server-task.cpp 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (size_t i = 0; i < this->lora.size(); ++i) {
  30. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  65. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  66. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  67. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"lora", lora},
  75. };
  76. }
  77. auto grammar_triggers = json::array();
  78. for (const auto & trigger : sampling.grammar_triggers) {
  79. server_grammar_trigger ct(trigger);
  80. grammar_triggers.push_back(ct.to_json());
  81. }
  82. return json {
  83. {"seed", sampling.seed},
  84. {"temperature", sampling.temp},
  85. {"dynatemp_range", sampling.dynatemp_range},
  86. {"dynatemp_exponent", sampling.dynatemp_exponent},
  87. {"top_k", sampling.top_k},
  88. {"top_p", sampling.top_p},
  89. {"min_p", sampling.min_p},
  90. {"top_n_sigma", sampling.top_n_sigma},
  91. {"xtc_probability", sampling.xtc_probability},
  92. {"xtc_threshold", sampling.xtc_threshold},
  93. {"typical_p", sampling.typ_p},
  94. {"repeat_last_n", sampling.penalty_last_n},
  95. {"repeat_penalty", sampling.penalty_repeat},
  96. {"presence_penalty", sampling.penalty_present},
  97. {"frequency_penalty", sampling.penalty_freq},
  98. {"dry_multiplier", sampling.dry_multiplier},
  99. {"dry_base", sampling.dry_base},
  100. {"dry_allowed_length", sampling.dry_allowed_length},
  101. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  102. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  103. {"mirostat", sampling.mirostat},
  104. {"mirostat_tau", sampling.mirostat_tau},
  105. {"mirostat_eta", sampling.mirostat_eta},
  106. {"stop", antiprompt},
  107. {"max_tokens", n_predict},
  108. {"n_predict", n_predict}, // TODO: deduplicate?
  109. {"n_keep", n_keep},
  110. {"n_discard", n_discard},
  111. {"ignore_eos", sampling.ignore_eos},
  112. {"stream", stream},
  113. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  114. {"n_probs", sampling.n_probs},
  115. {"min_keep", sampling.min_keep},
  116. {"grammar", sampling.grammar},
  117. {"grammar_lazy", sampling.grammar_lazy},
  118. {"grammar_triggers", grammar_triggers},
  119. {"preserved_tokens", sampling.preserved_tokens},
  120. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  121. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  122. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  123. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  124. {"samplers", samplers},
  125. {"speculative.n_max", speculative.n_max},
  126. {"speculative.n_min", speculative.n_min},
  127. {"speculative.p_min", speculative.p_min},
  128. {"timings_per_token", timings_per_token},
  129. {"post_sampling_probs", post_sampling_probs},
  130. {"lora", lora},
  131. };
  132. }
  133. //
  134. // server_task
  135. //
  136. task_params server_task::params_from_json_cmpl(
  137. const llama_context * ctx,
  138. const common_params & params_base,
  139. const json & data) {
  140. const llama_model * model = llama_get_model(ctx);
  141. const llama_vocab * vocab = llama_model_get_vocab(model);
  142. task_params params;
  143. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  144. task_params defaults;
  145. defaults.sampling = params_base.sampling;
  146. defaults.speculative = params_base.speculative;
  147. defaults.n_keep = params_base.n_keep;
  148. defaults.n_predict = params_base.n_predict;
  149. defaults.antiprompt = params_base.antiprompt;
  150. // enabling this will output extra debug information in the HTTP responses from the server
  151. params.verbose = params_base.verbosity > 9;
  152. params.timings_per_token = json_value(data, "timings_per_token", false);
  153. params.stream = json_value(data, "stream", false);
  154. auto stream_opt = json_value(data, "stream_options", json::object());
  155. params.include_usage = json_value(stream_opt, "include_usage", false);
  156. params.cache_prompt = json_value(data, "cache_prompt", true);
  157. params.return_tokens = json_value(data, "return_tokens", false);
  158. params.return_progress = json_value(data, "return_progress", false);
  159. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  160. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  161. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  162. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  163. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  164. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  165. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  166. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  167. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  168. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  169. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  170. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  171. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  172. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  173. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  174. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  175. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  176. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  177. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  178. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  179. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  180. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  181. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  182. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  183. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  184. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  185. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  186. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  187. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  188. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  189. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  190. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  191. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  192. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  193. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  194. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  195. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  196. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  197. // Use OpenAI API logprobs only if n_probs wasn't provided
  198. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  199. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  200. }
  201. if (data.contains("lora")) {
  202. if (data.at("lora").is_array()) {
  203. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  204. } else {
  205. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  206. }
  207. } else {
  208. params.lora = params_base.lora_adapters;
  209. }
  210. // TODO: add more sanity checks for the input parameters
  211. if (params.sampling.penalty_last_n < -1) {
  212. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  213. }
  214. if (params.sampling.dry_penalty_last_n < -1) {
  215. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  216. }
  217. if (params.sampling.penalty_last_n == -1) {
  218. // note: should be the slot's context and not the full context, but it's ok
  219. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  220. }
  221. if (params.sampling.dry_penalty_last_n == -1) {
  222. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  223. }
  224. if (params.sampling.dry_base < 1.0f) {
  225. params.sampling.dry_base = defaults.sampling.dry_base;
  226. }
  227. // sequence breakers for DRY
  228. {
  229. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  230. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  231. if (data.contains("dry_sequence_breakers")) {
  232. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  233. if (params.sampling.dry_sequence_breakers.empty()) {
  234. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  235. }
  236. }
  237. }
  238. // process "json_schema" and "grammar"
  239. if (data.contains("json_schema") && !data.contains("grammar")) {
  240. try {
  241. auto schema = json_value(data, "json_schema", json::object());
  242. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  243. params.sampling.grammar = json_schema_to_grammar(schema);
  244. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  245. } catch (const std::exception & e) {
  246. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  247. }
  248. } else {
  249. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  250. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  251. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  252. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  253. }
  254. {
  255. auto it = data.find("chat_format");
  256. if (it != data.end()) {
  257. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  258. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  259. } else {
  260. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  261. }
  262. common_reasoning_format reasoning_format = params_base.reasoning_format;
  263. if (data.contains("reasoning_format")) {
  264. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  265. }
  266. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  267. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  268. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  269. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  270. }
  271. {
  272. const auto preserved_tokens = data.find("preserved_tokens");
  273. if (preserved_tokens != data.end()) {
  274. for (const auto & t : *preserved_tokens) {
  275. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  276. if (ids.size() == 1) {
  277. SRV_DBG("Preserved token: %d\n", ids[0]);
  278. params.sampling.preserved_tokens.insert(ids[0]);
  279. } else {
  280. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  281. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  282. }
  283. }
  284. }
  285. const auto grammar_triggers = data.find("grammar_triggers");
  286. if (grammar_triggers != data.end()) {
  287. for (const auto & t : *grammar_triggers) {
  288. server_grammar_trigger ct(t);
  289. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  290. const auto & word = ct.value.value;
  291. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  292. if (ids.size() == 1) {
  293. auto token = ids[0];
  294. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  295. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  296. }
