ggml.c 331 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _POSIX_C_SOURCE 199309L
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <time.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <stdint.h>
  15. #include <stdio.h>
  16. #include <float.h>
  17. // if C99 - static_assert is noop
  18. // ref: https://stackoverflow.com/a/53923785/4039976
  19. #ifndef static_assert
  20. #define static_assert(cond, msg) struct global_scope_noop_trick
  21. #endif
  22. #if defined _MSC_VER || defined(__MINGW32__)
  23. #if !defined(__MINGW32__)
  24. #include <Windows.h>
  25. #else
  26. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  27. #include <windows.h>
  28. #include <errno.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. /*#define GGML_PERF*/
  71. #define GGML_DEBUG 0
  72. #define GGML_GELU_FP16
  73. #define GGML_SILU_FP16
  74. #define GGML_SOFT_MAX_UNROLL 4
  75. #define GGML_VEC_DOT_UNROLL 2
  76. #ifdef GGML_USE_ACCELERATE
  77. // uncomment to use vDSP for soft max computation
  78. // note: not sure if it is actually faster
  79. //#define GGML_SOFT_MAX_ACCELERATE
  80. #endif
  81. #if UINTPTR_MAX == 0xFFFFFFFF
  82. #define GGML_MEM_ALIGN 4
  83. #else
  84. #define GGML_MEM_ALIGN 16
  85. #endif
  86. #define UNUSED(x) (void)(x)
  87. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  88. #define GGML_ASSERT(x) \
  89. do { \
  90. if (!(x)) { \
  91. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  92. abort(); \
  93. } \
  94. } while (0)
  95. #ifdef GGML_USE_ACCELERATE
  96. #include <Accelerate/Accelerate.h>
  97. #elif GGML_USE_OPENBLAS
  98. #include <cblas.h>
  99. #endif
  100. #undef MIN
  101. #undef MAX
  102. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  103. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  104. // floating point type used to accumulate sums
  105. typedef double ggml_float;
  106. // 16-bit float
  107. // on Arm, we use __fp16
  108. // on x86, we use uint16_t
  109. #ifdef __ARM_NEON
  110. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  111. //
  112. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  113. //
  114. #include <arm_neon.h>
  115. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  116. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  117. #define GGML_FP16_TO_FP32(x) (x)
  118. #define GGML_FP32_TO_FP16(x) (x)
  119. #else
  120. #ifdef __wasm_simd128__
  121. #include <wasm_simd128.h>
  122. #else
  123. #ifdef __POWER9_VECTOR__
  124. #include <altivec.h>
  125. #undef bool
  126. #define bool _Bool
  127. #else
  128. #include <immintrin.h>
  129. #endif
  130. #endif
  131. #ifdef __F16C__
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  134. #else
  135. // FP16 <-> FP32
  136. // ref: https://github.com/Maratyszcza/FP16
  137. static inline float fp32_from_bits(uint32_t w) {
  138. union {
  139. uint32_t as_bits;
  140. float as_value;
  141. } fp32;
  142. fp32.as_bits = w;
  143. return fp32.as_value;
  144. }
  145. static inline uint32_t fp32_to_bits(float f) {
  146. union {
  147. float as_value;
  148. uint32_t as_bits;
  149. } fp32;
  150. fp32.as_value = f;
  151. return fp32.as_bits;
  152. }
  153. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  154. const uint32_t w = (uint32_t) h << 16;
  155. const uint32_t sign = w & UINT32_C(0x80000000);
  156. const uint32_t two_w = w + w;
  157. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  158. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  159. const float exp_scale = 0x1.0p-112f;
  160. #else
  161. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  162. #endif
  163. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  164. const uint32_t magic_mask = UINT32_C(126) << 23;
  165. const float magic_bias = 0.5f;
  166. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  167. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  168. const uint32_t result = sign |
  169. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  170. return fp32_from_bits(result);
  171. }
  172. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  173. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  174. const float scale_to_inf = 0x1.0p+112f;
  175. const float scale_to_zero = 0x1.0p-110f;
  176. #else
  177. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  178. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  179. #endif
  180. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  181. const uint32_t w = fp32_to_bits(f);
  182. const uint32_t shl1_w = w + w;
  183. const uint32_t sign = w & UINT32_C(0x80000000);
  184. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  185. if (bias < UINT32_C(0x71000000)) {
  186. bias = UINT32_C(0x71000000);
  187. }
  188. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  189. const uint32_t bits = fp32_to_bits(base);
  190. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  191. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  192. const uint32_t nonsign = exp_bits + mantissa_bits;
  193. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  194. }
  195. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  196. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  197. #endif // __F16C__
  198. #endif // __ARM_NEON
  199. //
  200. // global data
  201. //
  202. // precomputed gelu table for f16 (128 KB)
  203. static ggml_fp16_t table_gelu_f16[1 << 16];
  204. // precomputed silu table for f16 (128 KB)
  205. static ggml_fp16_t table_silu_f16[1 << 16];
  206. // precomputed exp table for f16 (128 KB)
  207. static ggml_fp16_t table_exp_f16[1 << 16];
  208. // precomputed f32 table for f16 (256 KB)
  209. static float table_f32_f16[1 << 16];
  210. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  211. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  212. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  213. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  214. uint16_t s;
  215. memcpy(&s, &f, sizeof(uint16_t));
  216. return table_f32_f16[s];
  217. }
  218. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  219. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  220. #endif
  221. // note: do not use these inside ggml.c
  222. // these are meant to be used via the ggml.h API
  223. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  224. return GGML_FP16_TO_FP32(x);
  225. }
  226. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  227. return GGML_FP32_TO_FP16(x);
  228. }
  229. //
  230. // timing
  231. //
  232. #if defined(_MSC_VER) || defined(__MINGW32__)
  233. static int64_t timer_freq;
  234. void ggml_time_init(void) {
  235. LARGE_INTEGER frequency;
  236. QueryPerformanceFrequency(&frequency);
  237. timer_freq = frequency.QuadPart;
  238. }
  239. int64_t ggml_time_ms(void) {
  240. LARGE_INTEGER t;
  241. QueryPerformanceCounter(&t);
  242. return (t.QuadPart * 1000) / timer_freq;
  243. }
  244. int64_t ggml_time_us(void) {
  245. LARGE_INTEGER t;
  246. QueryPerformanceCounter(&t);
  247. return (t.QuadPart * 1000000) / timer_freq;
  248. }
  249. #else
  250. void ggml_time_init(void) {}
  251. int64_t ggml_time_ms(void) {
  252. struct timespec ts;
  253. clock_gettime(CLOCK_MONOTONIC, &ts);
  254. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  255. }
  256. int64_t ggml_time_us(void) {
  257. struct timespec ts;
  258. clock_gettime(CLOCK_MONOTONIC, &ts);
  259. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  260. }
  261. #endif
  262. int64_t ggml_cycles(void) {
  263. return clock();
  264. }
  265. int64_t ggml_cycles_per_ms(void) {
  266. return CLOCKS_PER_SEC/1000;
  267. }
  268. #ifdef GGML_PERF
  269. #define ggml_perf_time_ms() ggml_time_ms()
  270. #define ggml_perf_time_us() ggml_time_us()
  271. #define ggml_perf_cycles() ggml_cycles()
  272. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  273. #else
  274. #define ggml_perf_time_ms() 0
  275. #define ggml_perf_time_us() 0
  276. #define ggml_perf_cycles() 0
  277. #define ggml_perf_cycles_per_ms() 0
  278. #endif
  279. //
  280. // cache line
  281. //
  282. #if defined(__cpp_lib_hardware_interference_size)
  283. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  284. #else
  285. #if defined(__POWER9_VECTOR__)
  286. #define CACHE_LINE_SIZE 128
  287. #else
  288. #define CACHE_LINE_SIZE 64
  289. #endif
  290. #endif
  291. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  292. //
  293. // quantization
  294. //
  295. #define QK 32
  296. // AVX routines provided by GH user Const-me
  297. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  298. #if __AVX2__ || __AVX512F__
  299. // Unpack 32 4-bit fields into 32 bytes
  300. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  301. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  302. {
  303. // Load 16 bytes from memory
  304. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  305. // Expand bytes into uint16_t values
  306. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  307. // Unpack values into individual bytes
  308. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  309. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  310. __m256i low = _mm256_and_si256( lowMask, bytes );
  311. high = _mm256_slli_epi16( high, 4 );
  312. bytes = _mm256_or_si256( low, high );
  313. return bytes;
  314. }
  315. static inline __m128i packNibbles( __m256i bytes )
  316. {
  317. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  318. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  319. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  320. __m256i low = _mm256_and_si256( lowByte, bytes );
  321. high = _mm256_srli_epi16( high, 4 );
  322. bytes = _mm256_or_si256( low, high );
  323. // Compress uint16_t lanes into bytes
  324. __m128i r0 = _mm256_castsi256_si128( bytes );
  325. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  326. return _mm_packus_epi16( r0, r1 );
  327. }
  328. #endif
  329. // method 5
  330. // blocks of QK elements
  331. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  332. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  333. assert(k % QK == 0);
  334. const int nb = k / QK;
  335. const size_t bs = sizeof(float) + QK/2;
  336. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  337. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  338. uint8_t pp[QK/2];
  339. #if __ARM_NEON
  340. #if QK == 32
  341. for (int i = 0; i < nb; i++) {
  342. float amax = 0.0f; // absolute max
  343. float32x4_t srcv [8];
  344. float32x4_t asrcv[8];
  345. float32x4_t amaxv[8];
  346. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  347. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  348. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  349. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  350. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  351. amax = MAX(
  352. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  353. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  354. const float d = amax / ((1 << 3) - 1);
  355. const float id = d ? 1.0/d : 0.0;
  356. *(float *)pd = d;
  357. pd += bs;
  358. for (int l = 0; l < 8; l++) {
  359. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  360. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  361. const int32x4_t vi = vcvtq_s32_f32(vf);
  362. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  363. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  364. }
  365. memcpy(pb, pp, sizeof(pp));
  366. pb += bs;
  367. }
  368. #else
  369. #error "not implemented for QK"
  370. #endif
  371. #elif defined(__AVX2__)
  372. #if QK == 32
  373. for (int i = 0; i < nb; i++) {
  374. // Load elements into 4 AVX vectors
  375. __m256 v0 = _mm256_loadu_ps( x );
  376. __m256 v1 = _mm256_loadu_ps( x + 8 );
  377. __m256 v2 = _mm256_loadu_ps( x + 16 );
  378. __m256 v3 = _mm256_loadu_ps( x + 24 );
  379. x += 32;
  380. // Compute max(abs(e)) for the block
  381. const __m256 signBit = _mm256_set1_ps( -0.0f );
  382. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  383. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  384. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  385. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  386. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  387. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  388. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  389. const float maxScalar = _mm_cvtss_f32( max4 );
  390. // Quantize these floats
  391. const float d = maxScalar / 7.0f;
  392. *(float *)pd = d;
  393. pd += bs;
  394. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  395. const __m256 mul = _mm256_set1_ps( id );
  396. // Apply the multiplier
  397. v0 = _mm256_mul_ps( v0, mul );
  398. v1 = _mm256_mul_ps( v1, mul );
  399. v2 = _mm256_mul_ps( v2, mul );
  400. v3 = _mm256_mul_ps( v3, mul );
  401. // Round to nearest integer
  402. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  403. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  404. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  405. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  406. // Convert floats to integers
  407. __m256i i0 = _mm256_cvtps_epi32( v0 );
  408. __m256i i1 = _mm256_cvtps_epi32( v1 );
  409. __m256i i2 = _mm256_cvtps_epi32( v2 );
  410. __m256i i3 = _mm256_cvtps_epi32( v3 );
  411. // Convert int32 to int16
  412. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  413. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  414. // Convert int16 to int8
  415. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  416. // We got our precious signed bytes, but the order is now wrong
  417. // These AVX2 pack instructions process 16-byte pieces independently
  418. // The following instruction is fixing the order
  419. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  420. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  421. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  422. const __m256i off = _mm256_set1_epi8( 8 );
  423. i0 = _mm256_add_epi8( i0, off );
  424. // Compress the vector into 4 bit/value, and store
  425. __m128i res = packNibbles( i0 );
  426. _mm_storeu_si128( ( __m128i* )pb, res );
  427. pb += bs;
  428. }
  429. #else
  430. #error "not implemented for QK"
  431. #endif
  432. #elif defined(__wasm_simd128__)
  433. #if QK == 32
  434. for (int i = 0; i < nb; i++) {
  435. float amax = 0.0f; // absolute max
  436. v128_t srcv [8];
  437. v128_t asrcv[8];
  438. v128_t amaxv[8];
  439. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  440. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  441. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  442. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  443. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  444. amax = MAX(
  445. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  446. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  447. const float d = amax / ((1 << 3) - 1);
  448. const float id = d ? 1.0/d : 0.0;
  449. *(float *)pd = d;
  450. pd += bs;
  451. for (int l = 0; l < 8; l++) {
  452. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  453. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  454. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  455. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  456. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  457. }
  458. memcpy(pb, pp, sizeof(pp));
  459. pb += bs;
  460. }
  461. #else
  462. #error "not implemented for QK"
  463. #endif
  464. #else
  465. // scalar
  466. for (int i = 0; i < nb; i++) {
  467. float amax = 0.0f; // absolute max
  468. for (int l = 0; l < QK; l++) {
  469. const float v = x[i*QK + l];
  470. amax = MAX(amax, fabsf(v));
  471. }
  472. const float d = amax / ((1 << 3) - 1);
  473. const float id = d ? 1.0f/d : 0.0f;
  474. *(float *)pd = d;
  475. pd += bs;
  476. for (int l = 0; l < QK; l += 2) {
  477. const float v0 = x[i*QK + l + 0]*id;
  478. const float v1 = x[i*QK + l + 1]*id;
  479. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  480. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  481. assert(vi0 >= 0 && vi0 < 16);
  482. assert(vi1 >= 0 && vi1 < 16);
  483. pp[l/2] = vi0 | (vi1 << 4);
  484. }
  485. memcpy(pb, pp, sizeof(pp));
  486. pb += bs;
  487. }
  488. #endif
  489. }
  490. // method 4
  491. // blocks of QK elements
  492. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  493. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  494. assert(k % QK == 0);
  495. const int nb = k / QK;
  496. const size_t bs = 2*sizeof(float) + QK/2;
  497. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  498. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  499. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  500. uint8_t pp[QK/2];
  501. for (int i = 0; i < nb; i++) {
  502. float min = FLT_MAX;
  503. float max = -FLT_MAX;
  504. for (int l = 0; l < QK; l++) {
  505. const float v = x[i*QK + l];
  506. if (v < min) min = v;
  507. if (v > max) max = v;
  508. }
  509. const float d = (max - min) / ((1 << 4) - 1);
  510. const float id = d ? 1.0f/d : 0.0f;
  511. *(float *)pm = min;
  512. *(float *)pd = d;
  513. pm += bs;
  514. pd += bs;
  515. for (int l = 0; l < QK; l += 2) {
  516. const float v0 = (x[i*QK + l + 0] - min)*id;
  517. const float v1 = (x[i*QK + l + 1] - min)*id;
  518. const uint8_t vi0 = round(v0);
  519. const uint8_t vi1 = round(v1);
  520. assert(vi0 >= 0 && vi0 < 16);
  521. assert(vi1 >= 0 && vi1 < 16);
  522. pp[l/2] = vi0 | (vi1 << 4);
  523. }
  524. memcpy(pb, pp, sizeof(pp));
  525. pb += bs;
  526. }
  527. }
  528. // TODO: vectorize
  529. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  530. assert(k % QK == 0);
  531. const int nb = k / QK;
  532. const size_t bs = sizeof(float) + QK/2;
  533. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  534. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  535. // scalar
  536. for (int i = 0; i < nb; i++) {
  537. const float d = *(const float *) (pd + i*bs);
  538. const uint8_t * restrict pp = pb + i*bs;
  539. for (int l = 0; l < QK; l += 2) {
  540. const uint8_t vi = pp[l/2];
  541. const int8_t vi0 = vi & 0xf;
  542. const int8_t vi1 = vi >> 4;
  543. const float v0 = (vi0 - 8)*d;
  544. const float v1 = (vi1 - 8)*d;
  545. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  546. y[i*QK + l + 0] = v0;
  547. y[i*QK + l + 1] = v1;
  548. assert(!isnan(y[i*QK + l + 0]));
  549. assert(!isnan(y[i*QK + l + 1]));
  550. }
  551. }
  552. }
  553. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  554. assert(k % QK == 0);
  555. const int nb = k / QK;
  556. const size_t bs = 2*sizeof(float) + QK/2;
  557. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  558. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  559. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  560. for (int i = 0; i < nb; i++) {
  561. const float d = *(const float *) (pd + i*bs);
  562. const float m = *(const float *) (pm + i*bs);
  563. const uint8_t * restrict pp = pb + i*bs;
  564. for (int l = 0; l < QK; l += 2) {
  565. const uint8_t vi = pp[l/2];
  566. const int8_t vi0 = vi & 0xf;
  567. const int8_t vi1 = vi >> 4;
  568. const float v0 = vi0*d + m;
  569. const float v1 = vi1*d + m;
  570. y[i*QK + l + 0] = v0;
  571. y[i*QK + l + 1] = v1;
  572. assert(!isnan(y[i*QK + l + 0]));
  573. assert(!isnan(y[i*QK + l + 1]));
  574. }
  575. }
  576. }
  577. //
  578. // simd mappings
  579. //
  580. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  581. // we then implement the fundamental computation operations below using only these macros
  582. // adding support for new architectures requires to define the corresponding SIMD macros
  583. //
  584. // GGML_F32_STEP / GGML_F16_STEP
  585. // number of elements to process in a single step
  586. //
  587. // GGML_F32_EPR / GGML_F16_EPR
  588. // number of elements to fit in a single register
  589. //
  590. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  591. #define GGML_SIMD
  592. // F32 NEON
  593. #define GGML_F32_STEP 16
  594. #define GGML_F32_EPR 4
  595. #define GGML_F32x4 float32x4_t
  596. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  597. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  598. #define GGML_F32x4_LOAD vld1q_f32
  599. #define GGML_F32x4_STORE vst1q_f32
  600. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  601. #define GGML_F32x4_ADD vaddq_f32
  602. #define GGML_F32x4_MUL vmulq_f32
  603. #if defined(__ARM_FEATURE_QRDMX)
  604. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  605. #else
  606. #define GGML_F32x4_REDUCE_ONE(x) \
  607. (vgetq_lane_f32(x, 0) + \
  608. vgetq_lane_f32(x, 1) + \
  609. vgetq_lane_f32(x, 2) + \
  610. vgetq_lane_f32(x, 3))
  611. #endif
  612. #define GGML_F32x4_REDUCE(res, x) \
  613. { \
  614. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  615. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  616. } \
  617. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  618. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  619. } \
  620. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  621. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  622. } \
  623. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  624. }
  625. #define GGML_F32_VEC GGML_F32x4
  626. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  627. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  628. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  629. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  630. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  631. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  632. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  633. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  634. // F16 NEON
  635. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  636. #define GGML_F16_STEP 32
  637. #define GGML_F16_EPR 8
  638. #define GGML_F16x8 float16x8_t
  639. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  640. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  641. #define GGML_F16x8_LOAD vld1q_f16
  642. #define GGML_F16x8_STORE vst1q_f16
  643. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  644. #define GGML_F16x8_ADD vaddq_f16
  645. #define GGML_F16x8_MUL vmulq_f16
  646. #define GGML_F16x8_REDUCE(res, x) \
  647. { \
  648. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  649. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  650. } \
  651. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  652. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  653. } \
  654. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  655. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  656. } \
  657. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  658. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  659. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  660. }
  661. #define GGML_F16_VEC GGML_F16x8
  662. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  663. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  664. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  665. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  666. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  667. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  668. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  669. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  670. #else
  671. // if FP16 vector arithmetic is not supported, we use FP32 instead
  672. // and take advantage of the vcvt_ functions to convert to/from FP16
  673. #define GGML_F16_STEP 16
  674. #define GGML_F16_EPR 4
  675. #define GGML_F32Cx4 float32x4_t
  676. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  677. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  678. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  679. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  680. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  681. #define GGML_F32Cx4_ADD vaddq_f32
  682. #define GGML_F32Cx4_MUL vmulq_f32
  683. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  684. #define GGML_F16_VEC GGML_F32Cx4
  685. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  686. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  687. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  688. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  689. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  690. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  691. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  692. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  693. #endif
  694. #elif defined(__AVX__)
  695. #define GGML_SIMD
  696. // F32 AVX
  697. #define GGML_F32_STEP 32
  698. #define GGML_F32_EPR 8
  699. #define GGML_F32x8 __m256
  700. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  701. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  702. #define GGML_F32x8_LOAD _mm256_loadu_ps
  703. #define GGML_F32x8_STORE _mm256_storeu_ps
  704. #if defined(__FMA__)
  705. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  706. #else
  707. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  708. #endif
  709. #define GGML_F32x8_ADD _mm256_add_ps
  710. #define GGML_F32x8_MUL _mm256_mul_ps
  711. #define GGML_F32x8_REDUCE(res, x) \
  712. { \
  713. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  714. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  715. } \
  716. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  717. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  718. } \
  719. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  720. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  721. } \
  722. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  723. _mm256_extractf128_ps(x[0], 1)); \
  724. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  725. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  726. }
  727. // TODO: is this optimal ?
  728. #define GGML_F32_VEC GGML_F32x8
  729. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  730. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  731. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  732. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  733. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  734. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  735. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  736. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  737. // F16 AVX
  738. #define GGML_F16_STEP 32
  739. #define GGML_F16_EPR 8
  740. // F16 arithmetic is not supported by AVX, so we use F32 instead
  741. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  742. #define GGML_F32Cx8 __m256
  743. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  744. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  745. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  746. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  747. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  748. #define GGML_F32Cx8_ADD _mm256_add_ps
  749. #define GGML_F32Cx8_MUL _mm256_mul_ps
  750. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  751. #define GGML_F16_VEC GGML_F32Cx8
  752. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  753. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  754. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  755. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  756. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  757. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  758. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  759. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  760. #elif defined(__POWER9_VECTOR__)
  761. #define GGML_SIMD
  762. // F32 POWER9
  763. #define GGML_F32_STEP 32
  764. #define GGML_F32_EPR 4
  765. #define GGML_F32x4 vector float
  766. #define GGML_F32x4_ZERO 0.0f
  767. #define GGML_F32x4_SET1 vec_splats
  768. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  769. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  770. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  771. #define GGML_F32x4_ADD vec_add
  772. #define GGML_F32x4_MUL vec_mul
  773. #define GGML_F32x4_REDUCE(res, x) \
  774. { \
  775. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  776. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  777. } \
  778. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  779. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  780. } \
  781. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  782. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  783. } \
  784. res = vec_extract(x[0], 0) + \
  785. vec_extract(x[0], 1) + \
  786. vec_extract(x[0], 2) + \
  787. vec_extract(x[0], 3); \
  788. }
  789. #define GGML_F32_VEC GGML_F32x4
  790. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  791. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  792. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  793. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  794. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  795. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  796. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  797. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  798. // F16 POWER9
  799. #define GGML_F16_STEP GGML_F32_STEP
  800. #define GGML_F16_EPR GGML_F32_EPR
  801. #define GGML_F16_VEC GGML_F32x4
  802. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  805. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  806. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  807. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  808. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  809. vec_extract_fp32_from_shortl(vec_xl(0, p))
  810. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  811. #define GGML_F16_VEC_STORE(p, r, i) \
  812. if (i & 0x1) \
  813. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  814. r[i - GGML_ENDIAN_BYTE(0)]), \
  815. 0, p - GGML_F16_EPR)
  816. #elif defined(__wasm_simd128__)
  817. #define GGML_SIMD
  818. // F32 WASM
  819. #define GGML_F32_STEP 16
  820. #define GGML_F32_EPR 4
  821. #define GGML_F32x4 v128_t
  822. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F32x4_LOAD wasm_v128_load
  825. #define GGML_F32x4_STORE wasm_v128_store
  826. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  827. #define GGML_F32x4_ADD wasm_f32x4_add
  828. #define GGML_F32x4_MUL wasm_f32x4_mul
  829. #define GGML_F32x4_REDUCE(res, x) \
  830. { \
  831. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  832. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  833. } \
  834. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  835. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  836. } \
  837. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  838. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  839. } \
  840. res = wasm_f32x4_extract_lane(x[0], 0) + \
  841. wasm_f32x4_extract_lane(x[0], 1) + \
  842. wasm_f32x4_extract_lane(x[0], 2) + \
  843. wasm_f32x4_extract_lane(x[0], 3); \
  844. }
  845. #define GGML_F32_VEC GGML_F32x4
  846. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  847. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  848. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  849. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  850. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  851. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  852. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  853. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  854. // F16 WASM
  855. #define GGML_F16_STEP 16
  856. #define GGML_F16_EPR 4
  857. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  858. float tmp[4];
  859. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  860. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  861. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  862. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  863. return wasm_v128_load(tmp);
  864. }
  865. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  866. float tmp[4];
  867. wasm_v128_store(tmp, x);
  868. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  869. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  870. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  871. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  872. }
  873. #define GGML_F16x4 v128_t
  874. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  875. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  876. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  877. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  878. #define GGML_F16x4_FMA GGML_F32x4_FMA
  879. #define GGML_F16x4_ADD wasm_f32x4_add
  880. #define GGML_F16x4_MUL wasm_f32x4_mul
  881. #define GGML_F16x4_REDUCE(res, x) \
  882. { \
  883. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  884. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  885. } \
  886. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  887. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  888. } \
  889. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  890. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  891. } \
  892. res = wasm_f32x4_extract_lane(x[0], 0) + \
  893. wasm_f32x4_extract_lane(x[0], 1) + \
  894. wasm_f32x4_extract_lane(x[0], 2) + \
  895. wasm_f32x4_extract_lane(x[0], 3); \
  896. }
  897. #define GGML_F16_VEC GGML_F16x4
  898. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  899. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  900. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  901. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  902. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  903. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  904. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  905. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  906. #elif defined(__SSE3__)
  907. #define GGML_SIMD
  908. // F32 SSE
  909. #define GGML_F32_STEP 32
  910. #define GGML_F32_EPR 4
  911. #define GGML_F32x4 __m128
  912. #define GGML_F32x4_ZERO _mm_setzero_ps()
  913. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  914. #define GGML_F32x4_LOAD _mm_loadu_ps
  915. #define GGML_F32x4_STORE _mm_storeu_ps
  916. #if defined(__FMA__)
  917. // TODO: Does this work?
  918. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  919. #else
  920. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  921. #endif
  922. #define GGML_F32x4_ADD _mm_add_ps
  923. #define GGML_F32x4_MUL _mm_mul_ps
  924. #define GGML_F32x4_REDUCE(res, x) \
  925. { \
  926. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  927. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  928. } \
  929. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  930. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  931. } \
  932. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  933. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  934. } \
  935. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  936. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  937. }
  938. // TODO: is this optimal ?
