. }
  4655. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4656. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4657. ggml_tensor * build_graph(ggml_context * ctx) override {
  4658. int64_t ne[4] = {10, 5, 4, 3};
  4659. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4660. ggml_set_name(a, "a");
  4661. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4662. ggml_set_name(out, "out");
  4663. return out;
  4664. }
  4665. };
  4666. // GGML_OP_ARANGE
  4667. struct test_arange : public test_case {
  4668. const ggml_type type;
  4669. const float start;
  4670. const float stop;
  4671. const float step;
  4672. std::string vars() override {
  4673. return VARS_TO_STR4(type, start, stop, step);
  4674. }
  4675. test_arange(ggml_type type = GGML_TYPE_F32,
  4676. float start = 0.f, float stop = 10.f, float step = 1.f)
  4677. : type(type), start(start), stop(stop), step(step) {}
  4678. ggml_tensor * build_graph(ggml_context * ctx) override {
  4679. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4680. ggml_set_name(out, "out");
  4681. return out;
  4682. }
  4683. };
  4684. // GGML_OP_TIMESTEP_EMBEDDING
  4685. struct test_timestep_embedding : public test_case {
  4686. const ggml_type type;
  4687. const std::array<int64_t, 4> ne_a;
  4688. const int dim;
  4689. const int max_period;
  4690. std::string vars() override {
  4691. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4692. }
  4693. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4694. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4695. int dim = 320, int max_period=10000)
  4696. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4697. ggml_tensor * build_graph(ggml_context * ctx) override {
  4698. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4699. ggml_set_name(a, "a");
  4700. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4701. ggml_set_name(out, "out");
  4702. return out;
  4703. }
  4704. };
  4705. // GGML_OP_LEAKY_RELU
  4706. struct test_leaky_relu : public test_case {
  4707. const ggml_type type;
  4708. const std::array<int64_t, 4> ne_a;
  4709. const float negative_slope;
  4710. std::string vars() override {
  4711. return VARS_TO_STR3(type, ne_a, negative_slope);
  4712. }
  4713. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4714. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4715. float negative_slope = 0.1f)
  4716. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4717. ggml_tensor * build_graph(ggml_context * ctx) override {
  4718. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4719. ggml_set_name(a, "a");
  4720. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4721. ggml_set_name(out, "out");
  4722. return out;
  4723. }
  4724. };
  4725. // GGML_OP_FLASH_ATTN_EXT
  4726. struct test_flash_attn_ext : public test_case {
  4727. const int64_t hsk; // K head size
  4728. const int64_t hsv; // V head size
  4729. const int64_t nh; // num heads
  4730. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4731. const int64_t kv; // kv size
  4732. const int64_t nb; // batch size
  4733. const bool mask; // use mask
  4734. const bool sinks; // use sinks
  4735. const float max_bias; // ALiBi
  4736. const float logit_softcap; // Gemma 2
  4737. const ggml_prec prec;
  4738. const ggml_type type_KV;
  4739. std::array<int32_t, 4> permute;
  4740. std::string vars() override {
  4741. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4742. }
  4743. double max_nmse_err() override {
  4744. return 5e-4;
  4745. }
  4746. uint64_t op_flops(ggml_tensor * t) override {
  4747. GGML_UNUSED(t);
  4748. // Just counting matmul costs:
  4749. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4750. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4751. }
  4752. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4753. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4754. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4755. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4756. ggml_tensor * build_graph(ggml_context * ctx) override {
  4757. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4758. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4759. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4760. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4761. int64_t ne_perm[4];
  4762. for (int i = 0; i < 4; ++i) {
  4763. ne_perm[permute[i]] = ne[i];
  4764. }
  4765. ggml_tensor * t;
  4766. if (is_view) {
  4767. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4768. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4769. } else {
  4770. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4771. }
  4772. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4773. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4774. }
  4775. return t;
  4776. };
  4777. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4778. ggml_set_name(q, "q");
  4779. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4780. ggml_set_name(k, "k");
  4781. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4782. ggml_set_name(v, "v");
  4783. ggml_tensor * m = nullptr;
  4784. if (mask) {
  4785. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4786. ggml_set_name(m, "m");
  4787. }
  4788. ggml_tensor * s = nullptr;
  4789. if (sinks) {
  4790. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4791. ggml_set_name(s, "s");
  4792. }
  4793. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4794. ggml_flash_attn_ext_add_sinks(out, s);
  4795. ggml_flash_attn_ext_set_prec (out, prec);
  4796. ggml_set_name(out, "out");
  4797. return out;
  4798. }
  4799. void initialize_tensors(ggml_context * ctx) override {
  4800. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4801. if (strcmp(t->name, "s") == 0) {
  4802. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4803. init_tensor_uniform(t, -10.0f, 10.0f);
  4804. } else if (strcmp(t->name, "m") == 0) {
  4805. init_tensor_kq_mask(t);
  4806. } else {
  4807. init_tensor_uniform(t);
  4808. }
  4809. }
  4810. }
  4811. bool grad_precise() override {
  4812. return true;
  4813. }
  4814. };
  4815. // GGML_OP_CROSS_ENTROPY_LOSS
  4816. struct test_cross_entropy_loss : public test_case {
  4817. const ggml_type type;
  4818. const std::array<int64_t, 4> ne;
  4819. std::string vars() override {
  4820. return VARS_TO_STR2(type, ne);
  4821. }
  4822. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4823. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4824. : type(type), ne(ne) {}
  4825. ggml_tensor * build_graph(ggml_context * ctx) override {
  4826. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4827. ggml_set_param(logits);
  4828. ggml_set_name(logits, "logits");
  4829. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4830. // The labels are assumed to be constant -> no gradients.
  4831. ggml_set_name(labels, "labels");
  4832. // Ensure labels add up to 1:
  4833. labels = ggml_soft_max(ctx, labels);
  4834. ggml_set_name(labels, "labels_normalized");
  4835. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4836. ggml_set_name(out, "out");
  4837. return out;
  4838. }
  4839. void initialize_tensors(ggml_context * ctx) override {
  4840. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4841. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4842. init_tensor_uniform(t, -100.0f, 100.0f);
  4843. }
  4844. }
  4845. float grad_eps() override {
  4846. return 1.0f;
  4847. }
  4848. bool grad_precise() override {
  4849. return true;
  4850. }
  4851. };
  4852. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4853. struct test_cross_entropy_loss_back : public test_case {
  4854. const ggml_type type;
  4855. const std::array<int64_t, 4> ne;
  4856. std::string vars() override {
  4857. return VARS_TO_STR2(type, ne);
  4858. }
  4859. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4860. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4861. : type(type), ne(ne) {}
  4862. ggml_tensor * build_graph(ggml_context * ctx) override {
  4863. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4864. ggml_set_name(grad, "grad");
  4865. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4866. ggml_set_name(logits, "logits");
  4867. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4868. ggml_set_name(labels, "labels");
  4869. // Ensure labels add up to 1:
  4870. labels = ggml_soft_max(ctx, labels);
  4871. ggml_set_name(labels, "labels_normalized");
  4872. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4873. ggml_set_name(out, "out");
  4874. return out;
  4875. }
  4876. };
  4877. // GGML_OP_OPT_STEP_ADAMW
  4878. struct test_opt_step_adamw : public test_case {
  4879. const ggml_type type;
  4880. const std::array<int64_t, 4> ne;
  4881. std::string vars() override {
  4882. return VARS_TO_STR2(type, ne);
  4883. }
  4884. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4885. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4886. : type(type), ne(ne) {}
  4887. ggml_tensor * build_graph(ggml_context * ctx) override {
