constants.py 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. NAME = "general.name"
  21. AUTHOR = "general.author"
  22. VERSION = "general.version"
  23. URL = "general.url"
  24. DESCRIPTION = "general.description"
  25. LICENSE = "general.license"
  26. SOURCE_URL = "general.source.url"
  27. SOURCE_HF_REPO = "general.source.huggingface.repository"
  28. FILE_TYPE = "general.file_type"
  29. class LLM:
  30. VOCAB_SIZE = "{arch}.vocab_size"
  31. CONTEXT_LENGTH = "{arch}.context_length"
  32. EMBEDDING_LENGTH = "{arch}.embedding_length"
  33. BLOCK_COUNT = "{arch}.block_count"
  34. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  35. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  36. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  37. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  38. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  39. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  40. EXPERT_COUNT = "{arch}.expert_count"
  41. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  42. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  43. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  44. POOLING_TYPE = "{arch}.pooling_type"
  45. LOGIT_SCALE = "{arch}.logit_scale"
  46. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  47. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  48. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  49. class Attention:
  50. HEAD_COUNT = "{arch}.attention.head_count"
  51. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  52. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  53. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  54. KEY_LENGTH = "{arch}.attention.key_length"
  55. VALUE_LENGTH = "{arch}.attention.value_length"
  56. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  57. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  58. CAUSAL = "{arch}.attention.causal"
  59. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  60. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  61. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  62. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  63. class Rope:
  64. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  65. FREQ_BASE = "{arch}.rope.freq_base"
  66. SCALING_TYPE = "{arch}.rope.scaling.type"
  67. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  68. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  69. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  70. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  71. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  72. class Split:
  73. LLM_KV_SPLIT_NO = "split.no"
  74. LLM_KV_SPLIT_COUNT = "split.count"
  75. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  76. class SSM:
  77. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  78. INNER_SIZE = "{arch}.ssm.inner_size"
  79. STATE_SIZE = "{arch}.ssm.state_size"
  80. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  81. class Tokenizer:
  82. MODEL = "tokenizer.ggml.model"
  83. PRE = "tokenizer.ggml.pre"
  84. LIST = "tokenizer.ggml.tokens"
  85. TOKEN_TYPE = "tokenizer.ggml.token_type"
  86. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  87. SCORES = "tokenizer.ggml.scores"
  88. MERGES = "tokenizer.ggml.merges"
  89. BOS_ID = "tokenizer.ggml.bos_token_id"
  90. EOS_ID = "tokenizer.ggml.eos_token_id"
  91. UNK_ID = "tokenizer.ggml.unknown_token_id"
  92. SEP_ID = "tokenizer.ggml.seperator_token_id"
  93. PAD_ID = "tokenizer.ggml.padding_token_id"
  94. CLS_ID = "tokenizer.ggml.cls_token_id"
  95. MASK_ID = "tokenizer.ggml.mask_token_id"
  96. ADD_BOS = "tokenizer.ggml.add_bos_token"
  97. ADD_EOS = "tokenizer.ggml.add_eos_token"
  98. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  99. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  100. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  101. HF_JSON = "tokenizer.huggingface.json"
  102. RWKV = "tokenizer.rwkv.world"
  103. CHAT_TEMPLATE = "tokenizer.chat_template"
  104. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  105. CHAT_TEMPLATES = "tokenizer.chat_templates"
  106. # FIM/Infill special tokens constants
  107. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  108. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  109. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  110. EOT_ID = "tokenizer.ggml.eot_token_id"
  111. class Adapter:
  112. TYPE = "adapter.type"
  113. LORA_ALPHA = "adapter.lora.alpha"
  114. #
  115. # recommended mapping of model tensor names for storage in gguf
  116. #
  117. class GGUFType:
  118. MODEL = "model"
  119. ADAPTER = "adapter"
  120. class MODEL_ARCH(IntEnum):
  121. LLAMA = auto()
  122. FALCON = auto()
  123. BAICHUAN = auto()
  124. GROK = auto()
  125. GPT2 = auto()
  126. GPTJ = auto()
  127. GPTNEOX = auto()
  128. MPT = auto()
  129. STARCODER = auto()
  130. REFACT = auto()
  131. BERT = auto()
  132. NOMIC_BERT = auto()
  133. JINA_BERT_V2 = auto()
  134. BLOOM = auto()
  135. STABLELM = auto()
  136. QWEN = auto()
  137. QWEN2 = auto()
  138. QWEN2MOE = auto()
  139. PHI2 = auto()
  140. PHI3 = auto()
  141. PLAMO = auto()
  142. CODESHELL = auto()
  143. ORION = auto()
  144. INTERNLM2 = auto()
  145. MINICPM = auto()
  146. GEMMA = auto()