  939. #define GGML_F32_VEC GGML_F32x4
  940. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  941. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  942. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  943. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  944. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  946. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  947. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  948. // F16 SSE
  949. #define GGML_F16_STEP 32
  950. #define GGML_F16_EPR 4
  951. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  952. float tmp[4];
  953. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  954. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  955. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  956. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  957. return _mm_loadu_ps(tmp);
  958. }
  959. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  960. float arr[4];
  961. _mm_storeu_ps(arr, y);
  962. x[0] = GGML_FP32_TO_FP16(arr[0]);
  963. x[1] = GGML_FP32_TO_FP16(arr[1]);
  964. x[2] = GGML_FP32_TO_FP16(arr[2]);
  965. x[3] = GGML_FP32_TO_FP16(arr[3]);
  966. }
  967. #define GGML_F32Cx4 __m128
  968. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  969. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  970. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  971. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  972. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  973. #define GGML_F32Cx4_ADD _mm_add_ps
  974. #define GGML_F32Cx4_MUL _mm_mul_ps
  975. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  976. #define GGML_F16_VEC GGML_F32Cx4
  977. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  978. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  979. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  980. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  981. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  982. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  983. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  984. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  985. #endif
  986. // GGML_F32_ARR / GGML_F16_ARR
  987. // number of registers to use per step
  988. #ifdef GGML_SIMD
  989. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  990. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  991. #endif
  992. //
  993. // fundamental operations
  994. //
  995. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  996. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  997. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  998. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  999. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1000. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1001. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1002. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1003. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1004. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1005. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1006. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1007. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1008. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1009. ggml_float sumf = 0.0;
  1010. #ifdef GGML_SIMD
  1011. const int np = (n & ~(GGML_F32_STEP - 1));
  1012. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1013. GGML_F32_VEC ax[GGML_F32_ARR];
  1014. GGML_F32_VEC ay[GGML_F32_ARR];
  1015. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1016. for (int j = 0; j < GGML_F32_ARR; j++) {
  1017. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1018. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1019. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1020. }
  1021. }
  1022. // reduce sum0..sum3 to sum0
  1023. GGML_F32_VEC_REDUCE(sumf, sum);
  1024. // leftovers
  1025. for (int i = np; i < n; ++i) {
  1026. sumf += x[i]*y[i];
  1027. }
  1028. #else
  1029. // scalar
  1030. for (int i = 0; i < n; ++i) {
  1031. sumf += x[i]*y[i];
  1032. }
  1033. #endif
  1034. *s = sumf;
  1035. }
  1036. #if __AVX512F__ && QK == 32
  1037. static inline __m512 dot_q4_0_oneblock_avx512(
  1038. __m512 acc,
  1039. const uint8_t * pd0,
  1040. const uint8_t * pd1,
  1041. const uint8_t * pb0,
  1042. const uint8_t * pb1,
  1043. size_t bs,
  1044. int i
  1045. ) {
  1046. const float * d0_0 = (const float *) (pd0 + i*bs);
  1047. const float * d1_0 = (const float *) (pd1 + i*bs);
  1048. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1049. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1050. // Compute combined scale for the block
  1051. float scaleScalar = d0_0[0] * d1_0[0];
  1052. __m512 scale = _mm512_set1_ps( scaleScalar );
  1053. __m256i bx = bytesFromNibbles( p0 );
  1054. __m256i by = bytesFromNibbles( p1 );
  1055. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1056. const __m256i off = _mm256_set1_epi8( 8 );
  1057. bx = _mm256_sub_epi8( bx, off );
  1058. by = _mm256_sub_epi8( by, off );
  1059. // Sign-extend 16 signed bytes into int16_t
  1060. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1061. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1062. // Compute products of int16_t integers, add pairwise
  1063. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1064. // Convert int32_t to float
  1065. __m512 p = _mm512_cvtepi32_ps( i64 );
  1066. // Apply the scale, and accumulate
  1067. return _mm512_fmadd_ps( scale, p, acc );
  1068. }
  1069. #endif
  1070. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1071. ggml_float sumf = 0.0;
  1072. #if defined(GGML_SIMD)
  1073. const int np = (n & ~(GGML_F16_STEP - 1));
  1074. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1075. GGML_F16_VEC ax[GGML_F16_ARR];
  1076. GGML_F16_VEC ay[GGML_F16_ARR];
  1077. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1078. for (int j = 0; j < GGML_F16_ARR; j++) {
  1079. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1080. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1081. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1082. }
  1083. }
  1084. // reduce sum0..sum3 to sum0
  1085. GGML_F16_VEC_REDUCE(sumf, sum);
  1086. // leftovers
  1087. for (int i = np; i < n; ++i) {
  1088. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1089. }
  1090. #else
  1091. for (int i = 0; i < n; ++i) {
  1092. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1093. }
  1094. #endif
  1095. *s = sumf;
  1096. }
  1097. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1098. const int nb = n / QK;
  1099. assert(n % QK == 0);
  1100. assert(nb % 2 == 0);
  1101. const size_t bs = sizeof(float) + QK/2;
  1102. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1103. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1104. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1105. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1106. float sumf = 0.0;
  1107. #ifdef __ARM_NEON
  1108. #if QK == 32
  1109. float sum0 = 0.0f;
  1110. float sum1 = 0.0f;
  1111. for (int i = 0; i < nb; i += 2) {
  1112. const float d0_0 = *(const float *) (pd0 + i*bs);
  1113. const float d1_0 = *(const float *) (pd1 + i*bs);
  1114. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1115. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1116. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1117. const uint8_t * restrict p0 = pb0 + i*bs;
  1118. const uint8_t * restrict p1 = pb1 + i*bs;
  1119. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1120. const int8x16_t s8b = vdupq_n_s8(0x8);
  1121. const uint8x16_t v0_0 = vld1q_u8(p0);
  1122. const uint8x16_t v1_0 = vld1q_u8(p1);
  1123. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1124. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1125. // 4-bit -> 8-bit
  1126. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1127. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1128. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1129. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1130. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1131. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1132. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1133. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1134. // sub 8
  1135. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1136. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1137. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1138. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1139. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1140. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1141. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1142. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1143. #if defined(__ARM_FEATURE_DOTPROD)
  1144. // dot product into int16x8_t
  1145. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1146. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1147. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1148. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1149. // scalar
  1150. #if defined(__ARM_FEATURE_QRDMX)
  1151. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1152. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1153. #else
  1154. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1155. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1156. #endif
  1157. #else
  1158. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1159. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1160. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1161. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1162. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1163. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1164. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1165. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1166. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1167. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1168. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1169. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1170. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1171. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1172. // scalar
  1173. #if defined(__ARM_FEATURE_QRDMX)
  1174. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1175. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1176. #else
  1177. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1178. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1179. #endif
  1180. #endif
  1181. }
  1182. sumf = sum0 + sum1;
  1183. #else
  1184. #error "not implemented for QK"
  1185. #endif
  1186. #elif defined(__AVX512F__)
  1187. #if QK == 32
  1188. // Initialize accumulator with zeros
  1189. __m512 acc0 = _mm512_setzero_ps();
  1190. __m512 acc1 = _mm512_setzero_ps();
  1191. const int superblock_size = 8;
  1192. const int superblock_count = nb / superblock_size;
  1193. const int remainder = nb % superblock_size;
  1194. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1195. int i = superblock_ix * superblock_size;
  1196. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1197. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1198. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1199. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1200. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1201. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1202. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1203. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1204. }
  1205. // Remainders
  1206. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1207. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1208. }
  1209. // Horizontal sum of all lanes of the accumulator
  1210. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1211. #else
  1212. #error "not implemented for QK"
  1213. #endif
  1214. #elif defined(__AVX2__)
  1215. #if QK == 32
  1216. const size_t countBlocks = nb;
  1217. // Initialize accumulator with zeros
  1218. __m256 acc = _mm256_setzero_ps();
  1219. // Main loop
  1220. for (int i = 0; i < nb; ++i) {
  1221. const float * d0_0 = (const float *) (pd0 + i*bs);
  1222. const float * d1_0 = (const float *) (pd1 + i*bs);
  1223. const uint8_t * restrict p0 = pb0 + i*bs;
  1224. const uint8_t * restrict p1 = pb1 + i*bs;
  1225. // Compute combined scale for the block
  1226. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1227. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1228. __m256i bx = bytesFromNibbles( p0 );
  1229. __m256i by = bytesFromNibbles( p1 );
  1230. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1231. const __m256i off = _mm256_set1_epi8( 8 );
  1232. bx = _mm256_sub_epi8( bx, off );
  1233. by = _mm256_sub_epi8( by, off );
  1234. // Sign-extend first 16 signed bytes into int16_t
  1235. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1236. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1237. // Compute products of int16_t integers, add pairwise
  1238. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1239. // Sign-extend last 16 signed bytes into int16_t vectors
  1240. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1241. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1242. // Accumulate products of int16_t integers
  1243. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1244. // Convert int32_t to float
  1245. __m256 p = _mm256_cvtepi32_ps( i32 );
  1246. // Apply the scale, and accumulate
  1247. acc = _mm256_fmadd_ps( scale, p, acc );
  1248. }
  1249. // Return horizontal sum of the acc vector
  1250. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1251. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1252. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1253. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1254. sumf = _mm_cvtss_f32( res );
  1255. #else
  1256. #error "not implemented for QK"
  1257. #endif
  1258. #elif defined(__wasm_simd128__)
  1259. #if QK == 32
  1260. // wasm simd
  1261. float sum0 = 0.0f;
  1262. float sum1 = 0.0f;
  1263. for (int i = 0; i < nb; i += 2) {
  1264. const float d0_0 = *(const float *) (pd0 + i*bs);
  1265. const float d1_0 = *(const float *) (pd1 + i*bs);
  1266. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1267. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1268. const uint8_t * restrict p0 = pb0 + i*bs;
  1269. const uint8_t * restrict p1 = pb1 + i*bs;
  1270. const v128_t m4b = wasm_u8x16_splat(0xf);
  1271. const v128_t s8b = wasm_i8x16_splat(0x8);
  1272. const v128_t v0_0 = wasm_v128_load(p0);
  1273. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1274. const v128_t v1_0 = wasm_v128_load(p1);
  1275. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1276. // 4-bit -> 8-bit
  1277. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1278. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1279. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1280. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1281. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1282. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1283. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1284. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1285. // sub 8
  1286. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1287. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1288. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1289. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1290. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1291. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1292. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1293. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1294. // dot product into int16x8_t
  1295. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1296. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1297. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1298. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1299. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1300. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1301. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1302. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1303. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1304. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1305. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1306. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1307. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1308. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1309. sum0 += d0_0*d1_0*(
  1310. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1311. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1312. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1313. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1314. sum1 += d0_1*d1_1*(
  1315. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1316. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1317. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1318. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1319. }
  1320. sumf = sum0 + sum1;
  1321. #else
  1322. #error "not implemented for QK"
  1323. #endif
  1324. #else
  1325. // scalar
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d0 = *(const float *) (pd0 + i*bs);
  1328. const float d1 = *(const float *) (pd1 + i*bs);
  1329. const uint8_t * restrict p0 = pb0 + i*bs;
  1330. const uint8_t * restrict p1 = pb1 + i*bs;
  1331. for (int j = 0; j < QK/2; j++) {
  1332. const uint8_t v0 = p0[j];
  1333. const uint8_t v1 = p1[j];
  1334. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1335. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1336. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1337. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1338. sumf += f0*f2 + f1*f3;
  1339. }
  1340. }
  1341. #endif
  1342. *s = sumf;
  1343. }
  1344. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1345. const int nb = n / QK;
  1346. const size_t bs = 2*sizeof(float) + QK/2;
  1347. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1348. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1349. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1350. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1351. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1352. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1353. float sumf = 0.0;
  1354. #if defined(__AVX2__)
  1355. #if QK == 32
  1356. // Initialize accumulator with zeros
  1357. __m256 acc = _mm256_setzero_ps();
  1358. // Accumulator for constant offsets
  1359. float acc_offset = 0.0f;
  1360. // Main loop
  1361. for (int i = 0; i < nb; ++i) {
  1362. const float * m0 = (const float *) (pm0 + i*bs);
  1363. const float * m1 = (const float *) (pm1 + i*bs);
  1364. const float * d0 = (const float *) (pd0 + i*bs);
  1365. const float * d1 = (const float *) (pd1 + i*bs);
  1366. const uint8_t * restrict p0 = pb0 + i*bs;
  1367. const uint8_t * restrict p1 = pb1 + i*bs;
  1368. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1369. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1370. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1371. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1372. // Compute combined scale for the block
  1373. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1374. // Compute cross scales for the block
  1375. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1376. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1377. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1378. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1379. __m256i bx = bytesFromNibbles( p0 );
  1380. __m256i by = bytesFromNibbles( p1 );
  1381. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1382. // Sign-extend first 16 signed bytes into int16_t
  1383. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1384. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1385. // Compute products of int16_t integers, add pairwise
  1386. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1387. // Sign-extend last 16 signed bytes into int16_t vectors
  1388. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1389. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1390. // Accumulate products of int16_t integers
  1391. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1392. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1393. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1394. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1395. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1396. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1397. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1398. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1399. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1400. // Convert int32_t to float
  1401. __m256 p = _mm256_cvtepi32_ps( i32 );
  1402. // Apply the scale, and accumulate
  1403. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1404. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1405. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1406. // acc_offset += m0*m1 (for each entry in the block)
  1407. acc_offset += (*m0)*(*m1);
  1408. }
  1409. // Return horizontal sum of the acc vector
  1410. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1411. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1412. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1413. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1414. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1415. #else
  1416. #error "not implemented for QK"
  1417. #endif
  1418. #else
  1419. // scalar
  1420. for (int i = 0; i < nb; i++) {
  1421. const float m0 = *(const float *) (pm0 + i*bs);
  1422. const float m1 = *(const float *) (pm1 + i*bs);
  1423. const float d0 = *(const float *) (pd0 + i*bs);
  1424. const float d1 = *(const float *) (pd1 + i*bs);
  1425. const uint8_t * restrict p0 = pb0 + i*bs;
  1426. const uint8_t * restrict p1 = pb1 + i*bs;
  1427. for (int j = 0; j < QK/2; j++) {
  1428. const uint8_t v0 = p0[j];
  1429. const uint8_t v1 = p1[j];
  1430. const float f0 = d0*(v0 & 0xf) + m0;
  1431. const float f1 = d0*(v0 >> 4) + m0;
  1432. const float f2 = d1*(v1 & 0xf) + m1;
  1433. const float f3 = d1*(v1 >> 4) + m1;
  1434. sumf += f0*f2 + f1*f3;
  1435. }
  1436. }
  1437. #endif
  1438. *s = sumf;
  1439. }
  1440. // compute GGML_VEC_DOT_UNROLL dot products at once
  1441. // xs - x row stride in bytes
  1442. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1443. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1444. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1445. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1446. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1447. }
  1448. #if defined(GGML_SIMD)
  1449. const int np = (n & ~(GGML_F16_STEP - 1));
  1450. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1451. GGML_F16_VEC ax[GGML_F16_ARR];
  1452. GGML_F16_VEC ay[GGML_F16_ARR];
  1453. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1454. for (int j = 0; j < GGML_F16_ARR; j++) {
  1455. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1456. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1457. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1458. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1459. }
  1460. }
  1461. }
  1462. // reduce sum0..sum3 to sum0
  1463. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1464. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1465. }
  1466. // leftovers
  1467. for (int i = np; i < n; ++i) {
  1468. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1469. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1470. }
  1471. }
  1472. #else
  1473. for (int i = 0; i < n; ++i) {
  1474. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1475. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1476. }
  1477. }
  1478. #endif
  1479. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1480. s[i] = sumf[i];
  1481. }
  1482. }
  1483. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1484. #if defined(GGML_SIMD)
  1485. const int np = (n & ~(GGML_F32_STEP - 1));
  1486. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1487. GGML_F32_VEC ax[GGML_F32_ARR];
  1488. GGML_F32_VEC ay[GGML_F32_ARR];
  1489. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1490. for (int j = 0; j < GGML_F32_ARR; j++) {
  1491. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1492. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1493. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1494. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1495. }
  1496. }
  1497. // leftovers
  1498. for (int i = np; i < n; ++i) {
  1499. y[i] += x[i]*v;
  1500. }
  1501. #else
  1502. // scalar
  1503. for (int i = 0; i < n; ++i) {
  1504. y[i] += x[i]*v;
  1505. }
  1506. #endif
  1507. }
  1508. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1509. #if defined(GGML_SIMD)
  1510. const int np = (n & ~(GGML_F16_STEP - 1));
  1511. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1512. GGML_F16_VEC ax[GGML_F16_ARR];
  1513. GGML_F16_VEC ay[GGML_F16_ARR];
  1514. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1515. for (int j = 0; j < GGML_F16_ARR; j++) {
  1516. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1517. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1518. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1519. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1520. }
  1521. }
  1522. // leftovers
  1523. for (int i = np; i < n; ++i) {
  1524. GGML_ASSERT(false);
  1525. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1526. }
  1527. #else
  1528. for (int i = 0; i < n; ++i) {
  1529. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1530. }
  1531. #endif
  1532. }
  1533. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1534. assert(n % QK == 0);
  1535. const int nb = n / QK;
  1536. const size_t bs = sizeof(float) + QK/2;
  1537. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1538. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1539. #if __ARM_NEON
  1540. #if QK == 32
  1541. for (int i = 0; i < nb; ++i) {
  1542. const float d0 = v*(*(const float *) (pd + i*bs));
  1543. const uint8_t * restrict pp = pb + i*bs;
  1544. const uint8x8_t m4b = vdup_n_u8(0xf);
  1545. const int8x8_t s8b = vdup_n_s8(0x8);
  1546. const float32x4_t vd = vdupq_n_f32(d0);
  1547. for (int j = 0; j < 2; j++) {
  1548. const uint8x8_t vx = vld1_u8(pp + j*8);
  1549. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1550. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1551. // sub 8
  1552. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1553. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1554. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1555. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1556. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1557. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1558. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1559. // convert to 2x int16x8_t
  1560. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1561. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1562. // convert to 4x float32x4_t
  1563. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1564. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1565. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1566. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1567. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1568. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1569. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1570. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1571. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1572. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1573. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1574. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1575. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1576. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1577. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1578. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1579. }
  1580. }
  1581. #endif
  1582. #else
  1583. // scalar
  1584. for (int i = 0; i < nb; i++) {
  1585. const float d = *(const float *) (pd + i*bs);
  1586. const uint8_t * restrict pp = pb + i*bs;
  1587. for (int l = 0; l < QK; l += 2) {
  1588. const uint8_t vi = pp[l/2];
  1589. const int8_t vi0 = vi & 0xf;
  1590. const int8_t vi1 = vi >> 4;
  1591. const float v0 = (vi0 - 8)*d;
  1592. const float v1 = (vi1 - 8)*d;
  1593. y[i*QK + l + 0] += v0*v;
  1594. y[i*QK + l + 1] += v1*v;
  1595. assert(!isnan(y[i*QK + l + 0]));
  1596. assert(!isnan(y[i*QK + l + 1]));
  1597. assert(!isinf(y[i*QK + l + 0]));
  1598. assert(!isinf(y[i*QK + l + 1]));
  1599. }
  1600. }
  1601. #endif
  1602. }
  1603. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1604. assert(n % QK == 0);
  1605. const int nb = n / QK;
  1606. const size_t bs = 2*sizeof(float) + QK/2;
  1607. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1608. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1609. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1610. for (int i = 0; i < nb; i++) {
  1611. const float d = *(const float *) (pd + i*bs);
  1612. const float m = *(const float *) (pm + i*bs);
  1613. const uint8_t * restrict pp = pb + i*bs;
  1614. for (int l = 0; l < QK; l += 2) {
  1615. const uint8_t vi = pp[l/2];
  1616. const uint8_t vi0 = vi & 0xf;
  1617. const uint8_t vi1 = vi >> 4;
  1618. const float v0 = d*vi0 + m;
  1619. const float v1 = d*vi1 + m;
  1620. y[i*QK + l + 0] += v0*v;
  1621. y[i*QK + l + 1] += v1*v;
  1622. assert(!isnan(y[i*QK + l + 0]));
  1623. assert(!isnan(y[i*QK + l + 1]));
  1624. assert(!isinf(y[i*QK + l + 0]));
  1625. assert(!isinf(y[i*QK + l + 1]));
  1626. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1627. }
  1628. }
  1629. }
  1630. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1631. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1632. #if defined(GGML_SIMD)
  1633. const int np = (n & ~(GGML_F32_STEP - 1));
  1634. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1635. GGML_F32_VEC ay[GGML_F32_ARR];
  1636. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1637. for (int j = 0; j < GGML_F32_ARR; j++) {
  1638. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1639. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1640. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1641. }
  1642. }
  1643. // leftovers
  1644. for (int i = np; i < n; ++i) {
  1645. y[i] *= v;
  1646. }
  1647. #else
  1648. // scalar
  1649. for (int i = 0; i < n; ++i) {
  1650. y[i] *= v;
  1651. }
  1652. #endif
  1653. }
  1654. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1655. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1656. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1657. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1658. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1659. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1660. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1661. static const ggml_float GELU_COEF_A = 0.044715;
  1662. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1663. inline static float ggml_gelu_f32(float x) {
  1664. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1665. }
  1666. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1667. const uint16_t * i16 = (const uint16_t *) x;
  1668. for (int i = 0; i < n; ++i) {
  1669. y[i] = table_gelu_f16[i16[i]];
  1670. }
  1671. }
  1672. #ifdef GGML_GELU_FP16
  1673. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1674. uint16_t t;
  1675. for (int i = 0; i < n; ++i) {
  1676. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1677. memcpy(&t, &fp16, sizeof(uint16_t));
  1678. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1679. }
  1680. }
  1681. #else
  1682. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1683. for (int i = 0; i < n; ++i) {
  1684. y[i] = ggml_gelu_f32(x[i]);
  1685. }
  1686. }
  1687. #endif
  1688. // Sigmoid Linear Unit (SiLU) function
  1689. inline static float ggml_silu_f32(float x) {
  1690. return x/(1.0 + exp(-x));
  1691. }
  1692. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1693. const uint16_t * i16 = (const uint16_t *) x;
  1694. for (int i = 0; i < n; ++i) {
  1695. y[i] = table_silu_f16[i16[i]];
  1696. }
  1697. }
  1698. #ifdef GGML_SILU_FP16
  1699. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1700. uint16_t t;
  1701. for (int i = 0; i < n; ++i) {
  1702. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1703. memcpy(&t, &fp16, sizeof(uint16_t));
  1704. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1705. }
  1706. }
  1707. #else
  1708. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1709. for (int i = 0; i < n; ++i) {
  1710. y[i] = ggml_silu_f32(x[i]);
  1711. }
  1712. }
  1713. #endif
  1714. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1715. #ifndef GGML_USE_ACCELERATE
  1716. ggml_float sum = 0.0;
  1717. for (int i = 0; i < n; ++i) {
  1718. sum += x[i];
  1719. }
  1720. *s = sum;
  1721. #else
  1722. vDSP_sve(x, 1, s, n);
  1723. #endif
  1724. }
  1725. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1726. #ifndef GGML_USE_ACCELERATE
  1727. ggml_float max = -INFINITY;
  1728. for (int i = 0; i < n; ++i) {
  1729. max = MAX(max, x[i]);
  1730. }
  1731. *s = max;
  1732. #else
  1733. vDSP_maxv(x, 1, s, n);
  1734. #endif
  1735. }
  1736. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1737. //
  1738. // logging
  1739. //
  1740. #if (GGML_DEBUG >= 1)
  1741. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1742. #else
  1743. #define GGML_PRINT_DEBUG(...)
  1744. #endif
  1745. #if (GGML_DEBUG >= 5)
  1746. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1747. #else
  1748. #define GGML_PRINT_DEBUG_5(...)
  1749. #endif
  1750. #if (GGML_DEBUG >= 10)
  1751. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1752. #else
  1753. #define GGML_PRINT_DEBUG_10(...)
  1754. #endif
  1755. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1756. //
  1757. // data types
  1758. //
  1759. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1760. QK,
  1761. QK,
  1762. 1,
  1763. 1,
  1764. 1,
  1765. 1,
  1766. 1,
  1767. };
  1768. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1769. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1770. sizeof(float ) + QK/2,
  1771. sizeof(float )*2 + QK/2,
  1772. sizeof(int8_t ),
  1773. sizeof(int16_t),
  1774. sizeof(int32_t),
  1775. sizeof(ggml_fp16_t),
  1776. sizeof(float ),
  1777. };
  1778. // don't forget to update the array above when adding new types
  1779. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1780. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1781. "NONE",
  1782. "DUP",
  1783. "ADD",
  1784. "SUB",
  1785. "MUL",
  1786. "DIV",
  1787. "SQR",
  1788. "SQRT",
  1789. "SUM",
  1790. "MEAN",
  1791. "REPEAT",
  1792. "ABS",
  1793. "SGN",
  1794. "NEG",
  1795. "STEP",
  1796. "RELU",
  1797. "GELU",
  1798. "SILU",
  1799. "NORM",
  1800. "RMS_NORM",
  1801. "MUL_MAT",
  1802. "SCALE",
  1803. "CPY",
  1804. "RESHAPE",
  1805. "VIEW",
  1806. "PERMUTE",
  1807. "TRANSPOSE",
  1808. "GET_ROWS",
  1809. "DIAG_MASK_INF",
  1810. "SOFT_MAX",
  1811. "ROPE",
  1812. "CONV_1D_1S",
  1813. "CONV_1D_2S",
  1814. "FLASH_ATTN",
  1815. "FLASH_FF",
  1816. };
  1817. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1818. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1819. "none",
  1820. "x",
  1821. "x+y",
  1822. "x-y",
  1823. "x*y",
  1824. "x/y",
  1825. "x^2",
  1826. "√x",
  1827. "Σx",
  1828. "Σx/n",
  1829. "repeat(x)",
  1830. "abs(x)",
  1831. "sgn(x)",
  1832. "-x",
  1833. "step(x)",
  1834. "relu(x)",
  1835. "gelu(x)",
  1836. "silu(x)",
  1837. "norm(x)",
  1838. "rms_norm(x)",
  1839. "X*Y",
  1840. "x*v",
  1841. "x-\\>y",
  1842. "reshape(x)",
  1843. "view(x)",
  1844. "permute(x)",
  1845. "transpose(x)",
  1846. "get_rows(x)",
  1847. "diag_mask_inf(x)",
  1848. "soft_max(x)",
  1849. "rope(x)",
  1850. "conv_1d_1s(x)",
  1851. "conv_1d_2s(x)",
  1852. "flash_attn(x)",
  1853. "flash_ff(x)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1856. //
  1857. // ggml object
  1858. //
  1859. struct ggml_object {
  1860. size_t offs;
  1861. size_t size;
  1862. struct ggml_object * next;
  1863. char padding[8];
  1864. };
  1865. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1866. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1867. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1868. //
  1869. // ggml context
  1870. //
  1871. struct ggml_context {
  1872. size_t mem_size;
  1873. void * mem_buffer;
  1874. bool mem_buffer_owned;
  1875. int n_objects;
  1876. struct ggml_object * objects_begin;
  1877. struct ggml_object * objects_end;
  1878. struct ggml_scratch scratch;
  1879. struct ggml_scratch scratch_save;
  1880. };
  1881. struct ggml_context_container {
  1882. bool used;
  1883. struct ggml_context context;
  1884. };
  1885. //
  1886. // compute types
  1887. //
  1888. enum ggml_task_type {
  1889. GGML_TASK_INIT = 0,
  1890. GGML_TASK_COMPUTE,
  1891. GGML_TASK_FINALIZE,
  1892. };
  1893. struct ggml_compute_params {
  1894. enum ggml_task_type type;
  1895. int ith, nth;
  1896. // work buffer for all threads
  1897. size_t wsize;
  1898. void * wdata;
  1899. };
  1900. //
  1901. // ggml state
  1902. //
  1903. struct ggml_state {
  1904. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1905. };
  1906. // global state
  1907. static struct ggml_state g_state;
  1908. static atomic_int g_state_barrier = 0;
  1909. // barrier via spin lock
  1910. inline static void ggml_critical_section_start(void) {
  1911. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1912. while (processing > 0) {
  1913. // wait for other threads to finish
  1914. atomic_fetch_sub(&g_state_barrier, 1);
  1915. sched_yield(); // TODO: reconsider this
  1916. processing = atomic_fetch_add(&g_state_barrier, 1);
  1917. }
  1918. }
  1919. // TODO: make this somehow automatically executed
  1920. // some sort of "sentry" mechanism
  1921. inline static void ggml_critical_section_end(void) {