  4888. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4889. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4890. ggml_set_name(a, "a");
  4891. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4892. ggml_set_name(grad, "grad");
  4893. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4894. ggml_set_name(grad_m, "grad_m");
  4895. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4896. ggml_set_name(grad_v, "grad_v");
  4897. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4898. ggml_set_name(adamw_params, "adamw_params");
  4899. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4900. ggml_set_name(out, "out");
  4901. return out;
  4902. }
  4903. void initialize_tensors(ggml_context * ctx) override {
  4904. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4905. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4906. }
  4907. }
  4908. bool grad_precise() override {
  4909. return true;
  4910. }
  4911. };
  4912. // GGML_OP_OPT_STEP_SGD
  4913. struct test_opt_step_sgd : public test_case {
  4914. const ggml_type type;
  4915. const std::array<int64_t, 4> ne;
  4916. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4917. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4918. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4919. : type(type), ne(ne) {}
  4920. ggml_tensor * build_graph(ggml_context * ctx) override {
  4921. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4922. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4923. ggml_set_name(a, "a");
  4924. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4925. ggml_set_name(grad, "grad");
  4926. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4927. ggml_set_name(sgd_params, "sgd_params");
  4928. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4929. ggml_set_name(out, "out");
  4930. return out;
  4931. }
  4932. void initialize_tensors(ggml_context * ctx) override {
  4933. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4934. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4935. }
  4936. }
  4937. bool grad_precise() override {
  4938. return true;
  4939. }
  4940. };
  4941. // GGML_OP_CUMSUM
  4942. struct test_cumsum : public test_case {
  4943. const ggml_type type;
  4944. const std::array<int64_t, 4> ne;
  4945. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4946. test_cumsum(ggml_type type = GGML_TYPE_F32,
  4947. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4948. : type(type), ne(ne) {}
  4949. ggml_tensor * build_graph(ggml_context * ctx) override {
  4950. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4951. ggml_set_param(a);
  4952. ggml_set_name(a, "a");
  4953. ggml_tensor * out = ggml_cumsum(ctx, a);
  4954. ggml_set_name(out, "out");
  4955. return out;
  4956. }
  4957. void initialize_tensors(ggml_context * ctx) override {
  4958. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4959. init_tensor_uniform(t, -1.0f, 1.0f);
  4960. }
  4961. }
  4962. };
  4963. // GGML_OP_XIELU
  4964. struct test_xielu : public test_case {
  4965. const ggml_type type;
  4966. const std::array<int64_t, 4> ne;
  4967. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4968. test_xielu(ggml_type type = GGML_TYPE_F32,
  4969. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4970. : type(type), ne(ne) {}
  4971. ggml_tensor * build_graph(ggml_context * ctx) override {
  4972. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4973. ggml_set_param(a);
  4974. ggml_set_name(a, "a");
  4975. float alpha_n = 4.0f;
  4976. float alpha_p = 20.0f;
  4977. float beta = 0.5f;
  4978. float eps = 0.0000001f;
  4979. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  4980. ggml_set_name(out, "out");
  4981. return out;
  4982. }
  4983. void initialize_tensors(ggml_context * ctx) override {
  4984. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4985. init_tensor_uniform(t, -1.0f, 1.0f);
  4986. }
  4987. }
  4988. };
  4989. // GGML_OP_TRI
  4990. struct test_tri : public test_case {
  4991. const ggml_type type;
  4992. const std::array<int64_t, 4> ne;
  4993. const ggml_tri_type tri_type;
  4994. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  4995. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  4996. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4997. : type(type), ne(ne), tri_type(tri_type) {
  4998. GGML_ASSERT(ne[0] == ne[1]);
  4999. }
  5000. ggml_tensor * build_graph(ggml_context * ctx) override {
  5001. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5002. ggml_set_param(a);
  5003. ggml_set_name(a, "a");
  5004. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  5005. ggml_set_name(out, "out");
  5006. return out;
  5007. }
  5008. void initialize_tensors(ggml_context * ctx) override {
  5009. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5010. init_tensor_uniform(t, -1.0f, 1.0f);
  5011. }
  5012. }
  5013. };
  5014. // GGML_OP_FILL
  5015. struct test_fill : public test_case {
  5016. const ggml_type type;
  5017. const std::array<int64_t, 4> ne;
  5018. float c;
  5019. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  5020. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  5021. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5022. : type(type), ne(ne), c(c) {}
  5023. ggml_tensor * build_graph(ggml_context * ctx) override {
  5024. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5025. ggml_set_param(a);
  5026. ggml_set_name(a, "a");
  5027. ggml_tensor * out = ggml_fill(ctx, a, c);
  5028. ggml_set_name(out, "out");
  5029. return out;
  5030. }
  5031. };
  5032. // GGML_OP_SOLVE_TRI
  5033. struct test_solve_tri : public test_case {
  5034. const ggml_type type;
  5035. const std::array<int64_t, 4> ne_lhs;
  5036. const std::array<int64_t, 4> ne_rhs;
  5037. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  5038. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  5039. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  5040. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  5041. )
  5042. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  5043. ggml_tensor * build_graph(ggml_context * ctx) override {
  5044. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  5045. ggml_set_param(a);
  5046. ggml_set_name(a, "a");
  5047. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  5048. ggml_set_param(b);
  5049. ggml_set_name(b, "b");
  5050. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  5051. ggml_set_name(out, "out");
  5052. return out;
  5053. }
  5054. void initialize_tensors(ggml_context * ctx) override {
  5055. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5056. if (strcmp(t->name, "a") == 0) {
  5057. // note: avoid zeros in the diagonal
  5058. init_tensor_tril(t, 0.1, 1.0f);
  5059. } else {
  5060. init_tensor_uniform(t, -1.0f, 1.0f);
  5061. }
  5062. }
  5063. }
  5064. };
  5065. enum llm_norm_type {
  5066. LLM_NORM,
  5067. LLM_NORM_RMS,
  5068. };
  5069. struct llama_hparams {
  5070. uint32_t n_vocab;
  5071. uint32_t n_embd;
  5072. uint32_t n_head;
  5073. uint32_t n_head_kv;
  5074. static constexpr uint32_t n_layer = 1;
  5075. uint32_t n_rot;
  5076. uint32_t n_embd_head; // dimension of values (d_v)
  5077. uint32_t n_ff;
  5078. float f_norm_eps;
  5079. float f_norm_rms_eps;
  5080. // cparams
  5081. static constexpr uint32_t n_ctx = 512; // user-specified context size
  5082. static constexpr uint32_t n_ctx_orig = n_ctx;
  5083. // batch
  5084. int32_t n_tokens;
  5085. // llm_build_context
  5086. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  5087. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  5088. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  5089. return n_embd_head * n_head_kv;
  5090. }
  5091. };
  5092. // LLM base class
  5093. struct test_llm : public test_case {
  5094. llama_hparams hp;
  5095. protected:
  5096. test_llm(llama_hparams hp)
  5097. : hp(std::move(hp)) {
  5098. }
  5099. public:
  5100. struct ggml_tensor * llm_build_norm(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * cur,
  5103. struct ggml_tensor * mw,
  5104. struct ggml_tensor * mb,
  5105. llm_norm_type type) {
  5106. switch (type) {
  5107. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5108. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5109. }
  5110. cur = ggml_mul(ctx, cur, mw);
  5111. if (mb) {
  5112. cur = ggml_add(ctx, cur, mb);
  5113. }
  5114. return cur;
  5115. }
  5116. void llm_build_kv_store(
  5117. struct ggml_context * ctx,
  5118. struct ggml_tensor * k_l,
  5119. struct ggml_tensor * v_l,
  5120. struct ggml_tensor * k_cur,
  5121. struct ggml_tensor * v_cur) {
  5122. // compute the transposed [n_tokens, n_embd] V matrix
  5123. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5124. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5125. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5126. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5127. ( hp.n_ctx)*ggml_element_size(v_l),
  5128. (hp.kv_head)*ggml_element_size(v_l));
  5129. // important: storing RoPE-ed version of K in the KV cache!