  147. GEMMA2 = auto()
  148. STARCODER2 = auto()
  149. MAMBA = auto()
  150. XVERSE = auto()
  151. COMMAND_R = auto()
  152. DBRX = auto()
  153. OLMO = auto()
  154. OPENELM = auto()
  155. ARCTIC = auto()
  156. DEEPSEEK2 = auto()
  157. CHATGLM = auto()
  158. BITNET = auto()
  159. T5 = auto()
  160. JAIS = auto()
  161. class MODEL_TENSOR(IntEnum):
  162. TOKEN_EMBD = auto()
  163. TOKEN_EMBD_NORM = auto()
  164. TOKEN_TYPES = auto()
  165. POS_EMBD = auto()
  166. OUTPUT = auto()
  167. OUTPUT_NORM = auto()
  168. ROPE_FREQS = auto()
  169. ROPE_FACTORS_LONG = auto()
  170. ROPE_FACTORS_SHORT = auto()
  171. ATTN_Q = auto()
  172. ATTN_K = auto()
  173. ATTN_V = auto()
  174. ATTN_QKV = auto()
  175. ATTN_OUT = auto()
  176. ATTN_NORM = auto()
  177. ATTN_NORM_2 = auto()
  178. ATTN_OUT_NORM = auto()
  179. ATTN_POST_NORM = auto()
  180. ATTN_ROT_EMBD = auto()
  181. FFN_GATE_INP = auto()
  182. FFN_GATE_INP_SHEXP = auto()
  183. FFN_NORM = auto()
  184. FFN_PRE_NORM = auto()
  185. FFN_POST_NORM = auto()
  186. FFN_GATE = auto()
  187. FFN_DOWN = auto()
  188. FFN_UP = auto()
  189. FFN_ACT = auto()
  190. FFN_NORM_EXP = auto()
  191. FFN_GATE_EXP = auto()
  192. FFN_DOWN_EXP = auto()
  193. FFN_UP_EXP = auto()
  194. FFN_GATE_SHEXP = auto()
  195. FFN_DOWN_SHEXP = auto()
  196. FFN_UP_SHEXP = auto()
  197. ATTN_Q_NORM = auto()
  198. ATTN_K_NORM = auto()
  199. LAYER_OUT_NORM = auto()
  200. SSM_IN = auto()
  201. SSM_CONV1D = auto()
  202. SSM_X = auto()
  203. SSM_DT = auto()
  204. SSM_A = auto()
  205. SSM_D = auto()
  206. SSM_OUT = auto()
  207. ATTN_Q_A = auto()
  208. ATTN_Q_B = auto()
  209. ATTN_KV_A_MQA = auto()
  210. ATTN_KV_B = auto()
  211. ATTN_Q_A_NORM = auto()
  212. ATTN_KV_A_NORM = auto()
  213. FFN_SUB_NORM = auto()
  214. ATTN_SUB_NORM = auto()
  215. DEC_ATTN_NORM = auto()
  216. DEC_ATTN_Q = auto()
  217. DEC_ATTN_K = auto()
  218. DEC_ATTN_V = auto()
  219. DEC_ATTN_OUT = auto()
  220. DEC_ATTN_REL_B = auto()
  221. DEC_CROSS_ATTN_NORM = auto()
  222. DEC_CROSS_ATTN_Q = auto()
  223. DEC_CROSS_ATTN_K = auto()
  224. DEC_CROSS_ATTN_V = auto()
  225. DEC_CROSS_ATTN_OUT = auto()
  226. DEC_CROSS_ATTN_REL_B = auto()
  227. DEC_FFN_NORM = auto()
  228. DEC_FFN_GATE = auto()
  229. DEC_FFN_DOWN = auto()
  230. DEC_FFN_UP = auto()
  231. DEC_OUTPUT_NORM = auto()
  232. ENC_ATTN_NORM = auto()
  233. ENC_ATTN_Q = auto()
  234. ENC_ATTN_K = auto()
  235. ENC_ATTN_V = auto()
  236. ENC_ATTN_OUT = auto()
  237. ENC_ATTN_REL_B = auto()
  238. ENC_FFN_NORM = auto()
  239. ENC_FFN_GATE = auto()
  240. ENC_FFN_DOWN = auto()
  241. ENC_FFN_UP = auto()
  242. ENC_OUTPUT_NORM = auto()
  243. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  244. MODEL_ARCH.LLAMA: "llama",
  245. MODEL_ARCH.FALCON: "falcon",
  246. MODEL_ARCH.BAICHUAN: "baichuan",
  247. MODEL_ARCH.GROK: "grok",
  248. MODEL_ARCH.GPT2: "gpt2",
  249. MODEL_ARCH.GPTJ: "gptj",
  250. MODEL_ARCH.GPTNEOX: "gptneox",
  251. MODEL_ARCH.MPT: "mpt",
  252. MODEL_ARCH.STARCODER: "starcoder",
  253. MODEL_ARCH.REFACT: "refact",
  254. MODEL_ARCH.BERT: "bert",
  255. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  256. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  257. MODEL_ARCH.BLOOM: "bloom",
  258. MODEL_ARCH.STABLELM: "stablelm",
  259. MODEL_ARCH.QWEN: "qwen",
  260. MODEL_ARCH.QWEN2: "qwen2",
  261. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  262. MODEL_ARCH.PHI2: "phi2",
  263. MODEL_ARCH.PHI3: "phi3",
  264. MODEL_ARCH.PLAMO: "plamo",
  265. MODEL_ARCH.CODESHELL: "codeshell",
  266. MODEL_ARCH.ORION: "orion",
  267. MODEL_ARCH.INTERNLM2: "internlm2",
  268. MODEL_ARCH.MINICPM: "minicpm",
  269. MODEL_ARCH.GEMMA: "gemma",
  270. MODEL_ARCH.GEMMA2: "gemma2",
  271. MODEL_ARCH.STARCODER2: "starcoder2",
  272. MODEL_ARCH.MAMBA: "mamba",
  273. MODEL_ARCH.XVERSE: "xverse",
  274. MODEL_ARCH.COMMAND_R: "command-r",
  275. MODEL_ARCH.DBRX: "dbrx",
  276. MODEL_ARCH.OLMO: "olmo",
  277. MODEL_ARCH.OPENELM: "openelm",
  278. MODEL_ARCH.ARCTIC: "arctic",
  279. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  280. MODEL_ARCH.CHATGLM: "chatglm",
  281. MODEL_ARCH.BITNET: "bitnet",
  282. MODEL_ARCH.T5: "t5",
  283. MODEL_ARCH.JAIS: "jais",
  284. }
  285. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  286. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  287. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  288. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  289. MODEL_TENSOR.POS_EMBD: "position_embd",
  290. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  291. MODEL_TENSOR.OUTPUT: "output",