  297. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  298. common_grammar_trigger trigger;
  299. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  300. trigger.value = word;
  301. trigger.token = token;
  302. params.sampling.grammar_triggers.push_back(std::move(trigger));
  303. } else {
  304. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  305. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  306. }
  307. } else {
  308. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  309. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  310. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  311. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  312. } else {
  313. throw std::runtime_error("Unknown grammar trigger type");
  314. }
  315. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  316. }
  317. }
  318. }
  319. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  320. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  321. }
  322. }
  323. {
  324. params.sampling.logit_bias.clear();
  325. const auto & logit_bias = data.find("logit_bias");
  326. if (logit_bias != data.end() && logit_bias->is_array()) {
  327. const int n_vocab = llama_vocab_n_tokens(vocab);
  328. for (const auto & el : *logit_bias) {
  329. // TODO: we may want to throw errors here, in case "el" is incorrect
  330. if (el.is_array() && el.size() == 2) {
  331. float bias;
  332. if (el[1].is_number()) {
  333. bias = el[1].get<float>();
  334. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  335. bias = -INFINITY;
  336. } else {
  337. continue;
  338. }
  339. if (el[0].is_number_integer()) {
  340. llama_token tok = el[0].get<llama_token>();
  341. if (tok >= 0 && tok < n_vocab) {
  342. params.sampling.logit_bias.push_back({tok, bias});
  343. }
  344. } else if (el[0].is_string()) {
  345. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  346. for (auto tok : toks) {
  347. params.sampling.logit_bias.push_back({tok, bias});
  348. }
  349. }
  350. }
  351. }
  352. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  353. const int n_vocab = llama_vocab_n_tokens(vocab);
  354. for (const auto & el : logit_bias->items()) {
  355. float bias;
  356. const auto & key = el.key();
  357. const auto & value = el.value();
  358. if (value.is_number()) {
  359. bias = value.get<float>();
  360. } else if (value.is_boolean() && !value.get<bool>()) {
  361. bias = -INFINITY;
  362. } else {
  363. continue;
  364. }
  365. char *end;
  366. llama_token tok = strtol(key.c_str(), &end, 10);
  367. if (*end == 0) {
  368. if (tok >= 0 && tok < n_vocab) {
  369. params.sampling.logit_bias.push_back({tok, bias});
  370. }
  371. } else {
  372. auto toks = common_tokenize(vocab, key, false);
  373. for (auto tok : toks) {
  374. params.sampling.logit_bias.push_back({tok, bias});
  375. }
  376. }
  377. }
  378. }
  379. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  380. if (params.sampling.ignore_eos) {
  381. params.sampling.logit_bias.insert(
  382. params.sampling.logit_bias.end(),
  383. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  384. }
  385. }
  386. {
  387. params.antiprompt.clear();
  388. const auto & stop = data.find("stop");
  389. if (stop != data.end() && stop->is_array()) {
  390. for (const auto & word : *stop) {
  391. if (!word.empty()) {
  392. params.antiprompt.push_back(word);
  393. }
  394. }
  395. }
  396. // set reverse prompt from cli args if not set in the request
  397. if (params.antiprompt.empty()) {
  398. params.antiprompt = defaults.antiprompt;
  399. }
  400. }
  401. {
  402. const auto samplers = data.find("samplers");
  403. if (samplers != data.end()) {
  404. if (samplers->is_array()) {
  405. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  406. } else if (samplers->is_string()){
  407. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  408. }
  409. } else {
  410. params.sampling.samplers = defaults.sampling.samplers;
  411. }
  412. }
  413. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  414. params.oaicompat_model = json_value(data, "model", model_name);
  415. return params;
  416. }
  417. //
  418. // result_timings
  419. //
  420. json result_timings::to_json() const {
  421. json base = {
  422. {"cache_n", cache_n},
  423. {"prompt_n", prompt_n},
  424. {"prompt_ms", prompt_ms},
  425. {"prompt_per_token_ms", prompt_per_token_ms},
  426. {"prompt_per_second", prompt_per_second},
  427. {"predicted_n", predicted_n},
  428. {"predicted_ms", predicted_ms},
  429. {"predicted_per_token_ms", predicted_per_token_ms},
  430. {"predicted_per_second", predicted_per_second},
  431. };
  432. if (draft_n > 0) {
  433. base["draft_n"] = draft_n;
  434. base["draft_n_accepted"] = draft_n_accepted;
  435. }
  436. return base;
  437. }
  438. //
  439. // result_prompt_progress
  440. //
  441. json result_prompt_progress::to_json() const {
  442. return json {
  443. {"total", total},
  444. {"cache", cache},
  445. {"processed", processed},
  446. {"time_ms", time_ms},
  447. };
  448. }
  449. static inline std::string stop_type_to_str(stop_type type) {
  450. switch (type) {
  451. case STOP_TYPE_EOS: return "eos";
  452. case STOP_TYPE_WORD: return "word";
  453. case STOP_TYPE_LIMIT: return "limit";
  454. default: return "none";
  455. }
  456. }
  457. //
  458. // completion_token_output