  5130. ggml_cpy(ctx, k_cur, k_cache_view);
  5131. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5132. }
  5133. struct ggml_tensor * llm_build_kqv(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * k_l,
  5136. struct ggml_tensor * v_l,
  5137. struct ggml_tensor * q_cur,
  5138. struct ggml_tensor * kq_mask,
  5139. float kq_scale) {
  5140. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5141. struct ggml_tensor * k =
  5142. ggml_view_3d(ctx, k_l,
  5143. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5144. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5145. ggml_row_size(k_l->type, hp.n_embd_head),
  5146. 0);
  5147. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5148. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5149. // split cached v into n_head heads
  5150. struct ggml_tensor * v =
  5151. ggml_view_3d(ctx, v_l,
  5152. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5153. ggml_element_size(v_l)*hp.n_ctx,
  5154. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5155. 0);
  5156. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5157. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5158. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5159. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5160. cur = ggml_mul_mat(ctx, wo, cur);
  5161. return cur;
  5162. }
  5163. void initialize_tensors(ggml_context * ctx) override {
  5164. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5165. if (t->type == GGML_TYPE_I32) {
  5166. // pos
  5167. std::vector<int> data(hp.n_tokens);
  5168. for (int i = 0; i < hp.n_tokens; i++) {
  5169. data[i] = rand() % hp.n_ctx;
  5170. }
  5171. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5172. } else {
  5173. init_tensor_uniform(t);
  5174. }
  5175. }
  5176. }
  5177. };
  5178. // Llama
  5179. struct test_llama : public test_llm {
  5180. static constexpr float freq_base = 10000.0f;
  5181. static constexpr float freq_scale = 1.0f;
  5182. static constexpr float ext_factor = 0.0f;
  5183. static constexpr float attn_factor = 1.0f;
  5184. static constexpr float beta_fast = 32.0f;
  5185. static constexpr float beta_slow = 1.0f;
  5186. bool fused;
  5187. std::string op_desc(ggml_tensor * t) override {
  5188. GGML_UNUSED(t);
  5189. return "LLAMA";
  5190. }
  5191. std::string vars() override {
  5192. auto n_tokens = hp.n_tokens;
  5193. return VARS_TO_STR1(n_tokens);
  5194. }
  5195. double max_nmse_err() override {
  5196. return 2e-3;
  5197. }
  5198. bool run_whole_graph() override { return fused; }
  5199. test_llama(int n_tokens = 1, bool fused = false)
  5200. : test_llm({
  5201. /*n_vocab =*/ 32000,
  5202. /*n_embd =*/ 3200,
  5203. /*n_head =*/ 32,
  5204. /*n_head_kv =*/ 32,
  5205. /*n_rot =*/ 100,
  5206. /*n_embd_head =*/ 100,
  5207. /*n_ff =*/ 8640,
  5208. /*f_norm_eps =*/ 0.f,
  5209. /*f_norm_rms_eps =*/ 1e-5f,
  5210. /*n_tokens =*/ n_tokens,
  5211. })
  5212. , fused(fused)
  5213. {
  5214. }
  5215. ggml_tensor * build_graph(ggml_context * ctx) override {
  5216. struct ggml_tensor * cur;
  5217. struct ggml_tensor * inpL;
  5218. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5219. // inp_pos - contains the positions
  5220. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5221. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5222. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5223. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5224. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5225. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5226. struct ggml_tensor * inpSA = inpL;
  5227. // norm
  5228. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5229. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5230. // self-attention
  5231. {
  5232. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5233. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5234. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5235. // compute Q and K and RoPE them
  5236. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5237. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5238. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5239. Qcur = ggml_rope_ext(
  5240. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5241. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5242. ext_factor, attn_factor, beta_fast, beta_slow
  5243. );
  5244. Kcur = ggml_rope_ext(
  5245. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5246. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5247. ext_factor, attn_factor, beta_fast, beta_slow
  5248. );
  5249. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5250. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5251. }
  5252. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5253. // feed-forward network
  5254. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5255. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5256. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5257. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5258. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5259. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5260. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5261. cur = ggml_silu(ctx, cur);
  5262. cur = ggml_mul(ctx, cur, tmp);
  5263. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5264. cur = ggml_add(ctx, cur, ffn_inp);
  5265. // input for next layer
  5266. inpL = cur;
  5267. }
  5268. cur = inpL;
  5269. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5270. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5271. // lm_head
  5272. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5273. cur = ggml_mul_mat(ctx, output, cur);
  5274. return cur;
  5275. }
  5276. };
  5277. // Falcon
  5278. struct test_falcon : public test_llm {
  5279. static constexpr float freq_base = 10000.0f;
  5280. static constexpr float freq_scale = 1.0f;
  5281. static constexpr float ext_factor = 0.0f;
  5282. static constexpr float attn_factor = 1.0f;
  5283. static constexpr float beta_fast = 32.0f;
  5284. static constexpr float beta_slow = 1.0f;
  5285. std::string op_desc(ggml_tensor * t) override {
  5286. GGML_UNUSED(t);
  5287. return "FALCON";
  5288. }
  5289. std::string vars() override {
  5290. auto n_tokens = hp.n_tokens;
  5291. return VARS_TO_STR1(n_tokens);
  5292. }
  5293. double max_nmse_err() override {
  5294. return 2e-3;
  5295. }
  5296. test_falcon(int n_tokens = 1)
  5297. : test_llm({
  5298. /*n_vocab =*/ 32000,
  5299. /*n_embd =*/ 3200,
  5300. /*n_head =*/ 50,
  5301. /*n_head_kv =*/ 1,
  5302. /*n_rot =*/ 64,
  5303. /*n_embd_head =*/ 64,
  5304. /*n_ff =*/ 8640,
  5305. /*f_norm_eps =*/ 1e-5f,
  5306. /*f_norm_rms_eps =*/ 0.f,
  5307. /*n_tokens =*/ n_tokens,
  5308. }) {
  5309. }
  5310. ggml_tensor * build_graph(ggml_context * ctx) override {
  5311. struct ggml_tensor * cur;
  5312. struct ggml_tensor * inpL;
  5313. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5314. // inp_pos - contains the positions
  5315. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5316. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5317. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5318. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5319. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5320. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5321. // norm
  5322. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5323. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5324. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5325. // self-attention
  5326. {
  5327. cur = attn_norm;
  5328. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5329. cur = ggml_mul_mat(ctx, wqkv, cur);
  5330. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5331. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5332. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5333. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5334. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5335. // using mode = 2 for neox mode
  5336. Qcur = ggml_rope_ext(
  5337. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5338. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5339. );
  5340. Kcur = ggml_rope_ext(
  5341. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5342. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5343. );
  5344. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5345. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5346. }
  5347. struct ggml_tensor * ffn_inp = cur;
  5348. // feed forward
  5349. {
  5350. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5351. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5352. cur = attn_norm;
  5353. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5354. cur = ggml_gelu(ctx, cur);
  5355. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5356. }
  5357. cur = ggml_add(ctx, cur, ffn_inp);
  5358. cur = ggml_add(ctx, cur, inpL);
  5359. // input for next layer
  5360. inpL = cur;
  5361. }
  5362. cur = inpL;
  5363. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5364. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5365. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5366. // lm_head
  5367. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5368. cur = ggml_mul_mat(ctx, output, cur);
  5369. return cur;
  5370. }
  5371. };
  5372. // ###########################################
  5373. // ## Section 3: GGML Op Test Instantiation ##
  5374. // ###########################################
  5375. static const ggml_type all_types[] = {
  5376. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5377. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5378. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5379. GGML_TYPE_Q8_0,
  5380. GGML_TYPE_MXFP4,
  5381. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5382. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5383. GGML_TYPE_Q6_K,
  5384. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5385. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5386. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5387. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5388. };
  5389. static const ggml_type base_types[] = {
  5390. GGML_TYPE_F32, GGML_TYPE_F16,
  5391. GGML_TYPE_Q8_0, // for I8MM tests
  5392. GGML_TYPE_Q4_0,
  5393. GGML_TYPE_Q4_1, // for I8MM tests
  5394. GGML_TYPE_Q4_K,
  5395. GGML_TYPE_MXFP4, // TODO: or "other"
  5396. GGML_TYPE_IQ2_XXS
  5397. };
  5398. static const ggml_type other_types[] = {
  5399. GGML_TYPE_Q4_1,
  5400. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5401. GGML_TYPE_Q8_0,
  5402. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5403. GGML_TYPE_Q5_K,
  5404. GGML_TYPE_Q6_K,
  5405. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5406. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5407. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5408. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5409. GGML_TYPE_BF16,
  5410. };
  5411. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5412. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5413. std::vector<std::unique_ptr<test_case>> test_cases;
  5414. std::default_random_engine rng(0);
  5415. // unary ops
  5416. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5417. for (int v : {0, 1}) {
  5418. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5419. if (op == GGML_UNARY_OP_XIELU) {
  5420. continue; // need extra params, separate test
  5421. }
  5422. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5423. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5424. }
  5425. }
  5426. }
  5427. // glu ops
  5428. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5429. for (int v : {0, 1}) {
  5430. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5431. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5432. // SWIGLU_OAI is handled separately
  5433. continue;
  5434. }
  5435. for (bool swapped : {false, true}) {
  5436. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5437. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5438. }
  5439. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5440. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5441. }
  5442. }
  5443. }
  5444. for (int v : {0, 1}) {
  5445. for (float alpha : {.5f, 1.702f}) {
  5446. for (float limit : {2.0f, 7.0f}) {
  5447. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5448. }
  5449. }
  5450. }
  5451. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5452. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5453. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5454. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5455. }
  5456. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5457. for (ggml_type type : all_types) {
  5458. for (int b : {1, 7}) {
  5459. for (bool v : {false, true}) {
  5460. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5461. }
  5462. }
  5463. }
  5464. for (int b : {1, 7}) {
  5465. for (bool v : {false, true}) {
  5466. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5467. }
  5468. }
  5469. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5470. for (ggml_type type : all_types) {
  5471. for (bool v : {false, true}) {
  5472. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5473. }
  5474. }
  5475. for (bool v : {false, true}) {
  5476. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5477. }
  5478. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5479. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5480. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5481. for (ggml_type type : all_types) {
  5482. for (int b : {1, 7}) {
  5483. for (bool v : {false, true}) {
  5484. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5485. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5486. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5487. if (ggml_blck_size(type) == 1) {
  5488. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5489. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5490. }
  5491. }
  5492. }
  5493. }
  5494. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5495. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5496. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5497. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5498. }
  5499. }
  5500. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5501. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5502. for (int k0 : {1, 3}) {
  5503. for (int k1 : {1, 3}) {
  5504. for (int s0 : {1, 2}) {
  5505. for (int s1 : {1, 2}) {
  5506. for (int p0 : {0, 1}) {
  5507. for (int p1 : {0, 1}) {
  5508. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. }
  5515. }
  5516. }
  5517. #if 0
  5518. // >4GB im2col destination. Too slow to run by default.