  292. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  293. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  294. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  295. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  296. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  297. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  298. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  299. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  300. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  301. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  302. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  303. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  304. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  305. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  306. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  307. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  308. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  309. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  310. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  311. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  312. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  313. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  314. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  315. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  316. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  317. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  318. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  319. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  320. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  321. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  322. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  323. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  324. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  325. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  326. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  327. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  328. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  329. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  330. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  331. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  332. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  333. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  334. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  335. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  336. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  337. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  338. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  339. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  340. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  341. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  342. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  343. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  344. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  345. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  346. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  347. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  348. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  349. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  350. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  351. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  352. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  353. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  354. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  355. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  356. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  357. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  358. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  359. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  360. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  361. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  362. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  363. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  364. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  365. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  366. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  367. }
  368. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  369. MODEL_ARCH.LLAMA: [
  370. MODEL_TENSOR.TOKEN_EMBD,
  371. MODEL_TENSOR.OUTPUT_NORM,
  372. MODEL_TENSOR.OUTPUT,
  373. MODEL_TENSOR.ROPE_FREQS,
  374. MODEL_TENSOR.ATTN_NORM,
  375. MODEL_TENSOR.ATTN_Q,
  376. MODEL_TENSOR.ATTN_K,
  377. MODEL_TENSOR.ATTN_V,
  378. MODEL_TENSOR.ATTN_OUT,
  379. MODEL_TENSOR.ATTN_ROT_EMBD,
  380. MODEL_TENSOR.FFN_GATE_INP,
  381. MODEL_TENSOR.FFN_NORM,
  382. MODEL_TENSOR.FFN_GATE,
  383. MODEL_TENSOR.FFN_DOWN,
  384. MODEL_TENSOR.FFN_UP,
  385. MODEL_TENSOR.FFN_GATE_EXP,
  386. MODEL_TENSOR.FFN_DOWN_EXP,
  387. MODEL_TENSOR.FFN_UP_EXP,
  388. ],
  389. MODEL_ARCH.GROK: [
  390. MODEL_TENSOR.TOKEN_EMBD,
  391. MODEL_TENSOR.OUTPUT_NORM,
  392. MODEL_TENSOR.OUTPUT,
  393. MODEL_TENSOR.ROPE_FREQS,
  394. MODEL_TENSOR.ATTN_NORM,
  395. MODEL_TENSOR.ATTN_Q,
  396. MODEL_TENSOR.ATTN_K,
  397. MODEL_TENSOR.ATTN_V,
  398. MODEL_TENSOR.ATTN_OUT,
  399. MODEL_TENSOR.ATTN_ROT_EMBD,
  400. MODEL_TENSOR.ATTN_OUT_NORM,
  401. MODEL_TENSOR.FFN_GATE_INP,
  402. MODEL_TENSOR.FFN_NORM,
  403. MODEL_TENSOR.FFN_GATE,
  404. MODEL_TENSOR.FFN_DOWN,
  405. MODEL_TENSOR.FFN_UP,
  406. MODEL_TENSOR.FFN_GATE_EXP,
  407. MODEL_TENSOR.FFN_DOWN_EXP,
  408. MODEL_TENSOR.FFN_UP_EXP,
  409. MODEL_TENSOR.LAYER_OUT_NORM,
  410. ],
  411. MODEL_ARCH.GPTNEOX: [
  412. MODEL_TENSOR.TOKEN_EMBD,
  413. MODEL_TENSOR.OUTPUT_NORM,
  414. MODEL_TENSOR.OUTPUT,
  415. MODEL_TENSOR.ATTN_NORM,
  416. MODEL_TENSOR.ATTN_QKV,
  417. MODEL_TENSOR.ATTN_OUT,
  418. MODEL_TENSOR.FFN_NORM,