  1922. atomic_fetch_sub(&g_state_barrier, 1);
  1923. }
  1924. ////////////////////////////////////////////////////////////////////////////////
  1925. void ggml_print_object(const struct ggml_object * obj) {
  1926. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1927. obj->offs, obj->size, (const void *) obj->next);
  1928. }
  1929. void ggml_print_objects(const struct ggml_context * ctx) {
  1930. struct ggml_object * obj = ctx->objects_begin;
  1931. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1932. while (obj != NULL) {
  1933. ggml_print_object(obj);
  1934. obj = obj->next;
  1935. }
  1936. GGML_PRINT("%s: --- end ---\n", __func__);
  1937. }
  1938. int ggml_nelements(const struct ggml_tensor * tensor) {
  1939. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1940. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1941. }
  1942. int ggml_nrows(const struct ggml_tensor * tensor) {
  1943. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1944. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1945. }
  1946. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1947. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1948. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1949. }
  1950. int ggml_blck_size(enum ggml_type type) {
  1951. return GGML_BLCK_SIZE[type];
  1952. }
  1953. size_t ggml_type_size(enum ggml_type type) {
  1954. return GGML_TYPE_SIZE[type];
  1955. }
  1956. float ggml_type_sizef(enum ggml_type type) {
  1957. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1958. }
  1959. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1960. return GGML_TYPE_SIZE[tensor->type];
  1961. }
  1962. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1963. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1964. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1965. }
  1966. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1967. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1968. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1969. }
  1970. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1971. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1972. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1973. }
  1974. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1975. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1976. return
  1977. (t0->ne[0] == t1->ne[0]) &&
  1978. (t0->ne[2] == t1->ne[2]) &&
  1979. (t0->ne[3] == t1->ne[3]);
  1980. }
  1981. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1982. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1983. return
  1984. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1985. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1986. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1987. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1988. }
  1989. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1990. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1991. return
  1992. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1993. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1994. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1995. }
  1996. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1997. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1998. return
  1999. (t0->ne[0] == t1->ne[0] ) &&
  2000. (t0->ne[1] == t1->ne[1] ) &&
  2001. (t0->ne[2] == t1->ne[2] ) &&
  2002. (t0->ne[3] == t1->ne[3] );
  2003. }
  2004. // check if t1 can be represented as a repeatition of t0
  2005. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2006. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2007. return
  2008. (t1->ne[0]%t0->ne[0] == 0) &&
  2009. (t1->ne[1]%t0->ne[1] == 0) &&
  2010. (t1->ne[2]%t0->ne[2] == 0) &&
  2011. (t1->ne[3]%t0->ne[3] == 0);
  2012. }
  2013. static inline int ggml_up32(int n) {
  2014. return (n + 31) & ~31;
  2015. }
  2016. static inline int ggml_up64(int n) {
  2017. return (n + 63) & ~63;
  2018. }
  2019. static inline int ggml_up(int n, int m) {
  2020. // assert m is a power of 2
  2021. GGML_ASSERT((m & (m - 1)) == 0);
  2022. return (n + m - 1) & ~(m - 1);
  2023. }
  2024. // assert that pointer is aligned to GGML_MEM_ALIGN
  2025. #define ggml_assert_aligned(ptr) \
  2026. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2027. ////////////////////////////////////////////////////////////////////////////////
  2028. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2029. // make this function thread safe
  2030. ggml_critical_section_start();
  2031. static bool is_first_call = true;
  2032. if (is_first_call) {
  2033. // initialize GELU, SILU and EXP F32 tables
  2034. {
  2035. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2036. ggml_fp16_t ii;
  2037. for (int i = 0; i < (1 << 16); ++i) {
  2038. uint16_t ui = i;
  2039. memcpy(&ii, &ui, sizeof(ii));
  2040. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2041. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2042. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2043. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2044. }
  2045. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2046. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2047. }
  2048. // initialize g_state
  2049. {
  2050. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2051. g_state = (struct ggml_state) {
  2052. /*.contexts =*/ { { 0 } },
  2053. };
  2054. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2055. g_state.contexts[i].used = false;
  2056. }
  2057. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2058. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2059. }
  2060. is_first_call = false;
  2061. }
  2062. // find non-used context in g_state
  2063. struct ggml_context * ctx = NULL;
  2064. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2065. if (!g_state.contexts[i].used) {
  2066. g_state.contexts[i].used = true;
  2067. ctx = &g_state.contexts[i].context;
  2068. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2069. break;
  2070. }
  2071. }
  2072. if (ctx == NULL) {
  2073. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2074. ggml_critical_section_end();
  2075. return NULL;
  2076. }
  2077. *ctx = (struct ggml_context) {
  2078. /*.mem_size =*/ params.mem_size,
  2079. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2080. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2081. /*.n_objects =*/ 0,
  2082. /*.objects_begin =*/ NULL,
  2083. /*.objects_end =*/ NULL,
  2084. /*.scratch =*/ { 0, 0, NULL, },
  2085. /*.scratch_save =*/ { 0, 0, NULL, },
  2086. };
  2087. ggml_assert_aligned(ctx->mem_buffer);
  2088. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2089. ggml_critical_section_end();
  2090. return ctx;
  2091. }
  2092. void ggml_free(struct ggml_context * ctx) {
  2093. // make this function thread safe
  2094. ggml_critical_section_start();
  2095. bool found = false;
  2096. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2097. if (&g_state.contexts[i].context == ctx) {
  2098. g_state.contexts[i].used = false;
  2099. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2100. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2101. if (ctx->mem_buffer_owned) {
  2102. free(ctx->mem_buffer);
  2103. }
  2104. found = true;
  2105. break;
  2106. }
  2107. }
  2108. if (!found) {
  2109. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2110. }
  2111. ggml_critical_section_end();
  2112. }
  2113. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2114. return ctx->objects_end->offs + ctx->objects_end->size;
  2115. }
  2116. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2117. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2118. ctx->scratch = scratch;
  2119. return result;
  2120. }
  2121. ////////////////////////////////////////////////////////////////////////////////
  2122. struct ggml_tensor * ggml_new_tensor_impl(
  2123. struct ggml_context * ctx,
  2124. enum ggml_type type,
  2125. int n_dims,
  2126. const int* ne,
  2127. void* data) {
  2128. // always insert objects at the end of the context's memory pool
  2129. struct ggml_object * obj_cur = ctx->objects_end;
  2130. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2131. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2132. const size_t cur_end = cur_offs + cur_size;
  2133. size_t size_needed = 0;
  2134. if (data == NULL) {
  2135. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2136. for (int i = 1; i < n_dims; i++) {
  2137. size_needed *= ne[i];
  2138. }
  2139. // align to GGML_MEM_ALIGN
  2140. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2141. }
  2142. char * const mem_buffer = ctx->mem_buffer;
  2143. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2144. if (ctx->scratch.data == NULL || data != NULL) {
  2145. size_needed += sizeof(struct ggml_tensor);
  2146. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2147. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2148. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2149. assert(false);
  2150. return NULL;
  2151. }
  2152. *obj_new = (struct ggml_object) {
  2153. .offs = cur_end + GGML_OBJECT_SIZE,
  2154. .size = size_needed,
  2155. .next = NULL,
  2156. };
  2157. } else {
  2158. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2159. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2160. assert(false);
  2161. return NULL;
  2162. }
  2163. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2164. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2165. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2166. assert(false);
  2167. return NULL;
  2168. }
  2169. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2170. *obj_new = (struct ggml_object) {
  2171. .offs = cur_end + GGML_OBJECT_SIZE,
  2172. .size = sizeof(struct ggml_tensor),
  2173. .next = NULL,
  2174. };
  2175. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2176. ctx->scratch.offs += size_needed;
  2177. }
  2178. if (obj_cur != NULL) {
  2179. obj_cur->next = obj_new;
  2180. } else {
  2181. // this is the first object in this context
  2182. ctx->objects_begin = obj_new;
  2183. }
  2184. ctx->objects_end = obj_new;
  2185. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2186. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2187. ggml_assert_aligned(result);
  2188. *result = (struct ggml_tensor) {
  2189. /*.type =*/ type,
  2190. /*.n_dims =*/ n_dims,
  2191. /*.ne =*/ { 1, 1, 1, 1 },
  2192. /*.nb =*/ { 0, 0, 0, 0 },
  2193. /*.op =*/ GGML_OP_NONE,
  2194. /*.is_param =*/ false,
  2195. /*.grad =*/ NULL,
  2196. /*.src0 =*/ NULL,
  2197. /*.src1 =*/ NULL,
  2198. /*.opt =*/ { NULL },
  2199. /*.n_tasks =*/ 0,
  2200. /*.perf_runs =*/ 0,
  2201. /*.perf_cycles =*/ 0,
  2202. /*.perf_time_us =*/ 0,
  2203. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2204. /*.pad =*/ { 0 },
  2205. };
  2206. ggml_assert_aligned(result->data);
  2207. for (int i = 0; i < n_dims; i++) {
  2208. result->ne[i] = ne[i];
  2209. }
  2210. result->nb[0] = GGML_TYPE_SIZE[type];
  2211. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2212. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2213. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2214. }
  2215. ctx->n_objects++;
  2216. return result;
  2217. }
  2218. struct ggml_tensor * ggml_new_tensor(
  2219. struct ggml_context * ctx,
  2220. enum ggml_type type,
  2221. int n_dims,
  2222. const int * ne) {
  2223. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2224. }
  2225. struct ggml_tensor * ggml_new_tensor_1d(
  2226. struct ggml_context * ctx,
  2227. enum ggml_type type,
  2228. int ne0) {
  2229. return ggml_new_tensor(ctx, type, 1, &ne0);
  2230. }
  2231. struct ggml_tensor * ggml_new_tensor_2d(
  2232. struct ggml_context * ctx,
  2233. enum ggml_type type,
  2234. int ne0,
  2235. int ne1) {
  2236. const int ne[2] = { ne0, ne1 };
  2237. return ggml_new_tensor(ctx, type, 2, ne);
  2238. }
  2239. struct ggml_tensor * ggml_new_tensor_3d(
  2240. struct ggml_context * ctx,
  2241. enum ggml_type type,
  2242. int ne0,
  2243. int ne1,
  2244. int ne2) {
  2245. const int ne[3] = { ne0, ne1, ne2 };
  2246. return ggml_new_tensor(ctx, type, 3, ne);
  2247. }
  2248. struct ggml_tensor * ggml_new_tensor_4d(
  2249. struct ggml_context * ctx,
  2250. enum ggml_type type,
  2251. int ne0,
  2252. int ne1,
  2253. int ne2,
  2254. int ne3) {
  2255. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2256. return ggml_new_tensor(ctx, type, 4, ne);
  2257. }
  2258. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2259. ctx->scratch_save = ctx->scratch;
  2260. ctx->scratch.data = NULL;
  2261. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2262. ctx->scratch = ctx->scratch_save;
  2263. ggml_set_i32(result, value);
  2264. return result;
  2265. }
  2266. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2267. ctx->scratch_save = ctx->scratch;
  2268. ctx->scratch.data = NULL;
  2269. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2270. ctx->scratch = ctx->scratch_save;
  2271. ggml_set_f32(result, value);
  2272. return result;
  2273. }
  2274. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2275. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2276. }
  2277. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2278. memset(tensor->data, 0, ggml_nbytes(tensor));
  2279. return tensor;
  2280. }
  2281. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2282. const int n = ggml_nrows(tensor);
  2283. const int nc = tensor->ne[0];
  2284. const size_t n1 = tensor->nb[1];
  2285. char * const data = tensor->data;
  2286. switch (tensor->type) {
  2287. case GGML_TYPE_Q4_0:
  2288. {
  2289. GGML_ASSERT(false);
  2290. } break;
  2291. case GGML_TYPE_Q4_1:
  2292. {
  2293. GGML_ASSERT(false);
  2294. } break;
  2295. case GGML_TYPE_I8:
  2296. {
  2297. assert(tensor->nb[0] == sizeof(int8_t));
  2298. for (int i = 0; i < n; i++) {
  2299. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2300. }
  2301. } break;
  2302. case GGML_TYPE_I16:
  2303. {
  2304. assert(tensor->nb[0] == sizeof(int16_t));
  2305. for (int i = 0; i < n; i++) {
  2306. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2307. }
  2308. } break;
  2309. case GGML_TYPE_I32:
  2310. {
  2311. assert(tensor->nb[0] == sizeof(int32_t));
  2312. for (int i = 0; i < n; i++) {
  2313. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2314. }
  2315. } break;
  2316. case GGML_TYPE_F16:
  2317. {
  2318. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2319. for (int i = 0; i < n; i++) {
  2320. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2321. }
  2322. } break;
  2323. case GGML_TYPE_F32:
  2324. {
  2325. assert(tensor->nb[0] == sizeof(float));
  2326. for (int i = 0; i < n; i++) {
  2327. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2328. }
  2329. } break;
  2330. case GGML_TYPE_COUNT:
  2331. {
  2332. GGML_ASSERT(false);
  2333. } break;
  2334. }
  2335. return tensor;
  2336. }
  2337. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2338. const int n = ggml_nrows(tensor);
  2339. const int nc = tensor->ne[0];
  2340. const size_t n1 = tensor->nb[1];
  2341. char * const data = tensor->data;
  2342. switch (tensor->type) {
  2343. case GGML_TYPE_Q4_0:
  2344. {
  2345. GGML_ASSERT(false);
  2346. } break;
  2347. case GGML_TYPE_Q4_1:
  2348. {
  2349. GGML_ASSERT(false);
  2350. } break;
  2351. case GGML_TYPE_I8:
  2352. {
  2353. assert(tensor->nb[0] == sizeof(int8_t));
  2354. for (int i = 0; i < n; i++) {
  2355. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2356. }
  2357. } break;
  2358. case GGML_TYPE_I16:
  2359. {
  2360. assert(tensor->nb[0] == sizeof(int16_t));
  2361. for (int i = 0; i < n; i++) {
  2362. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2363. }
  2364. } break;
  2365. case GGML_TYPE_I32:
  2366. {
  2367. assert(tensor->nb[0] == sizeof(int32_t));
  2368. for (int i = 0; i < n; i++) {
  2369. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2370. }
  2371. } break;
  2372. case GGML_TYPE_F16:
  2373. {
  2374. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2375. for (int i = 0; i < n; i++) {
  2376. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2377. }
  2378. } break;
  2379. case GGML_TYPE_F32:
  2380. {
  2381. assert(tensor->nb[0] == sizeof(float));
  2382. for (int i = 0; i < n; i++) {
  2383. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2384. }
  2385. } break;
  2386. case GGML_TYPE_COUNT:
  2387. {
  2388. GGML_ASSERT(false);
  2389. } break;
  2390. }
  2391. return tensor;
  2392. }
  2393. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2394. switch (tensor->type) {
  2395. case GGML_TYPE_Q4_0:
  2396. {
  2397. GGML_ASSERT(false);
  2398. } break;
  2399. case GGML_TYPE_Q4_1:
  2400. {
  2401. GGML_ASSERT(false);
  2402. } break;
  2403. case GGML_TYPE_I8:
  2404. {
  2405. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2406. return ((int8_t *)(tensor->data))[i];
  2407. } break;
  2408. case GGML_TYPE_I16:
  2409. {
  2410. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2411. return ((int16_t *)(tensor->data))[i];
  2412. } break;
  2413. case GGML_TYPE_I32:
  2414. {
  2415. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2416. return ((int32_t *)(tensor->data))[i];
  2417. } break;
  2418. case GGML_TYPE_F16:
  2419. {
  2420. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2421. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2422. } break;
  2423. case GGML_TYPE_F32:
  2424. {
  2425. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2426. return ((float *)(tensor->data))[i];
  2427. } break;
  2428. case GGML_TYPE_COUNT:
  2429. {
  2430. GGML_ASSERT(false);
  2431. } break;
  2432. }
  2433. return 0.0f;
  2434. }
  2435. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2436. switch (tensor->type) {
  2437. case GGML_TYPE_Q4_0:
  2438. {
  2439. GGML_ASSERT(false);
  2440. } break;
  2441. case GGML_TYPE_Q4_1:
  2442. {
  2443. GGML_ASSERT(false);
  2444. } break;
  2445. case GGML_TYPE_I8:
  2446. {
  2447. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2448. ((int8_t *)(tensor->data))[i] = value;
  2449. } break;
  2450. case GGML_TYPE_I16:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2453. ((int16_t *)(tensor->data))[i] = value;
  2454. } break;
  2455. case GGML_TYPE_I32:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2458. ((int32_t *)(tensor->data))[i] = value;
  2459. } break;
  2460. case GGML_TYPE_F16:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2463. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2464. } break;
  2465. case GGML_TYPE_F32:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2468. ((float *)(tensor->data))[i] = value;
  2469. } break;
  2470. case GGML_TYPE_COUNT:
  2471. {
  2472. GGML_ASSERT(false);
  2473. } break;
  2474. }
  2475. }
  2476. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2477. switch (tensor->type) {
  2478. case GGML_TYPE_Q4_0:
  2479. {
  2480. GGML_ASSERT(false);
  2481. } break;
  2482. case GGML_TYPE_Q4_1:
  2483. {
  2484. GGML_ASSERT(false);
  2485. } break;
  2486. case GGML_TYPE_I8:
  2487. {
  2488. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2489. return ((int8_t *)(tensor->data))[i];
  2490. } break;
  2491. case GGML_TYPE_I16:
  2492. {
  2493. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2494. return ((int16_t *)(tensor->data))[i];
  2495. } break;
  2496. case GGML_TYPE_I32:
  2497. {
  2498. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2499. return ((int32_t *)(tensor->data))[i];
  2500. } break;
  2501. case GGML_TYPE_F16:
  2502. {
  2503. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2504. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2505. } break;
  2506. case GGML_TYPE_F32:
  2507. {
  2508. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2509. return ((float *)(tensor->data))[i];
  2510. } break;
  2511. case GGML_TYPE_COUNT:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. return 0.0f;
  2517. }
  2518. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_Q4_0:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_Q4_1:
  2525. {
  2526. GGML_ASSERT(false);
  2527. } break;
  2528. case GGML_TYPE_I8:
  2529. {
  2530. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2531. ((int8_t *)(tensor->data))[i] = value;
  2532. } break;
  2533. case GGML_TYPE_I16:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2536. ((int16_t *)(tensor->data))[i] = value;
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2541. ((int32_t *)(tensor->data))[i] = value;
  2542. } break;
  2543. case GGML_TYPE_F16:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2546. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2547. } break;
  2548. case GGML_TYPE_F32:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2551. ((float *)(tensor->data))[i] = value;
  2552. } break;
  2553. case GGML_TYPE_COUNT:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. }
  2558. }
  2559. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2560. return tensor->data;
  2561. }
  2562. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2563. assert(tensor->type == GGML_TYPE_F32);
  2564. return (float *)(tensor->data);
  2565. }
  2566. struct ggml_tensor * ggml_view_tensor(
  2567. struct ggml_context * ctx,
  2568. const struct ggml_tensor * src) {
  2569. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2570. }
  2571. ////////////////////////////////////////////////////////////////////////////////
  2572. // ggml_dup
  2573. struct ggml_tensor * ggml_dup_impl(
  2574. struct ggml_context * ctx,
  2575. struct ggml_tensor * a,
  2576. bool inplace) {
  2577. bool is_node = false;
  2578. if (!inplace && (a->grad)) {
  2579. is_node = true;
  2580. }
  2581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2582. result->op = GGML_OP_DUP;
  2583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2584. result->src0 = a;
  2585. result->src1 = NULL;
  2586. return result;
  2587. }
  2588. struct ggml_tensor * ggml_dup(
  2589. struct ggml_context * ctx,
  2590. struct ggml_tensor * a) {
  2591. return ggml_dup_impl(ctx, a, false);
  2592. }
  2593. struct ggml_tensor * ggml_dup_inplace(
  2594. struct ggml_context * ctx,
  2595. struct ggml_tensor * a) {
  2596. return ggml_dup_impl(ctx, a, true);
  2597. }
  2598. // ggml_add
  2599. struct ggml_tensor * ggml_add_impl(
  2600. struct ggml_context * ctx,
  2601. struct ggml_tensor * a,
  2602. struct ggml_tensor * b,
  2603. bool inplace) {
  2604. GGML_ASSERT(ggml_are_same_shape(a, b));
  2605. bool is_node = false;
  2606. if (!inplace && (a->grad || b->grad)) {
  2607. is_node = true;
  2608. }
  2609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2610. result->op = GGML_OP_ADD;
  2611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2612. result->src0 = a;
  2613. result->src1 = b;
  2614. return result;
  2615. }
  2616. struct ggml_tensor * ggml_add(
  2617. struct ggml_context * ctx,
  2618. struct ggml_tensor * a,
  2619. struct ggml_tensor * b) {
  2620. return ggml_add_impl(ctx, a, b, false);
  2621. }
  2622. struct ggml_tensor * ggml_add_inplace(
  2623. struct ggml_context * ctx,
  2624. struct ggml_tensor * a,
  2625. struct ggml_tensor * b) {
  2626. return ggml_add_impl(ctx, a, b, true);
  2627. }
  2628. // ggml_sub
  2629. struct ggml_tensor * ggml_sub_impl(
  2630. struct ggml_context * ctx,
  2631. struct ggml_tensor * a,
  2632. struct ggml_tensor * b,
  2633. bool inplace) {
  2634. GGML_ASSERT(ggml_are_same_shape(a, b));
  2635. bool is_node = false;
  2636. if (!inplace && (a->grad || b->grad)) {
  2637. is_node = true;
  2638. }
  2639. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2640. result->op = GGML_OP_SUB;
  2641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2642. result->src0 = a;
  2643. result->src1 = b;
  2644. return result;
  2645. }
  2646. struct ggml_tensor * ggml_sub(
  2647. struct ggml_context * ctx,
  2648. struct ggml_tensor * a,
  2649. struct ggml_tensor * b) {
  2650. return ggml_sub_impl(ctx, a, b, false);
  2651. }
  2652. struct ggml_tensor * ggml_sub_inplace(
  2653. struct ggml_context * ctx,
  2654. struct ggml_tensor * a,
  2655. struct ggml_tensor * b) {
  2656. return ggml_sub_impl(ctx, a, b, true);
  2657. }
  2658. // ggml_mul
  2659. struct ggml_tensor * ggml_mul_impl(
  2660. struct ggml_context * ctx,
  2661. struct ggml_tensor * a,
  2662. struct ggml_tensor * b,
  2663. bool inplace) {
  2664. GGML_ASSERT(ggml_are_same_shape(a, b));
  2665. bool is_node = false;
  2666. if (!inplace && (a->grad || b->grad)) {
  2667. is_node = true;
  2668. }
  2669. if (inplace) {
  2670. GGML_ASSERT(is_node == false);
  2671. }
  2672. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2673. result->op = GGML_OP_MUL;
  2674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2675. result->src0 = a;
  2676. result->src1 = b;
  2677. return result;
  2678. }
  2679. struct ggml_tensor * ggml_mul(
  2680. struct ggml_context * ctx,
  2681. struct ggml_tensor * a,
  2682. struct ggml_tensor * b) {
  2683. return ggml_mul_impl(ctx, a, b, false);
  2684. }
  2685. struct ggml_tensor * ggml_mul_inplace(
  2686. struct ggml_context * ctx,
  2687. struct ggml_tensor * a,
  2688. struct ggml_tensor * b) {
  2689. return ggml_mul_impl(ctx, a, b, true);
  2690. }
  2691. // ggml_div
  2692. struct ggml_tensor * ggml_div_impl(
  2693. struct ggml_context * ctx,
  2694. struct ggml_tensor * a,
  2695. struct ggml_tensor * b,
  2696. bool inplace) {
  2697. GGML_ASSERT(ggml_are_same_shape(a, b));
  2698. bool is_node = false;
  2699. if (!inplace && (a->grad || b->grad)) {
  2700. is_node = true;
  2701. }
  2702. if (inplace) {
  2703. GGML_ASSERT(is_node == false);
  2704. }
  2705. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2706. result->op = GGML_OP_DIV;
  2707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2708. result->src0 = a;
  2709. result->src1 = b;
  2710. return result;
  2711. }
  2712. struct ggml_tensor * ggml_div(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b) {
  2716. return ggml_div_impl(ctx, a, b, false);
  2717. }
  2718. struct ggml_tensor * ggml_div_inplace(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a,
  2721. struct ggml_tensor * b) {
  2722. return ggml_div_impl(ctx, a, b, true);
  2723. }
  2724. // ggml_sqr
  2725. struct ggml_tensor * ggml_sqr_impl(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. bool inplace) {
  2729. bool is_node = false;
  2730. if (!inplace && (a->grad)) {
  2731. is_node = true;
  2732. }
  2733. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2734. result->op = GGML_OP_SQR;
  2735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2736. result->src0 = a;
  2737. result->src1 = NULL;
  2738. return result;
  2739. }
  2740. struct ggml_tensor * ggml_sqr(
  2741. struct ggml_context * ctx,
  2742. struct ggml_tensor * a) {
  2743. return ggml_sqr_impl(ctx, a, false);
  2744. }
  2745. struct ggml_tensor * ggml_sqr_inplace(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a) {
  2748. return ggml_sqr_impl(ctx, a, true);
  2749. }
  2750. // ggml_sqrt
  2751. struct ggml_tensor * ggml_sqrt_impl(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. bool inplace) {
  2755. bool is_node = false;
  2756. if (!inplace && (a->grad)) {
  2757. is_node = true;
  2758. }
  2759. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2760. result->op = GGML_OP_SQRT;
  2761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2762. result->src0 = a;
  2763. result->src1 = NULL;
  2764. return result;
  2765. }
  2766. struct ggml_tensor * ggml_sqrt(
  2767. struct ggml_context * ctx,
  2768. struct ggml_tensor * a) {
  2769. return ggml_sqrt_impl(ctx, a, false);
  2770. }
  2771. struct ggml_tensor * ggml_sqrt_inplace(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a) {
  2774. return ggml_sqrt_impl(ctx, a, true);
  2775. }
  2776. // ggml_sum
  2777. struct ggml_tensor * ggml_sum(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a) {
  2780. bool is_node = false;
  2781. if (a->grad) {
  2782. is_node = true;
  2783. }
  2784. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2785. result->op = GGML_OP_SUM;
  2786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2787. result->src0 = a;
  2788. result->src1 = NULL;
  2789. return result;
  2790. }
  2791. // ggml_mean
  2792. struct ggml_tensor * ggml_mean(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a) {
  2795. bool is_node = false;
  2796. if (a->grad) {
  2797. GGML_ASSERT(false); // TODO: implement
  2798. is_node = true;
  2799. }
  2800. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2801. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2802. result->op = GGML_OP_MEAN;
  2803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2804. result->src0 = a;
  2805. result->src1 = NULL;
  2806. return result;
  2807. }
  2808. // ggml_repeat
  2809. struct ggml_tensor * ggml_repeat(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. GGML_ASSERT(ggml_can_repeat(a, b));
  2814. bool is_node = false;
  2815. if (a->grad) {
  2816. is_node = true;
  2817. }
  2818. if (ggml_are_same_shape(a, b) && !is_node) {
  2819. return a;
  2820. }
  2821. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2822. result->op = GGML_OP_REPEAT;
  2823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2824. result->src0 = a;
  2825. result->src1 = b;
  2826. return result;
  2827. }
  2828. // ggml_abs
  2829. struct ggml_tensor * ggml_abs_impl(
  2830. struct ggml_context * ctx,
  2831. struct ggml_tensor * a,
  2832. bool inplace) {
  2833. bool is_node = false;
  2834. if (!inplace && (a->grad)) {
  2835. is_node = true;
  2836. }
  2837. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2838. result->op = GGML_OP_ABS;
  2839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2840. result->src0 = a;
  2841. result->src1 = NULL;
  2842. return result;
  2843. }
  2844. struct ggml_tensor * ggml_abs(
  2845. struct ggml_context * ctx,
  2846. struct ggml_tensor * a) {
  2847. return ggml_abs_impl(ctx, a, false);
  2848. }
  2849. struct ggml_tensor * ggml_abs_inplace(
  2850. struct ggml_context * ctx,
  2851. struct ggml_tensor * a) {
  2852. return ggml_abs_impl(ctx, a, true);
  2853. }
  2854. // ggml_sgn
  2855. struct ggml_tensor * ggml_sgn_impl(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. bool inplace) {
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad)) {
  2861. is_node = true;
  2862. }
  2863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2864. result->op = GGML_OP_SGN;
  2865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2866. result->src0 = a;
  2867. result->src1 = NULL;
  2868. return result;
  2869. }
  2870. struct ggml_tensor * ggml_sgn(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a) {
  2873. return ggml_sgn_impl(ctx, a, false);
  2874. }
  2875. struct ggml_tensor * ggml_sgn_inplace(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a) {
  2878. return ggml_sgn_impl(ctx, a, true);
  2879. }
  2880. // ggml_neg
  2881. struct ggml_tensor * ggml_neg_impl(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. bool inplace) {
  2885. bool is_node = false;
  2886. if (!inplace && (a->grad)) {
  2887. is_node = true;
  2888. }
  2889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2890. result->op = GGML_OP_NEG;
  2891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2892. result->src0 = a;
  2893. result->src1 = NULL;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_neg(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a) {
  2899. return ggml_neg_impl(ctx, a, false);
  2900. }
  2901. struct ggml_tensor * ggml_neg_inplace(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a) {
  2904. return ggml_neg_impl(ctx, a, true);
  2905. }
  2906. // ggml_step
  2907. struct ggml_tensor * ggml_step_impl(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a,
  2910. bool inplace) {
  2911. bool is_node = false;
  2912. if (!inplace && (a->grad)) {
  2913. is_node = true;
  2914. }
  2915. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2916. result->op = GGML_OP_STEP;
  2917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2918. result->src0 = a;
  2919. result->src1 = NULL;
  2920. return result;
  2921. }
  2922. struct ggml_tensor * ggml_step(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a) {
  2925. return ggml_step_impl(ctx, a, false);
  2926. }
  2927. struct ggml_tensor * ggml_step_inplace(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a) {
  2930. return ggml_step_impl(ctx, a, true);
  2931. }
  2932. // ggml_relu
  2933. struct ggml_tensor * ggml_relu_impl(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. bool inplace) {
  2937. bool is_node = false;
  2938. if (!inplace && (a->grad)) {
  2939. is_node = true;
  2940. }
  2941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2942. result->op = GGML_OP_RELU;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src0 = a;
  2945. result->src1 = NULL;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_relu(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_relu_impl(ctx, a, false);
  2952. }
  2953. struct ggml_tensor * ggml_relu_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_relu_impl(ctx, a, true);
  2957. }
  2958. // ggml_gelu
  2959. struct ggml_tensor * ggml_gelu_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_GELU;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src0 = a;
  2971. result->src1 = NULL;
  2972. return result;
  2973. }
  2974. struct ggml_tensor * ggml_gelu(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a) {
  2977. return ggml_gelu_impl(ctx, a, false);
  2978. }
  2979. struct ggml_tensor * ggml_gelu_inplace(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_gelu_impl(ctx, a, true);
  2983. }
  2984. // ggml_silu
  2985. struct ggml_tensor * ggml_silu_impl(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. bool inplace) {
  2989. bool is_node = false;
  2990. if (!inplace && (a->grad)) {
  2991. is_node = true;
  2992. }
  2993. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2994. result->op = GGML_OP_SILU;
  2995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2996. result->src0 = a;
  2997. result->src1 = NULL;
  2998. return result;
  2999. }
  3000. struct ggml_tensor * ggml_silu(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_silu_impl(ctx, a, false);
  3004. }
  3005. struct ggml_tensor * ggml_silu_inplace(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_silu_impl(ctx, a, true);
  3009. }
  3010. // ggml_norm
  3011. struct ggml_tensor * ggml_norm_impl(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. bool inplace) {
  3015. bool is_node = false;
  3016. if (!inplace && (a->grad)) {
  3017. GGML_ASSERT(false); // TODO: implement backward
  3018. is_node = true;
  3019. }
  3020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3021. result->op = GGML_OP_NORM;
  3022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3023. result->src0 = a;
  3024. result->src1 = NULL; // TODO: maybe store epsilon here?
  3025. return result;
  3026. }
  3027. struct ggml_tensor * ggml_norm(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a) {
  3030. return ggml_norm_impl(ctx, a, false);
  3031. }
  3032. struct ggml_tensor * ggml_norm_inplace(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a) {
  3035. return ggml_norm_impl(ctx, a, true);
  3036. }
  3037. struct ggml_tensor * ggml_rms_norm_impl(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. bool inplace) {
  3041. bool is_node = false;
  3042. if (!inplace && (a->grad)) {
  3043. GGML_ASSERT(false); // TODO: implement backward
  3044. is_node = true;
  3045. }
  3046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3047. result->op = GGML_OP_RMS_NORM;
  3048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3049. result->src0 = a;
  3050. result->src1 = NULL; // TODO: maybe store epsilon here?
  3051. return result;
  3052. }
  3053. struct ggml_tensor * ggml_rms_norm(
  3054. struct ggml_context * ctx,
  3055. struct ggml_tensor * a) {
  3056. return ggml_rms_norm_impl(ctx, a, false);
  3057. }
  3058. struct ggml_tensor * ggml_rms_norm_inplace(
  3059. struct ggml_context * ctx,
  3060. struct ggml_tensor * a) {
  3061. return ggml_rms_norm_impl(ctx, a, true);
  3062. }
  3063. // ggml_mul_mat
  3064. struct ggml_tensor * ggml_mul_mat(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. struct ggml_tensor * b) {
  3068. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3069. bool is_node = false;
  3070. if (a->grad || b->grad) {
  3071. is_node = true;
  3072. }
  3073. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3074. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3075. result->op = GGML_OP_MUL_MAT;
  3076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3077. result->src0 = a;
  3078. result->src1 = b;
  3079. return result;
  3080. }
  3081. // ggml_scale
  3082. struct ggml_tensor * ggml_scale_impl(
  3083. struct ggml_context * ctx,
  3084. struct ggml_tensor * a,
  3085. struct ggml_tensor * b,
  3086. bool inplace) {
  3087. GGML_ASSERT(ggml_is_scalar(b));
  3088. GGML_ASSERT(ggml_is_padded_1d(a));
  3089. bool is_node = false;
  3090. if (!inplace && (a->grad || b->grad)) {
  3091. GGML_ASSERT(false); // TODO: implement backward
  3092. is_node = true;
  3093. }
  3094. // TODO: when implement backward, fix this:
  3095. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3096. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3097. result->op = GGML_OP_SCALE;
  3098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3099. result->src0 = a;
  3100. result->src1 = b;
  3101. return result;
  3102. }
  3103. struct ggml_tensor * ggml_scale(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a,
  3106. struct ggml_tensor * b) {
  3107. return ggml_scale_impl(ctx, a, b, false);
  3108. }
  3109. struct ggml_tensor * ggml_scale_inplace(
  3110. struct ggml_context * ctx,
  3111. struct ggml_tensor * a,
  3112. struct ggml_tensor * b) {
  3113. return ggml_scale_impl(ctx, a, b, true);
  3114. }
  3115. // ggml_cpy
  3116. struct ggml_tensor * ggml_cpy_impl(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a,
  3119. struct ggml_tensor * b,
  3120. bool inplace) {