  5519. // Test cases taken from Wan2.1 T2V 1.3B.
  5520. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5521. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5522. #endif
  5523. // im2col 1D
  5524. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5525. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5526. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5527. for (int s0 : {1, 3}) {
  5528. for (int p0 : {0, 3}) {
  5529. for (int d0 : {1, 3}) {
  5530. test_cases.emplace_back(new test_im2col(
  5531. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5532. s0, 0, p0, 0, d0, 0, false));
  5533. }
  5534. }
  5535. }
  5536. // im2col 2D
  5537. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5538. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5539. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5540. for (int s0 : {1, 3}) {
  5541. for (int s1 : {1, 3}) {
  5542. for (int p0 : {0, 3}) {
  5543. for (int p1 : {0, 3}) {
  5544. for (int d0 : {1, 3}) {
  5545. for (int d1 : {1, 3}) {
  5546. test_cases.emplace_back(new test_im2col(
  5547. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5548. s0, s1, p0, p1, d0, d1, true));
  5549. }
  5550. }
  5551. }
  5552. }
  5553. }
  5554. }
  5555. // extra tests for im2col 2D
  5556. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5557. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5558. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5559. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5560. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5561. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5562. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5563. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5564. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5565. // im2col 3D
  5566. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5567. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5568. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5569. for (int s0 : {1, 3}) {
  5570. for (int s1 : {1, 3}) {
  5571. for (int s2 : {1, 3}) {
  5572. for (int p0 : {0, 3}) {
  5573. for (int p1 : {0, 3}) {
  5574. for (int p2 : {0, 3}) {
  5575. for (int d0 : {1, 3}) {
  5576. for (int d1 : {1, 3}) {
  5577. for (int d2 : {1, 3}) {
  5578. for (int IC : {1, 3}) {
  5579. for (bool v : {false, true}) {
  5580. test_cases.emplace_back(new test_im2col_3d(
  5581. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5582. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5583. }
  5584. }
  5585. }
  5586. }
  5587. }
  5588. }
  5589. }
  5590. }
  5591. }
  5592. }
  5593. }
  5594. // Conv_2D test cases
  5595. #ifdef DETAILED_TESTS
  5596. // Probably we do not have enough time to execute these in the pipeline.
  5597. uint32_t iwh_idx = 0;
  5598. uint32_t kwh_idx = 1;
  5599. uint32_t Cout_idx = 2;
  5600. uint32_t Cin_idx = 3;
  5601. uint32_t B_idx = 4;
  5602. std::vector<std::array<int, 5>> cases = {
  5603. //{IWH, KWH, Cout, Cin, B}
  5604. // K=CRS=NPQ=4096 conv_2d matmul performance
  5605. {19, 4, 4096, 256, 16},
  5606. // K=128, CRS=128, NPQ=4096
  5607. { 19, 4, 128, 8, 16},
  5608. // K=130, CRS=128, NPQ=4096
  5609. { 19, 4, 130, 8, 16},
  5610. // Edge case: K x CRS is small
  5611. { 19, 2, 4, 4, 16},
  5612. // A ConvNet's first layer
  5613. { 224, 3, 8, 3, 1 },
  5614. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5615. { 224, 2, 8, 1, 1 },
  5616. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5617. { 224, 2, 8, 1, 8 },
  5618. // A middle layer of a ConvNet
  5619. { 58, 3, 64, 32, 1 },
  5620. // A middle layer of a ConvNet, several images in the batch
  5621. { 58, 3, 64, 32, 8 },
  5622. // A deep layer of a ConvNet, several images in the batch
  5623. { 16, 3, 256, 128, 8 }
  5624. };
  5625. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5626. for (auto act_case : cases) {
  5627. test_cases.emplace_back(new test_conv_2d(
  5628. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5629. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5630. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5631. }
  5632. }
  5633. #endif
  5634. // CONV_2D:
  5635. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5636. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5637. };
  5638. //uint32_t s0 = 3;
  5639. uint32_t s1 = 5;
  5640. uint32_t p0 = 5;
  5641. //uint32_t p1 = 2;
  5642. uint32_t d0 = 2;
  5643. uint32_t d1 = 4;
  5644. for (uint32_t s0 : { 1, 3 }) {
  5645. for (uint32_t p1 : { 2, 5 }) {
  5646. for (uint32_t Cin : { 1, 25 }) {
  5647. for (uint32_t Cout : { 1, 12 }) {
  5648. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5649. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5650. for (uint32_t H : { 1, 133 }) {
  5651. for (uint32_t W : { 1, 141 }) {
  5652. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5653. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5654. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5655. test_cases.emplace_back(new test_conv_2d(
  5656. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5657. }
  5658. }
  5659. }
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. }
  5666. }
  5667. // sycl backend will limit task global_range < MAX_INT
  5668. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5669. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5670. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5671. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5672. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5673. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5674. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5675. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5676. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5677. // CONV_3D
  5678. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5679. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5680. };
  5681. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5682. for (int N : {1, 2}) {
  5683. for (int IC : {1, 3}) {
  5684. for (int OC : {1, 4}) {
  5685. for (int s0 : {1, 2}) {
  5686. for (int p1 : {0, 1}) {
  5687. for (int d2 : {1, 2}) {
  5688. int64_t IW = 20, IH = 22, ID = 18;
  5689. int64_t KW = 3, KH = 3, KD = 3;
  5690. int s1 = s0, s2 = s0;
  5691. int p0 = p1, p2 = p1;
  5692. int d0 = d2, d1 = d2;
  5693. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5694. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5695. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5696. continue;
  5697. }
  5698. test_cases.emplace_back(new test_conv_3d(
  5699. N, IC, ID, IH, IW,
  5700. OC, KD, KH, KW,
  5701. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5702. kernel_type));
  5703. // Asymmetric kernel and params
  5704. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5705. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5706. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5707. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5708. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5709. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5710. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5711. continue;
  5712. }
  5713. test_cases.emplace_back(new test_conv_3d(
  5714. N, IC, ID, IH, IW,
  5715. OC, asym_KD, asym_KH, asym_KW,
  5716. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5717. kernel_type));
  5718. }
  5719. }
  5720. }
  5721. }
  5722. }
  5723. }
  5724. // Case with kernel size 1
  5725. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5726. }
  5727. for(uint32_t Cout : {1, 9}){
  5728. for(uint32_t Cin : {1, 7}){
  5729. for(uint32_t K : {1, 3, 1337}){
  5730. for(uint32_t L : {1, 2, 13}){
  5731. for(uint32_t s0: {1, 2, 3}){
  5732. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5733. }
  5734. }
  5735. }
  5736. }
  5737. }
  5738. test_cases.emplace_back(new test_conv_transpose_1d());
  5739. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5740. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5741. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5742. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5743. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5744. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5745. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5746. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5747. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5748. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5749. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5750. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5751. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5752. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5753. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5754. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5755. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5756. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5757. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5758. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5759. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5760. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5761. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5762. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5763. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5764. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5765. }
  5766. for (bool view : {false, true}) {
  5767. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5768. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5769. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5770. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5771. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5772. }
  5773. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5774. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5775. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5776. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5777. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5778. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5779. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5780. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5781. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5782. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5783. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5784. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5785. }
  5786. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5787. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5788. }
  5789. // same-type copy
  5790. for (ggml_type type : all_types) {
  5791. const auto nk = ggml_blck_size(type);
  5792. for (int k = 1; k < 4; ++k) {
  5793. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5794. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5795. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5796. }
  5797. }
  5798. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5799. for (ggml_type type_dst : all_types) {
  5800. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5801. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5802. }
  5803. }
  5804. for (ggml_type type_src : all_types) {
  5805. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5806. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5807. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5808. }
  5809. }
  5810. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5811. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5812. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5813. }
  5814. }
  5815. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5816. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5817. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5818. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5819. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5820. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5821. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5822. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5823. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5824. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5825. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5826. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5827. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5828. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5829. for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
  5830. for (bool use_view_slice : { true, false }) {