  419. MODEL_TENSOR.FFN_DOWN,
  420. MODEL_TENSOR.FFN_UP,
  421. ],
  422. MODEL_ARCH.FALCON: [
  423. MODEL_TENSOR.TOKEN_EMBD,
  424. MODEL_TENSOR.OUTPUT_NORM,
  425. MODEL_TENSOR.OUTPUT,
  426. MODEL_TENSOR.ATTN_NORM,
  427. MODEL_TENSOR.ATTN_NORM_2,
  428. MODEL_TENSOR.ATTN_QKV,
  429. MODEL_TENSOR.ATTN_OUT,
  430. MODEL_TENSOR.FFN_DOWN,
  431. MODEL_TENSOR.FFN_UP,
  432. ],
  433. MODEL_ARCH.BAICHUAN: [
  434. MODEL_TENSOR.TOKEN_EMBD,
  435. MODEL_TENSOR.OUTPUT_NORM,
  436. MODEL_TENSOR.OUTPUT,
  437. MODEL_TENSOR.ROPE_FREQS,
  438. MODEL_TENSOR.ATTN_NORM,
  439. MODEL_TENSOR.ATTN_Q,
  440. MODEL_TENSOR.ATTN_K,
  441. MODEL_TENSOR.ATTN_V,
  442. MODEL_TENSOR.ATTN_OUT,
  443. MODEL_TENSOR.ATTN_ROT_EMBD,
  444. MODEL_TENSOR.FFN_NORM,
  445. MODEL_TENSOR.FFN_GATE,
  446. MODEL_TENSOR.FFN_DOWN,
  447. MODEL_TENSOR.FFN_UP,
  448. ],
  449. MODEL_ARCH.STARCODER: [
  450. MODEL_TENSOR.TOKEN_EMBD,
  451. MODEL_TENSOR.POS_EMBD,
  452. MODEL_TENSOR.OUTPUT_NORM,
  453. MODEL_TENSOR.OUTPUT,
  454. MODEL_TENSOR.ATTN_NORM,
  455. MODEL_TENSOR.ATTN_QKV,
  456. MODEL_TENSOR.ATTN_OUT,
  457. MODEL_TENSOR.FFN_NORM,
  458. MODEL_TENSOR.FFN_DOWN,
  459. MODEL_TENSOR.FFN_UP,
  460. ],
  461. MODEL_ARCH.BERT: [
  462. MODEL_TENSOR.TOKEN_EMBD,
  463. MODEL_TENSOR.TOKEN_EMBD_NORM,
  464. MODEL_TENSOR.TOKEN_TYPES,
  465. MODEL_TENSOR.POS_EMBD,
  466. MODEL_TENSOR.OUTPUT_NORM,
  467. MODEL_TENSOR.ATTN_OUT_NORM,
  468. MODEL_TENSOR.ATTN_Q,
  469. MODEL_TENSOR.ATTN_K,
  470. MODEL_TENSOR.ATTN_V,
  471. MODEL_TENSOR.ATTN_OUT,
  472. MODEL_TENSOR.FFN_DOWN,
  473. MODEL_TENSOR.FFN_UP,
  474. MODEL_TENSOR.LAYER_OUT_NORM,
  475. ],
  476. MODEL_ARCH.NOMIC_BERT: [
  477. MODEL_TENSOR.TOKEN_EMBD,
  478. MODEL_TENSOR.TOKEN_EMBD_NORM,
  479. MODEL_TENSOR.TOKEN_TYPES,
  480. MODEL_TENSOR.POS_EMBD,
  481. MODEL_TENSOR.OUTPUT_NORM,
  482. MODEL_TENSOR.ATTN_OUT_NORM,
  483. MODEL_TENSOR.ATTN_QKV,
  484. MODEL_TENSOR.ATTN_OUT,
  485. MODEL_TENSOR.FFN_GATE,
  486. MODEL_TENSOR.FFN_DOWN,
  487. MODEL_TENSOR.FFN_UP,
  488. MODEL_TENSOR.LAYER_OUT_NORM,
  489. ],
  490. MODEL_ARCH.JINA_BERT_V2: [
  491. MODEL_TENSOR.TOKEN_EMBD,
  492. MODEL_TENSOR.TOKEN_EMBD_NORM,
  493. MODEL_TENSOR.TOKEN_TYPES,
  494. MODEL_TENSOR.ATTN_NORM_2,
  495. MODEL_TENSOR.ATTN_OUT_NORM,
  496. MODEL_TENSOR.ATTN_Q,
  497. MODEL_TENSOR.ATTN_Q_NORM,
  498. MODEL_TENSOR.ATTN_K,
  499. MODEL_TENSOR.ATTN_K_NORM,
  500. MODEL_TENSOR.ATTN_V,
  501. MODEL_TENSOR.ATTN_OUT,
  502. MODEL_TENSOR.FFN_UP,
  503. MODEL_TENSOR.FFN_GATE,
  504. MODEL_TENSOR.FFN_DOWN,
  505. MODEL_TENSOR.LAYER_OUT_NORM,
  506. ],
  507. MODEL_ARCH.MPT: [
  508. MODEL_TENSOR.TOKEN_EMBD,
  509. MODEL_TENSOR.OUTPUT_NORM,
  510. MODEL_TENSOR.OUTPUT,
  511. MODEL_TENSOR.ATTN_NORM,
  512. MODEL_TENSOR.ATTN_QKV,
  513. MODEL_TENSOR.ATTN_OUT,
  514. MODEL_TENSOR.FFN_NORM,
  515. MODEL_TENSOR.FFN_DOWN,
  516. MODEL_TENSOR.FFN_UP,
  517. MODEL_TENSOR.FFN_ACT,
  518. MODEL_TENSOR.ATTN_Q_NORM,
  519. MODEL_TENSOR.ATTN_K_NORM,
  520. MODEL_TENSOR.POS_EMBD,
  521. ],
  522. MODEL_ARCH.GPTJ: [
  523. MODEL_TENSOR.TOKEN_EMBD,
  524. MODEL_TENSOR.OUTPUT_NORM,
  525. MODEL_TENSOR.OUTPUT,
  526. MODEL_TENSOR.ATTN_NORM,
  527. MODEL_TENSOR.ATTN_Q,
  528. MODEL_TENSOR.ATTN_K,
  529. MODEL_TENSOR.ATTN_V,
  530. MODEL_TENSOR.ATTN_OUT,
  531. MODEL_TENSOR.FFN_DOWN,
  532. MODEL_TENSOR.FFN_UP,
  533. ],
  534. MODEL_ARCH.REFACT: [
  535. MODEL_TENSOR.TOKEN_EMBD,
  536. MODEL_TENSOR.OUTPUT_NORM,
  537. MODEL_TENSOR.OUTPUT,
  538. MODEL_TENSOR.ATTN_NORM,
  539. MODEL_TENSOR.ATTN_Q,
  540. MODEL_TENSOR.ATTN_K,
  541. MODEL_TENSOR.ATTN_V,
  542. MODEL_TENSOR.ATTN_OUT,
  543. MODEL_TENSOR.FFN_NORM,
  544. MODEL_TENSOR.FFN_GATE,
  545. MODEL_TENSOR.FFN_DOWN,
  546. MODEL_TENSOR.FFN_UP,
  547. ],
  548. MODEL_ARCH.BLOOM: [
  549. MODEL_TENSOR.TOKEN_EMBD,
  550. MODEL_TENSOR.TOKEN_EMBD_NORM,
  551. MODEL_TENSOR.OUTPUT_NORM,
  552. MODEL_TENSOR.OUTPUT,
  553. MODEL_TENSOR.ATTN_NORM,
  554. MODEL_TENSOR.ATTN_QKV,
  555. MODEL_TENSOR.ATTN_OUT,
  556. MODEL_TENSOR.FFN_NORM,
  557. MODEL_TENSOR.FFN_DOWN,
  558. MODEL_TENSOR.FFN_UP,
  559. ],
  560. MODEL_ARCH.STABLELM: [
  561. MODEL_TENSOR.TOKEN_EMBD,
  562. MODEL_TENSOR.OUTPUT_NORM,
  563. MODEL_TENSOR.OUTPUT,
  564. MODEL_TENSOR.ROPE_FREQS,
  565. MODEL_TENSOR.ATTN_NORM,
  566. MODEL_TENSOR.ATTN_Q,
  567. MODEL_TENSOR.ATTN_K,
  568. MODEL_TENSOR.ATTN_V,
  569. MODEL_TENSOR.ATTN_OUT,
  570. MODEL_TENSOR.FFN_NORM,
  571. MODEL_TENSOR.FFN_GATE,
  572. MODEL_TENSOR.FFN_DOWN,
  573. MODEL_TENSOR.FFN_UP,
  574. MODEL_TENSOR.ATTN_Q_NORM,
  575. MODEL_TENSOR.ATTN_K_NORM,
  576. ],
  577. MODEL_ARCH.QWEN: [
  578. MODEL_TENSOR.TOKEN_EMBD,
  579. MODEL_TENSOR.OUTPUT_NORM,
  580. MODEL_TENSOR.OUTPUT,
  581. MODEL_TENSOR.ROPE_FREQS,
  582. MODEL_TENSOR.ATTN_NORM,
  583. MODEL_TENSOR.ATTN_QKV,
  584. MODEL_TENSOR.ATTN_OUT,
  585. MODEL_TENSOR.ATTN_ROT_EMBD,
  586. MODEL_TENSOR.FFN_NORM,
  587. MODEL_TENSOR.FFN_GATE,
  588. MODEL_TENSOR.FFN_DOWN,
  589. MODEL_TENSOR.FFN_UP,
  590. ],
  591. MODEL_ARCH.QWEN2: [
  592. MODEL_TENSOR.TOKEN_EMBD,
  593. MODEL_TENSOR.OUTPUT_NORM,
  594. MODEL_TENSOR.OUTPUT,
  595. MODEL_TENSOR.ATTN_NORM,
  596. MODEL_TENSOR.ATTN_Q,
  597. MODEL_TENSOR.ATTN_K,
  598. MODEL_TENSOR.ATTN_V,
  599. MODEL_TENSOR.ATTN_OUT,
  600. MODEL_TENSOR.FFN_NORM,