  3121. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3122. bool is_node = false;
  3123. if (!inplace && (a->grad || b->grad)) {
  3124. GGML_ASSERT(false); // TODO: implement backward
  3125. is_node = true;
  3126. }
  3127. // make a view of the destination
  3128. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3129. result->op = GGML_OP_CPY;
  3130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3131. result->src0 = a;
  3132. result->src1 = b;
  3133. return result;
  3134. }
  3135. struct ggml_tensor * ggml_cpy(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a,
  3138. struct ggml_tensor * b) {
  3139. return ggml_cpy_impl(ctx, a, b, false);
  3140. }
  3141. struct ggml_tensor * ggml_cpy_inplace(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a,
  3144. struct ggml_tensor * b) {
  3145. return ggml_cpy_impl(ctx, a, b, true);
  3146. }
  3147. // ggml_reshape
  3148. struct ggml_tensor * ggml_reshape(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a,
  3151. struct ggml_tensor * b) {
  3152. GGML_ASSERT(ggml_is_contiguous(a));
  3153. GGML_ASSERT(ggml_is_contiguous(b));
  3154. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3155. bool is_node = false;
  3156. if (a->grad || b->grad) {
  3157. GGML_ASSERT(false); // TODO: implement backward
  3158. is_node = true;
  3159. }
  3160. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3161. result->op = GGML_OP_RESHAPE;
  3162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3163. result->src0 = a;
  3164. result->src1 = NULL;
  3165. return result;
  3166. }
  3167. struct ggml_tensor * ggml_reshape_2d(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a,
  3170. int ne0,
  3171. int ne1) {
  3172. GGML_ASSERT(ggml_is_contiguous(a));
  3173. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3174. bool is_node = false;
  3175. if (a->grad) {
  3176. GGML_ASSERT(false); // TODO: implement backward
  3177. is_node = true;
  3178. }
  3179. const int ne[2] = { ne0, ne1 };
  3180. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3181. result->op = GGML_OP_RESHAPE;
  3182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3183. result->src0 = a;
  3184. result->src1 = NULL;
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_reshape_3d(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a,
  3190. int ne0,
  3191. int ne1,
  3192. int ne2) {
  3193. GGML_ASSERT(ggml_is_contiguous(a));
  3194. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3195. bool is_node = false;
  3196. if (a->grad) {
  3197. GGML_ASSERT(false); // TODO: implement backward
  3198. is_node = true;
  3199. }
  3200. const int ne[3] = { ne0, ne1, ne2 };
  3201. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3202. result->op = GGML_OP_RESHAPE;
  3203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3204. result->src0 = a;
  3205. result->src1 = NULL;
  3206. return result;
  3207. }
  3208. // ggml_view_1d
  3209. struct ggml_tensor * ggml_view_1d(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a,
  3212. int ne0,
  3213. size_t offset) {
  3214. if (a->grad) {
  3215. GGML_ASSERT(false); // gradient propagation is not supported
  3216. }
  3217. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3218. result->op = GGML_OP_VIEW;
  3219. result->grad = NULL;
  3220. result->src0 = a;
  3221. result->src1 = NULL; // TODO: maybe store the offset here?
  3222. return result;
  3223. }
  3224. // ggml_view_2d
  3225. struct ggml_tensor * ggml_view_2d(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. int ne0,
  3229. int ne1,
  3230. size_t nb1,
  3231. size_t offset) {
  3232. if (a->grad) {
  3233. GGML_ASSERT(false); // gradient propagation is not supported
  3234. }
  3235. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3236. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3237. result->nb[1] = nb1;
  3238. result->nb[2] = result->nb[1]*ne1;
  3239. result->nb[3] = result->nb[2];
  3240. result->op = GGML_OP_VIEW;
  3241. result->grad = NULL;
  3242. result->src0 = a;
  3243. result->src1 = NULL; // TODO: maybe store the offset here?
  3244. return result;
  3245. }
  3246. // ggml_permute
  3247. struct ggml_tensor * ggml_permute(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. int axis0,
  3251. int axis1,
  3252. int axis2,
  3253. int axis3) {
  3254. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3255. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3256. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3257. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3258. GGML_ASSERT(axis0 != axis1);
  3259. GGML_ASSERT(axis0 != axis2);
  3260. GGML_ASSERT(axis0 != axis3);
  3261. GGML_ASSERT(axis1 != axis2);
  3262. GGML_ASSERT(axis1 != axis3);
  3263. GGML_ASSERT(axis2 != axis3);
  3264. bool is_node = false;
  3265. if (a->grad) {
  3266. GGML_ASSERT(false); // TODO: implement backward
  3267. is_node = true;
  3268. }
  3269. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3270. int ne[GGML_MAX_DIMS];
  3271. int nb[GGML_MAX_DIMS];
  3272. ne[axis0] = a->ne[0];
  3273. ne[axis1] = a->ne[1];
  3274. ne[axis2] = a->ne[2];
  3275. ne[axis3] = a->ne[3];
  3276. nb[axis0] = a->nb[0];
  3277. nb[axis1] = a->nb[1];
  3278. nb[axis2] = a->nb[2];
  3279. nb[axis3] = a->nb[3];
  3280. result->ne[0] = ne[0];
  3281. result->ne[1] = ne[1];
  3282. result->ne[2] = ne[2];
  3283. result->ne[3] = ne[3];
  3284. result->nb[0] = nb[0];
  3285. result->nb[1] = nb[1];
  3286. result->nb[2] = nb[2];
  3287. result->nb[3] = nb[3];
  3288. result->op = GGML_OP_PERMUTE;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src0 = a;
  3291. result->src1 = NULL; // TODO: maybe store the permutation here?
  3292. return result;
  3293. }
  3294. // ggml_transpose
  3295. struct ggml_tensor * ggml_transpose(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a) {
  3298. bool is_node = false;
  3299. if (a->grad) {
  3300. GGML_ASSERT(false); // TODO: implement backward
  3301. is_node = true;
  3302. }
  3303. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3304. result->ne[0] = a->ne[1];
  3305. result->ne[1] = a->ne[0];
  3306. result->nb[0] = a->nb[1];
  3307. result->nb[1] = a->nb[0];
  3308. result->op = GGML_OP_TRANSPOSE;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src0 = a;
  3311. result->src1 = NULL;
  3312. return result;
  3313. }
  3314. // ggml_get_rows
  3315. struct ggml_tensor * ggml_get_rows(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a,
  3318. struct ggml_tensor * b) {
  3319. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3320. bool is_node = false;
  3321. if (a->grad || b->grad) {
  3322. GGML_ASSERT(false); // TODO: implement backward
  3323. is_node = true;
  3324. }
  3325. // TODO: implement non F32 return
  3326. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3327. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3328. result->op = GGML_OP_GET_ROWS;
  3329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3330. result->src0 = a;
  3331. result->src1 = b;
  3332. return result;
  3333. }
  3334. // ggml_diag_mask_inf
  3335. struct ggml_tensor * ggml_diag_mask_inf(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. int n_past) {
  3339. bool is_node = false;
  3340. if (a->grad) {
  3341. GGML_ASSERT(false); // TODO: implement backward
  3342. is_node = true;
  3343. }
  3344. // TODO: when implement backward, fix this:
  3345. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3346. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3347. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3348. result->op = GGML_OP_DIAG_MASK_INF;
  3349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3350. result->src0 = a;
  3351. result->src1 = b;
  3352. return result;
  3353. }
  3354. // ggml_soft_max
  3355. struct ggml_tensor * ggml_soft_max(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. bool is_node = false;
  3359. if (a->grad) {
  3360. GGML_ASSERT(false); // TODO: implement backward
  3361. is_node = true;
  3362. }
  3363. // TODO: when implement backward, fix this:
  3364. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3365. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3366. result->op = GGML_OP_SOFT_MAX;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src0 = a;
  3369. result->src1 = NULL;
  3370. return result;
  3371. }
  3372. // ggml_rope
  3373. struct ggml_tensor * ggml_rope(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a,
  3376. int n_past,
  3377. int n_dims,
  3378. int mode) {
  3379. GGML_ASSERT(n_past >= 0);
  3380. bool is_node = false;
  3381. if (a->grad) {
  3382. GGML_ASSERT(false); // TODO: implement backward
  3383. is_node = true;
  3384. }
  3385. // TODO: when implement backward, fix this:
  3386. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3387. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3388. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3389. ((int32_t *) b->data)[0] = n_past;
  3390. ((int32_t *) b->data)[1] = n_dims;
  3391. ((int32_t *) b->data)[2] = mode;
  3392. result->op = GGML_OP_ROPE;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = b;
  3396. return result;
  3397. }
  3398. // ggml_conv_1d_1s
  3399. struct ggml_tensor * ggml_conv_1d_1s(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. struct ggml_tensor * b) {
  3403. GGML_ASSERT(ggml_is_matrix(b));
  3404. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3405. GGML_ASSERT(a->ne[3] == 1);
  3406. bool is_node = false;
  3407. if (a->grad || b->grad) {
  3408. GGML_ASSERT(false); // TODO: implement backward
  3409. is_node = true;
  3410. }
  3411. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3412. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3413. result->op = GGML_OP_CONV_1D_1S;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src0 = a;
  3416. result->src1 = b;
  3417. return result;
  3418. }
  3419. // ggml_conv_1d_2s
  3420. struct ggml_tensor * ggml_conv_1d_2s(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. struct ggml_tensor * b) {
  3424. GGML_ASSERT(ggml_is_matrix(b));
  3425. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3426. GGML_ASSERT(a->ne[3] == 1);
  3427. bool is_node = false;
  3428. if (a->grad || b->grad) {
  3429. GGML_ASSERT(false); // TODO: implement backward
  3430. is_node = true;
  3431. }
  3432. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3433. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3434. result->op = GGML_OP_CONV_1D_2S;
  3435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3436. result->src0 = a;
  3437. result->src1 = b;
  3438. return result;
  3439. }
  3440. // ggml_flash_attn
  3441. struct ggml_tensor * ggml_flash_attn(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * q,
  3444. struct ggml_tensor * k,
  3445. struct ggml_tensor * v,
  3446. bool masked) {
  3447. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3448. // TODO: check if vT can be multiplied by (k*qT)
  3449. bool is_node = false;
  3450. if (q->grad || k->grad || v->grad) {
  3451. GGML_ASSERT(false); // TODO: implement backward
  3452. is_node = true;
  3453. }
  3454. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3455. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3456. result->op = GGML_OP_FLASH_ATTN;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src0 = q;
  3459. result->src1 = k;
  3460. result->opt[0] = v;
  3461. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3462. return result;
  3463. }
  3464. // ggml_flash_ff
  3465. struct ggml_tensor * ggml_flash_ff(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b0,
  3469. struct ggml_tensor * b1,
  3470. struct ggml_tensor * c0,
  3471. struct ggml_tensor * c1) {
  3472. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3473. // TODO: more checks
  3474. bool is_node = false;
  3475. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3476. GGML_ASSERT(false); // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3480. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3481. result->op = GGML_OP_FLASH_FF;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = b0;
  3485. result->opt[0] = b1;
  3486. result->opt[1] = c0;
  3487. result->opt[2] = c1;
  3488. return result;
  3489. }
  3490. ////////////////////////////////////////////////////////////////////////////////
  3491. void ggml_set_param(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * tensor) {
  3494. tensor->is_param = true;
  3495. GGML_ASSERT(tensor->grad == NULL);
  3496. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3497. }
  3498. // ggml_compute_forward_dup
  3499. static void ggml_compute_forward_dup_f16(
  3500. const struct ggml_compute_params * params,
  3501. const struct ggml_tensor * src0,
  3502. struct ggml_tensor * dst) {
  3503. GGML_ASSERT(params->ith == 0);
  3504. GGML_ASSERT(ggml_is_contiguous(dst));
  3505. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3507. return;
  3508. }
  3509. const int ne00 = src0->ne[0];
  3510. const int ne01 = src0->ne[1];
  3511. const int ne02 = src0->ne[2];
  3512. const int ne03 = src0->ne[3];
  3513. const size_t nb00 = src0->nb[0];
  3514. const size_t nb01 = src0->nb[1];
  3515. const size_t nb02 = src0->nb[2];
  3516. const size_t nb03 = src0->nb[3];
  3517. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3518. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3519. return;
  3520. }
  3521. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3522. if (dst->type == GGML_TYPE_F16) {
  3523. int id = 0;
  3524. const size_t rs = ne00*nb00;
  3525. for (int i03 = 0; i03 < ne03; i03++) {
  3526. for (int i02 = 0; i02 < ne02; i02++) {
  3527. for (int i01 = 0; i01 < ne01; i01++) {
  3528. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3529. char * dst_ptr = (char *) dst->data + id*rs;
  3530. memcpy(dst_ptr, src0_ptr, rs);
  3531. id++;
  3532. }
  3533. }
  3534. }
  3535. } else if (dst->type == GGML_TYPE_F32) {
  3536. int id = 0;
  3537. float * dst_ptr = (float *) dst->data;
  3538. for (int i03 = 0; i03 < ne03; i03++) {
  3539. for (int i02 = 0; i02 < ne02; i02++) {
  3540. for (int i01 = 0; i01 < ne01; i01++) {
  3541. for (int i00 = 0; i00 < ne00; i00++) {
  3542. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3543. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3544. id++;
  3545. }
  3546. }
  3547. }
  3548. }
  3549. } else {
  3550. GGML_ASSERT(false); // TODO: implement
  3551. }
  3552. } else {
  3553. //printf("%s: this is not optimal - fix me\n", __func__);
  3554. if (dst->type == GGML_TYPE_F32) {
  3555. int id = 0;
  3556. float * dst_ptr = (float *) dst->data;
  3557. for (int i03 = 0; i03 < ne03; i03++) {
  3558. for (int i02 = 0; i02 < ne02; i02++) {
  3559. for (int i01 = 0; i01 < ne01; i01++) {
  3560. for (int i00 = 0; i00 < ne00; i00++) {
  3561. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3562. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3563. id++;
  3564. }
  3565. }
  3566. }
  3567. }
  3568. } else if (dst->type == GGML_TYPE_F16) {
  3569. int id = 0;
  3570. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3571. for (int i03 = 0; i03 < ne03; i03++) {
  3572. for (int i02 = 0; i02 < ne02; i02++) {
  3573. for (int i01 = 0; i01 < ne01; i01++) {
  3574. for (int i00 = 0; i00 < ne00; i00++) {
  3575. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3576. dst_ptr[id] = *src0_ptr;
  3577. id++;
  3578. }
  3579. }
  3580. }
  3581. }
  3582. } else {
  3583. GGML_ASSERT(false); // TODO: implement
  3584. }
  3585. }
  3586. }
  3587. static void ggml_compute_forward_dup_f32(
  3588. const struct ggml_compute_params * params,
  3589. const struct ggml_tensor * src0,
  3590. struct ggml_tensor * dst) {
  3591. GGML_ASSERT(params->ith == 0);
  3592. GGML_ASSERT(ggml_is_contiguous(dst));
  3593. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3595. return;
  3596. }
  3597. const int ne00 = src0->ne[0];
  3598. const int ne01 = src0->ne[1];
  3599. const int ne02 = src0->ne[2];
  3600. const int ne03 = src0->ne[3];
  3601. const size_t nb00 = src0->nb[0];
  3602. const size_t nb01 = src0->nb[1];
  3603. const size_t nb02 = src0->nb[2];
  3604. const size_t nb03 = src0->nb[3];
  3605. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3606. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3607. return;
  3608. }
  3609. if (src0->nb[0] == sizeof(float)) {
  3610. if (dst->type == GGML_TYPE_F32) {
  3611. int id = 0;
  3612. const size_t rs = ne00*nb00;
  3613. for (int i03 = 0; i03 < ne03; i03++) {
  3614. for (int i02 = 0; i02 < ne02; i02++) {
  3615. for (int i01 = 0; i01 < ne01; i01++) {
  3616. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3617. char * dst_ptr = (char *) dst->data + id*rs;
  3618. memcpy(dst_ptr, src0_ptr, rs);
  3619. id++;
  3620. }
  3621. }
  3622. }
  3623. } else if (dst->type == GGML_TYPE_F16) {
  3624. int id = 0;
  3625. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3626. for (int i03 = 0; i03 < ne03; i03++) {
  3627. for (int i02 = 0; i02 < ne02; i02++) {
  3628. for (int i01 = 0; i01 < ne01; i01++) {
  3629. for (int i00 = 0; i00 < ne00; i00++) {
  3630. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3631. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3632. id++;
  3633. }
  3634. }
  3635. }
  3636. }
  3637. } else {
  3638. GGML_ASSERT(false); // TODO: implement
  3639. }
  3640. } else {
  3641. //printf("%s: this is not optimal - fix me\n", __func__);
  3642. if (dst->type == GGML_TYPE_F32) {
  3643. int id = 0;
  3644. float * dst_ptr = (float *) dst->data;
  3645. for (int i03 = 0; i03 < ne03; i03++) {
  3646. for (int i02 = 0; i02 < ne02; i02++) {
  3647. for (int i01 = 0; i01 < ne01; i01++) {
  3648. for (int i00 = 0; i00 < ne00; i00++) {
  3649. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3650. dst_ptr[id] = *src0_ptr;
  3651. id++;
  3652. }
  3653. }
  3654. }
  3655. }
  3656. } else if (dst->type == GGML_TYPE_F16) {
  3657. int id = 0;
  3658. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3659. for (int i03 = 0; i03 < ne03; i03++) {
  3660. for (int i02 = 0; i02 < ne02; i02++) {
  3661. for (int i01 = 0; i01 < ne01; i01++) {
  3662. for (int i00 = 0; i00 < ne00; i00++) {
  3663. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3664. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3665. id++;
  3666. }
  3667. }
  3668. }
  3669. }
  3670. } else {
  3671. GGML_ASSERT(false); // TODO: implement
  3672. }
  3673. }
  3674. }
  3675. static void ggml_compute_forward_dup(
  3676. const struct ggml_compute_params * params,
  3677. const struct ggml_tensor * src0,
  3678. struct ggml_tensor * dst) {
  3679. switch (src0->type) {
  3680. case GGML_TYPE_F16:
  3681. {
  3682. ggml_compute_forward_dup_f16(params, src0, dst);
  3683. } break;
  3684. case GGML_TYPE_F32:
  3685. {
  3686. ggml_compute_forward_dup_f32(params, src0, dst);
  3687. } break;
  3688. case GGML_TYPE_Q4_0:
  3689. case GGML_TYPE_Q4_1:
  3690. case GGML_TYPE_I8:
  3691. case GGML_TYPE_I16:
  3692. case GGML_TYPE_I32:
  3693. case GGML_TYPE_COUNT:
  3694. {
  3695. GGML_ASSERT(false);
  3696. } break;
  3697. }
  3698. }
  3699. // ggml_compute_forward_add
  3700. static void ggml_compute_forward_add_f32(
  3701. const struct ggml_compute_params * params,
  3702. const struct ggml_tensor * src0,
  3703. const struct ggml_tensor * src1,
  3704. struct ggml_tensor * dst) {
  3705. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3707. return;
  3708. }
  3709. const int ith = params->ith;
  3710. const int nth = params->nth;
  3711. const int n = ggml_nrows(src0);
  3712. const int nc = src0->ne[0];
  3713. const size_t nb00 = src0->nb[0];
  3714. const size_t nb01 = src0->nb[1];
  3715. const size_t nb10 = src1->nb[0];
  3716. const size_t nb11 = src1->nb[1];
  3717. const size_t nb0 = dst->nb[0];
  3718. const size_t nb1 = dst->nb[1];
  3719. GGML_ASSERT( nb0 == sizeof(float));
  3720. GGML_ASSERT(nb00 == sizeof(float));
  3721. if (nb10 == sizeof(float)) {
  3722. const int j0 = (n/nth)*ith;
  3723. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3724. for (int j = j0; j < j1; j++) {
  3725. ggml_vec_add_f32(nc,
  3726. (float *) ((char *) dst->data + j*nb1),
  3727. (float *) ((char *) src0->data + j*nb01),
  3728. (float *) ((char *) src1->data + j*nb11));
  3729. }
  3730. } else {
  3731. // src1 is not contiguous
  3732. for (int j = ith; j < n; j += nth) {
  3733. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3734. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3735. for (int i = 0; i < nc; i++) {
  3736. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3737. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3738. }
  3739. }
  3740. }
  3741. }
  3742. static void ggml_compute_forward_add(
  3743. const struct ggml_compute_params * params,
  3744. const struct ggml_tensor * src0,
  3745. const struct ggml_tensor * src1,
  3746. struct ggml_tensor * dst) {
  3747. switch (src0->type) {
  3748. case GGML_TYPE_F32:
  3749. {
  3750. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3751. } break;
  3752. case GGML_TYPE_Q4_0:
  3753. case GGML_TYPE_Q4_1:
  3754. case GGML_TYPE_I8:
  3755. case GGML_TYPE_I16:
  3756. case GGML_TYPE_I32:
  3757. case GGML_TYPE_F16:
  3758. case GGML_TYPE_COUNT:
  3759. {
  3760. GGML_ASSERT(false);
  3761. } break;
  3762. }
  3763. }
  3764. // ggml_compute_forward_sub
  3765. static void ggml_compute_forward_sub_f32(
  3766. const struct ggml_compute_params * params,
  3767. const struct ggml_tensor * src0,
  3768. const struct ggml_tensor * src1,
  3769. struct ggml_tensor * dst) {
  3770. assert(params->ith == 0);
  3771. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3773. return;
  3774. }
  3775. const int n = ggml_nrows(src0);
  3776. const int nc = src0->ne[0];
  3777. assert( dst->nb[0] == sizeof(float));
  3778. assert(src0->nb[0] == sizeof(float));
  3779. assert(src1->nb[0] == sizeof(float));
  3780. for (int i = 0; i < n; i++) {
  3781. ggml_vec_sub_f32(nc,
  3782. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3783. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3784. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3785. }
  3786. }
  3787. static void ggml_compute_forward_sub(
  3788. const struct ggml_compute_params * params,
  3789. const struct ggml_tensor * src0,
  3790. const struct ggml_tensor * src1,
  3791. struct ggml_tensor * dst) {
  3792. switch (src0->type) {
  3793. case GGML_TYPE_F32:
  3794. {
  3795. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3796. } break;
  3797. case GGML_TYPE_Q4_0:
  3798. case GGML_TYPE_Q4_1:
  3799. case GGML_TYPE_I8:
  3800. case GGML_TYPE_I16:
  3801. case GGML_TYPE_I32:
  3802. case GGML_TYPE_F16:
  3803. case GGML_TYPE_COUNT:
  3804. {
  3805. GGML_ASSERT(false);
  3806. } break;
  3807. }
  3808. }
  3809. // ggml_compute_forward_mul
  3810. static void ggml_compute_forward_mul_f32(
  3811. const struct ggml_compute_params * params,
  3812. const struct ggml_tensor * src0,
  3813. const struct ggml_tensor * src1,
  3814. struct ggml_tensor * dst) {
  3815. assert(params->ith == 0);
  3816. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3818. return;
  3819. }
  3820. const int n = ggml_nrows(src0);
  3821. const int nc = src0->ne[0];
  3822. assert( dst->nb[0] == sizeof(float));
  3823. assert(src0->nb[0] == sizeof(float));
  3824. assert(src1->nb[0] == sizeof(float));
  3825. for (int i = 0; i < n; i++) {
  3826. ggml_vec_mul_f32(nc,
  3827. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3828. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3829. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3830. }
  3831. }
  3832. static void ggml_compute_forward_mul(
  3833. const struct ggml_compute_params * params,
  3834. const struct ggml_tensor * src0,
  3835. const struct ggml_tensor * src1,
  3836. struct ggml_tensor * dst) {
  3837. switch (src0->type) {
  3838. case GGML_TYPE_F32:
  3839. {
  3840. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3841. } break;
  3842. case GGML_TYPE_Q4_0:
  3843. case GGML_TYPE_Q4_1:
  3844. case GGML_TYPE_I8:
  3845. case GGML_TYPE_I16:
  3846. case GGML_TYPE_I32:
  3847. case GGML_TYPE_F16:
  3848. case GGML_TYPE_COUNT:
  3849. {
  3850. GGML_ASSERT(false);
  3851. } break;
  3852. }
  3853. }
  3854. // ggml_compute_forward_div
  3855. static void ggml_compute_forward_div_f32(
  3856. const struct ggml_compute_params * params,
  3857. const struct ggml_tensor * src0,
  3858. const struct ggml_tensor * src1,
  3859. struct ggml_tensor * dst) {
  3860. assert(params->ith == 0);
  3861. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3863. return;
  3864. }
  3865. const int n = ggml_nrows(src0);
  3866. const int nc = src0->ne[0];
  3867. assert( dst->nb[0] == sizeof(float));
  3868. assert(src0->nb[0] == sizeof(float));
  3869. assert(src1->nb[0] == sizeof(float));
  3870. for (int i = 0; i < n; i++) {
  3871. ggml_vec_div_f32(nc,
  3872. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3873. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3874. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3875. }
  3876. }
  3877. static void ggml_compute_forward_div(
  3878. const struct ggml_compute_params * params,
  3879. const struct ggml_tensor * src0,
  3880. const struct ggml_tensor * src1,
  3881. struct ggml_tensor * dst) {
  3882. switch (src0->type) {
  3883. case GGML_TYPE_F32:
  3884. {
  3885. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3886. } break;
  3887. case GGML_TYPE_Q4_0:
  3888. case GGML_TYPE_Q4_1:
  3889. case GGML_TYPE_I8:
  3890. case GGML_TYPE_I16:
  3891. case GGML_TYPE_I32:
  3892. case GGML_TYPE_F16:
  3893. case GGML_TYPE_COUNT:
  3894. {
  3895. GGML_ASSERT(false);
  3896. } break;
  3897. }
  3898. }
  3899. // ggml_compute_forward_sqr
  3900. static void ggml_compute_forward_sqr_f32(
  3901. const struct ggml_compute_params * params,
  3902. const struct ggml_tensor * src0,
  3903. struct ggml_tensor * dst) {
  3904. assert(params->ith == 0);
  3905. assert(ggml_are_same_shape(src0, dst));
  3906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3907. return;
  3908. }
  3909. const int n = ggml_nrows(src0);
  3910. const int nc = src0->ne[0];
  3911. assert( dst->nb[0] == sizeof(float));
  3912. assert(src0->nb[0] == sizeof(float));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_sqr_f32(nc,
  3915. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3916. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3917. }
  3918. }
  3919. static void ggml_compute_forward_sqr(
  3920. const struct ggml_compute_params * params,
  3921. const struct ggml_tensor * src0,
  3922. struct ggml_tensor * dst) {
  3923. switch (src0->type) {
  3924. case GGML_TYPE_F32:
  3925. {
  3926. ggml_compute_forward_sqr_f32(params, src0, dst);
  3927. } break;
  3928. case GGML_TYPE_Q4_0:
  3929. case GGML_TYPE_Q4_1:
  3930. case GGML_TYPE_I8:
  3931. case GGML_TYPE_I16:
  3932. case GGML_TYPE_I32:
  3933. case GGML_TYPE_F16:
  3934. case GGML_TYPE_COUNT:
  3935. {
  3936. GGML_ASSERT(false);
  3937. } break;
  3938. }
  3939. }
  3940. // ggml_compute_forward_sqrt
  3941. static void ggml_compute_forward_sqrt_f32(
  3942. const struct ggml_compute_params * params,
  3943. const struct ggml_tensor * src0,
  3944. struct ggml_tensor * dst) {
  3945. assert(params->ith == 0);
  3946. assert(ggml_are_same_shape(src0, dst));
  3947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3948. return;
  3949. }
  3950. const int n = ggml_nrows(src0);
  3951. const int nc = src0->ne[0];
  3952. assert( dst->nb[0] == sizeof(float));
  3953. assert(src0->nb[0] == sizeof(float));
  3954. for (int i = 0; i < n; i++) {
  3955. ggml_vec_sqrt_f32(nc,
  3956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3957. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3958. }
  3959. }
  3960. static void ggml_compute_forward_sqrt(
  3961. const struct ggml_compute_params * params,
  3962. const struct ggml_tensor * src0,
  3963. struct ggml_tensor * dst) {
  3964. switch (src0->type) {
  3965. case GGML_TYPE_F32:
  3966. {
  3967. ggml_compute_forward_sqrt_f32(params, src0, dst);
  3968. } break;
  3969. case GGML_TYPE_Q4_0:
  3970. case GGML_TYPE_Q4_1:
  3971. case GGML_TYPE_I8:
  3972. case GGML_TYPE_I16:
  3973. case GGML_TYPE_I32:
  3974. case GGML_TYPE_F16:
  3975. case GGML_TYPE_COUNT:
  3976. {
  3977. GGML_ASSERT(false);
  3978. } break;
  3979. }
  3980. }
  3981. // ggml_compute_forward_sum
  3982. static void ggml_compute_forward_sum_f32(
  3983. const struct ggml_compute_params * params,
  3984. const struct ggml_tensor * src0,
  3985. struct ggml_tensor * dst) {
  3986. assert(params->ith == 0);
  3987. assert(ggml_is_scalar(dst));
  3988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3989. return;
  3990. }
  3991. assert(ggml_is_scalar(dst));
  3992. assert(src0->nb[0] == sizeof(float));
  3993. const int ne00 = src0->ne[0];
  3994. const int ne01 = src0->ne[1];
  3995. const int ne02 = src0->ne[2];
  3996. const int ne03 = src0->ne[3];
  3997. const size_t nb01 = src0->nb[1];
  3998. const size_t nb02 = src0->nb[2];
  3999. const size_t nb03 = src0->nb[3];
  4000. for (int i03 = 0; i03 < ne03; i03++) {
  4001. for (int i02 = 0; i02 < ne02; i02++) {
  4002. for (int i01 = 0; i01 < ne01; i01++) {
  4003. ggml_vec_sum_f32(ne00,
  4004. (float *) (dst->data),
  4005. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4006. }
  4007. }
  4008. }
  4009. }
  4010. static void ggml_compute_forward_sum(
  4011. const struct ggml_compute_params * params,
  4012. const struct ggml_tensor * src0,
  4013. struct ggml_tensor * dst) {
  4014. switch (src0->type) {
  4015. case GGML_TYPE_F32:
  4016. {
  4017. ggml_compute_forward_sum_f32(params, src0, dst);
  4018. } break;
  4019. case GGML_TYPE_Q4_0:
  4020. case GGML_TYPE_Q4_1:
  4021. case GGML_TYPE_I8:
  4022. case GGML_TYPE_I16:
  4023. case GGML_TYPE_I32:
  4024. case GGML_TYPE_F16:
  4025. case GGML_TYPE_COUNT:
  4026. {
  4027. GGML_ASSERT(false);
  4028. } break;
  4029. }
  4030. }
  4031. // ggml_compute_forward_mean
  4032. static void ggml_compute_forward_mean_f32(
  4033. const struct ggml_compute_params * params,
  4034. const struct ggml_tensor * src0,
  4035. struct ggml_tensor * dst) {
  4036. assert(params->ith == 0);
  4037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4038. return;
  4039. }
  4040. assert(src0->nb[0] == sizeof(float));
  4041. const int ne00 = src0->ne[0];
  4042. const int ne01 = src0->ne[1];
  4043. const int ne02 = src0->ne[2];
  4044. const int ne03 = src0->ne[3];
  4045. const size_t nb01 = src0->nb[1];
  4046. const size_t nb02 = src0->nb[2];
  4047. const size_t nb03 = src0->nb[3];
  4048. const int ne0 = dst->ne[0];
  4049. const int ne1 = dst->ne[1];
  4050. const int ne2 = dst->ne[2];
  4051. const int ne3 = dst->ne[3];
  4052. assert(ne0 == 1);
  4053. assert(ne1 == ne01);
  4054. assert(ne2 == ne02);
  4055. assert(ne3 == ne03);
  4056. UNUSED(ne0);
  4057. UNUSED(ne1);
  4058. UNUSED(ne2);
  4059. UNUSED(ne3);
  4060. const size_t nb1 = dst->nb[1];
  4061. const size_t nb2 = dst->nb[2];
  4062. const size_t nb3 = dst->nb[3];
  4063. for (int i03 = 0; i03 < ne03; i03++) {
  4064. for (int i02 = 0; i02 < ne02; i02++) {
  4065. for (int i01 = 0; i01 < ne01; i01++) {
  4066. ggml_vec_sum_f32(ne00,
  4067. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4068. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4069. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4070. }
  4071. }
  4072. }
  4073. }
  4074. static void ggml_compute_forward_mean(
  4075. const struct ggml_compute_params * params,
  4076. const struct ggml_tensor * src0,
  4077. struct ggml_tensor * dst) {
  4078. switch (src0->type) {
  4079. case GGML_TYPE_F32:
  4080. {
  4081. ggml_compute_forward_mean_f32(params, src0, dst);
  4082. } break;
  4083. case GGML_TYPE_Q4_0:
  4084. case GGML_TYPE_Q4_1:
  4085. case GGML_TYPE_I8:
  4086. case GGML_TYPE_I16:
  4087. case GGML_TYPE_I32:
  4088. case GGML_TYPE_F16:
  4089. case GGML_TYPE_COUNT:
  4090. {
  4091. GGML_ASSERT(false);
  4092. } break;
  4093. }
  4094. }
  4095. // ggml_compute_forward_repeat
  4096. static void ggml_compute_forward_repeat_f32(
  4097. const struct ggml_compute_params * params,
  4098. const struct ggml_tensor * src0,
  4099. struct ggml_tensor * dst) {
  4100. assert(params->ith == 0);
  4101. assert(ggml_can_repeat(src0, dst));
  4102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4103. return;
  4104. }
  4105. // TODO: implement support for rank > 2 tensors
  4106. assert(src0->ne[2] == 1);
  4107. assert(src0->ne[3] == 1);
  4108. assert( dst->ne[2] == 1);
  4109. assert( dst->ne[3] == 1);
  4110. const int nc = dst->ne[0];
  4111. const int nr = dst->ne[1];
  4112. const int nc0 = src0->ne[0];
  4113. const int nr0 = src0->ne[1];
  4114. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4115. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4116. // TODO: support for transposed / permuted tensors
  4117. assert( dst->nb[0] == sizeof(float));
  4118. assert(src0->nb[0] == sizeof(float));
  4119. // TODO: maybe this is not optimal?
  4120. for (int i = 0; i < nrr; i++) {
  4121. for (int j = 0; j < ncr; j++) {
  4122. for (int k = 0; k < nr0; k++) {
  4123. ggml_vec_cpy_f32(nc0,
  4124. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4125. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4126. }
  4127. }
  4128. }
  4129. }
  4130. static void ggml_compute_forward_repeat(
  4131. const struct ggml_compute_params * params,
  4132. const struct ggml_tensor * src0,
  4133. struct ggml_tensor * dst) {
  4134. switch (src0->type) {
  4135. case GGML_TYPE_F32:
  4136. {
  4137. ggml_compute_forward_repeat_f32(params, src0, dst);
  4138. } break;
  4139. case GGML_TYPE_Q4_0:
  4140. case GGML_TYPE_Q4_1:
  4141. case GGML_TYPE_I8:
  4142. case GGML_TYPE_I16:
  4143. case GGML_TYPE_I32:
  4144. case GGML_TYPE_F16:
  4145. case GGML_TYPE_COUNT:
  4146. {
  4147. GGML_ASSERT(false);
  4148. } break;
  4149. }
  4150. }
  4151. // ggml_compute_forward_abs
  4152. static void ggml_compute_forward_abs_f32(
  4153. const struct ggml_compute_params * params,
  4154. const struct ggml_tensor * src0,
  4155. struct ggml_tensor * dst) {
  4156. assert(params->ith == 0);
  4157. assert(ggml_are_same_shape(src0, dst));
  4158. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4159. return;
  4160. }
  4161. const int n = ggml_nrows(src0);
  4162. const int nc = src0->ne[0];
  4163. assert(dst->nb[0] == sizeof(float));
  4164. assert(src0->nb[0] == sizeof(float));
  4165. for (int i = 0; i < n; i++) {
  4166. ggml_vec_abs_f32(nc,
  4167. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4168. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4169. }
  4170. }
  4171. static void ggml_compute_forward_abs(
  4172. const struct ggml_compute_params * params,
  4173. const struct ggml_tensor * src0,
  4174. struct ggml_tensor * dst) {
  4175. switch (src0->type) {
  4176. case GGML_TYPE_F32:
  4177. {
  4178. ggml_compute_forward_abs_f32(params, src0, dst);
  4179. } break;
  4180. case GGML_TYPE_Q4_0:
  4181. case GGML_TYPE_Q4_1:
  4182. case GGML_TYPE_I8:
  4183. case GGML_TYPE_I16:
  4184. case GGML_TYPE_I32:
  4185. case GGML_TYPE_F16:
  4186. case GGML_TYPE_COUNT:
  4187. {
  4188. GGML_ASSERT(false);
  4189. } break;
  4190. }
  4191. }
  4192. // ggml_compute_forward_sgn
  4193. static void ggml_compute_forward_sgn_f32(
  4194. const struct ggml_compute_params * params,
  4195. const struct ggml_tensor * src0,
  4196. struct ggml_tensor * dst) {
  4197. assert(params->ith == 0);
  4198. assert(ggml_are_same_shape(src0, dst));
  4199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4200. return;
  4201. }
  4202. const int n = ggml_nrows(src0);
  4203. const int nc = src0->ne[0];
  4204. assert(dst->nb[0] == sizeof(float));
  4205. assert(src0->nb[0] == sizeof(float));
  4206. for (int i = 0; i < n; i++) {
  4207. ggml_vec_sgn_f32(nc,
  4208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4210. }
  4211. }
  4212. static void ggml_compute_forward_sgn(
  4213. const struct ggml_compute_params * params,
  4214. const struct ggml_tensor * src0,
  4215. struct ggml_tensor * dst) {
  4216. switch (src0->type) {
  4217. case GGML_TYPE_F32:
  4218. {
  4219. ggml_compute_forward_sgn_f32(params, src0, dst);
  4220. } break;
  4221. case GGML_TYPE_Q4_0:
  4222. case GGML_TYPE_Q4_1:
  4223. case GGML_TYPE_I8:
  4224. case GGML_TYPE_I16:
  4225. case GGML_TYPE_I32:
  4226. case GGML_TYPE_F16:
  4227. case GGML_TYPE_COUNT:
  4228. {
  4229. GGML_ASSERT(false);
  4230. } break;
  4231. }
  4232. }
  4233. // ggml_compute_forward_neg
  4234. static void ggml_compute_forward_neg_f32(
  4235. const struct ggml_compute_params * params,
  4236. const struct ggml_tensor * src0,
  4237. struct ggml_tensor * dst) {
  4238. assert(params->ith == 0);
  4239. assert(ggml_are_same_shape(src0, dst));
  4240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4241. return;
  4242. }
  4243. const int n = ggml_nrows(src0);
  4244. const int nc = src0->ne[0];
  4245. assert(dst->nb[0] == sizeof(float));
  4246. assert(src0->nb[0] == sizeof(float));
  4247. for (int i = 0; i < n; i++) {
  4248. ggml_vec_neg_f32(nc,
  4249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4251. }
  4252. }
  4253. static void ggml_compute_forward_neg(
  4254. const struct ggml_compute_params * params,
  4255. const struct ggml_tensor * src0,
  4256. struct ggml_tensor * dst) {
  4257. switch (src0->type) {
  4258. case GGML_TYPE_F32:
  4259. {
  4260. ggml_compute_forward_neg_f32(params, src0, dst);
  4261. } break;
  4262. case GGML_TYPE_Q4_0:
  4263. case GGML_TYPE_Q4_1:
  4264. case GGML_TYPE_I8:
  4265. case GGML_TYPE_I16:
  4266. case GGML_TYPE_I32:
  4267. case GGML_TYPE_F16:
  4268. case GGML_TYPE_COUNT:
  4269. {
  4270. GGML_ASSERT(false);
  4271. } break;
  4272. }
  4273. }
  4274. // ggml_compute_forward_step
  4275. static void ggml_compute_forward_step_f32(
  4276. const struct ggml_compute_params * params,
  4277. const struct ggml_tensor * src0,
  4278. struct ggml_tensor * dst) {
  4279. assert(params->ith == 0);
  4280. assert(ggml_are_same_shape(src0, dst));
  4281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4282. return;
  4283. }
  4284. const int n = ggml_nrows(src0);