  5831. for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
  5832. {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
  5833. if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
  5834. continue; // TODO: add after WebGPU is fixed
  5835. }
  5836. test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
  5837. }
  5838. }
  5839. }
  5840. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5841. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5842. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5843. }
  5844. };
  5845. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5846. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5847. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5848. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5849. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5850. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5851. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5852. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5853. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5854. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5855. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5856. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5857. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5858. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5859. // test case for k_bin_bcast_unravel in CUDA backend
  5860. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5861. // stable diffusion
  5862. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5863. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5864. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5865. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5866. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5867. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5868. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5869. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5870. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5871. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5872. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5873. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5874. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5875. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5876. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5877. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5878. }
  5879. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5880. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5881. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5882. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5883. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5884. // fusion
  5885. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5886. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5887. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5888. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5889. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5890. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5891. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5892. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5893. test_cases.emplace_back(new test_add1());
  5894. test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
  5895. test_cases.emplace_back(new test_scale());
  5896. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5897. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5898. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5899. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5900. test_cases.emplace_back(new test_silu_back());
  5901. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5902. for (bool v : {false, true}) {
  5903. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5904. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5905. }
  5906. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5907. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5908. }
  5909. // in-place tests
  5910. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5911. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5912. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5913. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5914. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5915. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5916. }
  5917. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5918. for (bool multi_add : {false, true}) {
  5919. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5920. }
  5921. }
  5922. for (auto multi_add : {false, true}) {
  5923. for (auto set_rows : {false, true}) {
  5924. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  5925. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5926. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5927. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  5928. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5929. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5930. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5931. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5932. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5933. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5934. }
  5935. }
  5936. }
  5937. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5938. for (int64_t d_conv : {3, 4}) {
  5939. for (int64_t d_inner: {1024, 1536, 2048}) {
  5940. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5941. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5942. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5943. }
  5944. }
  5945. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5946. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5947. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5948. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5949. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5950. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5951. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5952. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5953. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5954. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5955. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5956. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5957. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5958. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5959. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5960. #if 0
  5961. // > 4GB A matrix. Too slow to be enabled by default.
  5962. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5963. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5964. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5965. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5966. #endif
  5967. for (ggml_type type_a : all_types) {
  5968. for (int i = 1; i < 10; ++i) {
  5969. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5970. }
  5971. }
  5972. #if 0
  5973. {
  5974. // Test paths in OpenCL
  5975. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5976. std::vector<int> ks = {896, 1536, 4096};
  5977. for (auto n : ns) {
  5978. for (auto k : ks) {
  5979. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5980. }
  5981. }
  5982. }
  5983. #endif
  5984. #if 1
  5985. for (ggml_type type_a : base_types) {
  5986. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5987. std::vector<int> ks = { 256 };
  5988. if (ggml_blck_size(type_a) == 1) {
  5989. ks.push_back(4);
  5990. }
  5991. for (auto k : ks) {
  5992. // test cases without permutation
  5993. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5994. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5995. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5996. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5997. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5998. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5999. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  6000. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  6001. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  6002. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  6003. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  6004. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  6005. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  6006. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  6007. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  6008. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  6009. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  6010. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  6011. // test cases with permutation
  6012. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6013. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6014. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6015. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6016. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6017. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6018. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6019. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6020. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6021. }
  6022. // test cases with large ne00/ne10 to cover stream-k fixup
  6023. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  6024. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  6025. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  6026. // test cases with large batch size
  6027. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  6028. }
  6029. }
  6030. for (ggml_type type_a : other_types) {
  6031. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6032. if (ggml_blck_size(type_a) != 256) {
  6033. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  6034. }
  6035. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  6036. }
  6037. }
  6038. #else
  6039. // m = a rows
  6040. // n = b rows
  6041. // k = cols
  6042. std::uniform_int_distribution<> dist_m(1, 128);
  6043. std::uniform_int_distribution<> dist_n(16, 128);
  6044. std::uniform_int_distribution<> dist_k(1, 16);
  6045. for (int i = 0; i < 1000; i++) {
  6046. for (ggml_type type_a : all_types) {
  6047. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6048. int m = dist_m(rng);
  6049. int n = dist_n(rng);
  6050. int k = dist_k(rng) * ggml_blck_size(type_a);
  6051. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  6052. }
  6053. }
  6054. }
  6055. #endif
  6056. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  6057. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  6058. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  6059. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  6060. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  6061. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  6062. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6063. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6064. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  6065. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  6066. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  6067. #if 0
  6068. // test the mat-mat path for Metal
  6069. for (int k = 1; k < 512; ++k) {
  6070. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6071. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6072. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6073. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6074. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6075. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6076. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6077. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6078. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6079. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6080. }
  6081. #endif
  6082. for (auto bs2 : {1,3}) {
  6083. for (auto bs : {1,2,4,8}) {
  6084. for (auto nr : {1,4}) {
  6085. for (uint32_t m = 0; m < 2; ++m) {
  6086. for (uint32_t k = 0; k < 2; ++k) {
  6087. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6088. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  6089. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  6090. }
  6091. }
  6092. }
  6093. }
  6094. }
  6095. }
  6096. // sycl backend will limit task global_range < MAX_INT
  6097. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  6098. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  6099. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  6100. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  6101. // test large experts*tokens