  601. MODEL_TENSOR.FFN_GATE,
  602. MODEL_TENSOR.FFN_DOWN,
  603. MODEL_TENSOR.FFN_UP,
  604. ],
  605. MODEL_ARCH.QWEN2MOE: [
  606. MODEL_TENSOR.TOKEN_EMBD,
  607. MODEL_TENSOR.OUTPUT_NORM,
  608. MODEL_TENSOR.OUTPUT,
  609. MODEL_TENSOR.ATTN_NORM,
  610. MODEL_TENSOR.ATTN_Q,
  611. MODEL_TENSOR.ATTN_K,
  612. MODEL_TENSOR.ATTN_V,
  613. MODEL_TENSOR.ATTN_OUT,
  614. MODEL_TENSOR.FFN_NORM,
  615. MODEL_TENSOR.FFN_GATE_INP,
  616. MODEL_TENSOR.FFN_GATE_EXP,
  617. MODEL_TENSOR.FFN_DOWN_EXP,
  618. MODEL_TENSOR.FFN_UP_EXP,
  619. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  620. MODEL_TENSOR.FFN_GATE_SHEXP,
  621. MODEL_TENSOR.FFN_DOWN_SHEXP,
  622. MODEL_TENSOR.FFN_UP_SHEXP,
  623. ],
  624. MODEL_ARCH.PLAMO: [
  625. MODEL_TENSOR.TOKEN_EMBD,
  626. MODEL_TENSOR.OUTPUT_NORM,
  627. MODEL_TENSOR.OUTPUT,
  628. MODEL_TENSOR.ROPE_FREQS,
  629. MODEL_TENSOR.ATTN_NORM,
  630. MODEL_TENSOR.ATTN_Q,
  631. MODEL_TENSOR.ATTN_K,
  632. MODEL_TENSOR.ATTN_V,
  633. MODEL_TENSOR.ATTN_OUT,
  634. MODEL_TENSOR.ATTN_ROT_EMBD,
  635. MODEL_TENSOR.FFN_GATE,
  636. MODEL_TENSOR.FFN_DOWN,
  637. MODEL_TENSOR.FFN_UP,
  638. ],
  639. MODEL_ARCH.GPT2: [
  640. MODEL_TENSOR.TOKEN_EMBD,
  641. MODEL_TENSOR.POS_EMBD,
  642. MODEL_TENSOR.OUTPUT_NORM,
  643. MODEL_TENSOR.OUTPUT,
  644. MODEL_TENSOR.ATTN_NORM,
  645. MODEL_TENSOR.ATTN_QKV,
  646. MODEL_TENSOR.ATTN_OUT,
  647. MODEL_TENSOR.FFN_NORM,
  648. MODEL_TENSOR.FFN_DOWN,
  649. MODEL_TENSOR.FFN_UP,
  650. ],
  651. MODEL_ARCH.PHI2: [
  652. MODEL_TENSOR.TOKEN_EMBD,
  653. MODEL_TENSOR.OUTPUT_NORM,
  654. MODEL_TENSOR.OUTPUT,
  655. MODEL_TENSOR.ATTN_NORM,
  656. MODEL_TENSOR.ATTN_QKV,
  657. MODEL_TENSOR.ATTN_Q,
  658. MODEL_TENSOR.ATTN_K,
  659. MODEL_TENSOR.ATTN_V,
  660. MODEL_TENSOR.ATTN_OUT,
  661. MODEL_TENSOR.FFN_NORM,
  662. MODEL_TENSOR.FFN_DOWN,
  663. MODEL_TENSOR.FFN_UP,
  664. ],
  665. MODEL_ARCH.PHI3: [
  666. MODEL_TENSOR.TOKEN_EMBD,
  667. MODEL_TENSOR.OUTPUT_NORM,
  668. MODEL_TENSOR.OUTPUT,
  669. MODEL_TENSOR.ATTN_NORM,
  670. MODEL_TENSOR.ATTN_QKV,
  671. MODEL_TENSOR.ATTN_Q,
  672. MODEL_TENSOR.ATTN_K,
  673. MODEL_TENSOR.ATTN_V,
  674. MODEL_TENSOR.ATTN_OUT,
  675. MODEL_TENSOR.FFN_NORM,
  676. MODEL_TENSOR.FFN_DOWN,
  677. MODEL_TENSOR.FFN_UP,
  678. ],
  679. MODEL_ARCH.CODESHELL: [
  680. MODEL_TENSOR.TOKEN_EMBD,
  681. MODEL_TENSOR.POS_EMBD,
  682. MODEL_TENSOR.OUTPUT_NORM,
  683. MODEL_TENSOR.OUTPUT,
  684. MODEL_TENSOR.ATTN_NORM,
  685. MODEL_TENSOR.ATTN_QKV,
  686. MODEL_TENSOR.ATTN_OUT,
  687. MODEL_TENSOR.ATTN_ROT_EMBD,
  688. MODEL_TENSOR.FFN_NORM,
  689. MODEL_TENSOR.FFN_DOWN,
  690. MODEL_TENSOR.FFN_UP,
  691. ],
  692. MODEL_ARCH.ORION: [
  693. MODEL_TENSOR.TOKEN_EMBD,
  694. MODEL_TENSOR.OUTPUT_NORM,
  695. MODEL_TENSOR.OUTPUT,
  696. MODEL_TENSOR.ROPE_FREQS,
  697. MODEL_TENSOR.ATTN_NORM,
  698. MODEL_TENSOR.ATTN_Q,
  699. MODEL_TENSOR.ATTN_K,
  700. MODEL_TENSOR.ATTN_V,
  701. MODEL_TENSOR.ATTN_OUT,
  702. MODEL_TENSOR.ATTN_ROT_EMBD,
  703. MODEL_TENSOR.FFN_NORM,
  704. MODEL_TENSOR.FFN_GATE,
  705. MODEL_TENSOR.FFN_DOWN,
  706. MODEL_TENSOR.FFN_UP,
  707. ],
  708. MODEL_ARCH.INTERNLM2: [
  709. MODEL_TENSOR.TOKEN_EMBD,
  710. MODEL_TENSOR.OUTPUT_NORM,
  711. MODEL_TENSOR.OUTPUT,
  712. MODEL_TENSOR.ATTN_NORM,
  713. MODEL_TENSOR.ATTN_Q,
  714. MODEL_TENSOR.ATTN_K,
  715. MODEL_TENSOR.ATTN_V,
  716. MODEL_TENSOR.ATTN_OUT,
  717. MODEL_TENSOR.ATTN_ROT_EMBD,
  718. MODEL_TENSOR.FFN_NORM,
  719. MODEL_TENSOR.FFN_GATE,
  720. MODEL_TENSOR.FFN_DOWN,
  721. MODEL_TENSOR.FFN_UP,
  722. ],
  723. MODEL_ARCH.MINICPM: [
  724. MODEL_TENSOR.TOKEN_EMBD,
  725. MODEL_TENSOR.OUTPUT,
  726. MODEL_TENSOR.OUTPUT_NORM,
  727. MODEL_TENSOR.ROPE_FREQS,
  728. MODEL_TENSOR.ATTN_NORM,
  729. MODEL_TENSOR.ATTN_Q,
  730. MODEL_TENSOR.ATTN_K,
  731. MODEL_TENSOR.ATTN_V,
  732. MODEL_TENSOR.ATTN_OUT,
  733. MODEL_TENSOR.ATTN_ROT_EMBD,
  734. MODEL_TENSOR.FFN_GATE_INP,
  735. MODEL_TENSOR.FFN_NORM,
  736. MODEL_TENSOR.FFN_GATE,
  737. MODEL_TENSOR.FFN_DOWN,
  738. MODEL_TENSOR.FFN_UP,
  739. MODEL_TENSOR.FFN_GATE_EXP,
  740. MODEL_TENSOR.FFN_DOWN_EXP,
  741. MODEL_TENSOR.FFN_UP_EXP,
  742. ],
  743. MODEL_ARCH.GEMMA: [
  744. MODEL_TENSOR.TOKEN_EMBD,
  745. MODEL_TENSOR.OUTPUT_NORM,
  746. MODEL_TENSOR.ATTN_NORM,
  747. MODEL_TENSOR.ATTN_Q,
  748. MODEL_TENSOR.ATTN_K,
  749. MODEL_TENSOR.ATTN_V,
  750. MODEL_TENSOR.ATTN_OUT,
  751. MODEL_TENSOR.FFN_GATE,
  752. MODEL_TENSOR.FFN_DOWN,
  753. MODEL_TENSOR.FFN_UP,
  754. MODEL_TENSOR.FFN_NORM,
  755. ],
  756. MODEL_ARCH.GEMMA2: [
  757. MODEL_TENSOR.TOKEN_EMBD,
  758. MODEL_TENSOR.OUTPUT_NORM,
  759. MODEL_TENSOR.ATTN_Q,
  760. MODEL_TENSOR.ATTN_K,
  761. MODEL_TENSOR.ATTN_V,
  762. MODEL_TENSOR.ATTN_OUT,
  763. MODEL_TENSOR.FFN_GATE,
  764. MODEL_TENSOR.FFN_DOWN,
  765. MODEL_TENSOR.FFN_UP,
  766. MODEL_TENSOR.ATTN_NORM,
  767. MODEL_TENSOR.ATTN_POST_NORM,
  768. MODEL_TENSOR.FFN_PRE_NORM,
  769. MODEL_TENSOR.FFN_POST_NORM,
  770. ],
  771. MODEL_ARCH.STARCODER2: [
  772. MODEL_TENSOR.TOKEN_EMBD,
  773. MODEL_TENSOR.OUTPUT_NORM,
  774. MODEL_TENSOR.OUTPUT,
  775. MODEL_TENSOR.ROPE_FREQS,
  776. MODEL_TENSOR.ATTN_NORM,
  777. MODEL_TENSOR.ATTN_Q,
  778. MODEL_TENSOR.ATTN_K,
  779. MODEL_TENSOR.ATTN_V,
  780. MODEL_TENSOR.ATTN_OUT,
  781. MODEL_TENSOR.ATTN_ROT_EMBD,
  782. MODEL_TENSOR.FFN_NORM,