  459. //
  460. json completion_token_output::to_json(bool post_sampling_probs) const {
  461. json probs_for_token = json::array();
  462. for (const auto & p : probs) {
  463. std::string txt(p.txt);
  464. txt.resize(validate_utf8(txt));
  465. probs_for_token.push_back(json {
  466. {"id", p.tok},
  467. {"token", txt},
  468. {"bytes", str_to_bytes(p.txt)},
  469. {
  470. post_sampling_probs ? "prob" : "logprob",
  471. post_sampling_probs ? p.prob : logarithm(p.prob)
  472. },
  473. });
  474. }
  475. return probs_for_token;
  476. }
  477. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  478. json out = json::array();
  479. for (const auto & p : probs) {
  480. std::string txt(p.text_to_send);
  481. txt.resize(validate_utf8(txt));
  482. out.push_back(json {
  483. {"id", p.tok},
  484. {"token", txt},
  485. {"bytes", str_to_bytes(p.text_to_send)},
  486. {
  487. post_sampling_probs ? "prob" : "logprob",
  488. post_sampling_probs ? p.prob : logarithm(p.prob)
  489. },
  490. {
  491. post_sampling_probs ? "top_probs" : "top_logprobs",
  492. p.to_json(post_sampling_probs)
  493. },
  494. });
  495. }
  496. return out;
  497. }
  498. float completion_token_output::logarithm(float x) {
  499. // nlohmann::json converts -inf to null, so we need to prevent that
  500. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  501. }
  502. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  503. std::vector<unsigned char> bytes;
  504. for (unsigned char c : str) {
  505. bytes.push_back(c);
  506. }
  507. return bytes;
  508. }
  509. //
  510. // server_task_result_cmpl_final
  511. //
  512. json server_task_result_cmpl_final::to_json() {
  513. switch (res_type) {
  514. case TASK_RESPONSE_TYPE_NONE:
  515. return to_json_non_oaicompat();
  516. case TASK_RESPONSE_TYPE_OAI_CMPL:
  517. return to_json_oaicompat();
  518. case TASK_RESPONSE_TYPE_OAI_CHAT:
  519. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  520. case TASK_RESPONSE_TYPE_ANTHROPIC:
  521. return stream ? to_json_anthropic_stream() : to_json_anthropic();
  522. default:
  523. GGML_ASSERT(false && "Invalid task_response_type");
  524. }
  525. }
  526. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  527. json res = json {
  528. {"index", index},
  529. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  530. {"tokens", stream ? llama_tokens {} : tokens},
  531. {"id_slot", id_slot},
  532. {"stop", true},
  533. {"model", oaicompat_model},
  534. {"tokens_predicted", n_decoded},
  535. {"tokens_evaluated", n_prompt_tokens},
  536. {"generation_settings", generation_params.to_json()},
  537. {"prompt", prompt},
  538. {"has_new_line", has_new_line},
  539. {"truncated", truncated},
  540. {"stop_type", stop_type_to_str(stop)},
  541. {"stopping_word", stopping_word},
  542. {"tokens_cached", n_tokens_cached},
  543. {"timings", timings.to_json()},
  544. };
  545. if (!stream && !probs_output.empty()) {
  546. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  547. }
  548. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  549. }
  550. json server_task_result_cmpl_final::to_json_oaicompat() {
  551. std::time_t t = std::time(0);
  552. json logprobs = json(nullptr); // OAI default to null
  553. if (!stream && probs_output.size() > 0) {
  554. logprobs = json{
  555. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  556. };
  557. }
  558. json finish_reason = "length";
  559. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  560. finish_reason = "stop";
  561. }
  562. json res = json {
  563. {"choices", json::array({
  564. json{
  565. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  566. {"index", index},
  567. {"logprobs", logprobs},
  568. {"finish_reason", finish_reason},
  569. }
  570. })},
  571. {"created", t},
  572. {"model", oaicompat_model},
  573. {"system_fingerprint", build_info},
  574. {"object", "text_completion"},
  575. {"usage", json {
  576. {"completion_tokens", n_decoded},
  577. {"prompt_tokens", n_prompt_tokens},
  578. {"total_tokens", n_decoded + n_prompt_tokens}
  579. }},
  580. {"id", oaicompat_cmpl_id}
  581. };
  582. // extra fields for debugging purposes
  583. if (verbose) {
  584. res["__verbose"] = to_json_non_oaicompat();
  585. }
  586. if (timings.prompt_n >= 0) {
  587. res.push_back({"timings", timings.to_json()});
  588. }
  589. return res;
  590. }
  591. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  592. std::string finish_reason = "length";
  593. common_chat_msg msg;
  594. if (!oaicompat_msg.empty()) {
  595. msg = oaicompat_msg;
  596. } else {
  597. msg.role = "assistant";
  598. msg.content = content;
  599. }
  600. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  601. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  602. }
  603. json choice {
  604. {"finish_reason", finish_reason},
  605. {"index", 0},
  606. {"message", msg.to_json_oaicompat<json>()},
  607. };
  608. if (!stream && probs_output.size() > 0) {
  609. choice["logprobs"] = json{
  610. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  611. };
  612. }
  613. std::time_t t = std::time(0);
  614. json res = json {
  615. {"choices", json::array({choice})},
  616. {"created", t},
  617. {"model", oaicompat_model},
  618. {"system_fingerprint", build_info},