  6102. for (bool b : {false, true}) {
  6103. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  6104. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  6105. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6106. }
  6107. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6108. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6109. // gpt-oss issue with Vulkan mmq_id
  6110. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6111. for (ggml_type type_a : base_types) {
  6112. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6113. for (int n_mats : {4, 8}) {
  6114. for (int n_used : {1, 2, 4}) {
  6115. for (bool b : {false, true}) {
  6116. for (int n : {1, 4, 5, 17, 32, 129}) {
  6117. int m = 512;
  6118. int k = 256;
  6119. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6120. }
  6121. }
  6122. }
  6123. }
  6124. }
  6125. }
  6126. for (ggml_type type_a : other_types) {
  6127. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6128. for (int n_mats : {4}) {
  6129. for (int n_used : {2}) {
  6130. for (bool b : {false}) {
  6131. for (int n : {1, 32}) {
  6132. int m = 512;
  6133. int k = 256;
  6134. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6135. }
  6136. }
  6137. }
  6138. }
  6139. }
  6140. }
  6141. for (int bs : {1, 4, 512}) {
  6142. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6143. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6144. // test with mul after (ffn_moe_weighted)
  6145. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6146. }
  6147. }
  6148. }
  6149. for (ggml_type type_a : base_types) {
  6150. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6151. for (int n : {1, 16}) {
  6152. for (int k : {1, 16}) {
  6153. for (int bs2 : {1, 3}) {
  6154. for (int bs3 : {1, 3}) {
  6155. for (int nr2 : {1, 2}) {
  6156. for (int nr3 : {1, 2}) {
  6157. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6158. }
  6159. }
  6160. }
  6161. }
  6162. }
  6163. }
  6164. }
  6165. }
  6166. // add_id
  6167. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6168. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6169. for (int n_mats : {4, 8}) {
  6170. for (int n_used : {1, 2, 4}) {
  6171. for (int n_embd : {32, 129}) {
  6172. for (int n_token : {1, 32, 129}) {
  6173. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6174. }
  6175. }
  6176. }
  6177. }
  6178. }
  6179. }
  6180. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6181. test_cases.emplace_back(new test_sqr (type));
  6182. test_cases.emplace_back(new test_sqrt (type));
  6183. test_cases.emplace_back(new test_log (type));
  6184. test_cases.emplace_back(new test_sin (type));
  6185. test_cases.emplace_back(new test_cos (type));
  6186. test_cases.emplace_back(new test_clamp (type));
  6187. test_cases.emplace_back(new test_leaky_relu(type));
  6188. test_cases.emplace_back(new test_floor (type));
  6189. test_cases.emplace_back(new test_ceil (type));
  6190. test_cases.emplace_back(new test_round (type));
  6191. test_cases.emplace_back(new test_trunc (type));
  6192. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6193. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6194. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6195. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6196. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6197. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6198. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6199. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6200. test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
  6201. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6202. test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
  6203. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6204. test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
  6205. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6206. test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
  6207. }
  6208. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6209. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6210. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6211. #if 0
  6212. std::uniform_int_distribution<> dist_ne1(1, 50);
  6213. int exponent = 1;
  6214. while (exponent < (1 << 17)) {
  6215. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6216. for (int n = 0; n < 10; ++n) {
  6217. int64_t ne0 = dist_ne0(rng);
  6218. int64_t ne1 = dist_ne1(rng);
  6219. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6220. }
  6221. exponent <<= 1;
  6222. }
  6223. #endif
  6224. for (bool mask : {false, true}) {
  6225. for (bool sinks : {false, true}) {
  6226. for (float max_bias : {0.0f, 8.0f}) {
  6227. if (!mask && max_bias > 0.0f) continue;
  6228. for (float scale : {1.0f, 0.1f}) {
  6229. for (int64_t ne0 : {16, 1024}) {
  6230. for (int64_t ne1 : {16, 1024}) {
  6231. if (mask) {
  6232. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6233. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6234. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6235. if (ne0 <= 32 && ne1 <= 32) {
  6236. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6237. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6238. }
  6239. }
  6240. } else {
  6241. /* The precision of mask here doesn't matter as boolean mask is false */
  6242. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6243. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6244. }
  6245. }
  6246. }
  6247. }
  6248. }
  6249. // inplace tests
  6250. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6251. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6252. }
  6253. }
  6254. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6255. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6256. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6257. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6258. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6259. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6260. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6261. for (float max_bias : {0.0f, 8.0f}) {
  6262. for (float scale : {1.0f, 0.1f}) {
  6263. for (int64_t ne0 : {16, 1024}) {
  6264. for (int64_t ne1 : {16, 1024}) {
  6265. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6266. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6267. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6268. }
  6269. }
  6270. }
  6271. }
  6272. for (bool fw : {true, false}) { // fw == forward
  6273. bool all = true;
  6274. for (float fs : { 1.0f, 1.4245f }) {
  6275. for (float ef : { 0.0f, 0.7465f }) {
  6276. for (float af : { 1.0f, 1.4245f }) {
  6277. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6278. for (bool ff : {false, true}) { // freq_factors
  6279. for (float v : { 0, 1 }) {
  6280. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6281. if (all) {
  6282. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6283. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6284. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6285. }
  6286. if (all) {
  6287. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6288. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6289. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6290. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6291. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6292. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6293. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6294. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6295. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6296. }
  6297. if (all) {
  6298. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6299. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6300. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6301. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6302. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6303. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6304. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6305. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6306. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6307. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6308. }
  6309. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6310. }
  6311. }
  6312. all = false;
  6313. }
  6314. }
  6315. }
  6316. }
  6317. }
  6318. // single inplace test per type/mode/ff
  6319. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6320. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6321. for (bool ff : {false, true}) {
  6322. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6323. }
  6324. }
  6325. }
  6326. for (int v : { 0, 1, 2, 3 }) {
  6327. for (int dim : { 0, 1, 2, 3, }) {
  6328. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6329. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6330. }
  6331. }
  6332. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6333. for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
  6334. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
  6335. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
  6336. }
  6337. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6338. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6339. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6340. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6341. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6342. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6343. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6344. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6345. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6346. }
  6347. for (int i = 0; i < 20; ++i) {
  6348. for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
  6349. if (k <= 1<<i) {
  6350. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
  6351. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
  6352. }
  6353. }
  6354. }
  6355. for (int k : {1, 2, 3, 7, 15}) {
  6356. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16, 10, 10, 10}, k));
  6357. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {60, 10, 10, 10}, k));
  6358. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1023, 2, 1, 3}, k));
  6359. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1024, 2, 1, 3}, k));
  6360. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1025, 2, 1, 3}, k));
  6361. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16384, 1, 1, 1}, k));
  6362. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2047, 2, 1, 3}, k));
  6363. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2048, 2, 1, 3}, k));
  6364. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2049, 2, 1, 3}, k));
  6365. }
  6366. // exhaustive top_k tests
  6367. //for (int i = 1; i < 9999; ++i) {
  6368. // test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {i, 2, 1, 3}, rand() % i + 1));
  6369. //}
  6370. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC, ggml_scale_mode(GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS)}) {
  6371. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6372. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6373. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6374. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6375. }
  6376. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6377. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6378. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6379. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6380. }
  6381. test_cases.emplace_back(new test_sum());
  6382. test_cases.emplace_back(new test_sum_rows());
  6383. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6384. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6385. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6386. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6387. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6388. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6389. test_cases.emplace_back(new test_mean());