  783. MODEL_TENSOR.FFN_DOWN,
  784. MODEL_TENSOR.FFN_UP,
  785. ],
  786. MODEL_ARCH.MAMBA: [
  787. MODEL_TENSOR.TOKEN_EMBD,
  788. MODEL_TENSOR.OUTPUT_NORM,
  789. MODEL_TENSOR.OUTPUT,
  790. MODEL_TENSOR.ATTN_NORM,
  791. MODEL_TENSOR.SSM_IN,
  792. MODEL_TENSOR.SSM_CONV1D,
  793. MODEL_TENSOR.SSM_X,
  794. MODEL_TENSOR.SSM_DT,
  795. MODEL_TENSOR.SSM_A,
  796. MODEL_TENSOR.SSM_D,
  797. MODEL_TENSOR.SSM_OUT,
  798. ],
  799. MODEL_ARCH.XVERSE: [
  800. MODEL_TENSOR.TOKEN_EMBD,
  801. MODEL_TENSOR.OUTPUT_NORM,
  802. MODEL_TENSOR.OUTPUT,
  803. MODEL_TENSOR.ROPE_FREQS,
  804. MODEL_TENSOR.ATTN_NORM,
  805. MODEL_TENSOR.ATTN_Q,
  806. MODEL_TENSOR.ATTN_K,
  807. MODEL_TENSOR.ATTN_V,
  808. MODEL_TENSOR.ATTN_OUT,
  809. MODEL_TENSOR.ATTN_ROT_EMBD,
  810. MODEL_TENSOR.FFN_NORM,
  811. MODEL_TENSOR.FFN_GATE,
  812. MODEL_TENSOR.FFN_DOWN,
  813. MODEL_TENSOR.FFN_UP,
  814. ],
  815. MODEL_ARCH.COMMAND_R: [
  816. MODEL_TENSOR.TOKEN_EMBD,
  817. MODEL_TENSOR.OUTPUT_NORM,
  818. MODEL_TENSOR.ATTN_NORM,
  819. MODEL_TENSOR.ATTN_Q,
  820. MODEL_TENSOR.ATTN_K,
  821. MODEL_TENSOR.ATTN_V,
  822. MODEL_TENSOR.ATTN_OUT,
  823. MODEL_TENSOR.FFN_GATE,
  824. MODEL_TENSOR.FFN_DOWN,
  825. MODEL_TENSOR.FFN_UP,
  826. MODEL_TENSOR.ATTN_K_NORM,
  827. MODEL_TENSOR.ATTN_Q_NORM,
  828. ],
  829. MODEL_ARCH.DBRX: [
  830. MODEL_TENSOR.TOKEN_EMBD,
  831. MODEL_TENSOR.OUTPUT_NORM,
  832. MODEL_TENSOR.OUTPUT,
  833. MODEL_TENSOR.ATTN_NORM,
  834. MODEL_TENSOR.ATTN_QKV,
  835. MODEL_TENSOR.ATTN_OUT,
  836. MODEL_TENSOR.ATTN_OUT_NORM,
  837. MODEL_TENSOR.FFN_GATE_INP,
  838. MODEL_TENSOR.FFN_GATE_EXP,
  839. MODEL_TENSOR.FFN_DOWN_EXP,
  840. MODEL_TENSOR.FFN_UP_EXP,
  841. ],
  842. MODEL_ARCH.OLMO: [
  843. MODEL_TENSOR.TOKEN_EMBD,
  844. MODEL_TENSOR.OUTPUT,
  845. MODEL_TENSOR.ATTN_Q,
  846. MODEL_TENSOR.ATTN_K,
  847. MODEL_TENSOR.ATTN_V,
  848. MODEL_TENSOR.ATTN_OUT,
  849. MODEL_TENSOR.FFN_GATE,
  850. MODEL_TENSOR.FFN_DOWN,
  851. MODEL_TENSOR.FFN_UP,
  852. ],
  853. MODEL_ARCH.OPENELM: [
  854. MODEL_TENSOR.TOKEN_EMBD,
  855. MODEL_TENSOR.OUTPUT_NORM,
  856. MODEL_TENSOR.ATTN_NORM,
  857. MODEL_TENSOR.ATTN_QKV,
  858. MODEL_TENSOR.ATTN_Q_NORM,
  859. MODEL_TENSOR.ATTN_K_NORM,
  860. MODEL_TENSOR.ATTN_OUT,
  861. MODEL_TENSOR.FFN_NORM,
  862. MODEL_TENSOR.FFN_GATE,
  863. MODEL_TENSOR.FFN_DOWN,
  864. MODEL_TENSOR.FFN_UP,
  865. ],
  866. MODEL_ARCH.ARCTIC: [
  867. MODEL_TENSOR.TOKEN_EMBD,
  868. MODEL_TENSOR.OUTPUT_NORM,
  869. MODEL_TENSOR.OUTPUT,
  870. MODEL_TENSOR.ROPE_FREQS,
  871. MODEL_TENSOR.ATTN_NORM,
  872. MODEL_TENSOR.ATTN_Q,
  873. MODEL_TENSOR.ATTN_K,
  874. MODEL_TENSOR.ATTN_V,
  875. MODEL_TENSOR.ATTN_OUT,
  876. MODEL_TENSOR.ATTN_ROT_EMBD,
  877. MODEL_TENSOR.FFN_GATE_INP,
  878. MODEL_TENSOR.FFN_NORM,
  879. MODEL_TENSOR.FFN_GATE,
  880. MODEL_TENSOR.FFN_DOWN,
  881. MODEL_TENSOR.FFN_UP,
  882. MODEL_TENSOR.FFN_NORM_EXP,
  883. MODEL_TENSOR.FFN_GATE_EXP,
  884. MODEL_TENSOR.FFN_DOWN_EXP,
  885. MODEL_TENSOR.FFN_UP_EXP,
  886. ],
  887. MODEL_ARCH.DEEPSEEK2: [
  888. MODEL_TENSOR.TOKEN_EMBD,
  889. MODEL_TENSOR.OUTPUT_NORM,
  890. MODEL_TENSOR.OUTPUT,
  891. MODEL_TENSOR.ROPE_FREQS,
  892. MODEL_TENSOR.ATTN_NORM,
  893. MODEL_TENSOR.ATTN_Q,
  894. MODEL_TENSOR.ATTN_Q_A,
  895. MODEL_TENSOR.ATTN_Q_B,
  896. MODEL_TENSOR.ATTN_KV_A_MQA,
  897. MODEL_TENSOR.ATTN_KV_B,
  898. MODEL_TENSOR.ATTN_Q_A_NORM,
  899. MODEL_TENSOR.ATTN_KV_A_NORM,
  900. MODEL_TENSOR.ATTN_OUT,
  901. MODEL_TENSOR.ATTN_ROT_EMBD,
  902. MODEL_TENSOR.FFN_GATE_INP,
  903. MODEL_TENSOR.FFN_NORM,
  904. MODEL_TENSOR.FFN_GATE,
  905. MODEL_TENSOR.FFN_DOWN,
  906. MODEL_TENSOR.FFN_UP,
  907. MODEL_TENSOR.FFN_GATE_EXP,
  908. MODEL_TENSOR.FFN_DOWN_EXP,
  909. MODEL_TENSOR.FFN_UP_EXP,
  910. MODEL_TENSOR.FFN_GATE_SHEXP,
  911. MODEL_TENSOR.FFN_DOWN_SHEXP,
  912. MODEL_TENSOR.FFN_UP_SHEXP,
  913. ],
  914. MODEL_ARCH.CHATGLM : [
  915. MODEL_TENSOR.TOKEN_EMBD,
  916. MODEL_TENSOR.ROPE_FREQS,
  917. MODEL_TENSOR.OUTPUT_NORM,
  918. MODEL_TENSOR.OUTPUT,
  919. MODEL_TENSOR.ATTN_NORM,
  920. MODEL_TENSOR.ATTN_QKV,
  921. MODEL_TENSOR.ATTN_OUT,
  922. MODEL_TENSOR.FFN_NORM,
  923. MODEL_TENSOR.FFN_DOWN,
  924. MODEL_TENSOR.FFN_UP,
  925. ],
  926. MODEL_ARCH.BITNET: [
  927. MODEL_TENSOR.ATTN_Q,
  928. MODEL_TENSOR.ATTN_K,
  929. MODEL_TENSOR.ATTN_V,
  930. MODEL_TENSOR.TOKEN_EMBD,
  931. MODEL_TENSOR.OUTPUT_NORM,
  932. MODEL_TENSOR.ATTN_NORM,
  933. MODEL_TENSOR.ATTN_OUT,
  934. MODEL_TENSOR.FFN_NORM,
  935. MODEL_TENSOR.FFN_GATE,
  936. MODEL_TENSOR.FFN_DOWN,
  937. MODEL_TENSOR.FFN_UP,
  938. MODEL_TENSOR.ATTN_SUB_NORM,
  939. MODEL_TENSOR.FFN_SUB_NORM,
  940. ],
  941. MODEL_ARCH.T5: [
  942. MODEL_TENSOR.TOKEN_EMBD,
  943. MODEL_TENSOR.OUTPUT,
  944. MODEL_TENSOR.DEC_ATTN_NORM,
  945. MODEL_TENSOR.DEC_ATTN_Q,
  946. MODEL_TENSOR.DEC_ATTN_K,
  947. MODEL_TENSOR.DEC_ATTN_V,
  948. MODEL_TENSOR.DEC_ATTN_OUT,
  949. MODEL_TENSOR.DEC_ATTN_REL_B,
  950. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  951. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  952. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  953. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  954. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  955. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  956. MODEL_TENSOR.DEC_FFN_NORM,
  957. MODEL_TENSOR.DEC_FFN_GATE,