  619. {"object", "chat.completion"},
  620. {"usage", json {
  621. {"completion_tokens", n_decoded},
  622. {"prompt_tokens", n_prompt_tokens},
  623. {"total_tokens", n_decoded + n_prompt_tokens}
  624. }},
  625. {"id", oaicompat_cmpl_id}
  626. };
  627. // extra fields for debugging purposes
  628. if (verbose) {
  629. res["__verbose"] = to_json_non_oaicompat();
  630. }
  631. if (timings.prompt_n >= 0) {
  632. res.push_back({"timings", timings.to_json()});
  633. }
  634. return res;
  635. }
  636. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  637. std::time_t t = std::time(0);
  638. std::string finish_reason = "length";
  639. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  640. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  641. }
  642. json deltas = json::array();
  643. for (const auto & diff : oaicompat_msg_diffs) {
  644. deltas.push_back({
  645. {"choices", json::array({
  646. json {
  647. {"finish_reason", nullptr},
  648. {"index", 0},
  649. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  650. },
  651. })},
  652. {"created", t},
  653. {"id", oaicompat_cmpl_id},
  654. {"model", oaicompat_model},
  655. {"system_fingerprint", build_info},
  656. {"object", "chat.completion.chunk"},
  657. });
  658. }
  659. deltas.push_back({
  660. {"choices", json::array({
  661. json {
  662. {"finish_reason", finish_reason},
  663. {"index", 0},
  664. {"delta", json::object()},
  665. },
  666. })},
  667. {"created", t},
  668. {"id", oaicompat_cmpl_id},
  669. {"model", oaicompat_model},
  670. {"system_fingerprint", build_info},
  671. {"object", "chat.completion.chunk"},
  672. });
  673. if (include_usage) {
  674. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  675. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  676. deltas.push_back({
  677. {"choices", json::array()},
  678. {"created", t},
  679. {"id", oaicompat_cmpl_id},
  680. {"model", oaicompat_model},
  681. {"system_fingerprint", build_info},
  682. {"object", "chat.completion.chunk"},
  683. {"usage", json {
  684. {"completion_tokens", n_decoded},
  685. {"prompt_tokens", n_prompt_tokens},
  686. {"total_tokens", n_decoded + n_prompt_tokens},
  687. }},
  688. });
  689. }
  690. if (timings.prompt_n >= 0) {
  691. deltas.back().push_back({"timings", timings.to_json()});
  692. }
  693. // extra fields for debugging purposes
  694. if (verbose && !deltas.empty()) {
  695. deltas.front()["__verbose"] = to_json_non_oaicompat();
  696. }
  697. return deltas;
  698. }
  699. json server_task_result_cmpl_final::to_json_anthropic() {
  700. std::string stop_reason = "max_tokens";
  701. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  702. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  703. }
  704. json content_blocks = json::array();
  705. common_chat_msg msg;
  706. if (!oaicompat_msg.empty()) {
  707. msg = oaicompat_msg;
  708. } else {
  709. msg.role = "assistant";
  710. msg.content = content;
  711. }
  712. if (!msg.content.empty()) {
  713. content_blocks.push_back({
  714. {"type", "text"},
  715. {"text", msg.content}
  716. });
  717. }
  718. for (const auto & tool_call : msg.tool_calls) {
  719. json tool_use_block = {
  720. {"type", "tool_use"},
  721. {"id", tool_call.id},
  722. {"name", tool_call.name}
  723. };
  724. try {
  725. tool_use_block["input"] = json::parse(tool_call.arguments);
  726. } catch (const std::exception &) {
  727. tool_use_block["input"] = json::object();
  728. }
  729. content_blocks.push_back(tool_use_block);
  730. }
  731. json res = {
  732. {"id", oaicompat_cmpl_id},
  733. {"type", "message"},
  734. {"role", "assistant"},
  735. {"content", content_blocks},
  736. {"model", oaicompat_model},
  737. {"stop_reason", stop_reason},
  738. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
  739. {"usage", {
  740. {"input_tokens", n_prompt_tokens},
  741. {"output_tokens", n_decoded}
  742. }}
  743. };
  744. return res;
  745. }
  746. json server_task_result_cmpl_final::to_json_anthropic_stream() {
  747. json events = json::array();
  748. std::string stop_reason = "max_tokens";
  749. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  750. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  751. }
  752. bool has_text = !oaicompat_msg.content.empty();
  753. size_t num_tool_calls = oaicompat_msg.tool_calls.size();
  754. bool text_block_started = false;
  755. std::unordered_set<size_t> tool_calls_started;
  756. for (const auto & diff : oaicompat_msg_diffs) {
  757. if (!diff.content_delta.empty()) {
  758. if (!text_block_started) {
  759. events.push_back({
  760. {"event", "content_block_start"},
  761. {"data", {
  762. {"type", "content_block_start"},
  763. {"index", 0},
  764. {"content_block", {
  765. {"type", "text"},
  766. {"text", ""}
  767. }}
  768. }}
  769. });
  770. text_block_started = true;
  771. }
  772. events.push_back({
  773. {"event", "content_block_delta"},
  774. {"data", {
  775. {"type", "content_block_delta"},
  776. {"index", 0},
  777. {"delta", {
  778. {"type", "text_delta"},
  779. {"text", diff.content_delta}
  780. }}
  781. }}
  782. });
  783. }
  784. if (diff.tool_call_index != std::string::npos) {
  785. size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
  786. if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
  787. const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
  788. events.push_back({
  789. {"event", "content_block_start"},
  790. {"data", {
  791. {"type", "content_block_start"},
  792. {"index", content_block_index},
  793. {"content_block", {
  794. {"type", "tool_use"},
  795. {"id", full_tool_call.id},
  796. {"name", full_tool_call.name}
  797. }}
  798. }}
  799. });
  800. tool_calls_started.insert(diff.tool_call_index);
  801. }
  802. if (!diff.tool_call_delta.arguments.empty()) {
  803. events.push_back({
  804. {"event", "content_block_delta"},
  805. {"data", {
  806. {"type", "content_block_delta"},
  807. {"index", content_block_index},
  808. {"delta", {
  809. {"type", "input_json_delta"},
  810. {"partial_json", diff.tool_call_delta.arguments}
  811. }}
  812. }}
  813. });
  814. }
  815. }
  816. }
  817. if (has_text) {
  818. events.push_back({
  819. {"event", "content_block_stop"},
  820. {"data", {
  821. {"type", "content_block_stop"},
  822. {"index", 0}
  823. }}
  824. });
  825. }
  826. for (size_t i = 0; i < num_tool_calls; i++) {
  827. size_t content_block_index = (has_text ? 1 : 0) + i;
  828. events.push_back({
  829. {"event", "content_block_stop"},
  830. {"data", {
  831. {"type", "content_block_stop"},
  832. {"index", content_block_index}
  833. }}
  834. });
  835. }
  836. events.push_back({
  837. {"event", "message_delta"},
  838. {"data", {
  839. {"type", "message_delta"},
  840. {"delta", {
  841. {"stop_reason", stop_reason},
  842. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
  843. }},
  844. {"usage", {
  845. {"output_tokens", n_decoded}
  846. }}
  847. }}
  848. });
  849. events.push_back({
  850. {"event", "message_stop"},
  851. {"data", {
  852. {"type", "message_stop"}
  853. }}
  854. });
  855. return events;
  856. }
  857. //
  858. // server_task_result_cmpl_partial
  859. //
  860. json server_task_result_cmpl_partial::to_json() {
  861. switch (res_type) {
  862. case TASK_RESPONSE_TYPE_NONE:
  863. return to_json_non_oaicompat();
  864. case TASK_RESPONSE_TYPE_OAI_CMPL:
  865. return to_json_oaicompat();
  866. case TASK_RESPONSE_TYPE_OAI_CHAT:
  867. return to_json_oaicompat_chat();
  868. case TASK_RESPONSE_TYPE_ANTHROPIC:
  869. return to_json_anthropic();
  870. default:
  871. GGML_ASSERT(false && "Invalid task_response_type");
  872. }
  873. }
  874. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  875. // non-OAI-compat JSON
  876. json res = json {
  877. {"index", index},
  878. {"content", content},
  879. {"tokens", tokens},
  880. {"stop", false},
  881. {"id_slot", id_slot},
  882. {"tokens_predicted", n_decoded},
  883. {"tokens_evaluated", n_prompt_tokens},
  884. };
  885. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  886. if (timings.prompt_n > 0) {
  887. res.push_back({"timings", timings.to_json()});
  888. }
  889. if (is_progress) {
  890. res.push_back({"prompt_progress", progress.to_json()});
  891. }
  892. if (!prob_output.probs.empty()) {
  893. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  894. }
  895. return res;
  896. }
  897. json server_task_result_cmpl_partial::to_json_oaicompat() {
  898. std::time_t t = std::time(0);
  899. json logprobs = json(nullptr); // OAI default to null
  900. if (prob_output.probs.size() > 0) {
  901. logprobs = json{
  902. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  903. };
  904. }
  905. json res = json {
  906. {"choices", json::array({
  907. json{
  908. {"text", content},
  909. {"index", index},
  910. {"logprobs", logprobs},
  911. {"finish_reason", nullptr},
  912. }
  913. })},
  914. {"created", t},
  915. {"model", oaicompat_model},
  916. {"system_fingerprint", build_info},
  917. {"object", "text_completion"},
  918. {"id", oaicompat_cmpl_id}
  919. };
  920. // extra fields for debugging purposes
  921. if (verbose) {
  922. res["__verbose"] = to_json_non_oaicompat();
  923. }
  924. if (timings.prompt_n >= 0) {
  925. res.push_back({"timings", timings.to_json()});
  926. }
  927. if (is_progress) {
  928. res.push_back({"prompt_progress", progress.to_json()});
  929. }
  930. return res;
  931. }
  932. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  933. bool first = n_decoded == 1;
  934. std::time_t t = std::time(0);
  935. json choices;
  936. std::vector<json> deltas;
  937. auto add_delta = [&](const json & delta) {
  938. deltas.push_back({
  939. {"choices", json::array({
  940. json {
  941. {"finish_reason", nullptr},
  942. {"index", 0},
  943. {"delta", delta},
  944. },
  945. })},
  946. {"created", t},
  947. {"id", oaicompat_cmpl_id},
  948. {"model", oaicompat_model},
  949. {"system_fingerprint", build_info},
  950. {"object", "chat.completion.chunk"},
  951. });
  952. };
  953. // We have to send an initial update to conform to openai behavior
  954. if (first || is_progress) {
  955. add_delta({
  956. {"role", "assistant"},
  957. {"content", nullptr},
  958. });
  959. }
  960. for (const auto & diff : oaicompat_msg_diffs) {
  961. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  962. }
  963. if (!deltas.empty()) {
  964. auto & last_json = deltas[deltas.size() - 1];
  965. GGML_ASSERT(last_json.at("choices").size() >= 1);
  966. if (prob_output.probs.size() > 0) {
  967. last_json.at("choices").at(0)["logprobs"] = json {
  968. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  969. };
  970. }
  971. if (timings.prompt_n >= 0) {
  972. last_json.push_back({"timings", timings.to_json()});
  973. }
  974. if (is_progress) {
  975. last_json.push_back({"prompt_progress", progress.to_json()});
  976. }
  977. }
  978. return deltas;
  979. }
  980. //
  981. // server_task_result_embd
  982. //
  983. json server_task_result_embd::to_json() {
  984. return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  985. ? to_json_oaicompat()
  986. : to_json_non_oaicompat();
  987. }
  988. json server_task_result_embd::to_json_non_oaicompat() {
  989. return json {
  990. {"index", index},
  991. {"embedding", embedding},
  992. };
  993. }
  994. json server_task_result_embd::to_json_oaicompat() {
  995. return json {
  996. {"index", index},
  997. {"embedding", embedding[0]},
  998. {"tokens_evaluated", n_tokens},
  999. };
  1000. }
  1001. //
  1002. // server_task_result_rerank
  1003. //
  1004. json server_task_result_rerank::to_json() {
  1005. return json {
  1006. {"index", index},
  1007. {"score", score},
  1008. {"tokens_evaluated", n_tokens},
  1009. };
  1010. }
  1011. json server_task_result_cmpl_partial::to_json_anthropic() {
  1012. json events = json::array();
  1013. bool first = (n_decoded == 1);
  1014. static bool text_block_started = false;
  1015. if (first) {
  1016. text_block_started = false;
  1017. events.push_back({
  1018. {"event", "message_start"},
  1019. {"data", {
  1020. {"type", "message_start"},
  1021. {"message", {
  1022. {"id", oaicompat_cmpl_id},
  1023. {"type", "message"},
  1024. {"role", "assistant"},
  1025. {"content", json::array()},
  1026. {"model", oaicompat_model},
  1027. {"stop_reason", nullptr},
  1028. {"stop_sequence", nullptr},
  1029. {"usage", {
  1030. {"input_tokens", n_prompt_tokens},
  1031. {"output_tokens", 0}
  1032. }}
  1033. }}
  1034. }}
  1035. });
  1036. }
  1037. for (const auto & diff : oaicompat_msg_diffs) {
  1038. if (!diff.content_delta.empty()) {
  1039. if (!text_block_started) {
  1040. events.push_back({
  1041. {"event", "content_block_start"},
  1042. {"data", {
  1043. {"type", "content_block_start"},
  1044. {"index", 0},
  1045. {"content_block", {
  1046. {"type", "text"},
  1047. {"text", ""}
  1048. }}
  1049. }}
  1050. });
  1051. text_block_started = true;
  1052. }
  1053. events.push_back({
  1054. {"event", "content_block_delta"},
  1055. {"data", {
  1056. {"type", "content_block_delta"},
  1057. {"index", 0},
  1058. {"delta", {
  1059. {"type", "text_delta"},
  1060. {"text", diff.content_delta}
  1061. }}
  1062. }}
  1063. });
  1064. }
  1065. if (diff.tool_call_index != std::string::npos) {
  1066. size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
  1067. if (!diff.tool_call_delta.name.empty()) {
  1068. events.push_back({
  1069. {"event", "content_block_start"},
  1070. {"data", {
  1071. {"type", "content_block_start"},
  1072. {"index", content_block_index},
  1073. {"content_block", {
  1074. {"type", "tool_use"},
  1075. {"id", diff.tool_call_delta.id},
  1076. {"name", diff.tool_call_delta.name}
  1077. }}
  1078. }}
  1079. });
  1080. }
  1081. if (!diff.tool_call_delta.arguments.empty()) {
  1082. events.push_back({
  1083. {"event", "content_block_delta"},
  1084. {"data", {
  1085. {"type", "content_block_delta"},
  1086. {"index", content_block_index},
  1087. {"delta", {
  1088. {"type", "input_json_delta"},
  1089. {"partial_json", diff.tool_call_delta.arguments}
  1090. }}
  1091. }}
  1092. });
  1093. }
  1094. }
  1095. }
  1096. return events;
  1097. }
  1098. //
  1099. // server_task_result_error
  1100. //
  1101. json server_task_result_error::to_json() {
  1102. json res = format_error_response(err_msg, err_type);
  1103. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1104. res["n_prompt_tokens"] = n_prompt_tokens;
  1105. res["n_ctx"] = n_ctx;
  1106. }
  1107. return res;
  1108. }
  1109. //
  1110. // server_task_result_metrics
  1111. //
  1112. json server_task_result_metrics::to_json() {
  1113. return json {
  1114. { "idle", n_idle_slots },
  1115. { "processing", n_processing_slots },
  1116. { "deferred", n_tasks_deferred },
  1117. { "t_start", t_start },
  1118. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1119. { "t_tokens_generation_total", t_tokens_generation_total },
  1120. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1121. { "t_prompt_processing_total", t_prompt_processing_total },
  1122. { "n_tokens_max", n_tokens_max },
  1123. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1124. { "t_prompt_processing", t_prompt_processing },
  1125. { "n_tokens_predicted", n_tokens_predicted },
  1126. { "t_tokens_generation", t_tokens_generation },
  1127. { "n_decode_total", n_decode_total },
  1128. { "n_busy_slots_total", n_busy_slots_total },
  1129. { "slots", slots_data },
  1130. };
  1131. }
  1132. //
  1133. // server_task_result_slot_save_load
  1134. //
  1135. json server_task_result_slot_save_load::to_json() {
  1136. if (is_save) {
  1137. return json {
  1138. { "id_slot", id_slot },
  1139. { "filename", filename },
  1140. { "n_saved", n_tokens },
  1141. { "n_written", n_bytes },
  1142. { "timings", {
  1143. { "save_ms", t_ms }
  1144. }},
  1145. };
  1146. }
  1147. return json {
  1148. { "id_slot", id_slot },
  1149. { "filename", filename },
  1150. { "n_restored", n_tokens },
  1151. { "n_read", n_bytes },
  1152. { "timings", {
  1153. { "restore_ms", t_ms }
  1154. }},
  1155. };
  1156. }
  1157. //
  1158. // server_task_result_slot_erase
  1159. //
  1160. json server_task_result_slot_erase::to_json() {
  1161. return json {
  1162. { "id_slot", id_slot },
  1163. { "n_erased", n_erased },
  1164. };
  1165. }
  1166. //
  1167. // server_task_result_apply_lora
  1168. //
  1169. json server_task_result_apply_lora::to_json() {
  1170. return json {{ "success", true }};
  1171. }
  1172. //
  1173. // server_prompt_cache
  1174. //
  1175. size_t server_prompt_cache::size() const {
  1176. size_t res = 0;
  1177. for (const auto & state : states) {
  1178. res += state.size();
  1179. }
  1180. return res;
  1181. }
  1182. size_t server_prompt_cache::n_tokens() const {
  1183. size_t res = 0;
  1184. for (const auto & state : states) {
  1185. res += state.n_tokens();
  1186. }
  1187. return res;
  1188. }
  1189. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  1190. // first check if the current state is contained fully in the cache
  1191. for (auto it = states.begin(); it != states.end(); ++it) {
  1192. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1193. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1194. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1195. return nullptr;
  1196. }
  1197. }
  1198. // next, remove any cached prompts that are fully contained in the current prompt
  1199. for (auto it = states.begin(); it != states.end();) {
  1200. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1201. if (len == (int) it->tokens.size()) {
  1202. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1203. it = states.erase(it);
  1204. } else {
  1205. ++it;
  1206. }
  1207. }
  1208. std::vector<uint8_t> state_data;
  1209. // check if we can allocate enough memory for the new state
  1210. try {
  1211. state_data.resize(state_size);
  1212. } catch (const std::bad_alloc & e) {
  1213. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1214. limit_size = std::max<size_t>(1, 0.4*size());
  1215. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1216. update();
  1217. return nullptr;
  1218. }
  1219. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1220. auto & cur = states.emplace_back();
  1221. cur = {
  1222. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1223. /*.data =*/ std::move(state_data),
  1224. /*.checkpoints =*/ prompt.checkpoints,
  1225. };
  1226. return &cur;
  1227. }
  1228. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1229. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1230. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1231. float sim_best = float(lcp_best) / tokens_new.size();
  1232. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1233. auto it_best = states.end();
  1234. // find the most similar cached prompt, that would also preserve the most context
  1235. for (auto it = states.begin(); it != states.end(); ++it) {
  1236. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1237. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1238. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1239. // don't trash large prompts
  1240. if (f_keep_cur < 0.25f) {
  1241. continue;
  1242. }
  1243. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1244. f_keep_best = f_keep_cur;
  1245. sim_best = sim_cur;
  1246. it_best = it;
  1247. }
  1248. }
  1249. if (it_best != states.end()) {
  1250. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1251. const size_t size = it_best->data.size();
  1252. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1253. if (n != size) {
  1254. SRV_WRN("failed to restore state with size %zu\n", size);
  1255. return false;
  1256. }
  1257. it_best->data.clear();
  1258. it_best->data.shrink_to_fit();
  1259. prompt = std::move(*it_best);
  1260. states.erase(it_best);
  1261. }
  1262. return true;
  1263. }
  1264. void server_prompt_cache::update() {
  1265. if (limit_size > 0) {
  1266. // always keep at least one state, regardless of the limits
  1267. while (states.size() > 1 && size() > limit_size) {
  1268. if (states.empty()) {
  1269. break;
  1270. }
  1271. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1272. states.pop_front();
  1273. }
  1274. }
  1275. // average size per token
  1276. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1277. // dynamically increase the token limit if it can fit in the memory limit
  1278. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1279. if (limit_tokens > 0) {
  1280. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1281. if (states.empty()) {
  1282. break;
  1283. }
  1284. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1285. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1286. states.pop_front();
  1287. }
  1288. }
  1289. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1290. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1291. for (const auto & state : states) {
  1292. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1293. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1294. }
  1295. }