  6390. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6391. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6392. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6393. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6394. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6395. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6396. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6397. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6398. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6399. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6400. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6401. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6402. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6403. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6404. test_cases.emplace_back(new test_acc());
  6405. test_cases.emplace_back(new test_pad());
  6406. test_cases.emplace_back(new test_pad_ext());
  6407. test_cases.emplace_back(new test_pad_reflect_1d());
  6408. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6409. test_cases.emplace_back(new test_roll());
  6410. test_cases.emplace_back(new test_arange());
  6411. test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
  6412. test_cases.emplace_back(new test_timestep_embedding());
  6413. test_cases.emplace_back(new test_leaky_relu());
  6414. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6415. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6416. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6417. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6418. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6419. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6420. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6421. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6422. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6423. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6424. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6425. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6426. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6427. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6428. test_cases.emplace_back(new test_xielu());
  6429. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6430. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6431. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6432. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6433. test_cases.emplace_back(new test_fill(0.0f));
  6434. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6435. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6436. test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
  6437. test_cases.emplace_back(new test_solve_tri());
  6438. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6439. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6440. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6441. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6442. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6443. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6444. for (bool v : {false, true}) {
  6445. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6446. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6447. }
  6448. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6449. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6450. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6451. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6452. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6453. for (bool mask : { true, false } ) {
  6454. for (bool sinks : { true, false } ) {
  6455. for (float max_bias : { 0.0f, 8.0f }) {
  6456. if (!mask && max_bias > 0.0f) continue;
  6457. for (float logit_softcap : {0.0f, 10.0f}) {
  6458. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6459. for (int nh : { 4, }) {
  6460. for (int nr3 : { 1, 3, }) {
  6461. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6462. for (int nr2 : { 1, 4, 16 }) {
  6463. if (nr2 == 16 && hsk != 128) continue;
  6464. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6465. for (int kv : { 113, 512, 1024, }) {
  6466. if (nr2 != 1 && kv != 512) continue;
  6467. for (int nb : { 1, 3, 32, 35, }) {
  6468. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6469. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6470. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6471. test_cases.emplace_back(new test_flash_attn_ext(
  6472. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6473. // run fewer test cases permuted
  6474. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6475. test_cases.emplace_back(new test_flash_attn_ext(
  6476. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6477. }
  6478. }
  6479. }
  6480. }
  6481. }
  6482. }
  6483. }
  6484. }
  6485. }
  6486. }
  6487. }
  6488. }
  6489. }
  6490. }
  6491. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6492. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6493. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6494. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6495. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6496. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6497. for (ggml_type type : base_types) {
  6498. for (bool with_gate : {false, true}) {
  6499. for (bool use_id : {false, true}) {
  6500. for (bool b : {false, true}) {
  6501. if (!use_id && b) {
  6502. continue;
  6503. }
  6504. for (bool with_bias : {false, true}) {
  6505. if (!with_gate && !with_bias) {
  6506. continue;
  6507. }
  6508. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6509. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6510. continue;
  6511. }
  6512. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6513. continue;
  6514. }
  6515. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6516. use_id, 16, 8, b, with_bias, with_gate));
  6517. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6518. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6519. }
  6520. }
  6521. }
  6522. }
  6523. }
  6524. }
  6525. for (bool with_norm : {false, true}) {
  6526. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6527. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6528. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6529. }
  6530. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6531. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6532. #if 0
  6533. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6534. test_cases.emplace_back(new test_llama(2, true));
  6535. test_cases.emplace_back(new test_llama(1));
  6536. test_cases.emplace_back(new test_llama(2));
  6537. test_cases.emplace_back(new test_falcon(1));
  6538. test_cases.emplace_back(new test_falcon(2));
  6539. #endif
  6540. return test_cases;
  6541. }
  6542. // Test cases for performance evaluation: should be representative of real-world use cases
  6543. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6544. std::vector<std::unique_ptr<test_case>> test_cases;
  6545. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6546. uint32_t iwh_idx = 0;
  6547. uint32_t kwh_idx = 1;
  6548. uint32_t Cout_idx = 2;
  6549. uint32_t Cin_idx = 3;
  6550. uint32_t B_idx = 4;
  6551. std::vector<std::array<int, 5>> cases = {
  6552. //{IWH, KWH, Cout, Cin, B}
  6553. // K=CRS=NPQ=4096 conv2d matmul performance
  6554. {19, 4, 4096, 256, 16},
  6555. // K=128, CRS=128, NPQ=4096
  6556. { 19, 4, 128, 8, 16},
  6557. // K=130, CRS=128, NPQ=4096
  6558. { 19, 4, 130, 8, 16},
  6559. // Edge case: K x CRS is small
  6560. { 19, 2, 4, 4, 16},
  6561. // A ConvNet's first layer
  6562. { 224, 3, 8, 3, 1 },
  6563. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6564. { 224, 2, 8, 1, 1 },
  6565. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6566. { 224, 2, 8, 1, 8 },
  6567. // A middle layer of a ConvNet
  6568. { 58, 3, 64, 32, 1 },
  6569. // A middle layer of a ConvNet, several images in the batch
  6570. { 58, 3, 64, 32, 8 },
  6571. // A deep layer of a ConvNet, several images in the batch
  6572. { 16, 3, 512, 128, 8 },
  6573. };
  6574. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6575. for (auto act_case : cases) {
  6576. // Direct CONV_2D
  6577. test_cases.emplace_back(new test_conv_2d(
  6578. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6579. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6580. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6581. }
  6582. }
  6583. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6584. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6585. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6586. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6587. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6588. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6589. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6590. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6591. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6592. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6593. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6594. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6595. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6596. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6597. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6598. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6599. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6600. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6601. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6602. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6603. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6604. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6605. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6606. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6607. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6608. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6609. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6610. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6611. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6612. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6613. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6614. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6615. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6616. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6617. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 2 }, { 6, 64, 4, 2 }));
  6618. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 1 }, { 8, 128, 4, 1 }));
  6619. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER, GGML_TYPE_F32, { 256, 256, 4, 4 }));
  6620. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG, GGML_TYPE_F32, { 1024, 1024, 8, 4 }));
  6621. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6622. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 16, 5, 4 }));
  6623. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20000, 10, 4, 1 }));
  6624. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6625. for (ggml_type type_a : all_types) {
  6626. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6627. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6628. }
  6629. }
  6630. }
  6631. // qwen3-30b-a3b
  6632. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6633. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6634. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6635. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
  6636. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6637. }
  6638. }
  6639. }
  6640. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6641. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6642. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6643. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
  6644. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6645. }
  6646. }
  6647. }
  6648. // gpt-oss-20b
  6649. for (int bs : {1, 4, 8, 512}) {
  6650. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6651. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6652. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
  6653. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6654. }
  6655. }
  6656. }
  6657. for (int K : {3, 5}) {
  6658. for (int IC : {256, 2560}) {
  6659. for (int IW_IH : {32, 64, 256}) {
  6660. if (IC == 2560 && IW_IH == 256) {
  6661. // too big
  6662. continue;
  6663. }
  6664. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6665. }
  6666. }
  6667. }
  6668. // Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
  6669. test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6670. for (int kv : { 4096, 8192, 16384, }) {
  6671. for (int hs : { 64, 128, }) {
  6672. for (int nr : { 1, 4, }) {
  6673. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6674. }
  6675. }
  6676. }
  6677. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6678. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6679. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6680. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6681. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6682. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6683. for (int n_token : {1, 512}) {
  6684. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6685. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6686. }
  6687. for (bool fw : {true, false}) { // fw == forward
  6688. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6689. for (bool ff : {false, true}) { // freq_factors
  6690. for (float v : { 0, 1 }) {
  6691. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  6692. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  6693. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  6694. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  6695. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6696. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6697. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6698. }
  6699. }
  6700. }
  6701. }
  6702. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6703. { 8192, 1, 1, 1 },
  6704. { 8192, 8192, 1, 1 },
  6705. { 128, 8192, 1, 1 },
  6706. };
  6707. for (auto it: reduce_rows_cases){
  6708. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6709. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6710. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6711. }
  6712. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  6713. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2, 1, 1, 1}, 1));
  6714. for (auto k : {1, 10, 40, 400}) {
  6715. for (auto nrows : {1, 16}) {
  6716. for (auto cols : {k, 1000, 65000, 200000}) {
  6717. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {cols, nrows, 1, 1}, k));
  6718. }
  6719. }
  6720. }
  6721. return test_cases;
  6722. }
  6723. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6724. printer * output_printer) {
  6725. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6726. if (params_filter == nullptr) {
  6727. return;
  6728. }
  6729. std::regex params_filter_regex(params_filter);
  6730. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6731. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6732. it = test_cases.erase(it);
  6733. continue;
  6734. }
  6735. it++;
  6736. }
  6737. };
  6738. if (mode == MODE_TEST) {
  6739. auto test_cases = make_test_cases_eval();
  6740. filter_test_cases(test_cases, params_filter);
  6741. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6742. if (backend_cpu == NULL) {
  6743. test_operation_info info("", "", "CPU");
  6744. info.set_error("backend", "Failed to initialize CPU backend");
  6745. output_printer->print_operation(info);
  6746. return false;
  6747. }
  6748. size_t n_ok = 0;
  6749. size_t tests_run = 0;
  6750. std::vector<std::string> failed_tests;
  6751. for (auto & test : test_cases) {
  6752. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6753. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6754. continue;
  6755. }
  6756. tests_run++;
  6757. if (status == test_status_t::OK) {
  6758. n_ok++;
  6759. } else if (status == test_status_t::FAIL) {
  6760. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6761. }
  6762. }
  6763. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6764. output_printer->print_failed_tests(failed_tests);
  6765. ggml_backend_free(backend_cpu);
  6766. return n_ok == tests_run;
  6767. }
  6768. if (mode == MODE_GRAD) {
  6769. auto test_cases = make_test_cases_eval();
  6770. filter_test_cases(test_cases, params_filter);
  6771. size_t n_ok = 0;
  6772. for (auto & test : test_cases) {
  6773. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6774. n_ok++;
  6775. }
  6776. }
  6777. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6778. return n_ok == test_cases.size();
  6779. }
  6780. if (mode == MODE_PERF) {
  6781. auto test_cases = make_test_cases_perf();
  6782. filter_test_cases(test_cases, params_filter);
  6783. for (auto & test : test_cases) {
  6784. test->eval_perf(backend, op_names_filter, output_printer);
  6785. }
  6786. return true;
  6787. }
  6788. if (mode == MODE_SUPPORT) {
  6789. auto test_cases = make_test_cases_eval();
  6790. filter_test_cases(test_cases, params_filter);
  6791. // Filter out fusion cases
  6792. test_cases.erase(
  6793. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6794. return tc->run_whole_graph();
  6795. }),
  6796. test_cases.end()
  6797. );
  6798. for (auto & test : test_cases) {
  6799. test->eval_support(backend, op_names_filter, output_printer);
  6800. }
  6801. return true;
  6802. }
  6803. GGML_ABORT("fatal error");
  6804. }
  6805. static void list_all_ops() {
  6806. printf("GGML operations:\n");
  6807. std::set<std::string> all_ops;
  6808. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6809. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6810. }
  6811. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6812. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6813. }
  6814. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6815. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6816. }
  6817. for (const auto & op : all_ops) {
  6818. printf(" %s\n", op.c_str());
  6819. }
  6820. printf("\nTotal: %zu operations\n", all_ops.size());
  6821. }
  6822. static void show_test_coverage() {
  6823. std::set<std::string> all_ops;
  6824. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6825. auto op = (enum ggml_op)i;
  6826. if (op == GGML_OP_VIEW ||
  6827. op == GGML_OP_RESHAPE ||
  6828. op == GGML_OP_PERMUTE ||
  6829. op == GGML_OP_TRANSPOSE ||
  6830. op == GGML_OP_CONT ||
  6831. op == GGML_OP_GLU ||
  6832. op == GGML_OP_UNARY) {
  6833. continue;
  6834. }
  6835. all_ops.insert(ggml_op_name(op));
  6836. }
  6837. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6838. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6839. }
  6840. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6841. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6842. }
  6843. auto test_cases = make_test_cases_eval();
  6844. // Filter out fusion cases
  6845. test_cases.erase(
  6846. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6847. return tc->run_whole_graph();
  6848. }),
  6849. test_cases.end()
  6850. );
  6851. std::set<std::string> tested_ops;
  6852. ggml_init_params params = {
  6853. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6854. /* .mem_base = */ NULL,
  6855. /* .no_alloc = */ true,
  6856. };
  6857. for (auto & test_case : test_cases) {
  6858. ggml_context * ctx = ggml_init(params);
  6859. if (ctx) {
  6860. test_case->mode = MODE_TEST;
  6861. ggml_tensor * out = test_case->build_graph(ctx);
  6862. if (out && out->op != GGML_OP_NONE) {
  6863. if (out->op == GGML_OP_UNARY) {
  6864. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6865. } else if (out->op == GGML_OP_GLU) {
  6866. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6867. } else {
  6868. tested_ops.insert(ggml_op_name(out->op));
  6869. }
  6870. }
  6871. ggml_free(ctx);
  6872. }
  6873. }
  6874. std::set<std::string> covered_ops;
  6875. std::set<std::string> uncovered_ops;
  6876. for (const auto & op : all_ops) {
  6877. if (tested_ops.count(op) > 0) {
  6878. covered_ops.insert(op);
  6879. } else {
  6880. uncovered_ops.insert(op);
  6881. }
  6882. }
  6883. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6884. for (const auto & op : covered_ops) {
  6885. printf(" ✓ %s\n", op.c_str());
  6886. }
  6887. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6888. for (const auto & op : uncovered_ops) {
  6889. printf(" ✗ %s\n", op.c_str());
  6890. }
  6891. printf("\nCoverage Summary:\n");
  6892. printf(" Total operations: %zu\n", all_ops.size());
  6893. printf(" Tested operations: %zu\n", covered_ops.size());
  6894. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6895. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6896. }
  6897. static void usage(char ** argv) {
  6898. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6899. printf(" valid modes:\n");
  6900. printf(" - test (default, compare with CPU backend for correctness)\n");
  6901. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6902. printf(" - perf (performance evaluation)\n");
  6903. printf(" - support (probe backend operation support)\n");
  6904. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6905. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6906. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6907. printf(" --list-ops lists all available GGML operations\n");
  6908. printf(" --show-coverage shows test coverage\n");
  6909. }
  6910. int main(int argc, char ** argv) {
  6911. test_mode mode = MODE_TEST;
  6912. output_formats output_format = CONSOLE;
  6913. const char * op_names_filter = nullptr;
  6914. const char * backend_filter = nullptr;
  6915. const char * params_filter = nullptr;
  6916. for (int i = 1; i < argc; i++) {
  6917. if (strcmp(argv[i], "test") == 0) {
  6918. mode = MODE_TEST;
  6919. } else if (strcmp(argv[i], "perf") == 0) {
  6920. mode = MODE_PERF;
  6921. } else if (strcmp(argv[i], "grad") == 0) {
  6922. mode = MODE_GRAD;
  6923. } else if (strcmp(argv[i], "support") == 0) {
  6924. mode = MODE_SUPPORT;
  6925. } else if (strcmp(argv[i], "-o") == 0) {
  6926. if (i + 1 < argc) {
  6927. op_names_filter = argv[++i];
  6928. } else {
  6929. usage(argv);
  6930. return 1;
  6931. }
  6932. } else if (strcmp(argv[i], "-b") == 0) {
  6933. if (i + 1 < argc) {
  6934. backend_filter = argv[++i];
  6935. } else {
  6936. usage(argv);
  6937. return 1;
  6938. }
  6939. } else if (strcmp(argv[i], "-p") == 0) {
  6940. if (i + 1 < argc) {
  6941. params_filter = argv[++i];
  6942. } else {
  6943. usage(argv);
  6944. return 1;
  6945. }
  6946. } else if (strcmp(argv[i], "--output") == 0) {
  6947. if (i + 1 < argc) {
  6948. if (!output_format_from_str(argv[++i], output_format)) {
  6949. usage(argv);
  6950. return 1;
  6951. }
  6952. } else {
  6953. usage(argv);
  6954. return 1;
  6955. }
  6956. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6957. list_all_ops();
  6958. return 0;
  6959. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6960. show_test_coverage();
  6961. return 0;
  6962. } else {
  6963. usage(argv);
  6964. return 1;
  6965. }
  6966. }
  6967. // load and enumerate backends
  6968. ggml_backend_load_all();
  6969. // Create printer for output format
  6970. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6971. if (output_printer) {
  6972. output_printer->print_header();
  6973. }
  6974. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6975. size_t n_ok = 0;
  6976. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6977. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6978. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6979. output_printer->print_backend_init(
  6980. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6981. n_ok++;
  6982. continue;
  6983. }
  6984. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6985. output_printer->print_backend_init(backend_init_info(
  6986. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6987. n_ok++;
  6988. continue;
  6989. }
  6990. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6991. GGML_ASSERT(backend != NULL);
  6992. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6993. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6994. if (ggml_backend_set_n_threads_fn) {
  6995. // TODO: better value for n_threads
  6996. ggml_backend_set_n_threads_fn(backend, N_THREADS);
  6997. }
  6998. size_t free, total; // NOLINT
  6999. ggml_backend_dev_memory(dev, &free, &total);
  7000. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  7001. false, "", ggml_backend_dev_description(dev),
  7002. total / 1024 / 1024, free / 1024 / 1024, true));
  7003. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  7004. if (ok) {
  7005. n_ok++;
  7006. }
  7007. output_printer->print_backend_status(
  7008. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  7009. ggml_backend_free(backend);
  7010. }
  7011. ggml_quantize_free();
  7012. if (output_printer) {
  7013. output_printer->print_footer();
  7014. }
  7015. output_printer->print_overall_summary(
  7016. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  7017. if (n_ok != ggml_backend_dev_count()) {
  7018. return 1;
  7019. }
  7020. return 0;
  7021. }