  958. MODEL_TENSOR.DEC_FFN_DOWN,
  959. MODEL_TENSOR.DEC_FFN_UP,
  960. MODEL_TENSOR.DEC_OUTPUT_NORM,
  961. MODEL_TENSOR.ENC_ATTN_NORM,
  962. MODEL_TENSOR.ENC_ATTN_Q,
  963. MODEL_TENSOR.ENC_ATTN_K,
  964. MODEL_TENSOR.ENC_ATTN_V,
  965. MODEL_TENSOR.ENC_ATTN_OUT,
  966. MODEL_TENSOR.ENC_ATTN_REL_B,
  967. MODEL_TENSOR.ENC_FFN_NORM,
  968. MODEL_TENSOR.ENC_FFN_GATE,
  969. MODEL_TENSOR.ENC_FFN_DOWN,
  970. MODEL_TENSOR.ENC_FFN_UP,
  971. MODEL_TENSOR.ENC_OUTPUT_NORM,
  972. ],
  973. MODEL_ARCH.JAIS: [
  974. MODEL_TENSOR.TOKEN_EMBD,
  975. MODEL_TENSOR.OUTPUT_NORM,
  976. MODEL_TENSOR.OUTPUT,
  977. MODEL_TENSOR.ATTN_NORM,
  978. MODEL_TENSOR.ATTN_QKV,
  979. MODEL_TENSOR.ATTN_OUT,
  980. MODEL_TENSOR.FFN_NORM,
  981. MODEL_TENSOR.FFN_DOWN,
  982. MODEL_TENSOR.FFN_GATE,
  983. MODEL_TENSOR.FFN_UP,
  984. ],
  985. # TODO
  986. }
  987. # tensors that will not be serialized
  988. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  989. MODEL_ARCH.LLAMA: [
  990. MODEL_TENSOR.ROPE_FREQS,
  991. MODEL_TENSOR.ATTN_ROT_EMBD,
  992. ],
  993. MODEL_ARCH.BAICHUAN: [
  994. MODEL_TENSOR.ROPE_FREQS,
  995. MODEL_TENSOR.ATTN_ROT_EMBD,
  996. ],
  997. MODEL_ARCH.QWEN: [
  998. MODEL_TENSOR.ROPE_FREQS,
  999. MODEL_TENSOR.ATTN_ROT_EMBD,
  1000. ],
  1001. MODEL_ARCH.CODESHELL: [
  1002. MODEL_TENSOR.ROPE_FREQS,
  1003. MODEL_TENSOR.ATTN_ROT_EMBD,
  1004. ],
  1005. MODEL_ARCH.ORION: [
  1006. MODEL_TENSOR.ROPE_FREQS,
  1007. MODEL_TENSOR.ATTN_ROT_EMBD,
  1008. ],
  1009. MODEL_ARCH.STARCODER2: [
  1010. MODEL_TENSOR.ROPE_FREQS,
  1011. MODEL_TENSOR.ATTN_ROT_EMBD,
  1012. ],
  1013. MODEL_ARCH.XVERSE: [
  1014. MODEL_TENSOR.ROPE_FREQS,
  1015. MODEL_TENSOR.ATTN_ROT_EMBD,
  1016. ],
  1017. MODEL_ARCH.DEEPSEEK2: [
  1018. MODEL_TENSOR.ROPE_FREQS,
  1019. MODEL_TENSOR.ATTN_ROT_EMBD,
  1020. ],
  1021. MODEL_ARCH.CHATGLM: [
  1022. MODEL_TENSOR.ROPE_FREQS,
  1023. ],
  1024. }
  1025. #
  1026. # types
  1027. #
  1028. class TokenType(IntEnum):
  1029. NORMAL = 1
  1030. UNKNOWN = 2
  1031. CONTROL = 3
  1032. USER_DEFINED = 4
  1033. UNUSED = 5
  1034. BYTE = 6
  1035. class RopeScalingType(Enum):
  1036. NONE = 'none'
  1037. LINEAR = 'linear'
  1038. YARN = 'yarn'
  1039. class PoolingType(IntEnum):
  1040. NONE = 0
  1041. MEAN = 1
  1042. CLS = 2
  1043. class GGMLQuantizationType(IntEnum):
  1044. F32 = 0
  1045. F16 = 1
  1046. Q4_0 = 2
  1047. Q4_1 = 3
  1048. Q5_0 = 6
  1049. Q5_1 = 7
  1050. Q8_0 = 8
  1051. Q8_1 = 9
  1052. Q2_K = 10
  1053. Q3_K = 11
  1054. Q4_K = 12
  1055. Q5_K = 13
  1056. Q6_K = 14
  1057. Q8_K = 15
  1058. IQ2_XXS = 16
  1059. IQ2_XS = 17
  1060. IQ3_XXS = 18
  1061. IQ1_S = 19
  1062. IQ4_NL = 20
  1063. IQ3_S = 21
  1064. IQ2_S = 22
  1065. IQ4_XS = 23
  1066. I8 = 24
  1067. I16 = 25
  1068. I32 = 26
  1069. I64 = 27
  1070. F64 = 28
  1071. IQ1_M = 29
  1072. BF16 = 30
  1073. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1074. # from llama_ftype in llama.h
  1075. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1076. class LlamaFileType(IntEnum):
  1077. ALL_F32 = 0
  1078. MOSTLY_F16 = 1 # except 1d tensors
  1079. MOSTLY_Q4_0 = 2 # except 1d tensors
  1080. MOSTLY_Q4_1 = 3 # except 1d tensors
  1081. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1082. # MOSTLY_Q4_2 = 5 # support has been removed
  1083. # MOSTLY_Q4_3 = 6 # support has been removed
  1084. MOSTLY_Q8_0 = 7 # except 1d tensors
  1085. MOSTLY_Q5_0 = 8 # except 1d tensors
  1086. MOSTLY_Q5_1 = 9 # except 1d tensors
  1087. MOSTLY_Q2_K = 10 # except 1d tensors
  1088. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1089. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1090. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1091. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1092. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1093. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1094. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1095. MOSTLY_Q6_K = 18 # except 1d tensors
  1096. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1097. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1098. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1099. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1100. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1101. MOSTLY_IQ1_S = 24 # except 1d tensors
  1102. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1103. MOSTLY_IQ3_S = 26 # except 1d tensors
  1104. MOSTLY_IQ3_M = 27 # except 1d tensors
  1105. MOSTLY_IQ2_S = 28 # except 1d tensors
  1106. MOSTLY_IQ2_M = 29 # except 1d tensors
  1107. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1108. MOSTLY_IQ1_M = 31 # except 1d tensors
  1109. MOSTLY_BF16 = 32 # except 1d tensors
  1110. GUESSED = 1024 # not specified in the model file
  1111. class GGUFEndian(IntEnum):
  1112. LITTLE = 0
  1113. BIG = 1
  1114. class GGUFValueType(IntEnum):
  1115. UINT8 = 0
  1116. INT8 = 1
  1117. UINT16 = 2
  1118. INT16 = 3
  1119. UINT32 = 4
  1120. INT32 = 5
  1121. FLOAT32 = 6
  1122. BOOL = 7
  1123. STRING = 8
  1124. ARRAY = 9
  1125. UINT64 = 10
  1126. INT64 = 11
  1127. FLOAT64 = 12
  1128. @staticmethod
  1129. def get_type(val: Any) -> GGUFValueType:
  1130. if isinstance(val, (str, bytes, bytearray)):
  1131. return GGUFValueType.STRING
