ggml.c 710 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "ggml-aarch64.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_OPENMP
  29. #include <omp.h>
  30. #endif
  31. #ifdef GGML_USE_METAL
  32. #include <unistd.h>
  33. #endif
  34. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  35. #undef GGML_USE_LLAMAFILE
  36. #endif
  37. #ifdef GGML_USE_LLAMAFILE
  38. #include <llamafile/sgemm.h>
  39. #endif
  40. #if defined(_MSC_VER)
  41. // disable "possible loss of data" to avoid hundreds of casts
  42. // we should just be careful :)
  43. #pragma warning(disable: 4244 4267)
  44. // disable POSIX deprecation warnings
  45. // these functions are never going away, anyway
  46. #pragma warning(disable: 4996)
  47. #endif
  48. #if defined(_WIN32)
  49. #define WIN32_LEAN_AND_MEAN
  50. #ifndef NOMINMAX
  51. #define NOMINMAX
  52. #endif
  53. #include <windows.h>
  54. typedef volatile LONG atomic_int;
  55. typedef atomic_int atomic_bool;
  56. typedef atomic_int atomic_flag;
  57. #define ATOMIC_FLAG_INIT 0
  58. static void atomic_store(atomic_int * ptr, LONG val) {
  59. InterlockedExchange(ptr, val);
  60. }
  61. static LONG atomic_load(atomic_int * ptr) {
  62. return InterlockedCompareExchange(ptr, 0, 0);
  63. }
  64. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  65. return InterlockedExchangeAdd(ptr, inc);
  66. }
  67. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  68. return atomic_fetch_add(ptr, -(dec));
  69. }
  70. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  71. return InterlockedExchange(ptr, 1);
  72. }
  73. static void atomic_flag_clear(atomic_flag * ptr) {
  74. InterlockedExchange(ptr, 0);
  75. }
  76. typedef HANDLE pthread_t;
  77. typedef DWORD thread_ret_t;
  78. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  79. (void) unused;
  80. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  81. if (handle == NULL)
  82. {
  83. return EAGAIN;
  84. }
  85. *out = handle;
  86. return 0;
  87. }
  88. static int pthread_join(pthread_t thread, void * unused) {
  89. (void) unused;
  90. int ret = (int) WaitForSingleObject(thread, INFINITE);
  91. CloseHandle(thread);
  92. return ret;
  93. }
  94. static int sched_yield (void) {
  95. Sleep (0);
  96. return 0;
  97. }
  98. #else
  99. #include <pthread.h>
  100. #include <stdatomic.h>
  101. typedef void * thread_ret_t;
  102. #include <sys/types.h>
  103. #include <sys/stat.h>
  104. #include <unistd.h>
  105. #endif
  106. typedef pthread_t ggml_thread_t;
  107. #ifdef GGML_USE_CPU_HBM
  108. #include <hbwmalloc.h>
  109. #endif
  110. #if defined(__APPLE__)
  111. #include <TargetConditionals.h>
  112. #endif
  113. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  114. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  115. #include <sys/wait.h>
  116. void ggml_print_backtrace(void) {
  117. /*
  118. #include <execinfo.h>
  119. #include <dlfcn.h>
  120. void * trace[100];
  121. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  122. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  123. */
  124. // backtrack_symbols does not show line numbers, use gdb instead
  125. char attach[32];
  126. snprintf(attach, sizeof(attach), "attach %d", getpid());
  127. int pid = fork();
  128. if (pid == 0) {
  129. execlp("gdb", "gdb", "--batch",
  130. "-ex", "set style enabled on",
  131. "-ex", attach,
  132. "-ex", "bt -frame-info source-and-location",
  133. "-ex", "detach",
  134. "-ex", "quit",
  135. (char *) NULL);
  136. } else {
  137. waitpid(pid, NULL, 0);
  138. }
  139. }
  140. #else
  141. void ggml_print_backtrace(void) {
  142. // platform not supported
  143. }
  144. #endif
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. //
  404. // cross-platform UTF-8 file paths
  405. //
  406. #ifdef _WIN32
  407. static wchar_t * ggml_mbstowcs(const char * mbs) {
  408. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  409. if (!wlen) {
  410. errno = EINVAL;
  411. return NULL;
  412. }
  413. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  414. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  415. if (!wlen) {
  416. GGML_FREE(wbuf);
  417. errno = EINVAL;
  418. return NULL;
  419. }
  420. return wbuf;
  421. }
  422. #endif
  423. FILE * ggml_fopen(const char * fname, const char * mode) {
  424. #ifdef _WIN32
  425. FILE * file = NULL;
  426. // convert fname (UTF-8)
  427. wchar_t * wfname = ggml_mbstowcs(fname);
  428. if (wfname) {
  429. // convert mode (ANSI)
  430. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  431. wchar_t * wmode_p = wmode;
  432. do {
  433. *wmode_p++ = (wchar_t)*mode;
  434. } while (*mode++);
  435. // open file
  436. file = _wfopen(wfname, wmode);
  437. GGML_FREE(wfname);
  438. GGML_FREE(wmode);
  439. }
  440. return file;
  441. #else
  442. return fopen(fname, mode);
  443. #endif
  444. }
  445. //
  446. // cache line
  447. //
  448. #if defined(__cpp_lib_hardware_interference_size)
  449. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  450. #else
  451. #if defined(__POWER9_VECTOR__)
  452. #define CACHE_LINE_SIZE 128
  453. #else
  454. #define CACHE_LINE_SIZE 64
  455. #endif
  456. #endif
  457. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  458. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  459. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  460. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  461. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  462. [GGML_TYPE_I8] = {
  463. .type_name = "i8",
  464. .blck_size = 1,
  465. .type_size = sizeof(int8_t),
  466. .is_quantized = false,
  467. },
  468. [GGML_TYPE_I16] = {
  469. .type_name = "i16",
  470. .blck_size = 1,
  471. .type_size = sizeof(int16_t),
  472. .is_quantized = false,
  473. },
  474. [GGML_TYPE_I32] = {
  475. .type_name = "i32",
  476. .blck_size = 1,
  477. .type_size = sizeof(int32_t),
  478. .is_quantized = false,
  479. },
  480. [GGML_TYPE_I64] = {
  481. .type_name = "i64",
  482. .blck_size = 1,
  483. .type_size = sizeof(int64_t),
  484. .is_quantized = false,
  485. },
  486. [GGML_TYPE_F64] = {
  487. .type_name = "f64",
  488. .blck_size = 1,
  489. .type_size = sizeof(double),
  490. .is_quantized = false,
  491. .nrows = 1,
  492. },
  493. [GGML_TYPE_F32] = {
  494. .type_name = "f32",
  495. .blck_size = 1,
  496. .type_size = sizeof(float),
  497. .is_quantized = false,
  498. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  499. .vec_dot_type = GGML_TYPE_F32,
  500. .nrows = 1,
  501. },
  502. [GGML_TYPE_F16] = {
  503. .type_name = "f16",
  504. .blck_size = 1,
  505. .type_size = sizeof(ggml_fp16_t),
  506. .is_quantized = false,
  507. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  508. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  509. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  510. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  511. .vec_dot_type = GGML_TYPE_F16,
  512. .nrows = 1,
  513. },
  514. [GGML_TYPE_Q4_0] = {
  515. .type_name = "q4_0",
  516. .blck_size = QK4_0,
  517. .type_size = sizeof(block_q4_0),
  518. .is_quantized = true,
  519. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  520. .from_float = quantize_row_q4_0,
  521. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  522. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  523. .vec_dot_type = GGML_TYPE_Q8_0,
  524. #if defined (__ARM_FEATURE_MATMUL_INT8)
  525. .nrows = 2,
  526. #else
  527. .nrows = 1,
  528. #endif
  529. },
  530. [GGML_TYPE_Q4_1] = {
  531. .type_name = "q4_1",
  532. .blck_size = QK4_1,
  533. .type_size = sizeof(block_q4_1),
  534. .is_quantized = true,
  535. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  536. .from_float = quantize_row_q4_1,
  537. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  538. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  539. .vec_dot_type = GGML_TYPE_Q8_1,
  540. #if defined (__ARM_FEATURE_MATMUL_INT8)
  541. .nrows = 2,
  542. #else
  543. .nrows = 1,
  544. #endif
  545. },
  546. [4] = { // GGML_TYPE_Q4_2
  547. .type_name = "DEPRECATED",
  548. .blck_size = 0,
  549. .type_size = 0,
  550. .is_quantized = false,
  551. .to_float = NULL,
  552. .from_float = NULL,
  553. .from_float_ref = NULL,
  554. .vec_dot = NULL,
  555. .vec_dot_type = GGML_TYPE_COUNT,
  556. .nrows = 1,
  557. },
  558. [5] = { // GGML_TYPE_Q4_3
  559. .type_name = "DEPRECATED",
  560. .blck_size = 0,
  561. .type_size = 0,
  562. .is_quantized = false,
  563. .to_float = NULL,
  564. .from_float = NULL,
  565. .from_float_ref = NULL,
  566. .vec_dot = NULL,
  567. .vec_dot_type = GGML_TYPE_COUNT,
  568. .nrows = 1,
  569. },
  570. [GGML_TYPE_Q5_0] = {
  571. .type_name = "q5_0",
  572. .blck_size = QK5_0,
  573. .type_size = sizeof(block_q5_0),
  574. .is_quantized = true,
  575. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  576. .from_float = quantize_row_q5_0,
  577. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  578. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  579. .vec_dot_type = GGML_TYPE_Q8_0,
  580. .nrows = 1,
  581. },
  582. [GGML_TYPE_Q5_1] = {
  583. .type_name = "q5_1",
  584. .blck_size = QK5_1,
  585. .type_size = sizeof(block_q5_1),
  586. .is_quantized = true,
  587. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  588. .from_float = quantize_row_q5_1,
  589. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  590. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  591. .vec_dot_type = GGML_TYPE_Q8_1,
  592. .nrows = 1,
  593. },
  594. [GGML_TYPE_Q8_0] = {
  595. .type_name = "q8_0",
  596. .blck_size = QK8_0,
  597. .type_size = sizeof(block_q8_0),
  598. .is_quantized = true,
  599. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  600. .from_float = quantize_row_q8_0,
  601. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  602. .from_float_to_mat = quantize_mat_q8_0,
  603. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  604. .vec_dot_type = GGML_TYPE_Q8_0,
  605. #if defined (__ARM_FEATURE_MATMUL_INT8)
  606. .nrows = 2,
  607. #else
  608. .nrows = 1,
  609. #endif
  610. },
  611. [GGML_TYPE_Q8_1] = {
  612. .type_name = "q8_1",
  613. .blck_size = QK8_1,
  614. .type_size = sizeof(block_q8_1),
  615. .is_quantized = true,
  616. .from_float = quantize_row_q8_1,
  617. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  618. .vec_dot_type = GGML_TYPE_Q8_1,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q2_K] = {
  622. .type_name = "q2_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q2_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  627. .from_float = quantize_row_q2_K,
  628. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  629. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q3_K] = {
  634. .type_name = "q3_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q3_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  639. .from_float = quantize_row_q3_K,
  640. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  641. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_Q4_K] = {
  646. .type_name = "q4_K",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_q4_K),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  651. .from_float = quantize_row_q4_K,
  652. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  653. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_Q5_K] = {
  658. .type_name = "q5_K",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_q5_K),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  663. .from_float = quantize_row_q5_K,
  664. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  665. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_Q6_K] = {
  670. .type_name = "q6_K",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_q6_K),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  675. .from_float = quantize_row_q6_K,
  676. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  677. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ2_XXS] = {
  682. .type_name = "iq2_xxs",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq2_xxs),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  687. .from_float = NULL,
  688. .from_float_ref = NULL,
  689. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_XS] = {
  694. .type_name = "iq2_xs",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_xs),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  699. .from_float = NULL,
  700. .from_float_ref = NULL,
  701. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ3_XXS] = {
  706. .type_name = "iq3_xxs",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq3_xxs),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  711. .from_float = quantize_row_iq3_xxs,
  712. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  713. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ3_S] = {
  718. .type_name = "iq3_s",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq3_s),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  723. .from_float = quantize_row_iq3_s,
  724. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  725. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ2_S] = {
  730. .type_name = "iq2_s",
  731. .blck_size = QK_K,
  732. .type_size = sizeof(block_iq2_s),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  735. .from_float = quantize_row_iq2_s,
  736. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  737. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  738. .vec_dot_type = GGML_TYPE_Q8_K,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ1_S] = {
  742. .type_name = "iq1_s",
  743. .blck_size = QK_K,
  744. .type_size = sizeof(block_iq1_s),
  745. .is_quantized = true,
  746. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  747. .from_float = NULL,
  748. .from_float_ref = NULL,
  749. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  750. .vec_dot_type = GGML_TYPE_Q8_K,
  751. .nrows = 1,
  752. },
  753. [GGML_TYPE_IQ1_M] = {
  754. .type_name = "iq1_m",
  755. .blck_size = QK_K,
  756. .type_size = sizeof(block_iq1_m),
  757. .is_quantized = true,
  758. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  759. .from_float = NULL,
  760. .from_float_ref = NULL,
  761. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  762. .vec_dot_type = GGML_TYPE_Q8_K,
  763. .nrows = 1,
  764. },
  765. [GGML_TYPE_IQ4_NL] = {
  766. .type_name = "iq4_nl",
  767. .blck_size = QK4_NL,
  768. .type_size = sizeof(block_iq4_nl),
  769. .is_quantized = true,
  770. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  771. .from_float = quantize_row_iq4_nl,
  772. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  773. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  774. .vec_dot_type = GGML_TYPE_Q8_0,
  775. .nrows = 1,
  776. },
  777. [GGML_TYPE_IQ4_XS] = {
  778. .type_name = "iq4_xs",
  779. .blck_size = QK_K,
  780. .type_size = sizeof(block_iq4_xs),
  781. .is_quantized = true,
  782. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  783. .from_float = quantize_row_iq4_xs,
  784. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  785. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  786. .vec_dot_type = GGML_TYPE_Q8_K,
  787. .nrows = 1,
  788. },
  789. [GGML_TYPE_Q8_K] = {
  790. .type_name = "q8_K",
  791. .blck_size = QK_K,
  792. .type_size = sizeof(block_q8_K),
  793. .is_quantized = true,
  794. .from_float = quantize_row_q8_K,
  795. },
  796. [GGML_TYPE_BF16] = {
  797. .type_name = "bf16",
  798. .blck_size = 1,
  799. .type_size = sizeof(ggml_bf16_t),
  800. .is_quantized = false,
  801. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  802. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  803. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  804. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  805. .vec_dot_type = GGML_TYPE_BF16,
  806. .nrows = 1,
  807. },
  808. [GGML_TYPE_Q4_0_4_4] = {
  809. .type_name = "q4_0_4x4",
  810. .blck_size = QK4_0,
  811. .blck_size_interleave = 4,
  812. .type_size = sizeof(block_q4_0),
  813. .is_quantized = true,
  814. .to_float = NULL,
  815. .from_float = NULL,
  816. .from_float_ref = NULL,
  817. .vec_dot = NULL,
  818. .vec_dot_type = GGML_TYPE_Q8_0,
  819. .nrows = 1,
  820. .ncols = 4,
  821. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  822. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  823. },
  824. [GGML_TYPE_Q4_0_4_8] = {
  825. .type_name = "q4_0_4x8",
  826. .blck_size = QK4_0,
  827. .blck_size_interleave = 8,
  828. .type_size = sizeof(block_q4_0),
  829. .is_quantized = true,
  830. .to_float = NULL,
  831. .from_float = NULL,
  832. .from_float_ref = NULL,
  833. .vec_dot = NULL,
  834. .vec_dot_type = GGML_TYPE_Q8_0,
  835. .nrows = 1,
  836. .ncols = 4,
  837. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  838. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  839. },
  840. [GGML_TYPE_Q4_0_8_8] = {
  841. .type_name = "q4_0_8x8",
  842. .blck_size = QK4_0,
  843. .blck_size_interleave = 8,
  844. .type_size = sizeof(block_q4_0),
  845. .is_quantized = true,
  846. .to_float = NULL,
  847. .from_float = NULL,
  848. .from_float_ref = NULL,
  849. .vec_dot = NULL,
  850. .vec_dot_type = GGML_TYPE_Q8_0,
  851. .nrows = 1,
  852. .ncols = 8,
  853. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  854. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  855. }
  856. };
  857. // For internal test use
  858. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  859. GGML_ASSERT(type < GGML_TYPE_COUNT);
  860. return type_traits[type];
  861. }
  862. //
  863. // simd mappings
  864. //
  865. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  866. // we then implement the fundamental computation operations below using only these macros
  867. // adding support for new architectures requires to define the corresponding SIMD macros
  868. //
  869. // GGML_F32_STEP / GGML_F16_STEP
  870. // number of elements to process in a single step
  871. //
  872. // GGML_F32_EPR / GGML_F16_EPR
  873. // number of elements to fit in a single register
  874. //
  875. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  876. #define GGML_SIMD
  877. // F32 NEON
  878. #define GGML_F32_STEP 16
  879. #define GGML_F32_EPR 4
  880. #define GGML_F32x4 float32x4_t
  881. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  882. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  883. #define GGML_F32x4_LOAD vld1q_f32
  884. #define GGML_F32x4_STORE vst1q_f32
  885. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  886. #define GGML_F32x4_ADD vaddq_f32
  887. #define GGML_F32x4_MUL vmulq_f32
  888. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  889. #define GGML_F32x4_REDUCE(res, x) \
  890. { \
  891. int offset = GGML_F32_ARR >> 1; \
  892. for (int i = 0; i < offset; ++i) { \
  893. x[i] = vaddq_f32(x[i], x[offset+i]); \
  894. } \
  895. offset >>= 1; \
  896. for (int i = 0; i < offset; ++i) { \
  897. x[i] = vaddq_f32(x[i], x[offset+i]); \
  898. } \
  899. offset >>= 1; \
  900. for (int i = 0; i < offset; ++i) { \
  901. x[i] = vaddq_f32(x[i], x[offset+i]); \
  902. } \
  903. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  904. }
  905. #define GGML_F32_VEC GGML_F32x4
  906. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  907. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  908. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  909. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  910. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  911. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  912. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  913. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  914. // F16 NEON
  915. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  916. #define GGML_F16_STEP 32
  917. #define GGML_F16_EPR 8
  918. #define GGML_F16x8 float16x8_t
  919. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  920. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  921. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  922. #define GGML_F16x8_STORE vst1q_f16
  923. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  924. #define GGML_F16x8_ADD vaddq_f16
  925. #define GGML_F16x8_MUL vmulq_f16
  926. #define GGML_F16x8_REDUCE(res, x) \
  927. do { \
  928. int offset = GGML_F16_ARR >> 1; \
  929. for (int i = 0; i < offset; ++i) { \
  930. x[i] = vaddq_f16(x[i], x[offset+i]); \
  931. } \
  932. offset >>= 1; \
  933. for (int i = 0; i < offset; ++i) { \
  934. x[i] = vaddq_f16(x[i], x[offset+i]); \
  935. } \
  936. offset >>= 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = vaddq_f16(x[i], x[offset+i]); \
  939. } \
  940. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  941. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  942. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  943. } while (0)
  944. #define GGML_F16_VEC GGML_F16x8
  945. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  946. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  947. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  948. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  949. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  950. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  951. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  952. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  953. #else
  954. // if FP16 vector arithmetic is not supported, we use FP32 instead
  955. // and take advantage of the vcvt_ functions to convert to/from FP16
  956. #define GGML_F16_STEP 16
  957. #define GGML_F16_EPR 4
  958. #define GGML_F32Cx4 float32x4_t
  959. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  960. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  961. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  962. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  963. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  964. #define GGML_F32Cx4_ADD vaddq_f32
  965. #define GGML_F32Cx4_MUL vmulq_f32
  966. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  967. #define GGML_F16_VEC GGML_F32Cx4
  968. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  969. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  970. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  971. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  972. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  973. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  974. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  975. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  976. #endif
  977. #elif defined(__AVX512F__)
  978. #define GGML_SIMD
  979. // F32 AVX512
  980. #define GGML_F32_STEP 64
  981. #define GGML_F32_EPR 16
  982. #define GGML_F32x16 __m512
  983. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  984. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  985. #define GGML_F32x16_LOAD _mm512_loadu_ps
  986. #define GGML_F32x16_STORE _mm512_storeu_ps
  987. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  988. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  989. #define GGML_F32x16_ADD _mm512_add_ps
  990. #define GGML_F32x16_MUL _mm512_mul_ps
  991. #define GGML_F32x16_REDUCE(res, x) \
  992. do { \
  993. int offset = GGML_F32_ARR >> 1; \
  994. for (int i = 0; i < offset; ++i) { \
  995. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  996. } \
  997. offset >>= 1; \
  998. for (int i = 0; i < offset; ++i) { \
  999. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1000. } \
  1001. offset >>= 1; \
  1002. for (int i = 0; i < offset; ++i) { \
  1003. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1004. } \
  1005. res = _mm512_reduce_add_ps(x[0]); \
  1006. } while (0)
  1007. // TODO: is this optimal ?
  1008. #define GGML_F32_VEC GGML_F32x16
  1009. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1010. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1011. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1012. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1013. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1014. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1015. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1016. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1017. // F16 AVX512
  1018. // F16 AVX
  1019. #define GGML_F16_STEP 64
  1020. #define GGML_F16_EPR 16
  1021. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1022. #define GGML_F32Cx16 __m512
  1023. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1024. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1025. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1026. // so F16C guard isn't required
  1027. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1028. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1029. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1030. #define GGML_F32Cx16_ADD _mm512_add_ps
  1031. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1032. #define GGML_F32Cx16_REDUCE(res, x) \
  1033. do { \
  1034. int offset = GGML_F32_ARR >> 1; \
  1035. for (int i = 0; i < offset; ++i) { \
  1036. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1037. } \
  1038. offset >>= 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. res = _mm512_reduce_add_ps(x[0]); \
  1047. } while (0)
  1048. #define GGML_F16_VEC GGML_F32Cx16
  1049. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1050. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1051. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1052. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1053. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1054. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1055. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1056. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1057. #elif defined(__AVX__)
  1058. #define GGML_SIMD
  1059. // F32 AVX
  1060. #define GGML_F32_STEP 32
  1061. #define GGML_F32_EPR 8
  1062. #define GGML_F32x8 __m256
  1063. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1064. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1065. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1066. #define GGML_F32x8_STORE _mm256_storeu_ps
  1067. #if defined(__FMA__)
  1068. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1069. #else
  1070. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1071. #endif
  1072. #define GGML_F32x8_ADD _mm256_add_ps
  1073. #define GGML_F32x8_MUL _mm256_mul_ps
  1074. #define GGML_F32x8_REDUCE(res, x) \
  1075. do { \
  1076. int offset = GGML_F32_ARR >> 1; \
  1077. for (int i = 0; i < offset; ++i) { \
  1078. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1079. } \
  1080. offset >>= 1; \
  1081. for (int i = 0; i < offset; ++i) { \
  1082. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1083. } \
  1084. offset >>= 1; \
  1085. for (int i = 0; i < offset; ++i) { \
  1086. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1087. } \
  1088. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1089. _mm256_extractf128_ps(x[0], 1)); \
  1090. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1091. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1092. } while (0)
  1093. // TODO: is this optimal ?
  1094. #define GGML_F32_VEC GGML_F32x8
  1095. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1096. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1097. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1098. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1099. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1100. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1101. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1102. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1103. // F16 AVX
  1104. #define GGML_F16_STEP 32
  1105. #define GGML_F16_EPR 8
  1106. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1107. #define GGML_F32Cx8 __m256
  1108. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1109. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1110. #if defined(__F16C__)
  1111. // the _mm256_cvt intrinsics require F16C
  1112. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1113. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1114. #else
  1115. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1116. float tmp[8];
  1117. for (int i = 0; i < 8; i++) {
  1118. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1119. }
  1120. return _mm256_loadu_ps(tmp);
  1121. }
  1122. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1123. float arr[8];
  1124. _mm256_storeu_ps(arr, y);
  1125. for (int i = 0; i < 8; i++)
  1126. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1127. }
  1128. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1129. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1130. #endif
  1131. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1132. #define GGML_F32Cx8_ADD _mm256_add_ps
  1133. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1134. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1135. #define GGML_F16_VEC GGML_F32Cx8
  1136. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1137. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1138. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1139. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1140. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1141. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1142. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1143. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1144. #elif defined(__POWER9_VECTOR__)
  1145. #define GGML_SIMD
  1146. // F32 POWER9
  1147. #define GGML_F32_STEP 32
  1148. #define GGML_F32_EPR 4
  1149. #define GGML_F32x4 vector float
  1150. #define GGML_F32x4_ZERO 0.0f
  1151. #define GGML_F32x4_SET1 vec_splats
  1152. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1153. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1154. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1155. #define GGML_F32x4_ADD vec_add
  1156. #define GGML_F32x4_MUL vec_mul
  1157. #define GGML_F32x4_REDUCE(res, x) \
  1158. { \
  1159. int offset = GGML_F32_ARR >> 1; \
  1160. for (int i = 0; i < offset; ++i) { \
  1161. x[i] = vec_add(x[i], x[offset+i]); \
  1162. } \
  1163. offset >>= 1; \
  1164. for (int i = 0; i < offset; ++i) { \
  1165. x[i] = vec_add(x[i], x[offset+i]); \
  1166. } \
  1167. offset >>= 1; \
  1168. for (int i = 0; i < offset; ++i) { \
  1169. x[i] = vec_add(x[i], x[offset+i]); \
  1170. } \
  1171. res = vec_extract(x[0], 0) + \
  1172. vec_extract(x[0], 1) + \
  1173. vec_extract(x[0], 2) + \
  1174. vec_extract(x[0], 3); \
  1175. }
  1176. #define GGML_F32_VEC GGML_F32x4
  1177. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1178. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1179. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1180. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1181. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1182. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1183. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1184. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1185. // F16 POWER9
  1186. #define GGML_F16_STEP GGML_F32_STEP
  1187. #define GGML_F16_EPR GGML_F32_EPR
  1188. #define GGML_F16_VEC GGML_F32x4
  1189. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1190. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1191. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1192. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1193. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1194. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1195. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1196. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1197. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1198. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1199. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1200. #define GGML_F16_VEC_STORE(p, r, i) \
  1201. if (i & 0x1) \
  1202. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1203. r[i - GGML_ENDIAN_BYTE(0)]), \
  1204. 0, p - GGML_F16_EPR)
  1205. #elif defined(__wasm_simd128__)
  1206. #define GGML_SIMD
  1207. // F32 WASM
  1208. #define GGML_F32_STEP 16
  1209. #define GGML_F32_EPR 4
  1210. #define GGML_F32x4 v128_t
  1211. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1212. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1213. #define GGML_F32x4_LOAD wasm_v128_load
  1214. #define GGML_F32x4_STORE wasm_v128_store
  1215. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1216. #define GGML_F32x4_ADD wasm_f32x4_add
  1217. #define GGML_F32x4_MUL wasm_f32x4_mul
  1218. #define GGML_F32x4_REDUCE(res, x) \
  1219. { \
  1220. int offset = GGML_F32_ARR >> 1; \
  1221. for (int i = 0; i < offset; ++i) { \
  1222. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1223. } \
  1224. offset >>= 1; \
  1225. for (int i = 0; i < offset; ++i) { \
  1226. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1227. } \
  1228. offset >>= 1; \
  1229. for (int i = 0; i < offset; ++i) { \
  1230. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1231. } \
  1232. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1233. wasm_f32x4_extract_lane(x[0], 1) + \
  1234. wasm_f32x4_extract_lane(x[0], 2) + \
  1235. wasm_f32x4_extract_lane(x[0], 3); \
  1236. }
  1237. #define GGML_F32_VEC GGML_F32x4
  1238. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1239. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1240. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1241. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1242. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1243. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1244. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1245. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1246. // F16 WASM
  1247. #define GGML_F16_STEP 16
  1248. #define GGML_F16_EPR 4
  1249. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1250. float tmp[4];
  1251. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1252. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1253. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1254. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1255. return wasm_v128_load(tmp);
  1256. }
  1257. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1258. float tmp[4];
  1259. wasm_v128_store(tmp, x);
  1260. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1261. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1262. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1263. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1264. }
  1265. #define GGML_F16x4 v128_t
  1266. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1267. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1268. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1269. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1270. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1271. #define GGML_F16x4_ADD wasm_f32x4_add
  1272. #define GGML_F16x4_MUL wasm_f32x4_mul
  1273. #define GGML_F16x4_REDUCE(res, x) \
  1274. { \
  1275. int offset = GGML_F16_ARR >> 1; \
  1276. for (int i = 0; i < offset; ++i) { \
  1277. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1278. } \
  1279. offset >>= 1; \
  1280. for (int i = 0; i < offset; ++i) { \
  1281. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1282. } \
  1283. offset >>= 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1286. } \
  1287. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1288. wasm_f32x4_extract_lane(x[0], 1) + \
  1289. wasm_f32x4_extract_lane(x[0], 2) + \
  1290. wasm_f32x4_extract_lane(x[0], 3); \
  1291. }
  1292. #define GGML_F16_VEC GGML_F16x4
  1293. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1301. #elif defined(__SSE3__)
  1302. #define GGML_SIMD
  1303. // F32 SSE
  1304. #define GGML_F32_STEP 32
  1305. #define GGML_F32_EPR 4
  1306. #define GGML_F32x4 __m128
  1307. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1308. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1309. #define GGML_F32x4_LOAD _mm_loadu_ps
  1310. #define GGML_F32x4_STORE _mm_storeu_ps
  1311. #if defined(__FMA__)
  1312. // TODO: Does this work?
  1313. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1314. #else
  1315. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1316. #endif
  1317. #define GGML_F32x4_ADD _mm_add_ps
  1318. #define GGML_F32x4_MUL _mm_mul_ps
  1319. #define GGML_F32x4_REDUCE(res, x) \
  1320. { \
  1321. int offset = GGML_F32_ARR >> 1; \
  1322. for (int i = 0; i < offset; ++i) { \
  1323. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1324. } \
  1325. offset >>= 1; \
  1326. for (int i = 0; i < offset; ++i) { \
  1327. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1328. } \
  1329. offset >>= 1; \
  1330. for (int i = 0; i < offset; ++i) { \
  1331. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1332. } \
  1333. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1334. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1335. }
  1336. // TODO: is this optimal ?
  1337. #define GGML_F32_VEC GGML_F32x4
  1338. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1339. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1340. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1341. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1342. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1343. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1344. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1345. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1346. // F16 SSE
  1347. #define GGML_F16_STEP 32
  1348. #define GGML_F16_EPR 4
  1349. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1350. float tmp[4];
  1351. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1352. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1353. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1354. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1355. return _mm_loadu_ps(tmp);
  1356. }
  1357. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1358. float arr[4];
  1359. _mm_storeu_ps(arr, y);
  1360. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1361. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1362. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1363. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1364. }
  1365. #define GGML_F32Cx4 __m128
  1366. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1367. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1368. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1369. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1370. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1371. #define GGML_F32Cx4_ADD _mm_add_ps
  1372. #define GGML_F32Cx4_MUL _mm_mul_ps
  1373. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1374. #define GGML_F16_VEC GGML_F32Cx4
  1375. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1376. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1377. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1378. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1379. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1380. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1381. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1382. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1383. #elif defined(__loongarch_asx)
  1384. #define GGML_SIMD
  1385. // F32 LASX
  1386. #define GGML_F32_STEP 32
  1387. #define GGML_F32_EPR 8
  1388. #define GGML_F32x8 __m256
  1389. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1390. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1391. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1392. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1393. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1394. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1395. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1396. #define GGML_F32x8_REDUCE(res, x) \
  1397. do { \
  1398. int offset = GGML_F32_ARR >> 1; \
  1399. for (int i = 0; i < offset; ++i) { \
  1400. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1401. } \
  1402. offset >>= 1; \
  1403. for (int i = 0; i < offset; ++i) { \
  1404. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1405. } \
  1406. offset >>= 1; \
  1407. for (int i = 0; i < offset; ++i) { \
  1408. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1409. } \
  1410. float *tmp_p = (float *)&x[0]; \
  1411. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1412. } while (0)
  1413. // TODO: is this optimal ?
  1414. #define GGML_F32_VEC GGML_F32x8
  1415. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1416. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1417. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1418. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1419. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1420. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1421. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1422. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1423. // F16 LASX
  1424. #define GGML_F16_STEP 32
  1425. #define GGML_F16_EPR 8
  1426. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1427. #define GGML_F32Cx8 __m256
  1428. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1429. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1430. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1431. float tmp[8];
  1432. for (int i = 0; i < 8; i++) {
  1433. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1434. }
  1435. return (__m256)__lasx_xvld(tmp, 0);
  1436. }
  1437. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1438. float arr[8];
  1439. __lasx_xvst(y, arr, 0);
  1440. for (int i = 0; i < 8; i++) {
  1441. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1442. }
  1443. }
  1444. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1445. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1446. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1447. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1448. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1449. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1450. #define GGML_F16_VEC GGML_F32Cx8
  1451. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1452. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1453. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1454. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1455. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1456. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1457. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1458. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1459. #elif defined(__loongarch_sx)
  1460. #define GGML_SIMD
  1461. // F32 LSX
  1462. #define GGML_F32_STEP 32
  1463. #define GGML_F32_EPR 4
  1464. #define GGML_F32x4 __m128
  1465. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1466. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1467. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1468. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1469. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1470. #define GGML_F32x4_ADD __lsx_vfadd_s
  1471. #define GGML_F32x4_MUL __lsx_vfmul_s
  1472. #define GGML_F32x4_REDUCE(res, x) \
  1473. { \
  1474. int offset = GGML_F32_ARR >> 1; \
  1475. for (int i = 0; i < offset; ++i) { \
  1476. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1477. } \
  1478. offset >>= 1; \
  1479. for (int i = 0; i < offset; ++i) { \
  1480. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1481. } \
  1482. offset >>= 1; \
  1483. for (int i = 0; i < offset; ++i) { \
  1484. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1485. } \
  1486. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1487. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1488. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1489. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1490. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1491. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1492. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1493. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1494. }
  1495. #define GGML_F32_VEC GGML_F32x4
  1496. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1497. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1498. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1499. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1500. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1501. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1502. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1503. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1504. // F16 LSX
  1505. #define GGML_F16_STEP 32
  1506. #define GGML_F16_EPR 4
  1507. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1508. float tmp[4];
  1509. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1510. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1511. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1512. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1513. return __lsx_vld(tmp, 0);
  1514. }
  1515. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1516. float arr[4];
  1517. __lsx_vst(y, arr, 0);
  1518. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1519. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1520. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1521. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1522. }
  1523. #define GGML_F32Cx4 __m128
  1524. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1525. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1526. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1527. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1528. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1529. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1530. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1531. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1532. #define GGML_F16_VEC GGML_F32Cx4
  1533. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1534. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1535. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1536. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1537. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1538. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1539. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1540. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1541. #endif
  1542. // GGML_F32_ARR / GGML_F16_ARR
  1543. // number of registers to use per step
  1544. #ifdef GGML_SIMD
  1545. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1546. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1547. #endif
  1548. //
  1549. // ggml context
  1550. //
  1551. struct ggml_context {
  1552. size_t mem_size;
  1553. void* mem_buffer;
  1554. bool mem_buffer_owned;
  1555. bool no_alloc;
  1556. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1557. int n_objects;
  1558. struct ggml_object * objects_begin;
  1559. struct ggml_object * objects_end;
  1560. struct ggml_scratch scratch;
  1561. struct ggml_scratch scratch_save;
  1562. };
  1563. struct ggml_context_container {
  1564. bool used;
  1565. struct ggml_context context;
  1566. };
  1567. struct ggml_compute_state_shared {
  1568. const struct ggml_cgraph * cgraph;
  1569. const struct ggml_cplan * cplan;
  1570. int n_threads;
  1571. // synchronization primitives
  1572. atomic_int n_barrier;
  1573. atomic_int n_barrier_passed;
  1574. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1575. void * abort_callback_data;
  1576. atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
  1577. enum ggml_status ec;
  1578. };
  1579. struct ggml_compute_state {
  1580. ggml_thread_t thrd;
  1581. int ith;
  1582. struct ggml_compute_state_shared * shared;
  1583. };
  1584. struct ggml_compute_params {
  1585. // ith = thread index, nth = number of threads
  1586. int ith, nth;
  1587. // work buffer for all threads
  1588. size_t wsize;
  1589. void * wdata;
  1590. struct ggml_compute_state_shared * shared;
  1591. };
  1592. //
  1593. // fundamental operations
  1594. //
  1595. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1596. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1597. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1598. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1599. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1600. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1601. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1602. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1603. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1604. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1605. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1606. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1607. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1608. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1609. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1610. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1611. assert(nrc == 1);
  1612. UNUSED(nrc);
  1613. UNUSED(bx);
  1614. UNUSED(by);
  1615. UNUSED(bs);
  1616. #if defined(GGML_SIMD)
  1617. float sumf = 0.0f;
  1618. const int np = (n & ~(GGML_F32_STEP - 1));
  1619. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1620. GGML_F32_VEC ax[GGML_F32_ARR];
  1621. GGML_F32_VEC ay[GGML_F32_ARR];
  1622. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1623. for (int j = 0; j < GGML_F32_ARR; j++) {
  1624. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1625. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1626. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1627. }
  1628. }
  1629. // reduce sum0..sum3 to sum0
  1630. GGML_F32_VEC_REDUCE(sumf, sum);
  1631. // leftovers
  1632. for (int i = np; i < n; ++i) {
  1633. sumf += x[i]*y[i];
  1634. }
  1635. #else
  1636. // scalar
  1637. ggml_float sumf = 0.0;
  1638. for (int i = 0; i < n; ++i) {
  1639. sumf += (ggml_float)(x[i]*y[i]);
  1640. }
  1641. #endif
  1642. *s = sumf;
  1643. }
  1644. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1645. assert(nrc == 1);
  1646. UNUSED(nrc);
  1647. UNUSED(bx);
  1648. UNUSED(by);
  1649. UNUSED(bs);
  1650. int i = 0;
  1651. ggml_float sumf = 0;
  1652. #if defined(__AVX512BF16__)
  1653. __m512 c1 = _mm512_setzero_ps();
  1654. __m512 c2 = _mm512_setzero_ps();
  1655. for (; i + 64 <= n; i += 64) {
  1656. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1657. m512bh(_mm512_loadu_si512((y + i))));
  1658. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1659. m512bh(_mm512_loadu_si512((y + i + 32))));
  1660. }
  1661. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1662. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1663. #elif defined(__AVX512F__)
  1664. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1665. __m512 c1 = _mm512_setzero_ps();
  1666. __m512 c2 = _mm512_setzero_ps();
  1667. for (; i + 32 <= n; i += 32) {
  1668. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1669. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1670. }
  1671. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1672. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1673. #undef LOAD
  1674. #elif defined(__AVX2__)
  1675. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1676. __m256 c1 = _mm256_setzero_ps();
  1677. __m256 c2 = _mm256_setzero_ps();
  1678. __m256 c3 = _mm256_setzero_ps();
  1679. __m256 c4 = _mm256_setzero_ps();
  1680. for (; i + 32 <= n; i += 32) {
  1681. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1682. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1683. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1684. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1685. }
  1686. __m128 g;
  1687. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1688. _mm256_add_ps(c2, c4));
  1689. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1690. _mm256_castps256_ps128(c1));
  1691. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1692. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1693. sumf += (ggml_float)_mm_cvtss_f32(g);
  1694. #undef LOAD
  1695. #endif
  1696. for (; i < n; ++i) {
  1697. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1698. GGML_BF16_TO_FP32(y[i]));
  1699. }
  1700. *s = sumf;
  1701. }
  1702. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1703. assert(nrc == 1);
  1704. UNUSED(nrc);
  1705. UNUSED(bx);
  1706. UNUSED(by);
  1707. UNUSED(bs);
  1708. ggml_float sumf = 0.0;
  1709. #if defined(GGML_SIMD)
  1710. const int np = (n & ~(GGML_F16_STEP - 1));
  1711. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1712. GGML_F16_VEC ax[GGML_F16_ARR];
  1713. GGML_F16_VEC ay[GGML_F16_ARR];
  1714. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1715. for (int j = 0; j < GGML_F16_ARR; j++) {
  1716. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1717. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1718. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1719. }
  1720. }
  1721. // reduce sum0..sum3 to sum0
  1722. GGML_F16_VEC_REDUCE(sumf, sum);
  1723. // leftovers
  1724. for (int i = np; i < n; ++i) {
  1725. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1726. }
  1727. #else
  1728. for (int i = 0; i < n; ++i) {
  1729. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1730. }
  1731. #endif
  1732. *s = sumf;
  1733. }
  1734. // compute GGML_VEC_DOT_UNROLL dot products at once
  1735. // xs - x row stride in bytes
  1736. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1737. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1738. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1739. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1740. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1741. }
  1742. #if defined(GGML_SIMD)
  1743. const int np = (n & ~(GGML_F16_STEP - 1));
  1744. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1745. GGML_F16_VEC ax[GGML_F16_ARR];
  1746. GGML_F16_VEC ay[GGML_F16_ARR];
  1747. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1748. for (int j = 0; j < GGML_F16_ARR; j++) {
  1749. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1750. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1751. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1752. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1753. }
  1754. }
  1755. }
  1756. // reduce sum0..sum3 to sum0
  1757. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1758. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1759. }
  1760. // leftovers
  1761. for (int i = np; i < n; ++i) {
  1762. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1763. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1764. }
  1765. }
  1766. #else
  1767. for (int i = 0; i < n; ++i) {
  1768. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1769. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1770. }
  1771. }
  1772. #endif
  1773. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1774. s[i] = sumf[i];
  1775. }
  1776. }
  1777. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1778. #if defined(GGML_SIMD)
  1779. const int np = (n & ~(GGML_F32_STEP - 1));
  1780. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1781. GGML_F32_VEC ax[GGML_F32_ARR];
  1782. GGML_F32_VEC ay[GGML_F32_ARR];
  1783. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1784. for (int j = 0; j < GGML_F32_ARR; j++) {
  1785. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1786. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1787. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1788. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1789. }
  1790. }
  1791. // leftovers
  1792. for (int i = np; i < n; ++i) {
  1793. y[i] += x[i]*v;
  1794. }
  1795. #else
  1796. // scalar
  1797. for (int i = 0; i < n; ++i) {
  1798. y[i] += x[i]*v;
  1799. }
  1800. #endif
  1801. }
  1802. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1803. #if defined(GGML_SIMD)
  1804. const int np = (n & ~(GGML_F16_STEP - 1));
  1805. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1806. GGML_F16_VEC ax[GGML_F16_ARR];
  1807. GGML_F16_VEC ay[GGML_F16_ARR];
  1808. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1809. for (int j = 0; j < GGML_F16_ARR; j++) {
  1810. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1811. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1812. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1813. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1814. }
  1815. }
  1816. // leftovers
  1817. for (int i = np; i < n; ++i) {
  1818. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1819. }
  1820. #else
  1821. // scalar
  1822. for (int i = 0; i < n; ++i) {
  1823. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1824. }
  1825. #endif
  1826. }
  1827. // xs and vs are byte strides of x and v
  1828. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1829. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1830. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1831. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1832. x[i] = (const float *) ((const char *) xv + i*xs);
  1833. v[i] = (const float *) ((const char *) vv + i*vs);
  1834. }
  1835. #if defined(GGML_SIMD)
  1836. const int np = (n & ~(GGML_F32_STEP - 1));
  1837. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1838. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1839. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1840. }
  1841. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1842. GGML_F32_VEC ay[GGML_F32_ARR];
  1843. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1844. for (int j = 0; j < GGML_F32_ARR; j++) {
  1845. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1846. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1847. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1848. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1849. }
  1850. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1851. }
  1852. }
  1853. // leftovers
  1854. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1855. for (int i = np; i < n; ++i) {
  1856. y[i] += x[k][i]*v[k][0];
  1857. }
  1858. }
  1859. #else
  1860. // scalar
  1861. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1862. for (int i = 0; i < n; ++i) {
  1863. y[i] += x[k][i]*v[k][0];
  1864. }
  1865. }
  1866. #endif
  1867. }
  1868. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1869. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1870. #if defined(GGML_USE_ACCELERATE)
  1871. vDSP_vsmul(y, 1, &v, y, 1, n);
  1872. #elif defined(GGML_SIMD)
  1873. const int np = (n & ~(GGML_F32_STEP - 1));
  1874. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1875. GGML_F32_VEC ay[GGML_F32_ARR];
  1876. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1877. for (int j = 0; j < GGML_F32_ARR; j++) {
  1878. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1879. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1880. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1881. }
  1882. }
  1883. // leftovers
  1884. for (int i = np; i < n; ++i) {
  1885. y[i] *= v;
  1886. }
  1887. #else
  1888. // scalar
  1889. for (int i = 0; i < n; ++i) {
  1890. y[i] *= v;
  1891. }
  1892. #endif
  1893. }
  1894. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1895. #if defined(GGML_SIMD)
  1896. const int np = (n & ~(GGML_F16_STEP - 1));
  1897. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1898. GGML_F16_VEC ay[GGML_F16_ARR];
  1899. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1900. for (int j = 0; j < GGML_F16_ARR; j++) {
  1901. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1902. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1903. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1904. }
  1905. }
  1906. // leftovers
  1907. for (int i = np; i < n; ++i) {
  1908. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1909. }
  1910. #else
  1911. // scalar
  1912. for (int i = 0; i < n; ++i) {
  1913. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1914. }
  1915. #endif
  1916. }
  1917. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1918. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1919. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1920. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1921. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1922. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1923. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1924. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1925. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1926. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1927. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1928. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1929. // TODO: optimize performance
  1930. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1931. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1932. static const float GELU_COEF_A = 0.044715f;
  1933. static const float GELU_QUICK_COEF = -1.702f;
  1934. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1935. inline static float ggml_gelu_f32(float x) {
  1936. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1937. }
  1938. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1939. const uint16_t * i16 = (const uint16_t *) x;
  1940. for (int i = 0; i < n; ++i) {
  1941. y[i] = ggml_table_gelu_f16[i16[i]];
  1942. }
  1943. }
  1944. #ifdef GGML_GELU_FP16
  1945. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1946. uint16_t t;
  1947. for (int i = 0; i < n; ++i) {
  1948. if (x[i] <= -10.0f) {
  1949. y[i] = 0.0f;
  1950. } else if (x[i] >= 10.0f) {
  1951. y[i] = x[i];
  1952. } else {
  1953. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1954. memcpy(&t, &fp16, sizeof(uint16_t));
  1955. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1956. }
  1957. }
  1958. }
  1959. #else
  1960. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1961. for (int i = 0; i < n; ++i) {
  1962. y[i] = ggml_gelu_f32(x[i]);
  1963. }
  1964. }
  1965. #endif
  1966. inline static float ggml_gelu_quick_f32(float x) {
  1967. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1968. }
  1969. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1970. // const uint16_t * i16 = (const uint16_t *) x;
  1971. // for (int i = 0; i < n; ++i) {
  1972. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1973. // }
  1974. //}
  1975. #ifdef GGML_GELU_QUICK_FP16
  1976. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1977. uint16_t t;
  1978. for (int i = 0; i < n; ++i) {
  1979. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1980. memcpy(&t, &fp16, sizeof(uint16_t));
  1981. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1982. }
  1983. }
  1984. #else
  1985. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1986. for (int i = 0; i < n; ++i) {
  1987. y[i] = ggml_gelu_quick_f32(x[i]);
  1988. }
  1989. }
  1990. #endif
  1991. // Sigmoid Linear Unit (SiLU) function
  1992. inline static float ggml_silu_f32(float x) {
  1993. return x/(1.0f + expf(-x));
  1994. }
  1995. #if __FINITE_MATH_ONLY__
  1996. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1997. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1998. #endif
  1999. #if defined(__ARM_NEON) && defined(__aarch64__)
  2000. // adapted from arm limited optimized routine
  2001. // the maximum error is 1.45358 plus 0.5 ulps
  2002. // numbers above 88.38 will flush to infinity
  2003. // numbers beneath -103.97 will flush to zero
  2004. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2005. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2006. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2007. const float32x4_t n = vsubq_f32(z, r);
  2008. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2009. vdupq_n_f32(0x1.7f7d1cp-20f));
  2010. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2011. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2012. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2013. const float32x4_t u = vmulq_f32(b, b);
  2014. const float32x4_t j = vfmaq_f32(
  2015. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2016. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2017. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2018. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2019. return vfmaq_f32(k, j, k);
  2020. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2021. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2022. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2023. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2024. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2025. }
  2026. // computes silu x/(1+exp(-x)) in single precision vector
  2027. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2028. const float32x4_t one = vdupq_n_f32(1.0f);
  2029. const float32x4_t zero = vdupq_n_f32(0.0f);
  2030. const float32x4_t neg_x = vsubq_f32(zero, x);
  2031. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2032. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2033. return vdivq_f32(x, one_plus_exp_neg_x);
  2034. }
  2035. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2036. // adapted from arm limited optimized routine
  2037. // the maximum error is 1.45358 plus 0.5 ulps
  2038. // numbers above 88.38 will flush to infinity
  2039. // numbers beneath -103.97 will flush to zero
  2040. inline static __m512 ggml_v_expf(__m512 x) {
  2041. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2042. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2043. const __m512 n = _mm512_sub_ps(z, r);
  2044. const __m512 b =
  2045. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2046. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2047. const __mmask16 d =
  2048. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2049. const __m512 u = _mm512_mul_ps(b, b);
  2050. const __m512 j = _mm512_fmadd_ps(
  2051. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2052. _mm512_set1_ps(0x1.573e2ep-5f)),
  2053. u,
  2054. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2055. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2056. u,
  2057. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2058. const __m512 res = _mm512_scalef_ps(j, n);
  2059. if (_mm512_kortestz(d, d))
  2060. return res;
  2061. const __m512 zero = _mm512_setzero_ps();
  2062. const __m512 alt = _mm512_mask_blend_ps(
  2063. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2064. return _mm512_mask_blend_ps(d, res, alt);
  2065. }
  2066. // computes silu x/(1+exp(-x)) in single precision vector
  2067. inline static __m512 ggml_v_silu(__m512 x) {
  2068. const __m512 one = _mm512_set1_ps(1);
  2069. const __m512 zero = _mm512_setzero_ps();
  2070. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2071. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2072. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2073. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2074. }
  2075. #elif defined(__AVX2__) && defined(__FMA__)
  2076. // adapted from arm limited optimized routine
  2077. // the maximum error is 1.45358 plus 0.5 ulps
  2078. // numbers above 88.38 will flush to infinity
  2079. // numbers beneath -103.97 will flush to zero
  2080. inline static __m256 ggml_v_expf(__m256 x) {
  2081. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2082. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2083. const __m256 n = _mm256_sub_ps(z, r);
  2084. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2085. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2086. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2087. const __m256 k = _mm256_castsi256_ps(
  2088. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2089. const __m256i c = _mm256_castps_si256(
  2090. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2091. _mm256_set1_ps(126), _CMP_GT_OQ));
  2092. const __m256 u = _mm256_mul_ps(b, b);
  2093. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2094. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2095. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2096. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2097. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2098. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2099. return _mm256_fmadd_ps(j, k, k);
  2100. const __m256i g = _mm256_and_si256(
  2101. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2102. _mm256_set1_epi32(0x82000000u));
  2103. const __m256 s1 =
  2104. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2105. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2106. const __m256i d = _mm256_castps_si256(
  2107. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2108. _mm256_set1_ps(192), _CMP_GT_OQ));
  2109. return _mm256_or_ps(
  2110. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2111. _mm256_andnot_ps(
  2112. _mm256_castsi256_ps(d),
  2113. _mm256_or_ps(
  2114. _mm256_and_ps(_mm256_castsi256_ps(c),
  2115. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2116. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2117. }
  2118. // computes silu x/(1+exp(-x)) in single precision vector
  2119. inline static __m256 ggml_v_silu(__m256 x) {
  2120. const __m256 one = _mm256_set1_ps(1);
  2121. const __m256 zero = _mm256_setzero_ps();
  2122. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2123. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2124. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2125. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2126. }
  2127. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2128. #if defined(__FMA__)
  2129. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2130. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2131. #else
  2132. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2133. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2134. #endif
  2135. // adapted from arm limited optimized routine
  2136. // the maximum error is 1.45358 plus 0.5 ulps
  2137. // numbers above 88.38 will flush to infinity
  2138. // numbers beneath -103.97 will flush to zero
  2139. inline static __m128 ggml_v_expf(__m128 x) {
  2140. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2141. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2142. const __m128 n = _mm_sub_ps(z, r);
  2143. const __m128 b =
  2144. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2145. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2146. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2147. const __m128i c =
  2148. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2149. const __m128 u = _mm_mul_ps(b, b);
  2150. const __m128 j =
  2151. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2152. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2153. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2154. if (!_mm_movemask_epi8(c))
  2155. return MADD128(j, k, k);
  2156. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2157. _mm_set1_epi32(0x82000000u));
  2158. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2159. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2160. const __m128i d =
  2161. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2162. return _mm_or_ps(
  2163. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2164. _mm_andnot_ps(_mm_castsi128_ps(d),
  2165. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2166. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2167. }
  2168. // computes silu x/(1+exp(-x)) in single precision vector
  2169. inline static __m128 ggml_v_silu(__m128 x) {
  2170. const __m128 one = _mm_set1_ps(1);
  2171. const __m128 zero = _mm_setzero_ps();
  2172. const __m128 neg_x = _mm_sub_ps(zero, x);
  2173. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2174. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2175. return _mm_div_ps(x, one_plus_exp_neg_x);
  2176. }
  2177. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2178. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2179. int i = 0;
  2180. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2181. for (; i + 15 < n; i += 16) {
  2182. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2183. }
  2184. #elif defined(__AVX2__) && defined(__FMA__)
  2185. for (; i + 7 < n; i += 8) {
  2186. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2187. }
  2188. #elif defined(__SSE2__)
  2189. for (; i + 3 < n; i += 4) {
  2190. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2191. }
  2192. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2193. for (; i + 3 < n; i += 4) {
  2194. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2195. }
  2196. #endif
  2197. for (; i < n; ++i) {
  2198. y[i] = ggml_silu_f32(x[i]);
  2199. }
  2200. }
  2201. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2202. int i = 0;
  2203. ggml_float sum = 0;
  2204. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2205. for (; i + 15 < n; i += 16) {
  2206. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2207. _mm512_set1_ps(max)));
  2208. _mm512_storeu_ps(y + i, val);
  2209. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2210. }
  2211. #elif defined(__AVX2__) && defined(__FMA__)
  2212. for (; i + 7 < n; i += 8) {
  2213. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2214. _mm256_set1_ps(max)));
  2215. _mm256_storeu_ps(y + i, val);
  2216. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2217. _mm256_castps256_ps128(val));
  2218. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2219. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2220. sum += (ggml_float)_mm_cvtss_f32(val2);
  2221. }
  2222. #elif defined(__SSE2__)
  2223. for (; i + 3 < n; i += 4) {
  2224. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2225. _mm_set1_ps(max)));
  2226. _mm_storeu_ps(y + i, val);
  2227. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2228. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2229. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2230. #else
  2231. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2232. val = _mm_add_ps(val, tmp);
  2233. tmp = _mm_movehl_ps(tmp, val);
  2234. val = _mm_add_ss(val, tmp);
  2235. #endif
  2236. sum += (ggml_float)_mm_cvtss_f32(val);
  2237. }
  2238. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2239. for (; i + 3 < n; i += 4) {
  2240. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2241. vdupq_n_f32(max)));
  2242. vst1q_f32(y + i, val);
  2243. sum += (ggml_float)vaddvq_f32(val);
  2244. }
  2245. #endif
  2246. for (; i < n; ++i) {
  2247. float val = expf(x[i] - max);
  2248. sum += (ggml_float)val;
  2249. y[i] = val;
  2250. }
  2251. return sum;
  2252. }
  2253. inline static float ggml_silu_backward_f32(float x, float dy) {
  2254. const float s = 1.0f/(1.0f + expf(-x));
  2255. return dy*s*(1.0f + x*(1.0f - s));
  2256. }
  2257. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2258. for (int i = 0; i < n; ++i) {
  2259. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2260. }
  2261. }
  2262. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2263. #ifndef GGML_USE_ACCELERATE
  2264. ggml_float sum = 0.0;
  2265. for (int i = 0; i < n; ++i) {
  2266. sum += (ggml_float)x[i];
  2267. }
  2268. *s = sum;
  2269. #else
  2270. vDSP_sve(x, 1, s, n);
  2271. #endif
  2272. }
  2273. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2274. ggml_float sum = 0.0;
  2275. for (int i = 0; i < n; ++i) {
  2276. sum += (ggml_float)x[i];
  2277. }
  2278. *s = sum;
  2279. }
  2280. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2281. float sum = 0.0f;
  2282. for (int i = 0; i < n; ++i) {
  2283. sum += GGML_FP16_TO_FP32(x[i]);
  2284. }
  2285. *s = sum;
  2286. }
  2287. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2288. float sum = 0.0f;
  2289. for (int i = 0; i < n; ++i) {
  2290. sum += GGML_BF16_TO_FP32(x[i]);
  2291. }
  2292. *s = sum;
  2293. }
  2294. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2295. #ifndef GGML_USE_ACCELERATE
  2296. float max = -INFINITY;
  2297. for (int i = 0; i < n; ++i) {
  2298. max = MAX(max, x[i]);
  2299. }
  2300. *s = max;
  2301. #else
  2302. vDSP_maxv(x, 1, s, n);
  2303. #endif
  2304. }
  2305. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2306. ggml_vec_norm_f32(n, s, x);
  2307. *s = 1.f/(*s);
  2308. }
  2309. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2310. float max = -INFINITY;
  2311. int idx = 0;
  2312. for (int i = 0; i < n; ++i) {
  2313. max = MAX(max, x[i]);
  2314. if (max == x[i]) { idx = i; }
  2315. }
  2316. *s = idx;
  2317. }
  2318. //
  2319. // data types
  2320. //
  2321. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2322. "NONE",
  2323. "DUP",
  2324. "ADD",
  2325. "ADD1",
  2326. "ACC",
  2327. "SUB",
  2328. "MUL",
  2329. "DIV",
  2330. "SQR",
  2331. "SQRT",
  2332. "LOG",
  2333. "SUM",
  2334. "SUM_ROWS",
  2335. "MEAN",
  2336. "ARGMAX",
  2337. "REPEAT",
  2338. "REPEAT_BACK",
  2339. "CONCAT",
  2340. "SILU_BACK",
  2341. "NORM",
  2342. "RMS_NORM",
  2343. "RMS_NORM_BACK",
  2344. "GROUP_NORM",
  2345. "MUL_MAT",
  2346. "MUL_MAT_ID",
  2347. "OUT_PROD",
  2348. "SCALE",
  2349. "SET",
  2350. "CPY",
  2351. "CONT",
  2352. "RESHAPE",
  2353. "VIEW",
  2354. "PERMUTE",
  2355. "TRANSPOSE",
  2356. "GET_ROWS",
  2357. "GET_ROWS_BACK",
  2358. "DIAG",
  2359. "DIAG_MASK_INF",
  2360. "DIAG_MASK_ZERO",
  2361. "SOFT_MAX",
  2362. "SOFT_MAX_BACK",
  2363. "ROPE",
  2364. "ROPE_BACK",
  2365. "CLAMP",
  2366. "CONV_TRANSPOSE_1D",
  2367. "IM2COL",
  2368. "CONV_TRANSPOSE_2D",
  2369. "POOL_1D",
  2370. "POOL_2D",
  2371. "UPSCALE",
  2372. "PAD",
  2373. "ARANGE",
  2374. "TIMESTEP_EMBEDDING",
  2375. "ARGSORT",
  2376. "LEAKY_RELU",
  2377. "FLASH_ATTN_EXT",
  2378. "FLASH_ATTN_BACK",
  2379. "SSM_CONV",
  2380. "SSM_SCAN",
  2381. "WIN_PART",
  2382. "WIN_UNPART",
  2383. "GET_REL_POS",
  2384. "ADD_REL_POS",
  2385. "UNARY",
  2386. "MAP_UNARY",
  2387. "MAP_BINARY",
  2388. "MAP_CUSTOM1_F32",
  2389. "MAP_CUSTOM2_F32",
  2390. "MAP_CUSTOM3_F32",
  2391. "MAP_CUSTOM1",
  2392. "MAP_CUSTOM2",
  2393. "MAP_CUSTOM3",
  2394. "CROSS_ENTROPY_LOSS",
  2395. "CROSS_ENTROPY_LOSS_BACK",
  2396. };
  2397. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2398. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2399. "none",
  2400. "x",
  2401. "x+y",
  2402. "x+y",
  2403. "view(x,nb,offset)+=y->x",
  2404. "x-y",
  2405. "x*y",
  2406. "x/y",
  2407. "x^2",
  2408. "√x",
  2409. "log(x)",
  2410. "Σx",
  2411. "Σx_k",
  2412. "Σx/n",
  2413. "argmax(x)",
  2414. "repeat(x)",
  2415. "repeat_back(x)",
  2416. "concat(x, y)",
  2417. "silu_back(x)",
  2418. "norm(x)",
  2419. "rms_norm(x)",
  2420. "rms_norm_back(x)",
  2421. "group_norm(x)",
  2422. "X*Y",
  2423. "X[i]*Y",
  2424. "X*Y",
  2425. "x*v",
  2426. "y-\\>view(x)",
  2427. "x-\\>y",
  2428. "cont(x)",
  2429. "reshape(x)",
  2430. "view(x)",
  2431. "permute(x)",
  2432. "transpose(x)",
  2433. "get_rows(x)",
  2434. "get_rows_back(x)",
  2435. "diag(x)",
  2436. "diag_mask_inf(x)",
  2437. "diag_mask_zero(x)",
  2438. "soft_max(x)",
  2439. "soft_max_back(x)",
  2440. "rope(x)",
  2441. "rope_back(x)",
  2442. "clamp(x)",
  2443. "conv_transpose_1d(x)",
  2444. "im2col(x)",
  2445. "conv_transpose_2d(x)",
  2446. "pool_1d(x)",
  2447. "pool_2d(x)",
  2448. "upscale(x)",
  2449. "pad(x)",
  2450. "arange(start, stop, step)",
  2451. "timestep_embedding(timesteps, dim, max_period)",
  2452. "argsort(x)",
  2453. "leaky_relu(x)",
  2454. "flash_attn_ext(x)",
  2455. "flash_attn_back(x)",
  2456. "ssm_conv(x)",
  2457. "ssm_scan(x)",
  2458. "win_part(x)",
  2459. "win_unpart(x)",
  2460. "get_rel_pos(x)",
  2461. "add_rel_pos(x)",
  2462. "unary(x)",
  2463. "f(x)",
  2464. "f(x,y)",
  2465. "custom_f32(x)",
  2466. "custom_f32(x,y)",
  2467. "custom_f32(x,y,z)",
  2468. "custom(x)",
  2469. "custom(x,y)",
  2470. "custom(x,y,z)",
  2471. "cross_entropy_loss(x,y)",
  2472. "cross_entropy_loss_back(x,y)",
  2473. };
  2474. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2475. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2476. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2477. "ABS",
  2478. "SGN",
  2479. "NEG",
  2480. "STEP",
  2481. "TANH",
  2482. "ELU",
  2483. "RELU",
  2484. "SIGMOID",
  2485. "GELU",
  2486. "GELU_QUICK",
  2487. "SILU",
  2488. "HARDSWISH",
  2489. "HARDSIGMOID",
  2490. };
  2491. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2492. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2493. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2494. //
  2495. // NUMA support
  2496. //
  2497. #define GGML_NUMA_MAX_NODES 8
  2498. #define GGML_NUMA_MAX_CPUS 512
  2499. struct ggml_numa_node {
  2500. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2501. uint32_t n_cpus;
  2502. };
  2503. struct ggml_numa_nodes {
  2504. enum ggml_numa_strategy numa_strategy;
  2505. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2506. uint32_t n_nodes;
  2507. uint32_t total_cpus; // hardware threads on system
  2508. uint32_t current_node; // node on which main process is execting
  2509. #if defined(__gnu_linux__)
  2510. cpu_set_t cpuset; // cpuset from numactl
  2511. #else
  2512. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2513. #endif
  2514. };
  2515. //
  2516. // ggml state
  2517. //
  2518. struct ggml_state {
  2519. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2520. struct ggml_numa_nodes numa;
  2521. };
  2522. // global state
  2523. static struct ggml_state g_state;
  2524. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2525. // critical section via spin lock
  2526. inline static void ggml_critical_section_start(void) {
  2527. while (atomic_flag_test_and_set(&g_state_critical)) {
  2528. // spin
  2529. sched_yield();
  2530. }
  2531. }
  2532. #ifdef GGML_USE_OPENMP
  2533. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2534. if (shared->n_threads == 1) {
  2535. return;
  2536. }
  2537. #pragma omp barrier
  2538. }
  2539. #else
  2540. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2541. if (shared->n_threads == 1) {
  2542. return;
  2543. }
  2544. atomic_int * n_barrier = &shared->n_barrier;
  2545. atomic_int * n_barrier_passed = &shared->n_barrier_passed;
  2546. int n_threads = shared->n_threads;
  2547. int passed_old = atomic_load(n_barrier_passed);
  2548. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2549. // last thread
  2550. atomic_store(n_barrier, 0);
  2551. atomic_fetch_add(n_barrier_passed, 1);
  2552. } else {
  2553. // wait for other threads
  2554. const int n_spin_before_sleep = 100000;
  2555. while (true) {
  2556. for (int i = 0; i < n_spin_before_sleep; i++) {
  2557. if (atomic_load(n_barrier_passed) != passed_old) {
  2558. return;
  2559. }
  2560. #if defined(__SSE3__)
  2561. _mm_pause();
  2562. #endif
  2563. }
  2564. sched_yield();
  2565. }
  2566. }
  2567. }
  2568. #endif
  2569. // TODO: make this somehow automatically executed
  2570. // some sort of "sentry" mechanism
  2571. inline static void ggml_critical_section_end(void) {
  2572. atomic_flag_clear(&g_state_critical);
  2573. }
  2574. #if defined(__gnu_linux__)
  2575. static cpu_set_t ggml_get_numa_affinity(void) {
  2576. cpu_set_t cpuset;
  2577. pthread_t thread;
  2578. thread = pthread_self();
  2579. CPU_ZERO(&cpuset);
  2580. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2581. return cpuset;
  2582. }
  2583. #else
  2584. static uint32_t ggml_get_numa_affinity(void) {
  2585. return 0; // no NUMA support
  2586. }
  2587. #endif
  2588. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2589. if (g_state.numa.n_nodes > 0) {
  2590. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2591. return;
  2592. }
  2593. #if defined(__gnu_linux__)
  2594. struct stat st;
  2595. char path[256];
  2596. int rv;
  2597. // set numa scheme
  2598. g_state.numa.numa_strategy = numa_flag;
  2599. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2600. g_state.numa.cpuset = ggml_get_numa_affinity();
  2601. // enumerate nodes
  2602. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2603. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2604. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2605. if (stat(path, &st) != 0) { break; }
  2606. ++g_state.numa.n_nodes;
  2607. }
  2608. // enumerate CPUs
  2609. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2610. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2611. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2612. if (stat(path, &st) != 0) { break; }
  2613. ++g_state.numa.total_cpus;
  2614. }
  2615. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2616. // figure out which node we're on
  2617. uint current_cpu;
  2618. int getcpu_ret = 0;
  2619. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2620. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2621. #else
  2622. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2623. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2624. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2625. # endif
  2626. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2627. #endif
  2628. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2629. g_state.numa.n_nodes = 0;
  2630. return;
  2631. }
  2632. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2633. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2634. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2635. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2636. node->n_cpus = 0;
  2637. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2640. if (stat(path, &st) == 0) {
  2641. node->cpus[node->n_cpus++] = c;
  2642. GGML_PRINT_DEBUG(" %u", c);
  2643. }
  2644. }
  2645. GGML_PRINT_DEBUG("\n");
  2646. }
  2647. if (ggml_is_numa()) {
  2648. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2649. if (fptr != NULL) {
  2650. char buf[42];
  2651. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2652. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2653. }
  2654. fclose(fptr);
  2655. }
  2656. }
  2657. #else
  2658. UNUSED(numa_flag);
  2659. // TODO
  2660. #endif
  2661. }
  2662. bool ggml_is_numa(void) {
  2663. return g_state.numa.n_nodes > 1;
  2664. }
  2665. ////////////////////////////////////////////////////////////////////////////////
  2666. void ggml_print_object(const struct ggml_object * obj) {
  2667. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2668. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2669. }
  2670. void ggml_print_objects(const struct ggml_context * ctx) {
  2671. struct ggml_object * obj = ctx->objects_begin;
  2672. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2673. while (obj != NULL) {
  2674. ggml_print_object(obj);
  2675. obj = obj->next;
  2676. }
  2677. GGML_PRINT("%s: --- end ---\n", __func__);
  2678. }
  2679. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2681. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2682. }
  2683. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2684. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2685. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2686. }
  2687. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2688. size_t nbytes;
  2689. size_t blck_size = ggml_blck_size(tensor->type);
  2690. if (blck_size == 1) {
  2691. nbytes = ggml_type_size(tensor->type);
  2692. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2693. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2694. }
  2695. }
  2696. else {
  2697. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2698. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2699. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2700. }
  2701. }
  2702. return nbytes;
  2703. }
  2704. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2705. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2706. }
  2707. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2708. return type_traits[type].blck_size;
  2709. }
  2710. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2711. return type_traits[type].type_size;
  2712. }
  2713. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2714. assert(ne % ggml_blck_size(type) == 0);
  2715. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2716. }
  2717. double ggml_type_sizef(enum ggml_type type) {
  2718. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2719. }
  2720. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2721. return type_traits[type].type_name;
  2722. }
  2723. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2724. return type_traits[type].is_quantized;
  2725. }
  2726. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2727. return GGML_OP_NAME[op];
  2728. }
  2729. const char * ggml_op_symbol(enum ggml_op op) {
  2730. return GGML_OP_SYMBOL[op];
  2731. }
  2732. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2733. return GGML_UNARY_OP_NAME[op];
  2734. }
  2735. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2736. if (t->op == GGML_OP_UNARY) {
  2737. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2738. return ggml_unary_op_name(uop);
  2739. }
  2740. return ggml_op_name(t->op);
  2741. }
  2742. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2743. return ggml_type_size(tensor->type);
  2744. }
  2745. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2747. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2748. }
  2749. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2750. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2751. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2752. }
  2753. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2755. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2756. }
  2757. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2758. return tensor->ne[3] == 1;
  2759. }
  2760. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2761. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2762. if (tensor->ne[i] > 1) {
  2763. return i + 1;
  2764. }
  2765. }
  2766. return 1;
  2767. }
  2768. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2769. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2770. return (t0->ne[0] == t1->ne[0]) &&
  2771. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2772. (t1->ne[3]%t0->ne[3] == 0);
  2773. }
  2774. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2775. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2776. return (t0->ne[1] == t1->ne[1]) &&
  2777. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2778. (t1->ne[3]%t0->ne[3] == 0);
  2779. }
  2780. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2781. enum ggml_type wtype = GGML_TYPE_COUNT;
  2782. switch (ftype) {
  2783. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2784. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2785. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2786. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2787. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2788. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2789. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2790. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2791. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2792. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2793. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2794. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2795. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2796. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2797. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2798. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2799. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2800. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2801. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2802. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2803. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2804. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2805. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  2806. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  2807. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  2808. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2809. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2810. }
  2811. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2812. return wtype;
  2813. }
  2814. size_t ggml_tensor_overhead(void) {
  2815. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2816. }
  2817. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2818. return tensor->nb[0] > tensor->nb[1];
  2819. }
  2820. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2821. size_t next_nb = ggml_type_size(tensor->type);
  2822. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2823. return false;
  2824. }
  2825. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2826. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2827. if (tensor->ne[i] != 1) {
  2828. if (i > n) {
  2829. if (tensor->nb[i] != next_nb) {
  2830. return false;
  2831. }
  2832. next_nb *= tensor->ne[i];
  2833. } else {
  2834. // this dimension does not need to be contiguous
  2835. next_nb = tensor->ne[i]*tensor->nb[i];
  2836. }
  2837. }
  2838. }
  2839. return true;
  2840. }
  2841. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2842. return ggml_is_contiguous_0(tensor);
  2843. }
  2844. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2845. return ggml_is_contiguous_n(tensor, 0);
  2846. }
  2847. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2848. return ggml_is_contiguous_n(tensor, 1);
  2849. }
  2850. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2851. return ggml_is_contiguous_n(tensor, 2);
  2852. }
  2853. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2854. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2855. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2856. }
  2857. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2858. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2859. return
  2860. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2861. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2862. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2863. }
  2864. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2865. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2866. if (tensor->ne[i] == 0) {
  2867. // empty if any dimension has no elements
  2868. return true;
  2869. }
  2870. }
  2871. return false;
  2872. }
  2873. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2874. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2875. return
  2876. (t0->ne[0] == t1->ne[0]) &&
  2877. (t0->ne[1] == t1->ne[1]) &&
  2878. (t0->ne[2] == t1->ne[2]) &&
  2879. (t0->ne[3] == t1->ne[3]);
  2880. }
  2881. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2882. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2883. return
  2884. (t0->nb[0] == t1->nb[0]) &&
  2885. (t0->nb[1] == t1->nb[1]) &&
  2886. (t0->nb[2] == t1->nb[2]) &&
  2887. (t0->nb[3] == t1->nb[3]);
  2888. }
  2889. // check if t1 can be represented as a repeatition of t0
  2890. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2891. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2892. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2893. (t1->ne[0]%t0->ne[0] == 0) &&
  2894. (t1->ne[1]%t0->ne[1] == 0) &&
  2895. (t1->ne[2]%t0->ne[2] == 0) &&
  2896. (t1->ne[3]%t0->ne[3] == 0);
  2897. }
  2898. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2899. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2900. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2901. }
  2902. static inline int ggml_up32(int n) {
  2903. return (n + 31) & ~31;
  2904. }
  2905. //static inline int ggml_up64(int n) {
  2906. // return (n + 63) & ~63;
  2907. //}
  2908. static inline int ggml_up(int n, int m) {
  2909. // assert m is a power of 2
  2910. GGML_ASSERT((m & (m - 1)) == 0);
  2911. return (n + m - 1) & ~(m - 1);
  2912. }
  2913. // assert that pointer is aligned to GGML_MEM_ALIGN
  2914. #define ggml_assert_aligned(ptr) \
  2915. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2916. ////////////////////////////////////////////////////////////////////////////////
  2917. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2918. // make this function thread safe
  2919. ggml_critical_section_start();
  2920. static bool is_first_call = true;
  2921. if (is_first_call) {
  2922. // initialize time system (required on Windows)
  2923. ggml_time_init();
  2924. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2925. {
  2926. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2927. for (int i = 0; i < (1 << 16); ++i) {
  2928. union {
  2929. uint16_t u16;
  2930. ggml_fp16_t fp16;
  2931. } u = {i};
  2932. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2933. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2934. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2935. }
  2936. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2937. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2938. }
  2939. // initialize g_state
  2940. {
  2941. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2942. g_state = (struct ggml_state) {
  2943. /*.contexts =*/ { { 0 } },
  2944. /*.numa =*/ {
  2945. .n_nodes = 0,
  2946. .total_cpus = 0,
  2947. },
  2948. };
  2949. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2950. g_state.contexts[i].used = false;
  2951. }
  2952. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2953. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2954. }
  2955. is_first_call = false;
  2956. }
  2957. // find non-used context in g_state
  2958. struct ggml_context * ctx = NULL;
  2959. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2960. if (!g_state.contexts[i].used) {
  2961. g_state.contexts[i].used = true;
  2962. ctx = &g_state.contexts[i].context;
  2963. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2964. break;
  2965. }
  2966. }
  2967. if (ctx == NULL) {
  2968. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2969. ggml_critical_section_end();
  2970. return NULL;
  2971. }
  2972. // allow to call ggml_init with 0 size
  2973. if (params.mem_size == 0) {
  2974. params.mem_size = GGML_MEM_ALIGN;
  2975. }
  2976. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2977. *ctx = (struct ggml_context) {
  2978. /*.mem_size =*/ mem_size,
  2979. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2980. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2981. /*.no_alloc =*/ params.no_alloc,
  2982. /*.no_alloc_save =*/ params.no_alloc,
  2983. /*.n_objects =*/ 0,
  2984. /*.objects_begin =*/ NULL,
  2985. /*.objects_end =*/ NULL,
  2986. /*.scratch =*/ { 0, 0, NULL, },
  2987. /*.scratch_save =*/ { 0, 0, NULL, },
  2988. };
  2989. GGML_ASSERT(ctx->mem_buffer != NULL);
  2990. ggml_assert_aligned(ctx->mem_buffer);
  2991. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2992. ggml_critical_section_end();
  2993. return ctx;
  2994. }
  2995. void ggml_free(struct ggml_context * ctx) {
  2996. if (ctx == NULL) {
  2997. return;
  2998. }
  2999. // make this function thread safe
  3000. ggml_critical_section_start();
  3001. bool found = false;
  3002. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3003. if (&g_state.contexts[i].context == ctx) {
  3004. g_state.contexts[i].used = false;
  3005. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3006. __func__, i, ggml_used_mem(ctx));
  3007. if (ctx->mem_buffer_owned) {
  3008. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3009. }
  3010. found = true;
  3011. break;
  3012. }
  3013. }
  3014. if (!found) {
  3015. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3016. }
  3017. ggml_critical_section_end();
  3018. }
  3019. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3020. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3021. }
  3022. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3023. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3024. ctx->scratch = scratch;
  3025. return result;
  3026. }
  3027. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3028. return ctx->no_alloc;
  3029. }
  3030. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3031. ctx->no_alloc = no_alloc;
  3032. }
  3033. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3034. return ctx->mem_buffer;
  3035. }
  3036. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3037. return ctx->mem_size;
  3038. }
  3039. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3040. size_t max_size = 0;
  3041. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3042. size_t bytes = ggml_nbytes(tensor);
  3043. max_size = MAX(max_size, bytes);
  3044. }
  3045. return max_size;
  3046. }
  3047. // IMPORTANT:
  3048. // when creating "opt" tensors, always save and load the scratch buffer
  3049. // this is an error prone process, but it is necessary to support inplace
  3050. // operators when using scratch buffers
  3051. // TODO: implement a better way
  3052. static void ggml_scratch_save(struct ggml_context * ctx) {
  3053. // this is needed to allow opt tensors to store their data
  3054. // TODO: again, need to find a better way
  3055. ctx->no_alloc_save = ctx->no_alloc;
  3056. ctx->no_alloc = false;
  3057. ctx->scratch_save = ctx->scratch;
  3058. ctx->scratch.data = NULL;
  3059. }
  3060. static void ggml_scratch_load(struct ggml_context * ctx) {
  3061. ctx->no_alloc = ctx->no_alloc_save;
  3062. ctx->scratch = ctx->scratch_save;
  3063. }
  3064. ////////////////////////////////////////////////////////////////////////////////
  3065. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3066. // always insert objects at the end of the context's memory pool
  3067. struct ggml_object * obj_cur = ctx->objects_end;
  3068. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3069. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3070. const size_t cur_end = cur_offs + cur_size;
  3071. // align to GGML_MEM_ALIGN
  3072. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3073. char * const mem_buffer = ctx->mem_buffer;
  3074. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3075. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3076. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3077. __func__, cur_end + size_needed, ctx->mem_size);
  3078. assert(false);
  3079. return NULL;
  3080. }
  3081. *obj_new = (struct ggml_object) {
  3082. .offs = cur_end + GGML_OBJECT_SIZE,
  3083. .size = size_needed,
  3084. .next = NULL,
  3085. .type = type,
  3086. };
  3087. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3088. if (obj_cur != NULL) {
  3089. obj_cur->next = obj_new;
  3090. } else {
  3091. // this is the first object in this context
  3092. ctx->objects_begin = obj_new;
  3093. }
  3094. ctx->objects_end = obj_new;
  3095. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3096. return obj_new;
  3097. }
  3098. static struct ggml_tensor * ggml_new_tensor_impl(
  3099. struct ggml_context * ctx,
  3100. enum ggml_type type,
  3101. int n_dims,
  3102. const int64_t * ne,
  3103. struct ggml_tensor * view_src,
  3104. size_t view_offs) {
  3105. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3106. // find the base tensor and absolute offset
  3107. if (view_src != NULL && view_src->view_src != NULL) {
  3108. view_offs += view_src->view_offs;
  3109. view_src = view_src->view_src;
  3110. }
  3111. size_t data_size = ggml_row_size(type, ne[0]);
  3112. for (int i = 1; i < n_dims; i++) {
  3113. data_size *= ne[i];
  3114. }
  3115. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3116. void * data = view_src != NULL ? view_src->data : NULL;
  3117. if (data != NULL) {
  3118. data = (char *) data + view_offs;
  3119. }
  3120. size_t obj_alloc_size = 0;
  3121. if (view_src == NULL && !ctx->no_alloc) {
  3122. if (ctx->scratch.data != NULL) {
  3123. // allocate tensor data in the scratch buffer
  3124. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3125. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3126. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3127. assert(false);
  3128. return NULL;
  3129. }
  3130. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3131. ctx->scratch.offs += data_size;
  3132. } else {
  3133. // allocate tensor data in the context's memory pool
  3134. obj_alloc_size = data_size;
  3135. }
  3136. }
  3137. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3138. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3139. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3140. #ifdef __clang__
  3141. // temporary until ggml_tensor::backend is removed
  3142. #pragma clang diagnostic push
  3143. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3144. #endif
  3145. *result = (struct ggml_tensor) {
  3146. /*.type =*/ type,
  3147. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3148. /*.buffer =*/ NULL,
  3149. /*.ne =*/ { 1, 1, 1, 1 },
  3150. /*.nb =*/ { 0, 0, 0, 0 },
  3151. /*.op =*/ GGML_OP_NONE,
  3152. /*.op_params =*/ { 0 },
  3153. /*.flags =*/ 0,
  3154. /*.grad =*/ NULL,
  3155. /*.src =*/ { NULL },
  3156. /*.view_src =*/ view_src,
  3157. /*.view_offs =*/ view_offs,
  3158. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3159. /*.name =*/ { 0 },
  3160. /*.extra =*/ NULL,
  3161. ///*.padding =*/ { 0 },
  3162. };
  3163. #ifdef __clang__
  3164. #pragma clang diagnostic pop
  3165. #endif
  3166. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3167. //ggml_assert_aligned(result->data);
  3168. for (int i = 0; i < n_dims; i++) {
  3169. result->ne[i] = ne[i];
  3170. }
  3171. result->nb[0] = ggml_type_size(type);
  3172. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3173. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3174. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3175. }
  3176. ctx->n_objects++;
  3177. return result;
  3178. }
  3179. struct ggml_tensor * ggml_new_tensor(
  3180. struct ggml_context * ctx,
  3181. enum ggml_type type,
  3182. int n_dims,
  3183. const int64_t * ne) {
  3184. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3185. }
  3186. struct ggml_tensor * ggml_new_tensor_1d(
  3187. struct ggml_context * ctx,
  3188. enum ggml_type type,
  3189. int64_t ne0) {
  3190. return ggml_new_tensor(ctx, type, 1, &ne0);
  3191. }
  3192. struct ggml_tensor * ggml_new_tensor_2d(
  3193. struct ggml_context * ctx,
  3194. enum ggml_type type,
  3195. int64_t ne0,
  3196. int64_t ne1) {
  3197. const int64_t ne[2] = { ne0, ne1 };
  3198. return ggml_new_tensor(ctx, type, 2, ne);
  3199. }
  3200. struct ggml_tensor * ggml_new_tensor_3d(
  3201. struct ggml_context * ctx,
  3202. enum ggml_type type,
  3203. int64_t ne0,
  3204. int64_t ne1,
  3205. int64_t ne2) {
  3206. const int64_t ne[3] = { ne0, ne1, ne2 };
  3207. return ggml_new_tensor(ctx, type, 3, ne);
  3208. }
  3209. struct ggml_tensor * ggml_new_tensor_4d(
  3210. struct ggml_context * ctx,
  3211. enum ggml_type type,
  3212. int64_t ne0,
  3213. int64_t ne1,
  3214. int64_t ne2,
  3215. int64_t ne3) {
  3216. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3217. return ggml_new_tensor(ctx, type, 4, ne);
  3218. }
  3219. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3220. ggml_scratch_save(ctx);
  3221. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3222. ggml_scratch_load(ctx);
  3223. ggml_set_i32(result, value);
  3224. return result;
  3225. }
  3226. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3227. ggml_scratch_save(ctx);
  3228. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3229. ggml_scratch_load(ctx);
  3230. ggml_set_f32(result, value);
  3231. return result;
  3232. }
  3233. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3234. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3235. }
  3236. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3237. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3238. assert(params_size <= GGML_MAX_OP_PARAMS);
  3239. memcpy(tensor->op_params, params, params_size);
  3240. }
  3241. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3242. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3243. return ((const int32_t *)(tensor->op_params))[i];
  3244. }
  3245. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3246. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3247. return ((const float *)(tensor->op_params))[i];
  3248. }
  3249. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3250. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3251. ((int32_t *)(tensor->op_params))[i] = value;
  3252. }
  3253. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3254. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3255. ((float *)(tensor->op_params))[i] = value;
  3256. }
  3257. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3258. memset(tensor->data, 0, ggml_nbytes(tensor));
  3259. return tensor;
  3260. }
  3261. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3262. const int n = ggml_nrows(tensor);
  3263. const int nc = tensor->ne[0];
  3264. const size_t n1 = tensor->nb[1];
  3265. char * const data = tensor->data;
  3266. switch (tensor->type) {
  3267. case GGML_TYPE_I8:
  3268. {
  3269. assert(tensor->nb[0] == sizeof(int8_t));
  3270. for (int i = 0; i < n; i++) {
  3271. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3272. }
  3273. } break;
  3274. case GGML_TYPE_I16:
  3275. {
  3276. assert(tensor->nb[0] == sizeof(int16_t));
  3277. for (int i = 0; i < n; i++) {
  3278. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3279. }
  3280. } break;
  3281. case GGML_TYPE_I32:
  3282. {
  3283. assert(tensor->nb[0] == sizeof(int32_t));
  3284. for (int i = 0; i < n; i++) {
  3285. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3286. }
  3287. } break;
  3288. case GGML_TYPE_F16:
  3289. {
  3290. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3291. for (int i = 0; i < n; i++) {
  3292. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3293. }
  3294. } break;
  3295. case GGML_TYPE_BF16:
  3296. {
  3297. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3298. for (int i = 0; i < n; i++) {
  3299. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3300. }
  3301. } break;
  3302. case GGML_TYPE_F32:
  3303. {
  3304. assert(tensor->nb[0] == sizeof(float));
  3305. for (int i = 0; i < n; i++) {
  3306. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3307. }
  3308. } break;
  3309. default:
  3310. {
  3311. GGML_ASSERT(false);
  3312. } break;
  3313. }
  3314. return tensor;
  3315. }
  3316. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3317. const int n = ggml_nrows(tensor);
  3318. const int nc = tensor->ne[0];
  3319. const size_t n1 = tensor->nb[1];
  3320. char * const data = tensor->data;
  3321. switch (tensor->type) {
  3322. case GGML_TYPE_I8:
  3323. {
  3324. assert(tensor->nb[0] == sizeof(int8_t));
  3325. for (int i = 0; i < n; i++) {
  3326. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3327. }
  3328. } break;
  3329. case GGML_TYPE_I16:
  3330. {
  3331. assert(tensor->nb[0] == sizeof(int16_t));
  3332. for (int i = 0; i < n; i++) {
  3333. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3334. }
  3335. } break;
  3336. case GGML_TYPE_I32:
  3337. {
  3338. assert(tensor->nb[0] == sizeof(int32_t));
  3339. for (int i = 0; i < n; i++) {
  3340. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3341. }
  3342. } break;
  3343. case GGML_TYPE_F16:
  3344. {
  3345. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3346. for (int i = 0; i < n; i++) {
  3347. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3348. }
  3349. } break;
  3350. case GGML_TYPE_BF16:
  3351. {
  3352. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3353. for (int i = 0; i < n; i++) {
  3354. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3355. }
  3356. } break;
  3357. case GGML_TYPE_F32:
  3358. {
  3359. assert(tensor->nb[0] == sizeof(float));
  3360. for (int i = 0; i < n; i++) {
  3361. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3362. }
  3363. } break;
  3364. default:
  3365. {
  3366. GGML_ASSERT(false);
  3367. } break;
  3368. }
  3369. return tensor;
  3370. }
  3371. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3372. const int64_t ne2 = tensor->ne[2];
  3373. const int64_t ne1 = tensor->ne[1];
  3374. const int64_t ne0 = tensor->ne[0];
  3375. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3376. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3377. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3378. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3379. if (i0) {
  3380. * i0 = i0_;
  3381. }
  3382. if (i1) {
  3383. * i1 = i1_;
  3384. }
  3385. if (i2) {
  3386. * i2 = i2_;
  3387. }
  3388. if (i3) {
  3389. * i3 = i3_;
  3390. }
  3391. }
  3392. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3393. if (!ggml_is_contiguous(tensor)) {
  3394. int64_t id[4] = { 0, 0, 0, 0 };
  3395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3396. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3397. }
  3398. switch (tensor->type) {
  3399. case GGML_TYPE_I8:
  3400. {
  3401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3402. return ((int8_t *)(tensor->data))[i];
  3403. }
  3404. case GGML_TYPE_I16:
  3405. {
  3406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3407. return ((int16_t *)(tensor->data))[i];
  3408. }
  3409. case GGML_TYPE_I32:
  3410. {
  3411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3412. return ((int32_t *)(tensor->data))[i];
  3413. }
  3414. case GGML_TYPE_F16:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3417. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3418. }
  3419. case GGML_TYPE_BF16:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3422. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3423. }
  3424. case GGML_TYPE_F32:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3427. return ((float *)(tensor->data))[i];
  3428. }
  3429. default:
  3430. {
  3431. GGML_ASSERT(false);
  3432. }
  3433. }
  3434. return 0.0f;
  3435. }
  3436. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3437. if (!ggml_is_contiguous(tensor)) {
  3438. int64_t id[4] = { 0, 0, 0, 0 };
  3439. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3440. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3441. return;
  3442. }
  3443. switch (tensor->type) {
  3444. case GGML_TYPE_I8:
  3445. {
  3446. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3447. ((int8_t *)(tensor->data))[i] = value;
  3448. } break;
  3449. case GGML_TYPE_I16:
  3450. {
  3451. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3452. ((int16_t *)(tensor->data))[i] = value;
  3453. } break;
  3454. case GGML_TYPE_I32:
  3455. {
  3456. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3457. ((int32_t *)(tensor->data))[i] = value;
  3458. } break;
  3459. case GGML_TYPE_F16:
  3460. {
  3461. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3462. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3463. } break;
  3464. case GGML_TYPE_BF16:
  3465. {
  3466. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3467. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3468. } break;
  3469. case GGML_TYPE_F32:
  3470. {
  3471. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3472. ((float *)(tensor->data))[i] = value;
  3473. } break;
  3474. default:
  3475. {
  3476. GGML_ASSERT(false);
  3477. } break;
  3478. }
  3479. }
  3480. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3481. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3482. switch (tensor->type) {
  3483. case GGML_TYPE_I8:
  3484. return ((int8_t *) data)[0];
  3485. case GGML_TYPE_I16:
  3486. return ((int16_t *) data)[0];
  3487. case GGML_TYPE_I32:
  3488. return ((int32_t *) data)[0];
  3489. case GGML_TYPE_F16:
  3490. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3491. case GGML_TYPE_BF16:
  3492. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3493. case GGML_TYPE_F32:
  3494. return ((float *) data)[0];
  3495. default:
  3496. GGML_ASSERT(false);
  3497. }
  3498. return 0.0f;
  3499. }
  3500. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3501. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3502. switch (tensor->type) {
  3503. case GGML_TYPE_I8:
  3504. {
  3505. ((int8_t *)(data))[0] = value;
  3506. } break;
  3507. case GGML_TYPE_I16:
  3508. {
  3509. ((int16_t *)(data))[0] = value;
  3510. } break;
  3511. case GGML_TYPE_I32:
  3512. {
  3513. ((int32_t *)(data))[0] = value;
  3514. } break;
  3515. case GGML_TYPE_F16:
  3516. {
  3517. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3518. } break;
  3519. case GGML_TYPE_BF16:
  3520. {
  3521. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3522. } break;
  3523. case GGML_TYPE_F32:
  3524. {
  3525. ((float *)(data))[0] = value;
  3526. } break;
  3527. default:
  3528. {
  3529. GGML_ASSERT(false);
  3530. } break;
  3531. }
  3532. }
  3533. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3534. if (!ggml_is_contiguous(tensor)) {
  3535. int64_t id[4] = { 0, 0, 0, 0 };
  3536. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3537. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3538. }
  3539. switch (tensor->type) {
  3540. case GGML_TYPE_I8:
  3541. {
  3542. return ((int8_t *)(tensor->data))[i];
  3543. }
  3544. case GGML_TYPE_I16:
  3545. {
  3546. return ((int16_t *)(tensor->data))[i];
  3547. }
  3548. case GGML_TYPE_I32:
  3549. {
  3550. return ((int32_t *)(tensor->data))[i];
  3551. }
  3552. case GGML_TYPE_F16:
  3553. {
  3554. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3555. }
  3556. case GGML_TYPE_BF16:
  3557. {
  3558. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3559. }
  3560. case GGML_TYPE_F32:
  3561. {
  3562. return ((float *)(tensor->data))[i];
  3563. }
  3564. default:
  3565. {
  3566. GGML_ASSERT(false);
  3567. }
  3568. }
  3569. return 0.0f;
  3570. }
  3571. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3572. if (!ggml_is_contiguous(tensor)) {
  3573. int64_t id[4] = { 0, 0, 0, 0 };
  3574. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3575. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3576. return;
  3577. }
  3578. switch (tensor->type) {
  3579. case GGML_TYPE_I8:
  3580. {
  3581. ((int8_t *)(tensor->data))[i] = value;
  3582. } break;
  3583. case GGML_TYPE_I16:
  3584. {
  3585. ((int16_t *)(tensor->data))[i] = value;
  3586. } break;
  3587. case GGML_TYPE_I32:
  3588. {
  3589. ((int32_t *)(tensor->data))[i] = value;
  3590. } break;
  3591. case GGML_TYPE_F16:
  3592. {
  3593. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3594. } break;
  3595. case GGML_TYPE_BF16:
  3596. {
  3597. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3598. } break;
  3599. case GGML_TYPE_F32:
  3600. {
  3601. ((float *)(tensor->data))[i] = value;
  3602. } break;
  3603. default:
  3604. {
  3605. GGML_ASSERT(false);
  3606. } break;
  3607. }
  3608. }
  3609. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3610. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3611. switch (tensor->type) {
  3612. case GGML_TYPE_I8:
  3613. return ((int8_t *) data)[0];
  3614. case GGML_TYPE_I16:
  3615. return ((int16_t *) data)[0];
  3616. case GGML_TYPE_I32:
  3617. return ((int32_t *) data)[0];
  3618. case GGML_TYPE_F16:
  3619. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3620. case GGML_TYPE_BF16:
  3621. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3622. case GGML_TYPE_F32:
  3623. return ((float *) data)[0];
  3624. default:
  3625. GGML_ASSERT(false);
  3626. }
  3627. return 0.0f;
  3628. }
  3629. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3630. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3631. switch (tensor->type) {
  3632. case GGML_TYPE_I8:
  3633. {
  3634. ((int8_t *)(data))[0] = value;
  3635. } break;
  3636. case GGML_TYPE_I16:
  3637. {
  3638. ((int16_t *)(data))[0] = value;
  3639. } break;
  3640. case GGML_TYPE_I32:
  3641. {
  3642. ((int32_t *)(data))[0] = value;
  3643. } break;
  3644. case GGML_TYPE_F16:
  3645. {
  3646. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3647. } break;
  3648. case GGML_TYPE_BF16:
  3649. {
  3650. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3651. } break;
  3652. case GGML_TYPE_F32:
  3653. {
  3654. ((float *)(data))[0] = value;
  3655. } break;
  3656. default:
  3657. {
  3658. GGML_ASSERT(false);
  3659. } break;
  3660. }
  3661. }
  3662. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3663. return tensor->data;
  3664. }
  3665. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3666. assert(tensor->type == GGML_TYPE_F32);
  3667. return (float *)(tensor->data);
  3668. }
  3669. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3670. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3671. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3672. }
  3673. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3674. return tensor->name;
  3675. }
  3676. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3677. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3678. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3679. return tensor;
  3680. }
  3681. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3682. va_list args;
  3683. va_start(args, fmt);
  3684. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3685. va_end(args);
  3686. return tensor;
  3687. }
  3688. struct ggml_tensor * ggml_view_tensor(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * src) {
  3691. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3692. ggml_format_name(result, "%s (view)", src->name);
  3693. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3694. result->nb[i] = src->nb[i];
  3695. }
  3696. return result;
  3697. }
  3698. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3699. struct ggml_object * obj = ctx->objects_begin;
  3700. char * const mem_buffer = ctx->mem_buffer;
  3701. while (obj != NULL) {
  3702. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3703. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3704. }
  3705. obj = obj->next;
  3706. }
  3707. return NULL;
  3708. }
  3709. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3710. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3711. obj = obj->next;
  3712. char * const mem_buffer = ctx->mem_buffer;
  3713. while (obj != NULL) {
  3714. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3715. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3716. }
  3717. obj = obj->next;
  3718. }
  3719. return NULL;
  3720. }
  3721. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3722. struct ggml_object * obj = ctx->objects_begin;
  3723. char * const mem_buffer = ctx->mem_buffer;
  3724. while (obj != NULL) {
  3725. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3726. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3727. if (strcmp(cur->name, name) == 0) {
  3728. return cur;
  3729. }
  3730. }
  3731. obj = obj->next;
  3732. }
  3733. return NULL;
  3734. }
  3735. ////////////////////////////////////////////////////////////////////////////////
  3736. // ggml_dup
  3737. static struct ggml_tensor * ggml_dup_impl(
  3738. struct ggml_context * ctx,
  3739. struct ggml_tensor * a,
  3740. bool inplace) {
  3741. bool is_node = false;
  3742. if (!inplace && (a->grad)) {
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3746. result->op = GGML_OP_DUP;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. return result;
  3750. }
  3751. struct ggml_tensor * ggml_dup(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a) {
  3754. return ggml_dup_impl(ctx, a, false);
  3755. }
  3756. struct ggml_tensor * ggml_dup_inplace(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a) {
  3759. return ggml_dup_impl(ctx, a, true);
  3760. }
  3761. // ggml_add
  3762. static struct ggml_tensor * ggml_add_impl(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b,
  3766. bool inplace) {
  3767. GGML_ASSERT(ggml_can_repeat(b, a));
  3768. bool is_node = false;
  3769. if (!inplace && (a->grad || b->grad)) {
  3770. // TODO: support backward pass for broadcasting
  3771. GGML_ASSERT(ggml_are_same_shape(a, b));
  3772. is_node = true;
  3773. }
  3774. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3775. result->op = GGML_OP_ADD;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src[0] = a;
  3778. result->src[1] = b;
  3779. return result;
  3780. }
  3781. struct ggml_tensor * ggml_add(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b) {
  3785. return ggml_add_impl(ctx, a, b, false);
  3786. }
  3787. struct ggml_tensor * ggml_add_inplace(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b) {
  3791. return ggml_add_impl(ctx, a, b, true);
  3792. }
  3793. // ggml_add_cast
  3794. static struct ggml_tensor * ggml_add_cast_impl(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. struct ggml_tensor * b,
  3798. enum ggml_type type) {
  3799. // TODO: support less-strict constraint
  3800. // GGML_ASSERT(ggml_can_repeat(b, a));
  3801. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3802. // currently only supported for quantized input and f16
  3803. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3804. a->type == GGML_TYPE_F16 ||
  3805. a->type == GGML_TYPE_BF16);
  3806. bool is_node = false;
  3807. if (a->grad || b->grad) {
  3808. // TODO: support backward pass for broadcasting
  3809. GGML_ASSERT(ggml_are_same_shape(a, b));
  3810. is_node = true;
  3811. }
  3812. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3813. result->op = GGML_OP_ADD;
  3814. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3815. result->src[0] = a;
  3816. result->src[1] = b;
  3817. return result;
  3818. }
  3819. struct ggml_tensor * ggml_add_cast(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. struct ggml_tensor * b,
  3823. enum ggml_type type) {
  3824. return ggml_add_cast_impl(ctx, a, b, type);
  3825. }
  3826. // ggml_add1
  3827. static struct ggml_tensor * ggml_add1_impl(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b,
  3831. bool inplace) {
  3832. GGML_ASSERT(ggml_is_scalar(b));
  3833. GGML_ASSERT(ggml_is_padded_1d(a));
  3834. bool is_node = false;
  3835. if (a->grad || b->grad) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. result->op = GGML_OP_ADD1;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src[0] = a;
  3842. result->src[1] = b;
  3843. return result;
  3844. }
  3845. struct ggml_tensor * ggml_add1(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. struct ggml_tensor * b) {
  3849. return ggml_add1_impl(ctx, a, b, false);
  3850. }
  3851. struct ggml_tensor * ggml_add1_inplace(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. struct ggml_tensor * b) {
  3855. return ggml_add1_impl(ctx, a, b, true);
  3856. }
  3857. // ggml_acc
  3858. static struct ggml_tensor * ggml_acc_impl(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. struct ggml_tensor * b,
  3862. size_t nb1,
  3863. size_t nb2,
  3864. size_t nb3,
  3865. size_t offset,
  3866. bool inplace) {
  3867. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3868. GGML_ASSERT(ggml_is_contiguous(a));
  3869. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3870. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3871. bool is_node = false;
  3872. if (!inplace && (a->grad || b->grad)) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3877. ggml_set_op_params(result, params, sizeof(params));
  3878. result->op = GGML_OP_ACC;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. result->src[1] = b;
  3882. return result;
  3883. }
  3884. struct ggml_tensor * ggml_acc(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. struct ggml_tensor * b,
  3888. size_t nb1,
  3889. size_t nb2,
  3890. size_t nb3,
  3891. size_t offset) {
  3892. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3893. }
  3894. struct ggml_tensor * ggml_acc_inplace(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b,
  3898. size_t nb1,
  3899. size_t nb2,
  3900. size_t nb3,
  3901. size_t offset) {
  3902. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3903. }
  3904. // ggml_sub
  3905. static struct ggml_tensor * ggml_sub_impl(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a,
  3908. struct ggml_tensor * b,
  3909. bool inplace) {
  3910. GGML_ASSERT(ggml_are_same_shape(a, b));
  3911. bool is_node = false;
  3912. if (!inplace && (a->grad || b->grad)) {
  3913. is_node = true;
  3914. }
  3915. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3916. result->op = GGML_OP_SUB;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. result->src[1] = b;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_sub(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b) {
  3926. return ggml_sub_impl(ctx, a, b, false);
  3927. }
  3928. struct ggml_tensor * ggml_sub_inplace(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. struct ggml_tensor * b) {
  3932. return ggml_sub_impl(ctx, a, b, true);
  3933. }
  3934. // ggml_mul
  3935. static struct ggml_tensor * ggml_mul_impl(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b,
  3939. bool inplace) {
  3940. GGML_ASSERT(ggml_can_repeat(b, a));
  3941. bool is_node = false;
  3942. if (!inplace && (a->grad || b->grad)) {
  3943. // TODO: support backward pass for broadcasting
  3944. GGML_ASSERT(ggml_are_same_shape(a, b));
  3945. is_node = true;
  3946. }
  3947. if (inplace) {
  3948. GGML_ASSERT(!is_node);
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. result->op = GGML_OP_MUL;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src[0] = a;
  3954. result->src[1] = b;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_mul(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b) {
  3961. return ggml_mul_impl(ctx, a, b, false);
  3962. }
  3963. struct ggml_tensor * ggml_mul_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. struct ggml_tensor * b) {
  3967. return ggml_mul_impl(ctx, a, b, true);
  3968. }
  3969. // ggml_div
  3970. static struct ggml_tensor * ggml_div_impl(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * b,
  3974. bool inplace) {
  3975. GGML_ASSERT(ggml_can_repeat(b, a));
  3976. bool is_node = false;
  3977. if (!inplace && (a->grad || b->grad)) {
  3978. is_node = true;
  3979. }
  3980. if (inplace) {
  3981. GGML_ASSERT(!is_node);
  3982. }
  3983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3984. result->op = GGML_OP_DIV;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src[0] = a;
  3987. result->src[1] = b;
  3988. return result;
  3989. }
  3990. struct ggml_tensor * ggml_div(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b) {
  3994. return ggml_div_impl(ctx, a, b, false);
  3995. }
  3996. struct ggml_tensor * ggml_div_inplace(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. struct ggml_tensor * b) {
  4000. return ggml_div_impl(ctx, a, b, true);
  4001. }
  4002. // ggml_sqr
  4003. static struct ggml_tensor * ggml_sqr_impl(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. bool inplace) {
  4007. bool is_node = false;
  4008. if (!inplace && (a->grad)) {
  4009. is_node = true;
  4010. }
  4011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4012. result->op = GGML_OP_SQR;
  4013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4014. result->src[0] = a;
  4015. return result;
  4016. }
  4017. struct ggml_tensor * ggml_sqr(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a) {
  4020. return ggml_sqr_impl(ctx, a, false);
  4021. }
  4022. struct ggml_tensor * ggml_sqr_inplace(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a) {
  4025. return ggml_sqr_impl(ctx, a, true);
  4026. }
  4027. // ggml_sqrt
  4028. static struct ggml_tensor * ggml_sqrt_impl(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. bool inplace) {
  4032. bool is_node = false;
  4033. if (!inplace && (a->grad)) {
  4034. is_node = true;
  4035. }
  4036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4037. result->op = GGML_OP_SQRT;
  4038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4039. result->src[0] = a;
  4040. return result;
  4041. }
  4042. struct ggml_tensor * ggml_sqrt(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a) {
  4045. return ggml_sqrt_impl(ctx, a, false);
  4046. }
  4047. struct ggml_tensor * ggml_sqrt_inplace(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a) {
  4050. return ggml_sqrt_impl(ctx, a, true);
  4051. }
  4052. // ggml_log
  4053. static struct ggml_tensor * ggml_log_impl(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. bool inplace) {
  4057. bool is_node = false;
  4058. if (!inplace && (a->grad)) {
  4059. is_node = true;
  4060. }
  4061. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4062. result->op = GGML_OP_LOG;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src[0] = a;
  4065. return result;
  4066. }
  4067. struct ggml_tensor * ggml_log(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a) {
  4070. return ggml_log_impl(ctx, a, false);
  4071. }
  4072. struct ggml_tensor * ggml_log_inplace(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a) {
  4075. return ggml_log_impl(ctx, a, true);
  4076. }
  4077. // ggml_sum
  4078. struct ggml_tensor * ggml_sum(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a) {
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4086. result->op = GGML_OP_SUM;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. return result;
  4090. }
  4091. // ggml_sum_rows
  4092. struct ggml_tensor * ggml_sum_rows(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. bool is_node = false;
  4096. if (a->grad) {
  4097. is_node = true;
  4098. }
  4099. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4100. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4101. ne[i] = a->ne[i];
  4102. }
  4103. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4104. result->op = GGML_OP_SUM_ROWS;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src[0] = a;
  4107. return result;
  4108. }
  4109. // ggml_mean
  4110. struct ggml_tensor * ggml_mean(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a) {
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. GGML_ASSERT(false); // TODO: implement
  4116. is_node = true;
  4117. }
  4118. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4119. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4120. result->op = GGML_OP_MEAN;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. // ggml_argmax
  4126. struct ggml_tensor * ggml_argmax(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a) {
  4129. GGML_ASSERT(ggml_is_matrix(a));
  4130. bool is_node = false;
  4131. if (a->grad) {
  4132. GGML_ASSERT(false);
  4133. is_node = true;
  4134. }
  4135. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4136. result->op = GGML_OP_ARGMAX;
  4137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4138. result->src[0] = a;
  4139. return result;
  4140. }
  4141. // ggml_repeat
  4142. struct ggml_tensor * ggml_repeat(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b) {
  4146. GGML_ASSERT(ggml_can_repeat(a, b));
  4147. bool is_node = false;
  4148. if (a->grad) {
  4149. is_node = true;
  4150. }
  4151. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4152. result->op = GGML_OP_REPEAT;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. return result;
  4156. }
  4157. // ggml_repeat_back
  4158. struct ggml_tensor * ggml_repeat_back(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b) {
  4162. GGML_ASSERT(ggml_can_repeat(b, a));
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. if (ggml_are_same_shape(a, b) && !is_node) {
  4168. return a;
  4169. }
  4170. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4171. result->op = GGML_OP_REPEAT_BACK;
  4172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4173. result->src[0] = a;
  4174. return result;
  4175. }
  4176. // ggml_concat
  4177. struct ggml_tensor * ggml_concat(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b,
  4181. int dim) {
  4182. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4183. int64_t ne[GGML_MAX_DIMS];
  4184. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4185. if (d == dim) {
  4186. ne[d] = a->ne[d] + b->ne[d];
  4187. continue;
  4188. }
  4189. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4190. ne[d] = a->ne[d];
  4191. }
  4192. bool is_node = false;
  4193. if (a->grad || b->grad) {
  4194. is_node = true;
  4195. }
  4196. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4197. ggml_set_op_params_i32(result, 0, dim);
  4198. result->op = GGML_OP_CONCAT;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src[0] = a;
  4201. result->src[1] = b;
  4202. return result;
  4203. }
  4204. // ggml_abs
  4205. struct ggml_tensor * ggml_abs(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a) {
  4208. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4209. }
  4210. struct ggml_tensor * ggml_abs_inplace(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a) {
  4213. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4214. }
  4215. // ggml_sgn
  4216. struct ggml_tensor * ggml_sgn(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a) {
  4219. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4220. }
  4221. struct ggml_tensor * ggml_sgn_inplace(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a) {
  4224. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4225. }
  4226. // ggml_neg
  4227. struct ggml_tensor * ggml_neg(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a) {
  4230. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4231. }
  4232. struct ggml_tensor * ggml_neg_inplace(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4236. }
  4237. // ggml_step
  4238. struct ggml_tensor * ggml_step(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4242. }
  4243. struct ggml_tensor * ggml_step_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4247. }
  4248. // ggml_tanh
  4249. struct ggml_tensor * ggml_tanh(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a) {
  4252. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4253. }
  4254. struct ggml_tensor * ggml_tanh_inplace(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a) {
  4257. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4258. }
  4259. // ggml_elu
  4260. struct ggml_tensor * ggml_elu(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4264. }
  4265. struct ggml_tensor * ggml_elu_inplace(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4269. }
  4270. // ggml_relu
  4271. struct ggml_tensor * ggml_relu(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4275. }
  4276. struct ggml_tensor * ggml_relu_inplace(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4280. }
  4281. // ggml_leaky_relu
  4282. struct ggml_tensor * ggml_leaky_relu(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4285. bool is_node = false;
  4286. if (!inplace && (a->grad)) {
  4287. is_node = true;
  4288. }
  4289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4290. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4291. result->op = GGML_OP_LEAKY_RELU;
  4292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4293. result->src[0] = a;
  4294. return result;
  4295. }
  4296. // ggml_sigmoid
  4297. struct ggml_tensor * ggml_sigmoid(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4301. }
  4302. struct ggml_tensor * ggml_sigmoid_inplace(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4306. }
  4307. // ggml_gelu
  4308. struct ggml_tensor * ggml_gelu(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a) {
  4311. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4312. }
  4313. struct ggml_tensor * ggml_gelu_inplace(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a) {
  4316. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4317. }
  4318. // ggml_gelu_quick
  4319. struct ggml_tensor * ggml_gelu_quick(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4323. }
  4324. struct ggml_tensor * ggml_gelu_quick_inplace(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4328. }
  4329. // ggml_silu
  4330. struct ggml_tensor * ggml_silu(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4334. }
  4335. struct ggml_tensor * ggml_silu_inplace(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4339. }
  4340. // ggml_silu_back
  4341. struct ggml_tensor * ggml_silu_back(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. bool is_node = false;
  4346. if (a->grad || b->grad) {
  4347. // TODO: implement backward
  4348. is_node = true;
  4349. }
  4350. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4351. result->op = GGML_OP_SILU_BACK;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. // ggml hardswish
  4358. struct ggml_tensor * ggml_hardswish(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4362. }
  4363. // ggml hardsigmoid
  4364. struct ggml_tensor * ggml_hardsigmoid(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4368. }
  4369. // ggml_norm
  4370. static struct ggml_tensor * ggml_norm_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. float eps,
  4374. bool inplace) {
  4375. bool is_node = false;
  4376. if (!inplace && (a->grad)) {
  4377. GGML_ASSERT(false); // TODO: implement backward
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. ggml_set_op_params(result, &eps, sizeof(eps));
  4382. result->op = GGML_OP_NORM;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_norm(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. float eps) {
  4391. return ggml_norm_impl(ctx, a, eps, false);
  4392. }
  4393. struct ggml_tensor * ggml_norm_inplace(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. float eps) {
  4397. return ggml_norm_impl(ctx, a, eps, true);
  4398. }
  4399. // ggml_rms_norm
  4400. static struct ggml_tensor * ggml_rms_norm_impl(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. float eps,
  4404. bool inplace) {
  4405. bool is_node = false;
  4406. if (!inplace && (a->grad)) {
  4407. is_node = true;
  4408. }
  4409. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4410. ggml_set_op_params(result, &eps, sizeof(eps));
  4411. result->op = GGML_OP_RMS_NORM;
  4412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4413. result->src[0] = a;
  4414. return result;
  4415. }
  4416. struct ggml_tensor * ggml_rms_norm(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. float eps) {
  4420. return ggml_rms_norm_impl(ctx, a, eps, false);
  4421. }
  4422. struct ggml_tensor * ggml_rms_norm_inplace(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. float eps) {
  4426. return ggml_rms_norm_impl(ctx, a, eps, true);
  4427. }
  4428. // ggml_rms_norm_back
  4429. struct ggml_tensor * ggml_rms_norm_back(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b,
  4433. float eps) {
  4434. bool is_node = false;
  4435. if (a->grad) {
  4436. // TODO: implement backward
  4437. is_node = true;
  4438. }
  4439. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4440. ggml_set_op_params(result, &eps, sizeof(eps));
  4441. result->op = GGML_OP_RMS_NORM_BACK;
  4442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4443. result->src[0] = a;
  4444. result->src[1] = b;
  4445. return result;
  4446. }
  4447. // ggml_group_norm
  4448. static struct ggml_tensor * ggml_group_norm_impl(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. int n_groups,
  4452. bool inplace) {
  4453. bool is_node = false;
  4454. if (!inplace && (a->grad)) {
  4455. GGML_ASSERT(false); // TODO: implement backward
  4456. is_node = true;
  4457. }
  4458. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4459. result->op_params[0] = n_groups;
  4460. result->op = GGML_OP_GROUP_NORM;
  4461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4462. result->src[0] = a;
  4463. return result;
  4464. }
  4465. struct ggml_tensor * ggml_group_norm(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. int n_groups) {
  4469. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4470. }
  4471. struct ggml_tensor * ggml_group_norm_inplace(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. int n_groups) {
  4475. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4476. }
  4477. // ggml_mul_mat
  4478. struct ggml_tensor * ggml_mul_mat(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b) {
  4482. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4483. GGML_ASSERT(!ggml_is_transposed(a));
  4484. bool is_node = false;
  4485. if (a->grad || b->grad) {
  4486. is_node = true;
  4487. }
  4488. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4489. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4490. result->op = GGML_OP_MUL_MAT;
  4491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4492. result->src[0] = a;
  4493. result->src[1] = b;
  4494. return result;
  4495. }
  4496. void ggml_mul_mat_set_prec(
  4497. struct ggml_tensor * a,
  4498. enum ggml_prec prec) {
  4499. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4500. const int32_t prec_i32 = (int32_t) prec;
  4501. ggml_set_op_params_i32(a, 0, prec_i32);
  4502. }
  4503. // ggml_mul_mat_id
  4504. /*
  4505. c = ggml_mul_mat_id(ctx, as, b, ids);
  4506. as -> [cols, rows, n_expert]
  4507. ids -> [n_experts_used, n_tokens] (i32)
  4508. b -> [cols, n_expert_used, n_tokens]
  4509. c -> [rows, n_expert_used, n_tokens]
  4510. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4511. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4512. */
  4513. struct ggml_tensor * ggml_mul_mat_id(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * as,
  4516. struct ggml_tensor * b,
  4517. struct ggml_tensor * ids) {
  4518. GGML_ASSERT(!ggml_is_transposed(as));
  4519. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4520. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4521. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4522. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4523. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4524. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4525. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4526. bool is_node = false;
  4527. if (as->grad || b->grad) {
  4528. is_node = true;
  4529. }
  4530. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4531. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4532. result->op = GGML_OP_MUL_MAT_ID;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = as;
  4535. result->src[1] = b;
  4536. result->src[2] = ids;
  4537. return result;
  4538. }
  4539. // ggml_out_prod
  4540. struct ggml_tensor * ggml_out_prod(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. struct ggml_tensor * b) {
  4544. GGML_ASSERT(ggml_can_out_prod(a, b));
  4545. GGML_ASSERT(!ggml_is_transposed(a));
  4546. bool is_node = false;
  4547. if (a->grad || b->grad) {
  4548. is_node = true;
  4549. }
  4550. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4551. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4552. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4553. result->op = GGML_OP_OUT_PROD;
  4554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4555. result->src[0] = a;
  4556. result->src[1] = b;
  4557. return result;
  4558. }
  4559. // ggml_scale
  4560. static struct ggml_tensor * ggml_scale_impl(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. float s,
  4564. bool inplace) {
  4565. GGML_ASSERT(ggml_is_padded_1d(a));
  4566. bool is_node = false;
  4567. if (a->grad) {
  4568. is_node = true;
  4569. }
  4570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4571. ggml_set_op_params(result, &s, sizeof(s));
  4572. result->op = GGML_OP_SCALE;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src[0] = a;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_scale(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. float s) {
  4581. return ggml_scale_impl(ctx, a, s, false);
  4582. }
  4583. struct ggml_tensor * ggml_scale_inplace(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a,
  4586. float s) {
  4587. return ggml_scale_impl(ctx, a, s, true);
  4588. }
  4589. // ggml_set
  4590. static struct ggml_tensor * ggml_set_impl(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b,
  4594. size_t nb1,
  4595. size_t nb2,
  4596. size_t nb3,
  4597. size_t offset,
  4598. bool inplace) {
  4599. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4600. bool is_node = false;
  4601. if (a->grad || b->grad) {
  4602. is_node = true;
  4603. }
  4604. // make a view of the destination
  4605. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4606. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4607. ggml_set_op_params(result, params, sizeof(params));
  4608. result->op = GGML_OP_SET;
  4609. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4610. result->src[0] = a;
  4611. result->src[1] = b;
  4612. return result;
  4613. }
  4614. struct ggml_tensor * ggml_set(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. struct ggml_tensor * b,
  4618. size_t nb1,
  4619. size_t nb2,
  4620. size_t nb3,
  4621. size_t offset) {
  4622. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4623. }
  4624. struct ggml_tensor * ggml_set_inplace(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b,
  4628. size_t nb1,
  4629. size_t nb2,
  4630. size_t nb3,
  4631. size_t offset) {
  4632. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4633. }
  4634. struct ggml_tensor * ggml_set_1d(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. struct ggml_tensor * b,
  4638. size_t offset) {
  4639. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4640. }
  4641. struct ggml_tensor * ggml_set_1d_inplace(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b,
  4645. size_t offset) {
  4646. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4647. }
  4648. struct ggml_tensor * ggml_set_2d(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. struct ggml_tensor * b,
  4652. size_t nb1,
  4653. size_t offset) {
  4654. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4655. }
  4656. struct ggml_tensor * ggml_set_2d_inplace(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a,
  4659. struct ggml_tensor * b,
  4660. size_t nb1,
  4661. size_t offset) {
  4662. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4663. }
  4664. // ggml_cpy
  4665. static struct ggml_tensor * ggml_cpy_impl(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. struct ggml_tensor * b) {
  4669. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4670. bool is_node = false;
  4671. if (a->grad || b->grad) {
  4672. // inplace is false and either one have a grad
  4673. is_node = true;
  4674. }
  4675. // make a view of the destination
  4676. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4677. if (strlen(b->name) > 0) {
  4678. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4679. } else {
  4680. ggml_format_name(result, "%s (copy)", a->name);
  4681. }
  4682. result->op = GGML_OP_CPY;
  4683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4684. result->src[0] = a;
  4685. result->src[1] = b;
  4686. return result;
  4687. }
  4688. struct ggml_tensor * ggml_cpy(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. struct ggml_tensor * b) {
  4692. return ggml_cpy_impl(ctx, a, b);
  4693. }
  4694. struct ggml_tensor * ggml_cast(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a,
  4697. enum ggml_type type) {
  4698. bool is_node = false;
  4699. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4700. ggml_format_name(result, "%s (copy)", a->name);
  4701. result->op = GGML_OP_CPY;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src[0] = a;
  4704. result->src[1] = result;
  4705. return result;
  4706. }
  4707. // ggml_cont
  4708. static struct ggml_tensor * ggml_cont_impl(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a) {
  4711. bool is_node = false;
  4712. if (a->grad) {
  4713. is_node = true;
  4714. }
  4715. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4716. ggml_format_name(result, "%s (cont)", a->name);
  4717. result->op = GGML_OP_CONT;
  4718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4719. result->src[0] = a;
  4720. return result;
  4721. }
  4722. struct ggml_tensor * ggml_cont(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a) {
  4725. return ggml_cont_impl(ctx, a);
  4726. }
  4727. // make contiguous, with new shape
  4728. GGML_API struct ggml_tensor * ggml_cont_1d(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. int64_t ne0) {
  4732. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4733. }
  4734. GGML_API struct ggml_tensor * ggml_cont_2d(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. int64_t ne0,
  4738. int64_t ne1) {
  4739. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4740. }
  4741. GGML_API struct ggml_tensor * ggml_cont_3d(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. int64_t ne0,
  4745. int64_t ne1,
  4746. int64_t ne2) {
  4747. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4748. }
  4749. struct ggml_tensor * ggml_cont_4d(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a,
  4752. int64_t ne0,
  4753. int64_t ne1,
  4754. int64_t ne2,
  4755. int64_t ne3) {
  4756. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4757. bool is_node = false;
  4758. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4759. ggml_format_name(result, "%s (cont)", a->name);
  4760. result->op = GGML_OP_CONT;
  4761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4762. result->src[0] = a;
  4763. return result;
  4764. }
  4765. // ggml_reshape
  4766. struct ggml_tensor * ggml_reshape(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. struct ggml_tensor * b) {
  4770. GGML_ASSERT(ggml_is_contiguous(a));
  4771. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4772. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. is_node = true;
  4776. }
  4777. if (b->grad) {
  4778. // gradient propagation is not supported
  4779. //GGML_ASSERT(false);
  4780. }
  4781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4782. ggml_format_name(result, "%s (reshaped)", a->name);
  4783. result->op = GGML_OP_RESHAPE;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. return result;
  4787. }
  4788. struct ggml_tensor * ggml_reshape_1d(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. int64_t ne0) {
  4792. GGML_ASSERT(ggml_is_contiguous(a));
  4793. GGML_ASSERT(ggml_nelements(a) == ne0);
  4794. bool is_node = false;
  4795. if (a->grad) {
  4796. is_node = true;
  4797. }
  4798. const int64_t ne[1] = { ne0 };
  4799. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4800. ggml_format_name(result, "%s (reshaped)", a->name);
  4801. result->op = GGML_OP_RESHAPE;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_reshape_2d(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. int64_t ne0,
  4810. int64_t ne1) {
  4811. GGML_ASSERT(ggml_is_contiguous(a));
  4812. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4813. bool is_node = false;
  4814. if (a->grad) {
  4815. is_node = true;
  4816. }
  4817. const int64_t ne[2] = { ne0, ne1 };
  4818. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4819. ggml_format_name(result, "%s (reshaped)", a->name);
  4820. result->op = GGML_OP_RESHAPE;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_reshape_3d(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int64_t ne0,
  4829. int64_t ne1,
  4830. int64_t ne2) {
  4831. GGML_ASSERT(ggml_is_contiguous(a));
  4832. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4833. bool is_node = false;
  4834. if (a->grad) {
  4835. is_node = true;
  4836. }
  4837. const int64_t ne[3] = { ne0, ne1, ne2 };
  4838. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4839. ggml_format_name(result, "%s (reshaped)", a->name);
  4840. result->op = GGML_OP_RESHAPE;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src[0] = a;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_reshape_4d(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. int64_t ne0,
  4849. int64_t ne1,
  4850. int64_t ne2,
  4851. int64_t ne3) {
  4852. GGML_ASSERT(ggml_is_contiguous(a));
  4853. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4854. bool is_node = false;
  4855. if (a->grad) {
  4856. is_node = true;
  4857. }
  4858. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4859. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4860. ggml_format_name(result, "%s (reshaped)", a->name);
  4861. result->op = GGML_OP_RESHAPE;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. return result;
  4865. }
  4866. static struct ggml_tensor * ggml_view_impl(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. int n_dims,
  4870. const int64_t * ne,
  4871. size_t offset) {
  4872. bool is_node = false;
  4873. if (a->grad) {
  4874. is_node = true;
  4875. }
  4876. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4877. ggml_format_name(result, "%s (view)", a->name);
  4878. ggml_set_op_params(result, &offset, sizeof(offset));
  4879. result->op = GGML_OP_VIEW;
  4880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4881. result->src[0] = a;
  4882. return result;
  4883. }
  4884. // ggml_view_1d
  4885. struct ggml_tensor * ggml_view_1d(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. int64_t ne0,
  4889. size_t offset) {
  4890. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4891. return result;
  4892. }
  4893. // ggml_view_2d
  4894. struct ggml_tensor * ggml_view_2d(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. int64_t ne0,
  4898. int64_t ne1,
  4899. size_t nb1,
  4900. size_t offset) {
  4901. const int64_t ne[2] = { ne0, ne1 };
  4902. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4903. result->nb[1] = nb1;
  4904. result->nb[2] = result->nb[1]*ne1;
  4905. result->nb[3] = result->nb[2];
  4906. return result;
  4907. }
  4908. // ggml_view_3d
  4909. struct ggml_tensor * ggml_view_3d(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. int64_t ne0,
  4913. int64_t ne1,
  4914. int64_t ne2,
  4915. size_t nb1,
  4916. size_t nb2,
  4917. size_t offset) {
  4918. const int64_t ne[3] = { ne0, ne1, ne2 };
  4919. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4920. result->nb[1] = nb1;
  4921. result->nb[2] = nb2;
  4922. result->nb[3] = result->nb[2]*ne2;
  4923. return result;
  4924. }
  4925. // ggml_view_4d
  4926. struct ggml_tensor * ggml_view_4d(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. int64_t ne0,
  4930. int64_t ne1,
  4931. int64_t ne2,
  4932. int64_t ne3,
  4933. size_t nb1,
  4934. size_t nb2,
  4935. size_t nb3,
  4936. size_t offset) {
  4937. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4938. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4939. result->nb[1] = nb1;
  4940. result->nb[2] = nb2;
  4941. result->nb[3] = nb3;
  4942. return result;
  4943. }
  4944. // ggml_permute
  4945. struct ggml_tensor * ggml_permute(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. int axis0,
  4949. int axis1,
  4950. int axis2,
  4951. int axis3) {
  4952. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4953. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4954. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4955. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4956. GGML_ASSERT(axis0 != axis1);
  4957. GGML_ASSERT(axis0 != axis2);
  4958. GGML_ASSERT(axis0 != axis3);
  4959. GGML_ASSERT(axis1 != axis2);
  4960. GGML_ASSERT(axis1 != axis3);
  4961. GGML_ASSERT(axis2 != axis3);
  4962. bool is_node = false;
  4963. if (a->grad) {
  4964. is_node = true;
  4965. }
  4966. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4967. ggml_format_name(result, "%s (permuted)", a->name);
  4968. int ne[GGML_MAX_DIMS];
  4969. int nb[GGML_MAX_DIMS];
  4970. ne[axis0] = a->ne[0];
  4971. ne[axis1] = a->ne[1];
  4972. ne[axis2] = a->ne[2];
  4973. ne[axis3] = a->ne[3];
  4974. nb[axis0] = a->nb[0];
  4975. nb[axis1] = a->nb[1];
  4976. nb[axis2] = a->nb[2];
  4977. nb[axis3] = a->nb[3];
  4978. result->ne[0] = ne[0];
  4979. result->ne[1] = ne[1];
  4980. result->ne[2] = ne[2];
  4981. result->ne[3] = ne[3];
  4982. result->nb[0] = nb[0];
  4983. result->nb[1] = nb[1];
  4984. result->nb[2] = nb[2];
  4985. result->nb[3] = nb[3];
  4986. result->op = GGML_OP_PERMUTE;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src[0] = a;
  4989. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4990. ggml_set_op_params(result, params, sizeof(params));
  4991. return result;
  4992. }
  4993. // ggml_transpose
  4994. struct ggml_tensor * ggml_transpose(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a) {
  4997. bool is_node = false;
  4998. if (a->grad) {
  4999. is_node = true;
  5000. }
  5001. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5002. ggml_format_name(result, "%s (transposed)", a->name);
  5003. result->ne[0] = a->ne[1];
  5004. result->ne[1] = a->ne[0];
  5005. result->nb[0] = a->nb[1];
  5006. result->nb[1] = a->nb[0];
  5007. result->op = GGML_OP_TRANSPOSE;
  5008. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5009. result->src[0] = a;
  5010. return result;
  5011. }
  5012. // ggml_get_rows
  5013. struct ggml_tensor * ggml_get_rows(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. struct ggml_tensor * b) {
  5017. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5018. GGML_ASSERT(b->ne[3] == 1);
  5019. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5020. bool is_node = false;
  5021. if (a->grad || b->grad) {
  5022. is_node = true;
  5023. }
  5024. // TODO: implement non F32 return
  5025. enum ggml_type type = GGML_TYPE_F32;
  5026. if (a->type == GGML_TYPE_I32) {
  5027. type = a->type;
  5028. }
  5029. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5030. result->op = GGML_OP_GET_ROWS;
  5031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5032. result->src[0] = a;
  5033. result->src[1] = b;
  5034. return result;
  5035. }
  5036. // ggml_get_rows_back
  5037. struct ggml_tensor * ggml_get_rows_back(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. struct ggml_tensor * b,
  5041. struct ggml_tensor * c) {
  5042. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5043. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5044. bool is_node = false;
  5045. if (a->grad || b->grad) {
  5046. is_node = true;
  5047. }
  5048. // TODO: implement non F32 return
  5049. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5050. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5051. result->op = GGML_OP_GET_ROWS_BACK;
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src[0] = a;
  5054. result->src[1] = b;
  5055. return result;
  5056. }
  5057. // ggml_diag
  5058. struct ggml_tensor * ggml_diag(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a) {
  5061. GGML_ASSERT(a->ne[1] == 1);
  5062. bool is_node = false;
  5063. if (a->grad) {
  5064. is_node = true;
  5065. }
  5066. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5067. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5068. result->op = GGML_OP_DIAG;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src[0] = a;
  5071. return result;
  5072. }
  5073. // ggml_diag_mask_inf
  5074. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int n_past,
  5078. bool inplace) {
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5084. int32_t params[] = { n_past };
  5085. ggml_set_op_params(result, params, sizeof(params));
  5086. result->op = GGML_OP_DIAG_MASK_INF;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src[0] = a;
  5089. return result;
  5090. }
  5091. struct ggml_tensor * ggml_diag_mask_inf(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. int n_past) {
  5095. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5096. }
  5097. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. int n_past) {
  5101. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5102. }
  5103. // ggml_diag_mask_zero
  5104. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5105. struct ggml_context * ctx,
  5106. struct ggml_tensor * a,
  5107. int n_past,
  5108. bool inplace) {
  5109. bool is_node = false;
  5110. if (a->grad) {
  5111. is_node = true;
  5112. }
  5113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5114. int32_t params[] = { n_past };
  5115. ggml_set_op_params(result, params, sizeof(params));
  5116. result->op = GGML_OP_DIAG_MASK_ZERO;
  5117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5118. result->src[0] = a;
  5119. return result;
  5120. }
  5121. struct ggml_tensor * ggml_diag_mask_zero(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. int n_past) {
  5125. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5126. }
  5127. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. int n_past) {
  5131. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5132. }
  5133. // ggml_soft_max
  5134. static struct ggml_tensor * ggml_soft_max_impl(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * mask,
  5138. float scale,
  5139. float max_bias,
  5140. bool inplace) {
  5141. GGML_ASSERT(ggml_is_contiguous(a));
  5142. if (mask) {
  5143. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5144. GGML_ASSERT(ggml_is_contiguous(mask));
  5145. GGML_ASSERT(ggml_is_matrix(mask));
  5146. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5147. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5148. }
  5149. if (max_bias > 0.0f) {
  5150. GGML_ASSERT(mask);
  5151. }
  5152. bool is_node = false;
  5153. if (a->grad) {
  5154. is_node = true;
  5155. }
  5156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5157. float params[] = { scale, max_bias };
  5158. ggml_set_op_params(result, params, sizeof(params));
  5159. result->op = GGML_OP_SOFT_MAX;
  5160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5161. result->src[0] = a;
  5162. result->src[1] = mask;
  5163. return result;
  5164. }
  5165. struct ggml_tensor * ggml_soft_max(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a) {
  5168. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5169. }
  5170. struct ggml_tensor * ggml_soft_max_inplace(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * a) {
  5173. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5174. }
  5175. struct ggml_tensor * ggml_soft_max_ext(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. struct ggml_tensor * mask,
  5179. float scale,
  5180. float max_bias) {
  5181. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5182. }
  5183. // ggml_soft_max_back
  5184. static struct ggml_tensor * ggml_soft_max_back_impl(
  5185. struct ggml_context * ctx,
  5186. struct ggml_tensor * a,
  5187. struct ggml_tensor * b,
  5188. bool inplace) {
  5189. bool is_node = false;
  5190. if (a->grad || b->grad) {
  5191. is_node = true; // TODO : implement backward pass
  5192. }
  5193. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5194. result->op = GGML_OP_SOFT_MAX_BACK;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src[0] = a;
  5197. result->src[1] = b;
  5198. return result;
  5199. }
  5200. struct ggml_tensor * ggml_soft_max_back(
  5201. struct ggml_context * ctx,
  5202. struct ggml_tensor * a,
  5203. struct ggml_tensor * b) {
  5204. return ggml_soft_max_back_impl(ctx, a, b, false);
  5205. }
  5206. struct ggml_tensor * ggml_soft_max_back_inplace(
  5207. struct ggml_context * ctx,
  5208. struct ggml_tensor * a,
  5209. struct ggml_tensor * b) {
  5210. return ggml_soft_max_back_impl(ctx, a, b, true);
  5211. }
  5212. // ggml_rope
  5213. static struct ggml_tensor * ggml_rope_impl(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. struct ggml_tensor * b,
  5217. struct ggml_tensor * c,
  5218. int n_dims,
  5219. int mode,
  5220. int n_ctx_orig,
  5221. float freq_base,
  5222. float freq_scale,
  5223. float ext_factor,
  5224. float attn_factor,
  5225. float beta_fast,
  5226. float beta_slow,
  5227. bool inplace) {
  5228. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5229. GGML_ASSERT(ggml_is_vector(b));
  5230. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5231. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5232. if (c) {
  5233. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5234. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5235. }
  5236. bool is_node = false;
  5237. if (a->grad) {
  5238. is_node = true;
  5239. }
  5240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5241. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5242. memcpy(params + 5, &freq_base, sizeof(float));
  5243. memcpy(params + 6, &freq_scale, sizeof(float));
  5244. memcpy(params + 7, &ext_factor, sizeof(float));
  5245. memcpy(params + 8, &attn_factor, sizeof(float));
  5246. memcpy(params + 9, &beta_fast, sizeof(float));
  5247. memcpy(params + 10, &beta_slow, sizeof(float));
  5248. ggml_set_op_params(result, params, sizeof(params));
  5249. result->op = GGML_OP_ROPE;
  5250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5251. result->src[0] = a;
  5252. result->src[1] = b;
  5253. result->src[2] = c;
  5254. return result;
  5255. }
  5256. struct ggml_tensor * ggml_rope(
  5257. struct ggml_context * ctx,
  5258. struct ggml_tensor * a,
  5259. struct ggml_tensor * b,
  5260. int n_dims,
  5261. int mode) {
  5262. return ggml_rope_impl(
  5263. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5264. );
  5265. }
  5266. struct ggml_tensor * ggml_rope_inplace(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. struct ggml_tensor * b,
  5270. int n_dims,
  5271. int mode) {
  5272. return ggml_rope_impl(
  5273. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5274. );
  5275. }
  5276. struct ggml_tensor * ggml_rope_ext(
  5277. struct ggml_context * ctx,
  5278. struct ggml_tensor * a,
  5279. struct ggml_tensor * b,
  5280. struct ggml_tensor * c,
  5281. int n_dims,
  5282. int mode,
  5283. int n_ctx_orig,
  5284. float freq_base,
  5285. float freq_scale,
  5286. float ext_factor,
  5287. float attn_factor,
  5288. float beta_fast,
  5289. float beta_slow) {
  5290. return ggml_rope_impl(
  5291. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5292. ext_factor, attn_factor, beta_fast, beta_slow, false
  5293. );
  5294. }
  5295. struct ggml_tensor * ggml_rope_ext_inplace(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. struct ggml_tensor * b,
  5299. struct ggml_tensor * c,
  5300. int n_dims,
  5301. int mode,
  5302. int n_ctx_orig,
  5303. float freq_base,
  5304. float freq_scale,
  5305. float ext_factor,
  5306. float attn_factor,
  5307. float beta_fast,
  5308. float beta_slow) {
  5309. return ggml_rope_impl(
  5310. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5311. ext_factor, attn_factor, beta_fast, beta_slow, true
  5312. );
  5313. }
  5314. struct ggml_tensor * ggml_rope_custom(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. struct ggml_tensor * b,
  5318. int n_dims,
  5319. int mode,
  5320. int n_ctx_orig,
  5321. float freq_base,
  5322. float freq_scale,
  5323. float ext_factor,
  5324. float attn_factor,
  5325. float beta_fast,
  5326. float beta_slow) {
  5327. return ggml_rope_impl(
  5328. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5329. ext_factor, attn_factor, beta_fast, beta_slow, false
  5330. );
  5331. }
  5332. struct ggml_tensor * ggml_rope_custom_inplace(
  5333. struct ggml_context * ctx,
  5334. struct ggml_tensor * a,
  5335. struct ggml_tensor * b,
  5336. int n_dims,
  5337. int mode,
  5338. int n_ctx_orig,
  5339. float freq_base,
  5340. float freq_scale,
  5341. float ext_factor,
  5342. float attn_factor,
  5343. float beta_fast,
  5344. float beta_slow) {
  5345. return ggml_rope_impl(
  5346. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5347. ext_factor, attn_factor, beta_fast, beta_slow, true
  5348. );
  5349. }
  5350. // ggml_rope_back
  5351. struct ggml_tensor * ggml_rope_back(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. struct ggml_tensor * c,
  5356. int n_dims,
  5357. int mode,
  5358. int n_ctx_orig,
  5359. float freq_base,
  5360. float freq_scale,
  5361. float ext_factor,
  5362. float attn_factor,
  5363. float beta_fast,
  5364. float beta_slow) {
  5365. GGML_ASSERT(ggml_is_vector(b));
  5366. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5367. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5368. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5369. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5370. bool is_node = false;
  5371. if (a->grad) {
  5372. is_node = false; // TODO: implement backward
  5373. }
  5374. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5375. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5376. memcpy(params + 5, &freq_base, sizeof(float));
  5377. memcpy(params + 6, &freq_scale, sizeof(float));
  5378. memcpy(params + 7, &ext_factor, sizeof(float));
  5379. memcpy(params + 8, &attn_factor, sizeof(float));
  5380. memcpy(params + 9, &beta_fast, sizeof(float));
  5381. memcpy(params + 10, &beta_slow, sizeof(float));
  5382. ggml_set_op_params(result, params, sizeof(params));
  5383. result->op = GGML_OP_ROPE_BACK;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. result->src[1] = b;
  5387. return result;
  5388. }
  5389. // ggml_clamp
  5390. struct ggml_tensor * ggml_clamp(
  5391. struct ggml_context * ctx,
  5392. struct ggml_tensor * a,
  5393. float min,
  5394. float max) {
  5395. bool is_node = false;
  5396. if (a->grad) {
  5397. GGML_ASSERT(false); // TODO: implement backward
  5398. is_node = true;
  5399. }
  5400. // TODO: when implement backward, fix this:
  5401. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5402. float params[] = { min, max };
  5403. ggml_set_op_params(result, params, sizeof(params));
  5404. result->op = GGML_OP_CLAMP;
  5405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5406. result->src[0] = a;
  5407. return result;
  5408. }
  5409. // ggml_conv_1d
  5410. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5411. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5412. }
  5413. GGML_API struct ggml_tensor * ggml_conv_1d(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a,
  5416. struct ggml_tensor * b,
  5417. int s0,
  5418. int p0,
  5419. int d0) {
  5420. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5421. struct ggml_tensor * result =
  5422. ggml_mul_mat(ctx,
  5423. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5424. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5425. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5426. return result;
  5427. }
  5428. // ggml_conv_1d_ph
  5429. struct ggml_tensor* ggml_conv_1d_ph(
  5430. struct ggml_context * ctx,
  5431. struct ggml_tensor * a,
  5432. struct ggml_tensor * b,
  5433. int s,
  5434. int d) {
  5435. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5436. }
  5437. // ggml_conv_transpose_1d
  5438. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5439. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5440. }
  5441. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. struct ggml_tensor * b,
  5445. int s0,
  5446. int p0,
  5447. int d0) {
  5448. GGML_ASSERT(ggml_is_matrix(b));
  5449. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5450. GGML_ASSERT(a->ne[3] == 1);
  5451. GGML_ASSERT(p0 == 0);
  5452. GGML_ASSERT(d0 == 1);
  5453. bool is_node = false;
  5454. if (a->grad || b->grad) {
  5455. GGML_ASSERT(false); // TODO: implement backward
  5456. is_node = true;
  5457. }
  5458. const int64_t ne[4] = {
  5459. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5460. a->ne[1], b->ne[2], 1,
  5461. };
  5462. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5463. int32_t params[] = { s0, p0, d0 };
  5464. ggml_set_op_params(result, params, sizeof(params));
  5465. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5467. result->src[0] = a;
  5468. result->src[1] = b;
  5469. return result;
  5470. }
  5471. // ggml_conv_depthwise
  5472. struct ggml_tensor * ggml_conv_depthwise_2d(
  5473. struct ggml_context * ctx,
  5474. struct ggml_tensor * a,
  5475. struct ggml_tensor * b,
  5476. int s0,
  5477. int s1,
  5478. int p0,
  5479. int p1,
  5480. int d0,
  5481. int d1) {
  5482. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5483. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5484. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5485. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5486. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5487. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5488. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5489. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5490. return result;
  5491. }
  5492. // ggml_conv_2d
  5493. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5494. // a: [OC,IC, KH, KW]
  5495. // b: [N, IC, IH, IW]
  5496. // result: [N, OH, OW, IC*KH*KW]
  5497. struct ggml_tensor * ggml_im2col(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. struct ggml_tensor * b,
  5501. int s0,
  5502. int s1,
  5503. int p0,
  5504. int p1,
  5505. int d0,
  5506. int d1,
  5507. bool is_2D,
  5508. enum ggml_type dst_type) {
  5509. if(is_2D) {
  5510. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5511. } else {
  5512. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5513. }
  5514. bool is_node = false;
  5515. if (a->grad || b->grad) {
  5516. GGML_ASSERT(false); // TODO: implement backward
  5517. is_node = true;
  5518. }
  5519. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5520. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5521. const int64_t ne[4] = {
  5522. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5523. OW,
  5524. is_2D ? OH : b->ne[2],
  5525. is_2D ? b->ne[3] : 1,
  5526. };
  5527. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5528. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5529. ggml_set_op_params(result, params, sizeof(params));
  5530. result->op = GGML_OP_IM2COL;
  5531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5532. result->src[0] = a;
  5533. result->src[1] = b;
  5534. return result;
  5535. }
  5536. // a: [OC,IC, KH, KW]
  5537. // b: [N, IC, IH, IW]
  5538. // result: [N, OC, OH, OW]
  5539. struct ggml_tensor * ggml_conv_2d(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. int s0,
  5544. int s1,
  5545. int p0,
  5546. int p1,
  5547. int d0,
  5548. int d1) {
  5549. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5550. struct ggml_tensor * result =
  5551. ggml_mul_mat(ctx,
  5552. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5553. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5554. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5555. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5556. return result;
  5557. }
  5558. // ggml_conv_2d_sk_p0
  5559. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5560. struct ggml_context * ctx,
  5561. struct ggml_tensor * a,
  5562. struct ggml_tensor * b) {
  5563. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5564. }
  5565. // ggml_conv_2d_s1_ph
  5566. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5567. struct ggml_context * ctx,
  5568. struct ggml_tensor * a,
  5569. struct ggml_tensor * b) {
  5570. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5571. }
  5572. // ggml_conv_transpose_2d_p0
  5573. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5574. return (ins - 1) * s - 2 * p + ks;
  5575. }
  5576. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5577. struct ggml_context * ctx,
  5578. struct ggml_tensor * a,
  5579. struct ggml_tensor * b,
  5580. int stride) {
  5581. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5582. bool is_node = false;
  5583. if (a->grad || b->grad) {
  5584. GGML_ASSERT(false); // TODO: implement backward
  5585. is_node = true;
  5586. }
  5587. const int64_t ne[4] = {
  5588. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5589. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5590. a->ne[2], b->ne[3],
  5591. };
  5592. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5593. ggml_set_op_params_i32(result, 0, stride);
  5594. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5596. result->src[0] = a;
  5597. result->src[1] = b;
  5598. return result;
  5599. }
  5600. // ggml_pool_*
  5601. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5602. return (ins + 2 * p - ks) / s + 1;
  5603. }
  5604. // ggml_pool_1d
  5605. struct ggml_tensor * ggml_pool_1d(
  5606. struct ggml_context * ctx,
  5607. struct ggml_tensor * a,
  5608. enum ggml_op_pool op,
  5609. int k0,
  5610. int s0,
  5611. int p0) {
  5612. bool is_node = false;
  5613. if (a->grad) {
  5614. GGML_ASSERT(false); // TODO: implement backward
  5615. is_node = true;
  5616. }
  5617. const int64_t ne[4] = {
  5618. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5619. a->ne[1],
  5620. a->ne[2],
  5621. a->ne[3],
  5622. };
  5623. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5624. int32_t params[] = { op, k0, s0, p0 };
  5625. ggml_set_op_params(result, params, sizeof(params));
  5626. result->op = GGML_OP_POOL_1D;
  5627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5628. result->src[0] = a;
  5629. return result;
  5630. }
  5631. // ggml_pool_2d
  5632. struct ggml_tensor * ggml_pool_2d(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. enum ggml_op_pool op,
  5636. int k0,
  5637. int k1,
  5638. int s0,
  5639. int s1,
  5640. float p0,
  5641. float p1) {
  5642. bool is_node = false;
  5643. if (a->grad) {
  5644. GGML_ASSERT(false); // TODO: implement backward
  5645. is_node = true;
  5646. }
  5647. struct ggml_tensor * result;
  5648. const int64_t ne[3] = {
  5649. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5650. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5651. a->ne[2],
  5652. };
  5653. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5654. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5655. ggml_set_op_params(result, params, sizeof(params));
  5656. result->op = GGML_OP_POOL_2D;
  5657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5658. result->src[0] = a;
  5659. return result;
  5660. }
  5661. // ggml_upscale
  5662. static struct ggml_tensor * ggml_upscale_impl(
  5663. struct ggml_context * ctx,
  5664. struct ggml_tensor * a,
  5665. int ne0,
  5666. int ne1,
  5667. int ne2,
  5668. int ne3) {
  5669. bool is_node = false;
  5670. if (a->grad) {
  5671. GGML_ASSERT(false); // TODO: implement backward
  5672. is_node = true;
  5673. }
  5674. GGML_ASSERT(a->ne[0] <= ne0);
  5675. GGML_ASSERT(a->ne[1] <= ne1);
  5676. GGML_ASSERT(a->ne[2] <= ne2);
  5677. GGML_ASSERT(a->ne[3] <= ne3);
  5678. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5679. ne0,
  5680. ne1,
  5681. ne2,
  5682. ne3
  5683. );
  5684. result->op = GGML_OP_UPSCALE;
  5685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5686. result->src[0] = a;
  5687. return result;
  5688. }
  5689. struct ggml_tensor * ggml_upscale(
  5690. struct ggml_context * ctx,
  5691. struct ggml_tensor * a,
  5692. int scale_factor) {
  5693. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5694. }
  5695. struct ggml_tensor * ggml_upscale_ext(
  5696. struct ggml_context * ctx,
  5697. struct ggml_tensor * a,
  5698. int ne0,
  5699. int ne1,
  5700. int ne2,
  5701. int ne3) {
  5702. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5703. }
  5704. // ggml_pad
  5705. struct ggml_tensor * ggml_pad(
  5706. struct ggml_context * ctx,
  5707. struct ggml_tensor * a,
  5708. int p0, int p1, int p2, int p3) {
  5709. bool is_node = false;
  5710. if (a->grad) {
  5711. GGML_ASSERT(false); // TODO: implement backward
  5712. is_node = true;
  5713. }
  5714. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5715. a->ne[0] + p0,
  5716. a->ne[1] + p1,
  5717. a->ne[2] + p2,
  5718. a->ne[3] + p3);
  5719. result->op = GGML_OP_PAD;
  5720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5721. result->src[0] = a;
  5722. return result;
  5723. }
  5724. // ggml_arange
  5725. struct ggml_tensor * ggml_arange(
  5726. struct ggml_context * ctx,
  5727. float start,
  5728. float stop,
  5729. float step) {
  5730. GGML_ASSERT(stop > start);
  5731. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5732. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5733. result->op = GGML_OP_ARANGE;
  5734. ggml_set_op_params_f32(result, 0, start);
  5735. ggml_set_op_params_f32(result, 1, stop);
  5736. ggml_set_op_params_f32(result, 2, step);
  5737. return result;
  5738. }
  5739. // ggml_timestep_embedding
  5740. struct ggml_tensor * ggml_timestep_embedding(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * timesteps,
  5743. int dim,
  5744. int max_period) {
  5745. bool is_node = false;
  5746. if (timesteps->grad) {
  5747. GGML_ASSERT(false); // TODO: implement backward
  5748. is_node = true;
  5749. }
  5750. int actual_dim = dim;
  5751. if (dim % 2 != 0) {
  5752. actual_dim = dim + 1;
  5753. }
  5754. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5755. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5756. ggml_set_op_params_i32(result, 0, dim);
  5757. ggml_set_op_params_i32(result, 1, max_period);
  5758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5759. result->src[0] = timesteps;
  5760. return result;
  5761. }
  5762. // ggml_argsort
  5763. struct ggml_tensor * ggml_argsort(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. enum ggml_sort_order order) {
  5767. bool is_node = false;
  5768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5769. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5770. result->op = GGML_OP_ARGSORT;
  5771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5772. result->src[0] = a;
  5773. return result;
  5774. }
  5775. // ggml_top_k
  5776. struct ggml_tensor * ggml_top_k(
  5777. struct ggml_context * ctx,
  5778. struct ggml_tensor * a,
  5779. int k) {
  5780. GGML_ASSERT(a->ne[0] >= k);
  5781. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5782. result = ggml_view_4d(ctx, result,
  5783. k, result->ne[1], result->ne[2], result->ne[3],
  5784. result->nb[1], result->nb[2], result->nb[3],
  5785. 0);
  5786. return result;
  5787. }
  5788. // ggml_flash_attn_ext
  5789. struct ggml_tensor * ggml_flash_attn_ext(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * q,
  5792. struct ggml_tensor * k,
  5793. struct ggml_tensor * v,
  5794. struct ggml_tensor * mask,
  5795. float scale,
  5796. float max_bias) {
  5797. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5798. // TODO: check if vT can be multiplied by (k*qT)
  5799. if (mask) {
  5800. GGML_ASSERT(ggml_is_contiguous(mask));
  5801. GGML_ASSERT(mask->ne[2] == 1);
  5802. GGML_ASSERT(mask->ne[3] == 1);
  5803. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5804. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5805. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5806. }
  5807. if (max_bias > 0.0f) {
  5808. GGML_ASSERT(mask);
  5809. }
  5810. bool is_node = false;
  5811. if (q->grad || k->grad || v->grad) {
  5812. is_node = true;
  5813. }
  5814. // permute(0, 2, 1, 3)
  5815. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5816. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5817. float params[] = { scale, max_bias };
  5818. ggml_set_op_params(result, params, sizeof(params));
  5819. result->op = GGML_OP_FLASH_ATTN_EXT;
  5820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5821. result->src[0] = q;
  5822. result->src[1] = k;
  5823. result->src[2] = v;
  5824. result->src[3] = mask;
  5825. return result;
  5826. }
  5827. void ggml_flash_attn_ext_set_prec(
  5828. struct ggml_tensor * a,
  5829. enum ggml_prec prec) {
  5830. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5831. const int32_t prec_i32 = (int32_t) prec;
  5832. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5833. }
  5834. // ggml_flash_attn_back
  5835. struct ggml_tensor * ggml_flash_attn_back(
  5836. struct ggml_context * ctx,
  5837. struct ggml_tensor * q,
  5838. struct ggml_tensor * k,
  5839. struct ggml_tensor * v,
  5840. struct ggml_tensor * d,
  5841. bool masked) {
  5842. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5843. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5844. // TODO: check if vT can be multiplied by (k*qT)
  5845. // d shape [D,N,ne2,ne3]
  5846. // q shape [D,N,ne2,ne3]
  5847. // k shape [D,M,kvne2,ne3]
  5848. // v shape [M,D,kvne2,ne3]
  5849. const int64_t D = q->ne[0];
  5850. const int64_t N = q->ne[1];
  5851. const int64_t M = k->ne[1];
  5852. const int64_t ne2 = q->ne[2];
  5853. const int64_t ne3 = q->ne[3];
  5854. const int64_t kvne2 = k->ne[2];
  5855. GGML_ASSERT(k->ne[0] == D);
  5856. GGML_ASSERT(v->ne[0] == M);
  5857. GGML_ASSERT(v->ne[1] == D);
  5858. GGML_ASSERT(d->ne[0] == D);
  5859. GGML_ASSERT(d->ne[1] == N);
  5860. GGML_ASSERT(k->ne[2] == kvne2);
  5861. GGML_ASSERT(k->ne[3] == ne3);
  5862. GGML_ASSERT(v->ne[2] == kvne2);
  5863. GGML_ASSERT(v->ne[3] == ne3);
  5864. GGML_ASSERT(d->ne[2] == ne2);
  5865. GGML_ASSERT(d->ne[3] == ne3);
  5866. GGML_ASSERT(ne2 % kvne2 == 0);
  5867. bool is_node = false;
  5868. if (q->grad || k->grad || v->grad) {
  5869. // when using this operation (in backwards pass) these grads are set.
  5870. // we don't want to create (big) grad of our result, so is_node is false.
  5871. is_node = false;
  5872. }
  5873. // store gradients of q, k and v as continuous tensors concatenated in result.
  5874. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5875. const int64_t elem_q = ggml_nelements(q);
  5876. const int64_t elem_k = ggml_nelements(k);
  5877. const int64_t elem_v = ggml_nelements(v);
  5878. enum ggml_type result_type = GGML_TYPE_F32;
  5879. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5880. const size_t tsize = ggml_type_size(result_type);
  5881. const size_t offs_q = 0;
  5882. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5883. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5884. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5885. const size_t nelements = (end + tsize - 1)/tsize;
  5886. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5887. int32_t masked_i = masked ? 1 : 0;
  5888. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5889. result->op = GGML_OP_FLASH_ATTN_BACK;
  5890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5891. result->src[0] = q;
  5892. result->src[1] = k;
  5893. result->src[2] = v;
  5894. result->src[3] = d;
  5895. return result;
  5896. }
  5897. // ggml_ssm_conv
  5898. struct ggml_tensor * ggml_ssm_conv(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * s,
  5901. struct ggml_tensor * x,
  5902. struct ggml_tensor * c,
  5903. struct ggml_tensor * sq) {
  5904. GGML_ASSERT(ggml_is_3d(s));
  5905. GGML_ASSERT(ggml_is_matrix(x));
  5906. GGML_ASSERT(ggml_is_matrix(c));
  5907. GGML_ASSERT(ggml_is_matrix(sq));
  5908. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5909. const int64_t d_conv = c->ne[0];
  5910. const int64_t d_inner = c->ne[1];
  5911. const int64_t n_tokens = x->ne[1];
  5912. const int64_t n_kv = s->ne[2];
  5913. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5914. GGML_ASSERT( s->ne[1] == d_inner);
  5915. GGML_ASSERT( x->ne[0] == d_inner);
  5916. GGML_ASSERT(sq->ne[0] == n_kv);
  5917. GGML_ASSERT(sq->ne[1] == n_tokens);
  5918. bool is_node = false;
  5919. if (s->grad || x->grad || c->grad || sq->grad) {
  5920. GGML_ASSERT(false); // TODO: implement
  5921. is_node = true;
  5922. }
  5923. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5924. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5925. result->op = GGML_OP_SSM_CONV;
  5926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5927. result->src[0] = s;
  5928. result->src[1] = x;
  5929. result->src[2] = c;
  5930. result->src[3] = sq;
  5931. return result;
  5932. }
  5933. // ggml_ssm_scan
  5934. struct ggml_tensor * ggml_ssm_scan(
  5935. struct ggml_context * ctx,
  5936. struct ggml_tensor * s,
  5937. struct ggml_tensor * x,
  5938. struct ggml_tensor * dt,
  5939. struct ggml_tensor * A,
  5940. struct ggml_tensor * B,
  5941. struct ggml_tensor * C,
  5942. struct ggml_tensor * sq) {
  5943. GGML_ASSERT(ggml_is_contiguous(s));
  5944. GGML_ASSERT(ggml_is_contiguous(x));
  5945. GGML_ASSERT(ggml_is_contiguous(dt));
  5946. GGML_ASSERT(ggml_is_contiguous(A));
  5947. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5948. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5949. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5950. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5951. {
  5952. const int64_t d_state = s->ne[0];
  5953. const int64_t d_inner = s->ne[1];
  5954. const int64_t n_tokens = x->ne[1];
  5955. GGML_ASSERT(x->ne[0] == d_inner);
  5956. GGML_ASSERT(A->ne[0] == d_state);
  5957. GGML_ASSERT(A->ne[1] == d_inner);
  5958. GGML_ASSERT(B->ne[0] == d_state);
  5959. GGML_ASSERT(B->ne[1] == n_tokens);
  5960. GGML_ASSERT(C->ne[0] == d_state);
  5961. GGML_ASSERT(C->ne[1] == n_tokens);
  5962. }
  5963. bool is_node = false;
  5964. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5965. GGML_ASSERT(false); // TODO: implement
  5966. is_node = true;
  5967. }
  5968. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5969. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5970. result->op = GGML_OP_SSM_SCAN;
  5971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5972. result->src[0] = s;
  5973. result->src[1] = x;
  5974. result->src[2] = dt;
  5975. result->src[3] = A;
  5976. result->src[4] = B;
  5977. result->src[5] = C;
  5978. result->src[6] = sq;
  5979. return result;
  5980. }
  5981. // ggml_win_part
  5982. struct ggml_tensor * ggml_win_part(
  5983. struct ggml_context * ctx,
  5984. struct ggml_tensor * a,
  5985. int w) {
  5986. GGML_ASSERT(a->ne[3] == 1);
  5987. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5988. bool is_node = false;
  5989. if (a->grad) {
  5990. GGML_ASSERT(false); // TODO: implement backward
  5991. is_node = true;
  5992. }
  5993. // padding
  5994. const int px = (w - a->ne[1]%w)%w;
  5995. const int py = (w - a->ne[2]%w)%w;
  5996. const int npx = (px + a->ne[1])/w;
  5997. const int npy = (py + a->ne[2])/w;
  5998. const int np = npx*npy;
  5999. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6000. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6001. int32_t params[] = { npx, npy, w };
  6002. ggml_set_op_params(result, params, sizeof(params));
  6003. result->op = GGML_OP_WIN_PART;
  6004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6005. result->src[0] = a;
  6006. return result;
  6007. }
  6008. // ggml_win_unpart
  6009. struct ggml_tensor * ggml_win_unpart(
  6010. struct ggml_context * ctx,
  6011. struct ggml_tensor * a,
  6012. int w0,
  6013. int h0,
  6014. int w) {
  6015. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6016. bool is_node = false;
  6017. if (a->grad) {
  6018. GGML_ASSERT(false); // TODO: implement backward
  6019. is_node = true;
  6020. }
  6021. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6022. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6023. int32_t params[] = { w };
  6024. ggml_set_op_params(result, params, sizeof(params));
  6025. result->op = GGML_OP_WIN_UNPART;
  6026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6027. result->src[0] = a;
  6028. return result;
  6029. }
  6030. // ggml_get_rel_pos
  6031. struct ggml_tensor * ggml_get_rel_pos(
  6032. struct ggml_context * ctx,
  6033. struct ggml_tensor * a,
  6034. int qh,
  6035. int kh) {
  6036. GGML_ASSERT(qh == kh);
  6037. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6038. bool is_node = false;
  6039. if (a->grad) {
  6040. GGML_ASSERT(false); // TODO: implement backward
  6041. is_node = true;
  6042. }
  6043. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6044. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6045. result->op = GGML_OP_GET_REL_POS;
  6046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6047. result->src[0] = a;
  6048. return result;
  6049. }
  6050. // ggml_add_rel_pos
  6051. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6052. struct ggml_context * ctx,
  6053. struct ggml_tensor * a,
  6054. struct ggml_tensor * pw,
  6055. struct ggml_tensor * ph,
  6056. bool inplace) {
  6057. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6058. GGML_ASSERT(ggml_is_contiguous(a));
  6059. GGML_ASSERT(ggml_is_contiguous(pw));
  6060. GGML_ASSERT(ggml_is_contiguous(ph));
  6061. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6062. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6063. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6064. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6065. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6066. bool is_node = false;
  6067. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6068. is_node = true;
  6069. }
  6070. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6071. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6072. result->op = GGML_OP_ADD_REL_POS;
  6073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6074. result->src[0] = a;
  6075. result->src[1] = pw;
  6076. result->src[2] = ph;
  6077. return result;
  6078. }
  6079. struct ggml_tensor * ggml_add_rel_pos(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. struct ggml_tensor * pw,
  6083. struct ggml_tensor * ph) {
  6084. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6085. }
  6086. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6087. struct ggml_context * ctx,
  6088. struct ggml_tensor * a,
  6089. struct ggml_tensor * pw,
  6090. struct ggml_tensor * ph) {
  6091. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6092. }
  6093. // ggml_unary
  6094. static struct ggml_tensor * ggml_unary_impl(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. enum ggml_unary_op op,
  6098. bool inplace) {
  6099. GGML_ASSERT(ggml_is_contiguous_1(a));
  6100. bool is_node = false;
  6101. if (!inplace && (a->grad)) {
  6102. is_node = true;
  6103. }
  6104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6105. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6106. result->op = GGML_OP_UNARY;
  6107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6108. result->src[0] = a;
  6109. return result;
  6110. }
  6111. struct ggml_tensor * ggml_unary(
  6112. struct ggml_context * ctx,
  6113. struct ggml_tensor * a,
  6114. enum ggml_unary_op op) {
  6115. return ggml_unary_impl(ctx, a, op, false);
  6116. }
  6117. struct ggml_tensor * ggml_unary_inplace(
  6118. struct ggml_context * ctx,
  6119. struct ggml_tensor * a,
  6120. enum ggml_unary_op op) {
  6121. return ggml_unary_impl(ctx, a, op, true);
  6122. }
  6123. // ggml_map_unary
  6124. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6125. struct ggml_context * ctx,
  6126. struct ggml_tensor * a,
  6127. const ggml_unary_op_f32_t fun,
  6128. bool inplace) {
  6129. bool is_node = false;
  6130. if (!inplace && a->grad) {
  6131. is_node = true;
  6132. }
  6133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6134. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6135. result->op = GGML_OP_MAP_UNARY;
  6136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6137. result->src[0] = a;
  6138. return result;
  6139. }
  6140. struct ggml_tensor * ggml_map_unary_f32(
  6141. struct ggml_context * ctx,
  6142. struct ggml_tensor * a,
  6143. const ggml_unary_op_f32_t fun) {
  6144. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6145. }
  6146. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6147. struct ggml_context * ctx,
  6148. struct ggml_tensor * a,
  6149. const ggml_unary_op_f32_t fun) {
  6150. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6151. }
  6152. // ggml_map_binary
  6153. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6154. struct ggml_context * ctx,
  6155. struct ggml_tensor * a,
  6156. struct ggml_tensor * b,
  6157. const ggml_binary_op_f32_t fun,
  6158. bool inplace) {
  6159. GGML_ASSERT(ggml_are_same_shape(a, b));
  6160. bool is_node = false;
  6161. if (!inplace && (a->grad || b->grad)) {
  6162. is_node = true;
  6163. }
  6164. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6165. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6166. result->op = GGML_OP_MAP_BINARY;
  6167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6168. result->src[0] = a;
  6169. result->src[1] = b;
  6170. return result;
  6171. }
  6172. struct ggml_tensor * ggml_map_binary_f32(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * a,
  6175. struct ggml_tensor * b,
  6176. const ggml_binary_op_f32_t fun) {
  6177. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6178. }
  6179. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6180. struct ggml_context * ctx,
  6181. struct ggml_tensor * a,
  6182. struct ggml_tensor * b,
  6183. const ggml_binary_op_f32_t fun) {
  6184. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6185. }
  6186. // ggml_map_custom1_f32
  6187. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. const ggml_custom1_op_f32_t fun,
  6191. bool inplace) {
  6192. bool is_node = false;
  6193. if (!inplace && a->grad) {
  6194. is_node = true;
  6195. }
  6196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6197. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6198. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6200. result->src[0] = a;
  6201. return result;
  6202. }
  6203. struct ggml_tensor * ggml_map_custom1_f32(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. const ggml_custom1_op_f32_t fun) {
  6207. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6208. }
  6209. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6210. struct ggml_context * ctx,
  6211. struct ggml_tensor * a,
  6212. const ggml_custom1_op_f32_t fun) {
  6213. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6214. }
  6215. // ggml_map_custom2_f32
  6216. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6217. struct ggml_context * ctx,
  6218. struct ggml_tensor * a,
  6219. struct ggml_tensor * b,
  6220. const ggml_custom2_op_f32_t fun,
  6221. bool inplace) {
  6222. bool is_node = false;
  6223. if (!inplace && (a->grad || b->grad)) {
  6224. is_node = true;
  6225. }
  6226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6227. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6228. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6230. result->src[0] = a;
  6231. result->src[1] = b;
  6232. return result;
  6233. }
  6234. struct ggml_tensor * ggml_map_custom2_f32(
  6235. struct ggml_context * ctx,
  6236. struct ggml_tensor * a,
  6237. struct ggml_tensor * b,
  6238. const ggml_custom2_op_f32_t fun) {
  6239. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6240. }
  6241. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6242. struct ggml_context * ctx,
  6243. struct ggml_tensor * a,
  6244. struct ggml_tensor * b,
  6245. const ggml_custom2_op_f32_t fun) {
  6246. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6247. }
  6248. // ggml_map_custom3_f32
  6249. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6250. struct ggml_context * ctx,
  6251. struct ggml_tensor * a,
  6252. struct ggml_tensor * b,
  6253. struct ggml_tensor * c,
  6254. const ggml_custom3_op_f32_t fun,
  6255. bool inplace) {
  6256. bool is_node = false;
  6257. if (!inplace && (a->grad || b->grad || c->grad)) {
  6258. is_node = true;
  6259. }
  6260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6261. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6262. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6264. result->src[0] = a;
  6265. result->src[1] = b;
  6266. result->src[2] = c;
  6267. return result;
  6268. }
  6269. struct ggml_tensor * ggml_map_custom3_f32(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. struct ggml_tensor * b,
  6273. struct ggml_tensor * c,
  6274. const ggml_custom3_op_f32_t fun) {
  6275. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6276. }
  6277. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6278. struct ggml_context * ctx,
  6279. struct ggml_tensor * a,
  6280. struct ggml_tensor * b,
  6281. struct ggml_tensor * c,
  6282. const ggml_custom3_op_f32_t fun) {
  6283. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6284. }
  6285. // ggml_map_custom1
  6286. struct ggml_map_custom1_op_params {
  6287. ggml_custom1_op_t fun;
  6288. int n_tasks;
  6289. void * userdata;
  6290. };
  6291. static struct ggml_tensor * ggml_map_custom1_impl(
  6292. struct ggml_context * ctx,
  6293. struct ggml_tensor * a,
  6294. const ggml_custom1_op_t fun,
  6295. int n_tasks,
  6296. void * userdata,
  6297. bool inplace) {
  6298. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6299. bool is_node = false;
  6300. if (!inplace && a->grad) {
  6301. is_node = true;
  6302. }
  6303. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6304. struct ggml_map_custom1_op_params params = {
  6305. /*.fun =*/ fun,
  6306. /*.n_tasks =*/ n_tasks,
  6307. /*.userdata =*/ userdata
  6308. };
  6309. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6310. result->op = GGML_OP_MAP_CUSTOM1;
  6311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6312. result->src[0] = a;
  6313. return result;
  6314. }
  6315. struct ggml_tensor * ggml_map_custom1(
  6316. struct ggml_context * ctx,
  6317. struct ggml_tensor * a,
  6318. const ggml_custom1_op_t fun,
  6319. int n_tasks,
  6320. void * userdata) {
  6321. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6322. }
  6323. struct ggml_tensor * ggml_map_custom1_inplace(
  6324. struct ggml_context * ctx,
  6325. struct ggml_tensor * a,
  6326. const ggml_custom1_op_t fun,
  6327. int n_tasks,
  6328. void * userdata) {
  6329. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6330. }
  6331. // ggml_map_custom2
  6332. struct ggml_map_custom2_op_params {
  6333. ggml_custom2_op_t fun;
  6334. int n_tasks;
  6335. void * userdata;
  6336. };
  6337. static struct ggml_tensor * ggml_map_custom2_impl(
  6338. struct ggml_context * ctx,
  6339. struct ggml_tensor * a,
  6340. struct ggml_tensor * b,
  6341. const ggml_custom2_op_t fun,
  6342. int n_tasks,
  6343. void * userdata,
  6344. bool inplace) {
  6345. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6346. bool is_node = false;
  6347. if (!inplace && (a->grad || b->grad)) {
  6348. is_node = true;
  6349. }
  6350. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6351. struct ggml_map_custom2_op_params params = {
  6352. /*.fun =*/ fun,
  6353. /*.n_tasks =*/ n_tasks,
  6354. /*.userdata =*/ userdata
  6355. };
  6356. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6357. result->op = GGML_OP_MAP_CUSTOM2;
  6358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6359. result->src[0] = a;
  6360. result->src[1] = b;
  6361. return result;
  6362. }
  6363. struct ggml_tensor * ggml_map_custom2(
  6364. struct ggml_context * ctx,
  6365. struct ggml_tensor * a,
  6366. struct ggml_tensor * b,
  6367. const ggml_custom2_op_t fun,
  6368. int n_tasks,
  6369. void * userdata) {
  6370. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6371. }
  6372. struct ggml_tensor * ggml_map_custom2_inplace(
  6373. struct ggml_context * ctx,
  6374. struct ggml_tensor * a,
  6375. struct ggml_tensor * b,
  6376. const ggml_custom2_op_t fun,
  6377. int n_tasks,
  6378. void * userdata) {
  6379. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6380. }
  6381. // ggml_map_custom3
  6382. struct ggml_map_custom3_op_params {
  6383. ggml_custom3_op_t fun;
  6384. int n_tasks;
  6385. void * userdata;
  6386. };
  6387. static struct ggml_tensor * ggml_map_custom3_impl(
  6388. struct ggml_context * ctx,
  6389. struct ggml_tensor * a,
  6390. struct ggml_tensor * b,
  6391. struct ggml_tensor * c,
  6392. const ggml_custom3_op_t fun,
  6393. int n_tasks,
  6394. void * userdata,
  6395. bool inplace) {
  6396. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6397. bool is_node = false;
  6398. if (!inplace && (a->grad || b->grad || c->grad)) {
  6399. is_node = true;
  6400. }
  6401. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6402. struct ggml_map_custom3_op_params params = {
  6403. /*.fun =*/ fun,
  6404. /*.n_tasks =*/ n_tasks,
  6405. /*.userdata =*/ userdata
  6406. };
  6407. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6408. result->op = GGML_OP_MAP_CUSTOM3;
  6409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6410. result->src[0] = a;
  6411. result->src[1] = b;
  6412. result->src[2] = c;
  6413. return result;
  6414. }
  6415. struct ggml_tensor * ggml_map_custom3(
  6416. struct ggml_context * ctx,
  6417. struct ggml_tensor * a,
  6418. struct ggml_tensor * b,
  6419. struct ggml_tensor * c,
  6420. const ggml_custom3_op_t fun,
  6421. int n_tasks,
  6422. void * userdata) {
  6423. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6424. }
  6425. struct ggml_tensor * ggml_map_custom3_inplace(
  6426. struct ggml_context * ctx,
  6427. struct ggml_tensor * a,
  6428. struct ggml_tensor * b,
  6429. struct ggml_tensor * c,
  6430. const ggml_custom3_op_t fun,
  6431. int n_tasks,
  6432. void * userdata) {
  6433. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6434. }
  6435. // ggml_cross_entropy_loss
  6436. struct ggml_tensor * ggml_cross_entropy_loss(
  6437. struct ggml_context * ctx,
  6438. struct ggml_tensor * a,
  6439. struct ggml_tensor * b) {
  6440. GGML_ASSERT(ggml_are_same_shape(a, b));
  6441. bool is_node = false;
  6442. if (a->grad || b->grad) {
  6443. is_node = true;
  6444. }
  6445. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6446. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6448. result->src[0] = a;
  6449. result->src[1] = b;
  6450. return result;
  6451. }
  6452. // ggml_cross_entropy_loss_back
  6453. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6454. struct ggml_context * ctx,
  6455. struct ggml_tensor * a,
  6456. struct ggml_tensor * b,
  6457. struct ggml_tensor * c) {
  6458. GGML_ASSERT(ggml_are_same_shape(a, b));
  6459. GGML_ASSERT(ggml_is_scalar(c));
  6460. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6461. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6462. result->grad = NULL;
  6463. result->src[0] = a;
  6464. result->src[1] = b;
  6465. result->src[2] = c;
  6466. return result;
  6467. }
  6468. ////////////////////////////////////////////////////////////////////////////////
  6469. void ggml_set_param(
  6470. struct ggml_context * ctx,
  6471. struct ggml_tensor * tensor) {
  6472. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6473. GGML_ASSERT(tensor->grad == NULL);
  6474. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6475. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6476. }
  6477. // ggml_compute_forward_dup
  6478. static void ggml_compute_forward_dup_same_cont(
  6479. const struct ggml_compute_params * params,
  6480. struct ggml_tensor * dst) {
  6481. const struct ggml_tensor * src0 = dst->src[0];
  6482. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6483. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6484. GGML_ASSERT(src0->type == dst->type);
  6485. const size_t nb00 = src0->nb[0];
  6486. const size_t nb0 = dst->nb[0];
  6487. const int ith = params->ith; // thread index
  6488. const int nth = params->nth; // number of threads
  6489. // parallelize by elements
  6490. const int ne = ggml_nelements(dst);
  6491. const int dr = (ne + nth - 1) / nth;
  6492. const int ie0 = dr * ith;
  6493. const int ie1 = MIN(ie0 + dr, ne);
  6494. if (ie0 < ie1) {
  6495. memcpy(
  6496. ((char *) dst->data + ie0*nb0),
  6497. ((char *) src0->data + ie0*nb00),
  6498. (ie1 - ie0) * ggml_type_size(src0->type));
  6499. }
  6500. }
  6501. static void ggml_compute_forward_dup_f16(
  6502. const struct ggml_compute_params * params,
  6503. struct ggml_tensor * dst) {
  6504. const struct ggml_tensor * src0 = dst->src[0];
  6505. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6506. GGML_TENSOR_UNARY_OP_LOCALS
  6507. const int ith = params->ith; // thread index
  6508. const int nth = params->nth; // number of threads
  6509. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6510. ggml_compute_forward_dup_same_cont(params, dst);
  6511. return;
  6512. }
  6513. // parallelize by rows
  6514. const int nr = ne01;
  6515. // number of rows per thread
  6516. const int dr = (nr + nth - 1) / nth;
  6517. // row range for this thread
  6518. const int ir0 = dr * ith;
  6519. const int ir1 = MIN(ir0 + dr, nr);
  6520. if (src0->type == dst->type &&
  6521. ne00 == ne0 &&
  6522. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6523. // copy by rows
  6524. const size_t rs = ne00*nb00;
  6525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6527. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6528. memcpy(
  6529. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6530. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6531. rs);
  6532. }
  6533. }
  6534. }
  6535. return;
  6536. }
  6537. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6538. if (ggml_is_contiguous(dst)) {
  6539. if (nb00 == sizeof(ggml_fp16_t)) {
  6540. if (dst->type == GGML_TYPE_F16) {
  6541. size_t id = 0;
  6542. const size_t rs = ne00 * nb00;
  6543. char * dst_ptr = (char *) dst->data;
  6544. for (int i03 = 0; i03 < ne03; i03++) {
  6545. for (int i02 = 0; i02 < ne02; i02++) {
  6546. id += rs * ir0;
  6547. for (int i01 = ir0; i01 < ir1; i01++) {
  6548. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6549. memcpy(dst_ptr + id, src0_ptr, rs);
  6550. id += rs;
  6551. }
  6552. id += rs * (ne01 - ir1);
  6553. }
  6554. }
  6555. } else if (dst->type == GGML_TYPE_F32) {
  6556. size_t id = 0;
  6557. float * dst_ptr = (float *) dst->data;
  6558. for (int i03 = 0; i03 < ne03; i03++) {
  6559. for (int i02 = 0; i02 < ne02; i02++) {
  6560. id += ne00 * ir0;
  6561. for (int i01 = ir0; i01 < ir1; i01++) {
  6562. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6563. for (int i00 = 0; i00 < ne00; i00++) {
  6564. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6565. id++;
  6566. }
  6567. }
  6568. id += ne00 * (ne01 - ir1);
  6569. }
  6570. }
  6571. } else if (type_traits[dst->type].from_float) {
  6572. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6573. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6574. size_t id = 0;
  6575. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6576. char * dst_ptr = (char *) dst->data;
  6577. for (int i03 = 0; i03 < ne03; i03++) {
  6578. for (int i02 = 0; i02 < ne02; i02++) {
  6579. id += rs * ir0;
  6580. for (int i01 = ir0; i01 < ir1; i01++) {
  6581. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6582. for (int i00 = 0; i00 < ne00; i00++) {
  6583. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6584. }
  6585. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6586. id += rs;
  6587. }
  6588. id += rs * (ne01 - ir1);
  6589. }
  6590. }
  6591. } else {
  6592. GGML_ASSERT(false); // TODO: implement
  6593. }
  6594. } else {
  6595. //printf("%s: this is not optimal - fix me\n", __func__);
  6596. if (dst->type == GGML_TYPE_F32) {
  6597. size_t id = 0;
  6598. float * dst_ptr = (float *) dst->data;
  6599. for (int i03 = 0; i03 < ne03; i03++) {
  6600. for (int i02 = 0; i02 < ne02; i02++) {
  6601. id += ne00 * ir0;
  6602. for (int i01 = ir0; i01 < ir1; i01++) {
  6603. for (int i00 = 0; i00 < ne00; i00++) {
  6604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6606. id++;
  6607. }
  6608. }
  6609. id += ne00 * (ne01 - ir1);
  6610. }
  6611. }
  6612. } else if (dst->type == GGML_TYPE_F16) {
  6613. size_t id = 0;
  6614. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6615. for (int i03 = 0; i03 < ne03; i03++) {
  6616. for (int i02 = 0; i02 < ne02; i02++) {
  6617. id += ne00 * ir0;
  6618. for (int i01 = ir0; i01 < ir1; i01++) {
  6619. for (int i00 = 0; i00 < ne00; i00++) {
  6620. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6621. dst_ptr[id] = *src0_ptr;
  6622. id++;
  6623. }
  6624. }
  6625. id += ne00 * (ne01 - ir1);
  6626. }
  6627. }
  6628. } else {
  6629. GGML_ASSERT(false); // TODO: implement
  6630. }
  6631. }
  6632. return;
  6633. }
  6634. // dst counters
  6635. int64_t i10 = 0;
  6636. int64_t i11 = 0;
  6637. int64_t i12 = 0;
  6638. int64_t i13 = 0;
  6639. if (dst->type == GGML_TYPE_F16) {
  6640. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6641. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6642. i10 += ne00 * ir0;
  6643. while (i10 >= ne0) {
  6644. i10 -= ne0;
  6645. if (++i11 == ne1) {
  6646. i11 = 0;
  6647. if (++i12 == ne2) {
  6648. i12 = 0;
  6649. if (++i13 == ne3) {
  6650. i13 = 0;
  6651. }
  6652. }
  6653. }
  6654. }
  6655. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6656. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6657. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6658. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6659. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6660. if (++i10 == ne00) {
  6661. i10 = 0;
  6662. if (++i11 == ne01) {
  6663. i11 = 0;
  6664. if (++i12 == ne02) {
  6665. i12 = 0;
  6666. if (++i13 == ne03) {
  6667. i13 = 0;
  6668. }
  6669. }
  6670. }
  6671. }
  6672. }
  6673. }
  6674. i10 += ne00 * (ne01 - ir1);
  6675. while (i10 >= ne0) {
  6676. i10 -= ne0;
  6677. if (++i11 == ne1) {
  6678. i11 = 0;
  6679. if (++i12 == ne2) {
  6680. i12 = 0;
  6681. if (++i13 == ne3) {
  6682. i13 = 0;
  6683. }
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. } else if (dst->type == GGML_TYPE_F32) {
  6690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6692. i10 += ne00 * ir0;
  6693. while (i10 >= ne0) {
  6694. i10 -= ne0;
  6695. if (++i11 == ne1) {
  6696. i11 = 0;
  6697. if (++i12 == ne2) {
  6698. i12 = 0;
  6699. if (++i13 == ne3) {
  6700. i13 = 0;
  6701. }
  6702. }
  6703. }
  6704. }
  6705. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6707. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6708. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6709. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6710. if (++i10 == ne0) {
  6711. i10 = 0;
  6712. if (++i11 == ne1) {
  6713. i11 = 0;
  6714. if (++i12 == ne2) {
  6715. i12 = 0;
  6716. if (++i13 == ne3) {
  6717. i13 = 0;
  6718. }
  6719. }
  6720. }
  6721. }
  6722. }
  6723. }
  6724. i10 += ne00 * (ne01 - ir1);
  6725. while (i10 >= ne0) {
  6726. i10 -= ne0;
  6727. if (++i11 == ne1) {
  6728. i11 = 0;
  6729. if (++i12 == ne2) {
  6730. i12 = 0;
  6731. if (++i13 == ne3) {
  6732. i13 = 0;
  6733. }
  6734. }
  6735. }
  6736. }
  6737. }
  6738. }
  6739. } else {
  6740. GGML_ASSERT(false); // TODO: implement
  6741. }
  6742. }
  6743. static void ggml_compute_forward_dup_bf16(
  6744. const struct ggml_compute_params * params,
  6745. struct ggml_tensor * dst) {
  6746. const struct ggml_tensor * src0 = dst->src[0];
  6747. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6748. GGML_TENSOR_UNARY_OP_LOCALS
  6749. const int ith = params->ith; // thread index
  6750. const int nth = params->nth; // number of threads
  6751. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6752. ggml_compute_forward_dup_same_cont(params, dst);
  6753. return;
  6754. }
  6755. // parallelize by rows
  6756. const int nr = ne01;
  6757. // number of rows per thread
  6758. const int dr = (nr + nth - 1) / nth;
  6759. // row range for this thread
  6760. const int ir0 = dr * ith;
  6761. const int ir1 = MIN(ir0 + dr, nr);
  6762. if (src0->type == dst->type &&
  6763. ne00 == ne0 &&
  6764. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6765. // copy by rows
  6766. const size_t rs = ne00*nb00;
  6767. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6768. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6769. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6770. memcpy(
  6771. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6772. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6773. rs);
  6774. }
  6775. }
  6776. }
  6777. return;
  6778. }
  6779. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6780. if (ggml_is_contiguous(dst)) {
  6781. if (nb00 == sizeof(ggml_bf16_t)) {
  6782. if (dst->type == GGML_TYPE_BF16) {
  6783. size_t id = 0;
  6784. const size_t rs = ne00 * nb00;
  6785. char * dst_ptr = (char *) dst->data;
  6786. for (int i03 = 0; i03 < ne03; i03++) {
  6787. for (int i02 = 0; i02 < ne02; i02++) {
  6788. id += rs * ir0;
  6789. for (int i01 = ir0; i01 < ir1; i01++) {
  6790. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6791. memcpy(dst_ptr + id, src0_ptr, rs);
  6792. id += rs;
  6793. }
  6794. id += rs * (ne01 - ir1);
  6795. }
  6796. }
  6797. } else if (dst->type == GGML_TYPE_F16) {
  6798. size_t id = 0;
  6799. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6800. for (int i03 = 0; i03 < ne03; i03++) {
  6801. for (int i02 = 0; i02 < ne02; i02++) {
  6802. id += ne00 * ir0;
  6803. for (int i01 = ir0; i01 < ir1; i01++) {
  6804. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6805. for (int i00 = 0; i00 < ne00; i00++) {
  6806. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6807. id++;
  6808. }
  6809. }
  6810. id += ne00 * (ne01 - ir1);
  6811. }
  6812. }
  6813. } else if (dst->type == GGML_TYPE_F32) {
  6814. size_t id = 0;
  6815. float * dst_ptr = (float *) dst->data;
  6816. for (int i03 = 0; i03 < ne03; i03++) {
  6817. for (int i02 = 0; i02 < ne02; i02++) {
  6818. id += ne00 * ir0;
  6819. for (int i01 = ir0; i01 < ir1; i01++) {
  6820. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6821. for (int i00 = 0; i00 < ne00; i00++) {
  6822. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6823. id++;
  6824. }
  6825. }
  6826. id += ne00 * (ne01 - ir1);
  6827. }
  6828. }
  6829. } else if (type_traits[dst->type].from_float) {
  6830. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6831. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6832. size_t id = 0;
  6833. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6834. char * dst_ptr = (char *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += rs * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6840. for (int i00 = 0; i00 < ne00; i00++) {
  6841. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6842. }
  6843. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6844. id += rs;
  6845. }
  6846. id += rs * (ne01 - ir1);
  6847. }
  6848. }
  6849. } else {
  6850. GGML_ASSERT(false); // TODO: implement
  6851. }
  6852. } else {
  6853. //printf("%s: this is not optimal - fix me\n", __func__);
  6854. if (dst->type == GGML_TYPE_F32) {
  6855. size_t id = 0;
  6856. float * dst_ptr = (float *) dst->data;
  6857. for (int i03 = 0; i03 < ne03; i03++) {
  6858. for (int i02 = 0; i02 < ne02; i02++) {
  6859. id += ne00 * ir0;
  6860. for (int i01 = ir0; i01 < ir1; i01++) {
  6861. for (int i00 = 0; i00 < ne00; i00++) {
  6862. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6863. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6864. id++;
  6865. }
  6866. }
  6867. id += ne00 * (ne01 - ir1);
  6868. }
  6869. }
  6870. } else if (dst->type == GGML_TYPE_BF16) {
  6871. size_t id = 0;
  6872. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6873. for (int i03 = 0; i03 < ne03; i03++) {
  6874. for (int i02 = 0; i02 < ne02; i02++) {
  6875. id += ne00 * ir0;
  6876. for (int i01 = ir0; i01 < ir1; i01++) {
  6877. for (int i00 = 0; i00 < ne00; i00++) {
  6878. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6879. dst_ptr[id] = *src0_ptr;
  6880. id++;
  6881. }
  6882. }
  6883. id += ne00 * (ne01 - ir1);
  6884. }
  6885. }
  6886. } else if (dst->type == GGML_TYPE_F16) {
  6887. size_t id = 0;
  6888. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6889. for (int i03 = 0; i03 < ne03; i03++) {
  6890. for (int i02 = 0; i02 < ne02; i02++) {
  6891. id += ne00 * ir0;
  6892. for (int i01 = ir0; i01 < ir1; i01++) {
  6893. for (int i00 = 0; i00 < ne00; i00++) {
  6894. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6895. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6896. id++;
  6897. }
  6898. }
  6899. id += ne00 * (ne01 - ir1);
  6900. }
  6901. }
  6902. } else {
  6903. GGML_ASSERT(false); // TODO: implement
  6904. }
  6905. }
  6906. return;
  6907. }
  6908. // dst counters
  6909. int64_t i10 = 0;
  6910. int64_t i11 = 0;
  6911. int64_t i12 = 0;
  6912. int64_t i13 = 0;
  6913. if (dst->type == GGML_TYPE_BF16) {
  6914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6916. i10 += ne00 * ir0;
  6917. while (i10 >= ne0) {
  6918. i10 -= ne0;
  6919. if (++i11 == ne1) {
  6920. i11 = 0;
  6921. if (++i12 == ne2) {
  6922. i12 = 0;
  6923. if (++i13 == ne3) {
  6924. i13 = 0;
  6925. }
  6926. }
  6927. }
  6928. }
  6929. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6930. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6931. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6932. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6933. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6934. if (++i10 == ne00) {
  6935. i10 = 0;
  6936. if (++i11 == ne01) {
  6937. i11 = 0;
  6938. if (++i12 == ne02) {
  6939. i12 = 0;
  6940. if (++i13 == ne03) {
  6941. i13 = 0;
  6942. }
  6943. }
  6944. }
  6945. }
  6946. }
  6947. }
  6948. i10 += ne00 * (ne01 - ir1);
  6949. while (i10 >= ne0) {
  6950. i10 -= ne0;
  6951. if (++i11 == ne1) {
  6952. i11 = 0;
  6953. if (++i12 == ne2) {
  6954. i12 = 0;
  6955. if (++i13 == ne3) {
  6956. i13 = 0;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. }
  6962. }
  6963. } else if (dst->type == GGML_TYPE_F16) {
  6964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6965. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6966. i10 += ne00 * ir0;
  6967. while (i10 >= ne0) {
  6968. i10 -= ne0;
  6969. if (++i11 == ne1) {
  6970. i11 = 0;
  6971. if (++i12 == ne2) {
  6972. i12 = 0;
  6973. if (++i13 == ne3) {
  6974. i13 = 0;
  6975. }
  6976. }
  6977. }
  6978. }
  6979. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6981. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6982. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6983. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6984. if (++i10 == ne0) {
  6985. i10 = 0;
  6986. if (++i11 == ne1) {
  6987. i11 = 0;
  6988. if (++i12 == ne2) {
  6989. i12 = 0;
  6990. if (++i13 == ne3) {
  6991. i13 = 0;
  6992. }
  6993. }
  6994. }
  6995. }
  6996. }
  6997. }
  6998. i10 += ne00 * (ne01 - ir1);
  6999. while (i10 >= ne0) {
  7000. i10 -= ne0;
  7001. if (++i11 == ne1) {
  7002. i11 = 0;
  7003. if (++i12 == ne2) {
  7004. i12 = 0;
  7005. if (++i13 == ne3) {
  7006. i13 = 0;
  7007. }
  7008. }
  7009. }
  7010. }
  7011. }
  7012. }
  7013. } else if (dst->type == GGML_TYPE_F32) {
  7014. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7015. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7016. i10 += ne00 * ir0;
  7017. while (i10 >= ne0) {
  7018. i10 -= ne0;
  7019. if (++i11 == ne1) {
  7020. i11 = 0;
  7021. if (++i12 == ne2) {
  7022. i12 = 0;
  7023. if (++i13 == ne3) {
  7024. i13 = 0;
  7025. }
  7026. }
  7027. }
  7028. }
  7029. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7030. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7031. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7032. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7033. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7034. if (++i10 == ne0) {
  7035. i10 = 0;
  7036. if (++i11 == ne1) {
  7037. i11 = 0;
  7038. if (++i12 == ne2) {
  7039. i12 = 0;
  7040. if (++i13 == ne3) {
  7041. i13 = 0;
  7042. }
  7043. }
  7044. }
  7045. }
  7046. }
  7047. }
  7048. i10 += ne00 * (ne01 - ir1);
  7049. while (i10 >= ne0) {
  7050. i10 -= ne0;
  7051. if (++i11 == ne1) {
  7052. i11 = 0;
  7053. if (++i12 == ne2) {
  7054. i12 = 0;
  7055. if (++i13 == ne3) {
  7056. i13 = 0;
  7057. }
  7058. }
  7059. }
  7060. }
  7061. }
  7062. }
  7063. } else {
  7064. GGML_ASSERT(false); // TODO: implement
  7065. }
  7066. }
  7067. static void ggml_compute_forward_dup_f32(
  7068. const struct ggml_compute_params * params,
  7069. struct ggml_tensor * dst) {
  7070. const struct ggml_tensor * src0 = dst->src[0];
  7071. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7072. GGML_TENSOR_UNARY_OP_LOCALS
  7073. const int ith = params->ith; // thread index
  7074. const int nth = params->nth; // number of threads
  7075. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7076. ggml_compute_forward_dup_same_cont(params, dst);
  7077. return;
  7078. }
  7079. // parallelize by rows
  7080. const int nr = ne01;
  7081. // number of rows per thread
  7082. const int dr = (nr + nth - 1) / nth;
  7083. // row range for this thread
  7084. const int ir0 = dr * ith;
  7085. const int ir1 = MIN(ir0 + dr, nr);
  7086. if (src0->type == dst->type &&
  7087. ne00 == ne0 &&
  7088. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7089. // copy by rows
  7090. const size_t rs = ne00*nb00;
  7091. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7092. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7093. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7094. memcpy(
  7095. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7096. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7097. rs);
  7098. }
  7099. }
  7100. }
  7101. return;
  7102. }
  7103. if (ggml_is_contiguous(dst)) {
  7104. // TODO: simplify
  7105. if (nb00 == sizeof(float)) {
  7106. if (dst->type == GGML_TYPE_F32) {
  7107. size_t id = 0;
  7108. const size_t rs = ne00 * nb00;
  7109. char * dst_ptr = (char *) dst->data;
  7110. for (int i03 = 0; i03 < ne03; i03++) {
  7111. for (int i02 = 0; i02 < ne02; i02++) {
  7112. id += rs * ir0;
  7113. for (int i01 = ir0; i01 < ir1; i01++) {
  7114. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7115. memcpy(dst_ptr + id, src0_ptr, rs);
  7116. id += rs;
  7117. }
  7118. id += rs * (ne01 - ir1);
  7119. }
  7120. }
  7121. } else if (type_traits[dst->type].from_float) {
  7122. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7123. size_t id = 0;
  7124. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7125. char * dst_ptr = (char *) dst->data;
  7126. for (int i03 = 0; i03 < ne03; i03++) {
  7127. for (int i02 = 0; i02 < ne02; i02++) {
  7128. id += rs * ir0;
  7129. for (int i01 = ir0; i01 < ir1; i01++) {
  7130. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7131. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7132. id += rs;
  7133. }
  7134. id += rs * (ne01 - ir1);
  7135. }
  7136. }
  7137. } else {
  7138. GGML_ASSERT(false); // TODO: implement
  7139. }
  7140. } else {
  7141. //printf("%s: this is not optimal - fix me\n", __func__);
  7142. if (dst->type == GGML_TYPE_F32) {
  7143. size_t id = 0;
  7144. float * dst_ptr = (float *) dst->data;
  7145. for (int i03 = 0; i03 < ne03; i03++) {
  7146. for (int i02 = 0; i02 < ne02; i02++) {
  7147. id += ne00 * ir0;
  7148. for (int i01 = ir0; i01 < ir1; i01++) {
  7149. for (int i00 = 0; i00 < ne00; i00++) {
  7150. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7151. dst_ptr[id] = *src0_ptr;
  7152. id++;
  7153. }
  7154. }
  7155. id += ne00 * (ne01 - ir1);
  7156. }
  7157. }
  7158. } else if (dst->type == GGML_TYPE_F16) {
  7159. size_t id = 0;
  7160. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7161. for (int i03 = 0; i03 < ne03; i03++) {
  7162. for (int i02 = 0; i02 < ne02; i02++) {
  7163. id += ne00 * ir0;
  7164. for (int i01 = ir0; i01 < ir1; i01++) {
  7165. for (int i00 = 0; i00 < ne00; i00++) {
  7166. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7167. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7168. id++;
  7169. }
  7170. }
  7171. id += ne00 * (ne01 - ir1);
  7172. }
  7173. }
  7174. } else if (dst->type == GGML_TYPE_BF16) {
  7175. size_t id = 0;
  7176. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7177. for (int i03 = 0; i03 < ne03; i03++) {
  7178. for (int i02 = 0; i02 < ne02; i02++) {
  7179. id += ne00 * ir0;
  7180. for (int i01 = ir0; i01 < ir1; i01++) {
  7181. for (int i00 = 0; i00 < ne00; i00++) {
  7182. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7183. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7184. id++;
  7185. }
  7186. }
  7187. id += ne00 * (ne01 - ir1);
  7188. }
  7189. }
  7190. } else {
  7191. GGML_ASSERT(false); // TODO: implement
  7192. }
  7193. }
  7194. return;
  7195. }
  7196. // dst counters
  7197. int64_t i10 = 0;
  7198. int64_t i11 = 0;
  7199. int64_t i12 = 0;
  7200. int64_t i13 = 0;
  7201. if (dst->type == GGML_TYPE_F32) {
  7202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7204. i10 += ne00 * ir0;
  7205. while (i10 >= ne0) {
  7206. i10 -= ne0;
  7207. if (++i11 == ne1) {
  7208. i11 = 0;
  7209. if (++i12 == ne2) {
  7210. i12 = 0;
  7211. if (++i13 == ne3) {
  7212. i13 = 0;
  7213. }
  7214. }
  7215. }
  7216. }
  7217. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7219. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7220. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7221. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7222. if (++i10 == ne0) {
  7223. i10 = 0;
  7224. if (++i11 == ne1) {
  7225. i11 = 0;
  7226. if (++i12 == ne2) {
  7227. i12 = 0;
  7228. if (++i13 == ne3) {
  7229. i13 = 0;
  7230. }
  7231. }
  7232. }
  7233. }
  7234. }
  7235. }
  7236. i10 += ne00 * (ne01 - ir1);
  7237. while (i10 >= ne0) {
  7238. i10 -= ne0;
  7239. if (++i11 == ne1) {
  7240. i11 = 0;
  7241. if (++i12 == ne2) {
  7242. i12 = 0;
  7243. if (++i13 == ne3) {
  7244. i13 = 0;
  7245. }
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. } else if (dst->type == GGML_TYPE_F16) {
  7252. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7253. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7254. i10 += ne00 * ir0;
  7255. while (i10 >= ne0) {
  7256. i10 -= ne0;
  7257. if (++i11 == ne1) {
  7258. i11 = 0;
  7259. if (++i12 == ne2) {
  7260. i12 = 0;
  7261. if (++i13 == ne3) {
  7262. i13 = 0;
  7263. }
  7264. }
  7265. }
  7266. }
  7267. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7268. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7269. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7270. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7271. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7272. if (++i10 == ne0) {
  7273. i10 = 0;
  7274. if (++i11 == ne1) {
  7275. i11 = 0;
  7276. if (++i12 == ne2) {
  7277. i12 = 0;
  7278. if (++i13 == ne3) {
  7279. i13 = 0;
  7280. }
  7281. }
  7282. }
  7283. }
  7284. }
  7285. }
  7286. i10 += ne00 * (ne01 - ir1);
  7287. while (i10 >= ne0) {
  7288. i10 -= ne0;
  7289. if (++i11 == ne1) {
  7290. i11 = 0;
  7291. if (++i12 == ne2) {
  7292. i12 = 0;
  7293. if (++i13 == ne3) {
  7294. i13 = 0;
  7295. }
  7296. }
  7297. }
  7298. }
  7299. }
  7300. }
  7301. } else if (dst->type == GGML_TYPE_BF16) {
  7302. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7303. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7304. i10 += ne00 * ir0;
  7305. while (i10 >= ne0) {
  7306. i10 -= ne0;
  7307. if (++i11 == ne1) {
  7308. i11 = 0;
  7309. if (++i12 == ne2) {
  7310. i12 = 0;
  7311. if (++i13 == ne3) {
  7312. i13 = 0;
  7313. }
  7314. }
  7315. }
  7316. }
  7317. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7319. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7320. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7321. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7322. if (++i10 == ne0) {
  7323. i10 = 0;
  7324. if (++i11 == ne1) {
  7325. i11 = 0;
  7326. if (++i12 == ne2) {
  7327. i12 = 0;
  7328. if (++i13 == ne3) {
  7329. i13 = 0;
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. }
  7336. i10 += ne00 * (ne01 - ir1);
  7337. while (i10 >= ne0) {
  7338. i10 -= ne0;
  7339. if (++i11 == ne1) {
  7340. i11 = 0;
  7341. if (++i12 == ne2) {
  7342. i12 = 0;
  7343. if (++i13 == ne3) {
  7344. i13 = 0;
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. }
  7351. } else {
  7352. GGML_ASSERT(false); // TODO: implement
  7353. }
  7354. }
  7355. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7356. static void ggml_compute_forward_dup_bytes(
  7357. const struct ggml_compute_params * params,
  7358. struct ggml_tensor * dst) {
  7359. const struct ggml_tensor * src0 = dst->src[0];
  7360. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7361. GGML_ASSERT(src0->type == dst->type);
  7362. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7363. ggml_compute_forward_dup_same_cont(params, dst);
  7364. return;
  7365. }
  7366. GGML_TENSOR_UNARY_OP_LOCALS;
  7367. const size_t type_size = ggml_type_size(src0->type);
  7368. const int ith = params->ith; // thread index
  7369. const int nth = params->nth; // number of threads
  7370. // parallelize by rows
  7371. const int nr = ne01;
  7372. // number of rows per thread
  7373. const int dr = (nr + nth - 1) / nth;
  7374. // row range for this thread
  7375. const int ir0 = dr * ith;
  7376. const int ir1 = MIN(ir0 + dr, nr);
  7377. if (src0->type == dst->type &&
  7378. ne00 == ne0 &&
  7379. nb00 == type_size && nb0 == type_size) {
  7380. // copy by rows
  7381. const size_t rs = ne00 * type_size;
  7382. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7384. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7385. memcpy(
  7386. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7387. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7388. rs);
  7389. }
  7390. }
  7391. }
  7392. return;
  7393. }
  7394. if (ggml_is_contiguous(dst)) {
  7395. size_t id = 0;
  7396. char * dst_ptr = (char *) dst->data;
  7397. const size_t rs = ne00 * type_size;
  7398. if (nb00 == type_size) {
  7399. // src0 is contigous on first dimension, copy by rows
  7400. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7401. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7402. id += rs * ir0;
  7403. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7404. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7405. memcpy(dst_ptr + id, src0_ptr, rs);
  7406. id += rs;
  7407. }
  7408. id += rs * (ne01 - ir1);
  7409. }
  7410. }
  7411. } else {
  7412. //printf("%s: this is not optimal - fix me\n", __func__);
  7413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7415. id += rs * ir0;
  7416. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7418. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7419. memcpy(dst_ptr + id, src0_ptr, type_size);
  7420. id += type_size;
  7421. }
  7422. }
  7423. id += rs * (ne01 - ir1);
  7424. }
  7425. }
  7426. }
  7427. return;
  7428. }
  7429. // dst counters
  7430. int64_t i10 = 0;
  7431. int64_t i11 = 0;
  7432. int64_t i12 = 0;
  7433. int64_t i13 = 0;
  7434. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7435. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7436. i10 += ne00 * ir0;
  7437. while (i10 >= ne0) {
  7438. i10 -= ne0;
  7439. if (++i11 == ne1) {
  7440. i11 = 0;
  7441. if (++i12 == ne2) {
  7442. i12 = 0;
  7443. if (++i13 == ne3) {
  7444. i13 = 0;
  7445. }
  7446. }
  7447. }
  7448. }
  7449. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7451. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7452. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7453. memcpy(dst_ptr, src0_ptr, type_size);
  7454. if (++i10 == ne0) {
  7455. i10 = 0;
  7456. if (++i11 == ne1) {
  7457. i11 = 0;
  7458. if (++i12 == ne2) {
  7459. i12 = 0;
  7460. if (++i13 == ne3) {
  7461. i13 = 0;
  7462. }
  7463. }
  7464. }
  7465. }
  7466. }
  7467. }
  7468. i10 += ne00 * (ne01 - ir1);
  7469. while (i10 >= ne0) {
  7470. i10 -= ne0;
  7471. if (++i11 == ne1) {
  7472. i11 = 0;
  7473. if (++i12 == ne2) {
  7474. i12 = 0;
  7475. if (++i13 == ne3) {
  7476. i13 = 0;
  7477. }
  7478. }
  7479. }
  7480. }
  7481. }
  7482. }
  7483. }
  7484. static void ggml_compute_forward_dup(
  7485. const struct ggml_compute_params * params,
  7486. struct ggml_tensor * dst) {
  7487. const struct ggml_tensor * src0 = dst->src[0];
  7488. if (src0->type == dst->type) {
  7489. ggml_compute_forward_dup_bytes(params, dst);
  7490. return;
  7491. }
  7492. switch (src0->type) {
  7493. case GGML_TYPE_F16:
  7494. {
  7495. ggml_compute_forward_dup_f16(params, dst);
  7496. } break;
  7497. case GGML_TYPE_BF16:
  7498. {
  7499. ggml_compute_forward_dup_bf16(params, dst);
  7500. } break;
  7501. case GGML_TYPE_F32:
  7502. {
  7503. ggml_compute_forward_dup_f32(params, dst);
  7504. } break;
  7505. default:
  7506. {
  7507. GGML_ASSERT(false);
  7508. } break;
  7509. }
  7510. }
  7511. // ggml_compute_forward_add
  7512. static void ggml_compute_forward_add_f32(
  7513. const struct ggml_compute_params * params,
  7514. struct ggml_tensor * dst) {
  7515. const struct ggml_tensor * src0 = dst->src[0];
  7516. const struct ggml_tensor * src1 = dst->src[1];
  7517. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7518. const int ith = params->ith;
  7519. const int nth = params->nth;
  7520. const int nr = ggml_nrows(src0);
  7521. GGML_TENSOR_BINARY_OP_LOCALS
  7522. GGML_ASSERT( nb0 == sizeof(float));
  7523. GGML_ASSERT(nb00 == sizeof(float));
  7524. // rows per thread
  7525. const int dr = (nr + nth - 1)/nth;
  7526. // row range for this thread
  7527. const int ir0 = dr*ith;
  7528. const int ir1 = MIN(ir0 + dr, nr);
  7529. if (nb10 == sizeof(float)) {
  7530. for (int ir = ir0; ir < ir1; ++ir) {
  7531. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7532. const int64_t i03 = ir/(ne02*ne01);
  7533. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7534. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7535. const int64_t i13 = i03 % ne13;
  7536. const int64_t i12 = i02 % ne12;
  7537. const int64_t i11 = i01 % ne11;
  7538. const int64_t nr0 = ne00 / ne10;
  7539. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7540. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7541. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7542. for (int64_t r = 0; r < nr0; ++r) {
  7543. #ifdef GGML_USE_ACCELERATE
  7544. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7545. #else
  7546. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7547. #endif
  7548. }
  7549. }
  7550. } else {
  7551. // src1 is not contiguous
  7552. for (int ir = ir0; ir < ir1; ++ir) {
  7553. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7554. const int64_t i03 = ir/(ne02*ne01);
  7555. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7556. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7557. const int64_t i13 = i03 % ne13;
  7558. const int64_t i12 = i02 % ne12;
  7559. const int64_t i11 = i01 % ne11;
  7560. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7561. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7562. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7563. const int64_t i10 = i0 % ne10;
  7564. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7565. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7566. }
  7567. }
  7568. }
  7569. }
  7570. static void ggml_compute_forward_add_f16_f32(
  7571. const struct ggml_compute_params * params,
  7572. struct ggml_tensor * dst) {
  7573. const struct ggml_tensor * src0 = dst->src[0];
  7574. const struct ggml_tensor * src1 = dst->src[1];
  7575. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7576. const int ith = params->ith;
  7577. const int nth = params->nth;
  7578. const int nr = ggml_nrows(src0);
  7579. GGML_TENSOR_BINARY_OP_LOCALS
  7580. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7581. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7582. if (dst->type == GGML_TYPE_F32) {
  7583. GGML_ASSERT( nb0 == sizeof(float));
  7584. }
  7585. else {
  7586. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7587. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7588. }
  7589. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7590. // rows per thread
  7591. const int dr = (nr + nth - 1)/nth;
  7592. // row range for this thread
  7593. const int ir0 = dr*ith;
  7594. const int ir1 = MIN(ir0 + dr, nr);
  7595. if (nb10 == sizeof(float)) {
  7596. if (dst->type == GGML_TYPE_F16) {
  7597. for (int ir = ir0; ir < ir1; ++ir) {
  7598. // src0, src1 and dst are same shape => same indices
  7599. const int i3 = ir/(ne2*ne1);
  7600. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7601. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7602. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7603. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7604. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7605. for (int i = 0; i < ne0; i++) {
  7606. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7607. }
  7608. }
  7609. } else {
  7610. for (int ir = ir0; ir < ir1; ++ir) {
  7611. // src0, src1 and dst are same shape => same indices
  7612. const int i3 = ir/(ne2*ne1);
  7613. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7614. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7615. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7616. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7617. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7618. for (int i = 0; i < ne0; i++) {
  7619. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7620. }
  7621. }
  7622. }
  7623. }
  7624. else {
  7625. // src1 is not contiguous
  7626. GGML_ASSERT(false);
  7627. }
  7628. }
  7629. static void ggml_compute_forward_add_bf16_f32(
  7630. const struct ggml_compute_params * params,
  7631. struct ggml_tensor * dst) {
  7632. const struct ggml_tensor * src0 = dst->src[0];
  7633. const struct ggml_tensor * src1 = dst->src[1];
  7634. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7635. const int ith = params->ith;
  7636. const int nth = params->nth;
  7637. const int nr = ggml_nrows(src0);
  7638. GGML_TENSOR_BINARY_OP_LOCALS
  7639. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7640. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7641. if (dst->type == GGML_TYPE_F32) {
  7642. GGML_ASSERT( nb0 == sizeof(float));
  7643. }
  7644. else {
  7645. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7646. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7647. }
  7648. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7649. // rows per thread
  7650. const int dr = (nr + nth - 1)/nth;
  7651. // row range for this thread
  7652. const int ir0 = dr*ith;
  7653. const int ir1 = MIN(ir0 + dr, nr);
  7654. if (nb10 == sizeof(float)) {
  7655. if (dst->type == GGML_TYPE_BF16) {
  7656. for (int ir = ir0; ir < ir1; ++ir) {
  7657. // src0, src1 and dst are same shape => same indices
  7658. const int i3 = ir/(ne2*ne1);
  7659. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7660. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7661. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7662. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7663. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7664. for (int i = 0; i < ne0; i++) {
  7665. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7666. }
  7667. }
  7668. } else {
  7669. for (int ir = ir0; ir < ir1; ++ir) {
  7670. // src0, src1 and dst are same shape => same indices
  7671. const int i3 = ir/(ne2*ne1);
  7672. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7673. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7674. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7675. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7676. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7677. for (int i = 0; i < ne0; i++) {
  7678. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7679. }
  7680. }
  7681. }
  7682. }
  7683. else {
  7684. // src1 is not contiguous
  7685. GGML_ASSERT(false);
  7686. }
  7687. }
  7688. static void ggml_compute_forward_add_f16_f16(
  7689. const struct ggml_compute_params * params,
  7690. struct ggml_tensor * dst) {
  7691. const struct ggml_tensor * src0 = dst->src[0];
  7692. const struct ggml_tensor * src1 = dst->src[1];
  7693. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7694. const int ith = params->ith;
  7695. const int nth = params->nth;
  7696. const int nr = ggml_nrows(src0);
  7697. GGML_TENSOR_BINARY_OP_LOCALS
  7698. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7699. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7700. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7701. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7702. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7703. // rows per thread
  7704. const int dr = (nr + nth - 1)/nth;
  7705. // row range for this thread
  7706. const int ir0 = dr*ith;
  7707. const int ir1 = MIN(ir0 + dr, nr);
  7708. if (nb10 == sizeof(ggml_fp16_t)) {
  7709. for (int ir = ir0; ir < ir1; ++ir) {
  7710. // src0, src1 and dst are same shape => same indices
  7711. const int i3 = ir/(ne2*ne1);
  7712. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7713. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7714. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7715. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7716. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7717. for (int i = 0; i < ne0; i++) {
  7718. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7719. }
  7720. }
  7721. }
  7722. else {
  7723. // src1 is not contiguous
  7724. GGML_ASSERT(false);
  7725. }
  7726. }
  7727. static void ggml_compute_forward_add_bf16_bf16(
  7728. const struct ggml_compute_params * params,
  7729. struct ggml_tensor * dst) {
  7730. const struct ggml_tensor * src0 = dst->src[0];
  7731. const struct ggml_tensor * src1 = dst->src[1];
  7732. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7733. const int ith = params->ith;
  7734. const int nth = params->nth;
  7735. const int nr = ggml_nrows(src0);
  7736. GGML_TENSOR_BINARY_OP_LOCALS
  7737. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7738. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7739. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7740. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7741. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7742. // rows per thread
  7743. const int dr = (nr + nth - 1)/nth;
  7744. // row range for this thread
  7745. const int ir0 = dr*ith;
  7746. const int ir1 = MIN(ir0 + dr, nr);
  7747. if (nb10 == sizeof(ggml_bf16_t)) {
  7748. for (int ir = ir0; ir < ir1; ++ir) {
  7749. // src0, src1 and dst are same shape => same indices
  7750. const int i3 = ir/(ne2*ne1);
  7751. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7752. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7753. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7754. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7755. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7756. for (int i = 0; i < ne0; i++) {
  7757. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7758. }
  7759. }
  7760. }
  7761. else {
  7762. // src1 is not contiguous
  7763. GGML_ASSERT(false);
  7764. }
  7765. }
  7766. static void ggml_compute_forward_add_q_f32(
  7767. const struct ggml_compute_params * params,
  7768. struct ggml_tensor * dst) {
  7769. const struct ggml_tensor * src0 = dst->src[0];
  7770. const struct ggml_tensor * src1 = dst->src[1];
  7771. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7772. const int nr = ggml_nrows(src0);
  7773. GGML_TENSOR_BINARY_OP_LOCALS
  7774. const int ith = params->ith;
  7775. const int nth = params->nth;
  7776. const enum ggml_type type = src0->type;
  7777. const enum ggml_type dtype = dst->type;
  7778. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7779. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7780. // we don't support permuted src0 or src1
  7781. GGML_ASSERT(nb00 == ggml_type_size(type));
  7782. GGML_ASSERT(nb10 == sizeof(float));
  7783. // dst cannot be transposed or permuted
  7784. GGML_ASSERT(nb0 <= nb1);
  7785. GGML_ASSERT(nb1 <= nb2);
  7786. GGML_ASSERT(nb2 <= nb3);
  7787. GGML_ASSERT(ggml_is_quantized(src0->type));
  7788. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7789. // rows per thread
  7790. const int dr = (nr + nth - 1)/nth;
  7791. // row range for this thread
  7792. const int ir0 = dr*ith;
  7793. const int ir1 = MIN(ir0 + dr, nr);
  7794. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7795. for (int ir = ir0; ir < ir1; ++ir) {
  7796. // src0 indices
  7797. const int i03 = ir/(ne02*ne01);
  7798. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7799. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7800. // src1 and dst are same shape as src0 => same indices
  7801. const int i13 = i03;
  7802. const int i12 = i02;
  7803. const int i11 = i01;
  7804. const int i3 = i03;
  7805. const int i2 = i02;
  7806. const int i1 = i01;
  7807. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7808. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7809. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7810. assert(ne00 % 32 == 0);
  7811. // unquantize row from src0 to temp buffer
  7812. dequantize_row_q(src0_row, wdata, ne00);
  7813. // add src1
  7814. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7815. // quantize row to dst
  7816. if (quantize_row_q != NULL) {
  7817. quantize_row_q(wdata, dst_row, ne00);
  7818. } else {
  7819. memcpy(dst_row, wdata, ne0*nb0);
  7820. }
  7821. }
  7822. }
  7823. static void ggml_compute_forward_add(
  7824. const struct ggml_compute_params * params,
  7825. struct ggml_tensor * dst) {
  7826. const struct ggml_tensor * src0 = dst->src[0];
  7827. const struct ggml_tensor * src1 = dst->src[1];
  7828. switch (src0->type) {
  7829. case GGML_TYPE_F32:
  7830. {
  7831. if (src1->type == GGML_TYPE_F32) {
  7832. ggml_compute_forward_add_f32(params, dst);
  7833. }
  7834. else {
  7835. GGML_ASSERT(false);
  7836. }
  7837. } break;
  7838. case GGML_TYPE_F16:
  7839. {
  7840. if (src1->type == GGML_TYPE_F16) {
  7841. ggml_compute_forward_add_f16_f16(params, dst);
  7842. }
  7843. else if (src1->type == GGML_TYPE_F32) {
  7844. ggml_compute_forward_add_f16_f32(params, dst);
  7845. }
  7846. else {
  7847. GGML_ASSERT(false);
  7848. }
  7849. } break;
  7850. case GGML_TYPE_BF16:
  7851. {
  7852. if (src1->type == GGML_TYPE_BF16) {
  7853. ggml_compute_forward_add_bf16_bf16(params, dst);
  7854. }
  7855. else if (src1->type == GGML_TYPE_F32) {
  7856. ggml_compute_forward_add_bf16_f32(params, dst);
  7857. }
  7858. else {
  7859. GGML_ASSERT(false);
  7860. }
  7861. } break;
  7862. case GGML_TYPE_Q4_0:
  7863. case GGML_TYPE_Q4_1:
  7864. case GGML_TYPE_Q5_0:
  7865. case GGML_TYPE_Q5_1:
  7866. case GGML_TYPE_Q8_0:
  7867. case GGML_TYPE_Q2_K:
  7868. case GGML_TYPE_Q3_K:
  7869. case GGML_TYPE_Q4_K:
  7870. case GGML_TYPE_Q5_K:
  7871. case GGML_TYPE_Q6_K:
  7872. case GGML_TYPE_IQ2_XXS:
  7873. case GGML_TYPE_IQ2_XS:
  7874. case GGML_TYPE_IQ3_XXS:
  7875. case GGML_TYPE_IQ1_S:
  7876. case GGML_TYPE_IQ1_M:
  7877. case GGML_TYPE_IQ4_NL:
  7878. case GGML_TYPE_IQ4_XS:
  7879. case GGML_TYPE_IQ3_S:
  7880. case GGML_TYPE_IQ2_S:
  7881. case GGML_TYPE_Q4_0_4_4:
  7882. case GGML_TYPE_Q4_0_4_8:
  7883. case GGML_TYPE_Q4_0_8_8:
  7884. {
  7885. ggml_compute_forward_add_q_f32(params, dst);
  7886. } break;
  7887. default:
  7888. {
  7889. GGML_ASSERT(false);
  7890. } break;
  7891. }
  7892. }
  7893. // ggml_compute_forward_add1
  7894. static void ggml_compute_forward_add1_f32(
  7895. const struct ggml_compute_params * params,
  7896. struct ggml_tensor * dst) {
  7897. const struct ggml_tensor * src0 = dst->src[0];
  7898. const struct ggml_tensor * src1 = dst->src[1];
  7899. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7900. GGML_ASSERT(ggml_is_scalar(src1));
  7901. const int ith = params->ith;
  7902. const int nth = params->nth;
  7903. const int nr = ggml_nrows(src0);
  7904. GGML_TENSOR_UNARY_OP_LOCALS
  7905. GGML_ASSERT( nb0 == sizeof(float));
  7906. GGML_ASSERT(nb00 == sizeof(float));
  7907. // rows per thread
  7908. const int dr = (nr + nth - 1)/nth;
  7909. // row range for this thread
  7910. const int ir0 = dr*ith;
  7911. const int ir1 = MIN(ir0 + dr, nr);
  7912. for (int ir = ir0; ir < ir1; ++ir) {
  7913. // src0 and dst are same shape => same indices
  7914. const int i3 = ir/(ne2*ne1);
  7915. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7916. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7917. #ifdef GGML_USE_ACCELERATE
  7918. UNUSED(ggml_vec_add1_f32);
  7919. vDSP_vadd(
  7920. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7921. (float *) ((char *) src1->data), 0,
  7922. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7923. ne0);
  7924. #else
  7925. ggml_vec_add1_f32(ne0,
  7926. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7927. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7928. *(float *) src1->data);
  7929. #endif
  7930. }
  7931. }
  7932. static void ggml_compute_forward_add1_f16_f32(
  7933. const struct ggml_compute_params * params,
  7934. struct ggml_tensor * dst) {
  7935. const struct ggml_tensor * src0 = dst->src[0];
  7936. const struct ggml_tensor * src1 = dst->src[1];
  7937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7938. GGML_ASSERT(ggml_is_scalar(src1));
  7939. // scalar to add
  7940. const float v = *(float *) src1->data;
  7941. const int ith = params->ith;
  7942. const int nth = params->nth;
  7943. const int nr = ggml_nrows(src0);
  7944. GGML_TENSOR_UNARY_OP_LOCALS
  7945. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7946. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7947. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7948. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7949. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7950. // rows per thread
  7951. const int dr = (nr + nth - 1)/nth;
  7952. // row range for this thread
  7953. const int ir0 = dr*ith;
  7954. const int ir1 = MIN(ir0 + dr, nr);
  7955. for (int ir = ir0; ir < ir1; ++ir) {
  7956. // src0 and dst are same shape => same indices
  7957. const int i3 = ir/(ne2*ne1);
  7958. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7959. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7960. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7961. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7962. for (int i = 0; i < ne0; i++) {
  7963. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7964. }
  7965. }
  7966. }
  7967. static void ggml_compute_forward_add1_f16_f16(
  7968. const struct ggml_compute_params * params,
  7969. struct ggml_tensor * dst) {
  7970. const struct ggml_tensor * src0 = dst->src[0];
  7971. const struct ggml_tensor * src1 = dst->src[1];
  7972. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7973. GGML_ASSERT(ggml_is_scalar(src1));
  7974. // scalar to add
  7975. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7976. const int ith = params->ith;
  7977. const int nth = params->nth;
  7978. const int nr = ggml_nrows(src0);
  7979. GGML_TENSOR_UNARY_OP_LOCALS
  7980. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7981. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7982. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7983. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7984. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7985. // rows per thread
  7986. const int dr = (nr + nth - 1)/nth;
  7987. // row range for this thread
  7988. const int ir0 = dr*ith;
  7989. const int ir1 = MIN(ir0 + dr, nr);
  7990. for (int ir = ir0; ir < ir1; ++ir) {
  7991. // src0 and dst are same shape => same indices
  7992. const int i3 = ir/(ne2*ne1);
  7993. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7994. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7995. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7996. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7997. for (int i = 0; i < ne0; i++) {
  7998. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7999. }
  8000. }
  8001. }
  8002. static void ggml_compute_forward_add1_q_f32(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. const struct ggml_tensor * src1 = dst->src[1];
  8007. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8008. GGML_ASSERT(ggml_is_scalar(src1));
  8009. // scalar to add
  8010. const float v = *(float *) src1->data;
  8011. const int ith = params->ith;
  8012. const int nth = params->nth;
  8013. const int nr = ggml_nrows(src0);
  8014. GGML_TENSOR_UNARY_OP_LOCALS
  8015. const enum ggml_type type = src0->type;
  8016. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8017. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8018. // we don't support permuted src0
  8019. GGML_ASSERT(nb00 == ggml_type_size(type));
  8020. // dst cannot be transposed or permuted
  8021. GGML_ASSERT(nb0 <= nb1);
  8022. GGML_ASSERT(nb1 <= nb2);
  8023. GGML_ASSERT(nb2 <= nb3);
  8024. GGML_ASSERT(ggml_is_quantized(src0->type));
  8025. GGML_ASSERT(dst->type == src0->type);
  8026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8027. // rows per thread
  8028. const int dr = (nr + nth - 1)/nth;
  8029. // row range for this thread
  8030. const int ir0 = dr*ith;
  8031. const int ir1 = MIN(ir0 + dr, nr);
  8032. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8033. for (int ir = ir0; ir < ir1; ++ir) {
  8034. // src0 and dst are same shape => same indices
  8035. const int i3 = ir/(ne2*ne1);
  8036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8038. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8039. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8040. assert(ne0 % 32 == 0);
  8041. // unquantize row from src0 to temp buffer
  8042. dequantize_row_q(src0_row, wdata, ne0);
  8043. // add src1
  8044. ggml_vec_acc1_f32(ne0, wdata, v);
  8045. // quantize row to dst
  8046. quantize_row_q(wdata, dst_row, ne0);
  8047. }
  8048. }
  8049. static void ggml_compute_forward_add1_bf16_f32(
  8050. const struct ggml_compute_params * params,
  8051. struct ggml_tensor * dst) {
  8052. const struct ggml_tensor * src0 = dst->src[0];
  8053. const struct ggml_tensor * src1 = dst->src[1];
  8054. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8055. GGML_ASSERT(ggml_is_scalar(src1));
  8056. // scalar to add
  8057. const float v = *(float *) src1->data;
  8058. const int ith = params->ith;
  8059. const int nth = params->nth;
  8060. const int nr = ggml_nrows(src0);
  8061. GGML_TENSOR_UNARY_OP_LOCALS
  8062. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8063. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8064. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8065. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8066. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8067. // rows per thread
  8068. const int dr = (nr + nth - 1)/nth;
  8069. // row range for this thread
  8070. const int ir0 = dr*ith;
  8071. const int ir1 = MIN(ir0 + dr, nr);
  8072. for (int ir = ir0; ir < ir1; ++ir) {
  8073. // src0 and dst are same shape => same indices
  8074. const int i3 = ir/(ne2*ne1);
  8075. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8076. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8077. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8078. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8079. for (int i = 0; i < ne0; i++) {
  8080. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8081. }
  8082. }
  8083. }
  8084. static void ggml_compute_forward_add1_bf16_bf16(
  8085. const struct ggml_compute_params * params,
  8086. struct ggml_tensor * dst) {
  8087. const struct ggml_tensor * src0 = dst->src[0];
  8088. const struct ggml_tensor * src1 = dst->src[1];
  8089. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8090. GGML_ASSERT(ggml_is_scalar(src1));
  8091. // scalar to add
  8092. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8093. const int ith = params->ith;
  8094. const int nth = params->nth;
  8095. const int nr = ggml_nrows(src0);
  8096. GGML_TENSOR_UNARY_OP_LOCALS
  8097. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8098. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8099. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8100. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8101. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8102. // rows per thread
  8103. const int dr = (nr + nth - 1)/nth;
  8104. // row range for this thread
  8105. const int ir0 = dr*ith;
  8106. const int ir1 = MIN(ir0 + dr, nr);
  8107. for (int ir = ir0; ir < ir1; ++ir) {
  8108. // src0 and dst are same shape => same indices
  8109. const int i3 = ir/(ne2*ne1);
  8110. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8111. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8112. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8113. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8114. for (int i = 0; i < ne0; i++) {
  8115. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8116. }
  8117. }
  8118. }
  8119. static void ggml_compute_forward_add1(
  8120. const struct ggml_compute_params * params,
  8121. struct ggml_tensor * dst) {
  8122. const struct ggml_tensor * src0 = dst->src[0];
  8123. const struct ggml_tensor * src1 = dst->src[1];
  8124. switch (src0->type) {
  8125. case GGML_TYPE_F32:
  8126. {
  8127. ggml_compute_forward_add1_f32(params, dst);
  8128. } break;
  8129. case GGML_TYPE_F16:
  8130. {
  8131. if (src1->type == GGML_TYPE_F16) {
  8132. ggml_compute_forward_add1_f16_f16(params, dst);
  8133. }
  8134. else if (src1->type == GGML_TYPE_F32) {
  8135. ggml_compute_forward_add1_f16_f32(params, dst);
  8136. }
  8137. else {
  8138. GGML_ASSERT(false);
  8139. }
  8140. } break;
  8141. case GGML_TYPE_BF16:
  8142. {
  8143. if (src1->type == GGML_TYPE_BF16) {
  8144. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8145. }
  8146. else if (src1->type == GGML_TYPE_F32) {
  8147. ggml_compute_forward_add1_bf16_f32(params, dst);
  8148. }
  8149. else {
  8150. GGML_ASSERT(false);
  8151. }
  8152. } break;
  8153. case GGML_TYPE_Q4_0:
  8154. case GGML_TYPE_Q4_1:
  8155. case GGML_TYPE_Q5_0:
  8156. case GGML_TYPE_Q5_1:
  8157. case GGML_TYPE_Q8_0:
  8158. case GGML_TYPE_Q8_1:
  8159. case GGML_TYPE_Q2_K:
  8160. case GGML_TYPE_Q3_K:
  8161. case GGML_TYPE_Q4_K:
  8162. case GGML_TYPE_Q5_K:
  8163. case GGML_TYPE_Q6_K:
  8164. case GGML_TYPE_IQ2_XXS:
  8165. case GGML_TYPE_IQ2_XS:
  8166. case GGML_TYPE_IQ3_XXS:
  8167. case GGML_TYPE_IQ1_S:
  8168. case GGML_TYPE_IQ1_M:
  8169. case GGML_TYPE_IQ4_NL:
  8170. case GGML_TYPE_IQ4_XS:
  8171. case GGML_TYPE_IQ3_S:
  8172. case GGML_TYPE_IQ2_S:
  8173. case GGML_TYPE_Q4_0_4_4:
  8174. case GGML_TYPE_Q4_0_4_8:
  8175. case GGML_TYPE_Q4_0_8_8:
  8176. {
  8177. ggml_compute_forward_add1_q_f32(params, dst);
  8178. } break;
  8179. default:
  8180. {
  8181. GGML_ASSERT(false);
  8182. } break;
  8183. }
  8184. }
  8185. // ggml_compute_forward_acc
  8186. static void ggml_compute_forward_acc_f32(
  8187. const struct ggml_compute_params * params,
  8188. struct ggml_tensor * dst) {
  8189. const struct ggml_tensor * src0 = dst->src[0];
  8190. const struct ggml_tensor * src1 = dst->src[1];
  8191. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8192. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8193. // view src0 and dst with these strides and data offset inbytes during acc
  8194. // nb0 is implicitly element_size because src0 and dst are contiguous
  8195. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8196. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8197. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8198. size_t offset = ((int32_t *) dst->op_params)[3];
  8199. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8200. if (!inplace) {
  8201. if (params->ith == 0) {
  8202. // memcpy needs to be synchronized across threads to avoid race conditions.
  8203. // => do it in INIT phase
  8204. memcpy(
  8205. ((char *) dst->data),
  8206. ((char *) src0->data),
  8207. ggml_nbytes(dst));
  8208. }
  8209. ggml_barrier(params->shared);
  8210. }
  8211. const int ith = params->ith;
  8212. const int nth = params->nth;
  8213. const int nr = ggml_nrows(src1);
  8214. const int nc = src1->ne[0];
  8215. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8216. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8217. // src0 and dst as viewed during acc
  8218. const size_t nb0 = ggml_element_size(src0);
  8219. const size_t nb00 = nb0;
  8220. const size_t nb01 = nb1;
  8221. const size_t nb02 = nb2;
  8222. const size_t nb03 = nb3;
  8223. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8224. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8225. GGML_ASSERT(nb10 == sizeof(float));
  8226. // rows per thread
  8227. const int dr = (nr + nth - 1)/nth;
  8228. // row range for this thread
  8229. const int ir0 = dr*ith;
  8230. const int ir1 = MIN(ir0 + dr, nr);
  8231. for (int ir = ir0; ir < ir1; ++ir) {
  8232. // src0 and dst are viewed with shape of src1 and offset
  8233. // => same indices
  8234. const int i3 = ir/(ne12*ne11);
  8235. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8236. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8237. #ifdef GGML_USE_ACCELERATE
  8238. vDSP_vadd(
  8239. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8240. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8241. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8242. #else
  8243. ggml_vec_add_f32(nc,
  8244. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8245. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8246. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8247. #endif
  8248. }
  8249. }
  8250. static void ggml_compute_forward_acc(
  8251. const struct ggml_compute_params * params,
  8252. struct ggml_tensor * dst) {
  8253. const struct ggml_tensor * src0 = dst->src[0];
  8254. switch (src0->type) {
  8255. case GGML_TYPE_F32:
  8256. {
  8257. ggml_compute_forward_acc_f32(params, dst);
  8258. } break;
  8259. case GGML_TYPE_F16:
  8260. case GGML_TYPE_BF16:
  8261. case GGML_TYPE_Q4_0:
  8262. case GGML_TYPE_Q4_1:
  8263. case GGML_TYPE_Q5_0:
  8264. case GGML_TYPE_Q5_1:
  8265. case GGML_TYPE_Q8_0:
  8266. case GGML_TYPE_Q8_1:
  8267. case GGML_TYPE_Q2_K:
  8268. case GGML_TYPE_Q3_K:
  8269. case GGML_TYPE_Q4_K:
  8270. case GGML_TYPE_Q5_K:
  8271. case GGML_TYPE_Q6_K:
  8272. case GGML_TYPE_IQ2_XXS:
  8273. case GGML_TYPE_IQ2_XS:
  8274. case GGML_TYPE_IQ3_XXS:
  8275. case GGML_TYPE_IQ1_S:
  8276. case GGML_TYPE_IQ1_M:
  8277. case GGML_TYPE_IQ4_NL:
  8278. case GGML_TYPE_IQ4_XS:
  8279. case GGML_TYPE_IQ3_S:
  8280. case GGML_TYPE_IQ2_S:
  8281. case GGML_TYPE_Q4_0_4_4:
  8282. case GGML_TYPE_Q4_0_4_8:
  8283. case GGML_TYPE_Q4_0_8_8:
  8284. default:
  8285. {
  8286. GGML_ASSERT(false);
  8287. } break;
  8288. }
  8289. }
  8290. // ggml_compute_forward_sub
  8291. static void ggml_compute_forward_sub_f32(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. const struct ggml_tensor * src1 = dst->src[1];
  8296. if (params->ith != 0) {
  8297. return;
  8298. }
  8299. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8300. const int nr = ggml_nrows(src0);
  8301. GGML_TENSOR_BINARY_OP_LOCALS
  8302. GGML_ASSERT( nb0 == sizeof(float));
  8303. GGML_ASSERT(nb00 == sizeof(float));
  8304. if (nb10 == sizeof(float)) {
  8305. for (int ir = 0; ir < nr; ++ir) {
  8306. // src0, src1 and dst are same shape => same indices
  8307. const int i3 = ir/(ne2*ne1);
  8308. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8309. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8310. #ifdef GGML_USE_ACCELERATE
  8311. vDSP_vsub(
  8312. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8313. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8314. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8315. ne0);
  8316. #else
  8317. ggml_vec_sub_f32(ne0,
  8318. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8319. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8320. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8321. #endif
  8322. // }
  8323. // }
  8324. }
  8325. } else {
  8326. // src1 is not contiguous
  8327. for (int ir = 0; ir < nr; ++ir) {
  8328. // src0, src1 and dst are same shape => same indices
  8329. const int i3 = ir/(ne2*ne1);
  8330. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8331. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8332. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8333. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8334. for (int i0 = 0; i0 < ne0; i0++) {
  8335. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8336. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8337. }
  8338. }
  8339. }
  8340. }
  8341. static void ggml_compute_forward_sub(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. switch (src0->type) {
  8346. case GGML_TYPE_F32:
  8347. {
  8348. ggml_compute_forward_sub_f32(params, dst);
  8349. } break;
  8350. default:
  8351. {
  8352. GGML_ASSERT(false);
  8353. } break;
  8354. }
  8355. }
  8356. // ggml_compute_forward_mul
  8357. static void ggml_compute_forward_mul_f32(
  8358. const struct ggml_compute_params * params,
  8359. struct ggml_tensor * dst) {
  8360. const struct ggml_tensor * src0 = dst->src[0];
  8361. const struct ggml_tensor * src1 = dst->src[1];
  8362. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8363. const int ith = params->ith;
  8364. const int nth = params->nth;
  8365. const int64_t nr = ggml_nrows(src0);
  8366. GGML_TENSOR_BINARY_OP_LOCALS
  8367. GGML_ASSERT( nb0 == sizeof(float));
  8368. GGML_ASSERT(nb00 == sizeof(float));
  8369. if (nb10 == sizeof(float)) {
  8370. for (int64_t ir = ith; ir < nr; ir += nth) {
  8371. // src0 and dst are same shape => same indices
  8372. const int64_t i03 = ir/(ne02*ne01);
  8373. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8374. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8375. const int64_t i13 = i03 % ne13;
  8376. const int64_t i12 = i02 % ne12;
  8377. const int64_t i11 = i01 % ne11;
  8378. const int64_t nr0 = ne00 / ne10;
  8379. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8380. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8381. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8382. for (int64_t r = 0 ; r < nr0; ++r) {
  8383. #ifdef GGML_USE_ACCELERATE
  8384. UNUSED(ggml_vec_mul_f32);
  8385. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8386. #else
  8387. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8388. #endif
  8389. }
  8390. }
  8391. } else {
  8392. // src1 is not contiguous
  8393. for (int64_t ir = ith; ir < nr; ir += nth) {
  8394. // src0 and dst are same shape => same indices
  8395. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8396. const int64_t i03 = ir/(ne02*ne01);
  8397. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8398. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8399. const int64_t i13 = i03 % ne13;
  8400. const int64_t i12 = i02 % ne12;
  8401. const int64_t i11 = i01 % ne11;
  8402. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8403. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8404. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8405. const int64_t i10 = i0 % ne10;
  8406. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8407. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8408. }
  8409. }
  8410. }
  8411. }
  8412. static void ggml_compute_forward_mul(
  8413. const struct ggml_compute_params * params,
  8414. struct ggml_tensor * dst) {
  8415. const struct ggml_tensor * src0 = dst->src[0];
  8416. const struct ggml_tensor * src1 = dst->src[1];
  8417. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8418. switch (src0->type) {
  8419. case GGML_TYPE_F32:
  8420. {
  8421. ggml_compute_forward_mul_f32(params, dst);
  8422. } break;
  8423. default:
  8424. {
  8425. GGML_ASSERT(false);
  8426. } break;
  8427. }
  8428. }
  8429. // ggml_compute_forward_div
  8430. static void ggml_compute_forward_div_f32(
  8431. const struct ggml_compute_params * params,
  8432. struct ggml_tensor * dst) {
  8433. const struct ggml_tensor * src0 = dst->src[0];
  8434. const struct ggml_tensor * src1 = dst->src[1];
  8435. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8436. const int ith = params->ith;
  8437. const int nth = params->nth;
  8438. const int64_t nr = ggml_nrows(src0);
  8439. GGML_TENSOR_BINARY_OP_LOCALS
  8440. GGML_ASSERT( nb0 == sizeof(float));
  8441. GGML_ASSERT(nb00 == sizeof(float));
  8442. if (nb10 == sizeof(float)) {
  8443. for (int64_t ir = ith; ir < nr; ir += nth) {
  8444. // src0 and dst are same shape => same indices
  8445. const int64_t i03 = ir/(ne02*ne01);
  8446. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8447. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8448. const int64_t i13 = i03 % ne13;
  8449. const int64_t i12 = i02 % ne12;
  8450. const int64_t i11 = i01 % ne11;
  8451. const int64_t nr0 = ne00 / ne10;
  8452. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8453. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8454. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8455. for (int64_t r = 0; r < nr0; ++r) {
  8456. #ifdef GGML_USE_ACCELERATE
  8457. UNUSED(ggml_vec_div_f32);
  8458. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8459. #else
  8460. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8461. #endif
  8462. }
  8463. }
  8464. } else {
  8465. // src1 is not contiguous
  8466. for (int64_t ir = ith; ir < nr; ir += nth) {
  8467. // src0 and dst are same shape => same indices
  8468. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8469. const int64_t i03 = ir/(ne02*ne01);
  8470. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8471. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8472. const int64_t i13 = i03 % ne13;
  8473. const int64_t i12 = i02 % ne12;
  8474. const int64_t i11 = i01 % ne11;
  8475. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8476. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8477. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8478. const int64_t i10 = i0 % ne10;
  8479. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8480. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8481. }
  8482. }
  8483. }
  8484. }
  8485. static void ggml_compute_forward_div(
  8486. const struct ggml_compute_params * params,
  8487. struct ggml_tensor * dst) {
  8488. const struct ggml_tensor * src0 = dst->src[0];
  8489. switch (src0->type) {
  8490. case GGML_TYPE_F32:
  8491. {
  8492. ggml_compute_forward_div_f32(params, dst);
  8493. } break;
  8494. default:
  8495. {
  8496. GGML_ASSERT(false);
  8497. } break;
  8498. }
  8499. }
  8500. // ggml_compute_forward_sqr
  8501. static void ggml_compute_forward_sqr_f32(
  8502. const struct ggml_compute_params * params,
  8503. struct ggml_tensor * dst) {
  8504. const struct ggml_tensor * src0 = dst->src[0];
  8505. if (params->ith != 0) {
  8506. return;
  8507. }
  8508. assert(ggml_are_same_shape(src0, dst));
  8509. const int n = ggml_nrows(src0);
  8510. const int nc = src0->ne[0];
  8511. assert( dst->nb[0] == sizeof(float));
  8512. assert(src0->nb[0] == sizeof(float));
  8513. for (int i = 0; i < n; i++) {
  8514. ggml_vec_sqr_f32(nc,
  8515. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8516. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8517. }
  8518. }
  8519. static void ggml_compute_forward_sqr(
  8520. const struct ggml_compute_params * params,
  8521. struct ggml_tensor * dst) {
  8522. const struct ggml_tensor * src0 = dst->src[0];
  8523. switch (src0->type) {
  8524. case GGML_TYPE_F32:
  8525. {
  8526. ggml_compute_forward_sqr_f32(params, dst);
  8527. } break;
  8528. default:
  8529. {
  8530. GGML_ASSERT(false);
  8531. } break;
  8532. }
  8533. }
  8534. // ggml_compute_forward_sqrt
  8535. static void ggml_compute_forward_sqrt_f32(
  8536. const struct ggml_compute_params * params,
  8537. struct ggml_tensor * dst) {
  8538. const struct ggml_tensor * src0 = dst->src[0];
  8539. if (params->ith != 0) {
  8540. return;
  8541. }
  8542. assert(ggml_are_same_shape(src0, dst));
  8543. const int n = ggml_nrows(src0);
  8544. const int nc = src0->ne[0];
  8545. assert( dst->nb[0] == sizeof(float));
  8546. assert(src0->nb[0] == sizeof(float));
  8547. for (int i = 0; i < n; i++) {
  8548. ggml_vec_sqrt_f32(nc,
  8549. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8550. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8551. }
  8552. }
  8553. static void ggml_compute_forward_sqrt(
  8554. const struct ggml_compute_params * params,
  8555. struct ggml_tensor * dst) {
  8556. const struct ggml_tensor * src0 = dst->src[0];
  8557. switch (src0->type) {
  8558. case GGML_TYPE_F32:
  8559. {
  8560. ggml_compute_forward_sqrt_f32(params, dst);
  8561. } break;
  8562. default:
  8563. {
  8564. GGML_ASSERT(false);
  8565. } break;
  8566. }
  8567. }
  8568. // ggml_compute_forward_log
  8569. static void ggml_compute_forward_log_f32(
  8570. const struct ggml_compute_params * params,
  8571. struct ggml_tensor * dst) {
  8572. const struct ggml_tensor * src0 = dst->src[0];
  8573. if (params->ith != 0) {
  8574. return;
  8575. }
  8576. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8577. const int n = ggml_nrows(src0);
  8578. const int nc = src0->ne[0];
  8579. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8580. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8581. for (int i = 0; i < n; i++) {
  8582. ggml_vec_log_f32(nc,
  8583. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8584. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8585. }
  8586. }
  8587. static void ggml_compute_forward_log(
  8588. const struct ggml_compute_params * params,
  8589. struct ggml_tensor * dst) {
  8590. const struct ggml_tensor * src0 = dst->src[0];
  8591. switch (src0->type) {
  8592. case GGML_TYPE_F32:
  8593. {
  8594. ggml_compute_forward_log_f32(params, dst);
  8595. } break;
  8596. default:
  8597. {
  8598. GGML_ASSERT(false);
  8599. } break;
  8600. }
  8601. }
  8602. // ggml_compute_forward_sum
  8603. static void ggml_compute_forward_sum_f32(
  8604. const struct ggml_compute_params * params,
  8605. struct ggml_tensor * dst) {
  8606. const struct ggml_tensor * src0 = dst->src[0];
  8607. if (params->ith != 0) {
  8608. return;
  8609. }
  8610. assert(ggml_is_scalar(dst));
  8611. assert(ggml_is_scalar(dst));
  8612. assert(src0->nb[0] == sizeof(float));
  8613. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8614. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8615. ggml_float sum = 0;
  8616. ggml_float row_sum = 0;
  8617. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8618. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8619. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8620. ggml_vec_sum_f32_ggf(ne00,
  8621. &row_sum,
  8622. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8623. sum += row_sum;
  8624. }
  8625. }
  8626. }
  8627. ((float *) dst->data)[0] = sum;
  8628. }
  8629. static void ggml_compute_forward_sum_f16(
  8630. const struct ggml_compute_params * params,
  8631. struct ggml_tensor * dst) {
  8632. const struct ggml_tensor * src0 = dst->src[0];
  8633. if (params->ith != 0) {
  8634. return;
  8635. }
  8636. assert(ggml_is_scalar(dst));
  8637. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8638. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8639. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8640. float sum = 0;
  8641. float row_sum = 0;
  8642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8645. ggml_vec_sum_f16_ggf(ne00,
  8646. &row_sum,
  8647. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8648. sum += row_sum;
  8649. }
  8650. }
  8651. }
  8652. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8653. }
  8654. static void ggml_compute_forward_sum_bf16(
  8655. const struct ggml_compute_params * params,
  8656. struct ggml_tensor * dst) {
  8657. const struct ggml_tensor * src0 = dst->src[0];
  8658. if (params->ith != 0) {
  8659. return;
  8660. }
  8661. assert(ggml_is_scalar(dst));
  8662. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8663. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8664. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8665. float sum = 0;
  8666. float row_sum = 0;
  8667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8669. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8670. ggml_vec_sum_bf16_ggf(ne00,
  8671. &row_sum,
  8672. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8673. sum += row_sum;
  8674. }
  8675. }
  8676. }
  8677. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8678. }
  8679. static void ggml_compute_forward_sum(
  8680. const struct ggml_compute_params * params,
  8681. struct ggml_tensor * dst) {
  8682. const struct ggml_tensor * src0 = dst->src[0];
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_sum_f32(params, dst);
  8687. } break;
  8688. case GGML_TYPE_F16:
  8689. {
  8690. ggml_compute_forward_sum_f16(params, dst);
  8691. } break;
  8692. case GGML_TYPE_BF16:
  8693. {
  8694. ggml_compute_forward_sum_bf16(params, dst);
  8695. } break;
  8696. default:
  8697. {
  8698. GGML_ASSERT(false);
  8699. } break;
  8700. }
  8701. }
  8702. // ggml_compute_forward_sum_rows
  8703. static void ggml_compute_forward_sum_rows_f32(
  8704. const struct ggml_compute_params * params,
  8705. struct ggml_tensor * dst) {
  8706. const struct ggml_tensor * src0 = dst->src[0];
  8707. if (params->ith != 0) {
  8708. return;
  8709. }
  8710. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8711. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8712. GGML_TENSOR_UNARY_OP_LOCALS
  8713. GGML_ASSERT(ne0 == 1);
  8714. GGML_ASSERT(ne1 == ne01);
  8715. GGML_ASSERT(ne2 == ne02);
  8716. GGML_ASSERT(ne3 == ne03);
  8717. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8718. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8719. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8720. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8721. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8722. float row_sum = 0;
  8723. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8724. dst_row[0] = row_sum;
  8725. }
  8726. }
  8727. }
  8728. }
  8729. static void ggml_compute_forward_sum_rows(
  8730. const struct ggml_compute_params * params,
  8731. struct ggml_tensor * dst) {
  8732. const struct ggml_tensor * src0 = dst->src[0];
  8733. switch (src0->type) {
  8734. case GGML_TYPE_F32:
  8735. {
  8736. ggml_compute_forward_sum_rows_f32(params, dst);
  8737. } break;
  8738. default:
  8739. {
  8740. GGML_ASSERT(false);
  8741. } break;
  8742. }
  8743. }
  8744. // ggml_compute_forward_mean
  8745. static void ggml_compute_forward_mean_f32(
  8746. const struct ggml_compute_params * params,
  8747. struct ggml_tensor * dst) {
  8748. const struct ggml_tensor * src0 = dst->src[0];
  8749. if (params->ith != 0) {
  8750. return;
  8751. }
  8752. assert(src0->nb[0] == sizeof(float));
  8753. GGML_TENSOR_UNARY_OP_LOCALS
  8754. assert(ne0 == 1);
  8755. assert(ne1 == ne01);
  8756. assert(ne2 == ne02);
  8757. assert(ne3 == ne03);
  8758. UNUSED(ne0);
  8759. UNUSED(ne1);
  8760. UNUSED(ne2);
  8761. UNUSED(ne3);
  8762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8764. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8765. ggml_vec_sum_f32(ne00,
  8766. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8767. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8768. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8769. }
  8770. }
  8771. }
  8772. }
  8773. static void ggml_compute_forward_mean(
  8774. const struct ggml_compute_params * params,
  8775. struct ggml_tensor * dst) {
  8776. const struct ggml_tensor * src0 = dst->src[0];
  8777. switch (src0->type) {
  8778. case GGML_TYPE_F32:
  8779. {
  8780. ggml_compute_forward_mean_f32(params, dst);
  8781. } break;
  8782. default:
  8783. {
  8784. GGML_ASSERT(false);
  8785. } break;
  8786. }
  8787. }
  8788. // ggml_compute_forward_argmax
  8789. static void ggml_compute_forward_argmax_f32(
  8790. const struct ggml_compute_params * params,
  8791. struct ggml_tensor * dst) {
  8792. const struct ggml_tensor * src0 = dst->src[0];
  8793. if (params->ith != 0) {
  8794. return;
  8795. }
  8796. assert(src0->nb[0] == sizeof(float));
  8797. assert(dst->nb[0] == sizeof(float));
  8798. const int64_t ne00 = src0->ne[0];
  8799. const int64_t ne01 = src0->ne[1];
  8800. const size_t nb01 = src0->nb[1];
  8801. const size_t nb0 = dst->nb[0];
  8802. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8803. float * src = (float *) ((char *) src0->data + i1*nb01);
  8804. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8805. int v = 0;
  8806. ggml_vec_argmax_f32(ne00, &v, src);
  8807. dst_[0] = v;
  8808. }
  8809. }
  8810. static void ggml_compute_forward_argmax(
  8811. const struct ggml_compute_params * params,
  8812. struct ggml_tensor * dst) {
  8813. const struct ggml_tensor * src0 = dst->src[0];
  8814. switch (src0->type) {
  8815. case GGML_TYPE_F32:
  8816. {
  8817. ggml_compute_forward_argmax_f32(params, dst);
  8818. } break;
  8819. default:
  8820. {
  8821. GGML_ASSERT(false);
  8822. } break;
  8823. }
  8824. }
  8825. // ggml_compute_forward_repeat
  8826. static void ggml_compute_forward_repeat_f32(
  8827. const struct ggml_compute_params * params,
  8828. struct ggml_tensor * dst) {
  8829. const struct ggml_tensor * src0 = dst->src[0];
  8830. if (params->ith != 0) {
  8831. return;
  8832. }
  8833. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8834. GGML_TENSOR_UNARY_OP_LOCALS
  8835. // guaranteed to be an integer due to the check in ggml_can_repeat
  8836. const int nr0 = (int)(ne0/ne00);
  8837. const int nr1 = (int)(ne1/ne01);
  8838. const int nr2 = (int)(ne2/ne02);
  8839. const int nr3 = (int)(ne3/ne03);
  8840. // TODO: support for transposed / permuted tensors
  8841. GGML_ASSERT(nb0 == sizeof(float));
  8842. GGML_ASSERT(nb00 == sizeof(float));
  8843. // TODO: maybe this is not optimal?
  8844. for (int i3 = 0; i3 < nr3; i3++) {
  8845. for (int k3 = 0; k3 < ne03; k3++) {
  8846. for (int i2 = 0; i2 < nr2; i2++) {
  8847. for (int k2 = 0; k2 < ne02; k2++) {
  8848. for (int i1 = 0; i1 < nr1; i1++) {
  8849. for (int k1 = 0; k1 < ne01; k1++) {
  8850. for (int i0 = 0; i0 < nr0; i0++) {
  8851. ggml_vec_cpy_f32(ne00,
  8852. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8853. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8854. }
  8855. }
  8856. }
  8857. }
  8858. }
  8859. }
  8860. }
  8861. }
  8862. static void ggml_compute_forward_repeat_f16(
  8863. const struct ggml_compute_params * params,
  8864. struct ggml_tensor * dst) {
  8865. const struct ggml_tensor * src0 = dst->src[0];
  8866. if (params->ith != 0) {
  8867. return;
  8868. }
  8869. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8870. GGML_TENSOR_UNARY_OP_LOCALS
  8871. // guaranteed to be an integer due to the check in ggml_can_repeat
  8872. const int nr0 = (int)(ne0/ne00);
  8873. const int nr1 = (int)(ne1/ne01);
  8874. const int nr2 = (int)(ne2/ne02);
  8875. const int nr3 = (int)(ne3/ne03);
  8876. // TODO: support for transposed / permuted tensors
  8877. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8878. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8879. // TODO: maybe this is not optimal?
  8880. for (int i3 = 0; i3 < nr3; i3++) {
  8881. for (int k3 = 0; k3 < ne03; k3++) {
  8882. for (int i2 = 0; i2 < nr2; i2++) {
  8883. for (int k2 = 0; k2 < ne02; k2++) {
  8884. for (int i1 = 0; i1 < nr1; i1++) {
  8885. for (int k1 = 0; k1 < ne01; k1++) {
  8886. for (int i0 = 0; i0 < nr0; i0++) {
  8887. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8888. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8889. // ggml_vec_cpy_f16(ne00, y, x)
  8890. for (int i = 0; i < ne00; ++i) {
  8891. y[i] = x[i];
  8892. }
  8893. }
  8894. }
  8895. }
  8896. }
  8897. }
  8898. }
  8899. }
  8900. }
  8901. static void ggml_compute_forward_repeat(
  8902. const struct ggml_compute_params * params,
  8903. struct ggml_tensor * dst) {
  8904. const struct ggml_tensor * src0 = dst->src[0];
  8905. switch (src0->type) {
  8906. case GGML_TYPE_F16:
  8907. case GGML_TYPE_BF16:
  8908. case GGML_TYPE_I16:
  8909. {
  8910. ggml_compute_forward_repeat_f16(params, dst);
  8911. } break;
  8912. case GGML_TYPE_F32:
  8913. case GGML_TYPE_I32:
  8914. {
  8915. ggml_compute_forward_repeat_f32(params, dst);
  8916. } break;
  8917. default:
  8918. {
  8919. GGML_ASSERT(false);
  8920. } break;
  8921. }
  8922. }
  8923. // ggml_compute_forward_repeat_back
  8924. static void ggml_compute_forward_repeat_back_f32(
  8925. const struct ggml_compute_params * params,
  8926. struct ggml_tensor * dst) {
  8927. const struct ggml_tensor * src0 = dst->src[0];
  8928. if (params->ith != 0) {
  8929. return;
  8930. }
  8931. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8932. GGML_TENSOR_UNARY_OP_LOCALS
  8933. // guaranteed to be an integer due to the check in ggml_can_repeat
  8934. const int nr0 = (int)(ne00/ne0);
  8935. const int nr1 = (int)(ne01/ne1);
  8936. const int nr2 = (int)(ne02/ne2);
  8937. const int nr3 = (int)(ne03/ne3);
  8938. // TODO: support for transposed / permuted tensors
  8939. GGML_ASSERT(nb0 == sizeof(float));
  8940. GGML_ASSERT(nb00 == sizeof(float));
  8941. if (ggml_is_contiguous(dst)) {
  8942. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8943. } else {
  8944. for (int k3 = 0; k3 < ne3; k3++) {
  8945. for (int k2 = 0; k2 < ne2; k2++) {
  8946. for (int k1 = 0; k1 < ne1; k1++) {
  8947. ggml_vec_set_f32(ne0,
  8948. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8949. 0);
  8950. }
  8951. }
  8952. }
  8953. }
  8954. // TODO: maybe this is not optimal?
  8955. for (int i3 = 0; i3 < nr3; i3++) {
  8956. for (int k3 = 0; k3 < ne3; k3++) {
  8957. for (int i2 = 0; i2 < nr2; i2++) {
  8958. for (int k2 = 0; k2 < ne2; k2++) {
  8959. for (int i1 = 0; i1 < nr1; i1++) {
  8960. for (int k1 = 0; k1 < ne1; k1++) {
  8961. for (int i0 = 0; i0 < nr0; i0++) {
  8962. ggml_vec_acc_f32(ne0,
  8963. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8964. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8965. }
  8966. }
  8967. }
  8968. }
  8969. }
  8970. }
  8971. }
  8972. }
  8973. static void ggml_compute_forward_repeat_back(
  8974. const struct ggml_compute_params * params,
  8975. struct ggml_tensor * dst) {
  8976. const struct ggml_tensor * src0 = dst->src[0];
  8977. switch (src0->type) {
  8978. case GGML_TYPE_F32:
  8979. {
  8980. ggml_compute_forward_repeat_back_f32(params, dst);
  8981. } break;
  8982. default:
  8983. {
  8984. GGML_ASSERT(false);
  8985. } break;
  8986. }
  8987. }
  8988. // ggml_compute_forward_concat
  8989. static void ggml_compute_forward_concat_f32(
  8990. const struct ggml_compute_params * params,
  8991. struct ggml_tensor * dst) {
  8992. const struct ggml_tensor * src0 = dst->src[0];
  8993. const struct ggml_tensor * src1 = dst->src[1];
  8994. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8995. const int ith = params->ith;
  8996. const int nth = params->nth;
  8997. GGML_TENSOR_BINARY_OP_LOCALS
  8998. // TODO: support for transposed / permuted tensors
  8999. GGML_ASSERT(nb0 == sizeof(float));
  9000. GGML_ASSERT(nb00 == sizeof(float));
  9001. GGML_ASSERT(nb10 == sizeof(float));
  9002. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9003. GGML_ASSERT(dim >= 0 && dim < 4);
  9004. int64_t o[4] = {0, 0, 0, 0};
  9005. o[dim] = src0->ne[dim];
  9006. const float * x;
  9007. // TODO: smarter multi-theading
  9008. for (int i3 = 0; i3 < ne3; i3++) {
  9009. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9010. for (int i1 = 0; i1 < ne1; i1++) {
  9011. for (int i0 = 0; i0 < ne0; i0++) {
  9012. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9013. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9014. } else {
  9015. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9016. }
  9017. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9018. *y = *x;
  9019. }
  9020. }
  9021. }
  9022. }
  9023. }
  9024. static void ggml_compute_forward_concat(
  9025. const struct ggml_compute_params * params,
  9026. struct ggml_tensor * dst) {
  9027. const struct ggml_tensor * src0 = dst->src[0];
  9028. switch (src0->type) {
  9029. case GGML_TYPE_F32:
  9030. case GGML_TYPE_I32:
  9031. {
  9032. ggml_compute_forward_concat_f32(params, dst);
  9033. } break;
  9034. default:
  9035. {
  9036. GGML_ASSERT(false);
  9037. } break;
  9038. }
  9039. }
  9040. // ggml_compute_forward_abs
  9041. static void ggml_compute_forward_abs_f32(
  9042. const struct ggml_compute_params * params,
  9043. struct ggml_tensor * dst) {
  9044. const struct ggml_tensor * src0 = dst->src[0];
  9045. if (params->ith != 0) {
  9046. return;
  9047. }
  9048. assert(ggml_is_contiguous_1(src0));
  9049. assert(ggml_is_contiguous_1(dst));
  9050. assert(ggml_are_same_shape(src0, dst));
  9051. const int n = ggml_nrows(src0);
  9052. const int nc = src0->ne[0];
  9053. for (int i = 0; i < n; i++) {
  9054. ggml_vec_abs_f32(nc,
  9055. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9056. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9057. }
  9058. }
  9059. static void ggml_compute_forward_abs(
  9060. const struct ggml_compute_params * params,
  9061. struct ggml_tensor * dst) {
  9062. const struct ggml_tensor * src0 = dst->src[0];
  9063. switch (src0->type) {
  9064. case GGML_TYPE_F32:
  9065. {
  9066. ggml_compute_forward_abs_f32(params, dst);
  9067. } break;
  9068. default:
  9069. {
  9070. GGML_ASSERT(false);
  9071. } break;
  9072. }
  9073. }
  9074. // ggml_compute_forward_sgn
  9075. static void ggml_compute_forward_sgn_f32(
  9076. const struct ggml_compute_params * params,
  9077. struct ggml_tensor * dst) {
  9078. const struct ggml_tensor * src0 = dst->src[0];
  9079. if (params->ith != 0) {
  9080. return;
  9081. }
  9082. assert(ggml_is_contiguous_1(src0));
  9083. assert(ggml_is_contiguous_1(dst));
  9084. assert(ggml_are_same_shape(src0, dst));
  9085. const int n = ggml_nrows(src0);
  9086. const int nc = src0->ne[0];
  9087. for (int i = 0; i < n; i++) {
  9088. ggml_vec_sgn_f32(nc,
  9089. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9090. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9091. }
  9092. }
  9093. static void ggml_compute_forward_sgn(
  9094. const struct ggml_compute_params * params,
  9095. struct ggml_tensor * dst) {
  9096. const struct ggml_tensor * src0 = dst->src[0];
  9097. switch (src0->type) {
  9098. case GGML_TYPE_F32:
  9099. {
  9100. ggml_compute_forward_sgn_f32(params, dst);
  9101. } break;
  9102. default:
  9103. {
  9104. GGML_ASSERT(false);
  9105. } break;
  9106. }
  9107. }
  9108. // ggml_compute_forward_neg
  9109. static void ggml_compute_forward_neg_f32(
  9110. const struct ggml_compute_params * params,
  9111. struct ggml_tensor * dst) {
  9112. const struct ggml_tensor * src0 = dst->src[0];
  9113. if (params->ith != 0) {
  9114. return;
  9115. }
  9116. assert(ggml_is_contiguous_1(src0));
  9117. assert(ggml_is_contiguous_1(dst));
  9118. assert(ggml_are_same_shape(src0, dst));
  9119. const int n = ggml_nrows(src0);
  9120. const int nc = src0->ne[0];
  9121. for (int i = 0; i < n; i++) {
  9122. ggml_vec_neg_f32(nc,
  9123. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9124. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9125. }
  9126. }
  9127. static void ggml_compute_forward_neg(
  9128. const struct ggml_compute_params * params,
  9129. struct ggml_tensor * dst) {
  9130. const struct ggml_tensor * src0 = dst->src[0];
  9131. switch (src0->type) {
  9132. case GGML_TYPE_F32:
  9133. {
  9134. ggml_compute_forward_neg_f32(params, dst);
  9135. } break;
  9136. default:
  9137. {
  9138. GGML_ASSERT(false);
  9139. } break;
  9140. }
  9141. }
  9142. // ggml_compute_forward_step
  9143. static void ggml_compute_forward_step_f32(
  9144. const struct ggml_compute_params * params,
  9145. struct ggml_tensor * dst) {
  9146. const struct ggml_tensor * src0 = dst->src[0];
  9147. if (params->ith != 0) {
  9148. return;
  9149. }
  9150. assert(ggml_is_contiguous_1(src0));
  9151. assert(ggml_is_contiguous_1(dst));
  9152. assert(ggml_are_same_shape(src0, dst));
  9153. const int n = ggml_nrows(src0);
  9154. const int nc = src0->ne[0];
  9155. for (int i = 0; i < n; i++) {
  9156. ggml_vec_step_f32(nc,
  9157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9158. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9159. }
  9160. }
  9161. static void ggml_compute_forward_step(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. const struct ggml_tensor * src0 = dst->src[0];
  9165. switch (src0->type) {
  9166. case GGML_TYPE_F32:
  9167. {
  9168. ggml_compute_forward_step_f32(params, dst);
  9169. } break;
  9170. default:
  9171. {
  9172. GGML_ASSERT(false);
  9173. } break;
  9174. }
  9175. }
  9176. // ggml_compute_forward_tanh
  9177. static void ggml_compute_forward_tanh_f32(
  9178. const struct ggml_compute_params * params,
  9179. struct ggml_tensor * dst) {
  9180. const struct ggml_tensor * src0 = dst->src[0];
  9181. if (params->ith != 0) {
  9182. return;
  9183. }
  9184. assert(ggml_is_contiguous_1(src0));
  9185. assert(ggml_is_contiguous_1(dst));
  9186. assert(ggml_are_same_shape(src0, dst));
  9187. const int n = ggml_nrows(src0);
  9188. const int nc = src0->ne[0];
  9189. for (int i = 0; i < n; i++) {
  9190. ggml_vec_tanh_f32(nc,
  9191. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9192. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9193. }
  9194. }
  9195. static void ggml_compute_forward_tanh(
  9196. const struct ggml_compute_params * params,
  9197. struct ggml_tensor * dst) {
  9198. const struct ggml_tensor * src0 = dst->src[0];
  9199. switch (src0->type) {
  9200. case GGML_TYPE_F32:
  9201. {
  9202. ggml_compute_forward_tanh_f32(params, dst);
  9203. } break;
  9204. default:
  9205. {
  9206. GGML_ASSERT(false);
  9207. } break;
  9208. }
  9209. }
  9210. // ggml_compute_forward_elu
  9211. static void ggml_compute_forward_elu_f32(
  9212. const struct ggml_compute_params * params,
  9213. struct ggml_tensor * dst) {
  9214. const struct ggml_tensor * src0 = dst->src[0];
  9215. if (params->ith != 0) {
  9216. return;
  9217. }
  9218. assert(ggml_is_contiguous_1(src0));
  9219. assert(ggml_is_contiguous_1(dst));
  9220. assert(ggml_are_same_shape(src0, dst));
  9221. const int n = ggml_nrows(src0);
  9222. const int nc = src0->ne[0];
  9223. for (int i = 0; i < n; i++) {
  9224. ggml_vec_elu_f32(nc,
  9225. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9226. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9227. }
  9228. }
  9229. static void ggml_compute_forward_elu(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. switch (src0->type) {
  9234. case GGML_TYPE_F32:
  9235. {
  9236. ggml_compute_forward_elu_f32(params, dst);
  9237. } break;
  9238. default:
  9239. {
  9240. GGML_ASSERT(false);
  9241. } break;
  9242. }
  9243. }
  9244. // ggml_compute_forward_relu
  9245. static void ggml_compute_forward_relu_f32(
  9246. const struct ggml_compute_params * params,
  9247. struct ggml_tensor * dst) {
  9248. const struct ggml_tensor * src0 = dst->src[0];
  9249. if (params->ith != 0) {
  9250. return;
  9251. }
  9252. assert(ggml_is_contiguous_1(src0));
  9253. assert(ggml_is_contiguous_1(dst));
  9254. assert(ggml_are_same_shape(src0, dst));
  9255. const int n = ggml_nrows(src0);
  9256. const int nc = src0->ne[0];
  9257. for (int i = 0; i < n; i++) {
  9258. ggml_vec_relu_f32(nc,
  9259. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9260. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9261. }
  9262. }
  9263. static void ggml_compute_forward_relu(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. switch (src0->type) {
  9268. case GGML_TYPE_F32:
  9269. {
  9270. ggml_compute_forward_relu_f32(params, dst);
  9271. } break;
  9272. default:
  9273. {
  9274. GGML_ASSERT(false);
  9275. } break;
  9276. }
  9277. }
  9278. // ggml_compute_forward_sigmoid
  9279. static void ggml_compute_forward_sigmoid_f32(
  9280. const struct ggml_compute_params * params,
  9281. struct ggml_tensor * dst) {
  9282. const struct ggml_tensor * src0 = dst->src[0];
  9283. if (params->ith != 0) {
  9284. return;
  9285. }
  9286. assert(ggml_is_contiguous_1(src0));
  9287. assert(ggml_is_contiguous_1(dst));
  9288. assert(ggml_are_same_shape(src0, dst));
  9289. const int n = ggml_nrows(src0);
  9290. const int nc = src0->ne[0];
  9291. for (int i = 0; i < n; i++) {
  9292. ggml_vec_sigmoid_f32(nc,
  9293. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9294. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9295. }
  9296. }
  9297. static void ggml_compute_forward_sigmoid(
  9298. const struct ggml_compute_params * params,
  9299. struct ggml_tensor * dst) {
  9300. const struct ggml_tensor * src0 = dst->src[0];
  9301. switch (src0->type) {
  9302. case GGML_TYPE_F32:
  9303. {
  9304. ggml_compute_forward_sigmoid_f32(params, dst);
  9305. } break;
  9306. default:
  9307. {
  9308. GGML_ASSERT(false);
  9309. } break;
  9310. }
  9311. }
  9312. // ggml_compute_forward_gelu
  9313. static void ggml_compute_forward_gelu_f32(
  9314. const struct ggml_compute_params * params,
  9315. struct ggml_tensor * dst) {
  9316. const struct ggml_tensor * src0 = dst->src[0];
  9317. assert(ggml_is_contiguous_1(src0));
  9318. assert(ggml_is_contiguous_1(dst));
  9319. assert(ggml_are_same_shape(src0, dst));
  9320. const int ith = params->ith;
  9321. const int nth = params->nth;
  9322. const int nc = src0->ne[0];
  9323. const int nr = ggml_nrows(src0);
  9324. // rows per thread
  9325. const int dr = (nr + nth - 1)/nth;
  9326. // row range for this thread
  9327. const int ir0 = dr*ith;
  9328. const int ir1 = MIN(ir0 + dr, nr);
  9329. for (int i1 = ir0; i1 < ir1; i1++) {
  9330. ggml_vec_gelu_f32(nc,
  9331. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9332. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9333. #ifndef NDEBUG
  9334. for (int k = 0; k < nc; k++) {
  9335. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9336. UNUSED(x);
  9337. assert(!isnan(x));
  9338. assert(!isinf(x));
  9339. }
  9340. #endif
  9341. }
  9342. }
  9343. static void ggml_compute_forward_gelu(
  9344. const struct ggml_compute_params * params,
  9345. struct ggml_tensor * dst) {
  9346. const struct ggml_tensor * src0 = dst->src[0];
  9347. switch (src0->type) {
  9348. case GGML_TYPE_F32:
  9349. {
  9350. ggml_compute_forward_gelu_f32(params, dst);
  9351. } break;
  9352. default:
  9353. {
  9354. GGML_ASSERT(false);
  9355. } break;
  9356. }
  9357. }
  9358. // ggml_compute_forward_gelu_quick
  9359. static void ggml_compute_forward_gelu_quick_f32(
  9360. const struct ggml_compute_params * params,
  9361. struct ggml_tensor * dst) {
  9362. const struct ggml_tensor * src0 = dst->src[0];
  9363. assert(ggml_is_contiguous_1(src0));
  9364. assert(ggml_is_contiguous_1(dst));
  9365. assert(ggml_are_same_shape(src0, dst));
  9366. const int ith = params->ith;
  9367. const int nth = params->nth;
  9368. const int nc = src0->ne[0];
  9369. const int nr = ggml_nrows(src0);
  9370. // rows per thread
  9371. const int dr = (nr + nth - 1)/nth;
  9372. // row range for this thread
  9373. const int ir0 = dr*ith;
  9374. const int ir1 = MIN(ir0 + dr, nr);
  9375. for (int i1 = ir0; i1 < ir1; i1++) {
  9376. ggml_vec_gelu_quick_f32(nc,
  9377. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9378. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9379. #ifndef NDEBUG
  9380. for (int k = 0; k < nc; k++) {
  9381. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9382. UNUSED(x);
  9383. assert(!isnan(x));
  9384. assert(!isinf(x));
  9385. }
  9386. #endif
  9387. }
  9388. }
  9389. static void ggml_compute_forward_gelu_quick(
  9390. const struct ggml_compute_params * params,
  9391. struct ggml_tensor * dst) {
  9392. const struct ggml_tensor * src0 = dst->src[0];
  9393. switch (src0->type) {
  9394. case GGML_TYPE_F32:
  9395. {
  9396. ggml_compute_forward_gelu_quick_f32(params, dst);
  9397. } break;
  9398. default:
  9399. {
  9400. GGML_ASSERT(false);
  9401. } break;
  9402. }
  9403. }
  9404. // ggml_compute_forward_silu
  9405. static void ggml_compute_forward_silu_f32(
  9406. const struct ggml_compute_params * params,
  9407. struct ggml_tensor * dst) {
  9408. const struct ggml_tensor * src0 = dst->src[0];
  9409. assert(ggml_is_contiguous_1(src0));
  9410. assert(ggml_is_contiguous_1(dst));
  9411. assert(ggml_are_same_shape(src0, dst));
  9412. const int ith = params->ith;
  9413. const int nth = params->nth;
  9414. const int nc = src0->ne[0];
  9415. const int nr = ggml_nrows(src0);
  9416. // rows per thread
  9417. const int dr = (nr + nth - 1)/nth;
  9418. // row range for this thread
  9419. const int ir0 = dr*ith;
  9420. const int ir1 = MIN(ir0 + dr, nr);
  9421. for (int i1 = ir0; i1 < ir1; i1++) {
  9422. ggml_vec_silu_f32(nc,
  9423. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9424. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9425. #ifndef NDEBUG
  9426. for (int k = 0; k < nc; k++) {
  9427. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9428. UNUSED(x);
  9429. assert(!isnan(x));
  9430. assert(!isinf(x));
  9431. }
  9432. #endif
  9433. }
  9434. }
  9435. static void ggml_compute_forward_silu(
  9436. const struct ggml_compute_params * params,
  9437. struct ggml_tensor * dst) {
  9438. const struct ggml_tensor * src0 = dst->src[0];
  9439. switch (src0->type) {
  9440. case GGML_TYPE_F32:
  9441. {
  9442. ggml_compute_forward_silu_f32(params, dst);
  9443. } break;
  9444. default:
  9445. {
  9446. GGML_ASSERT(false);
  9447. } break;
  9448. }
  9449. }
  9450. // ggml_compute_forward_leaky_relu
  9451. static void ggml_compute_forward_leaky_relu_f32(
  9452. const struct ggml_compute_params * params,
  9453. struct ggml_tensor * dst) {
  9454. const struct ggml_tensor * src0 = dst->src[0];
  9455. if (params->ith != 0) {
  9456. return;
  9457. }
  9458. assert(ggml_is_contiguous_1(src0));
  9459. assert(ggml_is_contiguous_1(dst));
  9460. assert(ggml_are_same_shape(src0, dst));
  9461. const int n = ggml_nrows(src0);
  9462. const int nc = src0->ne[0];
  9463. float negative_slope;
  9464. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9465. assert(dst->nb[0] == sizeof(float));
  9466. assert(src0->nb[0] == sizeof(float));
  9467. for (int i = 0; i < n; i++) {
  9468. ggml_vec_leaky_relu_f32(nc,
  9469. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9470. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9471. }
  9472. }
  9473. static void ggml_compute_forward_leaky_relu(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_leaky_relu_f32(params, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. // ggml_compute_forward_silu_back
  9489. static void ggml_compute_forward_silu_back_f32(
  9490. const struct ggml_compute_params * params,
  9491. struct ggml_tensor * dst) {
  9492. const struct ggml_tensor * src0 = dst->src[0];
  9493. const struct ggml_tensor * grad = dst->src[1];
  9494. assert(ggml_is_contiguous_1(grad));
  9495. assert(ggml_is_contiguous_1(src0));
  9496. assert(ggml_is_contiguous_1(dst));
  9497. assert(ggml_are_same_shape(src0, dst));
  9498. assert(ggml_are_same_shape(src0, grad));
  9499. const int ith = params->ith;
  9500. const int nth = params->nth;
  9501. const int nc = src0->ne[0];
  9502. const int nr = ggml_nrows(src0);
  9503. // rows per thread
  9504. const int dr = (nr + nth - 1)/nth;
  9505. // row range for this thread
  9506. const int ir0 = dr*ith;
  9507. const int ir1 = MIN(ir0 + dr, nr);
  9508. for (int i1 = ir0; i1 < ir1; i1++) {
  9509. ggml_vec_silu_backward_f32(nc,
  9510. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9511. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9512. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9513. #ifndef NDEBUG
  9514. for (int k = 0; k < nc; k++) {
  9515. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9516. UNUSED(x);
  9517. assert(!isnan(x));
  9518. assert(!isinf(x));
  9519. }
  9520. #endif
  9521. }
  9522. }
  9523. static void ggml_compute_forward_silu_back(
  9524. const struct ggml_compute_params * params,
  9525. struct ggml_tensor * dst) {
  9526. const struct ggml_tensor * src0 = dst->src[0];
  9527. switch (src0->type) {
  9528. case GGML_TYPE_F32:
  9529. {
  9530. ggml_compute_forward_silu_back_f32(params, dst);
  9531. } break;
  9532. default:
  9533. {
  9534. GGML_ASSERT(false);
  9535. } break;
  9536. }
  9537. }
  9538. static void ggml_compute_forward_hardswish_f32(
  9539. const struct ggml_compute_params * params,
  9540. struct ggml_tensor * dst) {
  9541. const struct ggml_tensor * src0 = dst->src[0];
  9542. if (params->ith != 0) {
  9543. return;
  9544. }
  9545. assert(ggml_is_contiguous_1(src0));
  9546. assert(ggml_is_contiguous_1(dst));
  9547. assert(ggml_are_same_shape(src0, dst));
  9548. const int n = ggml_nrows(src0);
  9549. const int nc = src0->ne[0];
  9550. for (int i = 0; i < n; i++) {
  9551. ggml_vec_hardswish_f32(nc,
  9552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9553. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9554. }
  9555. }
  9556. static void ggml_compute_forward_hardswish(
  9557. const struct ggml_compute_params * params,
  9558. struct ggml_tensor * dst) {
  9559. const struct ggml_tensor * src0 = dst->src[0];
  9560. switch (src0->type) {
  9561. case GGML_TYPE_F32:
  9562. {
  9563. ggml_compute_forward_hardswish_f32(params, dst);
  9564. } break;
  9565. default:
  9566. {
  9567. GGML_ASSERT(false);
  9568. } break;
  9569. }
  9570. }
  9571. static void ggml_compute_forward_hardsigmoid_f32(
  9572. const struct ggml_compute_params * params,
  9573. struct ggml_tensor * dst) {
  9574. const struct ggml_tensor * src0 = dst->src[0];
  9575. if (params->ith != 0) {
  9576. return;
  9577. }
  9578. assert(ggml_is_contiguous_1(src0));
  9579. assert(ggml_is_contiguous_1(dst));
  9580. assert(ggml_are_same_shape(src0, dst));
  9581. const int n = ggml_nrows(src0);
  9582. const int nc = src0->ne[0];
  9583. for (int i = 0; i < n; i++) {
  9584. ggml_vec_hardsigmoid_f32(nc,
  9585. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9586. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9587. }
  9588. }
  9589. static void ggml_compute_forward_hardsigmoid(
  9590. const struct ggml_compute_params * params,
  9591. struct ggml_tensor * dst) {
  9592. const struct ggml_tensor * src0 = dst->src[0];
  9593. switch (src0->type) {
  9594. case GGML_TYPE_F32:
  9595. {
  9596. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9597. } break;
  9598. default:
  9599. {
  9600. GGML_ASSERT(false);
  9601. } break;
  9602. }
  9603. }
  9604. // ggml_compute_forward_norm
  9605. static void ggml_compute_forward_norm_f32(
  9606. const struct ggml_compute_params * params,
  9607. struct ggml_tensor * dst) {
  9608. const struct ggml_tensor * src0 = dst->src[0];
  9609. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9610. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9611. const int ith = params->ith;
  9612. const int nth = params->nth;
  9613. GGML_TENSOR_UNARY_OP_LOCALS
  9614. float eps;
  9615. memcpy(&eps, dst->op_params, sizeof(float));
  9616. GGML_ASSERT(eps > 0.0f);
  9617. // TODO: optimize
  9618. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9619. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9620. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9621. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9622. ggml_float sum = 0.0;
  9623. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9624. sum += (ggml_float)x[i00];
  9625. }
  9626. float mean = sum/ne00;
  9627. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9628. ggml_float sum2 = 0.0;
  9629. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9630. float v = x[i00] - mean;
  9631. y[i00] = v;
  9632. sum2 += (ggml_float)(v*v);
  9633. }
  9634. float variance = sum2/ne00;
  9635. const float scale = 1.0f/sqrtf(variance + eps);
  9636. ggml_vec_scale_f32(ne00, y, scale);
  9637. }
  9638. }
  9639. }
  9640. }
  9641. static void ggml_compute_forward_norm(
  9642. const struct ggml_compute_params * params,
  9643. struct ggml_tensor * dst) {
  9644. const struct ggml_tensor * src0 = dst->src[0];
  9645. switch (src0->type) {
  9646. case GGML_TYPE_F32:
  9647. {
  9648. ggml_compute_forward_norm_f32(params, dst);
  9649. } break;
  9650. default:
  9651. {
  9652. GGML_ASSERT(false);
  9653. } break;
  9654. }
  9655. }
  9656. // ggml_compute_forward_group_rms_norm
  9657. static void ggml_compute_forward_rms_norm_f32(
  9658. const struct ggml_compute_params * params,
  9659. struct ggml_tensor * dst) {
  9660. const struct ggml_tensor * src0 = dst->src[0];
  9661. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9662. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9663. const int ith = params->ith;
  9664. const int nth = params->nth;
  9665. GGML_TENSOR_UNARY_OP_LOCALS
  9666. float eps;
  9667. memcpy(&eps, dst->op_params, sizeof(float));
  9668. GGML_ASSERT(eps > 0.0f);
  9669. // TODO: optimize
  9670. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9672. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9673. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9674. ggml_float sum = 0.0;
  9675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9676. sum += (ggml_float)(x[i00] * x[i00]);
  9677. }
  9678. const float mean = sum/ne00;
  9679. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9680. memcpy(y, x, ne00 * sizeof(float));
  9681. // for (int i00 = 0; i00 < ne00; i00++) {
  9682. // y[i00] = x[i00];
  9683. // }
  9684. const float scale = 1.0f/sqrtf(mean + eps);
  9685. ggml_vec_scale_f32(ne00, y, scale);
  9686. }
  9687. }
  9688. }
  9689. }
  9690. static void ggml_compute_forward_rms_norm(
  9691. const struct ggml_compute_params * params,
  9692. struct ggml_tensor * dst) {
  9693. const struct ggml_tensor * src0 = dst->src[0];
  9694. switch (src0->type) {
  9695. case GGML_TYPE_F32:
  9696. {
  9697. ggml_compute_forward_rms_norm_f32(params, dst);
  9698. } break;
  9699. default:
  9700. {
  9701. GGML_ASSERT(false);
  9702. } break;
  9703. }
  9704. }
  9705. static void ggml_compute_forward_rms_norm_back_f32(
  9706. const struct ggml_compute_params * params,
  9707. struct ggml_tensor * dst) {
  9708. const struct ggml_tensor * src0 = dst->src[0];
  9709. const struct ggml_tensor * src1 = dst->src[1];
  9710. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9711. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9712. const int ith = params->ith;
  9713. const int nth = params->nth;
  9714. GGML_TENSOR_BINARY_OP_LOCALS
  9715. float eps;
  9716. memcpy(&eps, dst->op_params, sizeof(float));
  9717. // TODO: optimize
  9718. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9719. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9720. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9721. // src1 is same shape as src0 => same indices
  9722. const int64_t i11 = i01;
  9723. const int64_t i12 = i02;
  9724. const int64_t i13 = i03;
  9725. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9726. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9727. ggml_float sum_xx = 0.0;
  9728. ggml_float sum_xdz = 0.0;
  9729. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9730. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9731. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9732. }
  9733. //const float mean = (float)(sum_xx)/ne00;
  9734. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9735. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9736. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9737. // we could cache rms from forward pass to improve performance.
  9738. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9739. //const float rms = sqrtf(mean_eps);
  9740. const float rrms = 1.0f / sqrtf(mean_eps);
  9741. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9742. {
  9743. // z = rms_norm(x)
  9744. //
  9745. // rms_norm(src0) =
  9746. // scale(
  9747. // src0,
  9748. // div(
  9749. // 1,
  9750. // sqrt(
  9751. // add(
  9752. // scale(
  9753. // sum(
  9754. // sqr(
  9755. // src0)),
  9756. // (1.0/N)),
  9757. // eps))));
  9758. // postorder:
  9759. // ## op args grad
  9760. // 00 param src0 grad[#00]
  9761. // 01 const 1
  9762. // 02 sqr (#00) grad[#02]
  9763. // 03 sum (#02) grad[#03]
  9764. // 04 const 1/N
  9765. // 05 scale (#03, #04) grad[#05]
  9766. // 06 const eps
  9767. // 07 add (#05, #06) grad[#07]
  9768. // 08 sqrt (#07) grad[#08]
  9769. // 09 div (#01,#08) grad[#09]
  9770. // 10 scale (#00,#09) grad[#10]
  9771. //
  9772. // backward pass, given grad[#10]
  9773. // #10: scale
  9774. // grad[#00] += scale(grad[#10],#09)
  9775. // grad[#09] += sum(mul(grad[#10],#00))
  9776. // #09: div
  9777. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9778. // #08: sqrt
  9779. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9780. // #07: add
  9781. // grad[#05] += grad[#07]
  9782. // #05: scale
  9783. // grad[#03] += scale(grad[#05],#04)
  9784. // #03: sum
  9785. // grad[#02] += repeat(grad[#03], #02)
  9786. // #02:
  9787. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9788. //
  9789. // substitute and simplify:
  9790. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9791. // grad[#02] = repeat(grad[#03], #02)
  9792. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9793. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9794. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9795. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9796. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9797. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9798. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9799. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9800. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9801. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9802. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9803. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9804. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9805. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9806. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9807. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9808. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9809. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9810. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9811. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9812. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9813. // a = b*c + d*e
  9814. // a = b*c*f/f + d*e*f/f
  9815. // a = (b*c*f + d*e*f)*(1/f)
  9816. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9817. // a = (b + d*e/c)*c
  9818. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9819. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9820. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9821. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9822. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9823. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9824. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9825. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9826. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9827. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9828. }
  9829. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9830. // post-order:
  9831. // dx := x
  9832. // dx := scale(dx,-mean_xdz/mean_eps)
  9833. // dx := add(dx, dz)
  9834. // dx := scale(dx, rrms)
  9835. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9836. ggml_vec_cpy_f32 (ne00, dx, x);
  9837. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9838. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9839. ggml_vec_acc_f32 (ne00, dx, dz);
  9840. ggml_vec_scale_f32(ne00, dx, rrms);
  9841. }
  9842. }
  9843. }
  9844. }
  9845. static void ggml_compute_forward_rms_norm_back(
  9846. const struct ggml_compute_params * params,
  9847. struct ggml_tensor * dst) {
  9848. const struct ggml_tensor * src0 = dst->src[0];
  9849. switch (src0->type) {
  9850. case GGML_TYPE_F32:
  9851. {
  9852. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9853. } break;
  9854. default:
  9855. {
  9856. GGML_ASSERT(false);
  9857. } break;
  9858. }
  9859. }
  9860. // ggml_compute_forward_group_norm
  9861. static void ggml_compute_forward_group_norm_f32(
  9862. const struct ggml_compute_params * params,
  9863. struct ggml_tensor * dst) {
  9864. const struct ggml_tensor * src0 = dst->src[0];
  9865. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9866. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9867. const int ith = params->ith;
  9868. const int nth = params->nth;
  9869. GGML_TENSOR_UNARY_OP_LOCALS
  9870. const float eps = 1e-6f; // TODO: make this a parameter
  9871. // TODO: optimize
  9872. int n_channels = src0->ne[2];
  9873. int n_groups = dst->op_params[0];
  9874. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9875. for (int i = ith; i < n_groups; i += nth) {
  9876. int start = i * n_channels_per_group;
  9877. int end = start + n_channels_per_group;
  9878. if (end > n_channels) {
  9879. end = n_channels;
  9880. }
  9881. int step = end - start;
  9882. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9883. ggml_float sum = 0.0;
  9884. for (int64_t i02 = start; i02 < end; i02++) {
  9885. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9886. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9887. ggml_float sumr = 0.0;
  9888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9889. sumr += (ggml_float)x[i00];
  9890. }
  9891. sum += sumr;
  9892. }
  9893. }
  9894. const float mean = sum / (ne00 * ne01 * step);
  9895. ggml_float sum2 = 0.0;
  9896. for (int64_t i02 = start; i02 < end; i02++) {
  9897. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9898. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9899. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9900. ggml_float sumr = 0.0;
  9901. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9902. float v = x[i00] - mean;
  9903. y[i00] = v;
  9904. sumr += (ggml_float)(v * v);
  9905. }
  9906. sum2 += sumr;
  9907. }
  9908. }
  9909. const float variance = sum2 / (ne00 * ne01 * step);
  9910. const float scale = 1.0f / sqrtf(variance + eps);
  9911. for (int64_t i02 = start; i02 < end; i02++) {
  9912. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9913. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9914. ggml_vec_scale_f32(ne00, y, scale);
  9915. }
  9916. }
  9917. }
  9918. }
  9919. }
  9920. static void ggml_compute_forward_group_norm(
  9921. const struct ggml_compute_params * params,
  9922. struct ggml_tensor * dst) {
  9923. const struct ggml_tensor * src0 = dst->src[0];
  9924. switch (src0->type) {
  9925. case GGML_TYPE_F32:
  9926. {
  9927. ggml_compute_forward_group_norm_f32(params, dst);
  9928. } break;
  9929. default:
  9930. {
  9931. GGML_ASSERT(false);
  9932. } break;
  9933. }
  9934. }
  9935. // ggml_compute_forward_mul_mat
  9936. static void ggml_compute_forward_mul_mat_one_chunk(
  9937. const struct ggml_compute_params * params,
  9938. struct ggml_tensor * dst,
  9939. const int64_t num_rows_per_vec_dot,
  9940. const int64_t ir0_start,
  9941. const int64_t ir0_end,
  9942. const int64_t ir1_start,
  9943. const int64_t ir1_end) {
  9944. const struct ggml_tensor * src0 = dst->src[0];
  9945. const struct ggml_tensor * src1 = dst->src[1];
  9946. GGML_TENSOR_BINARY_OP_LOCALS
  9947. const enum ggml_type type = src0->type;
  9948. const bool src1_cont = ggml_is_contiguous(src1);
  9949. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9950. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9951. // broadcast factors
  9952. const int64_t r2 = ne12 / ne02;
  9953. const int64_t r3 = ne13 / ne03;
  9954. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  9955. // threads with no work simply yield (not sure if it helps)
  9956. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  9957. return;
  9958. }
  9959. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9960. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9961. assert(ne12 % ne02 == 0);
  9962. assert(ne13 % ne03 == 0);
  9963. // block-tiling attempt
  9964. const int64_t blck_0 = 16;
  9965. const int64_t blck_1 = 16;
  9966. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9967. // attempt to reduce false-sharing (does not seem to make a difference)
  9968. // 16 * 2, accounting for mmla kernels
  9969. float tmp[32];
  9970. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  9971. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  9972. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  9973. const int64_t i13 = (ir1 / (ne12 * ne1));
  9974. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  9975. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  9976. // broadcast src0 into src1
  9977. const int64_t i03 = i13 / r3;
  9978. const int64_t i02 = i12 / r2;
  9979. const int64_t i1 = i11;
  9980. const int64_t i2 = i12;
  9981. const int64_t i3 = i13;
  9982. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  9983. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9984. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9985. // the original src1 data pointer, so we should index using the indices directly
  9986. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9987. const char * src1_col = (const char*)wdata +
  9988. (src1_cont || src1->type != vec_dot_type
  9989. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  9990. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  9991. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  9992. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  9993. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9994. //}
  9995. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  9996. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  9997. }
  9998. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  9999. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10000. }
  10001. }
  10002. }
  10003. }
  10004. }
  10005. static void ggml_compute_forward_mul_mat(
  10006. const struct ggml_compute_params * params,
  10007. struct ggml_tensor * dst) {
  10008. const struct ggml_tensor * src0 = dst->src[0];
  10009. const struct ggml_tensor * src1 = dst->src[1];
  10010. GGML_TENSOR_BINARY_OP_LOCALS
  10011. const int ith = params->ith;
  10012. const int nth = params->nth;
  10013. const enum ggml_type type = src0->type;
  10014. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10015. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10016. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10017. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10018. int64_t const matmul_num_cols = type_traits[type].ncols;
  10019. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10020. ggml_gemv_t const gemv = type_traits[type].gemv;
  10021. ggml_gemm_t const gemm = type_traits[type].gemm;
  10022. GGML_ASSERT(ne0 == ne01);
  10023. GGML_ASSERT(ne1 == ne11);
  10024. GGML_ASSERT(ne2 == ne12);
  10025. GGML_ASSERT(ne3 == ne13);
  10026. // we don't support permuted src0 or src1
  10027. GGML_ASSERT(nb00 == ggml_type_size(type));
  10028. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10029. // dst cannot be transposed or permuted
  10030. GGML_ASSERT(nb0 == sizeof(float));
  10031. GGML_ASSERT(nb0 <= nb1);
  10032. GGML_ASSERT(nb1 <= nb2);
  10033. GGML_ASSERT(nb2 <= nb3);
  10034. // nb01 >= nb00 - src0 is not transposed
  10035. // compute by src0 rows
  10036. #if GGML_USE_LLAMAFILE
  10037. // broadcast factors
  10038. const int64_t r2 = ne12 / ne02;
  10039. const int64_t r3 = ne13 / ne03;
  10040. const bool src1_cont = ggml_is_contiguous(src1);
  10041. if (src1_cont) {
  10042. for (int64_t i13 = 0; i13 < ne13; i13++)
  10043. for (int64_t i12 = 0; i12 < ne12; i12++)
  10044. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10045. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10046. nb01/ggml_type_size(src0->type),
  10047. (const char *)src1->data + i12*nb12 + i13*nb13,
  10048. nb11/ggml_type_size(src1->type),
  10049. (char *)dst->data + i12*nb2 + i13*nb3,
  10050. nb1/ggml_type_size(dst->type),
  10051. ith, nth,
  10052. src0->type,
  10053. src1->type,
  10054. dst->type))
  10055. goto UseGgmlGemm1;
  10056. return;
  10057. }
  10058. UseGgmlGemm1:;
  10059. #endif
  10060. if (src1->type != vec_dot_type) {
  10061. char * wdata = params->wdata;
  10062. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10063. const size_t nbw2 = nbw1*ne11;
  10064. const size_t nbw3 = nbw2*ne12;
  10065. assert(params->wsize >= ne13*nbw3);
  10066. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10067. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10068. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10069. int64_t i11_processed = 0;
  10070. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10071. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10072. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10073. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10074. 4, ne10, blck_size_interleave);
  10075. }
  10076. i11_processed = ne11 - ne11 % 4;
  10077. }
  10078. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10079. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10080. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10081. ne10);
  10082. }
  10083. }
  10084. }
  10085. }
  10086. if (ith == 0) {
  10087. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10088. atomic_store(&params->shared->current_chunk, nth);
  10089. }
  10090. ggml_barrier(params->shared);
  10091. #if GGML_USE_LLAMAFILE
  10092. if (src1->type != vec_dot_type) {
  10093. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10094. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10095. for (int64_t i13 = 0; i13 < ne13; i13++)
  10096. for (int64_t i12 = 0; i12 < ne12; i12++)
  10097. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10098. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10099. nb01/ggml_type_size(src0->type),
  10100. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10101. row_size/ggml_type_size(vec_dot_type),
  10102. (char *)dst->data + i12*nb2 + i13*nb3,
  10103. nb1/ggml_type_size(dst->type),
  10104. ith, nth,
  10105. src0->type,
  10106. vec_dot_type,
  10107. dst->type))
  10108. goto UseGgmlGemm2;
  10109. return;
  10110. }
  10111. UseGgmlGemm2:;
  10112. #endif
  10113. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10114. const int64_t nr0 = ne0;
  10115. // This is the size of the rest of the dimensions of the result
  10116. const int64_t nr1 = ne1 * ne2 * ne3;
  10117. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10118. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10119. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10120. // this check can be removed once they are extended to support odd numbered rows/cols too
  10121. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10122. num_rows_per_vec_dot = 1;
  10123. }
  10124. // Now select a reasonable chunk size.
  10125. int chunk_size = 16;
  10126. // We need to step up the size if it's small
  10127. if (nr0 == 1 || nr1 == 1) {
  10128. chunk_size = 64;
  10129. }
  10130. // distribute the work across the inner or outer loop based on which one is larger
  10131. // The number of chunks in the 0/1 dim.
  10132. // CEIL(nr0/chunk_size)
  10133. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10134. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10135. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10136. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10137. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10138. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10139. // distribute the thread work across the inner or outer loop based on which one is larger
  10140. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10141. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10142. }
  10143. // The number of elements in each chunk
  10144. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10145. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10146. if ((ggml_n_dims(src0) == 2) && gemv) {
  10147. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10148. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10149. int64_t src0_start = (ith * ne01) / nth;
  10150. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10151. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10152. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10153. if (src0_start >= src0_end) return;
  10154. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10155. if (gemm && (ne11 > 3)) {
  10156. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10157. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10158. }
  10159. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10160. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10161. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10162. src0_end - src0_start);
  10163. }
  10164. return;
  10165. }
  10166. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10167. int current_chunk = ith;
  10168. while (current_chunk < nchunk0 * nchunk1) {
  10169. const int64_t ith0 = current_chunk % nchunk0;
  10170. const int64_t ith1 = current_chunk / nchunk0;
  10171. const int64_t ir0_start = dr0 * ith0;
  10172. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10173. const int64_t ir1_start = dr1 * ith1;
  10174. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10175. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10176. if (nth >= nchunk0 * nchunk1) {
  10177. break;
  10178. }
  10179. current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
  10180. }
  10181. }
  10182. // ggml_compute_forward_mul_mat_id
  10183. static void ggml_compute_forward_mul_mat_id(
  10184. const struct ggml_compute_params * params,
  10185. struct ggml_tensor * dst) {
  10186. const struct ggml_tensor * src0 = dst->src[0];
  10187. const struct ggml_tensor * src1 = dst->src[1];
  10188. const struct ggml_tensor * ids = dst->src[2];
  10189. GGML_TENSOR_BINARY_OP_LOCALS
  10190. const int ith = params->ith;
  10191. const int nth = params->nth;
  10192. const enum ggml_type type = src0->type;
  10193. const bool src1_cont = ggml_is_contiguous(src1);
  10194. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10195. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10196. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10197. int64_t const matmul_num_cols = type_traits[type].ncols;
  10198. ggml_gemv_t const gemv = type_traits[type].gemv;
  10199. // we don't support permuted src0 or src1
  10200. GGML_ASSERT(nb00 == ggml_type_size(type));
  10201. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10202. // dst cannot be transposed or permuted
  10203. GGML_ASSERT(nb0 == sizeof(float));
  10204. GGML_ASSERT(nb0 <= nb1);
  10205. GGML_ASSERT(nb1 <= nb2);
  10206. GGML_ASSERT(nb2 <= nb3);
  10207. // row groups
  10208. const int n_ids = ids->ne[0]; // n_expert_used
  10209. const int n_as = ne02; // n_expert
  10210. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10211. (char *) params->wdata :
  10212. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10213. struct mmid_row_mapping {
  10214. int32_t i1;
  10215. int32_t i2;
  10216. };
  10217. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10218. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10219. if (src1->type != vec_dot_type) {
  10220. char * wdata = params->wdata;
  10221. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10222. const size_t nbw2 = nbw1*ne11;
  10223. const size_t nbw3 = nbw2*ne12;
  10224. assert(params->wsize >= ne13*nbw3);
  10225. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10226. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10227. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10228. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10229. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10230. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10231. ne10);
  10232. }
  10233. }
  10234. }
  10235. }
  10236. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10237. if (ith == 0) {
  10238. // initialize matrix_row_counts
  10239. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10240. // group rows by src0 matrix
  10241. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10242. for (int id = 0; id < n_ids; ++id) {
  10243. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10244. assert(i02 >= 0 && i02 < n_as);
  10245. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10246. matrix_row_counts[i02] += 1;
  10247. }
  10248. }
  10249. }
  10250. ggml_barrier(params->shared);
  10251. // compute each matrix multiplication in sequence
  10252. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10253. const int64_t cne1 = matrix_row_counts[cur_a];
  10254. if (cne1 == 0) {
  10255. continue;
  10256. }
  10257. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10258. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10259. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10260. const int64_t nr0 = ne01; // src0 rows
  10261. const int64_t nr1 = cne1; // src1 rows
  10262. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10263. int64_t src0_cur_start = (ith * ne01) / nth;
  10264. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10265. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10266. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10267. if (src0_cur_start >= src0_cur_end) return;
  10268. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10269. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10270. const int id = row_mapping.i1; // selected expert index
  10271. const int64_t i11 = id % ne11;
  10272. const int64_t i12 = row_mapping.i2; // row index in src1
  10273. const int64_t i1 = id; // selected expert index
  10274. const int64_t i2 = i12; // row
  10275. const char * src1_col = (const char *) wdata +
  10276. (src1_cont || src1->type != vec_dot_type
  10277. ? (i11 + i12 * ne11) * row_size
  10278. : (i11 * nb11 + i12 * nb12));
  10279. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10280. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10281. }
  10282. continue;
  10283. }
  10284. // distribute the thread work across the inner or outer loop based on which one is larger
  10285. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10286. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10287. const int64_t ith0 = ith % nth0;
  10288. const int64_t ith1 = ith / nth0;
  10289. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10290. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10291. const int64_t ir010 = dr0*ith0;
  10292. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10293. const int64_t ir110 = dr1*ith1;
  10294. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10295. // threads with no work simply yield (not sure if it helps)
  10296. //if (ir010 >= ir011 || ir110 >= ir111) {
  10297. // sched_yield();
  10298. // continue;
  10299. //}
  10300. // block-tiling attempt
  10301. const int64_t blck_0 = 16;
  10302. const int64_t blck_1 = 16;
  10303. // attempt to reduce false-sharing (does not seem to make a difference)
  10304. float tmp[16];
  10305. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10306. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10307. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10308. const int64_t _i12 = ir1; // logical row index for this expert
  10309. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10310. const int id = row_mapping.i1; // selected expert index
  10311. const int64_t i11 = id % ne11;
  10312. const int64_t i12 = row_mapping.i2; // row index in src1
  10313. const int64_t i1 = id; // selected expert index
  10314. const int64_t i2 = i12; // row
  10315. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10316. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10317. // the original src1 data pointer, so we should index using the indices directly
  10318. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10319. const char * src1_col = (const char *) wdata +
  10320. (src1_cont || src1->type != vec_dot_type
  10321. ? (i11 + i12*ne11)*row_size
  10322. : (i11*nb11 + i12*nb12));
  10323. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10324. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10325. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10326. //}
  10327. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10328. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10329. }
  10330. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10331. }
  10332. }
  10333. }
  10334. }
  10335. #undef MMID_MATRIX_ROW
  10336. }
  10337. // ggml_compute_forward_out_prod
  10338. static void ggml_compute_forward_out_prod_f32(
  10339. const struct ggml_compute_params * params,
  10340. struct ggml_tensor * dst) {
  10341. const struct ggml_tensor * src0 = dst->src[0];
  10342. const struct ggml_tensor * src1 = dst->src[1];
  10343. GGML_TENSOR_BINARY_OP_LOCALS
  10344. const int ith = params->ith;
  10345. const int nth = params->nth;
  10346. GGML_ASSERT(ne0 == ne00);
  10347. GGML_ASSERT(ne1 == ne10);
  10348. GGML_ASSERT(ne2 == ne02);
  10349. GGML_ASSERT(ne02 == ne12);
  10350. GGML_ASSERT(ne3 == ne13);
  10351. GGML_ASSERT(ne03 == ne13);
  10352. // we don't support permuted src0 or src1
  10353. GGML_ASSERT(nb00 == sizeof(float));
  10354. // dst cannot be transposed or permuted
  10355. GGML_ASSERT(nb0 == sizeof(float));
  10356. // GGML_ASSERT(nb0 <= nb1);
  10357. // GGML_ASSERT(nb1 <= nb2);
  10358. // GGML_ASSERT(nb2 <= nb3);
  10359. // nb01 >= nb00 - src0 is not transposed
  10360. // compute by src0 rows
  10361. if (ith == 0) {
  10362. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10363. }
  10364. ggml_barrier(params->shared);
  10365. // dst[:,:,:,:] = 0
  10366. // for i2,i3:
  10367. // for i1:
  10368. // for i01:
  10369. // for i0:
  10370. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10371. // parallelize by last three dimensions
  10372. // total rows in dst
  10373. const int64_t nr = ne1*ne2*ne3;
  10374. // rows per thread
  10375. const int64_t dr = (nr + nth - 1)/nth;
  10376. // row range for this thread
  10377. const int64_t ir0 = dr*ith;
  10378. const int64_t ir1 = MIN(ir0 + dr, nr);
  10379. // block-tiling attempt
  10380. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10381. const int64_t blck_1 = 16;
  10382. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10383. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10384. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10385. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10386. for (int64_t ir = bir; ir < bir1; ++ir) {
  10387. // dst indices
  10388. const int64_t i3 = ir/(ne2*ne1);
  10389. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10390. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10391. const int64_t i02 = i2;
  10392. const int64_t i03 = i3;
  10393. //const int64_t i10 = i1;
  10394. const int64_t i12 = i2;
  10395. const int64_t i13 = i3;
  10396. #if GGML_VEC_MAD_UNROLL > 2
  10397. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10398. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10399. const int64_t i11 = i01;
  10400. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10401. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10402. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10403. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10404. }
  10405. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10406. const int64_t i11 = i01;
  10407. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10408. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10409. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10410. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10411. }
  10412. #else
  10413. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10414. const int64_t i11 = i01;
  10415. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10416. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10417. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10418. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10419. }
  10420. #endif
  10421. }
  10422. }
  10423. }
  10424. }
  10425. static void ggml_compute_forward_out_prod_q_f32(
  10426. const struct ggml_compute_params * params,
  10427. struct ggml_tensor * dst) {
  10428. const struct ggml_tensor * src0 = dst->src[0];
  10429. const struct ggml_tensor * src1 = dst->src[1];
  10430. GGML_TENSOR_BINARY_OP_LOCALS;
  10431. const int ith = params->ith;
  10432. const int nth = params->nth;
  10433. const enum ggml_type type = src0->type;
  10434. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10435. GGML_ASSERT(ne02 == ne12);
  10436. GGML_ASSERT(ne03 == ne13);
  10437. GGML_ASSERT(ne2 == ne12);
  10438. GGML_ASSERT(ne3 == ne13);
  10439. // we don't support permuted src0 dim0
  10440. GGML_ASSERT(nb00 == ggml_type_size(type));
  10441. // dst dim0 cannot be transposed or permuted
  10442. GGML_ASSERT(nb0 == sizeof(float));
  10443. // GGML_ASSERT(nb0 <= nb1);
  10444. // GGML_ASSERT(nb1 <= nb2);
  10445. // GGML_ASSERT(nb2 <= nb3);
  10446. GGML_ASSERT(ne0 == ne00);
  10447. GGML_ASSERT(ne1 == ne10);
  10448. GGML_ASSERT(ne2 == ne02);
  10449. GGML_ASSERT(ne3 == ne03);
  10450. // nb01 >= nb00 - src0 is not transposed
  10451. // compute by src0 rows
  10452. if (ith == 0) {
  10453. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10454. }
  10455. ggml_barrier(params->shared);
  10456. // parallelize by last three dimensions
  10457. // total rows in dst
  10458. const int64_t nr = ne1*ne2*ne3;
  10459. // rows per thread
  10460. const int64_t dr = (nr + nth - 1)/nth;
  10461. // row range for this thread
  10462. const int64_t ir0 = dr*ith;
  10463. const int64_t ir1 = MIN(ir0 + dr, nr);
  10464. // dst[:,:,:,:] = 0
  10465. // for i2,i3:
  10466. // for i1:
  10467. // for i01:
  10468. // for i0:
  10469. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10470. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10471. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10472. // dst indices
  10473. const int64_t i3 = ir/(ne2*ne1);
  10474. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10475. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10476. const int64_t i02 = i2;
  10477. const int64_t i03 = i3;
  10478. //const int64_t i10 = i1;
  10479. const int64_t i12 = i2;
  10480. const int64_t i13 = i3;
  10481. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10482. const int64_t i11 = i01;
  10483. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10484. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10485. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10486. dequantize_row_q(s0, wdata, ne0);
  10487. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10488. }
  10489. }
  10490. }
  10491. static void ggml_compute_forward_out_prod(
  10492. const struct ggml_compute_params * params,
  10493. struct ggml_tensor * dst) {
  10494. const struct ggml_tensor * src0 = dst->src[0];
  10495. switch (src0->type) {
  10496. case GGML_TYPE_Q4_0:
  10497. case GGML_TYPE_Q4_1:
  10498. case GGML_TYPE_Q5_0:
  10499. case GGML_TYPE_Q5_1:
  10500. case GGML_TYPE_Q8_0:
  10501. case GGML_TYPE_Q2_K:
  10502. case GGML_TYPE_Q3_K:
  10503. case GGML_TYPE_Q4_K:
  10504. case GGML_TYPE_Q5_K:
  10505. case GGML_TYPE_Q6_K:
  10506. case GGML_TYPE_IQ2_XXS:
  10507. case GGML_TYPE_IQ2_XS:
  10508. case GGML_TYPE_IQ3_XXS:
  10509. case GGML_TYPE_IQ1_S:
  10510. case GGML_TYPE_IQ1_M:
  10511. case GGML_TYPE_IQ4_NL:
  10512. case GGML_TYPE_IQ4_XS:
  10513. case GGML_TYPE_IQ3_S:
  10514. case GGML_TYPE_IQ2_S:
  10515. case GGML_TYPE_Q4_0_4_4:
  10516. case GGML_TYPE_Q4_0_4_8:
  10517. case GGML_TYPE_Q4_0_8_8:
  10518. {
  10519. ggml_compute_forward_out_prod_q_f32(params, dst);
  10520. } break;
  10521. case GGML_TYPE_F16:
  10522. {
  10523. GGML_ASSERT(false); // todo
  10524. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10525. } break;
  10526. case GGML_TYPE_F32:
  10527. {
  10528. ggml_compute_forward_out_prod_f32(params, dst);
  10529. } break;
  10530. default:
  10531. {
  10532. GGML_ASSERT(false);
  10533. } break;
  10534. }
  10535. }
  10536. // ggml_compute_forward_scale
  10537. static void ggml_compute_forward_scale_f32(
  10538. const struct ggml_compute_params * params,
  10539. struct ggml_tensor * dst) {
  10540. const struct ggml_tensor * src0 = dst->src[0];
  10541. GGML_ASSERT(ggml_is_contiguous(src0));
  10542. GGML_ASSERT(ggml_is_contiguous(dst));
  10543. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10544. // scale factor
  10545. float v;
  10546. memcpy(&v, dst->op_params, sizeof(float));
  10547. const int ith = params->ith;
  10548. const int nth = params->nth;
  10549. const int nc = src0->ne[0];
  10550. const int nr = ggml_nrows(src0);
  10551. // rows per thread
  10552. const int dr = (nr + nth - 1)/nth;
  10553. // row range for this thread
  10554. const int ir0 = dr*ith;
  10555. const int ir1 = MIN(ir0 + dr, nr);
  10556. const size_t nb01 = src0->nb[1];
  10557. const size_t nb1 = dst->nb[1];
  10558. for (int i1 = ir0; i1 < ir1; i1++) {
  10559. if (dst->data != src0->data) {
  10560. // src0 is same shape as dst => same indices
  10561. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10562. }
  10563. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10564. }
  10565. }
  10566. static void ggml_compute_forward_scale(
  10567. const struct ggml_compute_params * params,
  10568. struct ggml_tensor * dst) {
  10569. const struct ggml_tensor * src0 = dst->src[0];
  10570. switch (src0->type) {
  10571. case GGML_TYPE_F32:
  10572. {
  10573. ggml_compute_forward_scale_f32(params, dst);
  10574. } break;
  10575. default:
  10576. {
  10577. GGML_ASSERT(false);
  10578. } break;
  10579. }
  10580. }
  10581. // ggml_compute_forward_set
  10582. static void ggml_compute_forward_set_f32(
  10583. const struct ggml_compute_params * params,
  10584. struct ggml_tensor * dst) {
  10585. const struct ggml_tensor * src0 = dst->src[0];
  10586. const struct ggml_tensor * src1 = dst->src[1];
  10587. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10588. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10589. // view src0 and dst with these strides and data offset inbytes during set
  10590. // nb0 is implicitly element_size because src0 and dst are contiguous
  10591. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10592. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10593. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10594. size_t offset = ((int32_t *) dst->op_params)[3];
  10595. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10596. if (!inplace) {
  10597. if (params->ith == 0) {
  10598. // memcpy needs to be synchronized across threads to avoid race conditions.
  10599. // => do it in INIT phase
  10600. memcpy(
  10601. ((char *) dst->data),
  10602. ((char *) src0->data),
  10603. ggml_nbytes(dst));
  10604. }
  10605. ggml_barrier(params->shared);
  10606. }
  10607. const int ith = params->ith;
  10608. const int nth = params->nth;
  10609. const int nr = ggml_nrows(src1);
  10610. const int nc = src1->ne[0];
  10611. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10612. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10613. // src0 and dst as viewed during set
  10614. const size_t nb0 = ggml_element_size(src0);
  10615. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10616. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10617. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10618. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10619. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10620. GGML_ASSERT(nb10 == sizeof(float));
  10621. // rows per thread
  10622. const int dr = (nr + nth - 1)/nth;
  10623. // row range for this thread
  10624. const int ir0 = dr*ith;
  10625. const int ir1 = MIN(ir0 + dr, nr);
  10626. for (int ir = ir0; ir < ir1; ++ir) {
  10627. // src0 and dst are viewed with shape of src1 and offset
  10628. // => same indices
  10629. const int i3 = ir/(ne12*ne11);
  10630. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10631. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10632. ggml_vec_cpy_f32(nc,
  10633. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10634. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10635. }
  10636. }
  10637. static void ggml_compute_forward_set(
  10638. const struct ggml_compute_params * params,
  10639. struct ggml_tensor * dst) {
  10640. const struct ggml_tensor * src0 = dst->src[0];
  10641. switch (src0->type) {
  10642. case GGML_TYPE_F32:
  10643. {
  10644. ggml_compute_forward_set_f32(params, dst);
  10645. } break;
  10646. case GGML_TYPE_F16:
  10647. case GGML_TYPE_BF16:
  10648. case GGML_TYPE_Q4_0:
  10649. case GGML_TYPE_Q4_1:
  10650. case GGML_TYPE_Q5_0:
  10651. case GGML_TYPE_Q5_1:
  10652. case GGML_TYPE_Q8_0:
  10653. case GGML_TYPE_Q8_1:
  10654. case GGML_TYPE_Q2_K:
  10655. case GGML_TYPE_Q3_K:
  10656. case GGML_TYPE_Q4_K:
  10657. case GGML_TYPE_Q5_K:
  10658. case GGML_TYPE_Q6_K:
  10659. case GGML_TYPE_IQ2_XXS:
  10660. case GGML_TYPE_IQ2_XS:
  10661. case GGML_TYPE_IQ3_XXS:
  10662. case GGML_TYPE_IQ1_S:
  10663. case GGML_TYPE_IQ1_M:
  10664. case GGML_TYPE_IQ4_NL:
  10665. case GGML_TYPE_IQ4_XS:
  10666. case GGML_TYPE_IQ3_S:
  10667. case GGML_TYPE_IQ2_S:
  10668. case GGML_TYPE_Q4_0_4_4:
  10669. case GGML_TYPE_Q4_0_4_8:
  10670. case GGML_TYPE_Q4_0_8_8:
  10671. default:
  10672. {
  10673. GGML_ASSERT(false);
  10674. } break;
  10675. }
  10676. }
  10677. // ggml_compute_forward_cpy
  10678. static void ggml_compute_forward_cpy(
  10679. const struct ggml_compute_params * params,
  10680. struct ggml_tensor * dst) {
  10681. ggml_compute_forward_dup(params, dst);
  10682. }
  10683. // ggml_compute_forward_cont
  10684. static void ggml_compute_forward_cont(
  10685. const struct ggml_compute_params * params,
  10686. struct ggml_tensor * dst) {
  10687. ggml_compute_forward_dup(params, dst);
  10688. }
  10689. // ggml_compute_forward_reshape
  10690. static void ggml_compute_forward_reshape(
  10691. const struct ggml_compute_params * params,
  10692. struct ggml_tensor * dst) {
  10693. // NOP
  10694. UNUSED(params);
  10695. UNUSED(dst);
  10696. }
  10697. // ggml_compute_forward_view
  10698. static void ggml_compute_forward_view(
  10699. const struct ggml_compute_params * params,
  10700. const struct ggml_tensor * dst) {
  10701. // NOP
  10702. UNUSED(params);
  10703. UNUSED(dst);
  10704. }
  10705. // ggml_compute_forward_permute
  10706. static void ggml_compute_forward_permute(
  10707. const struct ggml_compute_params * params,
  10708. const struct ggml_tensor * dst) {
  10709. // NOP
  10710. UNUSED(params);
  10711. UNUSED(dst);
  10712. }
  10713. // ggml_compute_forward_transpose
  10714. static void ggml_compute_forward_transpose(
  10715. const struct ggml_compute_params * params,
  10716. const struct ggml_tensor * dst) {
  10717. // NOP
  10718. UNUSED(params);
  10719. UNUSED(dst);
  10720. }
  10721. // ggml_compute_forward_get_rows
  10722. static void ggml_compute_forward_get_rows_q(
  10723. const struct ggml_compute_params * params,
  10724. struct ggml_tensor * dst) {
  10725. const struct ggml_tensor * src0 = dst->src[0];
  10726. const struct ggml_tensor * src1 = dst->src[1];
  10727. GGML_TENSOR_BINARY_OP_LOCALS
  10728. const int64_t nc = ne00;
  10729. const int64_t nr = ggml_nelements(src1);
  10730. const enum ggml_type type = src0->type;
  10731. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10732. assert(ne0 == nc);
  10733. assert(ne02 == ne11);
  10734. assert(nb00 == ggml_type_size(type));
  10735. assert(ggml_nrows(dst) == nr);
  10736. const int ith = params->ith;
  10737. const int nth = params->nth;
  10738. // rows per thread
  10739. const int dr = (nr + nth - 1)/nth;
  10740. // row range for this thread
  10741. const int ir0 = dr*ith;
  10742. const int ir1 = MIN(ir0 + dr, nr);
  10743. for (int64_t i = ir0; i < ir1; ++i) {
  10744. const int64_t i12 = i/(ne11*ne10);
  10745. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10746. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10747. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10748. assert(i01 >= 0 && i01 < ne01);
  10749. dequantize_row_q(
  10750. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10751. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10752. }
  10753. }
  10754. static void ggml_compute_forward_get_rows_f16(
  10755. const struct ggml_compute_params * params,
  10756. struct ggml_tensor * dst) {
  10757. const struct ggml_tensor * src0 = dst->src[0];
  10758. const struct ggml_tensor * src1 = dst->src[1];
  10759. GGML_TENSOR_BINARY_OP_LOCALS
  10760. const int64_t nc = ne00;
  10761. const int64_t nr = ggml_nelements(src1);
  10762. assert(ne0 == nc);
  10763. assert(ne02 == ne11);
  10764. assert(nb00 == sizeof(ggml_fp16_t));
  10765. assert(ggml_nrows(dst) == nr);
  10766. const int ith = params->ith;
  10767. const int nth = params->nth;
  10768. // rows per thread
  10769. const int dr = (nr + nth - 1)/nth;
  10770. // row range for this thread
  10771. const int ir0 = dr*ith;
  10772. const int ir1 = MIN(ir0 + dr, nr);
  10773. for (int64_t i = ir0; i < ir1; ++i) {
  10774. const int64_t i12 = i/(ne11*ne10);
  10775. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10776. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10777. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10778. assert(i01 >= 0 && i01 < ne01);
  10779. ggml_fp16_to_fp32_row(
  10780. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10781. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10782. }
  10783. }
  10784. static void ggml_compute_forward_get_rows_bf16(
  10785. const struct ggml_compute_params * params,
  10786. struct ggml_tensor * dst) {
  10787. const struct ggml_tensor * src0 = dst->src[0];
  10788. const struct ggml_tensor * src1 = dst->src[1];
  10789. GGML_TENSOR_BINARY_OP_LOCALS
  10790. const int64_t nc = ne00;
  10791. const int64_t nr = ggml_nelements(src1);
  10792. assert(ne0 == nc);
  10793. assert(ne02 == ne11);
  10794. assert(nb00 == sizeof(ggml_bf16_t));
  10795. assert(ggml_nrows(dst) == nr);
  10796. const int ith = params->ith;
  10797. const int nth = params->nth;
  10798. // rows per thread
  10799. const int dr = (nr + nth - 1)/nth;
  10800. // row range for this thread
  10801. const int ir0 = dr*ith;
  10802. const int ir1 = MIN(ir0 + dr, nr);
  10803. for (int64_t i = ir0; i < ir1; ++i) {
  10804. const int64_t i12 = i/(ne11*ne10);
  10805. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10806. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10807. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10808. assert(i01 >= 0 && i01 < ne01);
  10809. ggml_bf16_to_fp32_row(
  10810. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10811. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10812. }
  10813. }
  10814. static void ggml_compute_forward_get_rows_f32(
  10815. const struct ggml_compute_params * params,
  10816. struct ggml_tensor * dst) {
  10817. const struct ggml_tensor * src0 = dst->src[0];
  10818. const struct ggml_tensor * src1 = dst->src[1];
  10819. GGML_TENSOR_BINARY_OP_LOCALS
  10820. const int64_t nc = ne00;
  10821. const int64_t nr = ggml_nelements(src1);
  10822. assert(ne0 == nc);
  10823. assert(ne02 == ne11);
  10824. assert(nb00 == sizeof(float));
  10825. assert(ggml_nrows(dst) == nr);
  10826. const int ith = params->ith;
  10827. const int nth = params->nth;
  10828. // rows per thread
  10829. const int dr = (nr + nth - 1)/nth;
  10830. // row range for this thread
  10831. const int ir0 = dr*ith;
  10832. const int ir1 = MIN(ir0 + dr, nr);
  10833. for (int64_t i = ir0; i < ir1; ++i) {
  10834. const int64_t i12 = i/(ne11*ne10);
  10835. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10836. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10837. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10838. assert(i01 >= 0 && i01 < ne01);
  10839. ggml_vec_cpy_f32(nc,
  10840. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10841. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10842. }
  10843. }
  10844. static void ggml_compute_forward_get_rows(
  10845. const struct ggml_compute_params * params,
  10846. struct ggml_tensor * dst) {
  10847. const struct ggml_tensor * src0 = dst->src[0];
  10848. switch (src0->type) {
  10849. case GGML_TYPE_Q4_0:
  10850. case GGML_TYPE_Q4_1:
  10851. case GGML_TYPE_Q5_0:
  10852. case GGML_TYPE_Q5_1:
  10853. case GGML_TYPE_Q8_0:
  10854. case GGML_TYPE_Q8_1:
  10855. case GGML_TYPE_Q2_K:
  10856. case GGML_TYPE_Q3_K:
  10857. case GGML_TYPE_Q4_K:
  10858. case GGML_TYPE_Q5_K:
  10859. case GGML_TYPE_Q6_K:
  10860. case GGML_TYPE_IQ2_XXS:
  10861. case GGML_TYPE_IQ2_XS:
  10862. case GGML_TYPE_IQ3_XXS:
  10863. case GGML_TYPE_IQ1_S:
  10864. case GGML_TYPE_IQ1_M:
  10865. case GGML_TYPE_IQ4_NL:
  10866. case GGML_TYPE_IQ4_XS:
  10867. case GGML_TYPE_IQ3_S:
  10868. case GGML_TYPE_IQ2_S:
  10869. case GGML_TYPE_Q4_0_4_4:
  10870. case GGML_TYPE_Q4_0_4_8:
  10871. case GGML_TYPE_Q4_0_8_8:
  10872. {
  10873. ggml_compute_forward_get_rows_q(params, dst);
  10874. } break;
  10875. case GGML_TYPE_F16:
  10876. {
  10877. ggml_compute_forward_get_rows_f16(params, dst);
  10878. } break;
  10879. case GGML_TYPE_BF16:
  10880. {
  10881. ggml_compute_forward_get_rows_bf16(params, dst);
  10882. } break;
  10883. case GGML_TYPE_F32:
  10884. case GGML_TYPE_I32:
  10885. {
  10886. ggml_compute_forward_get_rows_f32(params, dst);
  10887. } break;
  10888. default:
  10889. {
  10890. GGML_ASSERT(false);
  10891. } break;
  10892. }
  10893. //static bool first = true;
  10894. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10895. //if (first) {
  10896. // first = false;
  10897. //} else {
  10898. // for (int k = 0; k < dst->ne[1]; ++k) {
  10899. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10900. // for (int i = 0; i < 16; ++i) {
  10901. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10902. // }
  10903. // printf("\n");
  10904. // }
  10905. // printf("\n");
  10906. // }
  10907. // printf("\n");
  10908. // exit(0);
  10909. //}
  10910. }
  10911. // ggml_compute_forward_get_rows_back
  10912. static void ggml_compute_forward_get_rows_back_f32_f16(
  10913. const struct ggml_compute_params * params,
  10914. struct ggml_tensor * dst) {
  10915. const struct ggml_tensor * src0 = dst->src[0];
  10916. const struct ggml_tensor * src1 = dst->src[1];
  10917. if (params->ith != 0) {
  10918. return;
  10919. }
  10920. GGML_ASSERT(ggml_is_contiguous(dst));
  10921. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10922. memset(dst->data, 0, ggml_nbytes(dst));
  10923. const int nc = src0->ne[0];
  10924. const int nr = ggml_nelements(src1);
  10925. GGML_ASSERT( dst->ne[0] == nc);
  10926. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10927. for (int i = 0; i < nr; ++i) {
  10928. const int r = ((int32_t *) src1->data)[i];
  10929. for (int j = 0; j < nc; ++j) {
  10930. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10931. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10932. }
  10933. }
  10934. }
  10935. static void ggml_compute_forward_get_rows_back_f32(
  10936. const struct ggml_compute_params * params,
  10937. struct ggml_tensor * dst) {
  10938. const struct ggml_tensor * src0 = dst->src[0];
  10939. const struct ggml_tensor * src1 = dst->src[1];
  10940. if (params->ith != 0) {
  10941. return;
  10942. }
  10943. GGML_ASSERT(ggml_is_contiguous(dst));
  10944. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10945. memset(dst->data, 0, ggml_nbytes(dst));
  10946. const int nc = src0->ne[0];
  10947. const int nr = ggml_nelements(src1);
  10948. GGML_ASSERT( dst->ne[0] == nc);
  10949. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10950. for (int i = 0; i < nr; ++i) {
  10951. const int r = ((int32_t *) src1->data)[i];
  10952. ggml_vec_add_f32(nc,
  10953. (float *) ((char *) dst->data + r*dst->nb[1]),
  10954. (float *) ((char *) dst->data + r*dst->nb[1]),
  10955. (float *) ((char *) src0->data + i*src0->nb[1]));
  10956. }
  10957. }
  10958. static void ggml_compute_forward_get_rows_back(
  10959. const struct ggml_compute_params * params,
  10960. struct ggml_tensor * dst) {
  10961. const struct ggml_tensor * src0 = dst->src[0];
  10962. switch (src0->type) {
  10963. case GGML_TYPE_F16:
  10964. {
  10965. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10966. } break;
  10967. case GGML_TYPE_F32:
  10968. {
  10969. ggml_compute_forward_get_rows_back_f32(params, dst);
  10970. } break;
  10971. default:
  10972. {
  10973. GGML_ASSERT(false);
  10974. } break;
  10975. }
  10976. //static bool first = true;
  10977. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10978. //if (first) {
  10979. // first = false;
  10980. //} else {
  10981. // for (int k = 0; k < dst->ne[1]; ++k) {
  10982. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10983. // for (int i = 0; i < 16; ++i) {
  10984. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10985. // }
  10986. // printf("\n");
  10987. // }
  10988. // printf("\n");
  10989. // }
  10990. // printf("\n");
  10991. // exit(0);
  10992. //}
  10993. }
  10994. // ggml_compute_forward_diag
  10995. static void ggml_compute_forward_diag_f32(
  10996. const struct ggml_compute_params * params,
  10997. struct ggml_tensor * dst) {
  10998. const struct ggml_tensor * src0 = dst->src[0];
  10999. if (params->ith != 0) {
  11000. return;
  11001. }
  11002. // TODO: handle transposed/permuted matrices
  11003. GGML_TENSOR_UNARY_OP_LOCALS
  11004. GGML_ASSERT(ne00 == ne0);
  11005. GGML_ASSERT(ne00 == ne1);
  11006. GGML_ASSERT(ne01 == 1);
  11007. GGML_ASSERT(ne02 == ne2);
  11008. GGML_ASSERT(ne03 == ne3);
  11009. GGML_ASSERT(nb00 == sizeof(float));
  11010. GGML_ASSERT(nb0 == sizeof(float));
  11011. for (int i3 = 0; i3 < ne3; i3++) {
  11012. for (int i2 = 0; i2 < ne2; i2++) {
  11013. for (int i1 = 0; i1 < ne1; i1++) {
  11014. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11015. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11016. for (int i0 = 0; i0 < i1; i0++) {
  11017. d[i0] = 0;
  11018. }
  11019. d[i1] = s[i1];
  11020. for (int i0 = i1+1; i0 < ne0; i0++) {
  11021. d[i0] = 0;
  11022. }
  11023. }
  11024. }
  11025. }
  11026. }
  11027. static void ggml_compute_forward_diag(
  11028. const struct ggml_compute_params * params,
  11029. struct ggml_tensor * dst) {
  11030. const struct ggml_tensor * src0 = dst->src[0];
  11031. switch (src0->type) {
  11032. case GGML_TYPE_F32:
  11033. {
  11034. ggml_compute_forward_diag_f32(params, dst);
  11035. } break;
  11036. default:
  11037. {
  11038. GGML_ASSERT(false);
  11039. } break;
  11040. }
  11041. }
  11042. // ggml_compute_forward_diag_mask_inf
  11043. static void ggml_compute_forward_diag_mask_f32(
  11044. const struct ggml_compute_params * params,
  11045. struct ggml_tensor * dst,
  11046. const float value) {
  11047. const struct ggml_tensor * src0 = dst->src[0];
  11048. const int ith = params->ith;
  11049. const int nth = params->nth;
  11050. const int n_past = ((int32_t *) dst->op_params)[0];
  11051. const bool inplace = src0->data == dst->data;
  11052. GGML_ASSERT(n_past >= 0);
  11053. if (!inplace) {
  11054. if (ith == 0) {
  11055. // memcpy needs to be synchronized across threads to avoid race conditions.
  11056. // => do it in INIT phase
  11057. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11058. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11059. memcpy(
  11060. ((char *) dst->data),
  11061. ((char *) src0->data),
  11062. ggml_nbytes(dst));
  11063. }
  11064. ggml_barrier(params->shared);
  11065. }
  11066. // TODO: handle transposed/permuted matrices
  11067. const int n = ggml_nrows(src0);
  11068. const int nc = src0->ne[0];
  11069. const int nr = src0->ne[1];
  11070. const int nz = n/nr;
  11071. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11073. for (int k = 0; k < nz; k++) {
  11074. for (int j = ith; j < nr; j += nth) {
  11075. for (int i = n_past; i < nc; i++) {
  11076. if (i > n_past + j) {
  11077. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11078. }
  11079. }
  11080. }
  11081. }
  11082. }
  11083. static void ggml_compute_forward_diag_mask_inf(
  11084. const struct ggml_compute_params * params,
  11085. struct ggml_tensor * dst) {
  11086. const struct ggml_tensor * src0 = dst->src[0];
  11087. switch (src0->type) {
  11088. case GGML_TYPE_F32:
  11089. {
  11090. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11091. } break;
  11092. default:
  11093. {
  11094. GGML_ASSERT(false);
  11095. } break;
  11096. }
  11097. }
  11098. static void ggml_compute_forward_diag_mask_zero(
  11099. const struct ggml_compute_params * params,
  11100. struct ggml_tensor * dst) {
  11101. const struct ggml_tensor * src0 = dst->src[0];
  11102. switch (src0->type) {
  11103. case GGML_TYPE_F32:
  11104. {
  11105. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11106. } break;
  11107. default:
  11108. {
  11109. GGML_ASSERT(false);
  11110. } break;
  11111. }
  11112. }
  11113. // ggml_compute_forward_soft_max
  11114. static void ggml_compute_forward_soft_max_f32(
  11115. const struct ggml_compute_params * params,
  11116. struct ggml_tensor * dst) {
  11117. const struct ggml_tensor * src0 = dst->src[0];
  11118. const struct ggml_tensor * src1 = dst->src[1];
  11119. assert(ggml_is_contiguous(dst));
  11120. assert(ggml_are_same_shape(src0, dst));
  11121. float scale = 1.0f;
  11122. float max_bias = 0.0f;
  11123. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11124. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11125. // TODO: handle transposed/permuted matrices
  11126. const int ith = params->ith;
  11127. const int nth = params->nth;
  11128. GGML_TENSOR_UNARY_OP_LOCALS
  11129. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11130. // TODO: is this supposed to be ceil instead of floor?
  11131. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11132. const uint32_t n_head = ne02;
  11133. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11134. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11135. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11136. const int nc = src0->ne[0];
  11137. const int nr = ggml_nrows(src0);
  11138. // rows per thread
  11139. const int dr = (nr + nth - 1)/nth;
  11140. // row range for this thread
  11141. const int ir0 = dr*ith;
  11142. const int ir1 = MIN(ir0 + dr, nr);
  11143. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11144. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11145. for (int i1 = ir0; i1 < ir1; i1++) {
  11146. // ALiBi
  11147. const uint32_t h = (i1/ne01)%ne02; // head
  11148. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11149. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11150. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11151. // broadcast the mask across rows
  11152. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11153. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11154. ggml_vec_cpy_f32 (nc, wp, sp);
  11155. ggml_vec_scale_f32(nc, wp, scale);
  11156. if (mp_f32) {
  11157. if (use_f16) {
  11158. for (int i = 0; i < nc; ++i) {
  11159. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11160. }
  11161. } else {
  11162. for (int i = 0; i < nc; ++i) {
  11163. wp[i] += slope*mp_f32[i];
  11164. }
  11165. }
  11166. }
  11167. #ifndef NDEBUG
  11168. for (int i = 0; i < nc; ++i) {
  11169. //printf("p[%d] = %f\n", i, p[i]);
  11170. assert(!isnan(wp[i]));
  11171. }
  11172. #endif
  11173. float max = -INFINITY;
  11174. ggml_vec_max_f32(nc, &max, wp);
  11175. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11176. assert(sum > 0.0);
  11177. sum = 1.0/sum;
  11178. ggml_vec_scale_f32(nc, dp, sum);
  11179. #ifndef NDEBUG
  11180. for (int i = 0; i < nc; ++i) {
  11181. assert(!isnan(dp[i]));
  11182. assert(!isinf(dp[i]));
  11183. }
  11184. #endif
  11185. }
  11186. }
  11187. static void ggml_compute_forward_soft_max(
  11188. const struct ggml_compute_params * params,
  11189. struct ggml_tensor * dst) {
  11190. const struct ggml_tensor * src0 = dst->src[0];
  11191. switch (src0->type) {
  11192. case GGML_TYPE_F32:
  11193. {
  11194. ggml_compute_forward_soft_max_f32(params, dst);
  11195. } break;
  11196. default:
  11197. {
  11198. GGML_ASSERT(false);
  11199. } break;
  11200. }
  11201. }
  11202. // ggml_compute_forward_soft_max_back
  11203. static void ggml_compute_forward_soft_max_back_f32(
  11204. const struct ggml_compute_params * params,
  11205. struct ggml_tensor * dst) {
  11206. const struct ggml_tensor * src0 = dst->src[0];
  11207. const struct ggml_tensor * src1 = dst->src[1];
  11208. GGML_ASSERT(ggml_is_contiguous(src0));
  11209. GGML_ASSERT(ggml_is_contiguous(src1));
  11210. GGML_ASSERT(ggml_is_contiguous(dst));
  11211. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11212. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11213. // TODO: handle transposed/permuted matrices
  11214. const int ith = params->ith;
  11215. const int nth = params->nth;
  11216. const int nc = src0->ne[0];
  11217. const int nr = ggml_nrows(src0);
  11218. // rows per thread
  11219. const int dr = (nr + nth - 1)/nth;
  11220. // row range for this thread
  11221. const int ir0 = dr*ith;
  11222. const int ir1 = MIN(ir0 + dr, nr);
  11223. for (int i1 = ir0; i1 < ir1; i1++) {
  11224. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11225. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11226. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11227. #ifndef NDEBUG
  11228. for (int i = 0; i < nc; ++i) {
  11229. //printf("p[%d] = %f\n", i, p[i]);
  11230. assert(!isnan(dy[i]));
  11231. assert(!isnan(y[i]));
  11232. }
  11233. #endif
  11234. // Jii = yi - yi*yi
  11235. // Jij = -yi*yj
  11236. // J = diag(y)-y.T*y
  11237. // dx = J * dy
  11238. // dxk = sum_i(Jki * dyi)
  11239. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11240. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11241. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11242. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11243. // dxk = -yk * dot(y, dy) + yk*dyk
  11244. // dxk = yk * (- dot(y, dy) + dyk)
  11245. // dxk = yk * (dyk - dot(y, dy))
  11246. //
  11247. // post-order:
  11248. // dot_y_dy := dot(y, dy)
  11249. // dx := dy
  11250. // dx := dx - dot_y_dy
  11251. // dx := dx * y
  11252. // linear runtime, no additional memory
  11253. float dot_y_dy = 0;
  11254. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11255. ggml_vec_cpy_f32 (nc, dx, dy);
  11256. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11257. ggml_vec_mul_f32 (nc, dx, dx, y);
  11258. #ifndef NDEBUG
  11259. for (int i = 0; i < nc; ++i) {
  11260. assert(!isnan(dx[i]));
  11261. assert(!isinf(dx[i]));
  11262. }
  11263. #endif
  11264. }
  11265. }
  11266. static void ggml_compute_forward_soft_max_back(
  11267. const struct ggml_compute_params * params,
  11268. struct ggml_tensor * dst) {
  11269. const struct ggml_tensor * src0 = dst->src[0];
  11270. switch (src0->type) {
  11271. case GGML_TYPE_F32:
  11272. {
  11273. ggml_compute_forward_soft_max_back_f32(params, dst);
  11274. } break;
  11275. default:
  11276. {
  11277. GGML_ASSERT(false);
  11278. } break;
  11279. }
  11280. }
  11281. // ggml_compute_forward_clamp
  11282. static void ggml_compute_forward_clamp_f32(
  11283. const struct ggml_compute_params * params,
  11284. struct ggml_tensor * dst) {
  11285. const struct ggml_tensor * src0 = dst->src[0];
  11286. if (params->ith != 0) {
  11287. return;
  11288. }
  11289. float min;
  11290. float max;
  11291. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11292. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11293. const int ith = params->ith;
  11294. const int nth = params->nth;
  11295. const int n = ggml_nrows(src0);
  11296. const int nc = src0->ne[0];
  11297. const size_t nb00 = src0->nb[0];
  11298. const size_t nb01 = src0->nb[1];
  11299. const size_t nb0 = dst->nb[0];
  11300. const size_t nb1 = dst->nb[1];
  11301. GGML_ASSERT( nb0 == sizeof(float));
  11302. GGML_ASSERT(nb00 == sizeof(float));
  11303. for (int j = ith; j < n; j += nth) {
  11304. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11305. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11306. for (int i = 0; i < nc; i++) {
  11307. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11308. }
  11309. }
  11310. }
  11311. static void ggml_compute_forward_clamp(
  11312. const struct ggml_compute_params * params,
  11313. struct ggml_tensor * dst) {
  11314. const struct ggml_tensor * src0 = dst->src[0];
  11315. switch (src0->type) {
  11316. case GGML_TYPE_F32:
  11317. {
  11318. ggml_compute_forward_clamp_f32(params, dst);
  11319. } break;
  11320. case GGML_TYPE_F16:
  11321. case GGML_TYPE_BF16:
  11322. case GGML_TYPE_Q4_0:
  11323. case GGML_TYPE_Q4_1:
  11324. case GGML_TYPE_Q5_0:
  11325. case GGML_TYPE_Q5_1:
  11326. case GGML_TYPE_Q8_0:
  11327. case GGML_TYPE_Q8_1:
  11328. case GGML_TYPE_Q2_K:
  11329. case GGML_TYPE_Q3_K:
  11330. case GGML_TYPE_Q4_K:
  11331. case GGML_TYPE_Q5_K:
  11332. case GGML_TYPE_Q6_K:
  11333. case GGML_TYPE_IQ2_XXS:
  11334. case GGML_TYPE_IQ2_XS:
  11335. case GGML_TYPE_IQ3_XXS:
  11336. case GGML_TYPE_IQ1_S:
  11337. case GGML_TYPE_IQ1_M:
  11338. case GGML_TYPE_IQ4_NL:
  11339. case GGML_TYPE_IQ4_XS:
  11340. case GGML_TYPE_IQ3_S:
  11341. case GGML_TYPE_IQ2_S:
  11342. case GGML_TYPE_Q8_K:
  11343. case GGML_TYPE_Q4_0_4_4:
  11344. case GGML_TYPE_Q4_0_4_8:
  11345. case GGML_TYPE_Q4_0_8_8:
  11346. case GGML_TYPE_I8:
  11347. case GGML_TYPE_I16:
  11348. case GGML_TYPE_I32:
  11349. case GGML_TYPE_I64:
  11350. case GGML_TYPE_F64:
  11351. case GGML_TYPE_COUNT:
  11352. {
  11353. GGML_ASSERT(false);
  11354. } break;
  11355. }
  11356. }
  11357. // ggml_compute_forward_rope
  11358. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11359. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11360. return 1 - MIN(1, MAX(0, y));
  11361. }
  11362. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11363. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11364. static void rope_yarn(
  11365. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11366. float * cos_theta, float * sin_theta) {
  11367. // Get n-d rotational scaling corrected for extrapolation
  11368. float theta_interp = freq_scale * theta_extrap;
  11369. float theta = theta_interp;
  11370. if (ext_factor != 0.0f) {
  11371. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11372. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11373. // Get n-d magnitude scaling corrected for interpolation
  11374. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11375. }
  11376. *cos_theta = cosf(theta) * mscale;
  11377. *sin_theta = sinf(theta) * mscale;
  11378. }
  11379. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11380. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11381. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11382. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11383. }
  11384. static void ggml_rope_cache_init(
  11385. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11386. float * cache, float sin_sign, float theta_scale) {
  11387. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11388. float theta = theta_base;
  11389. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11390. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11391. rope_yarn(
  11392. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11393. );
  11394. cache[i0 + 1] *= sin_sign;
  11395. theta *= theta_scale;
  11396. }
  11397. }
  11398. GGML_CALL void ggml_rope_yarn_corr_dims(
  11399. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11400. ) {
  11401. // start and end correction dims
  11402. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11403. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11404. dims[0] = MAX(0, start);
  11405. dims[1] = MIN(n_dims - 1, end);
  11406. }
  11407. static void ggml_compute_forward_rope_f32(
  11408. const struct ggml_compute_params * params,
  11409. struct ggml_tensor * dst,
  11410. const bool forward) {
  11411. const struct ggml_tensor * src0 = dst->src[0];
  11412. const struct ggml_tensor * src1 = dst->src[1];
  11413. const struct ggml_tensor * src2 = dst->src[2];
  11414. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11415. //const int n_past = ((int32_t *) dst->op_params)[0];
  11416. const int n_dims = ((int32_t *) dst->op_params)[1];
  11417. const int mode = ((int32_t *) dst->op_params)[2];
  11418. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11419. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11420. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11421. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11422. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11423. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11424. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11425. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11426. GGML_TENSOR_UNARY_OP_LOCALS
  11427. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11428. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11429. GGML_ASSERT(nb00 == sizeof(float));
  11430. const int ith = params->ith;
  11431. const int nth = params->nth;
  11432. const int nr = ggml_nrows(dst);
  11433. GGML_ASSERT(n_dims <= ne0);
  11434. GGML_ASSERT(n_dims % 2 == 0);
  11435. // rows per thread
  11436. const int dr = (nr + nth - 1)/nth;
  11437. // row range for this thread
  11438. const int ir0 = dr*ith;
  11439. const int ir1 = MIN(ir0 + dr, nr);
  11440. // row index used to determine which thread to use
  11441. int ir = 0;
  11442. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11443. float corr_dims[2];
  11444. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11445. const bool is_neox = mode & 2;
  11446. const float * freq_factors = NULL;
  11447. if (src2 != NULL) {
  11448. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11449. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11450. freq_factors = (const float *) src2->data;
  11451. }
  11452. // backward process uses inverse rotation by cos and sin.
  11453. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11454. // this essentially just switches the sign of sin.
  11455. const float sin_sign = forward ? 1.0f : -1.0f;
  11456. const int32_t * pos = (const int32_t *) src1->data;
  11457. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11458. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11459. const int64_t p = pos[i2];
  11460. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11461. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11462. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11463. if (ir++ < ir0) continue;
  11464. if (ir > ir1) break;
  11465. if (!is_neox) {
  11466. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11467. const float cos_theta = cache[i0 + 0];
  11468. const float sin_theta = cache[i0 + 1];
  11469. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11470. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11471. const float x0 = src[0];
  11472. const float x1 = src[1];
  11473. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11474. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11475. }
  11476. } else {
  11477. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11478. const int64_t ic = i0/2;
  11479. const float cos_theta = cache[i0 + 0];
  11480. const float sin_theta = cache[i0 + 1];
  11481. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11482. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11483. const float x0 = src[0];
  11484. const float x1 = src[n_dims/2];
  11485. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11486. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11487. }
  11488. }
  11489. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11490. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11491. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11492. dst_data[0] = src[0];
  11493. dst_data[1] = src[1];
  11494. }
  11495. }
  11496. }
  11497. }
  11498. }
  11499. // TODO: deduplicate f16/f32 code
  11500. static void ggml_compute_forward_rope_f16(
  11501. const struct ggml_compute_params * params,
  11502. struct ggml_tensor * dst,
  11503. const bool forward) {
  11504. const struct ggml_tensor * src0 = dst->src[0];
  11505. const struct ggml_tensor * src1 = dst->src[1];
  11506. const struct ggml_tensor * src2 = dst->src[2];
  11507. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11508. //const int n_past = ((int32_t *) dst->op_params)[0];
  11509. const int n_dims = ((int32_t *) dst->op_params)[1];
  11510. const int mode = ((int32_t *) dst->op_params)[2];
  11511. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11512. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11513. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11514. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11515. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11516. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11517. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11518. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11519. GGML_TENSOR_UNARY_OP_LOCALS
  11520. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11521. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11522. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11523. const int ith = params->ith;
  11524. const int nth = params->nth;
  11525. const int nr = ggml_nrows(dst);
  11526. GGML_ASSERT(n_dims <= ne0);
  11527. GGML_ASSERT(n_dims % 2 == 0);
  11528. // rows per thread
  11529. const int dr = (nr + nth - 1)/nth;
  11530. // row range for this thread
  11531. const int ir0 = dr*ith;
  11532. const int ir1 = MIN(ir0 + dr, nr);
  11533. // row index used to determine which thread to use
  11534. int ir = 0;
  11535. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11536. float corr_dims[2];
  11537. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11538. const bool is_neox = mode & 2;
  11539. const float * freq_factors = NULL;
  11540. if (src2 != NULL) {
  11541. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11542. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11543. freq_factors = (const float *) src2->data;
  11544. }
  11545. // backward process uses inverse rotation by cos and sin.
  11546. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11547. // this essentially just switches the sign of sin.
  11548. const float sin_sign = forward ? 1.0f : -1.0f;
  11549. const int32_t * pos = (const int32_t *) src1->data;
  11550. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11551. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11552. const int64_t p = pos[i2];
  11553. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11554. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11555. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11556. if (ir++ < ir0) continue;
  11557. if (ir > ir1) break;
  11558. if (!is_neox) {
  11559. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11560. const float cos_theta = cache[i0 + 0];
  11561. const float sin_theta = cache[i0 + 1];
  11562. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11563. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11564. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11565. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11566. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11567. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11568. }
  11569. } else {
  11570. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11571. const int64_t ic = i0/2;
  11572. const float cos_theta = cache[i0 + 0];
  11573. const float sin_theta = cache[i0 + 1];
  11574. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11575. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11576. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11577. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11578. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11579. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11580. }
  11581. }
  11582. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11583. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11584. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11585. dst_data[0] = src[0];
  11586. dst_data[1] = src[1];
  11587. }
  11588. }
  11589. }
  11590. }
  11591. }
  11592. static void ggml_compute_forward_rope(
  11593. const struct ggml_compute_params * params,
  11594. struct ggml_tensor * dst) {
  11595. const struct ggml_tensor * src0 = dst->src[0];
  11596. switch (src0->type) {
  11597. case GGML_TYPE_F16:
  11598. {
  11599. ggml_compute_forward_rope_f16(params, dst, true);
  11600. } break;
  11601. case GGML_TYPE_F32:
  11602. {
  11603. ggml_compute_forward_rope_f32(params, dst, true);
  11604. } break;
  11605. default:
  11606. {
  11607. GGML_ASSERT(false);
  11608. } break;
  11609. }
  11610. }
  11611. // ggml_compute_forward_rope_back
  11612. static void ggml_compute_forward_rope_back(
  11613. const struct ggml_compute_params * params,
  11614. struct ggml_tensor * dst) {
  11615. const struct ggml_tensor * src0 = dst->src[0];
  11616. switch (src0->type) {
  11617. case GGML_TYPE_F16:
  11618. {
  11619. ggml_compute_forward_rope_f16(params, dst, false);
  11620. } break;
  11621. case GGML_TYPE_F32:
  11622. {
  11623. ggml_compute_forward_rope_f32(params, dst, false);
  11624. } break;
  11625. default:
  11626. {
  11627. GGML_ASSERT(false);
  11628. } break;
  11629. }
  11630. }
  11631. // ggml_compute_forward_conv_transpose_1d
  11632. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11633. const struct ggml_compute_params * params,
  11634. struct ggml_tensor * dst) {
  11635. const struct ggml_tensor * src0 = dst->src[0];
  11636. const struct ggml_tensor * src1 = dst->src[1];
  11637. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11638. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11639. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11640. GGML_TENSOR_BINARY_OP_LOCALS
  11641. const int ith = params->ith;
  11642. const int nth = params->nth;
  11643. const int nk = ne00*ne01*ne02;
  11644. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11645. GGML_ASSERT(nb10 == sizeof(float));
  11646. if (ith == 0) {
  11647. memset(params->wdata, 0, params->wsize);
  11648. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11649. {
  11650. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11652. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11653. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11654. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11655. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11656. dst_data[i00*ne02 + i02] = src[i00];
  11657. }
  11658. }
  11659. }
  11660. }
  11661. // permute source data (src1) from (L x Cin) to (Cin x L)
  11662. {
  11663. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11664. ggml_fp16_t * dst_data = wdata;
  11665. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11666. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11667. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11668. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11669. }
  11670. }
  11671. }
  11672. // need to zero dst since we are accumulating into it
  11673. memset(dst->data, 0, ggml_nbytes(dst));
  11674. }
  11675. ggml_barrier(params->shared);
  11676. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11677. // total rows in dst
  11678. const int nr = ne1;
  11679. // rows per thread
  11680. const int dr = (nr + nth - 1)/nth;
  11681. // row range for this thread
  11682. const int ir0 = dr*ith;
  11683. const int ir1 = MIN(ir0 + dr, nr);
  11684. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11685. ggml_fp16_t * const wdata_src = wdata + nk;
  11686. for (int i1 = ir0; i1 < ir1; i1++) {
  11687. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11688. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11689. for (int i10 = 0; i10 < ne10; i10++) {
  11690. const int i1n = i10*ne11;
  11691. for (int i00 = 0; i00 < ne00; i00++) {
  11692. float v = 0;
  11693. ggml_vec_dot_f16(ne02, &v, 0,
  11694. (ggml_fp16_t *) wdata_src + i1n, 0,
  11695. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11696. dst_data[i10*s0 + i00] += v;
  11697. }
  11698. }
  11699. }
  11700. }
  11701. static void ggml_compute_forward_conv_transpose_1d_f32(
  11702. const struct ggml_compute_params * params,
  11703. struct ggml_tensor * dst) {
  11704. const struct ggml_tensor * src0 = dst->src[0];
  11705. const struct ggml_tensor * src1 = dst->src[1];
  11706. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11707. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11708. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11709. GGML_TENSOR_BINARY_OP_LOCALS
  11710. const int ith = params->ith;
  11711. const int nth = params->nth;
  11712. const int nk = ne00*ne01*ne02;
  11713. GGML_ASSERT(nb00 == sizeof(float));
  11714. GGML_ASSERT(nb10 == sizeof(float));
  11715. if (ith == 0) {
  11716. memset(params->wdata, 0, params->wsize);
  11717. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11718. {
  11719. float * const wdata = (float *) params->wdata + 0;
  11720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11721. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11722. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11723. float * dst_data = wdata + i01*ne00*ne02;
  11724. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11725. dst_data[i00*ne02 + i02] = src[i00];
  11726. }
  11727. }
  11728. }
  11729. }
  11730. // prepare source data (src1)
  11731. {
  11732. float * const wdata = (float *) params->wdata + nk;
  11733. float * dst_data = wdata;
  11734. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11735. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11736. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11737. dst_data[i10*ne11 + i11] = src[i10];
  11738. }
  11739. }
  11740. }
  11741. // need to zero dst since we are accumulating into it
  11742. memset(dst->data, 0, ggml_nbytes(dst));
  11743. }
  11744. ggml_barrier(params->shared);
  11745. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11746. // total rows in dst
  11747. const int nr = ne1;
  11748. // rows per thread
  11749. const int dr = (nr + nth - 1)/nth;
  11750. // row range for this thread
  11751. const int ir0 = dr*ith;
  11752. const int ir1 = MIN(ir0 + dr, nr);
  11753. float * const wdata = (float *) params->wdata + 0;
  11754. float * const wdata_src = wdata + nk;
  11755. for (int i1 = ir0; i1 < ir1; i1++) {
  11756. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11757. float * wdata_kernel = wdata + i1*ne02*ne00;
  11758. for (int i10 = 0; i10 < ne10; i10++) {
  11759. const int i1n = i10*ne11;
  11760. for (int i00 = 0; i00 < ne00; i00++) {
  11761. float v = 0;
  11762. ggml_vec_dot_f32(ne02, &v, 0,
  11763. wdata_src + i1n, 0,
  11764. wdata_kernel + i00*ne02, 0, 1);
  11765. dst_data[i10*s0 + i00] += v;
  11766. }
  11767. }
  11768. }
  11769. }
  11770. static void ggml_compute_forward_conv_transpose_1d(
  11771. const struct ggml_compute_params * params,
  11772. struct ggml_tensor * dst) {
  11773. const struct ggml_tensor * src0 = dst->src[0];
  11774. switch (src0->type) {
  11775. case GGML_TYPE_F16:
  11776. {
  11777. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11778. } break;
  11779. case GGML_TYPE_F32:
  11780. {
  11781. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11782. } break;
  11783. default:
  11784. {
  11785. GGML_ASSERT(false);
  11786. } break;
  11787. }
  11788. }
  11789. // src0: kernel [OC, IC, KH, KW]
  11790. // src1: image [N, IC, IH, IW]
  11791. // dst: result [N, OH, OW, IC*KH*KW]
  11792. static void ggml_compute_forward_im2col_f32(
  11793. const struct ggml_compute_params * params,
  11794. struct ggml_tensor * dst) {
  11795. const struct ggml_tensor * src0 = dst->src[0];
  11796. const struct ggml_tensor * src1 = dst->src[1];
  11797. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11798. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11799. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11800. GGML_TENSOR_BINARY_OP_LOCALS;
  11801. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11802. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11803. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11804. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11805. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11806. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11807. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11808. const int ith = params->ith;
  11809. const int nth = params->nth;
  11810. const int64_t N = is_2D ? ne13 : ne12;
  11811. const int64_t IC = is_2D ? ne12 : ne11;
  11812. const int64_t IH = is_2D ? ne11 : 1;
  11813. const int64_t IW = ne10;
  11814. const int64_t KH = is_2D ? ne01 : 1;
  11815. const int64_t KW = ne00;
  11816. const int64_t OH = is_2D ? ne2 : 1;
  11817. const int64_t OW = ne1;
  11818. int ofs0 = is_2D ? nb13 : nb12;
  11819. int ofs1 = is_2D ? nb12 : nb11;
  11820. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11821. GGML_ASSERT(nb10 == sizeof(float));
  11822. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11823. {
  11824. float * const wdata = (float *) dst->data;
  11825. for (int64_t in = 0; in < N; in++) {
  11826. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11827. for (int64_t iow = 0; iow < OW; iow++) {
  11828. for (int64_t iic = ith; iic < IC; iic += nth) {
  11829. // micro kernel
  11830. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11831. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11832. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11833. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11834. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11835. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11836. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11837. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11838. } else {
  11839. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11840. }
  11841. }
  11842. }
  11843. }
  11844. }
  11845. }
  11846. }
  11847. }
  11848. }
  11849. // src0: kernel [OC, IC, KH, KW]
  11850. // src1: image [N, IC, IH, IW]
  11851. // dst: result [N, OH, OW, IC*KH*KW]
  11852. static void ggml_compute_forward_im2col_f16(
  11853. const struct ggml_compute_params * params,
  11854. struct ggml_tensor * dst) {
  11855. const struct ggml_tensor * src0 = dst->src[0];
  11856. const struct ggml_tensor * src1 = dst->src[1];
  11857. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11858. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11859. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11860. GGML_TENSOR_BINARY_OP_LOCALS;
  11861. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11862. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11863. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11864. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11865. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11866. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11867. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11868. const int ith = params->ith;
  11869. const int nth = params->nth;
  11870. const int64_t N = is_2D ? ne13 : ne12;
  11871. const int64_t IC = is_2D ? ne12 : ne11;
  11872. const int64_t IH = is_2D ? ne11 : 1;
  11873. const int64_t IW = ne10;
  11874. const int64_t KH = is_2D ? ne01 : 1;
  11875. const int64_t KW = ne00;
  11876. const int64_t OH = is_2D ? ne2 : 1;
  11877. const int64_t OW = ne1;
  11878. int ofs0 = is_2D ? nb13 : nb12;
  11879. int ofs1 = is_2D ? nb12 : nb11;
  11880. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11881. GGML_ASSERT(nb10 == sizeof(float));
  11882. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11883. {
  11884. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11885. for (int64_t in = 0; in < N; in++) {
  11886. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11887. for (int64_t iow = 0; iow < OW; iow++) {
  11888. for (int64_t iic = ith; iic < IC; iic += nth) {
  11889. // micro kernel
  11890. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11891. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11892. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11893. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11894. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11895. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11896. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11897. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11898. } else {
  11899. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11900. }
  11901. }
  11902. }
  11903. }
  11904. }
  11905. }
  11906. }
  11907. }
  11908. }
  11909. static void ggml_compute_forward_im2col(
  11910. const struct ggml_compute_params * params,
  11911. struct ggml_tensor * dst) {
  11912. switch (dst->type) {
  11913. case GGML_TYPE_F16:
  11914. {
  11915. ggml_compute_forward_im2col_f16(params, dst);
  11916. } break;
  11917. case GGML_TYPE_F32:
  11918. {
  11919. ggml_compute_forward_im2col_f32(params, dst);
  11920. } break;
  11921. default:
  11922. {
  11923. GGML_ASSERT(false);
  11924. } break;
  11925. }
  11926. }
  11927. // ggml_compute_forward_conv_transpose_2d
  11928. static void ggml_compute_forward_conv_transpose_2d(
  11929. const struct ggml_compute_params * params,
  11930. struct ggml_tensor * dst) {
  11931. const struct ggml_tensor * src0 = dst->src[0];
  11932. const struct ggml_tensor * src1 = dst->src[1];
  11933. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11934. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11935. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11936. GGML_TENSOR_BINARY_OP_LOCALS
  11937. const int ith = params->ith;
  11938. const int nth = params->nth;
  11939. const int nk = ne00*ne01*ne02*ne03;
  11940. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11941. GGML_ASSERT(nb10 == sizeof(float));
  11942. if (ith == 0) {
  11943. memset(params->wdata, 0, params->wsize);
  11944. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11945. {
  11946. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11947. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11948. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11949. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11950. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11951. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11952. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11953. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11954. }
  11955. }
  11956. }
  11957. }
  11958. }
  11959. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11960. {
  11961. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11962. for (int i12 = 0; i12 < ne12; i12++) {
  11963. for (int i11 = 0; i11 < ne11; i11++) {
  11964. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11965. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11966. for (int i10 = 0; i10 < ne10; i10++) {
  11967. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11968. }
  11969. }
  11970. }
  11971. }
  11972. memset(dst->data, 0, ggml_nbytes(dst));
  11973. }
  11974. ggml_barrier(params->shared);
  11975. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11976. // total patches in dst
  11977. const int np = ne2;
  11978. // patches per thread
  11979. const int dp = (np + nth - 1)/nth;
  11980. // patch range for this thread
  11981. const int ip0 = dp*ith;
  11982. const int ip1 = MIN(ip0 + dp, np);
  11983. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11984. ggml_fp16_t * const wdata_src = wdata + nk;
  11985. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11986. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11987. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11988. for (int i11 = 0; i11 < ne11; i11++) {
  11989. for (int i10 = 0; i10 < ne10; i10++) {
  11990. const int i1n = i11*ne10*ne12 + i10*ne12;
  11991. for (int i01 = 0; i01 < ne01; i01++) {
  11992. for (int i00 = 0; i00 < ne00; i00++) {
  11993. float v = 0;
  11994. ggml_vec_dot_f16(ne03, &v, 0,
  11995. wdata_src + i1n, 0,
  11996. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11997. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11998. }
  11999. }
  12000. }
  12001. }
  12002. }
  12003. }
  12004. // ggml_compute_forward_pool_1d_sk_p0
  12005. static void ggml_compute_forward_pool_1d_sk_p0(
  12006. const struct ggml_compute_params * params,
  12007. const enum ggml_op_pool op,
  12008. const int k,
  12009. struct ggml_tensor * dst) {
  12010. const struct ggml_tensor * src = dst->src[0];
  12011. assert(src->type == GGML_TYPE_F32);
  12012. if (params->ith != 0) {
  12013. return;
  12014. }
  12015. const char * cdata = (const char *)src->data;
  12016. const char * const data_end = cdata + ggml_nbytes(src);
  12017. float * drow = (float *)dst->data;
  12018. const int64_t rs = dst->ne[0];
  12019. while (cdata < data_end) {
  12020. const float * const srow = (const float *)cdata;
  12021. int j = 0;
  12022. for (int64_t i = 0; i < rs; ++i) {
  12023. switch (op) {
  12024. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12025. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12026. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12027. }
  12028. for (int ki = 0; ki < k; ++ki) {
  12029. switch (op) {
  12030. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12031. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12032. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12033. }
  12034. ++j;
  12035. }
  12036. switch (op) {
  12037. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12038. case GGML_OP_POOL_MAX: break;
  12039. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12040. }
  12041. }
  12042. cdata += src->nb[1];
  12043. drow += rs;
  12044. }
  12045. }
  12046. // ggml_compute_forward_pool_1d
  12047. static void ggml_compute_forward_pool_1d(
  12048. const struct ggml_compute_params * params,
  12049. struct ggml_tensor * dst) {
  12050. const int32_t * opts = (const int32_t *)dst->op_params;
  12051. enum ggml_op_pool op = opts[0];
  12052. const int k0 = opts[1];
  12053. const int s0 = opts[2];
  12054. const int p0 = opts[3];
  12055. GGML_ASSERT(p0 == 0); // padding not supported
  12056. GGML_ASSERT(k0 == s0); // only s = k supported
  12057. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12058. }
  12059. // ggml_compute_forward_pool_2d
  12060. static void ggml_compute_forward_pool_2d(
  12061. const struct ggml_compute_params * params,
  12062. struct ggml_tensor * dst) {
  12063. const struct ggml_tensor * src = dst->src[0];
  12064. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12065. if (params->ith != 0) {
  12066. return;
  12067. }
  12068. const int32_t * opts = (const int32_t *)dst->op_params;
  12069. enum ggml_op_pool op = opts[0];
  12070. const int k0 = opts[1];
  12071. const int k1 = opts[2];
  12072. const int s0 = opts[3];
  12073. const int s1 = opts[4];
  12074. const int p0 = opts[5];
  12075. const int p1 = opts[6];
  12076. const char * cdata = (const char*)src->data;
  12077. const char * const data_end = cdata + ggml_nbytes(src);
  12078. const int64_t px = dst->ne[0];
  12079. const int64_t py = dst->ne[1];
  12080. const int64_t pa = px * py;
  12081. float * dplane = (float *)dst->data;
  12082. const int ka = k0 * k1;
  12083. const int offset0 = -p0;
  12084. const int offset1 = -p1;
  12085. while (cdata < data_end) {
  12086. for (int oy = 0; oy < py; ++oy) {
  12087. float * const drow = dplane + oy * px;
  12088. for (int ox = 0; ox < px; ++ox) {
  12089. float * const out = drow + ox;
  12090. switch (op) {
  12091. case GGML_OP_POOL_AVG: *out = 0; break;
  12092. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12093. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12094. }
  12095. const int ix = offset0 + ox * s0;
  12096. const int iy = offset1 + oy * s1;
  12097. for (int ky = 0; ky < k1; ++ky) {
  12098. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12099. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12100. for (int kx = 0; kx < k0; ++kx) {
  12101. int j = ix + kx;
  12102. if (j < 0 || j >= src->ne[0]) continue;
  12103. switch (op) {
  12104. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12105. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12106. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12107. }
  12108. }
  12109. }
  12110. switch (op) {
  12111. case GGML_OP_POOL_AVG: *out /= ka; break;
  12112. case GGML_OP_POOL_MAX: break;
  12113. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12114. }
  12115. }
  12116. }
  12117. cdata += src->nb[2];
  12118. dplane += pa;
  12119. }
  12120. }
  12121. // ggml_compute_forward_upscale
  12122. static void ggml_compute_forward_upscale_f32(
  12123. const struct ggml_compute_params * params,
  12124. struct ggml_tensor * dst) {
  12125. const struct ggml_tensor * src0 = dst->src[0];
  12126. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12127. const int ith = params->ith;
  12128. const int nth = params->nth;
  12129. GGML_TENSOR_UNARY_OP_LOCALS
  12130. const float sf0 = (float)ne0/src0->ne[0];
  12131. const float sf1 = (float)ne1/src0->ne[1];
  12132. const float sf2 = (float)ne2/src0->ne[2];
  12133. const float sf3 = (float)ne3/src0->ne[3];
  12134. // TODO: optimize
  12135. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12136. const int64_t i03 = i3 / sf3;
  12137. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12138. const int64_t i02 = i2 / sf2;
  12139. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12140. const int64_t i01 = i1 / sf1;
  12141. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12142. const int64_t i00 = i0 / sf0;
  12143. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12144. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12145. *y = *x;
  12146. }
  12147. }
  12148. }
  12149. }
  12150. }
  12151. static void ggml_compute_forward_upscale(
  12152. const struct ggml_compute_params * params,
  12153. struct ggml_tensor * dst) {
  12154. const struct ggml_tensor * src0 = dst->src[0];
  12155. switch (src0->type) {
  12156. case GGML_TYPE_F32:
  12157. {
  12158. ggml_compute_forward_upscale_f32(params, dst);
  12159. } break;
  12160. default:
  12161. {
  12162. GGML_ASSERT(false);
  12163. } break;
  12164. }
  12165. }
  12166. // ggml_compute_forward_pad
  12167. static void ggml_compute_forward_pad_f32(
  12168. const struct ggml_compute_params * params,
  12169. struct ggml_tensor * dst) {
  12170. const struct ggml_tensor * src0 = dst->src[0];
  12171. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12172. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12173. const int ith = params->ith;
  12174. const int nth = params->nth;
  12175. GGML_TENSOR_UNARY_OP_LOCALS
  12176. float * dst_ptr = (float *) dst->data;
  12177. // TODO: optimize
  12178. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12179. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12180. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12181. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12182. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12183. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12184. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12185. dst_ptr[dst_idx] = *src_ptr;
  12186. } else {
  12187. dst_ptr[dst_idx] = 0;
  12188. }
  12189. }
  12190. }
  12191. }
  12192. }
  12193. }
  12194. static void ggml_compute_forward_pad(
  12195. const struct ggml_compute_params * params,
  12196. struct ggml_tensor * dst) {
  12197. const struct ggml_tensor * src0 = dst->src[0];
  12198. switch (src0->type) {
  12199. case GGML_TYPE_F32:
  12200. {
  12201. ggml_compute_forward_pad_f32(params, dst);
  12202. } break;
  12203. default:
  12204. {
  12205. GGML_ASSERT(false);
  12206. } break;
  12207. }
  12208. }
  12209. // ggml_compute_forward_arange
  12210. static void ggml_compute_forward_arange_f32(
  12211. const struct ggml_compute_params * params,
  12212. struct ggml_tensor * dst) {
  12213. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12214. const int ith = params->ith;
  12215. const int nth = params->nth;
  12216. const float start = ggml_get_op_params_f32(dst, 0);
  12217. const float stop = ggml_get_op_params_f32(dst, 1);
  12218. const float step = ggml_get_op_params_f32(dst, 2);
  12219. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12220. GGML_ASSERT(ggml_nelements(dst) == steps);
  12221. for (int64_t i = ith; i < steps; i+= nth) {
  12222. float value = start + step * i;
  12223. ((float *)dst->data)[i] = value;
  12224. }
  12225. }
  12226. static void ggml_compute_forward_arange(
  12227. const struct ggml_compute_params * params,
  12228. struct ggml_tensor * dst) {
  12229. switch (dst->type) {
  12230. case GGML_TYPE_F32:
  12231. {
  12232. ggml_compute_forward_arange_f32(params, dst);
  12233. } break;
  12234. default:
  12235. {
  12236. GGML_ASSERT(false);
  12237. } break;
  12238. }
  12239. }
  12240. static void ggml_compute_forward_timestep_embedding_f32(
  12241. const struct ggml_compute_params * params,
  12242. struct ggml_tensor * dst) {
  12243. const struct ggml_tensor * src0 = dst->src[0];
  12244. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12245. const int ith = params->ith;
  12246. const int nth = params->nth;
  12247. GGML_TENSOR_UNARY_OP_LOCALS
  12248. const int dim = ggml_get_op_params_i32(dst, 0);
  12249. const int max_period = ggml_get_op_params_i32(dst, 1);
  12250. int half = dim / 2;
  12251. for (int64_t i = 0; i < ne00; i++) {
  12252. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12253. for (int64_t j = ith; j < half; j += nth) {
  12254. float timestep = ((float *)src0->data)[i];
  12255. float freq = (float)expf(-logf(max_period) * j / half);
  12256. float arg = timestep * freq;
  12257. embed_data[j] = cosf(arg);
  12258. embed_data[j + half] = sinf(arg);
  12259. }
  12260. if (dim % 2 != 0 && ith == 0) {
  12261. embed_data[dim] = 0.f;
  12262. }
  12263. }
  12264. }
  12265. static void ggml_compute_forward_timestep_embedding(
  12266. const struct ggml_compute_params * params,
  12267. struct ggml_tensor * dst) {
  12268. const struct ggml_tensor * src0 = dst->src[0];
  12269. switch (src0->type) {
  12270. case GGML_TYPE_F32:
  12271. {
  12272. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12273. } break;
  12274. default:
  12275. {
  12276. GGML_ASSERT(false);
  12277. } break;
  12278. }
  12279. }
  12280. // ggml_compute_forward_argsort
  12281. static void ggml_compute_forward_argsort_f32(
  12282. const struct ggml_compute_params * params,
  12283. struct ggml_tensor * dst) {
  12284. const struct ggml_tensor * src0 = dst->src[0];
  12285. GGML_TENSOR_UNARY_OP_LOCALS
  12286. GGML_ASSERT(nb0 == sizeof(float));
  12287. const int ith = params->ith;
  12288. const int nth = params->nth;
  12289. const int64_t nr = ggml_nrows(src0);
  12290. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12291. for (int64_t i = ith; i < nr; i += nth) {
  12292. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12293. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12294. for (int64_t j = 0; j < ne0; j++) {
  12295. dst_data[j] = j;
  12296. }
  12297. // C doesn't have a functional sort, so we do a bubble sort instead
  12298. for (int64_t j = 0; j < ne0; j++) {
  12299. for (int64_t k = j + 1; k < ne0; k++) {
  12300. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12301. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12302. int32_t tmp = dst_data[j];
  12303. dst_data[j] = dst_data[k];
  12304. dst_data[k] = tmp;
  12305. }
  12306. }
  12307. }
  12308. }
  12309. }
  12310. static void ggml_compute_forward_argsort(
  12311. const struct ggml_compute_params * params,
  12312. struct ggml_tensor * dst) {
  12313. const struct ggml_tensor * src0 = dst->src[0];
  12314. switch (src0->type) {
  12315. case GGML_TYPE_F32:
  12316. {
  12317. ggml_compute_forward_argsort_f32(params, dst);
  12318. } break;
  12319. default:
  12320. {
  12321. GGML_ASSERT(false);
  12322. } break;
  12323. }
  12324. }
  12325. // ggml_compute_forward_flash_attn_ext
  12326. static void ggml_compute_forward_flash_attn_ext_f16(
  12327. const struct ggml_compute_params * params,
  12328. const struct ggml_tensor * q,
  12329. const struct ggml_tensor * k,
  12330. const struct ggml_tensor * v,
  12331. const struct ggml_tensor * mask,
  12332. struct ggml_tensor * dst) {
  12333. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12334. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12335. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12336. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12337. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12338. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12339. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12340. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12341. const int ith = params->ith;
  12342. const int nth = params->nth;
  12343. const int64_t D = neq0;
  12344. const int64_t N = neq1;
  12345. GGML_ASSERT(ne0 == D);
  12346. GGML_ASSERT(ne2 == N);
  12347. // input tensor rows must be contiguous
  12348. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12349. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12350. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12351. GGML_ASSERT(neq0 == D);
  12352. GGML_ASSERT(nek0 == D);
  12353. GGML_ASSERT(nev0 == D);
  12354. GGML_ASSERT(neq1 == N);
  12355. GGML_ASSERT(nev0 == D);
  12356. // dst cannot be transposed or permuted
  12357. GGML_ASSERT(nb0 == sizeof(float));
  12358. GGML_ASSERT(nb0 <= nb1);
  12359. GGML_ASSERT(nb1 <= nb2);
  12360. GGML_ASSERT(nb2 <= nb3);
  12361. // broadcast factors
  12362. const int64_t rk2 = neq2/nek2;
  12363. const int64_t rk3 = neq3/nek3;
  12364. const int64_t rv2 = neq2/nev2;
  12365. const int64_t rv3 = neq3/nev3;
  12366. // parallelize by q rows using ggml_vec_dot_f32
  12367. // total rows in q
  12368. const int nr = neq1*neq2*neq3;
  12369. // rows per thread
  12370. const int dr = (nr + nth - 1)/nth;
  12371. // row range for this thread
  12372. const int ir0 = dr*ith;
  12373. const int ir1 = MIN(ir0 + dr, nr);
  12374. float scale = 1.0f;
  12375. float max_bias = 0.0f;
  12376. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12377. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12378. const uint32_t n_head = neq2;
  12379. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12380. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12381. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12382. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12383. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12384. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12385. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12386. // loop over n_batch and n_head
  12387. for (int ir = ir0; ir < ir1; ++ir) {
  12388. // q indices
  12389. const int iq3 = ir/(neq2*neq1);
  12390. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12391. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12392. const uint32_t h = iq2; // head index
  12393. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12394. float S = 0.0f; // sum
  12395. float M = -INFINITY; // maximum KQ value
  12396. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12397. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12398. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12399. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12400. if (v->type == GGML_TYPE_F16) {
  12401. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12402. } else {
  12403. memset(VKQ32, 0, D*sizeof(float));
  12404. }
  12405. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12406. // k indices
  12407. const int ik3 = iq3 / rk3;
  12408. const int ik2 = iq2 / rk2;
  12409. // v indices
  12410. const int iv3 = iq3 / rv3;
  12411. const int iv2 = iq2 / rv2;
  12412. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12413. q_to_vec_dot(pq, Q_q, D);
  12414. // online softmax / attention
  12415. // loop over n_kv and n_head_kv
  12416. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12417. for (int64_t ic = 0; ic < nek1; ++ic) {
  12418. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12419. if (mv == -INFINITY) {
  12420. continue;
  12421. }
  12422. float s; // KQ value
  12423. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12424. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12425. s = s*scale + mv; // scale KQ value and apply mask
  12426. const float Mold = M;
  12427. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12428. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12429. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12430. if (v->type== GGML_TYPE_F16) {
  12431. if (s > M) {
  12432. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12433. M = s;
  12434. ms = expf(Mold - M);
  12435. // V = V*expf(Mold - M)
  12436. ggml_vec_scale_f16(D, VKQ16, ms);
  12437. } else {
  12438. // no new maximum, ms == 1.0f, vs != 1.0f
  12439. vs = expf(s - M);
  12440. }
  12441. // V += v*expf(s - M)
  12442. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12443. } else {
  12444. if (s > M) {
  12445. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12446. M = s;
  12447. ms = expf(Mold - M);
  12448. // V = V*expf(Mold - M)
  12449. ggml_vec_scale_f32(D, VKQ32, ms);
  12450. } else {
  12451. // no new maximum, ms == 1.0f, vs != 1.0f
  12452. vs = expf(s - M);
  12453. }
  12454. v_to_float(v_data, V32, D);
  12455. // V += v*expf(s - M)
  12456. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12457. }
  12458. S = S*ms + vs; // scale and increment sum with partial sum
  12459. }
  12460. if (v->type == GGML_TYPE_F16) {
  12461. for (int64_t d = 0; d < D; ++d) {
  12462. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12463. }
  12464. }
  12465. // V /= S
  12466. const float S_inv = 1.0f/S;
  12467. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12468. // dst indices
  12469. const int i1 = iq1;
  12470. const int i2 = iq2;
  12471. const int i3 = iq3;
  12472. // original
  12473. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12474. // permute(0, 2, 1, 3)
  12475. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12476. }
  12477. }
  12478. static void ggml_compute_forward_flash_attn_ext(
  12479. const struct ggml_compute_params * params,
  12480. const struct ggml_tensor * q,
  12481. const struct ggml_tensor * k,
  12482. const struct ggml_tensor * v,
  12483. const struct ggml_tensor * mask,
  12484. struct ggml_tensor * dst) {
  12485. switch (dst->op_params[2]) {
  12486. case GGML_PREC_DEFAULT:
  12487. case GGML_PREC_F32:
  12488. {
  12489. // uses F32 accumulators
  12490. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12491. } break;
  12492. default:
  12493. {
  12494. GGML_ASSERT(false);
  12495. } break;
  12496. }
  12497. }
  12498. // ggml_compute_forward_flash_attn_back
  12499. static void ggml_compute_forward_flash_attn_back_f32(
  12500. const struct ggml_compute_params * params,
  12501. const bool masked,
  12502. struct ggml_tensor * dst) {
  12503. const struct ggml_tensor * q = dst->src[0];
  12504. const struct ggml_tensor * k = dst->src[1];
  12505. const struct ggml_tensor * v = dst->src[2];
  12506. const struct ggml_tensor * d = dst->src[3];
  12507. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12508. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12509. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12510. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12511. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12512. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12513. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12514. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12515. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12516. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12517. const int ith = params->ith;
  12518. const int nth = params->nth;
  12519. const int64_t D = neq0;
  12520. const int64_t N = neq1;
  12521. const int64_t P = nek1 - N;
  12522. const int64_t M = P + N;
  12523. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12524. const int mxDM = MAX(D, Mup);
  12525. // GGML_ASSERT(ne0 == D);
  12526. // GGML_ASSERT(ne1 == N);
  12527. GGML_ASSERT(P >= 0);
  12528. GGML_ASSERT(nbq0 == sizeof(float));
  12529. GGML_ASSERT(nbk0 == sizeof(float));
  12530. GGML_ASSERT(nbv0 == sizeof(float));
  12531. GGML_ASSERT(neq0 == D);
  12532. GGML_ASSERT(nek0 == D);
  12533. GGML_ASSERT(nev1 == D);
  12534. GGML_ASSERT(ned0 == D);
  12535. GGML_ASSERT(neq1 == N);
  12536. GGML_ASSERT(nek1 == N + P);
  12537. GGML_ASSERT(nev1 == D);
  12538. GGML_ASSERT(ned1 == N);
  12539. // dst cannot be transposed or permuted
  12540. GGML_ASSERT(nb0 == sizeof(float));
  12541. GGML_ASSERT(nb0 <= nb1);
  12542. GGML_ASSERT(nb1 <= nb2);
  12543. GGML_ASSERT(nb2 <= nb3);
  12544. if (ith == 0) {
  12545. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12546. }
  12547. ggml_barrier(params->shared);
  12548. const int64_t elem_q = ggml_nelements(q);
  12549. const int64_t elem_k = ggml_nelements(k);
  12550. enum ggml_type result_type = dst->type;
  12551. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12552. const size_t tsize = ggml_type_size(result_type);
  12553. const size_t offs_q = 0;
  12554. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12555. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12556. void * grad_q = (char *) dst->data;
  12557. void * grad_k = (char *) dst->data + offs_k;
  12558. void * grad_v = (char *) dst->data + offs_v;
  12559. const size_t nbgq1 = nb0*neq0;
  12560. const size_t nbgq2 = nb0*neq0*neq1;
  12561. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12562. const size_t nbgk1 = nb0*nek0;
  12563. const size_t nbgk2 = nb0*nek0*nek1;
  12564. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12565. const size_t nbgv1 = nb0*nev0;
  12566. const size_t nbgv2 = nb0*nev0*nev1;
  12567. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12568. // parallelize by k rows using ggml_vec_dot_f32
  12569. // total rows in k
  12570. const int nr = nek2*nek3;
  12571. // rows per thread
  12572. const int dr = (nr + nth - 1)/nth;
  12573. // row range for this thread
  12574. const int ir0 = dr*ith;
  12575. const int ir1 = MIN(ir0 + dr, nr);
  12576. const float scale = 1.0f/sqrtf(D);
  12577. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12578. // how often k2 (and v2) is repeated in q2
  12579. int nrep = neq2/nek2;
  12580. for (int ir = ir0; ir < ir1; ++ir) {
  12581. // q indices
  12582. const int ik3 = ir/(nek2);
  12583. const int ik2 = ir - ik3*nek2;
  12584. const int iq3 = ik3;
  12585. const int id3 = ik3;
  12586. const int iv3 = ik3;
  12587. const int iv2 = ik2;
  12588. for (int irep = 0; irep < nrep; ++irep) {
  12589. const int iq2 = ik2 + irep*nek2;
  12590. const int id2 = iq2;
  12591. // (ik2 + irep*nek2) % nek2 == ik2
  12592. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12593. const int id1 = iq1;
  12594. // not sure about CACHE_LINE_SIZE_F32..
  12595. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12596. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12597. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12598. for (int i = M; i < Mup; ++i) {
  12599. S[i] = -INFINITY;
  12600. }
  12601. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12602. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12603. // k indices
  12604. const int ik1 = ic;
  12605. // S indices
  12606. const int i1 = ik1;
  12607. ggml_vec_dot_f32(neq0,
  12608. S + i1, 0,
  12609. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12610. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12611. }
  12612. // scale
  12613. ggml_vec_scale_f32(masked_begin, S, scale);
  12614. for (int64_t i = masked_begin; i < M; i++) {
  12615. S[i] = -INFINITY;
  12616. }
  12617. // softmax
  12618. // exclude known -INF S[..] values from max and loop
  12619. // dont forget to set their SM values to zero
  12620. {
  12621. float max = -INFINITY;
  12622. ggml_vec_max_f32(masked_begin, &max, S);
  12623. ggml_float sum = 0.0;
  12624. {
  12625. #ifdef GGML_SOFT_MAX_ACCELERATE
  12626. max = -max;
  12627. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12628. vvexpf(SM, SM, &Mup);
  12629. ggml_vec_sum_f32(Mup, &sum, SM);
  12630. #else
  12631. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12632. #endif
  12633. }
  12634. assert(sum > 0.0);
  12635. sum = 1.0/sum;
  12636. ggml_vec_scale_f32(masked_begin, SM, sum);
  12637. }
  12638. // step-by-step explanation
  12639. {
  12640. // forward-process shape grads from backward process
  12641. // parallel_for ik2,ik3:
  12642. // for irep:
  12643. // iq2 = ik2 + irep*nek2
  12644. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12645. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12646. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12647. // for iq1:
  12648. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12649. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12650. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12651. // S0 = -Inf [D,1,1,1]
  12652. // ~S1[i] = dot(kcur[:D,i], qcur)
  12653. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12654. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12655. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12656. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12657. // ~S5[i] = dot(vcur[:,i], S4)
  12658. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12659. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12660. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12661. // dst backward-/ grad[dst] = d
  12662. //
  12663. // output gradients with their dependencies:
  12664. //
  12665. // grad[kcur] = grad[S1].T @ qcur
  12666. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12667. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12668. // grad[S4] = grad[S5] @ vcur
  12669. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12670. // grad[qcur] = grad[S1] @ kcur
  12671. // grad[vcur] = grad[S5].T @ S4
  12672. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12673. //
  12674. // in post-order:
  12675. //
  12676. // S1 = qcur @ kcur.T
  12677. // S2 = S1 * scale
  12678. // S3 = diag_mask_inf(S2, P)
  12679. // S4 = softmax(S3)
  12680. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12681. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12682. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12683. // grad[qcur] = grad[S1] @ kcur
  12684. // grad[kcur] = grad[S1].T @ qcur
  12685. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12686. //
  12687. // using less variables (SM=S4):
  12688. //
  12689. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12690. // SM = softmax(S)
  12691. // S = d[:D,iq1,iq2,iq3] @ vcur
  12692. // dot_SM_gradSM = dot(SM, S)
  12693. // S = SM * (S - dot(SM, S))
  12694. // S = diag_mask_zero(S, P) * scale
  12695. //
  12696. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12697. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12698. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12699. }
  12700. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12701. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12702. // for ic:
  12703. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12704. // exclude known future zero S[..] values from operation
  12705. ggml_vec_set_f32(masked_begin, S, 0);
  12706. for (int64_t ic = 0; ic < D; ++ic) {
  12707. ggml_vec_mad_f32(masked_begin,
  12708. S,
  12709. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12710. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12711. }
  12712. // S = SM * (S - dot(SM, S))
  12713. float dot_SM_gradSM = 0;
  12714. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12715. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12716. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12717. // S = diag_mask_zero(S, P) * scale
  12718. // already done by above ggml_vec_set_f32
  12719. // exclude known zero S[..] values from operation
  12720. ggml_vec_scale_f32(masked_begin, S, scale);
  12721. // S shape [M,1]
  12722. // SM shape [M,1]
  12723. // kcur shape [D,M]
  12724. // qcur shape [D,1]
  12725. // vcur shape [M,D]
  12726. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12727. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12728. // for ic:
  12729. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12730. // exclude known zero S[..] values from loop
  12731. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12732. ggml_vec_mad_f32(D,
  12733. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12734. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12735. S[ic]);
  12736. }
  12737. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12738. // for ic:
  12739. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12740. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12741. // exclude known zero S[..] values from loop
  12742. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12743. ggml_vec_mad_f32(D,
  12744. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12745. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12746. S[ic]);
  12747. }
  12748. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12749. // for ic:
  12750. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12751. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12752. // exclude known zero SM[..] values from mad
  12753. for (int64_t ic = 0; ic < D; ++ic) {
  12754. ggml_vec_mad_f32(masked_begin,
  12755. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12756. SM,
  12757. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12758. }
  12759. }
  12760. }
  12761. }
  12762. }
  12763. static void ggml_compute_forward_flash_attn_back(
  12764. const struct ggml_compute_params * params,
  12765. const bool masked,
  12766. struct ggml_tensor * dst) {
  12767. const struct ggml_tensor * q = dst->src[0];
  12768. switch (q->type) {
  12769. case GGML_TYPE_F32:
  12770. {
  12771. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12772. } break;
  12773. default:
  12774. {
  12775. GGML_ASSERT(false);
  12776. } break;
  12777. }
  12778. }
  12779. // ggml_compute_forward_ssm_conv
  12780. static void ggml_compute_forward_ssm_conv_f32(
  12781. const struct ggml_compute_params * params,
  12782. struct ggml_tensor * dst) {
  12783. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12784. const struct ggml_tensor * src1 = dst->src[1]; // x
  12785. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12786. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12787. const int ith = params->ith;
  12788. const int nth = params->nth;
  12789. const int nc = src2->ne[0]; // d_conv
  12790. const int nr = src0->ne[1]; // d_inner
  12791. const int n_t = src1->ne[1]; // n_tokens
  12792. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12793. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12794. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12795. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12796. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12797. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12798. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12799. // for use with the destination state offset between sequences
  12800. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12801. // rows per thread
  12802. const int dr = (nr + nth - 1)/nth;
  12803. // row range for this thread
  12804. const int ir0 = dr*ith;
  12805. const int ir1 = MIN(ir0 + dr, nr);
  12806. const int ir = ir1 - ir0;
  12807. if (n_kv > 1) {
  12808. // multiple sequences means it's hard to know when it's the first time a state is read,
  12809. // so copy them all over to the destination, just to be sure.
  12810. for (int i3 = 0; i3 < n_kv; ++i3) {
  12811. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12812. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12813. // can't use memcpy because of d_conv vs d_conv - 1
  12814. for (int i1 = 0; i1 < ir; ++i1) {
  12815. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12816. // copy s0 to last (d_conv - 1) columns of s
  12817. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12818. }
  12819. }
  12820. }
  12821. }
  12822. for (int i2 = 0; i2 < n_t; ++i2) {
  12823. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12824. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12825. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12826. float * s0; // {d_conv - 1, d_inner, n_kv}
  12827. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12828. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12829. int ne0s0;
  12830. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12831. // avoid needing to copy the state for the first token
  12832. if (i2 == 0) {
  12833. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12834. ne0s0 = src0->ne[0];
  12835. } else {
  12836. // the source is the last (d_conv - 1) columns of the destination
  12837. s0 = s + 1;
  12838. ne0s0 = nc;
  12839. }
  12840. // d_inner
  12841. for (int i1 = 0; i1 < ir; ++i1) {
  12842. // shift state left
  12843. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12844. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12845. }
  12846. // insert x on the last column
  12847. s[(nc - 1) + i1*nc] = x0[i1];
  12848. }
  12849. // handle copies when there are multiple output states
  12850. for (int i3 = 1; i3 < n_kv; ++i3) {
  12851. int32_t seq = sq[i3];
  12852. if (0 <= seq && seq < n_kv) {
  12853. float * s1 = s + (seq - sq[0])*nc*nr;
  12854. memcpy(s1, s, nc*ir*sizeof(float));
  12855. } else {
  12856. // stop at negative or too big seq_ids
  12857. break;
  12858. }
  12859. }
  12860. // it seems a little faster when this is separate from the state shift
  12861. for (int i1 = 0; i1 < ir; ++i1) {
  12862. // rowwise dot product
  12863. float sumf = 0.0f;
  12864. for (int i0 = 0; i0 < nc; ++i0) {
  12865. int i = i0 + i1*nc;
  12866. sumf += s[i] * c[i];
  12867. }
  12868. x[i1] = sumf;
  12869. }
  12870. }
  12871. }
  12872. static void ggml_compute_forward_ssm_conv(
  12873. const struct ggml_compute_params * params,
  12874. struct ggml_tensor * dst) {
  12875. switch (dst->src[0]->type) {
  12876. case GGML_TYPE_F32:
  12877. {
  12878. ggml_compute_forward_ssm_conv_f32(params, dst);
  12879. } break;
  12880. default:
  12881. {
  12882. GGML_ASSERT(false);
  12883. } break;
  12884. }
  12885. }
  12886. // ggml_compute_forward_ssm_scan
  12887. static void ggml_compute_forward_ssm_scan_f32(
  12888. const struct ggml_compute_params * params,
  12889. struct ggml_tensor * dst) {
  12890. const struct ggml_tensor * src0 = dst->src[0]; // s
  12891. const struct ggml_tensor * src1 = dst->src[1]; // x
  12892. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12893. const struct ggml_tensor * src3 = dst->src[3]; // A
  12894. const struct ggml_tensor * src4 = dst->src[4]; // B
  12895. const struct ggml_tensor * src5 = dst->src[5]; // C
  12896. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12897. const int ith = params->ith;
  12898. const int nth = params->nth;
  12899. const int64_t nc = src0->ne[0]; // d_state
  12900. const int64_t nr = src0->ne[1]; // d_inner
  12901. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12902. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12903. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12904. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12905. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12906. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12907. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12908. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12909. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12910. // required for the dot product between s and C, and when copying the states
  12911. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12912. // required for per-sequence offsets for states
  12913. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12914. // required to get correct offset for state destination (i.e. src1->nb[2])
  12915. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12916. // rows per thread
  12917. const int dr = (nr + nth - 1)/nth;
  12918. // row range for this thread
  12919. const int ir0 = dr*ith;
  12920. const int ir1 = MIN(ir0 + dr, nr);
  12921. const int ir = ir1 - ir0;
  12922. if (n_kv > 1) {
  12923. // it's hard to know if the source states have already been copied
  12924. // when there are multiple, so copy them already.
  12925. for (int i3 = 0; i3 < n_kv; ++i3) {
  12926. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12927. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12928. memcpy(s, s0, nc*ir*sizeof(float));
  12929. }
  12930. }
  12931. for (int i2 = 0; i2 < n_t; ++i2) {
  12932. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12933. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12934. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12935. float * s0;
  12936. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12937. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12938. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12939. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12940. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12941. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12942. // avoid needing to copy the state for the first token
  12943. if (i2 == 0) {
  12944. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12945. } else {
  12946. // otherwise the source is the same as the destination
  12947. s0 = s;
  12948. }
  12949. // d_inner
  12950. for (int i1 = 0; i1 < ir; ++i1) {
  12951. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12952. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12953. float x_dt = x[i1] * dt_soft_plus;
  12954. float sumf = 0.0f;
  12955. // d_state
  12956. for (int i0 = 0; i0 < nc; ++i0) {
  12957. int i = i0 + i1*nc;
  12958. // state = prev_state * dA + dB * x
  12959. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12960. // y = rowwise_dotprod(state, C)
  12961. sumf += state * C[i0];
  12962. s[i] = state;
  12963. }
  12964. y[i1] = sumf;
  12965. }
  12966. // handle copies when there are multiple output states
  12967. for (int i3 = 1; i3 < n_kv; ++i3) {
  12968. int32_t seq = sq[i3];
  12969. if (0 <= seq && seq < n_kv) {
  12970. float * s1 = s + (seq - sq[0])*nc*nr;
  12971. memcpy(s1, s, nc*ir*sizeof(float));
  12972. } else {
  12973. // stop at negative or too big seq_ids
  12974. break;
  12975. }
  12976. }
  12977. }
  12978. }
  12979. static void ggml_compute_forward_ssm_scan(
  12980. const struct ggml_compute_params * params,
  12981. struct ggml_tensor * dst) {
  12982. switch (dst->src[0]->type) {
  12983. case GGML_TYPE_F32:
  12984. {
  12985. ggml_compute_forward_ssm_scan_f32(params, dst);
  12986. } break;
  12987. default:
  12988. {
  12989. GGML_ASSERT(false);
  12990. } break;
  12991. }
  12992. }
  12993. // ggml_compute_forward_win_part
  12994. static void ggml_compute_forward_win_part_f32(
  12995. const struct ggml_compute_params * params,
  12996. struct ggml_tensor * dst) {
  12997. UNUSED(params);
  12998. const struct ggml_tensor * src0 = dst->src[0];
  12999. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13000. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13001. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13002. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13003. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13004. assert(ne00 == ne0);
  13005. assert(ne3 == nep0*nep1);
  13006. // TODO: optimize / multi-thread
  13007. for (int py = 0; py < nep1; ++py) {
  13008. for (int px = 0; px < nep0; ++px) {
  13009. const int64_t i3 = py*nep0 + px;
  13010. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13011. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13012. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13013. const int64_t i02 = py*w + i2;
  13014. const int64_t i01 = px*w + i1;
  13015. const int64_t i00 = i0;
  13016. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13017. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13018. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13019. ((float *) dst->data)[i] = 0.0f;
  13020. } else {
  13021. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13022. }
  13023. }
  13024. }
  13025. }
  13026. }
  13027. }
  13028. }
  13029. static void ggml_compute_forward_win_part(
  13030. const struct ggml_compute_params * params,
  13031. struct ggml_tensor * dst) {
  13032. const struct ggml_tensor * src0 = dst->src[0];
  13033. switch (src0->type) {
  13034. case GGML_TYPE_F32:
  13035. {
  13036. ggml_compute_forward_win_part_f32(params, dst);
  13037. } break;
  13038. default:
  13039. {
  13040. GGML_ASSERT(false);
  13041. } break;
  13042. }
  13043. }
  13044. // ggml_compute_forward_win_unpart
  13045. static void ggml_compute_forward_win_unpart_f32(
  13046. const struct ggml_compute_params * params,
  13047. struct ggml_tensor * dst) {
  13048. UNUSED(params);
  13049. const struct ggml_tensor * src0 = dst->src[0];
  13050. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13051. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13052. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13053. // padding
  13054. const int px = (w - ne1%w)%w;
  13055. //const int py = (w - ne2%w)%w;
  13056. const int npx = (px + ne1)/w;
  13057. //const int npy = (py + ne2)/w;
  13058. assert(ne0 == ne00);
  13059. // TODO: optimize / multi-thread
  13060. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13061. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13062. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13063. const int ip2 = i2/w;
  13064. const int ip1 = i1/w;
  13065. const int64_t i02 = i2%w;
  13066. const int64_t i01 = i1%w;
  13067. const int64_t i00 = i0;
  13068. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13069. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13070. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13071. }
  13072. }
  13073. }
  13074. }
  13075. static void ggml_compute_forward_win_unpart(
  13076. const struct ggml_compute_params * params,
  13077. struct ggml_tensor * dst) {
  13078. const struct ggml_tensor * src0 = dst->src[0];
  13079. switch (src0->type) {
  13080. case GGML_TYPE_F32:
  13081. {
  13082. ggml_compute_forward_win_unpart_f32(params, dst);
  13083. } break;
  13084. default:
  13085. {
  13086. GGML_ASSERT(false);
  13087. } break;
  13088. }
  13089. }
  13090. //gmml_compute_forward_unary
  13091. static void ggml_compute_forward_unary(
  13092. const struct ggml_compute_params * params,
  13093. struct ggml_tensor * dst) {
  13094. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13095. switch (op) {
  13096. case GGML_UNARY_OP_ABS:
  13097. {
  13098. ggml_compute_forward_abs(params, dst);
  13099. } break;
  13100. case GGML_UNARY_OP_SGN:
  13101. {
  13102. ggml_compute_forward_sgn(params, dst);
  13103. } break;
  13104. case GGML_UNARY_OP_NEG:
  13105. {
  13106. ggml_compute_forward_neg(params, dst);
  13107. } break;
  13108. case GGML_UNARY_OP_STEP:
  13109. {
  13110. ggml_compute_forward_step(params, dst);
  13111. } break;
  13112. case GGML_UNARY_OP_TANH:
  13113. {
  13114. ggml_compute_forward_tanh(params, dst);
  13115. } break;
  13116. case GGML_UNARY_OP_ELU:
  13117. {
  13118. ggml_compute_forward_elu(params, dst);
  13119. } break;
  13120. case GGML_UNARY_OP_RELU:
  13121. {
  13122. ggml_compute_forward_relu(params, dst);
  13123. } break;
  13124. case GGML_UNARY_OP_SIGMOID:
  13125. {
  13126. ggml_compute_forward_sigmoid(params, dst);
  13127. } break;
  13128. case GGML_UNARY_OP_GELU:
  13129. {
  13130. ggml_compute_forward_gelu(params, dst);
  13131. } break;
  13132. case GGML_UNARY_OP_GELU_QUICK:
  13133. {
  13134. ggml_compute_forward_gelu_quick(params, dst);
  13135. } break;
  13136. case GGML_UNARY_OP_SILU:
  13137. {
  13138. ggml_compute_forward_silu(params, dst);
  13139. } break;
  13140. case GGML_UNARY_OP_HARDSWISH:
  13141. {
  13142. ggml_compute_forward_hardswish(params, dst);
  13143. } break;
  13144. case GGML_UNARY_OP_HARDSIGMOID:
  13145. {
  13146. ggml_compute_forward_hardsigmoid(params, dst);
  13147. } break;
  13148. default:
  13149. {
  13150. GGML_ASSERT(false);
  13151. } break;
  13152. }
  13153. }
  13154. // ggml_compute_forward_get_rel_pos
  13155. static void ggml_compute_forward_get_rel_pos_f16(
  13156. const struct ggml_compute_params * params,
  13157. struct ggml_tensor * dst) {
  13158. UNUSED(params);
  13159. const struct ggml_tensor * src0 = dst->src[0];
  13160. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13161. GGML_TENSOR_UNARY_OP_LOCALS
  13162. const int64_t w = ne1;
  13163. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13164. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13165. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13166. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13167. const int64_t pos = (w - i1 - 1) + i2;
  13168. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13169. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13170. }
  13171. }
  13172. }
  13173. }
  13174. static void ggml_compute_forward_get_rel_pos(
  13175. const struct ggml_compute_params * params,
  13176. struct ggml_tensor * dst) {
  13177. const struct ggml_tensor * src0 = dst->src[0];
  13178. switch (src0->type) {
  13179. case GGML_TYPE_F16:
  13180. case GGML_TYPE_BF16:
  13181. {
  13182. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13183. } break;
  13184. default:
  13185. {
  13186. GGML_ASSERT(false);
  13187. } break;
  13188. }
  13189. }
  13190. // ggml_compute_forward_add_rel_pos
  13191. static void ggml_compute_forward_add_rel_pos_f32(
  13192. const struct ggml_compute_params * params,
  13193. struct ggml_tensor * dst) {
  13194. const struct ggml_tensor * src0 = dst->src[0];
  13195. const struct ggml_tensor * src1 = dst->src[1];
  13196. const struct ggml_tensor * src2 = dst->src[2];
  13197. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13198. if (!inplace) {
  13199. if (params->ith == 0) {
  13200. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13201. }
  13202. ggml_barrier(params->shared);
  13203. }
  13204. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13205. float * src1_data = (float *) src1->data;
  13206. float * src2_data = (float *) src2->data;
  13207. float * dst_data = (float *) dst->data;
  13208. const int64_t ne10 = src1->ne[0];
  13209. const int64_t ne11 = src1->ne[1];
  13210. const int64_t ne12 = src1->ne[2];
  13211. const int64_t ne13 = src1->ne[3];
  13212. const int ith = params->ith;
  13213. const int nth = params->nth;
  13214. // total patches in dst
  13215. const int np = ne13;
  13216. // patches per thread
  13217. const int dp = (np + nth - 1)/nth;
  13218. // patch range for this thread
  13219. const int ip0 = dp*ith;
  13220. const int ip1 = MIN(ip0 + dp, np);
  13221. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13222. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13223. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13224. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13225. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13226. const int64_t jp0 = jp1 + i10;
  13227. const float src1_e = src1_data[jp0];
  13228. const float src2_e = src2_data[jp0];
  13229. const int64_t jdh = jp0 * ne10;
  13230. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13231. for (int64_t j = 0; j < ne10; ++j) {
  13232. dst_data[jdh + j ] += src2_e;
  13233. dst_data[jdw + j*ne10] += src1_e;
  13234. }
  13235. }
  13236. }
  13237. }
  13238. }
  13239. }
  13240. static void ggml_compute_forward_add_rel_pos(
  13241. const struct ggml_compute_params * params,
  13242. struct ggml_tensor * dst) {
  13243. const struct ggml_tensor * src0 = dst->src[0];
  13244. switch (src0->type) {
  13245. case GGML_TYPE_F32:
  13246. {
  13247. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13248. } break;
  13249. default:
  13250. {
  13251. GGML_ASSERT(false);
  13252. } break;
  13253. }
  13254. }
  13255. // ggml_compute_forward_map_unary
  13256. static void ggml_compute_forward_map_unary_f32(
  13257. const struct ggml_compute_params * params,
  13258. struct ggml_tensor * dst,
  13259. const ggml_unary_op_f32_t fun) {
  13260. const struct ggml_tensor * src0 = dst->src[0];
  13261. if (params->ith != 0) {
  13262. return;
  13263. }
  13264. assert(ggml_is_contiguous_1(src0));
  13265. assert(ggml_is_contiguous_1(dst));
  13266. assert(ggml_are_same_shape(src0, dst));
  13267. const int n = ggml_nrows(src0);
  13268. const int nc = src0->ne[0];
  13269. for (int i = 0; i < n; i++) {
  13270. fun(nc,
  13271. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13272. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13273. }
  13274. }
  13275. static void ggml_compute_forward_map_unary(
  13276. const struct ggml_compute_params * params,
  13277. struct ggml_tensor * dst,
  13278. const ggml_unary_op_f32_t fun) {
  13279. const struct ggml_tensor * src0 = dst->src[0];
  13280. switch (src0->type) {
  13281. case GGML_TYPE_F32:
  13282. {
  13283. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13284. } break;
  13285. default:
  13286. {
  13287. GGML_ASSERT(false);
  13288. } break;
  13289. }
  13290. }
  13291. // ggml_compute_forward_map_binary
  13292. static void ggml_compute_forward_map_binary_f32(
  13293. const struct ggml_compute_params * params,
  13294. struct ggml_tensor * dst,
  13295. const ggml_binary_op_f32_t fun) {
  13296. const struct ggml_tensor * src0 = dst->src[0];
  13297. const struct ggml_tensor * src1 = dst->src[1];
  13298. if (params->ith != 0) {
  13299. return;
  13300. }
  13301. assert(ggml_is_contiguous_1(src0));
  13302. assert(ggml_is_contiguous_1(src1));
  13303. assert(ggml_is_contiguous_1(dst));
  13304. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13305. const int n = ggml_nrows(src0);
  13306. const int nc = src0->ne[0];
  13307. for (int i = 0; i < n; i++) {
  13308. fun(nc,
  13309. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13310. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13311. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13312. }
  13313. }
  13314. static void ggml_compute_forward_map_binary(
  13315. const struct ggml_compute_params * params,
  13316. struct ggml_tensor * dst,
  13317. const ggml_binary_op_f32_t fun) {
  13318. const struct ggml_tensor * src0 = dst->src[0];
  13319. switch (src0->type) {
  13320. case GGML_TYPE_F32:
  13321. {
  13322. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13323. } break;
  13324. default:
  13325. {
  13326. GGML_ASSERT(false);
  13327. } break;
  13328. }
  13329. }
  13330. // ggml_compute_forward_map_custom1
  13331. static void ggml_compute_forward_map_custom1_f32(
  13332. const struct ggml_compute_params * params,
  13333. struct ggml_tensor * dst,
  13334. const ggml_custom1_op_f32_t fun) {
  13335. const struct ggml_tensor * a = dst->src[0];
  13336. if (params->ith != 0) {
  13337. return;
  13338. }
  13339. fun(dst, a);
  13340. }
  13341. // ggml_compute_forward_map_custom2
  13342. static void ggml_compute_forward_map_custom2_f32(
  13343. const struct ggml_compute_params * params,
  13344. struct ggml_tensor * dst,
  13345. const ggml_custom2_op_f32_t fun) {
  13346. const struct ggml_tensor * a = dst->src[0];
  13347. const struct ggml_tensor * b = dst->src[1];
  13348. if (params->ith != 0) {
  13349. return;
  13350. }
  13351. fun(dst, a, b);
  13352. }
  13353. // ggml_compute_forward_map_custom3
  13354. static void ggml_compute_forward_map_custom3_f32(
  13355. const struct ggml_compute_params * params,
  13356. struct ggml_tensor * dst,
  13357. const ggml_custom3_op_f32_t fun) {
  13358. const struct ggml_tensor * a = dst->src[0];
  13359. const struct ggml_tensor * b = dst->src[1];
  13360. const struct ggml_tensor * c = dst->src[1];
  13361. if (params->ith != 0) {
  13362. return;
  13363. }
  13364. fun(dst, a, b, c);
  13365. }
  13366. // ggml_compute_forward_map_custom1
  13367. static void ggml_compute_forward_map_custom1(
  13368. const struct ggml_compute_params * params,
  13369. struct ggml_tensor * dst) {
  13370. const struct ggml_tensor * a = dst->src[0];
  13371. struct ggml_map_custom1_op_params p;
  13372. memcpy(&p, dst->op_params, sizeof(p));
  13373. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13374. }
  13375. // ggml_compute_forward_map_custom2
  13376. static void ggml_compute_forward_map_custom2(
  13377. const struct ggml_compute_params * params,
  13378. struct ggml_tensor * dst) {
  13379. const struct ggml_tensor * a = dst->src[0];
  13380. const struct ggml_tensor * b = dst->src[1];
  13381. struct ggml_map_custom2_op_params p;
  13382. memcpy(&p, dst->op_params, sizeof(p));
  13383. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13384. }
  13385. // ggml_compute_forward_map_custom3
  13386. static void ggml_compute_forward_map_custom3(
  13387. const struct ggml_compute_params * params,
  13388. struct ggml_tensor * dst) {
  13389. const struct ggml_tensor * a = dst->src[0];
  13390. const struct ggml_tensor * b = dst->src[1];
  13391. const struct ggml_tensor * c = dst->src[2];
  13392. struct ggml_map_custom3_op_params p;
  13393. memcpy(&p, dst->op_params, sizeof(p));
  13394. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13395. }
  13396. // ggml_compute_forward_cross_entropy_loss
  13397. static void ggml_compute_forward_cross_entropy_loss_f32(
  13398. const struct ggml_compute_params * params,
  13399. struct ggml_tensor * dst) {
  13400. const struct ggml_tensor * src0 = dst->src[0];
  13401. const struct ggml_tensor * src1 = dst->src[1];
  13402. GGML_ASSERT(ggml_is_contiguous(src0));
  13403. GGML_ASSERT(ggml_is_contiguous(src1));
  13404. GGML_ASSERT(ggml_is_scalar(dst));
  13405. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13406. const int ith = params->ith;
  13407. const int nth = params->nth;
  13408. float * sums = (float *) params->wdata;
  13409. // TODO: handle transposed/permuted matrices
  13410. const int nc = src0->ne[0];
  13411. const int nr = ggml_nrows(src0);
  13412. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13413. if (ith == 0) {
  13414. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13415. }
  13416. ggml_barrier(params->shared);
  13417. const double eps = 1e-9;
  13418. // rows per thread
  13419. const int dr = (nr + nth - 1)/nth;
  13420. // row range for this thread
  13421. const int ir0 = dr*ith;
  13422. const int ir1 = MIN(ir0 + dr, nr);
  13423. for (int i1 = ir0; i1 < ir1; i1++) {
  13424. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13425. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13426. float * st = ((float *) params->wdata) + nth + ith*nc;
  13427. #ifndef NDEBUG
  13428. for (int i = 0; i < nc; ++i) {
  13429. //printf("p[%d] = %f\n", i, p[i]);
  13430. assert(!isnan(s0[i]));
  13431. assert(!isnan(s1[i]));
  13432. }
  13433. #endif
  13434. // soft_max
  13435. float max = -INFINITY;
  13436. ggml_vec_max_f32(nc, &max, s0);
  13437. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13438. assert(sum > 0.0);
  13439. sum = (1.0 - eps) / sum;
  13440. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13441. ggml_vec_scale_f32(nc, st, sum);
  13442. ggml_vec_add1_f32(nc, st, st, eps);
  13443. ggml_vec_log_f32(nc, st, st);
  13444. ggml_vec_mul_f32(nc, st, st, s1);
  13445. float st_sum = 0;
  13446. ggml_vec_sum_f32(nc, &st_sum, st);
  13447. sums[ith] += st_sum;
  13448. #ifndef NDEBUG
  13449. for (int i = 0; i < nc; ++i) {
  13450. assert(!isnan(st[i]));
  13451. assert(!isinf(st[i]));
  13452. }
  13453. #endif
  13454. }
  13455. ggml_barrier(params->shared);
  13456. if (ith == 0) {
  13457. float * dp = (float *) dst->data;
  13458. ggml_vec_sum_f32(nth, dp, sums);
  13459. dp[0] *= -1.0f / (float) nr;
  13460. }
  13461. }
  13462. static void ggml_compute_forward_cross_entropy_loss(
  13463. const struct ggml_compute_params * params,
  13464. struct ggml_tensor * dst) {
  13465. const struct ggml_tensor * src0 = dst->src[0];
  13466. switch (src0->type) {
  13467. case GGML_TYPE_F32:
  13468. {
  13469. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13470. } break;
  13471. default:
  13472. {
  13473. GGML_ASSERT(false);
  13474. } break;
  13475. }
  13476. }
  13477. // ggml_compute_forward_cross_entropy_loss_back
  13478. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13479. const struct ggml_compute_params * params,
  13480. struct ggml_tensor * dst) {
  13481. const struct ggml_tensor * src0 = dst->src[0];
  13482. const struct ggml_tensor * src1 = dst->src[1];
  13483. const struct ggml_tensor * opt0 = dst->src[2];
  13484. GGML_ASSERT(ggml_is_contiguous(dst));
  13485. GGML_ASSERT(ggml_is_contiguous(src0));
  13486. GGML_ASSERT(ggml_is_contiguous(src1));
  13487. GGML_ASSERT(ggml_is_contiguous(opt0));
  13488. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13489. const int64_t ith = params->ith;
  13490. const int64_t nth = params->nth;
  13491. const double eps = 1e-9;
  13492. // TODO: handle transposed/permuted matrices
  13493. const int64_t nc = src0->ne[0];
  13494. const int64_t nr = ggml_nrows(src0);
  13495. // rows per thread
  13496. const int64_t dr = (nr + nth - 1)/nth;
  13497. // row range for this thread
  13498. const int64_t ir0 = dr*ith;
  13499. const int64_t ir1 = MIN(ir0 + dr, nr);
  13500. float * d = (float *) opt0->data;
  13501. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13502. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13503. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13504. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13505. #ifndef NDEBUG
  13506. for (int i = 0; i < nc; ++i) {
  13507. //printf("p[%d] = %f\n", i, p[i]);
  13508. assert(!isnan(s0[i]));
  13509. assert(!isnan(s1[i]));
  13510. }
  13511. #endif
  13512. // soft_max
  13513. float max = -INFINITY;
  13514. ggml_vec_max_f32(nc, &max, s0);
  13515. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13516. assert(sum > 0.0);
  13517. sum = (1.0 - eps) / sum;
  13518. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13519. ggml_vec_scale_f32(nc, ds0, sum);
  13520. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13521. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13522. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13523. #ifndef NDEBUG
  13524. for (int i = 0; i < nc; ++i) {
  13525. assert(!isnan(ds0[i]));
  13526. assert(!isinf(ds0[i]));
  13527. }
  13528. #endif
  13529. }
  13530. }
  13531. static void ggml_compute_forward_cross_entropy_loss_back(
  13532. const struct ggml_compute_params * params,
  13533. struct ggml_tensor * dst) {
  13534. const struct ggml_tensor * src0 = dst->src[0];
  13535. switch (src0->type) {
  13536. case GGML_TYPE_F32:
  13537. {
  13538. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13539. } break;
  13540. default:
  13541. {
  13542. GGML_ASSERT(false);
  13543. } break;
  13544. }
  13545. }
  13546. /////////////////////////////////
  13547. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13548. GGML_ASSERT(params);
  13549. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13550. return;
  13551. }
  13552. switch (tensor->op) {
  13553. case GGML_OP_DUP:
  13554. {
  13555. ggml_compute_forward_dup(params, tensor);
  13556. } break;
  13557. case GGML_OP_ADD:
  13558. {
  13559. ggml_compute_forward_add(params, tensor);
  13560. } break;
  13561. case GGML_OP_ADD1:
  13562. {
  13563. ggml_compute_forward_add1(params, tensor);
  13564. } break;
  13565. case GGML_OP_ACC:
  13566. {
  13567. ggml_compute_forward_acc(params, tensor);
  13568. } break;
  13569. case GGML_OP_SUB:
  13570. {
  13571. ggml_compute_forward_sub(params, tensor);
  13572. } break;
  13573. case GGML_OP_MUL:
  13574. {
  13575. ggml_compute_forward_mul(params, tensor);
  13576. } break;
  13577. case GGML_OP_DIV:
  13578. {
  13579. ggml_compute_forward_div(params, tensor);
  13580. } break;
  13581. case GGML_OP_SQR:
  13582. {
  13583. ggml_compute_forward_sqr(params, tensor);
  13584. } break;
  13585. case GGML_OP_SQRT:
  13586. {
  13587. ggml_compute_forward_sqrt(params, tensor);
  13588. } break;
  13589. case GGML_OP_LOG:
  13590. {
  13591. ggml_compute_forward_log(params, tensor);
  13592. } break;
  13593. case GGML_OP_SUM:
  13594. {
  13595. ggml_compute_forward_sum(params, tensor);
  13596. } break;
  13597. case GGML_OP_SUM_ROWS:
  13598. {
  13599. ggml_compute_forward_sum_rows(params, tensor);
  13600. } break;
  13601. case GGML_OP_MEAN:
  13602. {
  13603. ggml_compute_forward_mean(params, tensor);
  13604. } break;
  13605. case GGML_OP_ARGMAX:
  13606. {
  13607. ggml_compute_forward_argmax(params, tensor);
  13608. } break;
  13609. case GGML_OP_REPEAT:
  13610. {
  13611. ggml_compute_forward_repeat(params, tensor);
  13612. } break;
  13613. case GGML_OP_REPEAT_BACK:
  13614. {
  13615. ggml_compute_forward_repeat_back(params, tensor);
  13616. } break;
  13617. case GGML_OP_CONCAT:
  13618. {
  13619. ggml_compute_forward_concat(params, tensor);
  13620. } break;
  13621. case GGML_OP_SILU_BACK:
  13622. {
  13623. ggml_compute_forward_silu_back(params, tensor);
  13624. } break;
  13625. case GGML_OP_NORM:
  13626. {
  13627. ggml_compute_forward_norm(params, tensor);
  13628. } break;
  13629. case GGML_OP_RMS_NORM:
  13630. {
  13631. ggml_compute_forward_rms_norm(params, tensor);
  13632. } break;
  13633. case GGML_OP_RMS_NORM_BACK:
  13634. {
  13635. ggml_compute_forward_rms_norm_back(params, tensor);
  13636. } break;
  13637. case GGML_OP_GROUP_NORM:
  13638. {
  13639. ggml_compute_forward_group_norm(params, tensor);
  13640. } break;
  13641. case GGML_OP_MUL_MAT:
  13642. {
  13643. ggml_compute_forward_mul_mat(params, tensor);
  13644. } break;
  13645. case GGML_OP_MUL_MAT_ID:
  13646. {
  13647. ggml_compute_forward_mul_mat_id(params, tensor);
  13648. } break;
  13649. case GGML_OP_OUT_PROD:
  13650. {
  13651. ggml_compute_forward_out_prod(params, tensor);
  13652. } break;
  13653. case GGML_OP_SCALE:
  13654. {
  13655. ggml_compute_forward_scale(params, tensor);
  13656. } break;
  13657. case GGML_OP_SET:
  13658. {
  13659. ggml_compute_forward_set(params, tensor);
  13660. } break;
  13661. case GGML_OP_CPY:
  13662. {
  13663. ggml_compute_forward_cpy(params, tensor);
  13664. } break;
  13665. case GGML_OP_CONT:
  13666. {
  13667. ggml_compute_forward_cont(params, tensor);
  13668. } break;
  13669. case GGML_OP_RESHAPE:
  13670. {
  13671. ggml_compute_forward_reshape(params, tensor);
  13672. } break;
  13673. case GGML_OP_VIEW:
  13674. {
  13675. ggml_compute_forward_view(params, tensor);
  13676. } break;
  13677. case GGML_OP_PERMUTE:
  13678. {
  13679. ggml_compute_forward_permute(params, tensor);
  13680. } break;
  13681. case GGML_OP_TRANSPOSE:
  13682. {
  13683. ggml_compute_forward_transpose(params, tensor);
  13684. } break;
  13685. case GGML_OP_GET_ROWS:
  13686. {
  13687. ggml_compute_forward_get_rows(params, tensor);
  13688. } break;
  13689. case GGML_OP_GET_ROWS_BACK:
  13690. {
  13691. ggml_compute_forward_get_rows_back(params, tensor);
  13692. } break;
  13693. case GGML_OP_DIAG:
  13694. {
  13695. ggml_compute_forward_diag(params, tensor);
  13696. } break;
  13697. case GGML_OP_DIAG_MASK_INF:
  13698. {
  13699. ggml_compute_forward_diag_mask_inf(params, tensor);
  13700. } break;
  13701. case GGML_OP_DIAG_MASK_ZERO:
  13702. {
  13703. ggml_compute_forward_diag_mask_zero(params, tensor);
  13704. } break;
  13705. case GGML_OP_SOFT_MAX:
  13706. {
  13707. ggml_compute_forward_soft_max(params, tensor);
  13708. } break;
  13709. case GGML_OP_SOFT_MAX_BACK:
  13710. {
  13711. ggml_compute_forward_soft_max_back(params, tensor);
  13712. } break;
  13713. case GGML_OP_ROPE:
  13714. {
  13715. ggml_compute_forward_rope(params, tensor);
  13716. } break;
  13717. case GGML_OP_ROPE_BACK:
  13718. {
  13719. ggml_compute_forward_rope_back(params, tensor);
  13720. } break;
  13721. case GGML_OP_CLAMP:
  13722. {
  13723. ggml_compute_forward_clamp(params, tensor);
  13724. } break;
  13725. case GGML_OP_CONV_TRANSPOSE_1D:
  13726. {
  13727. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13728. } break;
  13729. case GGML_OP_IM2COL:
  13730. {
  13731. ggml_compute_forward_im2col(params, tensor);
  13732. } break;
  13733. case GGML_OP_CONV_TRANSPOSE_2D:
  13734. {
  13735. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13736. } break;
  13737. case GGML_OP_POOL_1D:
  13738. {
  13739. ggml_compute_forward_pool_1d(params, tensor);
  13740. } break;
  13741. case GGML_OP_POOL_2D:
  13742. {
  13743. ggml_compute_forward_pool_2d(params, tensor);
  13744. } break;
  13745. case GGML_OP_UPSCALE:
  13746. {
  13747. ggml_compute_forward_upscale(params, tensor);
  13748. } break;
  13749. case GGML_OP_PAD:
  13750. {
  13751. ggml_compute_forward_pad(params, tensor);
  13752. } break;
  13753. case GGML_OP_ARANGE:
  13754. {
  13755. ggml_compute_forward_arange(params, tensor);
  13756. } break;
  13757. case GGML_OP_TIMESTEP_EMBEDDING:
  13758. {
  13759. ggml_compute_forward_timestep_embedding(params, tensor);
  13760. } break;
  13761. case GGML_OP_ARGSORT:
  13762. {
  13763. ggml_compute_forward_argsort(params, tensor);
  13764. } break;
  13765. case GGML_OP_LEAKY_RELU:
  13766. {
  13767. ggml_compute_forward_leaky_relu(params, tensor);
  13768. } break;
  13769. case GGML_OP_FLASH_ATTN_EXT:
  13770. {
  13771. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13772. } break;
  13773. case GGML_OP_FLASH_ATTN_BACK:
  13774. {
  13775. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13776. GGML_ASSERT(t == 0 || t == 1);
  13777. bool masked = t != 0;
  13778. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13779. } break;
  13780. case GGML_OP_SSM_CONV:
  13781. {
  13782. ggml_compute_forward_ssm_conv(params, tensor);
  13783. } break;
  13784. case GGML_OP_SSM_SCAN:
  13785. {
  13786. ggml_compute_forward_ssm_scan(params, tensor);
  13787. } break;
  13788. case GGML_OP_WIN_PART:
  13789. {
  13790. ggml_compute_forward_win_part(params, tensor);
  13791. } break;
  13792. case GGML_OP_WIN_UNPART:
  13793. {
  13794. ggml_compute_forward_win_unpart(params, tensor);
  13795. } break;
  13796. case GGML_OP_UNARY:
  13797. {
  13798. ggml_compute_forward_unary(params, tensor);
  13799. } break;
  13800. case GGML_OP_GET_REL_POS:
  13801. {
  13802. ggml_compute_forward_get_rel_pos(params, tensor);
  13803. } break;
  13804. case GGML_OP_ADD_REL_POS:
  13805. {
  13806. ggml_compute_forward_add_rel_pos(params, tensor);
  13807. } break;
  13808. case GGML_OP_MAP_UNARY:
  13809. {
  13810. ggml_unary_op_f32_t fun;
  13811. memcpy(&fun, tensor->op_params, sizeof(fun));
  13812. ggml_compute_forward_map_unary(params, tensor, fun);
  13813. }
  13814. break;
  13815. case GGML_OP_MAP_BINARY:
  13816. {
  13817. ggml_binary_op_f32_t fun;
  13818. memcpy(&fun, tensor->op_params, sizeof(fun));
  13819. ggml_compute_forward_map_binary(params, tensor, fun);
  13820. }
  13821. break;
  13822. case GGML_OP_MAP_CUSTOM1_F32:
  13823. {
  13824. ggml_custom1_op_f32_t fun;
  13825. memcpy(&fun, tensor->op_params, sizeof(fun));
  13826. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13827. }
  13828. break;
  13829. case GGML_OP_MAP_CUSTOM2_F32:
  13830. {
  13831. ggml_custom2_op_f32_t fun;
  13832. memcpy(&fun, tensor->op_params, sizeof(fun));
  13833. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13834. }
  13835. break;
  13836. case GGML_OP_MAP_CUSTOM3_F32:
  13837. {
  13838. ggml_custom3_op_f32_t fun;
  13839. memcpy(&fun, tensor->op_params, sizeof(fun));
  13840. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13841. }
  13842. break;
  13843. case GGML_OP_MAP_CUSTOM1:
  13844. {
  13845. ggml_compute_forward_map_custom1(params, tensor);
  13846. }
  13847. break;
  13848. case GGML_OP_MAP_CUSTOM2:
  13849. {
  13850. ggml_compute_forward_map_custom2(params, tensor);
  13851. }
  13852. break;
  13853. case GGML_OP_MAP_CUSTOM3:
  13854. {
  13855. ggml_compute_forward_map_custom3(params, tensor);
  13856. }
  13857. break;
  13858. case GGML_OP_CROSS_ENTROPY_LOSS:
  13859. {
  13860. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13861. }
  13862. break;
  13863. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13864. {
  13865. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13866. }
  13867. break;
  13868. case GGML_OP_NONE:
  13869. {
  13870. // nop
  13871. } break;
  13872. case GGML_OP_COUNT:
  13873. {
  13874. GGML_ASSERT(false);
  13875. } break;
  13876. }
  13877. }
  13878. ////////////////////////////////////////////////////////////////////////////////
  13879. static size_t ggml_hash_size(size_t min_sz) {
  13880. // next primes after powers of two
  13881. static const size_t primes[] = {
  13882. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13883. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13884. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13885. 16777259, 33554467, 67108879, 134217757, 268435459,
  13886. 536870923, 1073741827, 2147483659
  13887. };
  13888. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13889. // find the smallest prime that is larger or equal to min_sz
  13890. size_t l = 0;
  13891. size_t r = n_primes;
  13892. while (l < r) {
  13893. size_t m = (l + r)/2;
  13894. if (primes[m] < min_sz) {
  13895. l = m + 1;
  13896. } else {
  13897. r = m;
  13898. }
  13899. }
  13900. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13901. return sz;
  13902. }
  13903. static size_t ggml_hash(const void * p) {
  13904. return (size_t)p;
  13905. }
  13906. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13907. size_t h = ggml_hash(key) % hash_set.size;
  13908. // linear probing
  13909. size_t i = h;
  13910. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13911. i = (i + 1) % hash_set.size;
  13912. if (i == h) {
  13913. // visited all hash table entries -> not found
  13914. return GGML_HASHTABLE_FULL;
  13915. }
  13916. }
  13917. return i;
  13918. }
  13919. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13920. size_t i = ggml_hash_find(hash_set, key);
  13921. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13922. }
  13923. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13924. size_t i = ggml_hash_find(hash_set, key);
  13925. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13926. if (hash_set.keys[i] == key) {
  13927. return GGML_HASHTABLE_ALREADY_EXISTS;
  13928. }
  13929. // insert
  13930. GGML_ASSERT(hash_set.keys[i] == NULL);
  13931. hash_set.keys[i] = key;
  13932. return i;
  13933. }
  13934. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13935. size_t i = ggml_hash_find(hash_set, key);
  13936. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13937. hash_set.keys[i] = key;
  13938. return i;
  13939. }
  13940. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13941. size = ggml_hash_size(size);
  13942. struct ggml_hash_set result;
  13943. result.size = size;
  13944. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13945. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13946. return result;
  13947. }
  13948. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13949. GGML_FREE(hash_set.keys);
  13950. }
  13951. struct hash_map {
  13952. struct ggml_hash_set set;
  13953. struct ggml_tensor ** vals;
  13954. };
  13955. static struct hash_map * ggml_new_hash_map(size_t size) {
  13956. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13957. result->set = ggml_hash_set_new(size);
  13958. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13959. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13960. return result;
  13961. }
  13962. static void ggml_hash_map_free(struct hash_map * map) {
  13963. ggml_hash_set_free(map->set);
  13964. GGML_FREE(map->vals);
  13965. GGML_FREE(map);
  13966. }
  13967. // gradient checkpointing
  13968. static struct ggml_tensor * ggml_recompute_graph_node(
  13969. struct ggml_context * ctx,
  13970. struct ggml_cgraph * graph,
  13971. struct hash_map * replacements,
  13972. struct ggml_tensor * node) {
  13973. if (node == NULL) {
  13974. return NULL;
  13975. }
  13976. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13977. return node;
  13978. }
  13979. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13980. return node;
  13981. }
  13982. int count_children = 0;
  13983. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13984. if (node->src[k]) {
  13985. ++count_children;
  13986. }
  13987. }
  13988. if (count_children == 0) {
  13989. return node;
  13990. }
  13991. size_t i = ggml_hash_find(replacements->set, node);
  13992. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13993. if (replacements->set.keys[i] == node) {
  13994. return replacements->vals[i];
  13995. }
  13996. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13997. // insert clone into replacements
  13998. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13999. replacements->set.keys[i] = node;
  14000. replacements->vals[i] = clone;
  14001. clone->op = node->op;
  14002. clone->grad = node->grad;
  14003. clone->flags = node->flags;
  14004. clone->extra = node->extra;
  14005. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14006. clone->nb[k] = node->nb[k];
  14007. }
  14008. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14009. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14010. }
  14011. if (node->view_src != NULL) {
  14012. clone->data = (node->view_src->data == NULL)
  14013. ? NULL // view_src not yet allocated
  14014. : (char *) node->view_src->data // view_src already allocated
  14015. + node->view_offs;
  14016. clone->view_src = node->view_src;
  14017. clone->view_offs = node->view_offs;
  14018. }
  14019. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14020. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14021. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14022. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14023. return clone;
  14024. }
  14025. void ggml_build_backward_gradient_checkpointing(
  14026. struct ggml_context * ctx,
  14027. struct ggml_cgraph * gf,
  14028. struct ggml_cgraph * gb,
  14029. struct ggml_cgraph * gb_tmp,
  14030. struct ggml_tensor * * checkpoints,
  14031. int n_checkpoints) {
  14032. ggml_graph_cpy(gf, gb_tmp);
  14033. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14034. if (n_checkpoints <= 0) {
  14035. ggml_graph_cpy(gb_tmp, gb);
  14036. return;
  14037. }
  14038. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14039. // insert checkpoints in replacements
  14040. for (int i = 0; i < n_checkpoints; ++i) {
  14041. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14042. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14043. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14044. replacements->set.keys[k] = checkpoints[i];
  14045. replacements->vals[k] = checkpoints[i];
  14046. }
  14047. ggml_graph_cpy(gf, gb);
  14048. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14049. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14050. // by recomputing them from checkpoints
  14051. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14052. struct ggml_tensor * node = gb_tmp->nodes[i];
  14053. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14054. // insert new tensors recomputing src, reusing already made replacements,
  14055. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14056. // recurse for input tensors,
  14057. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14058. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14059. }
  14060. // insert rewritten backward node with replacements made into resulting backward graph gb
  14061. ggml_build_forward_expand(gb, node);
  14062. }
  14063. ggml_hash_map_free(replacements);
  14064. }
  14065. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14066. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14067. if (ggml_hash_contains(zero_table, a)) {
  14068. return b;
  14069. } else {
  14070. return ggml_add_impl(ctx, a, b, false);
  14071. }
  14072. }
  14073. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14074. if (ggml_hash_contains(zero_table, a)) {
  14075. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14076. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14077. } else {
  14078. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14079. }
  14080. }
  14081. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14082. if (ggml_hash_contains(zero_table, a)) {
  14083. return ggml_repeat(ctx, b, a);
  14084. } else {
  14085. return ggml_add1_impl(ctx, a, b, false);
  14086. }
  14087. }
  14088. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14089. if (ggml_hash_contains(zero_table, a)) {
  14090. return ggml_neg(ctx, b);
  14091. } else {
  14092. return ggml_sub_impl(ctx, a, b, false);
  14093. }
  14094. }
  14095. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14096. struct ggml_tensor * src0 = tensor->src[0];
  14097. struct ggml_tensor * src1 = tensor->src[1];
  14098. struct ggml_tensor * src2 = tensor->src[2];
  14099. switch (tensor->op) {
  14100. case GGML_OP_DUP:
  14101. {
  14102. if (src0->grad) {
  14103. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14104. }
  14105. } break;
  14106. case GGML_OP_ADD:
  14107. {
  14108. if (src0->grad) {
  14109. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14110. }
  14111. if (src1->grad) {
  14112. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14113. }
  14114. } break;
  14115. case GGML_OP_ADD1:
  14116. {
  14117. if (src0->grad) {
  14118. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14119. }
  14120. if (src1->grad) {
  14121. src1->grad = ggml_add_or_set(ctx,
  14122. src1->grad,
  14123. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14124. zero_table);
  14125. }
  14126. } break;
  14127. case GGML_OP_ACC:
  14128. {
  14129. if (src0->grad) {
  14130. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14131. }
  14132. if (src1->grad) {
  14133. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14134. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14135. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14136. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14137. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14138. tensor->grad,
  14139. src1->grad->ne[0],
  14140. src1->grad->ne[1],
  14141. src1->grad->ne[2],
  14142. src1->grad->ne[3],
  14143. nb1, nb2, nb3, offset);
  14144. src1->grad =
  14145. ggml_add_or_set(ctx,
  14146. src1->grad,
  14147. ggml_reshape(ctx,
  14148. ggml_cont(ctx, tensor_grad_view),
  14149. src1->grad),
  14150. zero_table);
  14151. }
  14152. } break;
  14153. case GGML_OP_SUB:
  14154. {
  14155. if (src0->grad) {
  14156. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14157. }
  14158. if (src1->grad) {
  14159. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14160. }
  14161. } break;
  14162. case GGML_OP_MUL:
  14163. {
  14164. if (src0->grad) {
  14165. src0->grad =
  14166. ggml_add_or_set(ctx,
  14167. src0->grad,
  14168. ggml_mul(ctx, src1, tensor->grad),
  14169. zero_table);
  14170. }
  14171. if (src1->grad) {
  14172. src1->grad =
  14173. ggml_add_or_set(ctx,
  14174. src1->grad,
  14175. ggml_mul(ctx, src0, tensor->grad),
  14176. zero_table);
  14177. }
  14178. } break;
  14179. case GGML_OP_DIV:
  14180. {
  14181. if (src0->grad) {
  14182. src0->grad =
  14183. ggml_add_or_set(ctx,
  14184. src0->grad,
  14185. ggml_div(ctx, tensor->grad, src1),
  14186. zero_table);
  14187. }
  14188. if (src1->grad) {
  14189. src1->grad =
  14190. ggml_sub_or_set(ctx,
  14191. src1->grad,
  14192. ggml_mul(ctx,
  14193. tensor->grad,
  14194. ggml_div(ctx, tensor, src1)),
  14195. zero_table);
  14196. }
  14197. } break;
  14198. case GGML_OP_SQR:
  14199. {
  14200. if (src0->grad) {
  14201. src0->grad =
  14202. ggml_add_or_set(ctx,
  14203. src0->grad,
  14204. ggml_scale(ctx,
  14205. ggml_mul(ctx, src0, tensor->grad),
  14206. 2.0f),
  14207. zero_table);
  14208. }
  14209. } break;
  14210. case GGML_OP_SQRT:
  14211. {
  14212. if (src0->grad) {
  14213. src0->grad =
  14214. ggml_add_or_set(ctx,
  14215. src0->grad,
  14216. ggml_scale(ctx,
  14217. ggml_div(ctx,
  14218. tensor->grad,
  14219. tensor),
  14220. 0.5f),
  14221. zero_table);
  14222. }
  14223. } break;
  14224. case GGML_OP_LOG:
  14225. {
  14226. if (src0->grad) {
  14227. src0->grad =
  14228. ggml_add_or_set(ctx,
  14229. src0->grad,
  14230. ggml_div(ctx,
  14231. tensor->grad,
  14232. src0),
  14233. zero_table);
  14234. }
  14235. } break;
  14236. case GGML_OP_SUM:
  14237. {
  14238. if (src0->grad) {
  14239. src0->grad =
  14240. ggml_add1_or_set(ctx,
  14241. src0->grad,
  14242. tensor->grad,
  14243. zero_table);
  14244. }
  14245. } break;
  14246. case GGML_OP_SUM_ROWS:
  14247. {
  14248. if (src0->grad) {
  14249. src0->grad =
  14250. ggml_add_or_set(ctx,
  14251. src0->grad,
  14252. ggml_repeat(ctx,
  14253. tensor->grad,
  14254. src0->grad),
  14255. zero_table);
  14256. }
  14257. } break;
  14258. case GGML_OP_MEAN:
  14259. case GGML_OP_ARGMAX:
  14260. {
  14261. GGML_ASSERT(false); // TODO: implement
  14262. } break;
  14263. case GGML_OP_REPEAT:
  14264. {
  14265. // necessary for llama
  14266. if (src0->grad) {
  14267. src0->grad = ggml_add_or_set(ctx,
  14268. src0->grad,
  14269. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14270. zero_table);
  14271. }
  14272. } break;
  14273. case GGML_OP_REPEAT_BACK:
  14274. {
  14275. if (src0->grad) {
  14276. // TODO: test this
  14277. src0->grad = ggml_add_or_set(ctx,
  14278. src0->grad,
  14279. ggml_repeat(ctx, tensor->grad, src0->grad),
  14280. zero_table);
  14281. }
  14282. } break;
  14283. case GGML_OP_CONCAT:
  14284. {
  14285. GGML_ASSERT(false); // TODO: implement
  14286. } break;
  14287. case GGML_OP_SILU_BACK:
  14288. {
  14289. GGML_ASSERT(false); // TODO: not implemented
  14290. } break;
  14291. case GGML_OP_NORM:
  14292. {
  14293. GGML_ASSERT(false); // TODO: not implemented
  14294. } break;
  14295. case GGML_OP_RMS_NORM:
  14296. {
  14297. // necessary for llama
  14298. if (src0->grad) {
  14299. float eps;
  14300. memcpy(&eps, tensor->op_params, sizeof(float));
  14301. src0->grad = ggml_add_or_set(ctx,
  14302. src0->grad,
  14303. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14304. zero_table);
  14305. }
  14306. } break;
  14307. case GGML_OP_RMS_NORM_BACK:
  14308. {
  14309. GGML_ASSERT(false); // TODO: not implemented
  14310. } break;
  14311. case GGML_OP_GROUP_NORM:
  14312. {
  14313. GGML_ASSERT(false); // TODO: not implemented
  14314. } break;
  14315. case GGML_OP_MUL_MAT:
  14316. {
  14317. // https://cs231n.github.io/optimization-2/#staged
  14318. // # forward pass
  14319. // s0 = np.random.randn(5, 10)
  14320. // s1 = np.random.randn(10, 3)
  14321. // t = s0.dot(s1)
  14322. // # now suppose we had the gradient on t from above in the circuit
  14323. // dt = np.random.randn(*t.shape) # same shape as t
  14324. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14325. // ds1 = t.T.dot(dt)
  14326. // tensor.shape [m,p,qq,rr]
  14327. // src0.shape [n,m,q1,r1]
  14328. // src1.shape [n,p,qq,rr]
  14329. // necessary for llama
  14330. if (src0->grad) {
  14331. struct ggml_tensor * s1_tg =
  14332. ggml_out_prod(ctx, // [n,m,qq,rr]
  14333. src1, // [n,p,qq,rr]
  14334. tensor->grad); // [m,p,qq,rr]
  14335. const int64_t qq = s1_tg->ne[2];
  14336. const int64_t rr = s1_tg->ne[3];
  14337. const int64_t q1 = src0->ne[2];
  14338. const int64_t r1 = src0->ne[3];
  14339. const bool ne2_broadcasted = qq > q1;
  14340. const bool ne3_broadcasted = rr > r1;
  14341. if (ne2_broadcasted || ne3_broadcasted) {
  14342. // sum broadcast repetitions of s1_tg into shape of src0
  14343. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14344. }
  14345. src0->grad =
  14346. ggml_add_or_set(ctx,
  14347. src0->grad, // [n,m,q1,r1]
  14348. s1_tg, // [n,m,q1,r1]
  14349. zero_table);
  14350. }
  14351. if (src1->grad) {
  14352. src1->grad =
  14353. ggml_add_or_set(ctx,
  14354. src1->grad, // [n,p,qq,rr]
  14355. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14356. // ggml_cont(ctx, // [m,n,q1,r1]
  14357. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14358. // tensor->grad), // [m,p,qq,rr]
  14359. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14360. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14361. // // and then use ggml_out_prod
  14362. ggml_out_prod(ctx, // [n,p,qq,rr]
  14363. src0, // [n,m,q1,r1]
  14364. ggml_transpose(ctx, // [p,m,qq,rr]
  14365. tensor->grad)), // [m,p,qq,rr]
  14366. zero_table);
  14367. }
  14368. } break;
  14369. case GGML_OP_MUL_MAT_ID:
  14370. {
  14371. GGML_ASSERT(false); // TODO: not implemented
  14372. } break;
  14373. case GGML_OP_OUT_PROD:
  14374. {
  14375. GGML_ASSERT(false); // TODO: not implemented
  14376. } break;
  14377. case GGML_OP_SCALE:
  14378. {
  14379. // necessary for llama
  14380. if (src0->grad) {
  14381. float s;
  14382. memcpy(&s, tensor->op_params, sizeof(float));
  14383. src0->grad =
  14384. ggml_add_or_set(ctx,
  14385. src0->grad,
  14386. ggml_scale_impl(ctx, tensor->grad, s, false),
  14387. zero_table);
  14388. }
  14389. } break;
  14390. case GGML_OP_SET:
  14391. {
  14392. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14393. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14394. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14395. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14396. struct ggml_tensor * tensor_grad_view = NULL;
  14397. if (src0->grad || src1->grad) {
  14398. GGML_ASSERT(src0->type == tensor->type);
  14399. GGML_ASSERT(tensor->grad->type == tensor->type);
  14400. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14401. tensor_grad_view = ggml_view_4d(ctx,
  14402. tensor->grad,
  14403. src1->grad->ne[0],
  14404. src1->grad->ne[1],
  14405. src1->grad->ne[2],
  14406. src1->grad->ne[3],
  14407. nb1, nb2, nb3, offset);
  14408. }
  14409. if (src0->grad) {
  14410. src0->grad = ggml_add_or_set(ctx,
  14411. src0->grad,
  14412. ggml_acc_impl(ctx,
  14413. tensor->grad,
  14414. ggml_neg(ctx, tensor_grad_view),
  14415. nb1, nb2, nb3, offset, false),
  14416. zero_table);
  14417. }
  14418. if (src1->grad) {
  14419. src1->grad =
  14420. ggml_add_or_set(ctx,
  14421. src1->grad,
  14422. ggml_reshape(ctx,
  14423. ggml_cont(ctx, tensor_grad_view),
  14424. src1->grad),
  14425. zero_table);
  14426. }
  14427. } break;
  14428. case GGML_OP_CPY:
  14429. {
  14430. // necessary for llama
  14431. // cpy overwrites value of src1 by src0 and returns view(src1)
  14432. // the overwriting is mathematically equivalent to:
  14433. // tensor = src0 * 1 + src1 * 0
  14434. if (src0->grad) {
  14435. // dsrc0 = dtensor * 1
  14436. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14437. }
  14438. if (src1->grad) {
  14439. // dsrc1 = dtensor * 0 -> noop
  14440. }
  14441. } break;
  14442. case GGML_OP_CONT:
  14443. {
  14444. // same as cpy
  14445. if (src0->grad) {
  14446. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14447. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14448. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14449. }
  14450. } break;
  14451. case GGML_OP_RESHAPE:
  14452. {
  14453. // necessary for llama
  14454. if (src0->grad) {
  14455. src0->grad =
  14456. ggml_add_or_set(ctx, src0->grad,
  14457. ggml_reshape(ctx,
  14458. ggml_is_contiguous(tensor->grad)
  14459. ? tensor->grad
  14460. : ggml_cont(ctx, tensor->grad),
  14461. src0->grad),
  14462. zero_table);
  14463. }
  14464. } break;
  14465. case GGML_OP_VIEW:
  14466. {
  14467. // necessary for llama
  14468. if (src0->grad) {
  14469. size_t offset;
  14470. memcpy(&offset, tensor->op_params, sizeof(offset));
  14471. size_t nb1 = tensor->nb[1];
  14472. size_t nb2 = tensor->nb[2];
  14473. size_t nb3 = tensor->nb[3];
  14474. if (src0->type != src0->grad->type) {
  14475. // gradient is typically F32, but src0 could be other type
  14476. size_t ng = ggml_element_size(src0->grad);
  14477. size_t n0 = ggml_element_size(src0);
  14478. GGML_ASSERT(offset % n0 == 0);
  14479. GGML_ASSERT(nb1 % n0 == 0);
  14480. GGML_ASSERT(nb2 % n0 == 0);
  14481. GGML_ASSERT(nb3 % n0 == 0);
  14482. offset = (offset / n0) * ng;
  14483. nb1 = (nb1 / n0) * ng;
  14484. nb2 = (nb2 / n0) * ng;
  14485. nb3 = (nb3 / n0) * ng;
  14486. }
  14487. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14488. }
  14489. } break;
  14490. case GGML_OP_PERMUTE:
  14491. {
  14492. // necessary for llama
  14493. if (src0->grad) {
  14494. int32_t * axes = (int32_t *) tensor->op_params;
  14495. int axis0 = axes[0] & 0x3;
  14496. int axis1 = axes[1] & 0x3;
  14497. int axis2 = axes[2] & 0x3;
  14498. int axis3 = axes[3] & 0x3;
  14499. int axes_backward[4] = {0,0,0,0};
  14500. axes_backward[axis0] = 0;
  14501. axes_backward[axis1] = 1;
  14502. axes_backward[axis2] = 2;
  14503. axes_backward[axis3] = 3;
  14504. src0->grad =
  14505. ggml_add_or_set(ctx, src0->grad,
  14506. ggml_permute(ctx,
  14507. tensor->grad,
  14508. axes_backward[0],
  14509. axes_backward[1],
  14510. axes_backward[2],
  14511. axes_backward[3]),
  14512. zero_table);
  14513. }
  14514. } break;
  14515. case GGML_OP_TRANSPOSE:
  14516. {
  14517. // necessary for llama
  14518. if (src0->grad) {
  14519. src0->grad =
  14520. ggml_add_or_set(ctx, src0->grad,
  14521. ggml_transpose(ctx, tensor->grad),
  14522. zero_table);
  14523. }
  14524. } break;
  14525. case GGML_OP_GET_ROWS:
  14526. {
  14527. // necessary for llama (only for tokenizer)
  14528. if (src0->grad) {
  14529. src0->grad =
  14530. ggml_add_or_set(ctx, src0->grad,
  14531. // last ggml_get_rows_back argument src0->grad is only
  14532. // necessary to setup correct output shape
  14533. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14534. zero_table);
  14535. }
  14536. if (src1->grad) {
  14537. // noop
  14538. }
  14539. } break;
  14540. case GGML_OP_GET_ROWS_BACK:
  14541. {
  14542. GGML_ASSERT(false); // TODO: not implemented
  14543. } break;
  14544. case GGML_OP_DIAG:
  14545. {
  14546. GGML_ASSERT(false); // TODO: not implemented
  14547. } break;
  14548. case GGML_OP_DIAG_MASK_INF:
  14549. {
  14550. // necessary for llama
  14551. if (src0->grad) {
  14552. const int n_past = ((int32_t *) tensor->op_params)[0];
  14553. src0->grad =
  14554. ggml_add_or_set(ctx, src0->grad,
  14555. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14556. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14557. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14558. zero_table);
  14559. }
  14560. } break;
  14561. case GGML_OP_DIAG_MASK_ZERO:
  14562. {
  14563. // necessary for llama
  14564. if (src0->grad) {
  14565. const int n_past = ((int32_t *) tensor->op_params)[0];
  14566. src0->grad =
  14567. ggml_add_or_set(ctx, src0->grad,
  14568. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14569. zero_table);
  14570. }
  14571. } break;
  14572. case GGML_OP_SOFT_MAX:
  14573. {
  14574. // necessary for llama
  14575. if (src0->grad) {
  14576. src0->grad =
  14577. ggml_add_or_set(ctx, src0->grad,
  14578. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14579. zero_table);
  14580. }
  14581. } break;
  14582. case GGML_OP_SOFT_MAX_BACK:
  14583. {
  14584. GGML_ASSERT(false); // TODO: not implemented
  14585. } break;
  14586. case GGML_OP_ROPE:
  14587. {
  14588. // necessary for llama
  14589. if (src0->grad) {
  14590. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14591. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14592. const int mode = ((int32_t *) tensor->op_params)[2];
  14593. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14594. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14595. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14596. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14597. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14598. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14599. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14600. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14601. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14602. src0->grad = ggml_add_or_set(ctx,
  14603. src0->grad,
  14604. ggml_rope_back(ctx,
  14605. tensor->grad,
  14606. src1,
  14607. src2,
  14608. n_dims,
  14609. mode,
  14610. n_ctx_orig,
  14611. freq_base,
  14612. freq_scale,
  14613. ext_factor,
  14614. attn_factor,
  14615. beta_fast,
  14616. beta_slow),
  14617. zero_table);
  14618. }
  14619. } break;
  14620. case GGML_OP_ROPE_BACK:
  14621. {
  14622. if (src0->grad) {
  14623. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14624. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14625. const int mode = ((int32_t *) tensor->op_params)[2];
  14626. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14627. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14628. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14629. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14630. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14631. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14632. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14633. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14634. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14635. src0->grad = ggml_add_or_set(ctx,
  14636. src0->grad,
  14637. ggml_rope_impl(ctx,
  14638. tensor->grad,
  14639. src1,
  14640. src2,
  14641. n_dims,
  14642. mode,
  14643. n_ctx_orig,
  14644. freq_base,
  14645. freq_scale,
  14646. ext_factor,
  14647. attn_factor,
  14648. beta_fast,
  14649. beta_slow,
  14650. false),
  14651. zero_table);
  14652. }
  14653. } break;
  14654. case GGML_OP_CLAMP:
  14655. {
  14656. GGML_ASSERT(false); // TODO: not implemented
  14657. } break;
  14658. case GGML_OP_CONV_TRANSPOSE_1D:
  14659. {
  14660. GGML_ASSERT(false); // TODO: not implemented
  14661. } break;
  14662. case GGML_OP_IM2COL:
  14663. {
  14664. GGML_ASSERT(false); // TODO: not implemented
  14665. } break;
  14666. case GGML_OP_CONV_TRANSPOSE_2D:
  14667. {
  14668. GGML_ASSERT(false); // TODO: not implemented
  14669. } break;
  14670. case GGML_OP_POOL_1D:
  14671. {
  14672. GGML_ASSERT(false); // TODO: not implemented
  14673. } break;
  14674. case GGML_OP_POOL_2D:
  14675. {
  14676. GGML_ASSERT(false); // TODO: not implemented
  14677. } break;
  14678. case GGML_OP_UPSCALE:
  14679. {
  14680. GGML_ASSERT(false); // TODO: not implemented
  14681. } break;
  14682. case GGML_OP_PAD:
  14683. {
  14684. GGML_ASSERT(false); // TODO: not implemented
  14685. } break;
  14686. case GGML_OP_ARANGE:
  14687. {
  14688. GGML_ASSERT(false); // TODO: not implemented
  14689. } break;
  14690. case GGML_OP_TIMESTEP_EMBEDDING:
  14691. {
  14692. GGML_ASSERT(false); // TODO: not implemented
  14693. } break;
  14694. case GGML_OP_ARGSORT:
  14695. {
  14696. GGML_ASSERT(false); // TODO: not implemented
  14697. } break;
  14698. case GGML_OP_LEAKY_RELU:
  14699. {
  14700. GGML_ASSERT(false); // TODO: not implemented
  14701. } break;
  14702. case GGML_OP_FLASH_ATTN_EXT:
  14703. {
  14704. struct ggml_tensor * flash_grad = NULL;
  14705. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14706. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14707. GGML_ASSERT(t == 0 || t == 1);
  14708. bool masked = t != 0;
  14709. flash_grad =
  14710. ggml_flash_attn_back(ctx,
  14711. src0,
  14712. src1,
  14713. tensor->src[2],
  14714. tensor->grad,
  14715. masked);
  14716. }
  14717. const int64_t elem_q = ggml_nelements(src0);
  14718. const int64_t elem_k = ggml_nelements(src1);
  14719. const int64_t elem_v = ggml_nelements(src2);
  14720. enum ggml_type result_type = flash_grad->type;
  14721. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14722. const size_t tsize = ggml_type_size(result_type);
  14723. const size_t offs_q = 0;
  14724. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14725. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14726. if (src0->grad) {
  14727. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14728. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14729. src0->grad = ggml_add_or_set(ctx,
  14730. src0->grad,
  14731. grad_q,
  14732. zero_table);
  14733. }
  14734. if (src1->grad) {
  14735. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14736. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14737. src1->grad = ggml_add_or_set(ctx,
  14738. src1->grad,
  14739. grad_k,
  14740. zero_table);
  14741. }
  14742. if (src2->grad) {
  14743. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14744. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14745. src2->grad = ggml_add_or_set(ctx,
  14746. src2->grad,
  14747. grad_v,
  14748. zero_table);
  14749. }
  14750. } break;
  14751. case GGML_OP_FLASH_ATTN_BACK:
  14752. {
  14753. GGML_ASSERT(false); // not supported
  14754. } break;
  14755. case GGML_OP_SSM_CONV:
  14756. case GGML_OP_SSM_SCAN:
  14757. {
  14758. GGML_ASSERT(false); // TODO: not implemented
  14759. } break;
  14760. case GGML_OP_WIN_PART:
  14761. case GGML_OP_WIN_UNPART:
  14762. case GGML_OP_UNARY:
  14763. {
  14764. switch (ggml_get_unary_op(tensor)) {
  14765. case GGML_UNARY_OP_ABS:
  14766. {
  14767. if (src0->grad) {
  14768. src0->grad =
  14769. ggml_add_or_set(ctx,
  14770. src0->grad,
  14771. ggml_mul(ctx,
  14772. ggml_sgn(ctx, src0),
  14773. tensor->grad),
  14774. zero_table);
  14775. }
  14776. } break;
  14777. case GGML_UNARY_OP_SGN:
  14778. {
  14779. if (src0->grad) {
  14780. // noop
  14781. }
  14782. } break;
  14783. case GGML_UNARY_OP_NEG:
  14784. {
  14785. if (src0->grad) {
  14786. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14787. }
  14788. } break;
  14789. case GGML_UNARY_OP_STEP:
  14790. {
  14791. if (src0->grad) {
  14792. // noop
  14793. }
  14794. } break;
  14795. case GGML_UNARY_OP_TANH:
  14796. {
  14797. GGML_ASSERT(false); // TODO: not implemented
  14798. } break;
  14799. case GGML_UNARY_OP_ELU:
  14800. {
  14801. GGML_ASSERT(false); // TODO: not implemented
  14802. } break;
  14803. case GGML_UNARY_OP_RELU:
  14804. {
  14805. if (src0->grad) {
  14806. src0->grad = ggml_add_or_set(ctx,
  14807. src0->grad,
  14808. ggml_mul(ctx,
  14809. ggml_step(ctx, src0),
  14810. tensor->grad),
  14811. zero_table);
  14812. }
  14813. } break;
  14814. case GGML_UNARY_OP_SIGMOID:
  14815. {
  14816. GGML_ASSERT(false); // TODO: not implemented
  14817. } break;
  14818. case GGML_UNARY_OP_GELU:
  14819. {
  14820. GGML_ASSERT(false); // TODO: not implemented
  14821. } break;
  14822. case GGML_UNARY_OP_GELU_QUICK:
  14823. {
  14824. GGML_ASSERT(false); // TODO: not implemented
  14825. } break;
  14826. case GGML_UNARY_OP_SILU:
  14827. {
  14828. // necessary for llama
  14829. if (src0->grad) {
  14830. src0->grad = ggml_add_or_set(ctx,
  14831. src0->grad,
  14832. ggml_silu_back(ctx, src0, tensor->grad),
  14833. zero_table);
  14834. }
  14835. } break;
  14836. default:
  14837. GGML_ASSERT(false);
  14838. }
  14839. } break;
  14840. case GGML_OP_GET_REL_POS:
  14841. case GGML_OP_ADD_REL_POS:
  14842. case GGML_OP_MAP_UNARY:
  14843. case GGML_OP_MAP_BINARY:
  14844. case GGML_OP_MAP_CUSTOM1_F32:
  14845. case GGML_OP_MAP_CUSTOM2_F32:
  14846. case GGML_OP_MAP_CUSTOM3_F32:
  14847. case GGML_OP_MAP_CUSTOM1:
  14848. case GGML_OP_MAP_CUSTOM2:
  14849. case GGML_OP_MAP_CUSTOM3:
  14850. {
  14851. GGML_ASSERT(false); // not supported
  14852. } break;
  14853. case GGML_OP_CROSS_ENTROPY_LOSS:
  14854. {
  14855. if (src0->grad) {
  14856. src0->grad = ggml_add_or_set(ctx,
  14857. src0->grad,
  14858. ggml_cross_entropy_loss_back(ctx,
  14859. src0,
  14860. src1,
  14861. tensor->grad),
  14862. zero_table);
  14863. }
  14864. } break;
  14865. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14866. {
  14867. GGML_ASSERT(false); // not supported
  14868. } break;
  14869. case GGML_OP_NONE:
  14870. {
  14871. // nop
  14872. } break;
  14873. case GGML_OP_COUNT:
  14874. {
  14875. GGML_ASSERT(false);
  14876. } break;
  14877. }
  14878. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14879. if (tensor->src[i] && tensor->src[i]->grad) {
  14880. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14881. }
  14882. }
  14883. }
  14884. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14885. if (node->grad == NULL) {
  14886. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14887. // it can also happen during forward pass, if the user performs computations with constants
  14888. if (node->op != GGML_OP_NONE) {
  14889. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14890. }
  14891. }
  14892. // check if already visited
  14893. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14894. return;
  14895. }
  14896. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14897. const int k =
  14898. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14899. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14900. /* unknown order, just fall back to using i*/ i;
  14901. if (node->src[k]) {
  14902. ggml_visit_parents(cgraph, node->src[k]);
  14903. }
  14904. }
  14905. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14906. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14907. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14908. if (strlen(node->name) == 0) {
  14909. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14910. }
  14911. cgraph->leafs[cgraph->n_leafs] = node;
  14912. cgraph->n_leafs++;
  14913. } else {
  14914. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14915. if (strlen(node->name) == 0) {
  14916. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14917. }
  14918. cgraph->nodes[cgraph->n_nodes] = node;
  14919. if (cgraph->grads) {
  14920. cgraph->grads[cgraph->n_nodes] = node->grad;
  14921. }
  14922. cgraph->n_nodes++;
  14923. }
  14924. }
  14925. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14926. if (!expand) {
  14927. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14928. ggml_graph_clear(cgraph);
  14929. }
  14930. const int n0 = cgraph->n_nodes;
  14931. UNUSED(n0);
  14932. ggml_visit_parents(cgraph, tensor);
  14933. const int n_new = cgraph->n_nodes - n0;
  14934. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14935. if (n_new > 0) {
  14936. // the last added node should always be starting point
  14937. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14938. }
  14939. }
  14940. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14941. ggml_build_forward_impl(cgraph, tensor, true);
  14942. }
  14943. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14944. GGML_ASSERT(gf->n_nodes > 0);
  14945. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14946. if (keep) {
  14947. for (int i = 0; i < gf->n_nodes; i++) {
  14948. struct ggml_tensor * node = gf->nodes[i];
  14949. if (node->grad) {
  14950. node->grad = ggml_dup_tensor(ctx, node);
  14951. gf->grads[i] = node->grad;
  14952. }
  14953. }
  14954. }
  14955. // remember original gradients which start with zero values
  14956. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14957. for (int i = 0; i < gf->n_nodes; i++) {
  14958. if (gf->grads[i]) {
  14959. ggml_hash_insert(zero_table, gf->grads[i]);
  14960. }
  14961. }
  14962. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14963. struct ggml_tensor * node = gf->nodes[i];
  14964. // inplace operations to add gradients are not created by ggml_compute_backward
  14965. // use allocator to automatically make inplace operations
  14966. if (node->grad) {
  14967. ggml_compute_backward(ctx, node, zero_table);
  14968. }
  14969. }
  14970. for (int i = 0; i < gf->n_nodes; i++) {
  14971. struct ggml_tensor * node = gf->nodes[i];
  14972. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14973. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14974. ggml_build_forward_expand(gb, node->grad);
  14975. }
  14976. }
  14977. ggml_hash_set_free(zero_table);
  14978. }
  14979. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14980. size_t nbytes = sizeof(struct ggml_cgraph);
  14981. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14982. if (grads) {
  14983. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14984. }
  14985. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14986. return nbytes;
  14987. }
  14988. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14989. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14990. }
  14991. size_t ggml_graph_overhead(void) {
  14992. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14993. }
  14994. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14995. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14996. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14997. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14998. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14999. size_t hash_size = ggml_hash_size(size * 2);
  15000. struct ggml_tensor ** nodes_ptr = data_start;
  15001. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15002. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15003. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15004. // check that we allocated the correct amount of memory
  15005. assert(obj_size == (size_t) (
  15006. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15007. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15008. *cgraph = (struct ggml_cgraph) {
  15009. /*.size =*/ size,
  15010. /*.n_nodes =*/ 0,
  15011. /*.n_leafs =*/ 0,
  15012. /*.nodes =*/ nodes_ptr,
  15013. /*.grads =*/ grads_ptr,
  15014. /*.leafs =*/ leafs_ptr,
  15015. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15016. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15017. };
  15018. return cgraph;
  15019. }
  15020. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15021. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15022. }
  15023. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15024. struct ggml_cgraph cgraph = {
  15025. /*.size =*/ 0,
  15026. /*.n_nodes =*/ i1 - i0,
  15027. /*.n_leafs =*/ 0,
  15028. /*.nodes =*/ cgraph0->nodes + i0,
  15029. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15030. /*.leafs =*/ NULL,
  15031. /*.hash_table =*/ { 0, NULL },
  15032. /*.order =*/ cgraph0->order,
  15033. };
  15034. return cgraph;
  15035. }
  15036. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15037. GGML_ASSERT(dst->size >= src->n_leafs);
  15038. GGML_ASSERT(dst->size >= src->n_nodes);
  15039. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15040. dst->n_leafs = src->n_leafs;
  15041. dst->n_nodes = src->n_nodes;
  15042. dst->order = src->order;
  15043. for (int i = 0; i < src->n_leafs; ++i) {
  15044. dst->leafs[i] = src->leafs[i];
  15045. }
  15046. for (int i = 0; i < src->n_nodes; ++i) {
  15047. dst->nodes[i] = src->nodes[i];
  15048. }
  15049. if (src->grads) {
  15050. GGML_ASSERT(dst->grads != NULL);
  15051. for (int i = 0; i < src->n_nodes; ++i) {
  15052. dst->grads[i] = src->grads[i];
  15053. }
  15054. }
  15055. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15056. if (src->visited_hash_table.keys[i]) {
  15057. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15058. }
  15059. }
  15060. }
  15061. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15062. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15063. ggml_graph_cpy(cgraph, result);
  15064. return result;
  15065. }
  15066. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15067. GGML_ASSERT(cgraph->grads != NULL);
  15068. for (int i = 0; i < cgraph->n_nodes; i++) {
  15069. struct ggml_tensor * grad = cgraph->grads[i];
  15070. if (grad) {
  15071. ggml_set_zero(grad);
  15072. }
  15073. }
  15074. }
  15075. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15076. cgraph->n_leafs = 0;
  15077. cgraph->n_nodes = 0;
  15078. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15079. }
  15080. //
  15081. // thread data
  15082. //
  15083. // synchronization is done via busy loops
  15084. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15085. //
  15086. #ifdef __APPLE__
  15087. //#include <os/lock.h>
  15088. //
  15089. //typedef os_unfair_lock ggml_lock_t;
  15090. //
  15091. //#define ggml_lock_init(x) UNUSED(x)
  15092. //#define ggml_lock_destroy(x) UNUSED(x)
  15093. //#define ggml_lock_lock os_unfair_lock_lock
  15094. //#define ggml_lock_unlock os_unfair_lock_unlock
  15095. //
  15096. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15097. typedef int ggml_lock_t;
  15098. #define ggml_lock_init(x) UNUSED(x)
  15099. #define ggml_lock_destroy(x) UNUSED(x)
  15100. #define ggml_lock_lock(x) UNUSED(x)
  15101. #define ggml_lock_unlock(x) UNUSED(x)
  15102. #define GGML_LOCK_INITIALIZER 0
  15103. #define ggml_thread_create pthread_create
  15104. #define ggml_thread_join pthread_join
  15105. #else
  15106. //typedef pthread_spinlock_t ggml_lock_t;
  15107. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15108. //#define ggml_lock_destroy pthread_spin_destroy
  15109. //#define ggml_lock_lock pthread_spin_lock
  15110. //#define ggml_lock_unlock pthread_spin_unlock
  15111. typedef int ggml_lock_t;
  15112. #define ggml_lock_init(x) UNUSED(x)
  15113. #define ggml_lock_destroy(x) UNUSED(x)
  15114. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15115. #define ggml_lock_lock(x) _mm_pause()
  15116. #else
  15117. #define ggml_lock_lock(x) UNUSED(x)
  15118. #endif
  15119. #define ggml_lock_unlock(x) UNUSED(x)
  15120. #define GGML_LOCK_INITIALIZER 0
  15121. #define ggml_thread_create pthread_create
  15122. #define ggml_thread_join pthread_join
  15123. #endif
  15124. // Android's libc implementation "bionic" does not support setting affinity
  15125. #if defined(__gnu_linux__)
  15126. static void set_numa_thread_affinity(int thread_n) {
  15127. if (!ggml_is_numa()) {
  15128. return;
  15129. }
  15130. int node_num;
  15131. int rv;
  15132. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15133. switch(g_state.numa.numa_strategy) {
  15134. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15135. // run thread on node_num thread_n / (threads per node)
  15136. node_num = thread_n % g_state.numa.n_nodes;
  15137. break;
  15138. case GGML_NUMA_STRATEGY_ISOLATE:
  15139. // run thread on current_node
  15140. node_num = g_state.numa.current_node;
  15141. break;
  15142. case GGML_NUMA_STRATEGY_NUMACTL:
  15143. // use the cpuset that numactl gave us
  15144. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15145. if (rv) {
  15146. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15147. }
  15148. return;
  15149. default:
  15150. return;
  15151. }
  15152. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15153. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15154. CPU_ZERO_S(setsize, cpus);
  15155. for (size_t i = 0; i < node->n_cpus; ++i) {
  15156. CPU_SET_S(node->cpus[i], setsize, cpus);
  15157. }
  15158. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15159. if (rv) {
  15160. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15161. }
  15162. CPU_FREE(cpus);
  15163. }
  15164. static void clear_numa_thread_affinity(void) {
  15165. if (!ggml_is_numa()) {
  15166. return;
  15167. }
  15168. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15169. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15170. CPU_ZERO_S(setsize, cpus);
  15171. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15172. CPU_SET_S(i, setsize, cpus);
  15173. }
  15174. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15175. if (rv) {
  15176. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15177. }
  15178. CPU_FREE(cpus);
  15179. }
  15180. #else
  15181. // TODO: Windows etc.
  15182. // (the linux implementation may also work on BSD, someone should test)
  15183. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15184. static void clear_numa_thread_affinity(void) {}
  15185. #endif
  15186. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15187. int n_tasks = 0;
  15188. if (ggml_is_empty(node)) {
  15189. // no need to multi-thread a no-op
  15190. n_tasks = 1;
  15191. return n_tasks;
  15192. }
  15193. switch (node->op) {
  15194. case GGML_OP_CPY:
  15195. case GGML_OP_DUP:
  15196. case GGML_OP_CONT:
  15197. case GGML_OP_ADD:
  15198. case GGML_OP_ADD1:
  15199. case GGML_OP_ACC:
  15200. {
  15201. n_tasks = n_threads;
  15202. } break;
  15203. case GGML_OP_SUB:
  15204. case GGML_OP_SQR:
  15205. case GGML_OP_SQRT:
  15206. case GGML_OP_LOG:
  15207. case GGML_OP_SUM:
  15208. case GGML_OP_SUM_ROWS:
  15209. case GGML_OP_MEAN:
  15210. case GGML_OP_ARGMAX:
  15211. case GGML_OP_REPEAT:
  15212. case GGML_OP_REPEAT_BACK:
  15213. case GGML_OP_LEAKY_RELU:
  15214. {
  15215. n_tasks = 1;
  15216. } break;
  15217. case GGML_OP_UNARY:
  15218. switch (ggml_get_unary_op(node)) {
  15219. case GGML_UNARY_OP_ABS:
  15220. case GGML_UNARY_OP_SGN:
  15221. case GGML_UNARY_OP_NEG:
  15222. case GGML_UNARY_OP_STEP:
  15223. case GGML_UNARY_OP_TANH:
  15224. case GGML_UNARY_OP_ELU:
  15225. case GGML_UNARY_OP_RELU:
  15226. case GGML_UNARY_OP_SIGMOID:
  15227. case GGML_UNARY_OP_HARDSWISH:
  15228. case GGML_UNARY_OP_HARDSIGMOID:
  15229. {
  15230. n_tasks = 1;
  15231. } break;
  15232. case GGML_UNARY_OP_GELU:
  15233. case GGML_UNARY_OP_GELU_QUICK:
  15234. case GGML_UNARY_OP_SILU:
  15235. {
  15236. n_tasks = n_threads;
  15237. } break;
  15238. default:
  15239. GGML_ASSERT(false);
  15240. }
  15241. break;
  15242. case GGML_OP_SILU_BACK:
  15243. case GGML_OP_MUL:
  15244. case GGML_OP_DIV:
  15245. case GGML_OP_NORM:
  15246. case GGML_OP_RMS_NORM:
  15247. case GGML_OP_RMS_NORM_BACK:
  15248. case GGML_OP_GROUP_NORM:
  15249. case GGML_OP_CONCAT:
  15250. case GGML_OP_MUL_MAT:
  15251. case GGML_OP_MUL_MAT_ID:
  15252. case GGML_OP_OUT_PROD:
  15253. {
  15254. n_tasks = n_threads;
  15255. } break;
  15256. case GGML_OP_GET_ROWS:
  15257. {
  15258. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15259. // decreases performance with GPU offloading
  15260. //n_tasks = n_threads;
  15261. n_tasks = 1;
  15262. } break;
  15263. case GGML_OP_SCALE:
  15264. case GGML_OP_SET:
  15265. case GGML_OP_RESHAPE:
  15266. case GGML_OP_VIEW:
  15267. case GGML_OP_PERMUTE:
  15268. case GGML_OP_TRANSPOSE:
  15269. case GGML_OP_GET_ROWS_BACK:
  15270. case GGML_OP_DIAG:
  15271. {
  15272. n_tasks = 1;
  15273. } break;
  15274. case GGML_OP_DIAG_MASK_ZERO:
  15275. case GGML_OP_DIAG_MASK_INF:
  15276. case GGML_OP_SOFT_MAX_BACK:
  15277. case GGML_OP_ROPE:
  15278. case GGML_OP_ROPE_BACK:
  15279. case GGML_OP_ADD_REL_POS:
  15280. {
  15281. n_tasks = n_threads;
  15282. } break;
  15283. case GGML_OP_CLAMP:
  15284. {
  15285. n_tasks = 1; //TODO
  15286. } break;
  15287. case GGML_OP_SOFT_MAX:
  15288. {
  15289. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15290. } break;
  15291. case GGML_OP_IM2COL:
  15292. case GGML_OP_CONV_TRANSPOSE_1D:
  15293. case GGML_OP_CONV_TRANSPOSE_2D:
  15294. {
  15295. n_tasks = n_threads;
  15296. } break;
  15297. case GGML_OP_POOL_1D:
  15298. case GGML_OP_POOL_2D:
  15299. {
  15300. n_tasks = 1;
  15301. } break;
  15302. case GGML_OP_UPSCALE:
  15303. case GGML_OP_PAD:
  15304. case GGML_OP_ARANGE:
  15305. case GGML_OP_TIMESTEP_EMBEDDING:
  15306. case GGML_OP_ARGSORT:
  15307. case GGML_OP_FLASH_ATTN_EXT:
  15308. case GGML_OP_FLASH_ATTN_BACK:
  15309. case GGML_OP_SSM_CONV:
  15310. case GGML_OP_SSM_SCAN:
  15311. {
  15312. n_tasks = n_threads;
  15313. } break;
  15314. case GGML_OP_WIN_PART:
  15315. case GGML_OP_WIN_UNPART:
  15316. case GGML_OP_GET_REL_POS:
  15317. case GGML_OP_MAP_UNARY:
  15318. case GGML_OP_MAP_BINARY:
  15319. case GGML_OP_MAP_CUSTOM1_F32:
  15320. case GGML_OP_MAP_CUSTOM2_F32:
  15321. case GGML_OP_MAP_CUSTOM3_F32:
  15322. {
  15323. n_tasks = 1;
  15324. } break;
  15325. case GGML_OP_MAP_CUSTOM1:
  15326. {
  15327. struct ggml_map_custom1_op_params p;
  15328. memcpy(&p, node->op_params, sizeof(p));
  15329. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15330. n_tasks = n_threads;
  15331. } else {
  15332. n_tasks = MIN(p.n_tasks, n_threads);
  15333. }
  15334. } break;
  15335. case GGML_OP_MAP_CUSTOM2:
  15336. {
  15337. struct ggml_map_custom2_op_params p;
  15338. memcpy(&p, node->op_params, sizeof(p));
  15339. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15340. n_tasks = n_threads;
  15341. } else {
  15342. n_tasks = MIN(p.n_tasks, n_threads);
  15343. }
  15344. } break;
  15345. case GGML_OP_MAP_CUSTOM3:
  15346. {
  15347. struct ggml_map_custom3_op_params p;
  15348. memcpy(&p, node->op_params, sizeof(p));
  15349. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15350. n_tasks = n_threads;
  15351. } else {
  15352. n_tasks = MIN(p.n_tasks, n_threads);
  15353. }
  15354. } break;
  15355. case GGML_OP_CROSS_ENTROPY_LOSS:
  15356. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15357. {
  15358. n_tasks = n_threads;
  15359. } break;
  15360. case GGML_OP_NONE:
  15361. {
  15362. n_tasks = 1;
  15363. } break;
  15364. case GGML_OP_COUNT:
  15365. {
  15366. GGML_ASSERT(false);
  15367. } break;
  15368. default:
  15369. {
  15370. fprintf(stderr, "%s: op not implemented: ", __func__);
  15371. if (node->op < GGML_OP_COUNT) {
  15372. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15373. } else {
  15374. fprintf(stderr, "%d\n", node->op);
  15375. }
  15376. GGML_ASSERT(false);
  15377. } break;
  15378. }
  15379. assert(n_tasks > 0);
  15380. return n_tasks;
  15381. }
  15382. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15383. if (n_threads <= 0) {
  15384. n_threads = GGML_DEFAULT_N_THREADS;
  15385. }
  15386. size_t work_size = 0;
  15387. struct ggml_cplan cplan;
  15388. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15389. int max_tasks = 1;
  15390. // thread scheduling for the different operations + work buffer size estimation
  15391. for (int i = 0; i < cgraph->n_nodes; i++) {
  15392. struct ggml_tensor * node = cgraph->nodes[i];
  15393. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  15394. max_tasks = MAX(max_tasks, n_tasks);
  15395. size_t cur = 0;
  15396. switch (node->op) {
  15397. case GGML_OP_CPY:
  15398. case GGML_OP_DUP:
  15399. {
  15400. if (ggml_is_quantized(node->type) ||
  15401. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15402. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15403. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15404. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15405. }
  15406. } break;
  15407. case GGML_OP_ADD:
  15408. case GGML_OP_ADD1:
  15409. {
  15410. if (ggml_is_quantized(node->src[0]->type)) {
  15411. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15412. }
  15413. } break;
  15414. case GGML_OP_ACC:
  15415. {
  15416. if (ggml_is_quantized(node->src[0]->type)) {
  15417. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15418. }
  15419. } break;
  15420. case GGML_OP_MUL_MAT:
  15421. {
  15422. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15423. if (node->src[1]->type != vec_dot_type) {
  15424. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15425. }
  15426. } break;
  15427. case GGML_OP_MUL_MAT_ID:
  15428. {
  15429. cur = 0;
  15430. const struct ggml_tensor * src0 = node->src[0];
  15431. const struct ggml_tensor * src1 = node->src[1];
  15432. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15433. if (src1->type != vec_dot_type) {
  15434. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15435. }
  15436. const int n_as = src0->ne[2];
  15437. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15438. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15439. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15440. } break;
  15441. case GGML_OP_OUT_PROD:
  15442. {
  15443. if (ggml_is_quantized(node->src[0]->type)) {
  15444. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15445. }
  15446. } break;
  15447. case GGML_OP_SOFT_MAX:
  15448. case GGML_OP_ROPE:
  15449. {
  15450. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15451. } break;
  15452. case GGML_OP_CONV_TRANSPOSE_1D:
  15453. {
  15454. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15455. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15456. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15457. const int64_t ne00 = node->src[0]->ne[0]; // K
  15458. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15459. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15460. const int64_t ne10 = node->src[1]->ne[0]; // L
  15461. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15462. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15463. node->src[0]->type == GGML_TYPE_BF16) &&
  15464. node->src[1]->type == GGML_TYPE_F32) {
  15465. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15466. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15467. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15468. node->src[1]->type == GGML_TYPE_F32) {
  15469. cur += sizeof(float)*ne00*ne01*ne02;
  15470. cur += sizeof(float)*ne10*ne11;
  15471. } else {
  15472. GGML_ASSERT(false);
  15473. }
  15474. } break;
  15475. case GGML_OP_CONV_TRANSPOSE_2D:
  15476. {
  15477. const int64_t ne00 = node->src[0]->ne[0]; // W
  15478. const int64_t ne01 = node->src[0]->ne[1]; // H
  15479. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15480. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15481. const int64_t ne10 = node->src[1]->ne[0]; // W
  15482. const int64_t ne11 = node->src[1]->ne[1]; // H
  15483. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15484. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15485. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15486. } break;
  15487. case GGML_OP_FLASH_ATTN_EXT:
  15488. {
  15489. const int64_t ne00 = node->src[0]->ne[0]; // D
  15490. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15491. } break;
  15492. case GGML_OP_FLASH_ATTN_BACK:
  15493. {
  15494. const int64_t D = node->src[0]->ne[0];
  15495. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15496. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15497. if (node->src[1]->type == GGML_TYPE_F32) {
  15498. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15499. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15500. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15501. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15502. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15503. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15504. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15505. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15506. }
  15507. } break;
  15508. case GGML_OP_CROSS_ENTROPY_LOSS:
  15509. {
  15510. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15511. } break;
  15512. case GGML_OP_COUNT:
  15513. {
  15514. GGML_ASSERT(false);
  15515. } break;
  15516. default:
  15517. break;
  15518. }
  15519. work_size = MAX(work_size, cur);
  15520. }
  15521. if (work_size > 0) {
  15522. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15523. }
  15524. cplan.n_threads = MIN(max_tasks, n_threads);
  15525. cplan.work_size = work_size;
  15526. cplan.work_data = NULL;
  15527. return cplan;
  15528. }
  15529. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15530. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15531. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15532. const struct ggml_cplan * cplan = state->shared->cplan;
  15533. set_numa_thread_affinity(state->ith);
  15534. struct ggml_compute_params params = {
  15535. /*.ith =*/ state->ith,
  15536. /*.nth =*/ state->shared->n_threads,
  15537. /*.wsize =*/ cplan->work_size,
  15538. /*.wdata =*/ cplan->work_data,
  15539. /*.shared=*/ state->shared,
  15540. };
  15541. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15542. struct ggml_tensor * node = cgraph->nodes[node_n];
  15543. ggml_compute_forward(&params, node);
  15544. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15545. state->shared->ec = GGML_STATUS_ABORTED;
  15546. }
  15547. ggml_barrier(state->shared);
  15548. if (state->shared->ec != GGML_STATUS_SUCCESS) {
  15549. break;
  15550. }
  15551. }
  15552. return 0;
  15553. }
  15554. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15555. GGML_ASSERT(cplan);
  15556. GGML_ASSERT(cplan->n_threads > 0);
  15557. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  15558. int n_threads = cplan->n_threads;
  15559. struct ggml_compute_state_shared state_shared = {
  15560. /*.cgraph =*/ cgraph,
  15561. /*.cgraph_plan =*/ cplan,
  15562. /*.n_threads =*/ n_threads,
  15563. /*.n_barrier =*/ 0,
  15564. /*.n_barrier_passed =*/ 0,
  15565. /*.abort_callback =*/ NULL,
  15566. /*.abort_callback_data =*/ NULL,
  15567. /*.current_chunk =*/ 0,
  15568. /*.ec =*/ GGML_STATUS_SUCCESS,
  15569. };
  15570. #ifdef GGML_USE_OPENMP
  15571. if (n_threads > 1) {
  15572. #pragma omp parallel num_threads(n_threads)
  15573. {
  15574. #pragma omp single
  15575. {
  15576. // update the number of threads from the actual number of threads that we got from OpenMP
  15577. n_threads = omp_get_num_threads();
  15578. state_shared.n_threads = n_threads;
  15579. }
  15580. struct ggml_compute_state worker = {
  15581. .thrd = 0,
  15582. .ith = omp_get_thread_num(),
  15583. .shared = &state_shared,
  15584. };
  15585. ggml_graph_compute_thread(&worker);
  15586. }
  15587. } else {
  15588. struct ggml_compute_state worker = {
  15589. .thrd = 0,
  15590. .ith = 0,
  15591. .shared = &state_shared,
  15592. };
  15593. ggml_graph_compute_thread(&worker);
  15594. }
  15595. #else
  15596. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15597. for (int j = 0; j < n_threads; ++j) {
  15598. workers[j] = (struct ggml_compute_state) {
  15599. .thrd = 0,
  15600. .ith = j,
  15601. .shared = &state_shared,
  15602. };
  15603. }
  15604. // create thread pool
  15605. for (int j = 1; j < n_threads; ++j) {
  15606. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15607. GGML_ASSERT(rc == 0);
  15608. UNUSED(rc);
  15609. }
  15610. // this is a work thread too
  15611. ggml_graph_compute_thread(&workers[0]);
  15612. // join or kill thread pool
  15613. if (n_threads > 1) {
  15614. for (int j = 1; j < n_threads; j++) {
  15615. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15616. GGML_ASSERT(rc == 0);
  15617. UNUSED(rc);
  15618. }
  15619. }
  15620. #endif
  15621. // don't leave affinity set on the main thread
  15622. clear_numa_thread_affinity();
  15623. return state_shared.ec;
  15624. }
  15625. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15626. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15627. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15628. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15629. return ggml_graph_compute(cgraph, &cplan);
  15630. }
  15631. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15632. for (int i = 0; i < cgraph->n_leafs; i++) {
  15633. struct ggml_tensor * leaf = cgraph->leafs[i];
  15634. if (strcmp(leaf->name, name) == 0) {
  15635. return leaf;
  15636. }
  15637. }
  15638. for (int i = 0; i < cgraph->n_nodes; i++) {
  15639. struct ggml_tensor * node = cgraph->nodes[i];
  15640. if (strcmp(node->name, name) == 0) {
  15641. return node;
  15642. }
  15643. }
  15644. return NULL;
  15645. }
  15646. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15647. const int64_t * ne = tensor->ne;
  15648. const size_t * nb = tensor->nb;
  15649. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15650. ggml_type_name(tensor->type),
  15651. ggml_op_name (tensor->op),
  15652. ggml_n_dims(tensor),
  15653. ne[0], ne[1], ne[2], ne[3],
  15654. nb[0], nb[1], nb[2], nb[3],
  15655. tensor->data,
  15656. tensor->name);
  15657. }
  15658. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15659. const int64_t * ne = tensor->ne;
  15660. const size_t * nb = tensor->nb;
  15661. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15662. arg,
  15663. ggml_type_name(tensor->type),
  15664. ggml_op_name (tensor->op),
  15665. ggml_n_dims(tensor),
  15666. ne[0], ne[1], ne[2], ne[3],
  15667. nb[0], nb[1], nb[2], nb[3],
  15668. tensor->data,
  15669. tensor->name);
  15670. }
  15671. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15672. uint64_t size_eval = 0;
  15673. // compute size of intermediate results
  15674. // TODO: does not take into account scratch buffers !!!!
  15675. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15676. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15677. }
  15678. // print
  15679. {
  15680. FILE * fout = stdout;
  15681. fprintf(fout, "\n");
  15682. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15683. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15684. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15685. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15686. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15687. // header
  15688. fprintf(fout, "\n");
  15689. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15690. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15691. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15692. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15693. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15694. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15695. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15696. }
  15697. // header
  15698. fprintf(fout, "\n");
  15699. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15700. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15701. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15702. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15703. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15704. if (cgraph->nodes[i]->src[j]) {
  15705. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15706. }
  15707. }
  15708. fprintf(fout, "\n");
  15709. }
  15710. fprintf(fout, "\n");
  15711. }
  15712. // write binary data
  15713. {
  15714. FILE * fout = ggml_fopen(fname, "wb");
  15715. if (!fout) {
  15716. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15717. return;
  15718. }
  15719. // header
  15720. {
  15721. const uint32_t magic = GGML_FILE_MAGIC;
  15722. const uint32_t version = GGML_FILE_VERSION;
  15723. const uint32_t n_leafs = cgraph->n_leafs;
  15724. const uint32_t n_nodes = cgraph->n_nodes;
  15725. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15726. fwrite(&version, sizeof(uint32_t), 1, fout);
  15727. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15728. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15729. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15730. }
  15731. // leafs
  15732. {
  15733. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15734. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15735. const uint32_t type = tensor->type;
  15736. const uint32_t op = tensor->op;
  15737. fwrite(&type, sizeof(uint32_t), 1, fout);
  15738. fwrite(&op, sizeof(uint32_t), 1, fout);
  15739. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15740. const uint64_t ne = tensor->ne[j];
  15741. const uint64_t nb = tensor->nb[j];
  15742. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15743. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15744. }
  15745. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15746. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15747. // dump the data
  15748. // TODO: pad this to 32 byte boundary
  15749. {
  15750. const size_t size = ggml_nbytes(tensor);
  15751. fwrite(tensor->data, sizeof(char), size, fout);
  15752. }
  15753. }
  15754. }
  15755. // nodes
  15756. {
  15757. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15758. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15759. const uint32_t type = tensor->type;
  15760. const uint32_t op = tensor->op;
  15761. fwrite(&type, sizeof(uint32_t), 1, fout);
  15762. fwrite(&op, sizeof(uint32_t), 1, fout);
  15763. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15764. const uint64_t ne = tensor->ne[j];
  15765. const uint64_t nb = tensor->nb[j];
  15766. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15767. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15768. }
  15769. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15770. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15771. // output the op arguments
  15772. {
  15773. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15774. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15775. args[j] = tensor->src[j];
  15776. }
  15777. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15778. if (args[j]) {
  15779. int32_t idx = -1;
  15780. // check if leaf
  15781. {
  15782. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15783. if (args[j] == cgraph->leafs[k]) {
  15784. idx = k;
  15785. break;
  15786. }
  15787. }
  15788. }
  15789. // check if node
  15790. if (idx == -1) {
  15791. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15792. if (args[j] == cgraph->nodes[k]) {
  15793. idx = cgraph->n_leafs + k;
  15794. break;
  15795. }
  15796. }
  15797. }
  15798. if (idx == -1) {
  15799. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15800. fclose(fout);
  15801. return;
  15802. }
  15803. fwrite(&idx, sizeof(int32_t), 1, fout);
  15804. } else {
  15805. const int32_t nul = -1;
  15806. fwrite(&nul, sizeof(int32_t), 1, fout);
  15807. }
  15808. }
  15809. }
  15810. }
  15811. }
  15812. fclose(fout);
  15813. }
  15814. }
  15815. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15816. assert(*ctx_data == NULL);
  15817. assert(*ctx_eval == NULL);
  15818. struct ggml_cgraph * result = NULL;
  15819. struct ggml_tensor * data = NULL;
  15820. // read file into data
  15821. {
  15822. FILE * fin = ggml_fopen(fname, "rb");
  15823. if (!fin) {
  15824. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15825. return result;
  15826. }
  15827. size_t fsize = 0;
  15828. fseek(fin, 0, SEEK_END);
  15829. fsize = ftell(fin);
  15830. fseek(fin, 0, SEEK_SET);
  15831. // create the data context
  15832. {
  15833. const size_t overhead = 1*ggml_tensor_overhead();
  15834. struct ggml_init_params params = {
  15835. .mem_size = fsize + overhead,
  15836. .mem_buffer = NULL,
  15837. .no_alloc = false,
  15838. };
  15839. *ctx_data = ggml_init(params);
  15840. if (!*ctx_data) {
  15841. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15842. fclose(fin);
  15843. return result;
  15844. }
  15845. }
  15846. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15847. {
  15848. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15849. if (ret != fsize) {
  15850. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15851. fclose(fin);
  15852. return result;
  15853. }
  15854. }
  15855. fclose(fin);
  15856. }
  15857. // populate result
  15858. {
  15859. char * ptr = (char *) data->data;
  15860. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15861. if (magic != GGML_FILE_MAGIC) {
  15862. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15863. return result;
  15864. }
  15865. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15866. if (version != GGML_FILE_VERSION) {
  15867. fprintf(stderr, "%s: invalid version number\n", __func__);
  15868. return result;
  15869. }
  15870. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15871. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15872. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15873. const int graph_size = MAX(n_leafs, n_nodes);
  15874. // create the data context
  15875. {
  15876. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15877. struct ggml_init_params params = {
  15878. .mem_size = size_eval + overhead,
  15879. .mem_buffer = NULL,
  15880. .no_alloc = true,
  15881. };
  15882. *ctx_eval = ggml_init(params);
  15883. if (!*ctx_eval) {
  15884. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15885. return result;
  15886. }
  15887. }
  15888. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15889. result->n_leafs = n_leafs;
  15890. result->n_nodes = n_nodes;
  15891. // leafs
  15892. {
  15893. uint32_t type;
  15894. uint32_t op;
  15895. for (uint32_t i = 0; i < n_leafs; ++i) {
  15896. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15897. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15898. int64_t ne[GGML_MAX_DIMS];
  15899. size_t nb[GGML_MAX_DIMS];
  15900. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15901. uint64_t ne_cur;
  15902. uint64_t nb_cur;
  15903. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15904. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15905. ne[j] = ne_cur;
  15906. nb[j] = nb_cur;
  15907. }
  15908. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15909. tensor->op = (enum ggml_op) op;
  15910. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15911. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15912. tensor->data = (void *) ptr;
  15913. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15914. tensor->nb[j] = nb[j];
  15915. }
  15916. result->leafs[i] = tensor;
  15917. ptr += ggml_nbytes(tensor);
  15918. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15919. }
  15920. }
  15921. ggml_set_no_alloc(*ctx_eval, false);
  15922. // nodes
  15923. {
  15924. uint32_t type;
  15925. uint32_t op;
  15926. for (uint32_t i = 0; i < n_nodes; ++i) {
  15927. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15928. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15929. enum ggml_op eop = (enum ggml_op) op;
  15930. int64_t ne[GGML_MAX_DIMS];
  15931. size_t nb[GGML_MAX_DIMS];
  15932. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15933. uint64_t ne_cur;
  15934. uint64_t nb_cur;
  15935. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15936. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15937. ne[j] = ne_cur;
  15938. nb[j] = nb_cur;
  15939. }
  15940. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15941. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15942. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15943. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15944. // parse args
  15945. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15946. const int32_t arg_idx = ptr_arg_idx[j];
  15947. if (arg_idx == -1) {
  15948. continue;
  15949. }
  15950. if (arg_idx < result->n_leafs) {
  15951. args[j] = result->leafs[arg_idx];
  15952. } else {
  15953. args[j] = result->nodes[arg_idx - result->n_leafs];
  15954. }
  15955. }
  15956. // create the tensor
  15957. // "view" operations are handled differently
  15958. // TODO: handle inplace ops - currently a copy is always made
  15959. struct ggml_tensor * tensor = NULL;
  15960. switch (eop) {
  15961. // TODO: implement other view ops
  15962. case GGML_OP_RESHAPE:
  15963. {
  15964. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15965. } break;
  15966. case GGML_OP_VIEW:
  15967. {
  15968. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15969. size_t offs;
  15970. memcpy(&offs, ptr_op_params, sizeof(offs));
  15971. tensor->data = ((char *) tensor->data) + offs;
  15972. } break;
  15973. case GGML_OP_TRANSPOSE:
  15974. {
  15975. tensor = ggml_transpose(*ctx_eval, args[0]);
  15976. } break;
  15977. case GGML_OP_PERMUTE:
  15978. {
  15979. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15980. } break;
  15981. default:
  15982. {
  15983. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15984. tensor->op = eop;
  15985. } break;
  15986. }
  15987. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15988. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15989. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15990. tensor->nb[j] = nb[j];
  15991. }
  15992. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15993. tensor->src[j] = args[j];
  15994. }
  15995. result->nodes[i] = tensor;
  15996. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15997. }
  15998. }
  15999. }
  16000. return result;
  16001. }
  16002. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16003. GGML_PRINT("=== GRAPH ===\n");
  16004. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16005. for (int i = 0; i < cgraph->n_nodes; i++) {
  16006. struct ggml_tensor * node = cgraph->nodes[i];
  16007. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  16008. i,
  16009. node->ne[0], node->ne[1], node->ne[2],
  16010. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  16011. }
  16012. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16013. for (int i = 0; i < cgraph->n_leafs; i++) {
  16014. struct ggml_tensor * node = cgraph->leafs[i];
  16015. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16016. i,
  16017. node->ne[0], node->ne[1],
  16018. ggml_op_name(node->op),
  16019. ggml_get_name(node));
  16020. }
  16021. GGML_PRINT("========================================\n");
  16022. }
  16023. // check if node is part of the graph
  16024. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16025. if (cgraph == NULL) {
  16026. return true;
  16027. }
  16028. for (int i = 0; i < cgraph->n_nodes; i++) {
  16029. if (cgraph->nodes[i] == node) {
  16030. return true;
  16031. }
  16032. }
  16033. return false;
  16034. }
  16035. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16036. for (int i = 0; i < cgraph->n_nodes; i++) {
  16037. struct ggml_tensor * parent = cgraph->nodes[i];
  16038. if (parent->grad == node) {
  16039. return parent;
  16040. }
  16041. }
  16042. return NULL;
  16043. }
  16044. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16045. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16046. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16047. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16048. gparent0 ? (void *) gparent0 : (void *) parent,
  16049. gparent0 ? "g" : "x",
  16050. gparent ? (void *) gparent : (void *) node,
  16051. gparent ? "g" : "x",
  16052. gparent ? "empty" : "vee",
  16053. gparent ? "dashed" : "solid",
  16054. label);
  16055. }
  16056. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16057. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16058. (void *) parent, "x",
  16059. (void *) node, "x",
  16060. label);
  16061. }
  16062. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16063. char color[16];
  16064. FILE * fp = ggml_fopen(filename, "w");
  16065. GGML_ASSERT(fp);
  16066. fprintf(fp, "digraph G {\n");
  16067. fprintf(fp, " newrank = true;\n");
  16068. fprintf(fp, " rankdir = TB;\n");
  16069. for (int i = 0; i < gb->n_nodes; i++) {
  16070. struct ggml_tensor * node = gb->nodes[i];
  16071. if (ggml_graph_get_parent(gb, node) != NULL) {
  16072. continue;
  16073. }
  16074. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16075. snprintf(color, sizeof(color), "yellow");
  16076. } else if (node->grad) {
  16077. if (ggml_graph_find(gf, node)) {
  16078. snprintf(color, sizeof(color), "green");
  16079. } else {
  16080. snprintf(color, sizeof(color), "lightblue");
  16081. }
  16082. } else {
  16083. snprintf(color, sizeof(color), "white");
  16084. }
  16085. fprintf(fp, " \"%p\" [ "
  16086. "style = filled; fillcolor = %s; shape = record; "
  16087. "label=\"",
  16088. (void *) node, color);
  16089. if (strlen(node->name) > 0) {
  16090. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16091. } else {
  16092. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16093. }
  16094. if (ggml_is_matrix(node)) {
  16095. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16096. } else {
  16097. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16098. }
  16099. if (node->grad) {
  16100. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16101. } else {
  16102. fprintf(fp, "\"; ]\n");
  16103. }
  16104. }
  16105. for (int i = 0; i < gb->n_leafs; i++) {
  16106. struct ggml_tensor * node = gb->leafs[i];
  16107. snprintf(color, sizeof(color), "pink");
  16108. fprintf(fp, " \"%p\" [ "
  16109. "style = filled; fillcolor = %s; shape = record; "
  16110. "label=\"<x>",
  16111. (void *) node, color);
  16112. if (strlen(node->name) > 0) {
  16113. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16114. } else {
  16115. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16116. }
  16117. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16118. if (ggml_nelements(node) < 5 && node->data != NULL) {
  16119. fprintf(fp, " | (");
  16120. for (int j = 0; j < ggml_nelements(node); j++) {
  16121. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16122. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16123. }
  16124. else if (node->type == GGML_TYPE_F32 ||
  16125. node->type == GGML_TYPE_F16 ||
  16126. node->type == GGML_TYPE_BF16) {
  16127. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16128. }
  16129. else {
  16130. fprintf(fp, "#");
  16131. }
  16132. if (j < ggml_nelements(node) - 1) {
  16133. fprintf(fp, ", ");
  16134. }
  16135. }
  16136. fprintf(fp, ")");
  16137. }
  16138. fprintf(fp, "\"; ]\n");
  16139. }
  16140. for (int i = 0; i < gb->n_nodes; i++) {
  16141. struct ggml_tensor * node = gb->nodes[i];
  16142. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16143. if (node->src[j]) {
  16144. char label[16];
  16145. snprintf(label, sizeof(label), "src %d", j);
  16146. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16147. }
  16148. }
  16149. }
  16150. for (int i = 0; i < gb->n_leafs; i++) {
  16151. struct ggml_tensor * node = gb->leafs[i];
  16152. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16153. if (node->src[j]) {
  16154. char label[16];
  16155. snprintf(label, sizeof(label), "src %d", j);
  16156. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16157. }
  16158. }
  16159. }
  16160. fprintf(fp, "}\n");
  16161. fclose(fp);
  16162. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16163. }
  16164. ////////////////////////////////////////////////////////////////////////////////
  16165. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16166. int i = 0;
  16167. for (int p = 0; p < np; ++p) {
  16168. const int64_t ne = ggml_nelements(ps[p]) ;
  16169. // TODO: add function to set tensor from array
  16170. for (int64_t j = 0; j < ne; ++j) {
  16171. ggml_set_f32_1d(ps[p], j, x[i++]);
  16172. }
  16173. }
  16174. }
  16175. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16176. int i = 0;
  16177. for (int p = 0; p < np; ++p) {
  16178. const int64_t ne = ggml_nelements(ps[p]) ;
  16179. // TODO: add function to get all elements at once
  16180. for (int64_t j = 0; j < ne; ++j) {
  16181. x[i++] = ggml_get_f32_1d(ps[p], j);
  16182. }
  16183. }
  16184. }
  16185. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16186. int64_t i = 0;
  16187. for (int p = 0; p < np; ++p) {
  16188. const int64_t ne = ggml_nelements(ps[p]) ;
  16189. // TODO: add function to get all elements at once
  16190. for (int64_t j = 0; j < ne; ++j) {
  16191. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16192. }
  16193. }
  16194. }
  16195. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16196. int64_t i = 0;
  16197. for (int p = 0; p < np; ++p) {
  16198. const int64_t ne = ggml_nelements(ps[p]) ;
  16199. // TODO: add function to get all elements at once
  16200. for (int64_t j = 0; j < ne; ++j) {
  16201. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16202. }
  16203. }
  16204. }
  16205. //
  16206. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16207. //
  16208. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16209. //
  16210. static enum ggml_opt_result ggml_opt_adam(
  16211. struct ggml_context * ctx,
  16212. struct ggml_opt_context * opt,
  16213. struct ggml_opt_params params,
  16214. struct ggml_tensor * f,
  16215. struct ggml_cgraph * gf,
  16216. struct ggml_cgraph * gb,
  16217. ggml_opt_callback callback,
  16218. void * callback_data) {
  16219. GGML_ASSERT(ggml_is_scalar(f));
  16220. // these will store the parameters we want to optimize
  16221. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16222. int np = 0;
  16223. int64_t nx = 0;
  16224. for (int i = 0; i < gf->n_nodes; ++i) {
  16225. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16226. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16227. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16228. ps[np++] = gf->nodes[i];
  16229. nx += ggml_nelements(gf->nodes[i]);
  16230. }
  16231. }
  16232. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16233. int iter = opt->iter;
  16234. ggml_opt_init(opt->ctx, opt, params, nx);
  16235. opt->iter = iter;
  16236. }
  16237. // constants
  16238. float sched = params.adam.sched;
  16239. const float alpha = params.adam.alpha;
  16240. const float decay = params.adam.decay * alpha;
  16241. const float beta1 = params.adam.beta1;
  16242. const float beta2 = params.adam.beta2;
  16243. const float eps = params.adam.eps;
  16244. const float gclip = params.adam.gclip;
  16245. const int decay_min_ndim = params.adam.decay_min_ndim;
  16246. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16247. const float accum_norm = 1.0f / (float) n_accum;
  16248. float * g = opt->adam.g->data; // gradients
  16249. float * m = opt->adam.m->data; // first moment
  16250. float * v = opt->adam.v->data; // second moment
  16251. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16252. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16253. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16254. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16255. bool cancel = false;
  16256. // compute the function value
  16257. float fx = 0;
  16258. ggml_set_zero(opt->adam.g);
  16259. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16260. if (callback) {
  16261. callback(callback_data, accum_step, &sched, &cancel);
  16262. if (cancel) {
  16263. return GGML_OPT_RESULT_CANCEL;
  16264. }
  16265. }
  16266. // ggml_graph_reset (gf);
  16267. ggml_set_f32 (f->grad, 1.0f);
  16268. ggml_graph_compute(gb, &cplan);
  16269. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16270. fx += ggml_get_f32_1d(f, 0);
  16271. }
  16272. fx *= accum_norm;
  16273. opt->adam.fx_prev = fx;
  16274. opt->adam.fx_best = opt->adam.fx_prev;
  16275. if (pf) {
  16276. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16277. }
  16278. opt->loss_before = opt->adam.fx_prev;
  16279. opt->loss_after = opt->adam.fx_prev;
  16280. // initialize
  16281. if (opt->just_initialized) {
  16282. opt->adam.n_no_improvement = 0;
  16283. opt->just_initialized = false;
  16284. }
  16285. float * fx_best = &opt->adam.fx_best;
  16286. float * fx_prev = &opt->adam.fx_prev;
  16287. int * n_no_improvement = &opt->adam.n_no_improvement;
  16288. int iter0 = opt->iter;
  16289. // run the optimizer
  16290. for (int t = 0; t < params.adam.n_iter; ++t) {
  16291. opt->iter = iter0 + t + 1;
  16292. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16293. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16294. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16295. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16296. for (int i = 0; i < np; ++i) {
  16297. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16298. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16299. }
  16300. const int64_t t_start_wall = ggml_time_us();
  16301. const int64_t t_start_cpu = ggml_cycles();
  16302. UNUSED(t_start_wall);
  16303. UNUSED(t_start_cpu);
  16304. {
  16305. float gnorm = 1.0f;
  16306. if (gclip > 0.0f) {
  16307. // gradient clipping
  16308. ggml_float sum = 0.0;
  16309. for (int64_t i = 0; i < nx; ++i) {
  16310. sum += (ggml_float)(g[i]*g[i]);
  16311. }
  16312. ggml_float norm = sqrt(sum);
  16313. if (norm > (ggml_float) gclip) {
  16314. gnorm = (float) ((ggml_float) gclip / norm);
  16315. }
  16316. }
  16317. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16318. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16319. int64_t i = 0;
  16320. for (int p = 0; p < np; ++p) {
  16321. const int64_t ne = ggml_nelements(ps[p]);
  16322. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16323. for (int64_t j = 0; j < ne; ++j) {
  16324. float x = ggml_get_f32_1d(ps[p], j);
  16325. float g_ = g[i]*gnorm;
  16326. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16327. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16328. float mh = m[i]*beta1h;
  16329. float vh = v[i]*beta2h;
  16330. vh = sqrtf(vh) + eps;
  16331. x = x*(1.0f - p_decay) - mh/vh;
  16332. ggml_set_f32_1d(ps[p], j, x);
  16333. ++i;
  16334. }
  16335. }
  16336. }
  16337. fx = 0;
  16338. ggml_set_zero(opt->adam.g);
  16339. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16340. if (callback) {
  16341. callback(callback_data, accum_step, &sched, &cancel);
  16342. if (cancel) {
  16343. return GGML_OPT_RESULT_CANCEL;;
  16344. }
  16345. }
  16346. // ggml_graph_reset (gf);
  16347. ggml_set_f32 (f->grad, 1.0f);
  16348. ggml_graph_compute(gb, &cplan);
  16349. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16350. fx += ggml_get_f32_1d(f, 0);
  16351. }
  16352. fx *= accum_norm;
  16353. opt->loss_after = fx;
  16354. // check convergence
  16355. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16356. GGML_PRINT_DEBUG("converged\n");
  16357. return GGML_OPT_RESULT_OK;
  16358. }
  16359. // delta-based convergence test
  16360. if (pf != NULL) {
  16361. // need at least params.past iterations to start checking for convergence
  16362. if (params.past <= iter0 + t) {
  16363. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16364. if (fabsf(rate) < params.delta) {
  16365. return GGML_OPT_RESULT_OK;
  16366. }
  16367. }
  16368. pf[(iter0 + t)%params.past] = fx;
  16369. }
  16370. // check for improvement
  16371. if (params.max_no_improvement > 0) {
  16372. if (fx_best[0] > fx) {
  16373. fx_best[0] = fx;
  16374. n_no_improvement[0] = 0;
  16375. } else {
  16376. ++n_no_improvement[0];
  16377. if (n_no_improvement[0] >= params.max_no_improvement) {
  16378. return GGML_OPT_RESULT_OK;
  16379. }
  16380. }
  16381. }
  16382. fx_prev[0] = fx;
  16383. {
  16384. const int64_t t_end_cpu = ggml_cycles();
  16385. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16386. UNUSED(t_end_cpu);
  16387. const int64_t t_end_wall = ggml_time_us();
  16388. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16389. UNUSED(t_end_wall);
  16390. }
  16391. }
  16392. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16393. }
  16394. //
  16395. // L-BFGS
  16396. //
  16397. // the L-BFGS implementation below is based on the following implementation:
  16398. //
  16399. // https://github.com/chokkan/liblbfgs
  16400. //
  16401. struct ggml_lbfgs_iteration_data {
  16402. float alpha;
  16403. float ys;
  16404. float * s;
  16405. float * y;
  16406. };
  16407. static enum ggml_opt_result linesearch_backtracking(
  16408. const struct ggml_opt_params * params,
  16409. int nx,
  16410. float * x,
  16411. float * fx,
  16412. float * g,
  16413. float * d,
  16414. float * step,
  16415. const float * xp,
  16416. struct ggml_tensor * f,
  16417. struct ggml_cgraph * gb,
  16418. struct ggml_cplan * cplan,
  16419. const int np,
  16420. struct ggml_tensor * ps[],
  16421. bool * cancel,
  16422. ggml_opt_callback callback,
  16423. void * callback_data) {
  16424. int count = 0;
  16425. float width = 0.0f;
  16426. float dg = 0.0f;
  16427. float finit = 0.0f;
  16428. float dginit = 0.0f;
  16429. float dgtest = 0.0f;
  16430. const float dec = 0.5f;
  16431. const float inc = 2.1f;
  16432. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16433. const float accum_norm = 1.0f / (float) n_accum;
  16434. if (*step <= 0.f) {
  16435. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16436. }
  16437. // compute the initial gradient in the search direction
  16438. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16439. // make sure that d points to a descent direction
  16440. if (0 < dginit) {
  16441. return GGML_LINESEARCH_FAIL;
  16442. }
  16443. // initialize local variables
  16444. finit = *fx;
  16445. dgtest = params->lbfgs.ftol*dginit;
  16446. while (true) {
  16447. ggml_vec_cpy_f32(nx, x, xp);
  16448. ggml_vec_mad_f32(nx, x, d, *step);
  16449. // evaluate the function and gradient values
  16450. {
  16451. ggml_opt_set_params(np, ps, x);
  16452. *fx = 0;
  16453. memset(g, 0, sizeof(float)*nx);
  16454. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16455. if (callback) {
  16456. // LBFG-S does not support learning rate -> ignore learning schedule
  16457. float sched = 0;
  16458. callback(callback_data, accum_step, &sched, cancel);
  16459. if (*cancel) {
  16460. return GGML_OPT_RESULT_CANCEL;
  16461. }
  16462. }
  16463. // ggml_graph_reset (gf);
  16464. ggml_set_f32 (f->grad, 1.0f);
  16465. ggml_graph_compute(gb, cplan);
  16466. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16467. *fx += ggml_get_f32_1d(f, 0);
  16468. }
  16469. *fx *= accum_norm;
  16470. }
  16471. ++count;
  16472. if (*fx > finit + (*step)*dgtest) {
  16473. width = dec;
  16474. } else {
  16475. // Armijo condition is satisfied
  16476. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16477. return count;
  16478. }
  16479. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16480. // check the Wolfe condition
  16481. if (dg < params->lbfgs.wolfe * dginit) {
  16482. width = inc;
  16483. } else {
  16484. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16485. // regular Wolfe conditions
  16486. return count;
  16487. }
  16488. if(dg > -params->lbfgs.wolfe*dginit) {
  16489. width = dec;
  16490. } else {
  16491. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16492. return count;
  16493. }
  16494. }
  16495. }
  16496. if (*step < params->lbfgs.min_step) {
  16497. return GGML_LINESEARCH_MINIMUM_STEP;
  16498. }
  16499. if (*step > params->lbfgs.max_step) {
  16500. return GGML_LINESEARCH_MAXIMUM_STEP;
  16501. }
  16502. if (params->lbfgs.max_linesearch <= count) {
  16503. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16504. }
  16505. (*step) *= width;
  16506. }
  16507. GGML_ASSERT(false && "line search failed");
  16508. return GGML_LINESEARCH_FAIL;
  16509. }
  16510. static enum ggml_opt_result ggml_opt_lbfgs(
  16511. struct ggml_context * ctx,
  16512. struct ggml_opt_context * opt,
  16513. struct ggml_opt_params params,
  16514. struct ggml_tensor * f,
  16515. struct ggml_cgraph * gf,
  16516. struct ggml_cgraph * gb,
  16517. ggml_opt_callback callback,
  16518. void * callback_data) {
  16519. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16520. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16521. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16522. return GGML_OPT_RESULT_INVALID_WOLFE;
  16523. }
  16524. }
  16525. const int m = params.lbfgs.m;
  16526. // these will store the parameters we want to optimize
  16527. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16528. int np = 0;
  16529. int nx = 0;
  16530. for (int i = 0; i < gf->n_nodes; ++i) {
  16531. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16532. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16533. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16534. ps[np++] = gf->nodes[i];
  16535. nx += ggml_nelements(gf->nodes[i]);
  16536. }
  16537. }
  16538. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16539. int iter = opt->iter;
  16540. ggml_opt_init(ctx, opt, params, nx);
  16541. opt->iter = iter;
  16542. }
  16543. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16544. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16545. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16546. float * x = opt->lbfgs.x->data; // current parameters
  16547. float * xp = opt->lbfgs.xp->data; // previous parameters
  16548. float * g = opt->lbfgs.g->data; // current gradient
  16549. float * gp = opt->lbfgs.gp->data; // previous gradient
  16550. float * d = opt->lbfgs.d->data; // search direction
  16551. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16552. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16553. const float accum_norm = 1.0f / (float) n_accum;
  16554. float fx = 0.0f; // cost function value
  16555. float xnorm = 0.0f; // ||x||
  16556. float gnorm = 0.0f; // ||g||
  16557. // initialize x from the graph nodes
  16558. ggml_opt_get_params(np, ps, x);
  16559. // the L-BFGS memory
  16560. float * lm_alpha = opt->lbfgs.lmal->data;
  16561. float * lm_ys = opt->lbfgs.lmys->data;
  16562. float * lm_s = opt->lbfgs.lms->data;
  16563. float * lm_y = opt->lbfgs.lmy->data;
  16564. bool cancel = false;
  16565. // evaluate the function value and its gradient
  16566. {
  16567. ggml_opt_set_params(np, ps, x);
  16568. fx = 0;
  16569. memset(g, 0, sizeof(float)*nx);
  16570. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16571. if (callback) {
  16572. // LBFG-S does not support learning rate -> ignore learning schedule
  16573. float sched = 0;
  16574. callback(callback_data, accum_step, &sched, &cancel);
  16575. if (cancel) {
  16576. return GGML_OPT_RESULT_CANCEL;
  16577. }
  16578. }
  16579. // ggml_graph_reset (gf);
  16580. ggml_set_f32 (f->grad, 1.0f);
  16581. ggml_graph_compute(gb, &cplan);
  16582. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16583. fx += ggml_get_f32_1d(f, 0);
  16584. }
  16585. fx *= accum_norm;
  16586. opt->loss_before = fx;
  16587. opt->loss_after = fx;
  16588. }
  16589. // search direction = -gradient
  16590. ggml_vec_neg_f32(nx, d, g);
  16591. // ||x||, ||g||
  16592. ggml_vec_norm_f32(nx, &xnorm, x);
  16593. ggml_vec_norm_f32(nx, &gnorm, g);
  16594. if (xnorm < 1.0f) {
  16595. xnorm = 1.0f;
  16596. }
  16597. // already optimized
  16598. if (gnorm/xnorm <= params.lbfgs.eps) {
  16599. return GGML_OPT_RESULT_OK;
  16600. }
  16601. if (opt->just_initialized) {
  16602. if (pf) {
  16603. pf[0] = fx;
  16604. }
  16605. opt->lbfgs.fx_best = fx;
  16606. // initial step
  16607. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16608. opt->lbfgs.j = 0;
  16609. opt->lbfgs.k = 1;
  16610. opt->lbfgs.end = 0;
  16611. opt->lbfgs.n_no_improvement = 0;
  16612. opt->just_initialized = false;
  16613. }
  16614. float * fx_best = &opt->lbfgs.fx_best;
  16615. float * step = &opt->lbfgs.step;
  16616. int * j = &opt->lbfgs.j;
  16617. int * k = &opt->lbfgs.k;
  16618. int * end = &opt->lbfgs.end;
  16619. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16620. int ls = 0;
  16621. int bound = 0;
  16622. float ys = 0.0f;
  16623. float yy = 0.0f;
  16624. float beta = 0.0f;
  16625. int it = 0;
  16626. while (true) {
  16627. // store the current position and gradient vectors
  16628. ggml_vec_cpy_f32(nx, xp, x);
  16629. ggml_vec_cpy_f32(nx, gp, g);
  16630. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16631. // to determine if the optimization should be cancelled
  16632. // this is a simple change, but not doing this atm, since I don't have a nice
  16633. // way to test and don't want to break something with so many changes lined up
  16634. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16635. if (cancel) {
  16636. return GGML_OPT_RESULT_CANCEL;
  16637. }
  16638. if (ls < 0) {
  16639. // linesearch failed - go back to the previous point and return
  16640. ggml_vec_cpy_f32(nx, x, xp);
  16641. ggml_vec_cpy_f32(nx, g, gp);
  16642. return ls;
  16643. }
  16644. opt->loss_after = fx;
  16645. ggml_vec_norm_f32(nx, &xnorm, x);
  16646. ggml_vec_norm_f32(nx, &gnorm, g);
  16647. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16648. if (xnorm < 1.0f) {
  16649. xnorm = 1.0f;
  16650. }
  16651. if (gnorm/xnorm <= params.lbfgs.eps) {
  16652. // converged
  16653. return GGML_OPT_RESULT_OK;
  16654. }
  16655. // delta-based convergence test
  16656. if (pf != NULL) {
  16657. // need at least params.past iterations to start checking for convergence
  16658. if (params.past <= k[0]) {
  16659. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16660. if (fabsf(rate) < params.delta) {
  16661. return GGML_OPT_RESULT_OK;
  16662. }
  16663. }
  16664. pf[k[0]%params.past] = fx;
  16665. }
  16666. // check for improvement
  16667. if (params.max_no_improvement > 0) {
  16668. if (fx < fx_best[0]) {
  16669. fx_best[0] = fx;
  16670. n_no_improvement[0] = 0;
  16671. } else {
  16672. n_no_improvement[0]++;
  16673. if (n_no_improvement[0] >= params.max_no_improvement) {
  16674. return GGML_OPT_RESULT_OK;
  16675. }
  16676. }
  16677. }
  16678. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16679. // reached the maximum number of iterations
  16680. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16681. }
  16682. // update vectors s and y:
  16683. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16684. // y_{k+1} = g_{k+1} - g_{k}.
  16685. //
  16686. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16687. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16688. // compute scalars ys and yy:
  16689. // ys = y^t \cdot s -> 1 / \rho.
  16690. // yy = y^t \cdot y.
  16691. //
  16692. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16693. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16694. lm_ys[end[0]] = ys;
  16695. // find new search direction
  16696. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16697. bound = (m <= k[0]) ? m : k[0];
  16698. k[0]++;
  16699. it++;
  16700. end[0] = (end[0] + 1)%m;
  16701. // initialize search direction with -g
  16702. ggml_vec_neg_f32(nx, d, g);
  16703. j[0] = end[0];
  16704. for (int i = 0; i < bound; ++i) {
  16705. j[0] = (j[0] + m - 1) % m;
  16706. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16707. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16708. lm_alpha[j[0]] /= lm_ys[j[0]];
  16709. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16710. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16711. }
  16712. ggml_vec_scale_f32(nx, d, ys/yy);
  16713. for (int i = 0; i < bound; ++i) {
  16714. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16715. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16716. beta /= lm_ys[j[0]];
  16717. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16718. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16719. j[0] = (j[0] + 1)%m;
  16720. }
  16721. step[0] = 1.0;
  16722. }
  16723. GGML_ASSERT(false && "lbfgs failed");
  16724. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16725. }
  16726. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16727. struct ggml_opt_params result;
  16728. switch (type) {
  16729. case GGML_OPT_TYPE_ADAM:
  16730. {
  16731. result = (struct ggml_opt_params) {
  16732. .type = GGML_OPT_TYPE_ADAM,
  16733. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16734. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16735. .past = 0,
  16736. .delta = 1e-5f,
  16737. .max_no_improvement = 100,
  16738. .print_forward_graph = true,
  16739. .print_backward_graph = true,
  16740. .n_gradient_accumulation = 1,
  16741. .adam = {
  16742. .n_iter = 10000,
  16743. .sched = 1.000f,
  16744. .decay = 0.0f,
  16745. .decay_min_ndim = 2,
  16746. .alpha = 0.001f,
  16747. .beta1 = 0.9f,
  16748. .beta2 = 0.999f,
  16749. .eps = 1e-8f,
  16750. .eps_f = 1e-5f,
  16751. .eps_g = 1e-3f,
  16752. .gclip = 0.0f,
  16753. },
  16754. };
  16755. } break;
  16756. case GGML_OPT_TYPE_LBFGS:
  16757. {
  16758. result = (struct ggml_opt_params) {
  16759. .type = GGML_OPT_TYPE_LBFGS,
  16760. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16761. .n_threads = 1,
  16762. .past = 0,
  16763. .delta = 1e-5f,
  16764. .max_no_improvement = 0,
  16765. .print_forward_graph = true,
  16766. .print_backward_graph = true,
  16767. .n_gradient_accumulation = 1,
  16768. .lbfgs = {
  16769. .m = 6,
  16770. .n_iter = 100,
  16771. .max_linesearch = 20,
  16772. .eps = 1e-5f,
  16773. .ftol = 1e-4f,
  16774. .wolfe = 0.9f,
  16775. .min_step = 1e-20f,
  16776. .max_step = 1e+20f,
  16777. .linesearch = GGML_LINESEARCH_DEFAULT,
  16778. },
  16779. };
  16780. } break;
  16781. }
  16782. return result;
  16783. }
  16784. GGML_API void ggml_opt_init(
  16785. struct ggml_context * ctx,
  16786. struct ggml_opt_context * opt,
  16787. struct ggml_opt_params params,
  16788. int64_t nx) {
  16789. opt->ctx = ctx;
  16790. opt->params = params;
  16791. opt->iter = 0;
  16792. opt->nx = nx;
  16793. opt->just_initialized = true;
  16794. if (opt->ctx == NULL) {
  16795. struct ggml_init_params ctx_opt_params;
  16796. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16797. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16798. if (opt->params.past > 0) {
  16799. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16800. }
  16801. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16802. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16803. if (opt->params.past > 0) {
  16804. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16805. }
  16806. }
  16807. ctx_opt_params.mem_buffer = NULL;
  16808. ctx_opt_params.no_alloc = false;
  16809. opt->ctx = ggml_init(ctx_opt_params);
  16810. }
  16811. switch (opt->params.type) {
  16812. case GGML_OPT_TYPE_ADAM:
  16813. {
  16814. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16815. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16816. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16817. opt->adam.pf = params.past > 0
  16818. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16819. : NULL;
  16820. ggml_set_zero(opt->adam.m);
  16821. ggml_set_zero(opt->adam.v);
  16822. if (opt->adam.pf) {
  16823. ggml_set_zero(opt->adam.pf);
  16824. }
  16825. } break;
  16826. case GGML_OPT_TYPE_LBFGS:
  16827. {
  16828. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16829. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16830. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16831. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16832. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16833. opt->lbfgs.pf = params.past > 0
  16834. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16835. : NULL;
  16836. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16837. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16838. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16839. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16840. ggml_set_zero(opt->lbfgs.x);
  16841. ggml_set_zero(opt->lbfgs.xp);
  16842. ggml_set_zero(opt->lbfgs.g);
  16843. ggml_set_zero(opt->lbfgs.gp);
  16844. ggml_set_zero(opt->lbfgs.d);
  16845. if (opt->lbfgs.pf) {
  16846. ggml_set_zero(opt->lbfgs.pf);
  16847. }
  16848. ggml_set_zero(opt->lbfgs.lmal);
  16849. ggml_set_zero(opt->lbfgs.lmys);
  16850. ggml_set_zero(opt->lbfgs.lms);
  16851. ggml_set_zero(opt->lbfgs.lmy);
  16852. } break;
  16853. }
  16854. }
  16855. enum ggml_opt_result ggml_opt(
  16856. struct ggml_context * ctx,
  16857. struct ggml_opt_params params,
  16858. struct ggml_tensor * f) {
  16859. bool free_ctx = false;
  16860. if (ctx == NULL) {
  16861. struct ggml_init_params params_ctx = {
  16862. .mem_size = 16*1024*1024,
  16863. .mem_buffer = NULL,
  16864. .no_alloc = false,
  16865. };
  16866. ctx = ggml_init(params_ctx);
  16867. if (ctx == NULL) {
  16868. return GGML_OPT_RESULT_NO_CONTEXT;
  16869. }
  16870. free_ctx = true;
  16871. }
  16872. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16873. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16874. ggml_opt_init(ctx, opt, params, 0);
  16875. result = ggml_opt_resume(ctx, opt, f);
  16876. if (free_ctx) {
  16877. ggml_free(ctx);
  16878. }
  16879. return result;
  16880. }
  16881. enum ggml_opt_result ggml_opt_resume(
  16882. struct ggml_context * ctx,
  16883. struct ggml_opt_context * opt,
  16884. struct ggml_tensor * f) {
  16885. // build forward + backward compute graphs
  16886. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16887. ggml_build_forward_expand(gf, f);
  16888. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16889. ggml_build_backward_expand(ctx, gf, gb, true);
  16890. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16891. }
  16892. enum ggml_opt_result ggml_opt_resume_g(
  16893. struct ggml_context * ctx,
  16894. struct ggml_opt_context * opt,
  16895. struct ggml_tensor * f,
  16896. struct ggml_cgraph * gf,
  16897. struct ggml_cgraph * gb,
  16898. ggml_opt_callback callback,
  16899. void * callback_data) {
  16900. // build forward + backward compute graphs
  16901. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16902. switch (opt->params.type) {
  16903. case GGML_OPT_TYPE_ADAM:
  16904. {
  16905. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16906. } break;
  16907. case GGML_OPT_TYPE_LBFGS:
  16908. {
  16909. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16910. } break;
  16911. }
  16912. if (opt->params.print_forward_graph) {
  16913. ggml_graph_print (gf);
  16914. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16915. }
  16916. if (opt->params.print_backward_graph) {
  16917. ggml_graph_print (gb);
  16918. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16919. }
  16920. return result;
  16921. }
  16922. ////////////////////////////////////////////////////////////////////////////////
  16923. void ggml_set_input(struct ggml_tensor * tensor) {
  16924. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16925. }
  16926. void ggml_set_output(struct ggml_tensor * tensor) {
  16927. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16928. }
  16929. ////////////////////////////////////////////////////////////////////////////////
  16930. void ggml_quantize_init(enum ggml_type type) {
  16931. ggml_critical_section_start();
  16932. switch (type) {
  16933. case GGML_TYPE_IQ2_XXS:
  16934. case GGML_TYPE_IQ2_XS:
  16935. case GGML_TYPE_IQ2_S:
  16936. case GGML_TYPE_IQ1_S:
  16937. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16938. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16939. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16940. default: // nothing
  16941. break;
  16942. }
  16943. ggml_critical_section_end();
  16944. }
  16945. void ggml_quantize_free(void) {
  16946. ggml_critical_section_start();
  16947. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16948. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16949. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16950. iq3xs_free_impl(256);
  16951. ggml_critical_section_end();
  16952. }
  16953. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16954. return
  16955. type == GGML_TYPE_IQ2_XXS ||
  16956. type == GGML_TYPE_IQ2_XS ||
  16957. type == GGML_TYPE_IQ1_S;// ||
  16958. //type == GGML_TYPE_IQ1_M;
  16959. }
  16960. size_t ggml_quantize_chunk(
  16961. enum ggml_type type,
  16962. const float * src,
  16963. void * dst,
  16964. int64_t start,
  16965. int64_t nrows,
  16966. int64_t n_per_row,
  16967. const float * imatrix) {
  16968. const int64_t n = (int64_t) nrows * n_per_row;
  16969. if (ggml_quantize_requires_imatrix(type)) {
  16970. GGML_ASSERT(imatrix != NULL);
  16971. }
  16972. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16973. GGML_ASSERT(start % n_per_row == 0);
  16974. ggml_quantize_init(type); // this is noop if already initialized
  16975. const size_t start_row = start / n_per_row;
  16976. const size_t row_size = ggml_row_size(type, n_per_row);
  16977. size_t result = 0;
  16978. switch (type) {
  16979. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16980. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16981. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16982. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16983. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16984. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16985. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16986. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16987. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16988. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16989. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16990. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16991. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16992. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16993. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16994. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16995. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16996. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16997. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16998. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16999. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17000. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17001. case GGML_TYPE_F16:
  17002. {
  17003. size_t elemsize = sizeof(ggml_fp16_t);
  17004. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17005. result = n * elemsize;
  17006. } break;
  17007. case GGML_TYPE_BF16:
  17008. {
  17009. size_t elemsize = sizeof(ggml_bf16_t);
  17010. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17011. result = n * elemsize;
  17012. } break;
  17013. case GGML_TYPE_F32:
  17014. {
  17015. size_t elemsize = sizeof(float);
  17016. result = n * elemsize;
  17017. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17018. } break;
  17019. default:
  17020. assert(false);
  17021. }
  17022. GGML_ASSERT(result == nrows * row_size);
  17023. return result;
  17024. }
  17025. ////////////////////////////////////////////////////////////////////////////////
  17026. struct gguf_str {
  17027. uint64_t n; // GGUFv2
  17028. char * data;
  17029. };
  17030. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17031. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17032. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17033. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17034. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17035. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17036. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17037. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17038. [GGUF_TYPE_BOOL] = sizeof(bool),
  17039. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17040. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17041. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17042. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17043. [GGUF_TYPE_ARRAY] = 0, // undefined
  17044. };
  17045. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17046. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17047. [GGUF_TYPE_UINT8] = "u8",
  17048. [GGUF_TYPE_INT8] = "i8",
  17049. [GGUF_TYPE_UINT16] = "u16",
  17050. [GGUF_TYPE_INT16] = "i16",
  17051. [GGUF_TYPE_UINT32] = "u32",
  17052. [GGUF_TYPE_INT32] = "i32",
  17053. [GGUF_TYPE_FLOAT32] = "f32",
  17054. [GGUF_TYPE_BOOL] = "bool",
  17055. [GGUF_TYPE_STRING] = "str",
  17056. [GGUF_TYPE_ARRAY] = "arr",
  17057. [GGUF_TYPE_UINT64] = "u64",
  17058. [GGUF_TYPE_INT64] = "i64",
  17059. [GGUF_TYPE_FLOAT64] = "f64",
  17060. };
  17061. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17062. union gguf_value {
  17063. uint8_t uint8;
  17064. int8_t int8;
  17065. uint16_t uint16;
  17066. int16_t int16;
  17067. uint32_t uint32;
  17068. int32_t int32;
  17069. float float32;
  17070. uint64_t uint64;
  17071. int64_t int64;
  17072. double float64;
  17073. bool bool_;
  17074. struct gguf_str str;
  17075. struct {
  17076. enum gguf_type type;
  17077. uint64_t n; // GGUFv2
  17078. void * data;
  17079. } arr;
  17080. };
  17081. struct gguf_kv {
  17082. struct gguf_str key;
  17083. enum gguf_type type;
  17084. union gguf_value value;
  17085. };
  17086. struct gguf_header {
  17087. char magic[4];
  17088. uint32_t version;
  17089. uint64_t n_tensors; // GGUFv2
  17090. uint64_t n_kv; // GGUFv2
  17091. };
  17092. struct gguf_tensor_info {
  17093. struct gguf_str name;
  17094. uint32_t n_dims;
  17095. uint64_t ne[GGML_MAX_DIMS];
  17096. enum ggml_type type;
  17097. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17098. // for writing API
  17099. const void * data;
  17100. size_t size;
  17101. };
  17102. struct gguf_context {
  17103. struct gguf_header header;
  17104. struct gguf_kv * kv;
  17105. struct gguf_tensor_info * infos;
  17106. size_t alignment;
  17107. size_t offset; // offset of `data` from beginning of file
  17108. size_t size; // size of `data` in bytes
  17109. //uint8_t * padding;
  17110. void * data;
  17111. };
  17112. static size_t gguf_type_size(enum gguf_type type) {
  17113. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17114. return GGUF_TYPE_SIZE[type];
  17115. }
  17116. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17117. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17118. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17119. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17120. GGML_ASSERT(info->ne[i] > 0);
  17121. }
  17122. // prevent overflow for total number of elements
  17123. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17124. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17125. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17126. }
  17127. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17128. const size_t n = fread(dst, 1, size, file);
  17129. *offset += n;
  17130. return n == size;
  17131. }
  17132. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17133. p->n = 0;
  17134. p->data = NULL;
  17135. bool ok = true;
  17136. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17137. // early exit if string length is invalid, prevents from integer overflow
  17138. if (p->n == SIZE_MAX) {
  17139. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17140. return false;
  17141. }
  17142. p->data = GGML_CALLOC(p->n + 1, 1);
  17143. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17144. return ok;
  17145. }
  17146. static void gguf_free_kv(struct gguf_kv * kv) {
  17147. if (kv->key.data) {
  17148. GGML_FREE(kv->key.data);
  17149. }
  17150. if (kv->type == GGUF_TYPE_STRING) {
  17151. if (kv->value.str.data) {
  17152. GGML_FREE(kv->value.str.data);
  17153. }
  17154. }
  17155. if (kv->type == GGUF_TYPE_ARRAY) {
  17156. if (kv->value.arr.data) {
  17157. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17158. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17159. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17160. if (str->data) {
  17161. GGML_FREE(str->data);
  17162. }
  17163. }
  17164. }
  17165. GGML_FREE(kv->value.arr.data);
  17166. }
  17167. }
  17168. }
  17169. struct gguf_context * gguf_init_empty(void) {
  17170. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17171. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17172. ctx->header.version = GGUF_VERSION;
  17173. ctx->header.n_tensors = 0;
  17174. ctx->header.n_kv = 0;
  17175. ctx->kv = NULL;
  17176. ctx->infos = NULL;
  17177. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17178. ctx->offset = 0;
  17179. ctx->size = 0;
  17180. ctx->data = NULL;
  17181. return ctx;
  17182. }
  17183. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17184. FILE * file = ggml_fopen(fname, "rb");
  17185. if (!file) {
  17186. return NULL;
  17187. }
  17188. // offset from start of file
  17189. size_t offset = 0;
  17190. char magic[4];
  17191. // check the magic before making allocations
  17192. {
  17193. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17194. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17195. if (magic[i] != GGUF_MAGIC[i]) {
  17196. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17197. fclose(file);
  17198. return NULL;
  17199. }
  17200. }
  17201. }
  17202. bool ok = true;
  17203. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17204. // read the header
  17205. {
  17206. strncpy(ctx->header.magic, magic, 4);
  17207. ctx->kv = NULL;
  17208. ctx->infos = NULL;
  17209. ctx->data = NULL;
  17210. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17211. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17212. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17213. if (ctx->header.version == 1) {
  17214. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17215. fclose(file);
  17216. gguf_free(ctx);
  17217. return NULL;
  17218. }
  17219. // sanity-checks to prevent from integer/buffer overflows
  17220. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17221. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17222. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17223. if (!ok) {
  17224. fprintf(stderr, "%s: failed to read header\n", __func__);
  17225. fclose(file);
  17226. gguf_free(ctx);
  17227. return NULL;
  17228. }
  17229. }
  17230. // read the kv pairs
  17231. {
  17232. const uint64_t n_kv = ctx->header.n_kv;
  17233. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17234. ctx->header.n_kv = 0;
  17235. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17236. for (uint64_t i = 0; i < n_kv; ++i) {
  17237. struct gguf_kv * kv = &ctx->kv[i];
  17238. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17239. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17240. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17241. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17242. switch (kv->type) {
  17243. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17244. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17245. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17246. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17247. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17248. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17249. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17250. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17251. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17252. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17253. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17254. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17255. case GGUF_TYPE_ARRAY:
  17256. {
  17257. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17258. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17259. switch (kv->value.arr.type) {
  17260. case GGUF_TYPE_UINT8:
  17261. case GGUF_TYPE_INT8:
  17262. case GGUF_TYPE_UINT16:
  17263. case GGUF_TYPE_INT16:
  17264. case GGUF_TYPE_UINT32:
  17265. case GGUF_TYPE_INT32:
  17266. case GGUF_TYPE_FLOAT32:
  17267. case GGUF_TYPE_UINT64:
  17268. case GGUF_TYPE_INT64:
  17269. case GGUF_TYPE_FLOAT64:
  17270. case GGUF_TYPE_BOOL:
  17271. {
  17272. // prevent from integer overflow in the malloc below
  17273. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17274. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17275. fclose(file);
  17276. gguf_free(ctx);
  17277. return NULL;
  17278. }
  17279. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17280. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17281. } break;
  17282. case GGUF_TYPE_STRING:
  17283. {
  17284. // prevent from integer overflow in the malloc below
  17285. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17286. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17287. fclose(file);
  17288. gguf_free(ctx);
  17289. return NULL;
  17290. }
  17291. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17292. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17293. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17294. }
  17295. } break;
  17296. case GGUF_TYPE_ARRAY:
  17297. default: GGML_ASSERT(false && "invalid type"); break;
  17298. }
  17299. } break;
  17300. default: GGML_ASSERT(false && "invalid type");
  17301. }
  17302. if (!ok) {
  17303. break;
  17304. }
  17305. ctx->header.n_kv++;
  17306. }
  17307. if (!ok) {
  17308. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17309. fclose(file);
  17310. gguf_free(ctx);
  17311. return NULL;
  17312. }
  17313. }
  17314. // read the tensor infos
  17315. if (ctx->header.n_tensors > 0) {
  17316. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17317. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17318. struct gguf_tensor_info * info = &ctx->infos[i];
  17319. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17320. info->ne[j] = 1;
  17321. }
  17322. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17323. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17324. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17325. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17326. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17327. }
  17328. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17329. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17330. // TODO: return an error instead of crashing with GGML_ASSERT
  17331. gguf_tensor_info_sanitize(info);
  17332. // make sure there is no duplicated tensor names
  17333. for (uint64_t j = 0; j < i; ++j) {
  17334. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17335. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17336. ok = false;
  17337. }
  17338. }
  17339. if (!ok) {
  17340. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17341. fclose(file);
  17342. gguf_free(ctx);
  17343. return NULL;
  17344. }
  17345. }
  17346. }
  17347. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17348. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17349. if (alignment_idx != -1) {
  17350. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17351. }
  17352. // we require the data section to be aligned, so take into account any padding
  17353. {
  17354. const size_t offset_pad = offset % ctx->alignment;
  17355. if (offset_pad != 0) {
  17356. offset += ctx->alignment - offset_pad;
  17357. fseek(file, offset, SEEK_SET);
  17358. }
  17359. }
  17360. // store the current file offset - this is where the data section starts
  17361. ctx->offset = offset;
  17362. // compute the total size of the data section, taking into account the alignment
  17363. {
  17364. ctx->size = 0;
  17365. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17366. struct gguf_tensor_info * info = &ctx->infos[i];
  17367. const int64_t ne =
  17368. (int64_t) info->ne[0] *
  17369. (int64_t) info->ne[1] *
  17370. (int64_t) info->ne[2] *
  17371. (int64_t) info->ne[3];
  17372. if (ne % ggml_blck_size(info->type) != 0) {
  17373. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  17374. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17375. fclose(file);
  17376. gguf_free(ctx);
  17377. return NULL;
  17378. }
  17379. const size_t size_cur = ggml_row_size(info->type, ne);
  17380. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17381. }
  17382. }
  17383. // load the tensor data only if requested
  17384. if (params.ctx != NULL) {
  17385. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17386. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17387. // the ggml_tensor structs to the appropriate locations in the binary blob
  17388. // compute the exact size needed for the new ggml_context
  17389. const size_t mem_size =
  17390. params.no_alloc ?
  17391. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17392. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17393. struct ggml_init_params pdata = {
  17394. .mem_size = mem_size,
  17395. .mem_buffer = NULL,
  17396. .no_alloc = params.no_alloc,
  17397. };
  17398. *params.ctx = ggml_init(pdata);
  17399. struct ggml_context * ctx_data = *params.ctx;
  17400. struct ggml_tensor * data = NULL;
  17401. if (!params.no_alloc) {
  17402. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17403. ok = ok && data != NULL;
  17404. // read the binary blob with the tensor data
  17405. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17406. if (!ok) {
  17407. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17408. fclose(file);
  17409. ggml_free(ctx_data);
  17410. gguf_free(ctx);
  17411. return NULL;
  17412. }
  17413. ctx->data = data->data;
  17414. }
  17415. ggml_set_no_alloc(ctx_data, true);
  17416. // create the tensors
  17417. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17418. const int64_t ne[GGML_MAX_DIMS] = {
  17419. ctx->infos[i].ne[0],
  17420. ctx->infos[i].ne[1],
  17421. ctx->infos[i].ne[2],
  17422. ctx->infos[i].ne[3],
  17423. };
  17424. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17425. ok = ok && cur != NULL;
  17426. if (!ok) {
  17427. break;
  17428. }
  17429. ggml_set_name(cur, ctx->infos[i].name.data);
  17430. // point the data member to the appropriate location in the binary blob using the tensor infos
  17431. if (!params.no_alloc) {
  17432. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17433. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17434. }
  17435. }
  17436. if (!ok) {
  17437. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17438. fclose(file);
  17439. ggml_free(ctx_data);
  17440. gguf_free(ctx);
  17441. return NULL;
  17442. }
  17443. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17444. }
  17445. fclose(file);
  17446. return ctx;
  17447. }
  17448. void gguf_free(struct gguf_context * ctx) {
  17449. if (ctx == NULL) {
  17450. return;
  17451. }
  17452. if (ctx->kv) {
  17453. // free string memory - not great..
  17454. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17455. gguf_free_kv(&ctx->kv[i]);
  17456. }
  17457. GGML_FREE(ctx->kv);
  17458. }
  17459. if (ctx->infos) {
  17460. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17461. struct gguf_tensor_info * info = &ctx->infos[i];
  17462. if (info->name.data) {
  17463. GGML_FREE(info->name.data);
  17464. }
  17465. }
  17466. GGML_FREE(ctx->infos);
  17467. }
  17468. GGML_FREE(ctx);
  17469. }
  17470. const char * gguf_type_name(enum gguf_type type) {
  17471. return GGUF_TYPE_NAME[type];
  17472. }
  17473. int gguf_get_version(const struct gguf_context * ctx) {
  17474. return ctx->header.version;
  17475. }
  17476. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17477. return ctx->alignment;
  17478. }
  17479. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17480. return ctx->offset;
  17481. }
  17482. void * gguf_get_data(const struct gguf_context * ctx) {
  17483. return ctx->data;
  17484. }
  17485. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17486. return ctx->header.n_kv;
  17487. }
  17488. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17489. // return -1 if key not found
  17490. int keyfound = -1;
  17491. const int n_kv = gguf_get_n_kv(ctx);
  17492. for (int i = 0; i < n_kv; ++i) {
  17493. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17494. keyfound = i;
  17495. break;
  17496. }
  17497. }
  17498. return keyfound;
  17499. }
  17500. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17501. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17502. return ctx->kv[key_id].key.data;
  17503. }
  17504. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17505. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17506. return ctx->kv[key_id].type;
  17507. }
  17508. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17509. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17510. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17511. return ctx->kv[key_id].value.arr.type;
  17512. }
  17513. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17514. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17515. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17516. return ctx->kv[key_id].value.arr.data;
  17517. }
  17518. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17519. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17520. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17521. struct gguf_kv * kv = &ctx->kv[key_id];
  17522. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17523. return str->data;
  17524. }
  17525. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17526. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17527. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17528. return ctx->kv[key_id].value.arr.n;
  17529. }
  17530. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17531. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17532. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17533. return ctx->kv[key_id].value.uint8;
  17534. }
  17535. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17536. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17537. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17538. return ctx->kv[key_id].value.int8;
  17539. }
  17540. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17541. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17542. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17543. return ctx->kv[key_id].value.uint16;
  17544. }
  17545. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17546. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17547. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17548. return ctx->kv[key_id].value.int16;
  17549. }
  17550. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17551. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17552. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17553. return ctx->kv[key_id].value.uint32;
  17554. }
  17555. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17556. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17557. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17558. return ctx->kv[key_id].value.int32;
  17559. }
  17560. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17561. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17562. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17563. return ctx->kv[key_id].value.float32;
  17564. }
  17565. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17566. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17567. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17568. return ctx->kv[key_id].value.uint64;
  17569. }
  17570. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17571. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17572. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17573. return ctx->kv[key_id].value.int64;
  17574. }
  17575. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17576. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17577. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17578. return ctx->kv[key_id].value.float64;
  17579. }
  17580. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17581. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17582. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17583. return ctx->kv[key_id].value.bool_;
  17584. }
  17585. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17586. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17587. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17588. return ctx->kv[key_id].value.str.data;
  17589. }
  17590. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17591. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17592. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17593. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17594. return &ctx->kv[key_id].value;
  17595. }
  17596. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17597. return ctx->header.n_tensors;
  17598. }
  17599. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17600. // return -1 if tensor not found
  17601. int tensorfound = -1;
  17602. const int n_tensors = gguf_get_n_tensors(ctx);
  17603. for (int i = 0; i < n_tensors; ++i) {
  17604. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17605. tensorfound = i;
  17606. break;
  17607. }
  17608. }
  17609. return tensorfound;
  17610. }
  17611. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17612. return ctx->infos[i].offset;
  17613. }
  17614. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17615. return ctx->infos[i].name.data;
  17616. }
  17617. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17618. return ctx->infos[i].type;
  17619. }
  17620. // returns the index
  17621. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17622. const int idx = gguf_find_key(ctx, key);
  17623. if (idx >= 0) {
  17624. return idx;
  17625. }
  17626. const int n_kv = gguf_get_n_kv(ctx);
  17627. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17628. ctx->kv[n_kv].key.n = strlen(key);
  17629. ctx->kv[n_kv].key.data = strdup(key);
  17630. ctx->header.n_kv++;
  17631. return n_kv;
  17632. }
  17633. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17634. const int idx = gguf_find_key(ctx, key);
  17635. if (idx >= 0) {
  17636. const int n_kv = gguf_get_n_kv(ctx);
  17637. gguf_free_kv(&ctx->kv[idx]);
  17638. for (int i = idx; i < n_kv-1; ++i) {
  17639. ctx->kv[i] = ctx->kv[i+1];
  17640. }
  17641. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17642. ctx->header.n_kv--;
  17643. }
  17644. }
  17645. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17646. const int idx = gguf_get_or_add_key(ctx, key);
  17647. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17648. ctx->kv[idx].value.uint8 = val;
  17649. }
  17650. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17651. const int idx = gguf_get_or_add_key(ctx, key);
  17652. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17653. ctx->kv[idx].value.int8 = val;
  17654. }
  17655. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17656. const int idx = gguf_get_or_add_key(ctx, key);
  17657. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17658. ctx->kv[idx].value.uint16 = val;
  17659. }
  17660. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17661. const int idx = gguf_get_or_add_key(ctx, key);
  17662. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17663. ctx->kv[idx].value.int16 = val;
  17664. }
  17665. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17666. const int idx = gguf_get_or_add_key(ctx, key);
  17667. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17668. ctx->kv[idx].value.uint32 = val;
  17669. }
  17670. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17671. const int idx = gguf_get_or_add_key(ctx, key);
  17672. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17673. ctx->kv[idx].value.int32 = val;
  17674. }
  17675. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17676. const int idx = gguf_get_or_add_key(ctx, key);
  17677. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17678. ctx->kv[idx].value.float32 = val;
  17679. }
  17680. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17681. const int idx = gguf_get_or_add_key(ctx, key);
  17682. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17683. ctx->kv[idx].value.uint64 = val;
  17684. }
  17685. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17686. const int idx = gguf_get_or_add_key(ctx, key);
  17687. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17688. ctx->kv[idx].value.int64 = val;
  17689. }
  17690. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17691. const int idx = gguf_get_or_add_key(ctx, key);
  17692. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17693. ctx->kv[idx].value.float64 = val;
  17694. }
  17695. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17696. const int idx = gguf_get_or_add_key(ctx, key);
  17697. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17698. ctx->kv[idx].value.bool_ = val;
  17699. }
  17700. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17701. const int idx = gguf_get_or_add_key(ctx, key);
  17702. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17703. ctx->kv[idx].value.str.n = strlen(val);
  17704. ctx->kv[idx].value.str.data = strdup(val);
  17705. }
  17706. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17707. const int idx = gguf_get_or_add_key(ctx, key);
  17708. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17709. ctx->kv[idx].value.arr.type = type;
  17710. ctx->kv[idx].value.arr.n = n;
  17711. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17712. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17713. }
  17714. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17715. const int idx = gguf_get_or_add_key(ctx, key);
  17716. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17717. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17718. ctx->kv[idx].value.arr.n = n;
  17719. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17720. for (int i = 0; i < n; i++) {
  17721. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17722. str->n = strlen(data[i]);
  17723. str->data = strdup(data[i]);
  17724. }
  17725. }
  17726. // set or add KV pairs from another context
  17727. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17728. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17729. switch (src->kv[i].type) {
  17730. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17731. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17732. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17733. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17734. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17735. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17736. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17737. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17738. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17739. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17740. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17741. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17742. case GGUF_TYPE_ARRAY:
  17743. {
  17744. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17745. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17746. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17747. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17748. }
  17749. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17750. GGML_FREE((void *)data);
  17751. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17752. GGML_ASSERT(false && "nested arrays not supported");
  17753. } else {
  17754. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17755. }
  17756. } break;
  17757. default: GGML_ASSERT(false && "invalid type"); break;
  17758. }
  17759. }
  17760. }
  17761. void gguf_add_tensor(
  17762. struct gguf_context * ctx,
  17763. const struct ggml_tensor * tensor) {
  17764. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17765. GGML_ASSERT(false && "duplicated tensor name");
  17766. }
  17767. const int idx = ctx->header.n_tensors;
  17768. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17769. ctx->infos[idx].name.n = strlen(tensor->name);
  17770. ctx->infos[idx].name.data = strdup(tensor->name);
  17771. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17772. ctx->infos[idx].ne[i] = 1;
  17773. }
  17774. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17775. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17776. ctx->infos[idx].ne[i] = tensor->ne[i];
  17777. }
  17778. ctx->infos[idx].type = tensor->type;
  17779. ctx->infos[idx].offset = 0;
  17780. ctx->infos[idx].data = tensor->data;
  17781. ctx->infos[idx].size = ggml_nbytes(tensor);
  17782. if (ctx->header.n_tensors > 0) {
  17783. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17784. }
  17785. ctx->header.n_tensors++;
  17786. }
  17787. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17788. const int idx = gguf_find_tensor(ctx, name);
  17789. if (idx < 0) {
  17790. GGML_ASSERT(false && "tensor not found");
  17791. }
  17792. ctx->infos[idx].type = type;
  17793. }
  17794. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17795. const int idx = gguf_find_tensor(ctx, name);
  17796. if (idx < 0) {
  17797. GGML_ASSERT(false && "tensor not found");
  17798. }
  17799. ctx->infos[idx].data = data;
  17800. ctx->infos[idx].size = size;
  17801. // update offsets
  17802. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17803. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17804. }
  17805. }
  17806. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17807. // fwrite(&val->n, sizeof(val->n), 1, file);
  17808. // fwrite(val->data, sizeof(char), val->n, file);
  17809. //}
  17810. //
  17811. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17812. // fwrite(val, sizeof(char), size, file);
  17813. //}
  17814. struct gguf_buf {
  17815. void * data;
  17816. size_t size;
  17817. size_t offset;
  17818. };
  17819. static struct gguf_buf gguf_buf_init(size_t size) {
  17820. struct gguf_buf buf = {
  17821. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17822. /*buf.size =*/ size,
  17823. /*buf.offset =*/ 0,
  17824. };
  17825. return buf;
  17826. }
  17827. static void gguf_buf_free(struct gguf_buf buf) {
  17828. if (buf.data) {
  17829. GGML_FREE(buf.data);
  17830. }
  17831. }
  17832. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17833. if (buf->offset + size > buf->size) {
  17834. buf->size = 1.5*(buf->offset + size);
  17835. if (buf->data) {
  17836. buf->data = realloc(buf->data, buf->size);
  17837. }
  17838. }
  17839. }
  17840. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17841. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17842. if (buf->data) {
  17843. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17844. }
  17845. buf->offset += sizeof(val->n);
  17846. if (buf->data) {
  17847. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17848. }
  17849. buf->offset += val->n;
  17850. }
  17851. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17852. gguf_buf_grow(buf, el_size);
  17853. if (buf->data) {
  17854. memcpy((char *) buf->data + buf->offset, val, el_size);
  17855. }
  17856. buf->offset += el_size;
  17857. }
  17858. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17859. // write header
  17860. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17861. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17862. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17863. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17864. // write key-value pairs
  17865. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17866. struct gguf_kv * kv = &ctx->kv[i];
  17867. gguf_bwrite_str(buf, &kv->key);
  17868. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17869. switch (kv->type) {
  17870. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17871. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17872. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17873. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17874. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17875. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17876. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17877. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17878. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17879. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17880. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17881. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17882. case GGUF_TYPE_ARRAY:
  17883. {
  17884. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17885. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17886. switch (kv->value.arr.type) {
  17887. case GGUF_TYPE_UINT8:
  17888. case GGUF_TYPE_INT8:
  17889. case GGUF_TYPE_UINT16:
  17890. case GGUF_TYPE_INT16:
  17891. case GGUF_TYPE_UINT32:
  17892. case GGUF_TYPE_INT32:
  17893. case GGUF_TYPE_FLOAT32:
  17894. case GGUF_TYPE_UINT64:
  17895. case GGUF_TYPE_INT64:
  17896. case GGUF_TYPE_FLOAT64:
  17897. case GGUF_TYPE_BOOL:
  17898. {
  17899. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17900. } break;
  17901. case GGUF_TYPE_STRING:
  17902. {
  17903. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17904. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17905. }
  17906. } break;
  17907. case GGUF_TYPE_ARRAY:
  17908. default: GGML_ASSERT(false && "invalid type"); break;
  17909. }
  17910. } break;
  17911. default: GGML_ASSERT(false && "invalid type");
  17912. }
  17913. }
  17914. // write tensor infos
  17915. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17916. struct gguf_tensor_info * info = &ctx->infos[i];
  17917. gguf_bwrite_str(buf, &info->name);
  17918. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17919. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17920. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17921. }
  17922. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17923. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17924. }
  17925. // we require the data section to be aligned, so take into account any padding
  17926. {
  17927. const size_t offset = buf->offset;
  17928. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17929. if (offset_pad != offset) {
  17930. uint8_t pad = 0;
  17931. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17932. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17933. }
  17934. }
  17935. }
  17936. if (only_meta) {
  17937. return;
  17938. }
  17939. size_t offset = 0;
  17940. // write tensor data
  17941. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17942. struct gguf_tensor_info * info = &ctx->infos[i];
  17943. const size_t size = info->size;
  17944. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17945. gguf_bwrite_el(buf, info->data, size);
  17946. if (size_pad != size) {
  17947. uint8_t pad = 0;
  17948. for (size_t j = 0; j < size_pad - size; ++j) {
  17949. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17950. }
  17951. }
  17952. GGML_ASSERT(offset == info->offset);
  17953. offset += size_pad;
  17954. }
  17955. }
  17956. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17957. FILE * file = ggml_fopen(fname, "wb");
  17958. if (!file) {
  17959. GGML_ASSERT(false && "failed to open file for writing");
  17960. }
  17961. struct gguf_buf buf = gguf_buf_init(16*1024);
  17962. gguf_write_to_buf(ctx, &buf, only_meta);
  17963. fwrite(buf.data, 1, buf.offset, file);
  17964. gguf_buf_free(buf);
  17965. fclose(file);
  17966. }
  17967. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17968. // no allocs - only compute size
  17969. struct gguf_buf buf = gguf_buf_init(0);
  17970. gguf_write_to_buf(ctx, &buf, true);
  17971. return buf.offset;
  17972. }
  17973. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17974. struct gguf_buf buf = gguf_buf_init(16*1024);
  17975. gguf_write_to_buf(ctx, &buf, true);
  17976. memcpy(data, buf.data, buf.offset);
  17977. gguf_buf_free(buf);
  17978. }
  17979. ////////////////////////////////////////////////////////////////////////////////
  17980. int ggml_cpu_has_avx(void) {
  17981. #if defined(__AVX__)
  17982. return 1;
  17983. #else
  17984. return 0;
  17985. #endif
  17986. }
  17987. int ggml_cpu_has_avx_vnni(void) {
  17988. #if defined(__AVXVNNI__)
  17989. return 1;
  17990. #else
  17991. return 0;
  17992. #endif
  17993. }
  17994. int ggml_cpu_has_avx2(void) {
  17995. #if defined(__AVX2__)
  17996. return 1;
  17997. #else
  17998. return 0;
  17999. #endif
  18000. }
  18001. int ggml_cpu_has_avx512(void) {
  18002. #if defined(__AVX512F__)
  18003. return 1;
  18004. #else
  18005. return 0;
  18006. #endif
  18007. }
  18008. int ggml_cpu_has_avx512_vbmi(void) {
  18009. #if defined(__AVX512VBMI__)
  18010. return 1;
  18011. #else
  18012. return 0;
  18013. #endif
  18014. }
  18015. int ggml_cpu_has_avx512_vnni(void) {
  18016. #if defined(__AVX512VNNI__)
  18017. return 1;
  18018. #else
  18019. return 0;
  18020. #endif
  18021. }
  18022. int ggml_cpu_has_avx512_bf16(void) {
  18023. #if defined(__AVX512BF16__)
  18024. return 1;
  18025. #else
  18026. return 0;
  18027. #endif
  18028. }
  18029. int ggml_cpu_has_fma(void) {
  18030. #if defined(__FMA__)
  18031. return 1;
  18032. #else
  18033. return 0;
  18034. #endif
  18035. }
  18036. int ggml_cpu_has_neon(void) {
  18037. #if defined(__ARM_NEON)
  18038. return 1;
  18039. #else
  18040. return 0;
  18041. #endif
  18042. }
  18043. int ggml_cpu_has_sve(void) {
  18044. #if defined(__ARM_FEATURE_SVE)
  18045. return 1;
  18046. #else
  18047. return 0;
  18048. #endif
  18049. }
  18050. int ggml_cpu_has_arm_fma(void) {
  18051. #if defined(__ARM_FEATURE_FMA)
  18052. return 1;
  18053. #else
  18054. return 0;
  18055. #endif
  18056. }
  18057. int ggml_cpu_has_metal(void) {
  18058. #if defined(GGML_USE_METAL)
  18059. return 1;
  18060. #else
  18061. return 0;
  18062. #endif
  18063. }
  18064. int ggml_cpu_has_f16c(void) {
  18065. #if defined(__F16C__)
  18066. return 1;
  18067. #else
  18068. return 0;
  18069. #endif
  18070. }
  18071. int ggml_cpu_has_fp16_va(void) {
  18072. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18073. return 1;
  18074. #else
  18075. return 0;
  18076. #endif
  18077. }
  18078. int ggml_cpu_has_wasm_simd(void) {
  18079. #if defined(__wasm_simd128__)
  18080. return 1;
  18081. #else
  18082. return 0;
  18083. #endif
  18084. }
  18085. int ggml_cpu_has_blas(void) {
  18086. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18087. return 1;
  18088. #else
  18089. return 0;
  18090. #endif
  18091. }
  18092. int ggml_cpu_has_cuda(void) {
  18093. #if defined(GGML_USE_CUDA)
  18094. return 1;
  18095. #else
  18096. return 0;
  18097. #endif
  18098. }
  18099. int ggml_cpu_has_vulkan(void) {
  18100. #if defined(GGML_USE_VULKAN)
  18101. return 1;
  18102. #else
  18103. return 0;
  18104. #endif
  18105. }
  18106. int ggml_cpu_has_kompute(void) {
  18107. #if defined(GGML_USE_KOMPUTE)
  18108. return 1;
  18109. #else
  18110. return 0;
  18111. #endif
  18112. }
  18113. int ggml_cpu_has_sycl(void) {
  18114. #if defined(GGML_USE_SYCL)
  18115. return 1;
  18116. #else
  18117. return 0;
  18118. #endif
  18119. }
  18120. int ggml_cpu_has_rpc(void) {
  18121. #if defined(GGML_USE_RPC)
  18122. return 1;
  18123. #else
  18124. return 0;
  18125. #endif
  18126. }
  18127. int ggml_cpu_has_gpublas(void) {
  18128. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18129. }
  18130. int ggml_cpu_has_sse3(void) {
  18131. #if defined(__SSE3__)
  18132. return 1;
  18133. #else
  18134. return 0;
  18135. #endif
  18136. }
  18137. int ggml_cpu_has_ssse3(void) {
  18138. #if defined(__SSSE3__)
  18139. return 1;
  18140. #else
  18141. return 0;
  18142. #endif
  18143. }
  18144. int ggml_cpu_has_vsx(void) {
  18145. #if defined(__POWER9_VECTOR__)
  18146. return 1;
  18147. #else
  18148. return 0;
  18149. #endif
  18150. }
  18151. int ggml_cpu_has_matmul_int8(void) {
  18152. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18153. return 1;
  18154. #else
  18155. return 0;
  18156. #endif
  18157. }
  18158. ////////////////////////////////////////////////////////////////////////////////