  4285. const int nc = src0->ne[0];
  4286. assert(dst->nb[0] == sizeof(float));
  4287. assert(src0->nb[0] == sizeof(float));
  4288. for (int i = 0; i < n; i++) {
  4289. ggml_vec_step_f32(nc,
  4290. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4291. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4292. }
  4293. }
  4294. static void ggml_compute_forward_step(
  4295. const struct ggml_compute_params * params,
  4296. const struct ggml_tensor * src0,
  4297. struct ggml_tensor * dst) {
  4298. switch (src0->type) {
  4299. case GGML_TYPE_F32:
  4300. {
  4301. ggml_compute_forward_step_f32(params, src0, dst);
  4302. } break;
  4303. case GGML_TYPE_Q4_0:
  4304. case GGML_TYPE_Q4_1:
  4305. case GGML_TYPE_I8:
  4306. case GGML_TYPE_I16:
  4307. case GGML_TYPE_I32:
  4308. case GGML_TYPE_F16:
  4309. case GGML_TYPE_COUNT:
  4310. {
  4311. GGML_ASSERT(false);
  4312. } break;
  4313. }
  4314. }
  4315. // ggml_compute_forward_relu
  4316. static void ggml_compute_forward_relu_f32(
  4317. const struct ggml_compute_params * params,
  4318. const struct ggml_tensor * src0,
  4319. struct ggml_tensor * dst) {
  4320. assert(params->ith == 0);
  4321. assert(ggml_are_same_shape(src0, dst));
  4322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4323. return;
  4324. }
  4325. const int n = ggml_nrows(src0);
  4326. const int nc = src0->ne[0];
  4327. assert(dst->nb[0] == sizeof(float));
  4328. assert(src0->nb[0] == sizeof(float));
  4329. for (int i = 0; i < n; i++) {
  4330. ggml_vec_relu_f32(nc,
  4331. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4332. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4333. }
  4334. }
  4335. static void ggml_compute_forward_relu(
  4336. const struct ggml_compute_params * params,
  4337. const struct ggml_tensor * src0,
  4338. struct ggml_tensor * dst) {
  4339. switch (src0->type) {
  4340. case GGML_TYPE_F32:
  4341. {
  4342. ggml_compute_forward_relu_f32(params, src0, dst);
  4343. } break;
  4344. case GGML_TYPE_Q4_0:
  4345. case GGML_TYPE_Q4_1:
  4346. case GGML_TYPE_I8:
  4347. case GGML_TYPE_I16:
  4348. case GGML_TYPE_I32:
  4349. case GGML_TYPE_F16:
  4350. case GGML_TYPE_COUNT:
  4351. {
  4352. GGML_ASSERT(false);
  4353. } break;
  4354. }
  4355. }
  4356. // ggml_compute_forward_gelu
  4357. static void ggml_compute_forward_gelu_f32(
  4358. const struct ggml_compute_params * params,
  4359. const struct ggml_tensor * src0,
  4360. struct ggml_tensor * dst) {
  4361. GGML_ASSERT(ggml_is_contiguous(src0));
  4362. GGML_ASSERT(ggml_is_contiguous(dst));
  4363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4365. return;
  4366. }
  4367. const int ith = params->ith;
  4368. const int nth = params->nth;
  4369. const int nc = src0->ne[0];
  4370. const int nr = ggml_nrows(src0);
  4371. // rows per thread
  4372. const int dr = (nr + nth - 1)/nth;
  4373. // row range for this thread
  4374. const int ir0 = dr*ith;
  4375. const int ir1 = MIN(ir0 + dr, nr);
  4376. for (int i1 = ir0; i1 < ir1; i1++) {
  4377. ggml_vec_gelu_f32(nc,
  4378. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4379. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4380. #ifndef NDEBUG
  4381. for (int k = 0; k < nc; k++) {
  4382. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4383. UNUSED(x);
  4384. assert(!isnan(x));
  4385. assert(!isinf(x));
  4386. }
  4387. #endif
  4388. }
  4389. }
  4390. static void ggml_compute_forward_gelu(
  4391. const struct ggml_compute_params * params,
  4392. const struct ggml_tensor * src0,
  4393. struct ggml_tensor * dst) {
  4394. switch (src0->type) {
  4395. case GGML_TYPE_F32:
  4396. {
  4397. ggml_compute_forward_gelu_f32(params, src0, dst);
  4398. } break;
  4399. case GGML_TYPE_Q4_0:
  4400. case GGML_TYPE_Q4_1:
  4401. case GGML_TYPE_I8:
  4402. case GGML_TYPE_I16:
  4403. case GGML_TYPE_I32:
  4404. case GGML_TYPE_F16:
  4405. case GGML_TYPE_COUNT:
  4406. {
  4407. GGML_ASSERT(false);
  4408. } break;
  4409. }
  4410. //printf("XXXXXXXX gelu\n");
  4411. }
  4412. // ggml_compute_forward_silu
  4413. static void ggml_compute_forward_silu_f32(
  4414. const struct ggml_compute_params * params,
  4415. const struct ggml_tensor * src0,
  4416. struct ggml_tensor * dst) {
  4417. GGML_ASSERT(ggml_is_contiguous(src0));
  4418. GGML_ASSERT(ggml_is_contiguous(dst));
  4419. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4421. return;
  4422. }
  4423. const int ith = params->ith;
  4424. const int nth = params->nth;
  4425. const int nc = src0->ne[0];
  4426. const int nr = ggml_nrows(src0);
  4427. // rows per thread
  4428. const int dr = (nr + nth - 1)/nth;
  4429. // row range for this thread
  4430. const int ir0 = dr*ith;
  4431. const int ir1 = MIN(ir0 + dr, nr);
  4432. for (int i1 = ir0; i1 < ir1; i1++) {
  4433. ggml_vec_silu_f32(nc,
  4434. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4435. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4436. #ifndef NDEBUG
  4437. for (int k = 0; k < nc; k++) {
  4438. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4439. UNUSED(x);
  4440. assert(!isnan(x));
  4441. assert(!isinf(x));
  4442. }
  4443. #endif
  4444. }
  4445. }
  4446. static void ggml_compute_forward_silu(
  4447. const struct ggml_compute_params * params,
  4448. const struct ggml_tensor * src0,
  4449. struct ggml_tensor * dst) {
  4450. switch (src0->type) {
  4451. case GGML_TYPE_F32:
  4452. {
  4453. ggml_compute_forward_silu_f32(params, src0, dst);
  4454. } break;
  4455. case GGML_TYPE_Q4_0:
  4456. case GGML_TYPE_Q4_1:
  4457. case GGML_TYPE_I8:
  4458. case GGML_TYPE_I16:
  4459. case GGML_TYPE_I32:
  4460. case GGML_TYPE_F16:
  4461. case GGML_TYPE_COUNT:
  4462. {
  4463. GGML_ASSERT(false);
  4464. } break;
  4465. }
  4466. }
  4467. // ggml_compute_forward_norm
  4468. static void ggml_compute_forward_norm_f32(
  4469. const struct ggml_compute_params * params,
  4470. const struct ggml_tensor * src0,
  4471. struct ggml_tensor * dst) {
  4472. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4474. return;
  4475. }
  4476. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4477. const int ith = params->ith;
  4478. const int nth = params->nth;
  4479. const int ne00 = src0->ne[0];
  4480. const int ne01 = src0->ne[1];
  4481. const int ne02 = src0->ne[2];
  4482. const int ne03 = src0->ne[3];
  4483. const size_t nb01 = src0->nb[1];
  4484. const size_t nb02 = src0->nb[2];
  4485. const size_t nb03 = src0->nb[3];
  4486. const size_t nb1 = dst->nb[1];
  4487. const size_t nb2 = dst->nb[2];
  4488. const size_t nb3 = dst->nb[3];
  4489. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4490. // TODO: optimize
  4491. for (int i03 = 0; i03 < ne03; i03++) {
  4492. for (int i02 = 0; i02 < ne02; i02++) {
  4493. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4494. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4495. ggml_float mean = 0.0;
  4496. for (int i00 = 0; i00 < ne00; i00++) {
  4497. mean += x[i00];
  4498. }
  4499. mean /= ne00;
  4500. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4501. ggml_float sum2 = 0.0;
  4502. for (int i00 = 0; i00 < ne00; i00++) {
  4503. ggml_float v = x[i00] - mean;
  4504. y[i00] = v;
  4505. sum2 += v*v;
  4506. }
  4507. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4508. ggml_vec_scale_f32(ne00, y, scale);
  4509. }
  4510. }
  4511. }
  4512. }
  4513. static void ggml_compute_forward_norm(
  4514. const struct ggml_compute_params * params,
  4515. const struct ggml_tensor * src0,
  4516. struct ggml_tensor * dst) {
  4517. switch (src0->type) {
  4518. case GGML_TYPE_F32:
  4519. {
  4520. ggml_compute_forward_norm_f32(params, src0, dst);
  4521. } break;
  4522. case GGML_TYPE_Q4_0:
  4523. case GGML_TYPE_Q4_1:
  4524. case GGML_TYPE_I8:
  4525. case GGML_TYPE_I16:
  4526. case GGML_TYPE_I32:
  4527. case GGML_TYPE_F16:
  4528. case GGML_TYPE_COUNT:
  4529. {
  4530. GGML_ASSERT(false);
  4531. } break;
  4532. }
  4533. }
  4534. static void ggml_compute_forward_rms_norm_f32(
  4535. const struct ggml_compute_params * params,
  4536. const struct ggml_tensor * src0,
  4537. struct ggml_tensor * dst) {
  4538. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4540. return;
  4541. }
  4542. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4543. const int ith = params->ith;
  4544. const int nth = params->nth;
  4545. const int ne00 = src0->ne[0];
  4546. const int ne01 = src0->ne[1];
  4547. const int ne02 = src0->ne[2];
  4548. const int ne03 = src0->ne[3];
  4549. const size_t nb01 = src0->nb[1];
  4550. const size_t nb02 = src0->nb[2];
  4551. const size_t nb03 = src0->nb[3];
  4552. const size_t nb1 = dst->nb[1];
  4553. const size_t nb2 = dst->nb[2];
  4554. const size_t nb3 = dst->nb[3];
  4555. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4556. // TODO: optimize
  4557. for (int i03 = 0; i03 < ne03; i03++) {
  4558. for (int i02 = 0; i02 < ne02; i02++) {
  4559. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4560. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4561. ggml_float mean = 0.0;
  4562. for (int i00 = 0; i00 < ne00; i00++) {
  4563. mean += x[i00] * x[i00];
  4564. }
  4565. mean /= ne00;
  4566. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4567. memcpy(y, x, ne00 * sizeof(float));
  4568. // for (int i00 = 0; i00 < ne00; i00++) {
  4569. // y[i00] = x[i00];
  4570. // }
  4571. const float scale = 1.0/sqrt(mean + eps);
  4572. ggml_vec_scale_f32(ne00, y, scale);
  4573. }
  4574. }
  4575. }
  4576. }
  4577. static void ggml_compute_forward_rms_norm(
  4578. const struct ggml_compute_params * params,
  4579. const struct ggml_tensor * src0,
  4580. struct ggml_tensor * dst) {
  4581. switch (src0->type) {
  4582. case GGML_TYPE_F32:
  4583. {
  4584. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4585. } break;
  4586. case GGML_TYPE_Q4_0:
  4587. case GGML_TYPE_Q4_1:
  4588. case GGML_TYPE_I8:
  4589. case GGML_TYPE_I16:
  4590. case GGML_TYPE_I32:
  4591. case GGML_TYPE_F16:
  4592. case GGML_TYPE_COUNT:
  4593. {
  4594. GGML_ASSERT(false);
  4595. } break;
  4596. }
  4597. }
  4598. // ggml_compute_forward_mul_mat
  4599. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4600. // helper function to determine if it is better to use BLAS or not
  4601. // for large matrices, BLAS is faster
  4602. static bool ggml_compute_forward_mul_mat_use_blas(
  4603. const struct ggml_tensor * src0,
  4604. const struct ggml_tensor * src1,
  4605. struct ggml_tensor * dst) {
  4606. UNUSED(src0);
  4607. const int ne10 = src1->ne[0];
  4608. const int ne0 = dst->ne[0];
  4609. const int ne1 = dst->ne[1];
  4610. // TODO: find the optimal values for these
  4611. if (ggml_is_contiguous(src0) &&
  4612. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4613. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4614. return true;
  4615. }
  4616. return false;
  4617. }
  4618. #endif
  4619. static void ggml_compute_forward_mul_mat_f32(
  4620. const struct ggml_compute_params * params,
  4621. const struct ggml_tensor * src0,
  4622. const struct ggml_tensor * src1,
  4623. struct ggml_tensor * dst) {
  4624. int64_t t0 = ggml_perf_time_us();
  4625. UNUSED(t0);
  4626. const int ne00 = src0->ne[0];
  4627. const int ne01 = src0->ne[1];
  4628. const int ne02 = src0->ne[2];
  4629. const int ne03 = src0->ne[3];
  4630. const int ne10 = src1->ne[0];
  4631. const int ne11 = src1->ne[1];
  4632. const int ne12 = src1->ne[2];
  4633. const int ne13 = src1->ne[3];
  4634. const int ne0 = dst->ne[0];
  4635. const int ne1 = dst->ne[1];
  4636. const int ne2 = dst->ne[2];
  4637. const int ne3 = dst->ne[3];
  4638. const int ne = ne0*ne1*ne2*ne3;
  4639. const int nb00 = src0->nb[0];
  4640. const int nb01 = src0->nb[1];
  4641. const int nb02 = src0->nb[2];
  4642. const int nb03 = src0->nb[3];
  4643. const int nb10 = src1->nb[0];
  4644. const int nb11 = src1->nb[1];
  4645. const int nb12 = src1->nb[2];
  4646. const int nb13 = src1->nb[3];
  4647. const int nb0 = dst->nb[0];
  4648. const int nb1 = dst->nb[1];
  4649. const int nb2 = dst->nb[2];
  4650. const int nb3 = dst->nb[3];
  4651. const int ith = params->ith;
  4652. const int nth = params->nth;
  4653. assert(ne02 == ne12);
  4654. assert(ne03 == ne13);
  4655. assert(ne2 == ne12);
  4656. assert(ne3 == ne13);
  4657. // TODO: we don't support permuted src0
  4658. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4659. // dst cannot be transposed or permuted
  4660. assert(nb0 == sizeof(float));
  4661. assert(nb0 <= nb1);
  4662. assert(nb1 <= nb2);
  4663. assert(nb2 <= nb3);
  4664. assert(ne0 == ne01);
  4665. assert(ne1 == ne11);
  4666. assert(ne2 == ne02);
  4667. assert(ne3 == ne03);
  4668. // nb01 >= nb00 - src0 is not transposed
  4669. // compute by src0 rows
  4670. //
  4671. // nb00 < nb01 - src0 is transposed
  4672. // compute by src0 columns
  4673. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4674. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4675. GGML_ASSERT(nb10 == sizeof(float));
  4676. if (params->ith != 0) {
  4677. return;
  4678. }
  4679. if (params->type == GGML_TASK_INIT) {
  4680. return;
  4681. }
  4682. if (params->type == GGML_TASK_FINALIZE) {
  4683. return;
  4684. }
  4685. for (int i03 = 0; i03 < ne03; i03++) {
  4686. for (int i02 = 0; i02 < ne02; i02++) {
  4687. const float * x = (float *) (src0->data);
  4688. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4689. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4690. // zT = y * xT
  4691. {
  4692. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4693. ne11, ne01, ne10,
  4694. 1.0f, y, ne10,
  4695. x, ne10,
  4696. 0.0f, d, ne01);
  4697. }
  4698. }
  4699. }
  4700. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4701. return;
  4702. }
  4703. #endif
  4704. if (params->type == GGML_TASK_INIT) {
  4705. if (nb01 >= nb00) {
  4706. return;
  4707. }
  4708. // TODO: fix this memset (wsize is overestimated)
  4709. memset(params->wdata, 0, params->wsize);
  4710. return;
  4711. }
  4712. if (params->type == GGML_TASK_FINALIZE) {
  4713. if (nb01 >= nb00) {
  4714. return;
  4715. }
  4716. // TODO: fix this memset (wsize is overestimated)
  4717. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4718. float * const wdata = params->wdata;
  4719. // cols per thread
  4720. const int dc = (ne + nth - 1)/nth;
  4721. // col range for this thread
  4722. const int ic0 = dc*ith;
  4723. const int ic1 = MIN(ic0 + dc, ne);
  4724. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4725. for (int k = 1; k < nth; k++) {
  4726. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4727. }
  4728. return;
  4729. }
  4730. if (nb01 >= nb00) {
  4731. // TODO: do not support transposed src1
  4732. assert(nb10 == sizeof(float));
  4733. // parallelize by src0 rows using ggml_vec_dot_f32
  4734. // total rows in src0
  4735. const int nr = ne01*ne02*ne03;
  4736. // rows per thread
  4737. const int dr = (nr + nth - 1)/nth;
  4738. // row range for this thread
  4739. const int ir0 = dr*ith;
  4740. const int ir1 = MIN(ir0 + dr, nr);
  4741. for (int ir = ir0; ir < ir1; ++ir) {
  4742. // src0 indices
  4743. const int i03 = ir/(ne02*ne01);
  4744. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4745. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4746. for (int ic = 0; ic < ne11; ++ic) {
  4747. // src1 indices
  4748. const int i13 = i03;
  4749. const int i12 = i02;
  4750. const int i11 = ic;
  4751. // dst indices
  4752. const int i0 = i01;
  4753. const int i1 = i11;
  4754. const int i2 = i02;
  4755. const int i3 = i03;
  4756. ggml_vec_dot_f32(ne00,
  4757. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4758. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4759. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4760. }
  4761. }
  4762. } else {
  4763. // parallelize by src1 columns using ggml_vec_mad_f32
  4764. // each thread has its own work data
  4765. // during FINALIZE we accumulate all work data into dst
  4766. // total columns in src1
  4767. const int nc = ne10;
  4768. // columns per thread
  4769. const int dc = (nc + nth - 1)/nth;
  4770. // column range for this thread
  4771. const int ic0 = dc*ith;
  4772. const int ic1 = MIN(ic0 + dc, nc);
  4773. // work data for thread
  4774. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4775. float * const wdata = params->wdata;
  4776. for (int i13 = 0; i13 < ne13; ++i13) {
  4777. for (int i12 = 0; i12 < ne12; ++i12) {
  4778. for (int i11 = 0; i11 < ne11; ++i11) {
  4779. for (int ic = ic0; ic < ic1; ++ic) {
  4780. // src1 indices
  4781. const int i10 = ic;
  4782. // src0 indices
  4783. const int i03 = i13;
  4784. const int i02 = i12;
  4785. const int i00 = ic;
  4786. // dst indices
  4787. const int i1 = i11;
  4788. const int i2 = i12;
  4789. const int i3 = i13;
  4790. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4791. ggml_vec_mad_f32(ne01,
  4792. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4793. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4794. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4795. }
  4796. }
  4797. }
  4798. }
  4799. }
  4800. //int64_t t1 = ggml_perf_time_us();
  4801. //static int64_t acc = 0;
  4802. //acc += t1 - t0;
  4803. //if (t1 - t0 > 10) {
  4804. // printf("\n");
  4805. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4806. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4807. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4808. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4809. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4810. //}
  4811. }
  4812. static void ggml_compute_forward_mul_mat_f16_f32(
  4813. const struct ggml_compute_params * params,
  4814. const struct ggml_tensor * src0,
  4815. const struct ggml_tensor * src1,
  4816. struct ggml_tensor * dst) {
  4817. int64_t t0 = ggml_perf_time_us();
  4818. UNUSED(t0);
  4819. const int ne00 = src0->ne[0];
  4820. const int ne01 = src0->ne[1];
  4821. const int ne02 = src0->ne[2];
  4822. const int ne03 = src0->ne[3];
  4823. const int ne10 = src1->ne[0];
  4824. const int ne11 = src1->ne[1];
  4825. const int ne12 = src1->ne[2];
  4826. const int ne13 = src1->ne[3];
  4827. const int ne0 = dst->ne[0];
  4828. const int ne1 = dst->ne[1];
  4829. const int ne2 = dst->ne[2];
  4830. const int ne3 = dst->ne[3];
  4831. const int ne = ne0*ne1*ne2*ne3;
  4832. const int nb00 = src0->nb[0];
  4833. const int nb01 = src0->nb[1];
  4834. const int nb02 = src0->nb[2];
  4835. const int nb03 = src0->nb[3];
  4836. const int nb10 = src1->nb[0];
  4837. const int nb11 = src1->nb[1];
  4838. const int nb12 = src1->nb[2];
  4839. const int nb13 = src1->nb[3];
  4840. const int nb0 = dst->nb[0];
  4841. const int nb1 = dst->nb[1];
  4842. const int nb2 = dst->nb[2];
  4843. const int nb3 = dst->nb[3];
  4844. const int ith = params->ith;
  4845. const int nth = params->nth;
  4846. GGML_ASSERT(ne02 == ne12);
  4847. GGML_ASSERT(ne03 == ne13);
  4848. GGML_ASSERT(ne2 == ne12);
  4849. GGML_ASSERT(ne3 == ne13);
  4850. // TODO: we don't support permuted src0
  4851. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4852. // dst cannot be transposed or permuted
  4853. GGML_ASSERT(nb0 == sizeof(float));
  4854. GGML_ASSERT(nb0 <= nb1);
  4855. GGML_ASSERT(nb1 <= nb2);
  4856. GGML_ASSERT(nb2 <= nb3);
  4857. GGML_ASSERT(ne0 == ne01);
  4858. GGML_ASSERT(ne1 == ne11);
  4859. GGML_ASSERT(ne2 == ne02);
  4860. GGML_ASSERT(ne3 == ne03);
  4861. // nb01 >= nb00 - src0 is not transposed
  4862. // compute by src0 rows
  4863. //
  4864. // nb00 < nb01 - src0 is transposed
  4865. // compute by src0 columns
  4866. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4867. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4868. GGML_ASSERT(nb10 == sizeof(float));
  4869. if (params->ith != 0) {
  4870. return;
  4871. }
  4872. if (params->type == GGML_TASK_INIT) {
  4873. return;
  4874. }
  4875. if (params->type == GGML_TASK_FINALIZE) {
  4876. return;
  4877. }
  4878. float * const wdata = params->wdata;
  4879. for (int i03 = 0; i03 < ne03; i03++) {
  4880. for (int i02 = 0; i02 < ne02; i02++) {
  4881. {
  4882. int id = 0;
  4883. for (int i01 = 0; i01 < ne01; ++i01) {
  4884. for (int i00 = 0; i00 < ne00; ++i00) {
  4885. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4886. }
  4887. }
  4888. }
  4889. const float * x = wdata;
  4890. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4891. // float * z = wdata + ne00*ne01;
  4892. // z = x * yT
  4893. //{
  4894. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4895. // ne01, ne11, ne00,
  4896. // 1.0f, x, ne00,
  4897. // y, ne00,
  4898. // 0.0f, z, ne11);
  4899. //}
  4900. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4901. // transpose z
  4902. //for (int j = 0; j < ne11; ++j) {
  4903. // for (int i = 0; i < ne01; ++i) {
  4904. // d[j*ne01 + i] = z[i*ne11 + j];
  4905. // }
  4906. //}
  4907. {
  4908. #if 1
  4909. // zT = y * xT
  4910. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4911. ne11, ne01, ne10,
  4912. 1.0f, y, ne00,
  4913. x, ne00,
  4914. 0.0f, d, ne01);
  4915. #else
  4916. // zT = (xT * y)T
  4917. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  4918. ne01, ne11, ne10,
  4919. 1.0f, x, ne00,
  4920. y, ne00,
  4921. 0.0f, d, ne01);
  4922. #endif
  4923. }
  4924. }
  4925. }
  4926. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4927. return;
  4928. }
  4929. #endif
  4930. if (params->type == GGML_TASK_INIT) {
  4931. if (nb01 >= nb00) {
  4932. ggml_fp16_t * const wdata = params->wdata;
  4933. int id = 0;
  4934. for (int i13 = 0; i13 < ne13; ++i13) {
  4935. for (int i12 = 0; i12 < ne12; ++i12) {
  4936. for (int i11 = 0; i11 < ne11; ++i11) {
  4937. for (int i10 = 0; i10 < ne10; ++i10) {
  4938. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4939. }
  4940. }
  4941. }
  4942. }
  4943. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4944. return;
  4945. }
  4946. // TODO: fix this memset (wsize is overestimated)
  4947. memset(params->wdata, 0, params->wsize);
  4948. return;
  4949. }
  4950. if (params->type == GGML_TASK_FINALIZE) {
  4951. if (nb01 >= nb00) {
  4952. return;
  4953. }
  4954. // TODO: fix this memset (wsize is overestimated)
  4955. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4956. ggml_fp16_t * const wdata = params->wdata;
  4957. // cols per thread
  4958. const int dc = (ne + nth - 1)/nth;
  4959. // col range for this thread
  4960. const int ic0 = dc*ith;
  4961. const int ic1 = MIN(ic0 + dc, ne);
  4962. for (int i = ic0; i < ic1; ++i) {
  4963. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  4964. }
  4965. for (int k = 1; k < nth; k++) {
  4966. for (int i = ic0; i < ic1; ++i) {
  4967. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  4968. }
  4969. }
  4970. return;
  4971. }
  4972. if (nb01 >= nb00) {
  4973. // fp16 -> half the size, so divide by 2
  4974. // TODO: do not support transposed src1
  4975. assert(nb10/2 == sizeof(ggml_fp16_t));
  4976. // parallelize by src0 rows using ggml_vec_dot_f16
  4977. // total rows in src0
  4978. const int nr = ne01*ne02*ne03;
  4979. // rows per thread
  4980. const int dr = (nr + nth - 1)/nth;
  4981. // row range for this thread
  4982. const int ir0 = dr*ith;
  4983. const int ir1 = MIN(ir0 + dr, nr);
  4984. ggml_fp16_t * wdata = params->wdata;
  4985. for (int ir = ir0; ir < ir1; ++ir) {
  4986. // src0 indices
  4987. const int i03 = ir/(ne02*ne01);
  4988. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4989. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4990. const int i13 = i03;
  4991. const int i12 = i02;
  4992. const int i0 = i01;
  4993. const int i2 = i02;
  4994. const int i3 = i03;
  4995. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4996. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4997. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4998. assert(ne00 % 32 == 0);
  4999. for (int ic = 0; ic < ne11; ++ic) {
  5000. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5001. }
  5002. }
  5003. } else {
  5004. // parallelize by src1 columns using ggml_vec_mad_f16
  5005. // each thread has its own work data
  5006. // during FINALIZE we accumulate all work data into dst
  5007. // total columns in src1
  5008. const int nc = ne10;
  5009. // columns per thread
  5010. const int dc = (nc + nth - 1)/nth;
  5011. // column range for this thread
  5012. const int ic0 = dc*ith;
  5013. const int ic1 = MIN(ic0 + dc, nc);
  5014. // work data for thread
  5015. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5016. ggml_fp16_t * const wdata = params->wdata;
  5017. for (int i13 = 0; i13 < ne13; ++i13) {
  5018. for (int i12 = 0; i12 < ne12; ++i12) {
  5019. for (int i11 = 0; i11 < ne11; ++i11) {
  5020. // dst indices
  5021. const int i1 = i11;
  5022. const int i2 = i12;
  5023. const int i3 = i13;
  5024. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5025. for (int ic = ic0; ic < ic1; ++ic) {
  5026. // src1 indices
  5027. const int i10 = ic;
  5028. // src0 indices
  5029. const int i03 = i13;
  5030. const int i02 = i12;
  5031. const int i00 = ic;
  5032. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5033. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5034. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5035. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5036. }
  5037. }
  5038. }
  5039. }
  5040. }
  5041. //int64_t t1 = ggml_time_us();
  5042. //static int64_t acc = 0;
  5043. //acc += t1 - t0;
  5044. //if (t1 - t0 > 10) {
  5045. // printf("\n");
  5046. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5047. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5048. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5049. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5050. //}
  5051. }
  5052. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5053. const struct ggml_compute_params * params,
  5054. const struct ggml_tensor * src0,
  5055. const struct ggml_tensor * src1,
  5056. struct ggml_tensor * dst) {
  5057. int64_t t0 = ggml_perf_time_us();
  5058. UNUSED(t0);
  5059. const int ne00 = src0->ne[0];
  5060. const int ne01 = src0->ne[1];
  5061. const int ne02 = src0->ne[2];
  5062. const int ne03 = src0->ne[3];
  5063. const int ne10 = src1->ne[0];
  5064. const int ne11 = src1->ne[1];
  5065. const int ne12 = src1->ne[2];
  5066. const int ne13 = src1->ne[3];
  5067. const int ne0 = dst->ne[0];
  5068. const int ne1 = dst->ne[1];
  5069. const int ne2 = dst->ne[2];
  5070. const int ne3 = dst->ne[3];
  5071. const int ne = ne0*ne1*ne2*ne3;
  5072. const int nb00 = src0->nb[0];
  5073. const int nb01 = src0->nb[1];
  5074. const int nb02 = src0->nb[2];
  5075. const int nb03 = src0->nb[3];
  5076. const int nb10 = src1->nb[0];
  5077. const int nb11 = src1->nb[1];
  5078. const int nb12 = src1->nb[2];
  5079. const int nb13 = src1->nb[3];
  5080. const int nb0 = dst->nb[0];
  5081. const int nb1 = dst->nb[1];
  5082. const int nb2 = dst->nb[2];
  5083. const int nb3 = dst->nb[3];
  5084. const int ith = params->ith;
  5085. const int nth = params->nth;
  5086. GGML_ASSERT(ne02 == ne12);
  5087. GGML_ASSERT(ne03 == ne13);
  5088. GGML_ASSERT(ne2 == ne12);
  5089. GGML_ASSERT(ne3 == ne13);
  5090. // TODO: we don't support permuted src0
  5091. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5092. // dst cannot be transposed or permuted
  5093. GGML_ASSERT(nb0 == sizeof(float));
  5094. GGML_ASSERT(nb0 <= nb1);
  5095. GGML_ASSERT(nb1 <= nb2);
  5096. GGML_ASSERT(nb2 <= nb3);
  5097. GGML_ASSERT(ne0 == ne01);
  5098. GGML_ASSERT(ne1 == ne11);
  5099. GGML_ASSERT(ne2 == ne02);
  5100. GGML_ASSERT(ne3 == ne03);
  5101. // nb01 >= nb00 - src0 is not transposed
  5102. // compute by src0 rows
  5103. //
  5104. // nb00 < nb01 - src0 is transposed
  5105. // compute by src0 columns
  5106. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5107. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5108. GGML_ASSERT(nb10 == sizeof(float));
  5109. if (params->ith != 0) {
  5110. return;
  5111. }
  5112. if (params->type == GGML_TASK_INIT) {
  5113. return;
  5114. }
  5115. if (params->type == GGML_TASK_FINALIZE) {
  5116. return;
  5117. }
  5118. float * const wdata = params->wdata;
  5119. for (int i03 = 0; i03 < ne03; i03++) {
  5120. for (int i02 = 0; i02 < ne02; i02++) {
  5121. {
  5122. int id = 0;
  5123. for (int i01 = 0; i01 < ne01; ++i01) {
  5124. //for (int i00 = 0; i00 < ne00; ++i00) {
  5125. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5126. //}
  5127. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5128. id += ne00;
  5129. }
  5130. }
  5131. const float * x = wdata;
  5132. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5133. // float * z = wdata + ne00*ne01;
  5134. // z = x * yT
  5135. //{
  5136. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5137. // ne01, ne11, ne00,
  5138. // 1.0f, x, ne00,
  5139. // y, ne00,
  5140. // 0.0f, z, ne11);
  5141. //}
  5142. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5143. // transpose z
  5144. //for (int j = 0; j < ne11; ++j) {
  5145. // for (int i = 0; i < ne01; ++i) {
  5146. // d[j*ne01 + i] = z[i*ne11 + j];
  5147. // }
  5148. //}
  5149. {
  5150. #if 1
  5151. // zT = y * xT
  5152. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5153. ne11, ne01, ne10,
  5154. 1.0f, y, ne00,
  5155. x, ne00,
  5156. 0.0f, d, ne01);
  5157. #else
  5158. // zT = (xT * y)T
  5159. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5160. ne01, ne11, ne10,
  5161. 1.0f, x, ne00,
  5162. y, ne00,
  5163. 0.0f, d, ne01);
  5164. #endif
  5165. }
  5166. }
  5167. }
  5168. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5169. return;
  5170. }
  5171. #endif
  5172. if (params->type == GGML_TASK_INIT) {
  5173. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5174. if (nb01 >= nb00) {
  5175. char * wdata = params->wdata;
  5176. for (int i13 = 0; i13 < ne13; ++i13) {
  5177. for (int i12 = 0; i12 < ne12; ++i12) {
  5178. for (int i11 = 0; i11 < ne11; ++i11) {
  5179. //for (int i10 = 0; i10 < ne10; ++i10) {
  5180. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5181. //}
  5182. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5183. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5184. }
  5185. }
  5186. }
  5187. return;
  5188. }
  5189. // TODO: fix this memset (wsize is overestimated)
  5190. memset(params->wdata, 0, params->wsize);
  5191. return;
  5192. }
  5193. if (params->type == GGML_TASK_FINALIZE) {
  5194. if (nb01 >= nb00) {
  5195. return;
  5196. }
  5197. float * const wdata = params->wdata;
  5198. // cols per thread
  5199. const int dc = (ne + nth - 1)/nth;
  5200. // col range for this thread
  5201. const int ic0 = dc*ith;
  5202. const int ic1 = MIN(ic0 + dc, ne);
  5203. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5204. for (int k = 1; k < nth; k++) {
  5205. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5206. }
  5207. return;
  5208. }
  5209. if (nb01 >= nb00) {
  5210. // TODO: do not support transposed src1
  5211. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5212. // total rows in src0
  5213. const int nr = ne01*ne02*ne03;
  5214. // rows per thread
  5215. const int dr = (nr + nth - 1)/nth;
  5216. // row range for this thread
  5217. const int ir0 = dr*ith;
  5218. const int ir1 = MIN(ir0 + dr, nr);
  5219. void * wdata = params->wdata;
  5220. for (int ir = ir0; ir < ir1; ++ir) {
  5221. // src0 indices
  5222. const int i03 = ir/(ne02*ne01);
  5223. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5224. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5225. const int i13 = i03;
  5226. const int i12 = i02;
  5227. const int i0 = i01;
  5228. const int i2 = i02;
  5229. const int i3 = i03;
  5230. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5231. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5232. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5233. assert(ne00 % 32 == 0);
  5234. for (int ic = 0; ic < ne11; ++ic) {
  5235. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5236. }
  5237. }
  5238. } else {
  5239. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5240. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5241. // each thread has its own work data
  5242. // during FINALIZE we accumulate all work data into dst
  5243. // total columns in src1
  5244. const int nc = ne10;
  5245. // columns per thread
  5246. const int dc = (nc + nth - 1)/nth;
  5247. // column range for this thread
  5248. const int ic0 = dc*ith;
  5249. const int ic1 = MIN(ic0 + dc, nc);
  5250. // work data for thread
  5251. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5252. float * const wdata = params->wdata;
  5253. for (int i13 = 0; i13 < ne13; ++i13) {
  5254. for (int i12 = 0; i12 < ne12; ++i12) {
  5255. for (int i11 = 0; i11 < ne11; ++i11) {
  5256. // dst indices
  5257. const int i1 = i11;
  5258. const int i2 = i12;
  5259. const int i3 = i13;
  5260. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5261. for (int ic = ic0; ic < ic1; ++ic) {
  5262. // src1 indices
  5263. const int i10 = ic;
  5264. // src0 indices
  5265. const int i03 = i13;
  5266. const int i02 = i12;
  5267. const int i00 = ic;
  5268. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5269. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5270. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5271. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5272. }
  5273. }
  5274. }
  5275. }
  5276. }
  5277. //int64_t t1 = ggml_time_us();
  5278. //static int64_t acc = 0;
  5279. //acc += t1 - t0;
  5280. //if (t1 - t0 > 10) {
  5281. // printf("\n");
  5282. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5283. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5284. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5285. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5286. //}
  5287. }
  5288. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5289. const struct ggml_compute_params * params,
  5290. const struct ggml_tensor * src0,
  5291. const struct ggml_tensor * src1,
  5292. struct ggml_tensor * dst) {
  5293. int64_t t0 = ggml_perf_time_us();
  5294. UNUSED(t0);
  5295. const int ne00 = src0->ne[0];
  5296. const int ne01 = src0->ne[1];
  5297. const int ne02 = src0->ne[2];
  5298. const int ne03 = src0->ne[3];
  5299. const int ne10 = src1->ne[0];
  5300. const int ne11 = src1->ne[1];
  5301. const int ne12 = src1->ne[2];
  5302. const int ne13 = src1->ne[3];
  5303. const int ne0 = dst->ne[0];
  5304. const int ne1 = dst->ne[1];
  5305. const int ne2 = dst->ne[2];
  5306. const int ne3 = dst->ne[3];
  5307. const int ne = ne0*ne1*ne2*ne3;
  5308. const int nb00 = src0->nb[0];
  5309. const int nb01 = src0->nb[1];
  5310. const int nb02 = src0->nb[2];
  5311. const int nb03 = src0->nb[3];
  5312. const int nb10 = src1->nb[0];
  5313. const int nb11 = src1->nb[1];
  5314. const int nb12 = src1->nb[2];
  5315. const int nb13 = src1->nb[3];
  5316. const int nb0 = dst->nb[0];
  5317. const int nb1 = dst->nb[1];
  5318. const int nb2 = dst->nb[2];
  5319. const int nb3 = dst->nb[3];
  5320. const int ith = params->ith;
  5321. const int nth = params->nth;
  5322. GGML_ASSERT(ne02 == ne12);
  5323. GGML_ASSERT(ne03 == ne13);
  5324. GGML_ASSERT(ne2 == ne12);
  5325. GGML_ASSERT(ne3 == ne13);
  5326. // TODO: we don't support permuted src0
  5327. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5328. // dst cannot be transposed or permuted
  5329. GGML_ASSERT(nb0 == sizeof(float));
  5330. GGML_ASSERT(nb0 <= nb1);
  5331. GGML_ASSERT(nb1 <= nb2);
  5332. GGML_ASSERT(nb2 <= nb3);
  5333. GGML_ASSERT(ne0 == ne01);
  5334. GGML_ASSERT(ne1 == ne11);
  5335. GGML_ASSERT(ne2 == ne02);
  5336. GGML_ASSERT(ne3 == ne03);
  5337. // nb01 >= nb00 - src0 is not transposed
  5338. // compute by src0 rows
  5339. //
  5340. // nb00 < nb01 - src0 is transposed
  5341. // compute by src0 columns
  5342. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5343. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5344. GGML_ASSERT(nb10 == sizeof(float));
  5345. if (params->ith != 0) {
  5346. return;
  5347. }
  5348. if (params->type == GGML_TASK_INIT) {
  5349. return;
  5350. }
  5351. if (params->type == GGML_TASK_FINALIZE) {
  5352. return;
  5353. }
  5354. float * const wdata = params->wdata;
  5355. for (int i03 = 0; i03 < ne03; i03++) {
  5356. for (int i02 = 0; i02 < ne02; i02++) {
  5357. {
  5358. int id = 0;
  5359. for (int i01 = 0; i01 < ne01; ++i01) {
  5360. //for (int i00 = 0; i00 < ne00; ++i00) {
  5361. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5362. //}
  5363. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5364. id += ne00;
  5365. }
  5366. }
  5367. const float * x = wdata;
  5368. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5369. // float * z = wdata + ne00*ne01;
  5370. // z = x * yT
  5371. //{
  5372. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5373. // ne01, ne11, ne00,
  5374. // 1.0f, x, ne00,
  5375. // y, ne00,
  5376. // 0.0f, z, ne11);
  5377. //}
  5378. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5379. // transpose z
  5380. //for (int j = 0; j < ne11; ++j) {
  5381. // for (int i = 0; i < ne01; ++i) {
  5382. // d[j*ne01 + i] = z[i*ne11 + j];
  5383. // }
  5384. //}
  5385. {
  5386. #if 1
  5387. // zT = y * xT
  5388. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5389. ne11, ne01, ne10,
  5390. 1.0f, y, ne00,
  5391. x, ne00,
  5392. 0.0f, d, ne01);
  5393. #else
  5394. // zT = (xT * y)T
  5395. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5396. ne01, ne11, ne10,
  5397. 1.0f, x, ne00,
  5398. y, ne00,
  5399. 0.0f, d, ne01);
  5400. #endif
  5401. }
  5402. }
  5403. }
  5404. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5405. return;
  5406. }
  5407. #endif
  5408. if (params->type == GGML_TASK_INIT) {
  5409. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5410. if (nb01 >= nb00) {
  5411. char * wdata = params->wdata;
  5412. for (int i13 = 0; i13 < ne13; ++i13) {
  5413. for (int i12 = 0; i12 < ne12; ++i12) {
  5414. for (int i11 = 0; i11 < ne11; ++i11) {
  5415. //for (int i10 = 0; i10 < ne10; ++i10) {
  5416. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5417. //}
  5418. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5419. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5420. }
  5421. }
  5422. }
  5423. return;
  5424. }
  5425. // TODO: fix this memset (wsize is overestimated)
  5426. memset(params->wdata, 0, params->wsize);
  5427. return;
  5428. }
  5429. if (params->type == GGML_TASK_FINALIZE) {
  5430. if (nb01 >= nb00) {
  5431. return;
  5432. }
  5433. float * const wdata = params->wdata;
  5434. // cols per thread
  5435. const int dc = (ne + nth - 1)/nth;
  5436. // col range for this thread
  5437. const int ic0 = dc*ith;
  5438. const int ic1 = MIN(ic0 + dc, ne);
  5439. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5440. for (int k = 1; k < nth; k++) {
  5441. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5442. }
  5443. return;
  5444. }
  5445. if (nb01 >= nb00) {
  5446. // TODO: do not support transposed src1
  5447. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5448. // total rows in src0
  5449. const int nr = ne01*ne02*ne03;
  5450. // rows per thread
  5451. const int dr = (nr + nth - 1)/nth;
  5452. // row range for this thread
  5453. const int ir0 = dr*ith;
  5454. const int ir1 = MIN(ir0 + dr, nr);
  5455. void * wdata = params->wdata;
  5456. for (int ir = ir0; ir < ir1; ++ir) {
  5457. // src0 indices
  5458. const int i03 = ir/(ne02*ne01);
  5459. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5460. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5461. const int i13 = i03;
  5462. const int i12 = i02;
  5463. const int i0 = i01;
  5464. const int i2 = i02;
  5465. const int i3 = i03;
  5466. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5467. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5468. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5469. assert(ne00 % 32 == 0);
  5470. for (int ic = 0; ic < ne11; ++ic) {
  5471. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5472. }
  5473. }
  5474. } else {
  5475. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5476. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5477. // each thread has its own work data
  5478. // during FINALIZE we accumulate all work data into dst
  5479. // total columns in src1
  5480. const int nc = ne10;
  5481. // columns per thread
  5482. const int dc = (nc + nth - 1)/nth;
  5483. // column range for this thread
  5484. const int ic0 = dc*ith;
  5485. const int ic1 = MIN(ic0 + dc, nc);
  5486. // work data for thread
  5487. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5488. float * const wdata = params->wdata;
  5489. for (int i13 = 0; i13 < ne13; ++i13) {
  5490. for (int i12 = 0; i12 < ne12; ++i12) {
  5491. for (int i11 = 0; i11 < ne11; ++i11) {
  5492. // dst indices
  5493. const int i1 = i11;
  5494. const int i2 = i12;
  5495. const int i3 = i13;
  5496. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5497. for (int ic = ic0; ic < ic1; ++ic) {
  5498. // src1 indices
  5499. const int i10 = ic;
  5500. // src0 indices
  5501. const int i03 = i13;
  5502. const int i02 = i12;
  5503. const int i00 = ic;
  5504. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5505. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5506. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5507. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5508. }
  5509. }
  5510. }
  5511. }
  5512. }
  5513. //int64_t t1 = ggml_time_us();
  5514. //static int64_t acc = 0;
  5515. //acc += t1 - t0;
  5516. //if (t1 - t0 > 10) {
  5517. // printf("\n");
  5518. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5519. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5520. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5521. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5522. //}
  5523. }
  5524. static void ggml_compute_forward_mul_mat(
  5525. const struct ggml_compute_params * params,
  5526. const struct ggml_tensor * src0,
  5527. const struct ggml_tensor * src1,
  5528. struct ggml_tensor * dst) {
  5529. switch (src0->type) {
  5530. case GGML_TYPE_Q4_0:
  5531. {
  5532. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5533. } break;
  5534. case GGML_TYPE_Q4_1:
  5535. {
  5536. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5537. } break;
  5538. case GGML_TYPE_F16:
  5539. {
  5540. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5541. } break;
  5542. case GGML_TYPE_F32:
  5543. {
  5544. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5545. } break;
  5546. case GGML_TYPE_I8:
  5547. case GGML_TYPE_I16:
  5548. case GGML_TYPE_I32:
  5549. case GGML_TYPE_COUNT:
  5550. {
  5551. GGML_ASSERT(false);
  5552. } break;
  5553. }
  5554. #if 0
  5555. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5556. static int first = 8;
  5557. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5558. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5559. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5560. if (first) {
  5561. --first;
  5562. } else {
  5563. for (int k = 0; k < dst->ne[1]; ++k) {
  5564. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5565. for (int i = 0; i < 16; ++i) {
  5566. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5567. }
  5568. printf("\n");
  5569. }
  5570. printf("\n");
  5571. }
  5572. printf("\n");
  5573. exit(0);
  5574. }
  5575. } else {
  5576. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5577. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5578. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5579. }
  5580. #endif
  5581. }
  5582. // ggml_compute_forward_scale
  5583. static void ggml_compute_forward_scale_f32(
  5584. const struct ggml_compute_params * params,
  5585. const struct ggml_tensor * src0,
  5586. const struct ggml_tensor * src1,
  5587. struct ggml_tensor * dst) {
  5588. GGML_ASSERT(ggml_is_contiguous(src0));
  5589. GGML_ASSERT(ggml_is_contiguous(dst));
  5590. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5591. GGML_ASSERT(ggml_is_scalar(src1));
  5592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5593. return;
  5594. }
  5595. // scale factor
  5596. const float v = *(float *) src1->data;
  5597. const int ith = params->ith;
  5598. const int nth = params->nth;
  5599. const int nc = src0->ne[0];
  5600. const int nr = ggml_nrows(src0);
  5601. // rows per thread
  5602. const int dr = (nr + nth - 1)/nth;
  5603. // row range for this thread
  5604. const int ir0 = dr*ith;
  5605. const int ir1 = MIN(ir0 + dr, nr);
  5606. for (int i1 = ir0; i1 < ir1; i1++) {
  5607. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5608. }
  5609. }
  5610. static void ggml_compute_forward_scale(
  5611. const struct ggml_compute_params * params,
  5612. const struct ggml_tensor * src0,
  5613. const struct ggml_tensor * src1,
  5614. struct ggml_tensor * dst) {
  5615. switch (src0->type) {
  5616. case GGML_TYPE_F32:
  5617. {
  5618. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5619. } break;
  5620. case GGML_TYPE_Q4_0:
  5621. case GGML_TYPE_Q4_1:
  5622. case GGML_TYPE_I8:
  5623. case GGML_TYPE_I16:
  5624. case GGML_TYPE_I32:
  5625. case GGML_TYPE_F16:
  5626. case GGML_TYPE_COUNT:
  5627. {
  5628. GGML_ASSERT(false);
  5629. } break;
  5630. }
  5631. }
  5632. // ggml_compute_forward_cpy
  5633. static void ggml_compute_forward_cpy(
  5634. const struct ggml_compute_params * params,
  5635. const struct ggml_tensor * src0,
  5636. struct ggml_tensor * dst) {
  5637. ggml_compute_forward_dup(params, src0, dst);
  5638. }
  5639. // ggml_compute_forward_reshape
  5640. static void ggml_compute_forward_reshape(
  5641. const struct ggml_compute_params * params,
  5642. const struct ggml_tensor * src0,
  5643. struct ggml_tensor * dst) {
  5644. // NOP
  5645. UNUSED(params);
  5646. UNUSED(src0);
  5647. UNUSED(dst);
  5648. }
  5649. // ggml_compute_forward_view
  5650. static void ggml_compute_forward_view(
  5651. const struct ggml_compute_params * params,
  5652. const struct ggml_tensor * src0) {
  5653. // NOP
  5654. UNUSED(params);
  5655. UNUSED(src0);
  5656. }
  5657. // ggml_compute_forward_permute
  5658. static void ggml_compute_forward_permute(
  5659. const struct ggml_compute_params * params,
  5660. const struct ggml_tensor * src0) {
  5661. // NOP
  5662. UNUSED(params);
  5663. UNUSED(src0);
  5664. }
  5665. // ggml_compute_forward_transpose
  5666. static void ggml_compute_forward_transpose(
  5667. const struct ggml_compute_params * params,
  5668. const struct ggml_tensor * src0) {
  5669. // NOP
  5670. UNUSED(params);
  5671. UNUSED(src0);
  5672. }
  5673. // ggml_compute_forward_get_rows
  5674. static void ggml_compute_forward_get_rows_q4_0(
  5675. const struct ggml_compute_params * params,
  5676. const struct ggml_tensor * src0,
  5677. const struct ggml_tensor * src1,
  5678. struct ggml_tensor * dst) {
  5679. assert(params->ith == 0);
  5680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5681. return;
  5682. }
  5683. const int nc = src0->ne[0];
  5684. const int nr = ggml_nelements(src1);
  5685. assert( dst->ne[0] == nc);
  5686. assert( dst->ne[1] == nr);
  5687. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5688. for (int i = 0; i < nr; ++i) {
  5689. const int r = ((int32_t *) src1->data)[i];
  5690. dequantize_row_q4_0(
  5691. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5692. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5693. }
  5694. }
  5695. static void ggml_compute_forward_get_rows_q4_1(
  5696. const struct ggml_compute_params * params,
  5697. const struct ggml_tensor * src0,
  5698. const struct ggml_tensor * src1,
  5699. struct ggml_tensor * dst) {
  5700. assert(params->ith == 0);
  5701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5702. return;
  5703. }
  5704. const int nc = src0->ne[0];
  5705. const int nr = ggml_nelements(src1);
  5706. assert( dst->ne[0] == nc);
  5707. assert( dst->ne[1] == nr);
  5708. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5709. for (int i = 0; i < nr; ++i) {
  5710. const int r = ((int32_t *) src1->data)[i];
  5711. dequantize_row_q4_1(
  5712. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5713. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5714. }
  5715. }
  5716. static void ggml_compute_forward_get_rows_f16(
  5717. const struct ggml_compute_params * params,
  5718. const struct ggml_tensor * src0,
  5719. const struct ggml_tensor * src1,
  5720. struct ggml_tensor * dst) {
  5721. assert(params->ith == 0);
  5722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5723. return;
  5724. }
  5725. const int nc = src0->ne[0];
  5726. const int nr = ggml_nelements(src1);
  5727. assert( dst->ne[0] == nc);
  5728. assert( dst->ne[1] == nr);
  5729. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5730. for (int i = 0; i < nr; ++i) {
  5731. const int r = ((int32_t *) src1->data)[i];
  5732. for (int j = 0; j < nc; ++j) {
  5733. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5734. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5735. }
  5736. }
  5737. }
  5738. static void ggml_compute_forward_get_rows_f32(
  5739. const struct ggml_compute_params * params,
  5740. const struct ggml_tensor * src0,
  5741. const struct ggml_tensor * src1,
  5742. struct ggml_tensor * dst) {
  5743. assert(params->ith == 0);
  5744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5745. return;
  5746. }
  5747. const int nc = src0->ne[0];
  5748. const int nr = ggml_nelements(src1);
  5749. assert( dst->ne[0] == nc);
  5750. assert( dst->ne[1] == nr);
  5751. assert(src0->nb[0] == sizeof(float));
  5752. for (int i = 0; i < nr; ++i) {
  5753. const int r = ((int32_t *) src1->data)[i];
  5754. ggml_vec_cpy_f32(nc,
  5755. (float *) ((char *) dst->data + i*dst->nb[1]),
  5756. (float *) ((char *) src0->data + r*src0->nb[1]));
  5757. }
  5758. }
  5759. static void ggml_compute_forward_get_rows(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0,
  5762. const struct ggml_tensor * src1,
  5763. struct ggml_tensor * dst) {
  5764. switch (src0->type) {
  5765. case GGML_TYPE_Q4_0:
  5766. {
  5767. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5768. } break;
  5769. case GGML_TYPE_Q4_1:
  5770. {
  5771. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5772. } break;
  5773. case GGML_TYPE_F16:
  5774. {
  5775. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5776. } break;
  5777. case GGML_TYPE_F32:
  5778. {
  5779. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5780. } break;
  5781. case GGML_TYPE_I8:
  5782. case GGML_TYPE_I16:
  5783. case GGML_TYPE_I32:
  5784. case GGML_TYPE_COUNT:
  5785. {
  5786. GGML_ASSERT(false);
  5787. } break;
  5788. }
  5789. //static bool first = true;
  5790. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5791. //if (first) {
  5792. // first = false;
  5793. //} else {
  5794. // for (int k = 0; k < dst->ne[1]; ++k) {
  5795. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5796. // for (int i = 0; i < 16; ++i) {
  5797. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5798. // }
  5799. // printf("\n");
  5800. // }
  5801. // printf("\n");
  5802. // }
  5803. // printf("\n");
  5804. // exit(0);
  5805. //}
  5806. }
  5807. // ggml_compute_forward_diag_mask_inf
  5808. static void ggml_compute_forward_diag_mask_inf_f32(
  5809. const struct ggml_compute_params * params,
  5810. const struct ggml_tensor * src0,
  5811. const struct ggml_tensor * src1,
  5812. struct ggml_tensor * dst) {
  5813. assert(params->ith == 0);
  5814. assert(src1->type == GGML_TYPE_I32);
  5815. assert(ggml_nelements(src1) == 1);
  5816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5817. return;
  5818. }
  5819. const int n_past = ((int32_t *) src1->data)[0];
  5820. // TODO: handle transposed/permuted matrices
  5821. const int n = ggml_nrows(src0);
  5822. const int nc = src0->ne[0];
  5823. const int nr = src0->ne[1];
  5824. const int nz = n/nr;
  5825. assert( dst->nb[0] == sizeof(float));
  5826. assert(src0->nb[0] == sizeof(float));
  5827. for (int k = 0; k < nz; k++) {
  5828. for (int j = 0; j < nr; j++) {
  5829. for (int i = n_past; i < nc; i++) {
  5830. if (i > n_past + j) {
  5831. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5832. }
  5833. }
  5834. }
  5835. }
  5836. }
  5837. static void ggml_compute_forward_diag_mask_inf(
  5838. const struct ggml_compute_params * params,
  5839. const struct ggml_tensor * src0,
  5840. const struct ggml_tensor * src1,
  5841. struct ggml_tensor * dst) {
  5842. switch (src0->type) {
  5843. case GGML_TYPE_F32:
  5844. {
  5845. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5846. } break;
  5847. case GGML_TYPE_Q4_0:
  5848. case GGML_TYPE_Q4_1:
  5849. case GGML_TYPE_I8:
  5850. case GGML_TYPE_I16:
  5851. case GGML_TYPE_I32:
  5852. case GGML_TYPE_F16:
  5853. case GGML_TYPE_COUNT:
  5854. {
  5855. GGML_ASSERT(false);
  5856. } break;
  5857. }
  5858. }
  5859. // ggml_compute_forward_soft_max
  5860. static void ggml_compute_forward_soft_max_f32(
  5861. const struct ggml_compute_params * params,
  5862. const struct ggml_tensor * src0,
  5863. struct ggml_tensor * dst) {
  5864. GGML_ASSERT(ggml_is_contiguous(src0));
  5865. GGML_ASSERT(ggml_is_contiguous(dst));
  5866. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5868. return;
  5869. }
  5870. // TODO: handle transposed/permuted matrices
  5871. const int ith = params->ith;
  5872. const int nth = params->nth;
  5873. const int nc = src0->ne[0];
  5874. const int nr = ggml_nrows(src0);
  5875. // rows per thread
  5876. const int dr = (nr + nth - 1)/nth;
  5877. // row range for this thread
  5878. const int ir0 = dr*ith;
  5879. const int ir1 = MIN(ir0 + dr, nr);
  5880. for (int i1 = ir0; i1 < ir1; i1++) {
  5881. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5882. #ifndef NDEBUG
  5883. for (int i = 0; i < nc; ++i) {
  5884. //printf("p[%d] = %f\n", i, p[i]);
  5885. assert(!isnan(p[i]));
  5886. }
  5887. #endif
  5888. float max = -INFINITY;
  5889. ggml_vec_max_f32(nc, &max, p);
  5890. ggml_float sum = 0.0;
  5891. uint16_t scvt;
  5892. for (int i = 0; i < nc; i++) {
  5893. if (p[i] == -INFINITY) {
  5894. p[i] = 0.0f;
  5895. } else {
  5896. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5897. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5898. memcpy(&scvt, &s, sizeof(scvt));
  5899. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5900. sum += val;
  5901. p[i] = val;
  5902. }
  5903. }
  5904. assert(sum > 0.0f);
  5905. sum = 1.0/sum;
  5906. ggml_vec_scale_f32(nc, p, sum);
  5907. #ifndef NDEBUG
  5908. for (int i = 0; i < nc; ++i) {
  5909. assert(!isnan(p[i]));
  5910. assert(!isinf(p[i]));
  5911. }
  5912. #endif
  5913. }
  5914. }
  5915. static void ggml_compute_forward_soft_max(
  5916. const struct ggml_compute_params * params,
  5917. const struct ggml_tensor * src0,
  5918. struct ggml_tensor * dst) {
  5919. switch (src0->type) {
  5920. case GGML_TYPE_F32:
  5921. {
  5922. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5923. } break;
  5924. case GGML_TYPE_Q4_0:
  5925. case GGML_TYPE_Q4_1:
  5926. case GGML_TYPE_I8:
  5927. case GGML_TYPE_I16:
  5928. case GGML_TYPE_I32:
  5929. case GGML_TYPE_F16:
  5930. case GGML_TYPE_COUNT:
  5931. {
  5932. GGML_ASSERT(false);
  5933. } break;
  5934. }
  5935. }
  5936. // ggml_compute_forward_rope
  5937. static void ggml_compute_forward_rope_f32(
  5938. const struct ggml_compute_params * params,
  5939. const struct ggml_tensor * src0,
  5940. const struct ggml_tensor * src1,
  5941. struct ggml_tensor * dst) {
  5942. assert(params->ith == 0);
  5943. assert(src1->type == GGML_TYPE_I32);
  5944. assert(ggml_nelements(src1) == 3);
  5945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5946. return;
  5947. }
  5948. const int n_past = ((int32_t *) src1->data)[0];
  5949. const int n_dims = ((int32_t *) src1->data)[1];
  5950. const int mode = ((int32_t *) src1->data)[2];
  5951. //const int ne0 = src0->ne[0];
  5952. const int ne1 = src0->ne[1];
  5953. const int ne2 = src0->ne[2];
  5954. const int ne3 = src0->ne[3];
  5955. const int nb0 = src0->nb[0];
  5956. const int nb1 = src0->nb[1];
  5957. const int nb2 = src0->nb[2];
  5958. const int nb3 = src0->nb[3];
  5959. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5960. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5961. assert(nb0 == sizeof(float));
  5962. // TODO: optimize
  5963. for (int i3 = 0; i3 < ne3; i3++) {
  5964. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5965. const int p = (mode == 0 ? n_past + i2 : i2);
  5966. for (int i1 = 0; i1 < ne1; i1++) {
  5967. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5968. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5969. const double cos_theta = cos(p*theta);
  5970. const double sin_theta = sin(p*theta);
  5971. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5972. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5973. double x0 = src[0];
  5974. double x1 = src[1];
  5975. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5976. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5977. }
  5978. }
  5979. }
  5980. }
  5981. }
  5982. static void ggml_compute_forward_rope_f16(
  5983. const struct ggml_compute_params * params,
  5984. const struct ggml_tensor * src0,
  5985. const struct ggml_tensor * src1,
  5986. struct ggml_tensor * dst) {
  5987. assert(params->ith == 0);
  5988. assert(src1->type == GGML_TYPE_I32);
  5989. assert(ggml_nelements(src1) == 3);
  5990. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5991. return;
  5992. }
  5993. const int n_past = ((int32_t *) src1->data)[0];
  5994. const int n_dims = ((int32_t *) src1->data)[1];
  5995. const int mode = ((int32_t *) src1->data)[2];
  5996. //const int ne0 = src0->ne[0];
  5997. const int ne1 = src0->ne[1];
  5998. const int ne2 = src0->ne[2];
  5999. const int ne3 = src0->ne[3];
  6000. const int nb0 = src0->nb[0];
  6001. const int nb1 = src0->nb[1];
  6002. const int nb2 = src0->nb[2];
  6003. const int nb3 = src0->nb[3];
  6004. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6005. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6006. assert(nb0 == sizeof(ggml_fp16_t));
  6007. for (int i3 = 0; i3 < ne3; i3++) {
  6008. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6009. const int p = (mode == 0 ? n_past + i2 : i2);
  6010. for (int i1 = 0; i1 < ne1; i1++) {
  6011. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6012. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6013. const double cos_theta = cos(p*theta);
  6014. const double sin_theta = sin(p*theta);
  6015. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6016. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6017. double x0 = ggml_fp16_to_fp32(src[0]);
  6018. double x1 = ggml_fp16_to_fp32(src[1]);
  6019. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6020. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6021. }
  6022. }
  6023. }
  6024. }
  6025. }
  6026. static void ggml_compute_forward_rope(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. const struct ggml_tensor * src1,
  6030. struct ggml_tensor * dst) {
  6031. switch (src0->type) {
  6032. case GGML_TYPE_F16:
  6033. {
  6034. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6035. } break;
  6036. case GGML_TYPE_F32:
  6037. {
  6038. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6039. } break;
  6040. case GGML_TYPE_Q4_0:
  6041. case GGML_TYPE_Q4_1:
  6042. case GGML_TYPE_I8:
  6043. case GGML_TYPE_I16:
  6044. case GGML_TYPE_I32:
  6045. case GGML_TYPE_COUNT:
  6046. {
  6047. GGML_ASSERT(false);
  6048. } break;
  6049. }
  6050. }
  6051. // ggml_compute_forward_conv_1d_1s
  6052. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6053. const struct ggml_compute_params * params,
  6054. const struct ggml_tensor * src0,
  6055. const struct ggml_tensor * src1,
  6056. struct ggml_tensor * dst) {
  6057. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6058. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6059. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6060. int64_t t0 = ggml_perf_time_us();
  6061. UNUSED(t0);
  6062. const int ne00 = src0->ne[0];
  6063. const int ne01 = src0->ne[1];
  6064. const int ne02 = src0->ne[2];
  6065. //const int ne03 = src0->ne[3];
  6066. const int ne10 = src1->ne[0];
  6067. const int ne11 = src1->ne[1];
  6068. //const int ne12 = src1->ne[2];
  6069. //const int ne13 = src1->ne[3];
  6070. //const int ne0 = dst->ne[0];
  6071. //const int ne1 = dst->ne[1];
  6072. //const int ne2 = dst->ne[2];
  6073. //const int ne3 = dst->ne[3];
  6074. //const int ne = ne0*ne1*ne2*ne3;
  6075. const int nb00 = src0->nb[0];
  6076. const int nb01 = src0->nb[1];
  6077. const int nb02 = src0->nb[2];
  6078. //const int nb03 = src0->nb[3];
  6079. const int nb10 = src1->nb[0];
  6080. const int nb11 = src1->nb[1];
  6081. //const int nb12 = src1->nb[2];
  6082. //const int nb13 = src1->nb[3];
  6083. //const int nb0 = dst->nb[0];
  6084. const int nb1 = dst->nb[1];
  6085. //const int nb2 = dst->nb[2];
  6086. //const int nb3 = dst->nb[3];
  6087. const int ith = params->ith;
  6088. const int nth = params->nth;
  6089. const int nk = ne00;
  6090. const int nh = nk/2;
  6091. const int ew0 = ggml_up32(ne01);
  6092. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6093. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6094. GGML_ASSERT(nb10 == sizeof(float));
  6095. if (params->type == GGML_TASK_INIT) {
  6096. // TODO: fix this memset (wsize is overestimated)
  6097. memset(params->wdata, 0, params->wsize);
  6098. // prepare kernel data (src0)
  6099. {
  6100. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6101. for (int i02 = 0; i02 < ne02; i02++) {
  6102. for (int i01 = 0; i01 < ne01; i01++) {
  6103. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6104. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6105. for (int i00 = 0; i00 < ne00; i00++) {
  6106. dst_data[i00*ew0 + i01] = src[i00];
  6107. }
  6108. }
  6109. }
  6110. }
  6111. // prepare source data (src1)
  6112. {
  6113. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6114. for (int i11 = 0; i11 < ne11; i11++) {
  6115. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6116. ggml_fp16_t * dst_data = wdata;
  6117. for (int i10 = 0; i10 < ne10; i10++) {
  6118. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6119. }
  6120. }
  6121. }
  6122. return;
  6123. }
  6124. if (params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. // total rows in dst
  6128. const int nr = ne02;
  6129. // rows per thread
  6130. const int dr = (nr + nth - 1)/nth;
  6131. // row range for this thread
  6132. const int ir0 = dr*ith;
  6133. const int ir1 = MIN(ir0 + dr, nr);
  6134. for (int i1 = ir0; i1 < ir1; i1++) {
  6135. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6136. for (int i0 = 0; i0 < ne10; ++i0) {
  6137. dst_data[i0] = 0;
  6138. for (int k = -nh; k <= nh; k++) {
  6139. float v = 0.0f;
  6140. ggml_vec_dot_f16(ew0, &v,
  6141. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6142. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6143. dst_data[i0] += v;
  6144. }
  6145. }
  6146. }
  6147. }
  6148. static void ggml_compute_forward_conv_1d_1s_f32(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. const struct ggml_tensor * src1,
  6152. struct ggml_tensor * dst) {
  6153. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6155. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6156. int64_t t0 = ggml_perf_time_us();
  6157. UNUSED(t0);
  6158. const int ne00 = src0->ne[0];
  6159. const int ne01 = src0->ne[1];
  6160. const int ne02 = src0->ne[2];
  6161. //const int ne03 = src0->ne[3];
  6162. const int ne10 = src1->ne[0];
  6163. const int ne11 = src1->ne[1];
  6164. //const int ne12 = src1->ne[2];
  6165. //const int ne13 = src1->ne[3];
  6166. //const int ne0 = dst->ne[0];
  6167. //const int ne1 = dst->ne[1];
  6168. //const int ne2 = dst->ne[2];
  6169. //const int ne3 = dst->ne[3];
  6170. //const int ne = ne0*ne1*ne2*ne3;
  6171. const int nb00 = src0->nb[0];
  6172. const int nb01 = src0->nb[1];
  6173. const int nb02 = src0->nb[2];
  6174. //const int nb03 = src0->nb[3];
  6175. const int nb10 = src1->nb[0];
  6176. const int nb11 = src1->nb[1];
  6177. //const int nb12 = src1->nb[2];
  6178. //const int nb13 = src1->nb[3];
  6179. //const int nb0 = dst->nb[0];
  6180. const int nb1 = dst->nb[1];
  6181. //const int nb2 = dst->nb[2];
  6182. //const int nb3 = dst->nb[3];
  6183. const int ith = params->ith;
  6184. const int nth = params->nth;
  6185. const int nk = ne00;
  6186. const int nh = nk/2;
  6187. const int ew0 = ggml_up32(ne01);
  6188. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6189. GGML_ASSERT(nb00 == sizeof(float));
  6190. GGML_ASSERT(nb10 == sizeof(float));
  6191. if (params->type == GGML_TASK_INIT) {
  6192. // TODO: fix this memset (wsize is overestimated)
  6193. memset(params->wdata, 0, params->wsize);
  6194. // prepare kernel data (src0)
  6195. {
  6196. float * const wdata = (float *) params->wdata + 0;
  6197. for (int i02 = 0; i02 < ne02; i02++) {
  6198. for (int i01 = 0; i01 < ne01; i01++) {
  6199. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6200. float * dst_data = wdata + i02*ew0*ne00;
  6201. for (int i00 = 0; i00 < ne00; i00++) {
  6202. dst_data[i00*ew0 + i01] = src[i00];
  6203. }
  6204. }
  6205. }
  6206. }
  6207. // prepare source data (src1)
  6208. {
  6209. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6210. for (int i11 = 0; i11 < ne11; i11++) {
  6211. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6212. float * dst_data = wdata;
  6213. for (int i10 = 0; i10 < ne10; i10++) {
  6214. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6215. }
  6216. }
  6217. }
  6218. return;
  6219. }
  6220. if (params->type == GGML_TASK_FINALIZE) {
  6221. return;
  6222. }
  6223. // total rows in dst
  6224. const int nr = ne02;
  6225. // rows per thread
  6226. const int dr = (nr + nth - 1)/nth;
  6227. // row range for this thread
  6228. const int ir0 = dr*ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. for (int i1 = ir0; i1 < ir1; i1++) {
  6231. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6232. for (int i0 = 0; i0 < ne10; ++i0) {
  6233. dst_data[i0] = 0;
  6234. for (int k = -nh; k <= nh; k++) {
  6235. float v = 0.0f;
  6236. ggml_vec_dot_f32(ew0, &v,
  6237. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6238. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6239. dst_data[i0] += v;
  6240. }
  6241. }
  6242. }
  6243. }
  6244. static void ggml_compute_forward_conv_1d_1s(
  6245. const struct ggml_compute_params * params,
  6246. const struct ggml_tensor * src0,
  6247. const struct ggml_tensor * src1,
  6248. struct ggml_tensor * dst) {
  6249. switch (src0->type) {
  6250. case GGML_TYPE_F16:
  6251. {
  6252. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6253. } break;
  6254. case GGML_TYPE_F32:
  6255. {
  6256. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6257. } break;
  6258. case GGML_TYPE_Q4_0:
  6259. case GGML_TYPE_Q4_1:
  6260. case GGML_TYPE_I8:
  6261. case GGML_TYPE_I16:
  6262. case GGML_TYPE_I32:
  6263. case GGML_TYPE_COUNT:
  6264. {
  6265. GGML_ASSERT(false);
  6266. } break;
  6267. }
  6268. }
  6269. // ggml_compute_forward_conv_1d_2s
  6270. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6271. const struct ggml_compute_params * params,
  6272. const struct ggml_tensor * src0,
  6273. const struct ggml_tensor * src1,
  6274. struct ggml_tensor * dst) {
  6275. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6276. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6277. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6278. int64_t t0 = ggml_perf_time_us();
  6279. UNUSED(t0);
  6280. const int ne00 = src0->ne[0];
  6281. const int ne01 = src0->ne[1];
  6282. const int ne02 = src0->ne[2];
  6283. //const int ne03 = src0->ne[3];
  6284. const int ne10 = src1->ne[0];
  6285. const int ne11 = src1->ne[1];
  6286. //const int ne12 = src1->ne[2];
  6287. //const int ne13 = src1->ne[3];
  6288. //const int ne0 = dst->ne[0];
  6289. //const int ne1 = dst->ne[1];
  6290. //const int ne2 = dst->ne[2];
  6291. //const int ne3 = dst->ne[3];
  6292. //const int ne = ne0*ne1*ne2*ne3;
  6293. const int nb00 = src0->nb[0];
  6294. const int nb01 = src0->nb[1];
  6295. const int nb02 = src0->nb[2];
  6296. //const int nb03 = src0->nb[3];
  6297. const int nb10 = src1->nb[0];
  6298. const int nb11 = src1->nb[1];
  6299. //const int nb12 = src1->nb[2];
  6300. //const int nb13 = src1->nb[3];
  6301. //const int nb0 = dst->nb[0];
  6302. const int nb1 = dst->nb[1];
  6303. //const int nb2 = dst->nb[2];
  6304. //const int nb3 = dst->nb[3];
  6305. const int ith = params->ith;
  6306. const int nth = params->nth;
  6307. const int nk = ne00;
  6308. const int nh = nk/2;
  6309. const int ew0 = ggml_up32(ne01);
  6310. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6311. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6312. GGML_ASSERT(nb10 == sizeof(float));
  6313. if (params->type == GGML_TASK_INIT) {
  6314. // TODO: fix this memset (wsize is overestimated)
  6315. memset(params->wdata, 0, params->wsize);
  6316. // prepare kernel data (src0)
  6317. {
  6318. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6319. for (int i02 = 0; i02 < ne02; i02++) {
  6320. for (int i01 = 0; i01 < ne01; i01++) {
  6321. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6322. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6323. for (int i00 = 0; i00 < ne00; i00++) {
  6324. dst_data[i00*ew0 + i01] = src[i00];
  6325. }
  6326. }
  6327. }
  6328. }
  6329. // prepare source data (src1)
  6330. {
  6331. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6332. for (int i11 = 0; i11 < ne11; i11++) {
  6333. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6334. ggml_fp16_t * dst_data = wdata;
  6335. for (int i10 = 0; i10 < ne10; i10++) {
  6336. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6337. }
  6338. }
  6339. }
  6340. return;
  6341. }
  6342. if (params->type == GGML_TASK_FINALIZE) {
  6343. return;
  6344. }
  6345. // total rows in dst
  6346. const int nr = ne02;
  6347. // rows per thread
  6348. const int dr = (nr + nth - 1)/nth;
  6349. // row range for this thread
  6350. const int ir0 = dr*ith;
  6351. const int ir1 = MIN(ir0 + dr, nr);
  6352. for (int i1 = ir0; i1 < ir1; i1++) {
  6353. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6354. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6355. dst_data[i0/2] = 0;
  6356. for (int k = -nh; k <= nh; k++) {
  6357. float v = 0.0f;
  6358. ggml_vec_dot_f16(ew0, &v,
  6359. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6360. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6361. dst_data[i0/2] += v;
  6362. }
  6363. }
  6364. }
  6365. }
  6366. static void ggml_compute_forward_conv_1d_2s_f32(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * src0,
  6369. const struct ggml_tensor * src1,
  6370. struct ggml_tensor * dst) {
  6371. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6372. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6373. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6374. int64_t t0 = ggml_perf_time_us();
  6375. UNUSED(t0);
  6376. const int ne00 = src0->ne[0];
  6377. const int ne01 = src0->ne[1];
  6378. const int ne02 = src0->ne[2];
  6379. //const int ne03 = src0->ne[3];
  6380. const int ne10 = src1->ne[0];
  6381. const int ne11 = src1->ne[1];
  6382. //const int ne12 = src1->ne[2];
  6383. //const int ne13 = src1->ne[3];
  6384. //const int ne0 = dst->ne[0];
  6385. //const int ne1 = dst->ne[1];
  6386. //const int ne2 = dst->ne[2];
  6387. //const int ne3 = dst->ne[3];
  6388. //const int ne = ne0*ne1*ne2*ne3;
  6389. const int nb00 = src0->nb[0];
  6390. const int nb01 = src0->nb[1];
  6391. const int nb02 = src0->nb[2];
  6392. //const int nb03 = src0->nb[3];
  6393. const int nb10 = src1->nb[0];
  6394. const int nb11 = src1->nb[1];
  6395. //const int nb12 = src1->nb[2];
  6396. //const int nb13 = src1->nb[3];
  6397. //const int nb0 = dst->nb[0];
  6398. const int nb1 = dst->nb[1];
  6399. //const int nb2 = dst->nb[2];
  6400. //const int nb3 = dst->nb[3];
  6401. const int ith = params->ith;
  6402. const int nth = params->nth;
  6403. const int nk = ne00;
  6404. const int nh = nk/2;
  6405. const int ew0 = ggml_up32(ne01);
  6406. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6407. GGML_ASSERT(nb00 == sizeof(float));
  6408. GGML_ASSERT(nb10 == sizeof(float));
  6409. if (params->type == GGML_TASK_INIT) {
  6410. // TODO: fix this memset (wsize is overestimated)
  6411. memset(params->wdata, 0, params->wsize);
  6412. // prepare kernel data (src0)
  6413. {
  6414. float * const wdata = (float *) params->wdata + 0;
  6415. for (int i02 = 0; i02 < ne02; i02++) {
  6416. for (int i01 = 0; i01 < ne01; i01++) {
  6417. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6418. float * dst_data = wdata + i02*ew0*ne00;
  6419. for (int i00 = 0; i00 < ne00; i00++) {
  6420. dst_data[i00*ew0 + i01] = src[i00];
  6421. }
  6422. }
  6423. }
  6424. }
  6425. // prepare source data (src1)
  6426. {
  6427. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6428. for (int i11 = 0; i11 < ne11; i11++) {
  6429. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6430. float * dst_data = wdata;
  6431. for (int i10 = 0; i10 < ne10; i10++) {
  6432. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6433. }
  6434. }
  6435. }
  6436. return;
  6437. }
  6438. if (params->type == GGML_TASK_FINALIZE) {
  6439. return;
  6440. }
  6441. // total rows in dst
  6442. const int nr = ne02;
  6443. // rows per thread
  6444. const int dr = (nr + nth - 1)/nth;
  6445. // row range for this thread
  6446. const int ir0 = dr*ith;
  6447. const int ir1 = MIN(ir0 + dr, nr);
  6448. for (int i1 = ir0; i1 < ir1; i1++) {
  6449. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6450. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6451. dst_data[i0/2] = 0;
  6452. for (int k = -nh; k <= nh; k++) {
  6453. float v = 0.0f;
  6454. ggml_vec_dot_f32(ew0, &v,
  6455. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6456. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6457. dst_data[i0/2] += v;
  6458. }
  6459. }
  6460. }
  6461. }
  6462. static void ggml_compute_forward_conv_1d_2s(
  6463. const struct ggml_compute_params * params,
  6464. const struct ggml_tensor * src0,
  6465. const struct ggml_tensor * src1,
  6466. struct ggml_tensor * dst) {
  6467. switch (src0->type) {
  6468. case GGML_TYPE_F16:
  6469. {
  6470. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6471. } break;
  6472. case GGML_TYPE_F32:
  6473. {
  6474. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6475. } break;
  6476. case GGML_TYPE_Q4_0:
  6477. case GGML_TYPE_Q4_1:
  6478. case GGML_TYPE_I8:
  6479. case GGML_TYPE_I16:
  6480. case GGML_TYPE_I32:
  6481. case GGML_TYPE_COUNT:
  6482. {
  6483. GGML_ASSERT(false);
  6484. } break;
  6485. }
  6486. }
  6487. // ggml_compute_forward_flash_attn
  6488. static void ggml_compute_forward_flash_attn_f32(
  6489. const struct ggml_compute_params * params,
  6490. const struct ggml_tensor * q,
  6491. const struct ggml_tensor * k,
  6492. const struct ggml_tensor * v,
  6493. const bool masked,
  6494. struct ggml_tensor * dst) {
  6495. int64_t t0 = ggml_perf_time_us();
  6496. UNUSED(t0);
  6497. const int neq0 = q->ne[0];
  6498. const int neq1 = q->ne[1];
  6499. const int neq2 = q->ne[2];
  6500. const int neq3 = q->ne[3];
  6501. const int nek0 = k->ne[0];
  6502. const int nek1 = k->ne[1];
  6503. //const int nek2 = k->ne[2];
  6504. //const int nek3 = k->ne[3];
  6505. //const int nev0 = v->ne[0];
  6506. const int nev1 = v->ne[1];
  6507. //const int nev2 = v->ne[2];
  6508. //const int nev3 = v->ne[3];
  6509. const int ne0 = dst->ne[0];
  6510. const int ne1 = dst->ne[1];
  6511. //const int ne2 = dst->ne[2];
  6512. //const int ne3 = dst->ne[3];
  6513. const int nbk0 = k->nb[0];
  6514. const int nbk1 = k->nb[1];
  6515. const int nbk2 = k->nb[2];
  6516. const int nbk3 = k->nb[3];
  6517. const int nbq0 = q->nb[0];
  6518. const int nbq1 = q->nb[1];
  6519. const int nbq2 = q->nb[2];
  6520. const int nbq3 = q->nb[3];
  6521. const int nbv0 = v->nb[0];
  6522. const int nbv1 = v->nb[1];
  6523. const int nbv2 = v->nb[2];
  6524. const int nbv3 = v->nb[3];
  6525. const int nb0 = dst->nb[0];
  6526. const int nb1 = dst->nb[1];
  6527. const int nb2 = dst->nb[2];
  6528. const int nb3 = dst->nb[3];
  6529. const int ith = params->ith;
  6530. const int nth = params->nth;
  6531. const int D = neq0;
  6532. const int N = neq1;
  6533. const int P = nek1 - N;
  6534. const int M = P + N;
  6535. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6536. GGML_ASSERT(ne0 == D);
  6537. GGML_ASSERT(ne1 == N);
  6538. GGML_ASSERT(P >= 0);
  6539. GGML_ASSERT(nbq0 == sizeof(float));
  6540. GGML_ASSERT(nbk0 == sizeof(float));
  6541. GGML_ASSERT(nbv0 == sizeof(float));
  6542. GGML_ASSERT(neq0 == D);
  6543. GGML_ASSERT(nek0 == D);
  6544. GGML_ASSERT(nev1 == D);
  6545. GGML_ASSERT(neq1 == N);
  6546. GGML_ASSERT(nek1 == N + P);
  6547. GGML_ASSERT(nev1 == D);
  6548. // dst cannot be transposed or permuted
  6549. GGML_ASSERT(nb0 == sizeof(float));
  6550. GGML_ASSERT(nb0 <= nb1);
  6551. GGML_ASSERT(nb1 <= nb2);
  6552. GGML_ASSERT(nb2 <= nb3);
  6553. if (params->type == GGML_TASK_INIT) {
  6554. return;
  6555. }
  6556. if (params->type == GGML_TASK_FINALIZE) {
  6557. return;
  6558. }
  6559. // parallelize by q rows using ggml_vec_dot_f32
  6560. // total rows in q
  6561. const int nr = neq1*neq2*neq3;
  6562. // rows per thread
  6563. const int dr = (nr + nth - 1)/nth;
  6564. // row range for this thread
  6565. const int ir0 = dr*ith;
  6566. const int ir1 = MIN(ir0 + dr, nr);
  6567. const float scale = 1.0/sqrt((double) D);
  6568. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6569. for (int ir = ir0; ir < ir1; ++ir) {
  6570. // q indices
  6571. const int iq3 = ir/(neq2*neq1);
  6572. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6573. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6574. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6575. for (int i = M; i < Mup; ++i) {
  6576. S[i] = -INFINITY;
  6577. }
  6578. for (int ic = 0; ic < nek1; ++ic) {
  6579. // k indices
  6580. const int ik3 = iq3;
  6581. const int ik2 = iq2;
  6582. const int ik1 = ic;
  6583. // S indices
  6584. const int i1 = ik1;
  6585. ggml_vec_dot_f32(neq0,
  6586. S + i1,
  6587. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6588. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6589. }
  6590. // scale
  6591. ggml_vec_scale_f32(nek1, S, scale);
  6592. if (masked) {
  6593. for (int i = P; i < M; i++) {
  6594. if (i > P + iq1) {
  6595. S[i] = -INFINITY;
  6596. }
  6597. }
  6598. }
  6599. // softmax
  6600. {
  6601. float max = -INFINITY;
  6602. ggml_vec_max_f32(M, &max, S);
  6603. float sum = 0.0f;
  6604. {
  6605. #ifdef GGML_SOFT_MAX_ACCELERATE
  6606. max = -max;
  6607. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6608. vvexpf(S, S, &Mup);
  6609. ggml_vec_sum_f32(Mup, &sum, S);
  6610. #else
  6611. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6612. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6613. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6614. float * SS = S + i;
  6615. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6616. if (SS[j] == -INFINITY) {
  6617. SS[j] = 0.0f;
  6618. } else {
  6619. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6620. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6621. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6622. sump[j] += val;
  6623. SS[j] = val;
  6624. }
  6625. }
  6626. }
  6627. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6628. sum += sump[i];
  6629. }
  6630. #endif
  6631. }
  6632. assert(sum > 0.0f);
  6633. sum = 1.0/sum;
  6634. ggml_vec_scale_f32(M, S, sum);
  6635. #ifndef NDEBUG
  6636. for (int i = 0; i < M; ++i) {
  6637. assert(!isnan(S[i]));
  6638. assert(!isinf(S[i]));
  6639. }
  6640. #endif
  6641. }
  6642. for (int ic = 0; ic < nev1; ++ic) {
  6643. // dst indices
  6644. const int i1 = iq1;
  6645. const int i2 = iq2;
  6646. const int i3 = iq3;
  6647. ggml_vec_dot_f32(nek1,
  6648. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6649. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6650. S);
  6651. }
  6652. }
  6653. }
  6654. static void ggml_compute_forward_flash_attn_f16(
  6655. const struct ggml_compute_params * params,
  6656. const struct ggml_tensor * q,
  6657. const struct ggml_tensor * k,
  6658. const struct ggml_tensor * v,
  6659. const bool masked,
  6660. struct ggml_tensor * dst) {
  6661. int64_t t0 = ggml_perf_time_us();
  6662. UNUSED(t0);
  6663. const int neq0 = q->ne[0];
  6664. const int neq1 = q->ne[1];
  6665. const int neq2 = q->ne[2];
  6666. const int neq3 = q->ne[3];
  6667. const int nek0 = k->ne[0];
  6668. const int nek1 = k->ne[1];
  6669. //const int nek2 = k->ne[2];
  6670. //const int nek3 = k->ne[3];
  6671. //const int nev0 = v->ne[0];
  6672. const int nev1 = v->ne[1];
  6673. //const int nev2 = v->ne[2];
  6674. //const int nev3 = v->ne[3];
  6675. const int ne0 = dst->ne[0];
  6676. const int ne1 = dst->ne[1];
  6677. //const int ne2 = dst->ne[2];
  6678. //const int ne3 = dst->ne[3];
  6679. const int nbk0 = k->nb[0];
  6680. const int nbk1 = k->nb[1];
  6681. const int nbk2 = k->nb[2];
  6682. const int nbk3 = k->nb[3];
  6683. const int nbq0 = q->nb[0];
  6684. const int nbq1 = q->nb[1];
  6685. const int nbq2 = q->nb[2];
  6686. const int nbq3 = q->nb[3];
  6687. const int nbv0 = v->nb[0];
  6688. const int nbv1 = v->nb[1];
  6689. const int nbv2 = v->nb[2];
  6690. const int nbv3 = v->nb[3];
  6691. const int nb0 = dst->nb[0];
  6692. const int nb1 = dst->nb[1];
  6693. const int nb2 = dst->nb[2];
  6694. const int nb3 = dst->nb[3];
  6695. const int ith = params->ith;
  6696. const int nth = params->nth;
  6697. const int D = neq0;
  6698. const int N = neq1;
  6699. const int P = nek1 - N;
  6700. const int M = P + N;
  6701. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6702. GGML_ASSERT(ne0 == D);
  6703. GGML_ASSERT(ne1 == N);
  6704. GGML_ASSERT(P >= 0);
  6705. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6706. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6707. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6708. GGML_ASSERT(neq0 == D);
  6709. GGML_ASSERT(nek0 == D);
  6710. GGML_ASSERT(nev1 == D);
  6711. GGML_ASSERT(neq1 == N);
  6712. GGML_ASSERT(nek1 == N + P);
  6713. GGML_ASSERT(nev1 == D);
  6714. // dst cannot be transposed or permuted
  6715. GGML_ASSERT(nb0 == sizeof(float));
  6716. GGML_ASSERT(nb0 <= nb1);
  6717. GGML_ASSERT(nb1 <= nb2);
  6718. GGML_ASSERT(nb2 <= nb3);
  6719. if (params->type == GGML_TASK_INIT) {
  6720. return;
  6721. }
  6722. if (params->type == GGML_TASK_FINALIZE) {
  6723. return;
  6724. }
  6725. // parallelize by q rows using ggml_vec_dot_f32
  6726. // total rows in q
  6727. const int nr = neq1*neq2*neq3;
  6728. // rows per thread
  6729. const int dr = (nr + nth - 1)/nth;
  6730. // row range for this thread
  6731. const int ir0 = dr*ith;
  6732. const int ir1 = MIN(ir0 + dr, nr);
  6733. const float scale = 1.0/sqrt((double) D);
  6734. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6735. for (int ir = ir0; ir < ir1; ++ir) {
  6736. // q indices
  6737. const int iq3 = ir/(neq2*neq1);
  6738. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6739. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6740. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6741. for (int i = M; i < Mup; ++i) {
  6742. S[i] = -INFINITY;
  6743. }
  6744. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6745. for (int ic = 0; ic < nek1; ++ic) {
  6746. // k indices
  6747. const int ik3 = iq3;
  6748. const int ik2 = iq2;
  6749. const int ik1 = ic;
  6750. // S indices
  6751. const int i1 = ik1;
  6752. ggml_vec_dot_f16(neq0,
  6753. S + i1,
  6754. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6755. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6756. }
  6757. } else {
  6758. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6759. // k indices
  6760. const int ik3 = iq3;
  6761. const int ik2 = iq2;
  6762. const int ik1 = ic;
  6763. // S indices
  6764. const int i1 = ik1;
  6765. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6766. S + i1,
  6767. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6768. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6769. }
  6770. }
  6771. // scale
  6772. ggml_vec_scale_f32(nek1, S, scale);
  6773. if (masked) {
  6774. for (int i = P; i < M; i++) {
  6775. if (i > P + iq1) {
  6776. S[i] = -INFINITY;
  6777. }
  6778. }
  6779. }
  6780. // softmax
  6781. {
  6782. float max = -INFINITY;
  6783. ggml_vec_max_f32(M, &max, S);
  6784. float sum = 0.0f;
  6785. {
  6786. #ifdef GGML_SOFT_MAX_ACCELERATE
  6787. max = -max;
  6788. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6789. vvexpf(S, S, &Mup);
  6790. ggml_vec_sum_f32(Mup, &sum, S);
  6791. #else
  6792. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6793. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6794. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6795. float * SS = S + i;
  6796. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6797. if (SS[j] == -INFINITY) {
  6798. SS[j] = 0.0f;
  6799. } else {
  6800. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6801. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6802. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6803. sump[j] += val;
  6804. SS[j] = val;
  6805. }
  6806. }
  6807. }
  6808. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6809. sum += sump[i];
  6810. }
  6811. #endif
  6812. }
  6813. assert(sum > 0.0f);
  6814. sum = 1.0/sum;
  6815. ggml_vec_scale_f32(M, S, sum);
  6816. #ifndef NDEBUG
  6817. for (int i = 0; i < M; ++i) {
  6818. assert(!isnan(S[i]));
  6819. assert(!isinf(S[i]));
  6820. }
  6821. #endif
  6822. }
  6823. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6824. for (int i = 0; i < M; i++) {
  6825. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6826. }
  6827. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6828. for (int ic = 0; ic < nev1; ++ic) {
  6829. // dst indices
  6830. const int i1 = iq1;
  6831. const int i2 = iq2;
  6832. const int i3 = iq3;
  6833. ggml_vec_dot_f16(nek1,
  6834. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6835. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6836. S16);
  6837. }
  6838. } else {
  6839. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6840. // dst indices
  6841. const int i1 = iq1;
  6842. const int i2 = iq2;
  6843. const int i3 = iq3;
  6844. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6845. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6846. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6847. S16);
  6848. }
  6849. }
  6850. }
  6851. }
  6852. static void ggml_compute_forward_flash_attn(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * q,
  6855. const struct ggml_tensor * k,
  6856. const struct ggml_tensor * v,
  6857. const bool masked,
  6858. struct ggml_tensor * dst) {
  6859. switch (q->type) {
  6860. case GGML_TYPE_F16:
  6861. {
  6862. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6863. } break;
  6864. case GGML_TYPE_F32:
  6865. {
  6866. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6867. } break;
  6868. case GGML_TYPE_Q4_0:
  6869. case GGML_TYPE_Q4_1:
  6870. case GGML_TYPE_I8:
  6871. case GGML_TYPE_I16:
  6872. case GGML_TYPE_I32:
  6873. case GGML_TYPE_COUNT:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. // ggml_compute_forward_flash_ff
  6880. static void ggml_compute_forward_flash_ff_f16(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * a, // F16
  6883. const struct ggml_tensor * b0, // F16 fc_w
  6884. const struct ggml_tensor * b1, // F32 fc_b
  6885. const struct ggml_tensor * c0, // F16 proj_w
  6886. const struct ggml_tensor * c1, // F32 proj_b
  6887. struct ggml_tensor * dst) {
  6888. int64_t t0 = ggml_perf_time_us();
  6889. UNUSED(t0);
  6890. const int nea0 = a->ne[0];
  6891. const int nea1 = a->ne[1];
  6892. const int nea2 = a->ne[2];
  6893. const int nea3 = a->ne[3];
  6894. const int neb00 = b0->ne[0];
  6895. const int neb01 = b0->ne[1];
  6896. //const int neb02 = b0->ne[2];
  6897. //const int neb03 = b0->ne[3];
  6898. const int neb10 = b1->ne[0];
  6899. const int neb11 = b1->ne[1];
  6900. //const int neb12 = b1->ne[2];
  6901. //const int neb13 = b1->ne[3];
  6902. const int nec00 = c0->ne[0];
  6903. const int nec01 = c0->ne[1];
  6904. //const int nec02 = c0->ne[2];
  6905. //const int nec03 = c0->ne[3];
  6906. const int nec10 = c1->ne[0];
  6907. const int nec11 = c1->ne[1];
  6908. //const int nec12 = c1->ne[2];
  6909. //const int nec13 = c1->ne[3];
  6910. const int ne0 = dst->ne[0];
  6911. const int ne1 = dst->ne[1];
  6912. const int ne2 = dst->ne[2];
  6913. //const int ne3 = dst->ne[3];
  6914. const int nba0 = a->nb[0];
  6915. const int nba1 = a->nb[1];
  6916. const int nba2 = a->nb[2];
  6917. const int nba3 = a->nb[3];
  6918. const int nbb00 = b0->nb[0];
  6919. const int nbb01 = b0->nb[1];
  6920. const int nbb02 = b0->nb[2];
  6921. const int nbb03 = b0->nb[3];
  6922. const int nbb10 = b1->nb[0];
  6923. //const int nbb11 = b1->nb[1];
  6924. //const int nbb12 = b1->nb[2];
  6925. //const int nbb13 = b1->nb[3];
  6926. const int nbc00 = c0->nb[0];
  6927. const int nbc01 = c0->nb[1];
  6928. const int nbc02 = c0->nb[2];
  6929. const int nbc03 = c0->nb[3];
  6930. const int nbc10 = c1->nb[0];
  6931. //const int nbc11 = c1->nb[1];
  6932. //const int nbc12 = c1->nb[2];
  6933. //const int nbc13 = c1->nb[3];
  6934. const int nb0 = dst->nb[0];
  6935. const int nb1 = dst->nb[1];
  6936. const int nb2 = dst->nb[2];
  6937. const int nb3 = dst->nb[3];
  6938. const int ith = params->ith;
  6939. const int nth = params->nth;
  6940. const int D = nea0;
  6941. //const int N = nea1;
  6942. const int M = neb01;
  6943. GGML_ASSERT(ne0 == nea0);
  6944. GGML_ASSERT(ne1 == nea1);
  6945. GGML_ASSERT(ne2 == nea2);
  6946. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6947. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6948. GGML_ASSERT(nbb10 == sizeof(float));
  6949. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6950. GGML_ASSERT(nbc10 == sizeof(float));
  6951. GGML_ASSERT(neb00 == D);
  6952. GGML_ASSERT(neb01 == M);
  6953. GGML_ASSERT(neb10 == M);
  6954. GGML_ASSERT(neb11 == 1);
  6955. GGML_ASSERT(nec00 == M);
  6956. GGML_ASSERT(nec01 == D);
  6957. GGML_ASSERT(nec10 == D);
  6958. GGML_ASSERT(nec11 == 1);
  6959. // dst cannot be transposed or permuted
  6960. GGML_ASSERT(nb0 == sizeof(float));
  6961. GGML_ASSERT(nb0 <= nb1);
  6962. GGML_ASSERT(nb1 <= nb2);
  6963. GGML_ASSERT(nb2 <= nb3);
  6964. if (params->type == GGML_TASK_INIT) {
  6965. return;
  6966. }
  6967. if (params->type == GGML_TASK_FINALIZE) {
  6968. return;
  6969. }
  6970. // parallelize by a rows using ggml_vec_dot_f32
  6971. // total rows in a
  6972. const int nr = nea1*nea2*nea3;
  6973. // rows per thread
  6974. const int dr = (nr + nth - 1)/nth;
  6975. // row range for this thread
  6976. const int ir0 = dr*ith;
  6977. const int ir1 = MIN(ir0 + dr, nr);
  6978. for (int ir = ir0; ir < ir1; ++ir) {
  6979. // a indices
  6980. const int ia3 = ir/(nea2*nea1);
  6981. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6982. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6983. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6984. for (int ic = 0; ic < neb01; ++ic) {
  6985. // b0 indices
  6986. const int ib03 = ia3;
  6987. const int ib02 = ia2;
  6988. const int ib01 = ic;
  6989. // S indices
  6990. const int i1 = ib01;
  6991. ggml_vec_dot_f16(nea0,
  6992. S + i1,
  6993. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6994. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6995. }
  6996. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6997. //ggml_vec_gelu_f32(neb01, S, S);
  6998. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6999. for (int i = 0; i < M; i++) {
  7000. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7001. }
  7002. ggml_vec_gelu_f16(neb01, S16, S16);
  7003. {
  7004. // dst indices
  7005. const int i1 = ia1;
  7006. const int i2 = ia2;
  7007. const int i3 = ia3;
  7008. for (int ic = 0; ic < nec01; ++ic) {
  7009. ggml_vec_dot_f16(neb01,
  7010. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7011. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7012. S16);
  7013. }
  7014. ggml_vec_add_f32(nec01,
  7015. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7016. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7017. (float *) c1->data);
  7018. }
  7019. }
  7020. }
  7021. static void ggml_compute_forward_flash_ff(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * a,
  7024. const struct ggml_tensor * b0,
  7025. const struct ggml_tensor * b1,
  7026. const struct ggml_tensor * c0,
  7027. const struct ggml_tensor * c1,
  7028. struct ggml_tensor * dst) {
  7029. switch (b0->type) {
  7030. case GGML_TYPE_F16:
  7031. {
  7032. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7033. } break;
  7034. case GGML_TYPE_F32:
  7035. {
  7036. GGML_ASSERT(false); // TODO
  7037. } break;
  7038. case GGML_TYPE_Q4_0:
  7039. case GGML_TYPE_Q4_1:
  7040. case GGML_TYPE_I8:
  7041. case GGML_TYPE_I16:
  7042. case GGML_TYPE_I32:
  7043. case GGML_TYPE_COUNT:
  7044. {
  7045. GGML_ASSERT(false);
  7046. } break;
  7047. }
  7048. }
  7049. /////////////////////////////////
  7050. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7051. GGML_ASSERT(params);
  7052. switch (tensor->op) {
  7053. case GGML_OP_DUP:
  7054. {
  7055. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7056. } break;
  7057. case GGML_OP_ADD:
  7058. {
  7059. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7060. } break;
  7061. case GGML_OP_SUB:
  7062. {
  7063. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7064. } break;
  7065. case GGML_OP_MUL:
  7066. {
  7067. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7068. } break;
  7069. case GGML_OP_DIV:
  7070. {
  7071. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7072. } break;
  7073. case GGML_OP_SQR:
  7074. {
  7075. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7076. } break;
  7077. case GGML_OP_SQRT:
  7078. {
  7079. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7080. } break;
  7081. case GGML_OP_SUM:
  7082. {
  7083. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7084. } break;
  7085. case GGML_OP_MEAN:
  7086. {
  7087. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7088. } break;
  7089. case GGML_OP_REPEAT:
  7090. {
  7091. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7092. } break;
  7093. case GGML_OP_ABS:
  7094. {
  7095. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7096. } break;
  7097. case GGML_OP_SGN:
  7098. {
  7099. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7100. } break;
  7101. case GGML_OP_NEG:
  7102. {
  7103. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7104. } break;
  7105. case GGML_OP_STEP:
  7106. {
  7107. ggml_compute_forward_step(params, tensor->src0, tensor);
  7108. } break;
  7109. case GGML_OP_RELU:
  7110. {
  7111. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7112. } break;
  7113. case GGML_OP_GELU:
  7114. {
  7115. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7116. } break;
  7117. case GGML_OP_SILU:
  7118. {
  7119. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7120. } break;
  7121. case GGML_OP_NORM:
  7122. {
  7123. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7124. } break;
  7125. case GGML_OP_RMS_NORM:
  7126. {
  7127. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7128. } break;
  7129. case GGML_OP_MUL_MAT:
  7130. {
  7131. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7132. } break;
  7133. case GGML_OP_SCALE:
  7134. {
  7135. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7136. } break;
  7137. case GGML_OP_CPY:
  7138. {
  7139. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7140. } break;
  7141. case GGML_OP_RESHAPE:
  7142. {
  7143. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7144. } break;
  7145. case GGML_OP_VIEW:
  7146. {
  7147. ggml_compute_forward_view(params, tensor->src0);
  7148. } break;
  7149. case GGML_OP_PERMUTE:
  7150. {
  7151. ggml_compute_forward_permute(params, tensor->src0);
  7152. } break;
  7153. case GGML_OP_TRANSPOSE:
  7154. {
  7155. ggml_compute_forward_transpose(params, tensor->src0);
  7156. } break;
  7157. case GGML_OP_GET_ROWS:
  7158. {
  7159. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7160. } break;
  7161. case GGML_OP_DIAG_MASK_INF:
  7162. {
  7163. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7164. } break;
  7165. case GGML_OP_SOFT_MAX:
  7166. {
  7167. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7168. } break;
  7169. case GGML_OP_ROPE:
  7170. {
  7171. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7172. } break;
  7173. case GGML_OP_CONV_1D_1S:
  7174. {
  7175. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7176. } break;
  7177. case GGML_OP_CONV_1D_2S:
  7178. {
  7179. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7180. } break;
  7181. case GGML_OP_FLASH_ATTN:
  7182. {
  7183. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7184. GGML_ASSERT(t == 0 || t == 1);
  7185. bool masked = t != 0;
  7186. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7187. } break;
  7188. case GGML_OP_FLASH_FF:
  7189. {
  7190. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7191. } break;
  7192. case GGML_OP_NONE:
  7193. {
  7194. // nop
  7195. } break;
  7196. case GGML_OP_COUNT:
  7197. {
  7198. GGML_ASSERT(false);
  7199. } break;
  7200. }
  7201. }
  7202. ////////////////////////////////////////////////////////////////////////////////
  7203. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7204. struct ggml_tensor * src0 = tensor->src0;
  7205. struct ggml_tensor * src1 = tensor->src1;
  7206. switch (tensor->op) {
  7207. case GGML_OP_DUP:
  7208. {
  7209. if (src0->grad) {
  7210. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7211. }
  7212. } break;
  7213. case GGML_OP_ADD:
  7214. {
  7215. if (src0->grad) {
  7216. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7217. }
  7218. if (src1->grad) {
  7219. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7220. }
  7221. } break;
  7222. case GGML_OP_SUB:
  7223. {
  7224. if (src0->grad) {
  7225. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7226. }
  7227. if (src1->grad) {
  7228. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7229. }
  7230. } break;
  7231. case GGML_OP_MUL:
  7232. {
  7233. if (src0->grad) {
  7234. src0->grad =
  7235. ggml_add_impl(ctx,
  7236. src0->grad,
  7237. ggml_mul(ctx, src1, tensor->grad),
  7238. inplace);
  7239. }
  7240. if (src1->grad) {
  7241. src1->grad =
  7242. ggml_add_impl(ctx,
  7243. src1->grad,
  7244. ggml_mul(ctx, src0, tensor->grad),
  7245. inplace);
  7246. }
  7247. } break;
  7248. case GGML_OP_DIV:
  7249. {
  7250. if (src0->grad) {
  7251. src0->grad =
  7252. ggml_add_impl(ctx,
  7253. src0->grad,
  7254. ggml_div(ctx, tensor->grad, src1),
  7255. inplace);
  7256. }
  7257. if (src1->grad) {
  7258. src1->grad =
  7259. ggml_sub_impl(ctx,
  7260. src1->grad,
  7261. ggml_mul(ctx,
  7262. tensor->grad,
  7263. ggml_div(ctx, tensor, src1)),
  7264. inplace);
  7265. }
  7266. } break;
  7267. case GGML_OP_SQR:
  7268. {
  7269. if (src0->grad) {
  7270. src0->grad =
  7271. ggml_add_impl(ctx,
  7272. src0->grad,
  7273. ggml_mul(ctx,
  7274. ggml_mul(ctx, src0, tensor->grad),
  7275. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7276. inplace);
  7277. }
  7278. } break;
  7279. case GGML_OP_SQRT:
  7280. {
  7281. if (src0->grad) {
  7282. src0->grad =
  7283. ggml_add_impl(ctx,
  7284. src0->grad,
  7285. ggml_div(ctx,
  7286. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7287. tensor),
  7288. inplace);
  7289. }
  7290. } break;
  7291. case GGML_OP_SUM:
  7292. {
  7293. if (src0->grad) {
  7294. src0->grad =
  7295. ggml_add_impl(ctx,
  7296. src0->grad,
  7297. ggml_repeat(ctx, tensor->grad, src0->grad),
  7298. inplace);
  7299. }
  7300. } break;
  7301. case GGML_OP_MEAN:
  7302. {
  7303. GGML_ASSERT(false); // TODO: implement
  7304. } break;
  7305. case GGML_OP_REPEAT:
  7306. {
  7307. if (src0->grad) {
  7308. src0->grad =
  7309. ggml_add_impl(ctx,
  7310. src0->grad,
  7311. ggml_sum(ctx, tensor->grad),
  7312. inplace);
  7313. }
  7314. } break;
  7315. case GGML_OP_ABS:
  7316. {
  7317. if (src0->grad) {
  7318. src0->grad =
  7319. ggml_add_impl(ctx,
  7320. src0->grad,
  7321. ggml_mul(ctx,
  7322. ggml_sgn(ctx, src0),
  7323. tensor->grad),
  7324. inplace);
  7325. }
  7326. } break;
  7327. case GGML_OP_SGN:
  7328. {
  7329. if (src0->grad) {
  7330. // noop
  7331. }
  7332. } break;
  7333. case GGML_OP_NEG:
  7334. {
  7335. if (src0->grad) {
  7336. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7337. }
  7338. } break;
  7339. case GGML_OP_STEP:
  7340. {
  7341. if (src0->grad) {
  7342. // noop
  7343. }
  7344. } break;
  7345. case GGML_OP_RELU:
  7346. {
  7347. if (src0->grad) {
  7348. src0->grad = ggml_sub_impl(ctx,
  7349. src0->grad,
  7350. ggml_mul(ctx,
  7351. ggml_step(ctx, src0),
  7352. tensor->grad),
  7353. inplace);
  7354. }
  7355. } break;
  7356. case GGML_OP_GELU:
  7357. {
  7358. GGML_ASSERT(false); // TODO: not implemented
  7359. } break;
  7360. case GGML_OP_SILU:
  7361. {
  7362. GGML_ASSERT(false); // TODO: not implemented
  7363. } break;
  7364. case GGML_OP_NORM:
  7365. {
  7366. GGML_ASSERT(false); // TODO: not implemented
  7367. } break;
  7368. case GGML_OP_RMS_NORM:
  7369. {
  7370. GGML_ASSERT(false); // TODO: not implemented
  7371. } break;
  7372. case GGML_OP_MUL_MAT:
  7373. {
  7374. if (src0->grad) {
  7375. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7376. GGML_ASSERT(false);
  7377. }
  7378. if (src1->grad) {
  7379. src1->grad =
  7380. ggml_add_impl(ctx,
  7381. src1->grad,
  7382. // TODO: fix transpose, the node will break the graph connections
  7383. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7384. inplace);
  7385. }
  7386. } break;
  7387. case GGML_OP_SCALE:
  7388. {
  7389. GGML_ASSERT(false); // TODO: not implemented
  7390. } break;
  7391. case GGML_OP_CPY:
  7392. {
  7393. GGML_ASSERT(false); // TODO: not implemented
  7394. } break;
  7395. case GGML_OP_RESHAPE:
  7396. {
  7397. GGML_ASSERT(false); // TODO: not implemented
  7398. } break;
  7399. case GGML_OP_VIEW:
  7400. {
  7401. GGML_ASSERT(false); // not supported
  7402. } break;
  7403. case GGML_OP_PERMUTE:
  7404. {
  7405. GGML_ASSERT(false); // TODO: not implemented
  7406. } break;
  7407. case GGML_OP_TRANSPOSE:
  7408. {
  7409. GGML_ASSERT(false); // TODO: not implemented
  7410. } break;
  7411. case GGML_OP_GET_ROWS:
  7412. {
  7413. GGML_ASSERT(false); // TODO: not implemented
  7414. } break;
  7415. case GGML_OP_DIAG_MASK_INF:
  7416. {
  7417. GGML_ASSERT(false); // TODO: not implemented
  7418. } break;
  7419. case GGML_OP_SOFT_MAX:
  7420. {
  7421. GGML_ASSERT(false); // TODO: not implemented
  7422. } break;
  7423. case GGML_OP_ROPE:
  7424. {
  7425. GGML_ASSERT(false); // TODO: not implemented
  7426. } break;
  7427. case GGML_OP_CONV_1D_1S:
  7428. {
  7429. GGML_ASSERT(false); // TODO: not implemented
  7430. } break;
  7431. case GGML_OP_CONV_1D_2S:
  7432. {
  7433. GGML_ASSERT(false); // TODO: not implemented
  7434. } break;
  7435. case GGML_OP_FLASH_ATTN:
  7436. {
  7437. GGML_ASSERT(false); // not supported
  7438. } break;
  7439. case GGML_OP_FLASH_FF:
  7440. {
  7441. GGML_ASSERT(false); // not supported
  7442. } break;
  7443. case GGML_OP_NONE:
  7444. {
  7445. // nop
  7446. } break;
  7447. case GGML_OP_COUNT:
  7448. {
  7449. GGML_ASSERT(false);
  7450. } break;
  7451. }
  7452. }
  7453. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7454. if (node->grad == NULL) {
  7455. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7456. // it can also happen during forward pass, if the user performs computations with constants
  7457. if (node->op != GGML_OP_NONE) {
  7458. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7459. }
  7460. }
  7461. // check if already visited
  7462. for (int i = 0; i < cgraph->n_nodes; i++) {
  7463. if (cgraph->nodes[i] == node) {
  7464. return;
  7465. }
  7466. }
  7467. for (int i = 0; i < cgraph->n_leafs; i++) {
  7468. if (cgraph->leafs[i] == node) {
  7469. return;
  7470. }
  7471. }
  7472. if (node->src0) {
  7473. ggml_visit_parents(cgraph, node->src0);
  7474. }
  7475. if (node->src1) {
  7476. ggml_visit_parents(cgraph, node->src1);
  7477. }
  7478. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7479. if (node->opt[i]) {
  7480. ggml_visit_parents(cgraph, node->opt[i]);
  7481. }
  7482. }
  7483. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7484. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7485. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7486. cgraph->leafs[cgraph->n_leafs] = node;
  7487. cgraph->n_leafs++;
  7488. } else {
  7489. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7490. cgraph->nodes[cgraph->n_nodes] = node;
  7491. cgraph->grads[cgraph->n_nodes] = node->grad;
  7492. cgraph->n_nodes++;
  7493. }
  7494. }
  7495. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7496. if (!expand) {
  7497. cgraph->n_nodes = 0;
  7498. cgraph->n_leafs = 0;
  7499. }
  7500. const int n0 = cgraph->n_nodes;
  7501. UNUSED(n0);
  7502. ggml_visit_parents(cgraph, tensor);
  7503. const int n_new = cgraph->n_nodes - n0;
  7504. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7505. if (n_new > 0) {
  7506. // the last added node should always be starting point
  7507. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7508. }
  7509. }
  7510. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7511. ggml_build_forward_impl(cgraph, tensor, true);
  7512. }
  7513. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7514. struct ggml_cgraph result = {
  7515. /*.n_nodes =*/ 0,
  7516. /*.n_leafs =*/ 0,
  7517. /*.n_threads =*/ 0,
  7518. /*.work_size =*/ 0,
  7519. /*.work =*/ NULL,
  7520. /*.nodes =*/ { NULL },
  7521. /*.grads =*/ { NULL },
  7522. /*.leafs =*/ { NULL },
  7523. /*.perf_runs =*/ 0,
  7524. /*.perf_cycles =*/ 0,
  7525. /*.perf_time_us =*/ 0,
  7526. };
  7527. ggml_build_forward_impl(&result, tensor, false);
  7528. return result;
  7529. }
  7530. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7531. struct ggml_cgraph result = *gf;
  7532. GGML_ASSERT(gf->n_nodes > 0);
  7533. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7534. if (keep) {
  7535. for (int i = 0; i < gf->n_nodes; i++) {
  7536. struct ggml_tensor * node = gf->nodes[i];
  7537. if (node->grad) {
  7538. node->grad = ggml_dup_tensor(ctx, node);
  7539. gf->grads[i] = node->grad;
  7540. }
  7541. }
  7542. }
  7543. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7544. struct ggml_tensor * node = gf->nodes[i];
  7545. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7546. if (node->grad) {
  7547. ggml_compute_backward(ctx, node, keep);
  7548. }
  7549. }
  7550. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7551. struct ggml_tensor * node = gf->nodes[i];
  7552. if (node->is_param) {
  7553. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7554. ggml_build_forward_impl(&result, node->grad, true);
  7555. }
  7556. }
  7557. return result;
  7558. }
  7559. //
  7560. // thread data
  7561. //
  7562. // synchronization is done via busy loops
  7563. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7564. //
  7565. #ifdef __APPLE__
  7566. //#include <os/lock.h>
  7567. //
  7568. //typedef os_unfair_lock ggml_lock_t;
  7569. //
  7570. //#define ggml_lock_init(x) UNUSED(x)
  7571. //#define ggml_lock_destroy(x) UNUSED(x)
  7572. //#define ggml_lock_lock os_unfair_lock_lock
  7573. //#define ggml_lock_unlock os_unfair_lock_unlock
  7574. //
  7575. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7576. typedef int ggml_lock_t;
  7577. #define ggml_lock_init(x) UNUSED(x)
  7578. #define ggml_lock_destroy(x) UNUSED(x)
  7579. #define ggml_lock_lock(x) UNUSED(x)
  7580. #define ggml_lock_unlock(x) UNUSED(x)
  7581. #define GGML_LOCK_INITIALIZER 0
  7582. typedef pthread_t ggml_thread_t;
  7583. #define ggml_thread_create pthread_create
  7584. #define ggml_thread_join pthread_join
  7585. #else
  7586. //typedef pthread_spinlock_t ggml_lock_t;
  7587. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7588. //#define ggml_lock_destroy pthread_spin_destroy
  7589. //#define ggml_lock_lock pthread_spin_lock
  7590. //#define ggml_lock_unlock pthread_spin_unlock
  7591. typedef int ggml_lock_t;
  7592. #define ggml_lock_init(x) UNUSED(x)
  7593. #define ggml_lock_destroy(x) UNUSED(x)
  7594. #define ggml_lock_lock(x) UNUSED(x)
  7595. #define ggml_lock_unlock(x) UNUSED(x)
  7596. #define GGML_LOCK_INITIALIZER 0
  7597. typedef pthread_t ggml_thread_t;
  7598. #define ggml_thread_create pthread_create
  7599. #define ggml_thread_join pthread_join
  7600. #endif
  7601. struct ggml_compute_state_shared {
  7602. ggml_lock_t spin;
  7603. int n_threads;
  7604. // synchronization primitives
  7605. atomic_int n_ready;
  7606. atomic_bool has_work;
  7607. atomic_bool stop; // stop all threads
  7608. };
  7609. struct ggml_compute_state {
  7610. ggml_thread_t thrd;
  7611. struct ggml_compute_params params;
  7612. struct ggml_tensor * node;
  7613. struct ggml_compute_state_shared * shared;
  7614. };
  7615. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7616. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7617. const int n_threads = state->shared->n_threads;
  7618. while (true) {
  7619. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7620. atomic_store(&state->shared->has_work, false);
  7621. } else {
  7622. while (atomic_load(&state->shared->has_work)) {
  7623. if (atomic_load(&state->shared->stop)) {
  7624. return 0;
  7625. }
  7626. ggml_lock_lock (&state->shared->spin);
  7627. ggml_lock_unlock(&state->shared->spin);
  7628. }
  7629. }
  7630. atomic_fetch_sub(&state->shared->n_ready, 1);
  7631. // wait for work
  7632. while (!atomic_load(&state->shared->has_work)) {
  7633. if (atomic_load(&state->shared->stop)) {
  7634. return 0;
  7635. }
  7636. ggml_lock_lock (&state->shared->spin);
  7637. ggml_lock_unlock(&state->shared->spin);
  7638. }
  7639. // check if we should stop
  7640. if (atomic_load(&state->shared->stop)) {
  7641. break;
  7642. }
  7643. if (state->node) {
  7644. if (state->params.ith < state->params.nth) {
  7645. ggml_compute_forward(&state->params, state->node);
  7646. }
  7647. state->node = NULL;
  7648. } else {
  7649. break;
  7650. }
  7651. }
  7652. return 0;
  7653. }
  7654. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7655. const int n_threads = cgraph->n_threads;
  7656. struct ggml_compute_state_shared state_shared = {
  7657. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7658. /*.n_threads =*/ n_threads,
  7659. /*.n_ready =*/ 0,
  7660. /*.has_work =*/ false,
  7661. /*.stop =*/ false,
  7662. };
  7663. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7664. // create thread pool
  7665. if (n_threads > 1) {
  7666. ggml_lock_init(&state_shared.spin);
  7667. atomic_store(&state_shared.has_work, true);
  7668. for (int j = 0; j < n_threads - 1; j++) {
  7669. workers[j] = (struct ggml_compute_state) {
  7670. .thrd = 0,
  7671. .params = {
  7672. .type = GGML_TASK_COMPUTE,
  7673. .ith = j + 1,
  7674. .nth = n_threads,
  7675. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7676. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7677. },
  7678. .node = NULL,
  7679. .shared = &state_shared,
  7680. };
  7681. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7682. GGML_ASSERT(rc == 0);
  7683. UNUSED(rc);
  7684. }
  7685. }
  7686. // initialize tasks + work buffer
  7687. {
  7688. size_t work_size = 0;
  7689. // thread scheduling for the different operations
  7690. for (int i = 0; i < cgraph->n_nodes; i++) {
  7691. struct ggml_tensor * node = cgraph->nodes[i];
  7692. switch (node->op) {
  7693. case GGML_OP_DUP:
  7694. {
  7695. node->n_tasks = 1;
  7696. } break;
  7697. case GGML_OP_ADD:
  7698. {
  7699. node->n_tasks = n_threads;
  7700. } break;
  7701. case GGML_OP_SUB:
  7702. case GGML_OP_MUL:
  7703. case GGML_OP_DIV:
  7704. case GGML_OP_SQR:
  7705. case GGML_OP_SQRT:
  7706. case GGML_OP_SUM:
  7707. case GGML_OP_MEAN:
  7708. case GGML_OP_REPEAT:
  7709. case GGML_OP_ABS:
  7710. case GGML_OP_SGN:
  7711. case GGML_OP_NEG:
  7712. case GGML_OP_STEP:
  7713. case GGML_OP_RELU:
  7714. {
  7715. node->n_tasks = 1;
  7716. } break;
  7717. case GGML_OP_GELU:
  7718. {
  7719. node->n_tasks = n_threads;
  7720. } break;
  7721. case GGML_OP_SILU:
  7722. {
  7723. node->n_tasks = n_threads;
  7724. } break;
  7725. case GGML_OP_NORM:
  7726. case GGML_OP_RMS_NORM:
  7727. {
  7728. node->n_tasks = n_threads;
  7729. } break;
  7730. case GGML_OP_MUL_MAT:
  7731. {
  7732. node->n_tasks = n_threads;
  7733. // TODO: use different scheduling for different matrix sizes
  7734. //const int nr0 = ggml_nrows(node->src0);
  7735. //const int nr1 = ggml_nrows(node->src1);
  7736. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7737. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7738. size_t cur = 0;
  7739. // TODO: better way to determine if the matrix is transposed
  7740. if (node->src0->nb[1] < node->src0->nb[0]) {
  7741. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7742. // TODO: overestimated by factor of x2 for FP16
  7743. } else {
  7744. if (node->src0->type == GGML_TYPE_F16 &&
  7745. node->src1->type == GGML_TYPE_F32) {
  7746. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7747. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7748. node->n_tasks = 1; // TODO: this actually is doing nothing
  7749. // the threads are still spinning
  7750. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7751. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7752. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7753. //printf("cur = %zu\n", cur);
  7754. } else {
  7755. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7756. }
  7757. #else
  7758. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7759. #endif
  7760. } else if (node->src0->type == GGML_TYPE_F32 &&
  7761. node->src1->type == GGML_TYPE_F32) {
  7762. cur = 0;
  7763. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7764. node->src1->type == GGML_TYPE_F32) {
  7765. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7766. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7767. node->n_tasks = 1;
  7768. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7769. } else {
  7770. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7771. }
  7772. #else
  7773. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7774. #endif
  7775. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7776. node->src1->type == GGML_TYPE_F32) {
  7777. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7778. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7779. node->n_tasks = 1;
  7780. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7781. } else {
  7782. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7783. }
  7784. #else
  7785. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7786. #endif
  7787. } else {
  7788. GGML_ASSERT(false);
  7789. }
  7790. }
  7791. work_size = MAX(work_size, cur);
  7792. } break;
  7793. case GGML_OP_SCALE:
  7794. {
  7795. node->n_tasks = n_threads;
  7796. } break;
  7797. case GGML_OP_CPY:
  7798. case GGML_OP_RESHAPE:
  7799. case GGML_OP_VIEW:
  7800. case GGML_OP_PERMUTE:
  7801. case GGML_OP_TRANSPOSE:
  7802. case GGML_OP_GET_ROWS:
  7803. case GGML_OP_DIAG_MASK_INF:
  7804. {
  7805. node->n_tasks = 1;
  7806. } break;
  7807. case GGML_OP_SOFT_MAX:
  7808. {
  7809. node->n_tasks = n_threads;
  7810. } break;
  7811. case GGML_OP_ROPE:
  7812. {
  7813. node->n_tasks = 1;
  7814. } break;
  7815. case GGML_OP_CONV_1D_1S:
  7816. case GGML_OP_CONV_1D_2S:
  7817. {
  7818. node->n_tasks = n_threads;
  7819. GGML_ASSERT(node->src0->ne[3] == 1);
  7820. GGML_ASSERT(node->src1->ne[2] == 1);
  7821. GGML_ASSERT(node->src1->ne[3] == 1);
  7822. size_t cur = 0;
  7823. const int nk = node->src0->ne[0];
  7824. if (node->src0->type == GGML_TYPE_F16 &&
  7825. node->src1->type == GGML_TYPE_F32) {
  7826. cur = sizeof(ggml_fp16_t)*(
  7827. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7828. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7829. );
  7830. } else if (node->src0->type == GGML_TYPE_F32 &&
  7831. node->src1->type == GGML_TYPE_F32) {
  7832. cur = sizeof(float)*(
  7833. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7834. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7835. );
  7836. } else {
  7837. GGML_ASSERT(false);
  7838. }
  7839. work_size = MAX(work_size, cur);
  7840. } break;
  7841. case GGML_OP_FLASH_ATTN:
  7842. {
  7843. node->n_tasks = n_threads;
  7844. size_t cur = 0;
  7845. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7846. if (node->src1->type == GGML_TYPE_F32) {
  7847. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7848. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7849. }
  7850. if (node->src1->type == GGML_TYPE_F16) {
  7851. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7852. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7853. }
  7854. work_size = MAX(work_size, cur);
  7855. } break;
  7856. case GGML_OP_FLASH_FF:
  7857. {
  7858. node->n_tasks = n_threads;
  7859. size_t cur = 0;
  7860. if (node->src1->type == GGML_TYPE_F32) {
  7861. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7862. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7863. }
  7864. if (node->src1->type == GGML_TYPE_F16) {
  7865. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7866. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7867. }
  7868. work_size = MAX(work_size, cur);
  7869. } break;
  7870. case GGML_OP_NONE:
  7871. {
  7872. node->n_tasks = 1;
  7873. } break;
  7874. case GGML_OP_COUNT:
  7875. {
  7876. GGML_ASSERT(false);
  7877. } break;
  7878. }
  7879. }
  7880. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7881. GGML_ASSERT(false); // TODO: better handling
  7882. }
  7883. if (work_size > 0 && cgraph->work == NULL) {
  7884. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7885. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7886. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7887. }
  7888. }
  7889. const int64_t perf_start_cycles = ggml_perf_cycles();
  7890. const int64_t perf_start_time_us = ggml_perf_time_us();
  7891. for (int i = 0; i < cgraph->n_nodes; i++) {
  7892. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7893. struct ggml_tensor * node = cgraph->nodes[i];
  7894. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7895. //if (node->grad == NULL && node->perf_runs > 0) {
  7896. // continue;
  7897. //}
  7898. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7899. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7900. // INIT
  7901. struct ggml_compute_params params = {
  7902. /*.type =*/ GGML_TASK_INIT,
  7903. /*.ith =*/ 0,
  7904. /*.nth =*/ node->n_tasks,
  7905. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7906. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7907. };
  7908. ggml_compute_forward(&params, node);
  7909. // COMPUTE
  7910. if (node->n_tasks > 1) {
  7911. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7912. atomic_store(&state_shared.has_work, false);
  7913. }
  7914. while (atomic_load(&state_shared.has_work)) {
  7915. ggml_lock_lock (&state_shared.spin);
  7916. ggml_lock_unlock(&state_shared.spin);
  7917. }
  7918. // launch thread pool
  7919. for (int j = 0; j < n_threads - 1; j++) {
  7920. workers[j].params = (struct ggml_compute_params) {
  7921. .type = GGML_TASK_COMPUTE,
  7922. .ith = j + 1,
  7923. .nth = node->n_tasks,
  7924. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7925. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7926. };
  7927. workers[j].node = node;
  7928. }
  7929. atomic_fetch_sub(&state_shared.n_ready, 1);
  7930. while (atomic_load(&state_shared.n_ready) > 0) {
  7931. ggml_lock_lock (&state_shared.spin);
  7932. ggml_lock_unlock(&state_shared.spin);
  7933. }
  7934. atomic_store(&state_shared.has_work, true);
  7935. }
  7936. params.type = GGML_TASK_COMPUTE;
  7937. ggml_compute_forward(&params, node);
  7938. // wait for thread pool
  7939. if (node->n_tasks > 1) {
  7940. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7941. atomic_store(&state_shared.has_work, false);
  7942. }
  7943. while (atomic_load(&state_shared.has_work)) {
  7944. ggml_lock_lock (&state_shared.spin);
  7945. ggml_lock_unlock(&state_shared.spin);
  7946. }
  7947. atomic_fetch_sub(&state_shared.n_ready, 1);
  7948. while (atomic_load(&state_shared.n_ready) != 0) {
  7949. ggml_lock_lock (&state_shared.spin);
  7950. ggml_lock_unlock(&state_shared.spin);
  7951. }
  7952. }
  7953. // FINALIZE
  7954. if (node->n_tasks > 1) {
  7955. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7956. atomic_store(&state_shared.has_work, false);
  7957. }
  7958. while (atomic_load(&state_shared.has_work)) {
  7959. ggml_lock_lock (&state_shared.spin);
  7960. ggml_lock_unlock(&state_shared.spin);
  7961. }
  7962. // launch thread pool
  7963. for (int j = 0; j < n_threads - 1; j++) {
  7964. workers[j].params = (struct ggml_compute_params) {
  7965. .type = GGML_TASK_FINALIZE,
  7966. .ith = j + 1,
  7967. .nth = node->n_tasks,
  7968. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7969. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7970. };
  7971. workers[j].node = node;
  7972. }
  7973. atomic_fetch_sub(&state_shared.n_ready, 1);
  7974. while (atomic_load(&state_shared.n_ready) > 0) {
  7975. ggml_lock_lock (&state_shared.spin);
  7976. ggml_lock_unlock(&state_shared.spin);
  7977. }
  7978. atomic_store(&state_shared.has_work, true);
  7979. }
  7980. params.type = GGML_TASK_FINALIZE;
  7981. ggml_compute_forward(&params, node);
  7982. // wait for thread pool
  7983. if (node->n_tasks > 1) {
  7984. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7985. atomic_store(&state_shared.has_work, false);
  7986. }
  7987. while (atomic_load(&state_shared.has_work)) {
  7988. ggml_lock_lock (&state_shared.spin);
  7989. ggml_lock_unlock(&state_shared.spin);
  7990. }
  7991. atomic_fetch_sub(&state_shared.n_ready, 1);
  7992. while (atomic_load(&state_shared.n_ready) != 0) {
  7993. ggml_lock_lock (&state_shared.spin);
  7994. ggml_lock_unlock(&state_shared.spin);
  7995. }
  7996. }
  7997. // performance stats (node)
  7998. {
  7999. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8000. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8001. node->perf_runs++;
  8002. node->perf_cycles += perf_cycles_cur;
  8003. node->perf_time_us += perf_time_us_cur;
  8004. }
  8005. }
  8006. // join thread pool
  8007. if (n_threads > 1) {
  8008. atomic_store(&state_shared.stop, true);
  8009. atomic_store(&state_shared.has_work, true);
  8010. for (int j = 0; j < n_threads - 1; j++) {
  8011. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8012. GGML_ASSERT(rc == 0);
  8013. UNUSED(rc);
  8014. }
  8015. ggml_lock_destroy(&state_shared.spin);
  8016. }
  8017. // performance stats (graph)
  8018. {
  8019. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8020. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8021. cgraph->perf_runs++;
  8022. cgraph->perf_cycles += perf_cycles_cur;
  8023. cgraph->perf_time_us += perf_time_us_cur;
  8024. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8025. __func__, cgraph->perf_runs,
  8026. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8027. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8028. (double) perf_time_us_cur / 1000.0,
  8029. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8030. }
  8031. }
  8032. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8033. for (int i = 0; i < cgraph->n_nodes; i++) {
  8034. struct ggml_tensor * grad = cgraph->grads[i];
  8035. if (grad) {
  8036. ggml_set_zero(grad);
  8037. }
  8038. }
  8039. }
  8040. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8041. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8042. GGML_PRINT("=== GRAPH ===\n");
  8043. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8044. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8045. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8046. for (int i = 0; i < cgraph->n_nodes; i++) {
  8047. struct ggml_tensor * node = cgraph->nodes[i];
  8048. perf_total_per_op_us[node->op] += node->perf_time_us;
  8049. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8050. i,
  8051. node->ne[0], node->ne[1], node->ne[2],
  8052. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8053. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8054. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8055. (double) node->perf_time_us / 1000.0,
  8056. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8057. }
  8058. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8059. for (int i = 0; i < cgraph->n_leafs; i++) {
  8060. struct ggml_tensor * node = cgraph->leafs[i];
  8061. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8062. i,
  8063. node->ne[0], node->ne[1],
  8064. GGML_OP_LABEL[node->op]);
  8065. }
  8066. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8067. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8068. }
  8069. GGML_PRINT("========================================\n");
  8070. }
  8071. // check if node is part of the graph
  8072. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8073. if (cgraph == NULL) {
  8074. return true;
  8075. }
  8076. for (int i = 0; i < cgraph->n_nodes; i++) {
  8077. if (cgraph->nodes[i] == node) {
  8078. return true;
  8079. }
  8080. }
  8081. return false;
  8082. }
  8083. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8084. for (int i = 0; i < cgraph->n_nodes; i++) {
  8085. struct ggml_tensor * parent = cgraph->nodes[i];
  8086. if (parent->grad == node) {
  8087. return parent;
  8088. }
  8089. }
  8090. return NULL;
  8091. }
  8092. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8093. char color[16];
  8094. FILE * fp = fopen(filename, "w");
  8095. GGML_ASSERT(fp);
  8096. fprintf(fp, "digraph G {\n");
  8097. fprintf(fp, " newrank = true;\n");
  8098. fprintf(fp, " rankdir = LR;\n");
  8099. for (int i = 0; i < gb->n_nodes; i++) {
  8100. struct ggml_tensor * node = gb->nodes[i];
  8101. if (ggml_graph_get_parent(gb, node) != NULL) {
  8102. continue;
  8103. }
  8104. if (node->is_param) {
  8105. snprintf(color, sizeof(color), "yellow");
  8106. } else if (node->grad) {
  8107. if (ggml_graph_find(gf, node)) {
  8108. snprintf(color, sizeof(color), "green");
  8109. } else {
  8110. snprintf(color, sizeof(color), "lightblue");
  8111. }
  8112. } else {
  8113. snprintf(color, sizeof(color), "white");
  8114. }
  8115. fprintf(fp, " \"%p\" [ \
  8116. style = filled; fillcolor = %s; shape = record; \
  8117. label=\"%d [%d, %d] | <x>%s",
  8118. (void *) node, color,
  8119. i, node->ne[0], node->ne[1],
  8120. GGML_OP_SYMBOL[node->op]);
  8121. if (node->grad) {
  8122. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8123. } else {
  8124. fprintf(fp, "\"; ]\n");
  8125. }
  8126. }
  8127. for (int i = 0; i < gb->n_leafs; i++) {
  8128. struct ggml_tensor * node = gb->leafs[i];
  8129. snprintf(color, sizeof(color), "pink");
  8130. if (ggml_nelements(node) == 1) {
  8131. fprintf(fp, " \"%p\" [ \
  8132. style = filled; fillcolor = %s; shape = record; \
  8133. label=\"<x>%.1e\"; ]\n",
  8134. (void *) node, color, ggml_get_f32_1d(node, 0));
  8135. } else {
  8136. fprintf(fp, " \"%p\" [ \
  8137. style = filled; fillcolor = %s; shape = record; \
  8138. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8139. (void *) node, color,
  8140. i, node->ne[0], node->ne[1]);
  8141. }
  8142. }
  8143. for (int i = 0; i < gb->n_nodes; i++) {
  8144. struct ggml_tensor * node = gb->nodes[i];
  8145. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8146. if (node->src0) {
  8147. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8148. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8149. parent0 ? (void *) parent0 : (void *) node->src0,
  8150. parent0 ? "g" : "x",
  8151. parent ? (void *) parent : (void *) node,
  8152. parent ? "g" : "x",
  8153. parent ? "empty" : "vee",
  8154. parent ? "dashed" : "solid");
  8155. }
  8156. if (node->src1) {
  8157. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8158. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8159. parent1 ? (void *) parent1 : (void *) node->src1,
  8160. parent1 ? "g" : "x",
  8161. parent ? (void *) parent : (void *) node,
  8162. parent ? "g" : "x",
  8163. parent ? "empty" : "vee",
  8164. parent ? "dashed" : "solid");
  8165. }
  8166. }
  8167. for (int i = 0; i < gb->n_leafs; i++) {
  8168. struct ggml_tensor * node = gb->leafs[i];
  8169. if (node->src0) {
  8170. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8171. (void *) node->src0, "x",
  8172. (void *) node, "x");
  8173. }
  8174. if (node->src1) {
  8175. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8176. (void *) node->src1, "x",
  8177. (void *) node, "x");
  8178. }
  8179. }
  8180. fprintf(fp, "}\n");
  8181. fclose(fp);
  8182. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8183. }
  8184. ////////////////////////////////////////////////////////////////////////////////
  8185. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8186. int i = 0;
  8187. for (int p = 0; p < np; ++p) {
  8188. const int ne = ggml_nelements(ps[p]) ;
  8189. // TODO: add function to set tensor from array
  8190. for (int j = 0; j < ne; ++j) {
  8191. ggml_set_f32_1d(ps[p], j, x[i++]);
  8192. }
  8193. }
  8194. }
  8195. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8196. int i = 0;
  8197. for (int p = 0; p < np; ++p) {
  8198. const int ne = ggml_nelements(ps[p]) ;
  8199. // TODO: add function to get all elements at once
  8200. for (int j = 0; j < ne; ++j) {
  8201. x[i++] = ggml_get_f32_1d(ps[p], j);
  8202. }
  8203. }
  8204. }
  8205. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8206. int i = 0;
  8207. for (int p = 0; p < np; ++p) {
  8208. const int ne = ggml_nelements(ps[p]) ;
  8209. // TODO: add function to get all elements at once
  8210. for (int j = 0; j < ne; ++j) {
  8211. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8212. }
  8213. }
  8214. }
  8215. //
  8216. // ADAM
  8217. //
  8218. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8219. //
  8220. static enum ggml_opt_result ggml_opt_adam(
  8221. struct ggml_context * ctx,
  8222. struct ggml_opt_params params,
  8223. struct ggml_tensor * f,
  8224. struct ggml_cgraph * gf,
  8225. struct ggml_cgraph * gb) {
  8226. GGML_ASSERT(ggml_is_scalar(f));
  8227. gf->n_threads = params.n_threads;
  8228. gb->n_threads = params.n_threads;
  8229. // these will store the parameters we want to optimize
  8230. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8231. int np = 0;
  8232. int nx = 0;
  8233. for (int i = 0; i < gf->n_nodes; ++i) {
  8234. if (gf->nodes[i]->is_param) {
  8235. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8236. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8237. ps[np++] = gf->nodes[i];
  8238. nx += ggml_nelements(gf->nodes[i]);
  8239. }
  8240. }
  8241. // constants
  8242. const float alpha = params.adam.alpha;
  8243. const float beta1 = params.adam.beta1;
  8244. const float beta2 = params.adam.beta2;
  8245. const float eps = params.adam.eps;
  8246. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8247. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8248. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8249. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8250. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8251. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8252. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8253. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8254. // initialize
  8255. ggml_vec_set_f32(nx, m, 0.0f);
  8256. ggml_vec_set_f32(nx, v, 0.0f);
  8257. // update view
  8258. ggml_opt_get_params(np, ps, x);
  8259. // compute the function value
  8260. ggml_graph_reset (gf);
  8261. ggml_set_f32 (f->grad, 1.0f);
  8262. ggml_graph_compute(ctx, gb);
  8263. float fx_prev = ggml_get_f32_1d(f, 0);
  8264. if (pf) {
  8265. pf[0] = fx_prev;
  8266. }
  8267. int n_no_improvement = 0;
  8268. float fx_best = fx_prev;
  8269. // run the optimizer
  8270. for (int t = 0; t < params.adam.n_iter; ++t) {
  8271. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8272. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8273. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8274. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8275. for (int i = 0; i < np; ++i) {
  8276. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8277. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8278. }
  8279. const int64_t t_start_wall = ggml_time_us();
  8280. const int64_t t_start_cpu = ggml_cycles();
  8281. UNUSED(t_start_wall);
  8282. UNUSED(t_start_cpu);
  8283. {
  8284. // update the gradient
  8285. ggml_opt_get_grad(np, ps, g1);
  8286. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8287. ggml_vec_scale_f32(nx, m, beta1);
  8288. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8289. // g2 = g1^2
  8290. ggml_vec_sqr_f32 (nx, g2, g1);
  8291. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8292. ggml_vec_scale_f32(nx, v, beta2);
  8293. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8294. // m^hat = m_t / (1 - beta1^t)
  8295. // v^hat = v_t / (1 - beta2^t)
  8296. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8297. ggml_vec_cpy_f32 (nx, mh, m);
  8298. ggml_vec_cpy_f32 (nx, vh, v);
  8299. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8300. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8301. ggml_vec_sqrt_f32 (nx, vh, vh);
  8302. ggml_vec_acc1_f32 (nx, vh, eps);
  8303. ggml_vec_div_f32 (nx, mh, mh, vh);
  8304. ggml_vec_sub_f32 (nx, x, x, mh);
  8305. // update the parameters
  8306. ggml_opt_set_params(np, ps, x);
  8307. }
  8308. ggml_graph_reset (gf);
  8309. ggml_set_f32 (f->grad, 1.0f);
  8310. ggml_graph_compute(ctx, gb);
  8311. const float fx = ggml_get_f32_1d(f, 0);
  8312. // check convergence
  8313. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8314. GGML_PRINT_DEBUG("converged\n");
  8315. return GGML_OPT_OK;
  8316. }
  8317. // delta-based convergence test
  8318. if (pf != NULL) {
  8319. // need at least params.past iterations to start checking for convergence
  8320. if (params.past <= t) {
  8321. const float rate = (pf[t%params.past] - fx)/fx;
  8322. if (fabs(rate) < params.delta) {
  8323. return GGML_OPT_OK;
  8324. }
  8325. }
  8326. pf[t%params.past] = fx;
  8327. }
  8328. // check for improvement
  8329. if (params.max_no_improvement > 0) {
  8330. if (fx_best > fx) {
  8331. fx_best = fx;
  8332. n_no_improvement = 0;
  8333. } else {
  8334. ++n_no_improvement;
  8335. if (n_no_improvement >= params.max_no_improvement) {
  8336. return GGML_OPT_OK;
  8337. }
  8338. }
  8339. }
  8340. fx_prev = fx;
  8341. {
  8342. const int64_t t_end_cpu = ggml_cycles();
  8343. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8344. UNUSED(t_end_cpu);
  8345. const int64_t t_end_wall = ggml_time_us();
  8346. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8347. UNUSED(t_end_wall);
  8348. }
  8349. }
  8350. return GGML_OPT_DID_NOT_CONVERGE;
  8351. }
  8352. //
  8353. // L-BFGS
  8354. //
  8355. // the L-BFGS implementation below is based on the following implementation:
  8356. //
  8357. // https://github.com/chokkan/liblbfgs
  8358. //
  8359. struct ggml_lbfgs_iteration_data {
  8360. float alpha;
  8361. float ys;
  8362. float * s;
  8363. float * y;
  8364. };
  8365. static enum ggml_opt_result linesearch_backtracking(
  8366. struct ggml_context * ctx,
  8367. const struct ggml_opt_params * params,
  8368. int nx,
  8369. float * x,
  8370. float * fx,
  8371. float * g,
  8372. float * d,
  8373. float * step,
  8374. const float * xp,
  8375. struct ggml_tensor * f,
  8376. struct ggml_cgraph * gf,
  8377. struct ggml_cgraph * gb,
  8378. const int np,
  8379. struct ggml_tensor * ps[]) {
  8380. int count = 0;
  8381. float width = 0.0f;
  8382. float dg = 0.0f;
  8383. float finit = 0.0f;
  8384. float dginit = 0.0f;
  8385. float dgtest = 0.0f;
  8386. const float dec = 0.5f;
  8387. const float inc = 2.1f;
  8388. if (*step <= 0.) {
  8389. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8390. }
  8391. // compute the initial gradient in the search direction
  8392. ggml_vec_dot_f32(nx, &dginit, g, d);
  8393. // make sure that d points to a descent direction
  8394. if (0 < dginit) {
  8395. return GGML_LINESEARCH_FAIL;
  8396. }
  8397. // initialize local variables
  8398. finit = *fx;
  8399. dgtest = params->lbfgs.ftol*dginit;
  8400. while (true) {
  8401. ggml_vec_cpy_f32(nx, x, xp);
  8402. ggml_vec_mad_f32(nx, x, d, *step);
  8403. // evaluate the function and gradient values
  8404. {
  8405. ggml_opt_set_params(np, ps, x);
  8406. ggml_graph_reset (gf);
  8407. ggml_set_f32 (f->grad, 1.0f);
  8408. ggml_graph_compute(ctx, gb);
  8409. ggml_opt_get_grad(np, ps, g);
  8410. *fx = ggml_get_f32_1d(f, 0);
  8411. }
  8412. ++count;
  8413. if (*fx > finit + (*step)*dgtest) {
  8414. width = dec;
  8415. } else {
  8416. // Armijo condition is satisfied
  8417. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8418. return count;
  8419. }
  8420. ggml_vec_dot_f32(nx, &dg, g, d);
  8421. // check the Wolfe condition
  8422. if (dg < params->lbfgs.wolfe * dginit) {
  8423. width = inc;
  8424. } else {
  8425. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8426. // regular Wolfe conditions
  8427. return count;
  8428. }
  8429. if(dg > -params->lbfgs.wolfe*dginit) {
  8430. width = dec;
  8431. } else {
  8432. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8433. return count;
  8434. }
  8435. return count;
  8436. }
  8437. }
  8438. if (*step < params->lbfgs.min_step) {
  8439. return GGML_LINESEARCH_MINIMUM_STEP;
  8440. }
  8441. if (*step > params->lbfgs.max_step) {
  8442. return GGML_LINESEARCH_MAXIMUM_STEP;
  8443. }
  8444. if (params->lbfgs.max_linesearch <= count) {
  8445. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8446. }
  8447. (*step) *= width;
  8448. }
  8449. return GGML_LINESEARCH_FAIL;
  8450. }
  8451. static enum ggml_opt_result ggml_opt_lbfgs(
  8452. struct ggml_context * ctx,
  8453. struct ggml_opt_params params,
  8454. struct ggml_tensor * f,
  8455. struct ggml_cgraph * gf,
  8456. struct ggml_cgraph * gb) {
  8457. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8458. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8459. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8460. return GGML_OPT_INVALID_WOLFE;
  8461. }
  8462. }
  8463. gf->n_threads = params.n_threads;
  8464. gb->n_threads = params.n_threads;
  8465. const int m = params.lbfgs.m;
  8466. // these will store the parameters we want to optimize
  8467. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8468. int np = 0;
  8469. int nx = 0;
  8470. for (int i = 0; i < gf->n_nodes; ++i) {
  8471. if (gf->nodes[i]->is_param) {
  8472. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8473. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8474. ps[np++] = gf->nodes[i];
  8475. nx += ggml_nelements(gf->nodes[i]);
  8476. }
  8477. }
  8478. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8479. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8480. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8481. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8482. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8483. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8484. float fx = 0.0f; // cost function value
  8485. float xnorm = 0.0f; // ||x||
  8486. float gnorm = 0.0f; // ||g||
  8487. float step = 0.0f;
  8488. // initialize x from the graph nodes
  8489. ggml_opt_get_params(np, ps, x);
  8490. // the L-BFGS memory
  8491. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8492. for (int i = 0; i < m; ++i) {
  8493. lm[i].alpha = 0.0f;
  8494. lm[i].ys = 0.0f;
  8495. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8496. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8497. }
  8498. // evaluate the function value and its gradient
  8499. {
  8500. ggml_opt_set_params(np, ps, x);
  8501. ggml_graph_reset (gf);
  8502. ggml_set_f32 (f->grad, 1.0f);
  8503. ggml_graph_compute(ctx, gb);
  8504. ggml_opt_get_grad(np, ps, g);
  8505. fx = ggml_get_f32_1d(f, 0);
  8506. }
  8507. if (pf) {
  8508. pf[0] = fx;
  8509. }
  8510. float fx_best = fx;
  8511. // search direction = -gradient
  8512. ggml_vec_neg_f32(nx, d, g);
  8513. // ||x||, ||g||
  8514. ggml_vec_norm_f32(nx, &xnorm, x);
  8515. ggml_vec_norm_f32(nx, &gnorm, g);
  8516. if (xnorm < 1.0f) {
  8517. xnorm = 1.0f;
  8518. }
  8519. // already optimized
  8520. if (gnorm/xnorm <= params.lbfgs.eps) {
  8521. return GGML_OPT_OK;
  8522. }
  8523. // initial step
  8524. ggml_vec_norm_inv_f32(nx, &step, d);
  8525. int j = 0;
  8526. int k = 1;
  8527. int ls = 0;
  8528. int end = 0;
  8529. int bound = 0;
  8530. int n_no_improvement = 0;
  8531. float ys = 0.0f;
  8532. float yy = 0.0f;
  8533. float beta = 0.0f;
  8534. while (true) {
  8535. // store the current position and gradient vectors
  8536. ggml_vec_cpy_f32(nx, xp, x);
  8537. ggml_vec_cpy_f32(nx, gp, g);
  8538. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8539. if (ls < 0) {
  8540. // linesearch failed - go back to the previous point and return
  8541. ggml_vec_cpy_f32(nx, x, xp);
  8542. ggml_vec_cpy_f32(nx, g, gp);
  8543. return ls;
  8544. }
  8545. ggml_vec_norm_f32(nx, &xnorm, x);
  8546. ggml_vec_norm_f32(nx, &gnorm, g);
  8547. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8548. if (xnorm < 1.0) {
  8549. xnorm = 1.0;
  8550. }
  8551. if (gnorm/xnorm <= params.lbfgs.eps) {
  8552. // converged
  8553. return GGML_OPT_OK;
  8554. }
  8555. // delta-based convergence test
  8556. if (pf != NULL) {
  8557. // need at least params.past iterations to start checking for convergence
  8558. if (params.past <= k) {
  8559. const float rate = (pf[k%params.past] - fx)/fx;
  8560. if (fabs(rate) < params.delta) {
  8561. return GGML_OPT_OK;
  8562. }
  8563. }
  8564. pf[k%params.past] = fx;
  8565. }
  8566. // check for improvement
  8567. if (params.max_no_improvement > 0) {
  8568. if (fx < fx_best) {
  8569. fx_best = fx;
  8570. n_no_improvement = 0;
  8571. } else {
  8572. n_no_improvement++;
  8573. if (n_no_improvement >= params.max_no_improvement) {
  8574. return GGML_OPT_OK;
  8575. }
  8576. }
  8577. }
  8578. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8579. // reached the maximum number of iterations
  8580. return GGML_OPT_DID_NOT_CONVERGE;
  8581. }
  8582. // update vectors s and y:
  8583. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8584. // y_{k+1} = g_{k+1} - g_{k}.
  8585. //
  8586. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8587. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8588. // compute scalars ys and yy:
  8589. // ys = y^t \cdot s -> 1 / \rho.
  8590. // yy = y^t \cdot y.
  8591. //
  8592. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8593. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8594. lm[end].ys = ys;
  8595. // find new search direction
  8596. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8597. bound = (m <= k) ? m : k;
  8598. k++;
  8599. end = (end + 1)%m;
  8600. // initialize search direction with -g
  8601. ggml_vec_neg_f32(nx, d, g);
  8602. j = end;
  8603. for (int i = 0; i < bound; ++i) {
  8604. j = (j + m - 1) % m;
  8605. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8606. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8607. lm[j].alpha /= lm[j].ys;
  8608. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8609. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8610. }
  8611. ggml_vec_scale_f32(nx, d, ys/yy);
  8612. for (int i = 0; i < bound; ++i) {
  8613. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8614. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8615. beta /= lm[j].ys;
  8616. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8617. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8618. j = (j + 1)%m;
  8619. }
  8620. step = 1.0;
  8621. }
  8622. return GGML_OPT_DID_NOT_CONVERGE;
  8623. }
  8624. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8625. struct ggml_opt_params result;
  8626. switch (type) {
  8627. case GGML_OPT_ADAM:
  8628. {
  8629. result = (struct ggml_opt_params) {
  8630. .type = GGML_OPT_ADAM,
  8631. .n_threads = 1,
  8632. .past = 0,
  8633. .delta = 1e-5f,
  8634. .max_no_improvement = 100,
  8635. .print_forward_graph = true,
  8636. .print_backward_graph = true,
  8637. .adam = {
  8638. .n_iter = 10000,
  8639. .alpha = 0.001f,
  8640. .beta1 = 0.9f,
  8641. .beta2 = 0.999f,
  8642. .eps = 1e-8f,
  8643. .eps_f = 1e-5f,
  8644. .eps_g = 1e-3f,
  8645. },
  8646. };
  8647. } break;
  8648. case GGML_OPT_LBFGS:
  8649. {
  8650. result = (struct ggml_opt_params) {
  8651. .type = GGML_OPT_LBFGS,
  8652. .n_threads = 1,
  8653. .past = 0,
  8654. .delta = 1e-5f,
  8655. .max_no_improvement = 0,
  8656. .print_forward_graph = true,
  8657. .print_backward_graph = true,
  8658. .lbfgs = {
  8659. .m = 6,
  8660. .n_iter = 100,
  8661. .max_linesearch = 20,
  8662. .eps = 1e-5f,
  8663. .ftol = 1e-4f,
  8664. .wolfe = 0.9f,
  8665. .min_step = 1e-20f,
  8666. .max_step = 1e+20f,
  8667. .linesearch = GGML_LINESEARCH_DEFAULT,
  8668. },
  8669. };
  8670. } break;
  8671. }
  8672. return result;
  8673. }
  8674. enum ggml_opt_result ggml_opt(
  8675. struct ggml_context * ctx,
  8676. struct ggml_opt_params params,
  8677. struct ggml_tensor * f) {
  8678. bool free_ctx = false;
  8679. if (ctx == NULL) {
  8680. struct ggml_init_params params_ctx = {
  8681. .mem_size = 16*1024*1024,
  8682. .mem_buffer = NULL,
  8683. };
  8684. ctx = ggml_init(params_ctx);
  8685. if (ctx == NULL) {
  8686. return GGML_OPT_NO_CONTEXT;
  8687. }
  8688. free_ctx = true;
  8689. }
  8690. enum ggml_opt_result result = GGML_OPT_OK;
  8691. // build forward + backward compute graphs
  8692. struct ggml_cgraph gf = ggml_build_forward (f);
  8693. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8694. switch (params.type) {
  8695. case GGML_OPT_ADAM:
  8696. {
  8697. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8698. } break;
  8699. case GGML_OPT_LBFGS:
  8700. {
  8701. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8702. } break;
  8703. }
  8704. if (params.print_forward_graph) {
  8705. ggml_graph_print (&gf);
  8706. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8707. }
  8708. if (params.print_backward_graph) {
  8709. ggml_graph_print (&gb);
  8710. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8711. }
  8712. if (free_ctx) {
  8713. ggml_free(ctx);
  8714. }
  8715. return result;
  8716. }
  8717. ////////////////////////////////////////////////////////////////////////////////
  8718. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8719. const int nb = k / qk;
  8720. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8721. const size_t row_size = nb*bs;
  8722. assert(k % qk == 0);
  8723. const size_t pp_size = qk / 2;
  8724. uint8_t * pp = (uint8_t *) alloca(pp_size);
  8725. char * pdst = (char *) dst;
  8726. for (int j = 0; j < n; j += k) {
  8727. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8728. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8729. for (int i = 0; i < nb; i++) {
  8730. float amax = 0.0f; // absolute max
  8731. {
  8732. for (int l = 0; l < qk; l++) {
  8733. const float v = src[j + i*qk + l];
  8734. amax = MAX(amax, fabsf(v));
  8735. }
  8736. const float d = amax / ((1 << 3) - 1);
  8737. const float id = d ? 1.0f/d : 0.0f;
  8738. *(float *) pd = d;
  8739. pd += bs;
  8740. for (int l = 0; l < qk; l += 2) {
  8741. const float v0 = (src[j + i*qk + l + 0])*id;
  8742. const float v1 = (src[j + i*qk + l + 1])*id;
  8743. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  8744. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  8745. assert(vi0 >= 0 && vi0 < 16);
  8746. assert(vi1 >= 0 && vi1 < 16);
  8747. hist[vi0]++;
  8748. hist[vi1]++;
  8749. pp[l/2] = vi0 | (vi1 << 4);
  8750. }
  8751. memcpy(pb, pp, pp_size);
  8752. pb += bs;
  8753. }
  8754. }
  8755. }
  8756. return (n/k)*row_size;
  8757. }
  8758. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8759. const int nb = k / qk;
  8760. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8761. const size_t row_size = nb*bs;
  8762. assert(k % qk == 0);
  8763. const size_t pp_size = qk / 2;
  8764. uint8_t * pp = (uint8_t *) alloca(pp_size);
  8765. char * pdst = (char *) dst;
  8766. for (int j = 0; j < n; j += k) {
  8767. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8768. uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8769. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8770. //printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
  8771. for (int i = 0; i < nb; i++) {
  8772. float min = FLT_MAX;
  8773. float max = -FLT_MAX;
  8774. {
  8775. for (int l = 0; l < qk; l++) {
  8776. const float v = src[j + i*qk + l];
  8777. if (v < min) min = v;
  8778. if (v > max) max = v;
  8779. }
  8780. const float d = (max - min) / ((1 << 4) - 1);
  8781. const float id = d ? 1.0f/d : 0.0f;
  8782. *(float *) pd = d;
  8783. *(float *) pm = min;
  8784. pd += bs;
  8785. pm += bs;
  8786. for (int l = 0; l < qk; l += 2) {
  8787. const float v0 = (src[j + i*qk + l + 0] - min)*id;
  8788. const float v1 = (src[j + i*qk + l + 1] - min)*id;
  8789. const uint8_t vi0 = round(v0);
  8790. const uint8_t vi1 = round(v1);
  8791. assert(vi0 >= 0 && vi0 < 16);
  8792. assert(vi1 >= 0 && vi1 < 16);
  8793. hist[vi0]++;
  8794. hist[vi1]++;
  8795. pp[l/2] = vi0 | (vi1 << 4);
  8796. }
  8797. memcpy(pb, pp, pp_size);
  8798. pb += bs;
  8799. }
  8800. }
  8801. }
  8802. return (n/k)*row_size;
  8803. }
  8804. ////////////////////////////////////////////////////////////////////////////////
  8805. int ggml_cpu_has_avx(void) {
  8806. #if defined(__AVX__)
  8807. return 1;
  8808. #else
  8809. return 0;
  8810. #endif
  8811. }
  8812. int ggml_cpu_has_avx2(void) {
  8813. #if defined(__AVX2__)
  8814. return 1;
  8815. #else
  8816. return 0;
  8817. #endif
  8818. }
  8819. int ggml_cpu_has_avx512(void) {
  8820. #if defined(__AVX512F__)
  8821. return 1;
  8822. #else
  8823. return 0;
  8824. #endif
  8825. }
  8826. int ggml_cpu_has_fma(void) {
  8827. #if defined(__FMA__)
  8828. return 1;
  8829. #else
  8830. return 0;
  8831. #endif
  8832. }
  8833. int ggml_cpu_has_neon(void) {
  8834. #if defined(__ARM_NEON)
  8835. return 1;
  8836. #else
  8837. return 0;
  8838. #endif
  8839. }
  8840. int ggml_cpu_has_arm_fma(void) {
  8841. #if defined(__ARM_FEATURE_FMA)
  8842. return 1;
  8843. #else
  8844. return 0;
  8845. #endif
  8846. }
  8847. int ggml_cpu_has_f16c(void) {
  8848. #if defined(__F16C__)
  8849. return 1;
  8850. #else
  8851. return 0;
  8852. #endif
  8853. }
  8854. int ggml_cpu_has_fp16_va(void) {
  8855. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8856. return 1;
  8857. #else
  8858. return 0;
  8859. #endif
  8860. }
  8861. int ggml_cpu_has_wasm_simd(void) {
  8862. #if defined(__wasm_simd128__)
  8863. return 1;
  8864. #else
  8865. return 0;
  8866. #endif
  8867. }
  8868. int ggml_cpu_has_blas(void) {
  8869. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8870. return 1;
  8871. #else
  8872. return 0;
  8873. #endif
  8874. }
  8875. int ggml_cpu_has_sse3(void) {
  8876. #if defined(__SSE3__)
  8877. return 1;
  8878. #else
  8879. return 0;
  8880. #endif
  8881. }
  8882. int ggml_cpu_has_vsx(void) {
  8883. #if defined(__POWER9_VECTOR__)
  8884. return 1;
  8885. #else
  8886. return 0;
  8887. #endif
  8888. }
  8889. ////////////////////////////////////////////////////////////////////////////////