  1132. elif isinstance(val, list):
  1133. return GGUFValueType.ARRAY
  1134. elif isinstance(val, float):
  1135. return GGUFValueType.FLOAT32
  1136. elif isinstance(val, bool):
  1137. return GGUFValueType.BOOL
  1138. elif isinstance(val, int):
  1139. return GGUFValueType.INT32
  1140. # TODO: need help with 64-bit types in Python
  1141. else:
  1142. raise ValueError(f"Unknown type: {type(val)}")
  1143. # Items here are (block size, type size)
  1144. QK_K = 256
  1145. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1146. GGMLQuantizationType.F32: (1, 4),
  1147. GGMLQuantizationType.F16: (1, 2),
  1148. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1149. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1150. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1151. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1152. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1153. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1154. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1155. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1156. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1157. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1158. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1159. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1160. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1161. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1162. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1163. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1164. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1165. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1166. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1167. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1168. GGMLQuantizationType.I8: (1, 1),
  1169. GGMLQuantizationType.I16: (1, 2),
  1170. GGMLQuantizationType.I32: (1, 4),
  1171. GGMLQuantizationType.I64: (1, 8),
  1172. GGMLQuantizationType.F64: (1, 8),
  1173. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1174. GGMLQuantizationType.BF16: (1, 2),
  1175. }
  1176. # Aliases for backward compatibility.
  1177. # general
  1178. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1179. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1180. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1181. KEY_GENERAL_NAME = Keys.General.NAME
  1182. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1183. KEY_GENERAL_URL = Keys.General.URL
  1184. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1185. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1186. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1187. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  1188. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1189. # LLM
  1190. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1191. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1192. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1193. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1194. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1195. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1196. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1197. # attention
  1198. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1199. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1200. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1201. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1202. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1203. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1204. # RoPE
  1205. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1206. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1207. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1208. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1209. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1210. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1211. # SSM
  1212. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1213. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1214. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1215. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1216. # tokenization
  1217. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1218. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1219. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1220. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1221. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1222. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1223. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1224. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1225. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1226. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1227. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1228. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1229. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1230. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1231. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1232. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1233. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1234. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1235. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID