llama.cpp 764 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. // TODO: replace with ggml API call
  25. #define QK_K 256
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #include <fcntl.h>
  32. #endif
  33. #if defined(_POSIX_MEMLOCK_RANGE)
  34. #include <sys/resource.h>
  35. #endif
  36. #endif
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. #ifndef PATH_MAX
  45. #define PATH_MAX MAX_PATH
  46. #endif
  47. #include <io.h>
  48. #endif
  49. #include <algorithm>
  50. #include <array>
  51. #include <cassert>
  52. #include <cctype>
  53. #include <cfloat>
  54. #include <cinttypes>
  55. #include <climits>
  56. #include <cmath>
  57. #include <cstdarg>
  58. #include <cstddef>
  59. #include <cstdint>
  60. #include <cstdio>
  61. #include <cstring>
  62. #include <ctime>
  63. #include <forward_list>
  64. #include <fstream>
  65. #include <functional>
  66. #include <future>
  67. #include <initializer_list>
  68. #include <locale>
  69. #include <map>
  70. #include <memory>
  71. #include <mutex>
  72. #include <numeric>
  73. #include <queue>
  74. #include <random>
  75. #include <regex>
  76. #include <set>
  77. #include <sstream>
  78. #include <thread>
  79. #include <type_traits>
  80. #include <unordered_map>
  81. #if defined(_MSC_VER)
  82. #pragma warning(disable: 4244 4267) // possible loss of data
  83. #endif
  84. #ifdef __GNUC__
  85. #ifdef __MINGW32__
  86. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  87. #else
  88. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  89. #endif
  90. #else
  91. #define LLAMA_ATTRIBUTE_FORMAT(...)
  92. #endif
  93. #define LLAMA_MAX_NODES 8192
  94. #define LLAMA_MAX_EXPERTS 160
  95. //
  96. // logging
  97. //
  98. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  99. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  100. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  101. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  102. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  103. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  104. //
  105. // helpers
  106. //
  107. static size_t utf8_len(char src) {
  108. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  109. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  110. return lookup[highbits];
  111. }
  112. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  113. std::string result;
  114. for (size_t pos = 0; ; pos += search.length()) {
  115. auto new_pos = s.find(search, pos);
  116. if (new_pos == std::string::npos) {
  117. result += s.substr(pos, s.size() - pos);
  118. break;
  119. }
  120. result += s.substr(pos, new_pos - pos) + replace;
  121. pos = new_pos;
  122. }
  123. s = std::move(result);
  124. }
  125. static bool is_float_close(float a, float b, float abs_tol) {
  126. // Check for non-negative tolerance
  127. if (abs_tol < 0.0) {
  128. throw std::invalid_argument("Tolerance must be non-negative");
  129. }
  130. // Exact equality check
  131. if (a == b) {
  132. return true;
  133. }
  134. // Check for infinities
  135. if (std::isinf(a) || std::isinf(b)) {
  136. return false;
  137. }
  138. // Regular comparison using the provided absolute tolerance
  139. return std::fabs(b - a) <= abs_tol;
  140. }
  141. static void zeros(std::ofstream & file, size_t n) {
  142. char zero = 0;
  143. for (size_t i = 0; i < n; ++i) {
  144. file.write(&zero, 1);
  145. }
  146. }
  147. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  148. static std::string format(const char * fmt, ...) {
  149. va_list ap;
  150. va_list ap2;
  151. va_start(ap, fmt);
  152. va_copy(ap2, ap);
  153. int size = vsnprintf(NULL, 0, fmt, ap);
  154. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  155. std::vector<char> buf(size + 1);
  156. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  157. GGML_ASSERT(size2 == size);
  158. va_end(ap2);
  159. va_end(ap);
  160. return std::string(buf.data(), size);
  161. }
  162. //
  163. // gguf constants (sync with gguf.py)
  164. //
  165. enum llm_arch {
  166. LLM_ARCH_LLAMA,
  167. LLM_ARCH_FALCON,
  168. LLM_ARCH_BAICHUAN,
  169. LLM_ARCH_GROK,
  170. LLM_ARCH_GPT2,
  171. LLM_ARCH_GPTJ,
  172. LLM_ARCH_GPTNEOX,
  173. LLM_ARCH_MPT,
  174. LLM_ARCH_STARCODER,
  175. LLM_ARCH_REFACT,
  176. LLM_ARCH_BERT,
  177. LLM_ARCH_NOMIC_BERT,
  178. LLM_ARCH_JINA_BERT_V2,
  179. LLM_ARCH_BLOOM,
  180. LLM_ARCH_STABLELM,
  181. LLM_ARCH_QWEN,
  182. LLM_ARCH_QWEN2,
  183. LLM_ARCH_QWEN2MOE,
  184. LLM_ARCH_PHI2,
  185. LLM_ARCH_PHI3,
  186. LLM_ARCH_PLAMO,
  187. LLM_ARCH_CODESHELL,
  188. LLM_ARCH_ORION,
  189. LLM_ARCH_INTERNLM2,
  190. LLM_ARCH_MINICPM,
  191. LLM_ARCH_GEMMA,
  192. LLM_ARCH_STARCODER2,
  193. LLM_ARCH_MAMBA,
  194. LLM_ARCH_XVERSE,
  195. LLM_ARCH_COMMAND_R,
  196. LLM_ARCH_DBRX,
  197. LLM_ARCH_OLMO,
  198. LLM_ARCH_ARCTIC,
  199. LLM_ARCH_DEEPSEEK2,
  200. LLM_ARCH_UNKNOWN,
  201. };
  202. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  203. { LLM_ARCH_LLAMA, "llama" },
  204. { LLM_ARCH_FALCON, "falcon" },
  205. { LLM_ARCH_GROK, "grok" },
  206. { LLM_ARCH_GPT2, "gpt2" },
  207. { LLM_ARCH_GPTJ, "gptj" },
  208. { LLM_ARCH_GPTNEOX, "gptneox" },
  209. { LLM_ARCH_MPT, "mpt" },
  210. { LLM_ARCH_BAICHUAN, "baichuan" },
  211. { LLM_ARCH_STARCODER, "starcoder" },
  212. { LLM_ARCH_REFACT, "refact" },
  213. { LLM_ARCH_BERT, "bert" },
  214. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  215. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  216. { LLM_ARCH_BLOOM, "bloom" },
  217. { LLM_ARCH_STABLELM, "stablelm" },
  218. { LLM_ARCH_QWEN, "qwen" },
  219. { LLM_ARCH_QWEN2, "qwen2" },
  220. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  221. { LLM_ARCH_PHI2, "phi2" },
  222. { LLM_ARCH_PHI3, "phi3" },
  223. { LLM_ARCH_PLAMO, "plamo" },
  224. { LLM_ARCH_CODESHELL, "codeshell" },
  225. { LLM_ARCH_ORION, "orion" },
  226. { LLM_ARCH_INTERNLM2, "internlm2" },
  227. { LLM_ARCH_MINICPM, "minicpm" },
  228. { LLM_ARCH_GEMMA, "gemma" },
  229. { LLM_ARCH_STARCODER2, "starcoder2" },
  230. { LLM_ARCH_MAMBA, "mamba" },
  231. { LLM_ARCH_XVERSE, "xverse" },
  232. { LLM_ARCH_COMMAND_R, "command-r" },
  233. { LLM_ARCH_DBRX, "dbrx" },
  234. { LLM_ARCH_OLMO, "olmo" },
  235. { LLM_ARCH_ARCTIC, "arctic" },
  236. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  237. { LLM_ARCH_UNKNOWN, "(unknown)" },
  238. };
  239. enum llm_kv {
  240. LLM_KV_GENERAL_ARCHITECTURE,
  241. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  242. LLM_KV_GENERAL_ALIGNMENT,
  243. LLM_KV_GENERAL_NAME,
  244. LLM_KV_GENERAL_AUTHOR,
  245. LLM_KV_GENERAL_VERSION,
  246. LLM_KV_GENERAL_URL,
  247. LLM_KV_GENERAL_DESCRIPTION,
  248. LLM_KV_GENERAL_LICENSE,
  249. LLM_KV_GENERAL_SOURCE_URL,
  250. LLM_KV_GENERAL_SOURCE_HF_REPO,
  251. LLM_KV_VOCAB_SIZE,
  252. LLM_KV_CONTEXT_LENGTH,
  253. LLM_KV_EMBEDDING_LENGTH,
  254. LLM_KV_BLOCK_COUNT,
  255. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  258. LLM_KV_USE_PARALLEL_RESIDUAL,
  259. LLM_KV_TENSOR_DATA_LAYOUT,
  260. LLM_KV_EXPERT_COUNT,
  261. LLM_KV_EXPERT_USED_COUNT,
  262. LLM_KV_EXPERT_SHARED_COUNT,
  263. LLM_KV_EXPERT_WEIGHTS_SCALE,
  264. LLM_KV_POOLING_TYPE,
  265. LLM_KV_LOGIT_SCALE,
  266. LLM_KV_ATTENTION_HEAD_COUNT,
  267. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  268. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  269. LLM_KV_ATTENTION_CLAMP_KQV,
  270. LLM_KV_ATTENTION_KEY_LENGTH,
  271. LLM_KV_ATTENTION_VALUE_LENGTH,
  272. LLM_KV_ATTENTION_LAYERNORM_EPS,
  273. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  274. LLM_KV_ATTENTION_CAUSAL,
  275. LLM_KV_ATTENTION_Q_LORA_RANK,
  276. LLM_KV_ATTENTION_KV_LORA_RANK,
  277. LLM_KV_ROPE_DIMENSION_COUNT,
  278. LLM_KV_ROPE_FREQ_BASE,
  279. LLM_KV_ROPE_SCALE_LINEAR,
  280. LLM_KV_ROPE_SCALING_TYPE,
  281. LLM_KV_ROPE_SCALING_FACTOR,
  282. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  283. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  284. LLM_KV_ROPE_SCALING_FINETUNED,
  285. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  286. LLM_KV_SPLIT_NO,
  287. LLM_KV_SPLIT_COUNT,
  288. LLM_KV_SPLIT_TENSORS_COUNT,
  289. LLM_KV_SSM_INNER_SIZE,
  290. LLM_KV_SSM_CONV_KERNEL,
  291. LLM_KV_SSM_STATE_SIZE,
  292. LLM_KV_SSM_TIME_STEP_RANK,
  293. LLM_KV_TOKENIZER_MODEL,
  294. LLM_KV_TOKENIZER_PRE,
  295. LLM_KV_TOKENIZER_LIST,
  296. LLM_KV_TOKENIZER_TOKEN_TYPE,
  297. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  298. LLM_KV_TOKENIZER_SCORES,
  299. LLM_KV_TOKENIZER_MERGES,
  300. LLM_KV_TOKENIZER_BOS_ID,
  301. LLM_KV_TOKENIZER_EOS_ID,
  302. LLM_KV_TOKENIZER_UNK_ID,
  303. LLM_KV_TOKENIZER_SEP_ID,
  304. LLM_KV_TOKENIZER_PAD_ID,
  305. LLM_KV_TOKENIZER_CLS_ID,
  306. LLM_KV_TOKENIZER_MASK_ID,
  307. LLM_KV_TOKENIZER_ADD_BOS,
  308. LLM_KV_TOKENIZER_ADD_EOS,
  309. LLM_KV_TOKENIZER_ADD_PREFIX,
  310. LLM_KV_TOKENIZER_HF_JSON,
  311. LLM_KV_TOKENIZER_RWKV,
  312. LLM_KV_TOKENIZER_PREFIX_ID,
  313. LLM_KV_TOKENIZER_SUFFIX_ID,
  314. LLM_KV_TOKENIZER_MIDDLE_ID,
  315. LLM_KV_TOKENIZER_EOT_ID,
  316. };
  317. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  318. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  319. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  320. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  321. { LLM_KV_GENERAL_NAME, "general.name" },
  322. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  323. { LLM_KV_GENERAL_VERSION, "general.version" },
  324. { LLM_KV_GENERAL_URL, "general.url" },
  325. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  326. { LLM_KV_GENERAL_LICENSE, "general.license" },
  327. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  328. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  329. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  330. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  331. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  332. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  333. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  334. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  335. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  336. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  337. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  338. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  339. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  340. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  341. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  342. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  343. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  344. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  345. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  346. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  347. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  348. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  349. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  350. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  351. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  352. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  353. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  354. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  355. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  356. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  357. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  358. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  359. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  360. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  361. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  362. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  363. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  364. { LLM_KV_SPLIT_NO, "split.no" },
  365. { LLM_KV_SPLIT_COUNT, "split.count" },
  366. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  367. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  368. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  369. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  370. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  371. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  372. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  373. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  374. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  375. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  376. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  377. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  378. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  379. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  380. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  381. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  382. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  383. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  384. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  385. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  386. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  387. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  388. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  389. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  390. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  391. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  392. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  393. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  394. };
  395. struct LLM_KV {
  396. LLM_KV(llm_arch arch) : arch(arch) {}
  397. llm_arch arch;
  398. std::string operator()(llm_kv kv) const {
  399. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  400. }
  401. };
  402. enum llm_tensor {
  403. LLM_TENSOR_TOKEN_EMBD,
  404. LLM_TENSOR_TOKEN_EMBD_NORM,
  405. LLM_TENSOR_TOKEN_TYPES,
  406. LLM_TENSOR_POS_EMBD,
  407. LLM_TENSOR_OUTPUT,
  408. LLM_TENSOR_OUTPUT_NORM,
  409. LLM_TENSOR_ROPE_FREQS,
  410. LLM_TENSOR_ROPE_FACTORS_LONG,
  411. LLM_TENSOR_ROPE_FACTORS_SHORT,
  412. LLM_TENSOR_ATTN_Q,
  413. LLM_TENSOR_ATTN_K,
  414. LLM_TENSOR_ATTN_V,
  415. LLM_TENSOR_ATTN_QKV,
  416. LLM_TENSOR_ATTN_OUT,
  417. LLM_TENSOR_ATTN_NORM,
  418. LLM_TENSOR_ATTN_NORM_2,
  419. LLM_TENSOR_ATTN_OUT_NORM,
  420. LLM_TENSOR_ATTN_ROT_EMBD,
  421. LLM_TENSOR_FFN_GATE_INP,
  422. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  423. LLM_TENSOR_FFN_NORM,
  424. LLM_TENSOR_FFN_GATE,
  425. LLM_TENSOR_FFN_DOWN,
  426. LLM_TENSOR_FFN_UP,
  427. LLM_TENSOR_FFN_ACT,
  428. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  429. LLM_TENSOR_FFN_GATE_EXP,
  430. LLM_TENSOR_FFN_UP_EXP,
  431. LLM_TENSOR_FFN_NORM_EXPS,
  432. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  433. LLM_TENSOR_FFN_GATE_EXPS,
  434. LLM_TENSOR_FFN_UP_EXPS,
  435. LLM_TENSOR_FFN_DOWN_SHEXP,
  436. LLM_TENSOR_FFN_GATE_SHEXP,
  437. LLM_TENSOR_FFN_UP_SHEXP,
  438. LLM_TENSOR_ATTN_Q_NORM,
  439. LLM_TENSOR_ATTN_K_NORM,
  440. LLM_TENSOR_LAYER_OUT_NORM,
  441. LLM_TENSOR_SSM_IN,
  442. LLM_TENSOR_SSM_CONV1D,
  443. LLM_TENSOR_SSM_X,
  444. LLM_TENSOR_SSM_DT,
  445. LLM_TENSOR_SSM_A,
  446. LLM_TENSOR_SSM_D,
  447. LLM_TENSOR_SSM_OUT,
  448. LLM_TENSOR_ATTN_Q_A,
  449. LLM_TENSOR_ATTN_Q_B,
  450. LLM_TENSOR_ATTN_KV_A_MQA,
  451. LLM_TENSOR_ATTN_KV_B,
  452. LLM_TENSOR_ATTN_Q_A_NORM,
  453. LLM_TENSOR_ATTN_KV_A_NORM,
  454. };
  455. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  456. {
  457. LLM_ARCH_LLAMA,
  458. {
  459. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  460. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  461. { LLM_TENSOR_OUTPUT, "output" },
  462. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  463. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  464. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  465. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  466. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  467. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  468. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  469. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  470. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  471. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  472. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  473. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  474. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  475. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  476. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  477. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  478. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  479. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  480. },
  481. },
  482. {
  483. LLM_ARCH_BAICHUAN,
  484. {
  485. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  486. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  487. { LLM_TENSOR_OUTPUT, "output" },
  488. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  489. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  490. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  491. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  492. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  493. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  494. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  495. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  496. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  497. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  498. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  499. },
  500. },
  501. {
  502. LLM_ARCH_FALCON,
  503. {
  504. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  505. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  506. { LLM_TENSOR_OUTPUT, "output" },
  507. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  508. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  509. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  510. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  511. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  512. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  513. },
  514. },
  515. {
  516. LLM_ARCH_GROK,
  517. {
  518. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  519. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  520. { LLM_TENSOR_OUTPUT, "output" },
  521. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  522. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  523. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  524. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  525. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  526. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  527. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  528. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  529. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  530. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  531. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  532. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  533. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  534. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  535. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  536. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  537. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  538. },
  539. },
  540. {
  541. LLM_ARCH_GPT2,
  542. {
  543. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  544. { LLM_TENSOR_POS_EMBD, "position_embd" },
  545. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  546. { LLM_TENSOR_OUTPUT, "output" },
  547. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  548. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  549. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  550. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  551. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  552. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  553. },
  554. },
  555. {
  556. LLM_ARCH_GPTJ,
  557. {
  558. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  559. },
  560. },
  561. {
  562. LLM_ARCH_GPTNEOX,
  563. {
  564. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  565. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  566. { LLM_TENSOR_OUTPUT, "output" },
  567. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  568. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  569. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  570. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  571. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  572. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  573. },
  574. },
  575. {
  576. LLM_ARCH_MPT,
  577. {
  578. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  579. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  580. { LLM_TENSOR_OUTPUT, "output"},
  581. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  582. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  583. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  584. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  585. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  586. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  587. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  588. { LLM_TENSOR_POS_EMBD, "position_embd" },
  589. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  590. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  591. },
  592. },
  593. {
  594. LLM_ARCH_STARCODER,
  595. {
  596. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  597. { LLM_TENSOR_POS_EMBD, "position_embd" },
  598. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  599. { LLM_TENSOR_OUTPUT, "output" },
  600. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  601. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  602. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  603. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  604. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  605. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  606. },
  607. },
  608. {
  609. LLM_ARCH_REFACT,
  610. {
  611. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  612. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  613. { LLM_TENSOR_OUTPUT, "output" },
  614. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  615. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  616. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  617. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  618. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  619. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  620. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  621. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  622. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  623. },
  624. },
  625. {
  626. LLM_ARCH_BERT,
  627. {
  628. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  629. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  630. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  631. { LLM_TENSOR_POS_EMBD, "position_embd" },
  632. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  633. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  634. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  635. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  636. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  637. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  638. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  639. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  640. },
  641. },
  642. {
  643. LLM_ARCH_NOMIC_BERT,
  644. {
  645. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  646. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  647. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  648. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  649. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  650. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  651. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  652. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  653. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  654. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  655. },
  656. },
  657. {
  658. LLM_ARCH_JINA_BERT_V2,
  659. {
  660. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  661. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  662. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  663. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  664. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  665. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  666. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  667. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  668. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  669. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  670. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  671. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  672. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  673. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  674. },
  675. },
  676. {
  677. LLM_ARCH_BLOOM,
  678. {
  679. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  680. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  681. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  682. { LLM_TENSOR_OUTPUT, "output" },
  683. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  684. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  685. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  686. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  687. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  688. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  689. },
  690. },
  691. {
  692. LLM_ARCH_STABLELM,
  693. {
  694. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  695. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  696. { LLM_TENSOR_OUTPUT, "output" },
  697. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  698. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  699. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  700. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  701. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  702. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  703. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  704. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  705. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  706. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  707. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  708. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  709. },
  710. },
  711. {
  712. LLM_ARCH_QWEN,
  713. {
  714. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  715. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  716. { LLM_TENSOR_OUTPUT, "output" },
  717. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  718. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  719. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  720. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  721. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  722. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  723. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  724. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  725. },
  726. },
  727. {
  728. LLM_ARCH_QWEN2,
  729. {
  730. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  731. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  732. { LLM_TENSOR_OUTPUT, "output" },
  733. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  734. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  735. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  736. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  737. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  738. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  739. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  740. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  741. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  742. },
  743. },
  744. {
  745. LLM_ARCH_QWEN2MOE,
  746. {
  747. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  748. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  749. { LLM_TENSOR_OUTPUT, "output" },
  750. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  751. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  752. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  753. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  754. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  755. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  756. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  757. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  758. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  759. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  760. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  761. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  762. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  763. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  764. },
  765. },
  766. {
  767. LLM_ARCH_PHI2,
  768. {
  769. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  770. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  771. { LLM_TENSOR_OUTPUT, "output" },
  772. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  773. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  774. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  775. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  776. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  777. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  778. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  779. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  780. },
  781. },
  782. {
  783. LLM_ARCH_PHI3,
  784. {
  785. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  786. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  787. { LLM_TENSOR_OUTPUT, "output" },
  788. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  789. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  790. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  791. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  792. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  793. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  794. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  795. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  796. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  797. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  798. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  799. },
  800. },
  801. {
  802. LLM_ARCH_PLAMO,
  803. {
  804. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  805. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  806. { LLM_TENSOR_OUTPUT, "output" },
  807. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  808. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  809. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  810. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  811. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  812. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  813. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  814. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  815. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  816. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  817. },
  818. },
  819. {
  820. LLM_ARCH_CODESHELL,
  821. {
  822. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  823. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  824. { LLM_TENSOR_OUTPUT, "output" },
  825. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  826. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  827. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  828. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  829. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  830. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  831. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  832. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  833. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  834. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  835. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  836. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  837. },
  838. },
  839. {
  840. LLM_ARCH_ORION,
  841. {
  842. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  843. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  844. { LLM_TENSOR_OUTPUT, "output" },
  845. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  846. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  847. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  848. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  849. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  850. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  851. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  852. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  853. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  854. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  855. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  856. },
  857. },
  858. {
  859. LLM_ARCH_INTERNLM2,
  860. {
  861. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  862. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  863. { LLM_TENSOR_OUTPUT, "output" },
  864. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  865. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  866. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  867. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  868. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  869. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  870. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  871. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  872. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  873. },
  874. },
  875. {
  876. LLM_ARCH_MINICPM,
  877. {
  878. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  879. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  880. { LLM_TENSOR_OUTPUT, "output" },
  881. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  882. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  883. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  884. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  885. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  886. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  887. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  888. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  889. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  890. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  891. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  892. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  893. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  894. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  895. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  896. },
  897. },
  898. {
  899. LLM_ARCH_GEMMA,
  900. {
  901. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  902. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  903. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  904. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  905. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  906. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  907. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  908. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  909. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  910. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  911. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  912. },
  913. },
  914. {
  915. LLM_ARCH_STARCODER2,
  916. {
  917. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  918. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  919. { LLM_TENSOR_OUTPUT, "output" },
  920. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  921. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  922. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  923. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  924. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  925. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  926. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  927. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  928. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  929. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  930. },
  931. },
  932. {
  933. LLM_ARCH_MAMBA,
  934. {
  935. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  936. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  937. { LLM_TENSOR_OUTPUT, "output" },
  938. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  939. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  940. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  941. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  942. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  943. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  944. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  945. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  946. },
  947. },
  948. {
  949. LLM_ARCH_XVERSE,
  950. {
  951. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  952. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  953. { LLM_TENSOR_OUTPUT, "output" },
  954. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  955. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  956. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  957. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  958. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  959. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  960. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  961. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  962. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  963. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  964. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  965. },
  966. },
  967. {
  968. LLM_ARCH_COMMAND_R,
  969. {
  970. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  971. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  972. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  973. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  974. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  975. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  976. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  977. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  978. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  979. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  980. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  981. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  982. },
  983. },
  984. {
  985. LLM_ARCH_DBRX,
  986. {
  987. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  988. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  989. { LLM_TENSOR_OUTPUT, "output" },
  990. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  991. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  992. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  993. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  994. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  995. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  996. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  997. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  998. },
  999. },
  1000. {
  1001. LLM_ARCH_OLMO,
  1002. {
  1003. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1004. { LLM_TENSOR_OUTPUT, "output" },
  1005. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1006. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1007. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1008. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1009. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1010. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1011. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1012. },
  1013. },
  1014. {
  1015. LLM_ARCH_ARCTIC,
  1016. {
  1017. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1018. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1019. { LLM_TENSOR_OUTPUT, "output" },
  1020. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1021. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1022. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1023. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1024. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1025. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1026. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1027. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1028. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1029. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1030. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1031. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1032. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1033. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1034. },
  1035. },
  1036. {
  1037. LLM_ARCH_DEEPSEEK2,
  1038. {
  1039. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1040. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1041. { LLM_TENSOR_OUTPUT, "output" },
  1042. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1043. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1044. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1045. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1046. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1047. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1048. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1049. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1050. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1051. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1052. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1053. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1054. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1055. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1056. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1057. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1058. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1059. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1060. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1061. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1062. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1063. },
  1064. },
  1065. {
  1066. LLM_ARCH_UNKNOWN,
  1067. {
  1068. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1069. },
  1070. },
  1071. };
  1072. static llm_arch llm_arch_from_string(const std::string & name) {
  1073. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1074. if (kv.second == name) {
  1075. return kv.first;
  1076. }
  1077. }
  1078. return LLM_ARCH_UNKNOWN;
  1079. }
  1080. // helper to handle gguf constants
  1081. // usage:
  1082. //
  1083. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1084. //
  1085. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1086. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1087. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1088. //
  1089. struct LLM_TN {
  1090. LLM_TN(llm_arch arch) : arch(arch) {}
  1091. llm_arch arch;
  1092. std::string operator()(llm_tensor tensor) const {
  1093. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1094. return "__missing__";
  1095. }
  1096. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1097. }
  1098. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1099. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1100. return "__missing__";
  1101. }
  1102. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1103. }
  1104. std::string operator()(llm_tensor tensor, int bid) const {
  1105. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1106. return "__missing__";
  1107. }
  1108. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1109. }
  1110. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1111. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1112. return "__missing__";
  1113. }
  1114. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1115. }
  1116. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1117. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1118. return "__missing__";
  1119. }
  1120. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1121. }
  1122. };
  1123. //
  1124. // gguf helpers
  1125. //
  1126. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1127. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1128. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1129. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1130. };
  1131. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1132. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1133. if (kv.second == name) {
  1134. return (llama_rope_scaling_type) kv.first;
  1135. }
  1136. }
  1137. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1138. }
  1139. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1140. switch (type) {
  1141. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1142. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1143. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1144. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1145. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1146. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1147. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1148. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1149. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1150. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1151. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1152. default: return format("unknown type %d", type);
  1153. }
  1154. }
  1155. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1156. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1157. switch (type) {
  1158. case GGUF_TYPE_STRING:
  1159. return gguf_get_val_str(ctx_gguf, i);
  1160. case GGUF_TYPE_ARRAY:
  1161. {
  1162. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1163. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1164. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1165. std::stringstream ss;
  1166. ss << "[";
  1167. for (int j = 0; j < arr_n; j++) {
  1168. if (arr_type == GGUF_TYPE_STRING) {
  1169. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1170. // escape quotes
  1171. replace_all(val, "\\", "\\\\");
  1172. replace_all(val, "\"", "\\\"");
  1173. ss << '"' << val << '"';
  1174. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1175. ss << "???";
  1176. } else {
  1177. ss << gguf_data_to_str(arr_type, data, j);
  1178. }
  1179. if (j < arr_n - 1) {
  1180. ss << ", ";
  1181. }
  1182. }
  1183. ss << "]";
  1184. return ss.str();
  1185. }
  1186. default:
  1187. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1188. }
  1189. }
  1190. //
  1191. // llama helpers
  1192. //
  1193. #if defined(_WIN32)
  1194. static std::string llama_format_win_err(DWORD err) {
  1195. LPSTR buf;
  1196. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1197. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1198. if (!size) {
  1199. return "FormatMessageA failed";
  1200. }
  1201. std::string ret(buf, size);
  1202. LocalFree(buf);
  1203. return ret;
  1204. }
  1205. #endif
  1206. template <typename T>
  1207. struct no_init {
  1208. T value;
  1209. no_init() { /* do nothing */ }
  1210. };
  1211. struct llama_file {
  1212. // use FILE * so we don't have to re-open the file to mmap
  1213. FILE * fp;
  1214. size_t size;
  1215. llama_file(const char * fname, const char * mode) {
  1216. fp = ggml_fopen(fname, mode);
  1217. if (fp == NULL) {
  1218. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1219. }
  1220. seek(0, SEEK_END);
  1221. size = tell();
  1222. seek(0, SEEK_SET);
  1223. }
  1224. size_t tell() const {
  1225. #ifdef _WIN32
  1226. __int64 ret = _ftelli64(fp);
  1227. #else
  1228. long ret = std::ftell(fp);
  1229. #endif
  1230. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1231. return (size_t) ret;
  1232. }
  1233. void seek(size_t offset, int whence) const {
  1234. #ifdef _WIN32
  1235. int ret = _fseeki64(fp, (__int64) offset, whence);
  1236. #else
  1237. int ret = std::fseek(fp, (long) offset, whence);
  1238. #endif
  1239. GGML_ASSERT(ret == 0); // same
  1240. }
  1241. void read_raw(void * ptr, size_t len) const {
  1242. if (len == 0) {
  1243. return;
  1244. }
  1245. errno = 0;
  1246. std::size_t ret = std::fread(ptr, len, 1, fp);
  1247. if (ferror(fp)) {
  1248. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1249. }
  1250. if (ret != 1) {
  1251. throw std::runtime_error("unexpectedly reached end of file");
  1252. }
  1253. }
  1254. uint32_t read_u32() const {
  1255. uint32_t ret;
  1256. read_raw(&ret, sizeof(ret));
  1257. return ret;
  1258. }
  1259. void write_raw(const void * ptr, size_t len) const {
  1260. if (len == 0) {
  1261. return;
  1262. }
  1263. errno = 0;
  1264. size_t ret = std::fwrite(ptr, len, 1, fp);
  1265. if (ret != 1) {
  1266. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1267. }
  1268. }
  1269. void write_u32(std::uint32_t val) const {
  1270. write_raw(&val, sizeof(val));
  1271. }
  1272. ~llama_file() {
  1273. if (fp) {
  1274. std::fclose(fp);
  1275. }
  1276. }
  1277. };
  1278. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1279. struct llama_mmap {
  1280. void * addr;
  1281. size_t size;
  1282. llama_mmap(const llama_mmap &) = delete;
  1283. #ifdef _POSIX_MAPPED_FILES
  1284. static constexpr bool SUPPORTED = true;
  1285. // list of mapped fragments (first_offset, last_offset)
  1286. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1287. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1288. size = file->size;
  1289. int fd = fileno(file->fp);
  1290. int flags = MAP_SHARED;
  1291. // prefetch/readahead impairs performance on NUMA systems
  1292. if (numa) { prefetch = 0; }
  1293. #ifdef __linux__
  1294. // advise the kernel to read the file sequentially (increases readahead)
  1295. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1296. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1297. strerror(errno));
  1298. }
  1299. if (prefetch) { flags |= MAP_POPULATE; }
  1300. #endif
  1301. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1302. if (addr == MAP_FAILED) { // NOLINT
  1303. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1304. }
  1305. if (prefetch > 0) {
  1306. // advise the kernel to preload the mapped memory
  1307. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1308. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1309. strerror(errno));
  1310. }
  1311. }
  1312. if (numa) {
  1313. // advise the kernel not to use readahead
  1314. // (because the next page might not belong on the same node)
  1315. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1316. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1317. strerror(errno));
  1318. }
  1319. }
  1320. // initialize list of mapped_fragments
  1321. mapped_fragments.emplace_back(0, file->size);
  1322. }
  1323. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1324. // align first to the next page
  1325. size_t offset_in_page = *first & (page_size - 1);
  1326. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1327. *first += offset_to_page;
  1328. // align last to the previous page
  1329. *last = *last & ~(page_size - 1);
  1330. if (*last <= *first) {
  1331. *last = *first;
  1332. }
  1333. }
  1334. // partially unmap the file in the range [first, last)
  1335. void unmap_fragment(size_t first, size_t last) {
  1336. // note: this function must not be called multiple times with overlapping ranges
  1337. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1338. int page_size = sysconf(_SC_PAGESIZE);
  1339. align_range(&first, &last, page_size);
  1340. size_t len = last - first;
  1341. if (len == 0) {
  1342. return;
  1343. }
  1344. GGML_ASSERT(first % page_size == 0);
  1345. GGML_ASSERT(last % page_size == 0);
  1346. GGML_ASSERT(last > first);
  1347. void * next_page_start = (uint8_t *) addr + first;
  1348. // unmap the range
  1349. if (munmap(next_page_start, len)) {
  1350. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1351. }
  1352. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1353. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1354. for (const auto & frag : mapped_fragments) {
  1355. if (frag.first < first && frag.second > last) {
  1356. // the range is in the middle of the fragment, split it
  1357. new_mapped_fragments.emplace_back(frag.first, first);
  1358. new_mapped_fragments.emplace_back(last, frag.second);
  1359. } else if (frag.first < first && frag.second > first) {
  1360. // the range starts in the middle of the fragment
  1361. new_mapped_fragments.emplace_back(frag.first, first);
  1362. } else if (frag.first < last && frag.second > last) {
  1363. // the range ends in the middle of the fragment
  1364. new_mapped_fragments.emplace_back(last, frag.second);
  1365. } else if (frag.first >= first && frag.second <= last) {
  1366. // the range covers the entire fragment
  1367. } else {
  1368. // the range is outside the fragment
  1369. new_mapped_fragments.push_back(frag);
  1370. }
  1371. }
  1372. mapped_fragments = std::move(new_mapped_fragments);
  1373. }
  1374. ~llama_mmap() {
  1375. for (const auto & frag : mapped_fragments) {
  1376. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1377. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1378. }
  1379. }
  1380. }
  1381. #elif defined(_WIN32)
  1382. static constexpr bool SUPPORTED = true;
  1383. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1384. GGML_UNUSED(numa);
  1385. size = file->size;
  1386. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1387. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1388. if (hMapping == NULL) {
  1389. DWORD error = GetLastError();
  1390. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1391. }
  1392. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1393. DWORD error = GetLastError();
  1394. CloseHandle(hMapping);
  1395. if (addr == NULL) {
  1396. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1397. }
  1398. if (prefetch > 0) {
  1399. #if _WIN32_WINNT >= 0x602
  1400. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1401. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1402. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1403. // may fail on pre-Windows 8 systems
  1404. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1405. if (pPrefetchVirtualMemory) {
  1406. // advise the kernel to preload the mapped memory
  1407. WIN32_MEMORY_RANGE_ENTRY range;
  1408. range.VirtualAddress = addr;
  1409. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1410. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1411. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1412. llama_format_win_err(GetLastError()).c_str());
  1413. }
  1414. }
  1415. #else
  1416. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1417. #endif
  1418. }
  1419. }
  1420. void unmap_fragment(size_t first, size_t last) {
  1421. // not supported
  1422. GGML_UNUSED(first);
  1423. GGML_UNUSED(last);
  1424. }
  1425. ~llama_mmap() {
  1426. if (!UnmapViewOfFile(addr)) {
  1427. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1428. llama_format_win_err(GetLastError()).c_str());
  1429. }
  1430. }
  1431. #else
  1432. static constexpr bool SUPPORTED = false;
  1433. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1434. GGML_UNUSED(file);
  1435. GGML_UNUSED(prefetch);
  1436. GGML_UNUSED(numa);
  1437. throw std::runtime_error("mmap not supported");
  1438. }
  1439. void unmap_fragment(size_t first, size_t last) {
  1440. GGML_UNUSED(first);
  1441. GGML_UNUSED(last);
  1442. throw std::runtime_error("mmap not supported");
  1443. }
  1444. #endif
  1445. };
  1446. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1447. // Represents some region of memory being locked using mlock or VirtualLock;
  1448. // will automatically unlock on destruction.
  1449. struct llama_mlock {
  1450. void * addr = NULL;
  1451. size_t size = 0;
  1452. bool failed_already = false;
  1453. llama_mlock() {}
  1454. llama_mlock(const llama_mlock &) = delete;
  1455. ~llama_mlock() {
  1456. if (size) {
  1457. raw_unlock(addr, size);
  1458. }
  1459. }
  1460. void init(void * ptr) {
  1461. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1462. addr = ptr;
  1463. }
  1464. void grow_to(size_t target_size) {
  1465. GGML_ASSERT(addr);
  1466. if (failed_already) {
  1467. return;
  1468. }
  1469. size_t granularity = lock_granularity();
  1470. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1471. if (target_size > size) {
  1472. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1473. size = target_size;
  1474. } else {
  1475. failed_already = true;
  1476. }
  1477. }
  1478. }
  1479. #ifdef _POSIX_MEMLOCK_RANGE
  1480. static constexpr bool SUPPORTED = true;
  1481. static size_t lock_granularity() {
  1482. return (size_t) sysconf(_SC_PAGESIZE);
  1483. }
  1484. #ifdef __APPLE__
  1485. #define MLOCK_SUGGESTION \
  1486. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1487. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1488. #else
  1489. #define MLOCK_SUGGESTION \
  1490. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1491. #endif
  1492. bool raw_lock(const void * addr, size_t size) const {
  1493. if (!mlock(addr, size)) {
  1494. return true;
  1495. }
  1496. char* errmsg = std::strerror(errno);
  1497. bool suggest = (errno == ENOMEM);
  1498. // Check if the resource limit is fine after all
  1499. struct rlimit lock_limit;
  1500. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1501. suggest = false;
  1502. }
  1503. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1504. suggest = false;
  1505. }
  1506. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1507. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1508. return false;
  1509. }
  1510. #undef MLOCK_SUGGESTION
  1511. static void raw_unlock(void * addr, size_t size) {
  1512. if (munlock(addr, size)) {
  1513. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1514. }
  1515. }
  1516. #elif defined(_WIN32)
  1517. static constexpr bool SUPPORTED = true;
  1518. static size_t lock_granularity() {
  1519. SYSTEM_INFO si;
  1520. GetSystemInfo(&si);
  1521. return (size_t) si.dwPageSize;
  1522. }
  1523. bool raw_lock(void * ptr, size_t len) const {
  1524. for (int tries = 1; ; tries++) {
  1525. if (VirtualLock(ptr, len)) {
  1526. return true;
  1527. }
  1528. if (tries == 2) {
  1529. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1530. len, size, llama_format_win_err(GetLastError()).c_str());
  1531. return false;
  1532. }
  1533. // It failed but this was only the first try; increase the working
  1534. // set size and try again.
  1535. SIZE_T min_ws_size, max_ws_size;
  1536. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1537. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1538. llama_format_win_err(GetLastError()).c_str());
  1539. return false;
  1540. }
  1541. // Per MSDN: "The maximum number of pages that a process can lock
  1542. // is equal to the number of pages in its minimum working set minus
  1543. // a small overhead."
  1544. // Hopefully a megabyte is enough overhead:
  1545. size_t increment = len + 1048576;
  1546. // The minimum must be <= the maximum, so we need to increase both:
  1547. min_ws_size += increment;
  1548. max_ws_size += increment;
  1549. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1550. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1551. llama_format_win_err(GetLastError()).c_str());
  1552. return false;
  1553. }
  1554. }
  1555. }
  1556. static void raw_unlock(void * ptr, size_t len) {
  1557. if (!VirtualUnlock(ptr, len)) {
  1558. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1559. llama_format_win_err(GetLastError()).c_str());
  1560. }
  1561. }
  1562. #else
  1563. static constexpr bool SUPPORTED = false;
  1564. static size_t lock_granularity() {
  1565. return (size_t) 65536;
  1566. }
  1567. bool raw_lock(const void * addr, size_t len) const {
  1568. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1569. return false;
  1570. }
  1571. static void raw_unlock(const void * addr, size_t len) {}
  1572. #endif
  1573. };
  1574. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1575. // NOTE: avoid ever using this except for building the token_to_piece caches
  1576. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1577. std::vector<char> result(8, 0);
  1578. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1579. if (n_tokens < 0) {
  1580. result.resize(-n_tokens);
  1581. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1582. GGML_ASSERT(check == -n_tokens);
  1583. }
  1584. else {
  1585. result.resize(n_tokens);
  1586. }
  1587. return std::string(result.data(), result.size());
  1588. }
  1589. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1590. ggml_backend_buffer_type_t buft = nullptr;
  1591. #if defined(GGML_USE_CUDA)
  1592. // host buffers should only be used when data is expected to be copied to/from the GPU
  1593. if (host_buffer) {
  1594. buft = ggml_backend_cuda_host_buffer_type();
  1595. }
  1596. #elif defined(GGML_USE_SYCL)
  1597. if (host_buffer) {
  1598. buft = ggml_backend_sycl_host_buffer_type();
  1599. }
  1600. #elif defined(GGML_USE_CPU_HBM)
  1601. buft = ggml_backend_cpu_hbm_buffer_type();
  1602. #elif defined(GGML_USE_VULKAN)
  1603. if (host_buffer) {
  1604. buft = ggml_backend_vk_host_buffer_type();
  1605. }
  1606. #endif
  1607. if (buft == nullptr) {
  1608. buft = ggml_backend_cpu_buffer_type();
  1609. }
  1610. return buft;
  1611. GGML_UNUSED(host_buffer);
  1612. }
  1613. //
  1614. // globals
  1615. //
  1616. struct llama_state {
  1617. llama_state() {
  1618. #ifdef GGML_USE_METAL
  1619. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1620. #elif defined(GGML_USE_CUDA)
  1621. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1622. #endif
  1623. }
  1624. // We save the log callback globally
  1625. ggml_log_callback log_callback = llama_log_callback_default;
  1626. void * log_callback_user_data = nullptr;
  1627. };
  1628. static llama_state g_state;
  1629. // available llama models
  1630. enum e_model {
  1631. MODEL_UNKNOWN,
  1632. MODEL_14M,
  1633. MODEL_17M,
  1634. MODEL_22M,
  1635. MODEL_33M,
  1636. MODEL_70M,
  1637. MODEL_109M,
  1638. MODEL_137M,
  1639. MODEL_160M,
  1640. MODEL_335M,
  1641. MODEL_410M,
  1642. MODEL_0_5B,
  1643. MODEL_1B,
  1644. MODEL_1_4B,
  1645. MODEL_2B,
  1646. MODEL_2_8B,
  1647. MODEL_3B,
  1648. MODEL_4B,
  1649. MODEL_6_9B,
  1650. MODEL_7B,
  1651. MODEL_8B,
  1652. MODEL_12B,
  1653. MODEL_13B,
  1654. MODEL_14B,
  1655. MODEL_15B,
  1656. MODEL_16B,
  1657. MODEL_20B,
  1658. MODEL_30B,
  1659. MODEL_34B,
  1660. MODEL_35B,
  1661. MODEL_40B,
  1662. MODEL_65B,
  1663. MODEL_70B,
  1664. MODEL_236B,
  1665. MODEL_314B,
  1666. MODEL_SMALL,
  1667. MODEL_MEDIUM,
  1668. MODEL_LARGE,
  1669. MODEL_XL,
  1670. MODEL_A2_7B,
  1671. MODEL_8x7B,
  1672. MODEL_8x22B,
  1673. MODEL_16x12B,
  1674. MODEL_10B_128x3_66B,
  1675. };
  1676. static const size_t kiB = 1024;
  1677. static const size_t MiB = 1024*kiB;
  1678. static const size_t GiB = 1024*MiB;
  1679. struct llama_hparams {
  1680. bool vocab_only;
  1681. bool rope_finetuned;
  1682. bool use_par_res;
  1683. uint32_t n_vocab;
  1684. uint32_t n_ctx_train; // context size the model was trained on
  1685. uint32_t n_embd;
  1686. uint32_t n_head;
  1687. uint32_t n_head_kv;
  1688. uint32_t n_layer;
  1689. uint32_t n_rot;
  1690. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1691. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1692. uint32_t n_ff;
  1693. uint32_t n_expert = 0;
  1694. uint32_t n_expert_used = 0;
  1695. uint32_t n_vocab_type = 0; // for BERT-style token types
  1696. uint32_t n_layer_dense_lead = 0;
  1697. uint32_t n_lora_q = 0;
  1698. uint32_t n_lora_kv = 0;
  1699. uint32_t n_ff_exp = 0;
  1700. uint32_t n_expert_shared = 0;
  1701. float expert_weights_scale = 0.0;
  1702. float f_norm_eps;
  1703. float f_norm_rms_eps;
  1704. float rope_attn_factor = 1.0f;
  1705. float rope_freq_base_train;
  1706. float rope_freq_scale_train;
  1707. uint32_t n_yarn_orig_ctx;
  1708. float rope_yarn_log_mul;
  1709. // for State Space Models
  1710. uint32_t ssm_d_conv = 0;
  1711. uint32_t ssm_d_inner = 0;
  1712. uint32_t ssm_d_state = 0;
  1713. uint32_t ssm_dt_rank = 0;
  1714. float f_clamp_kqv = 0.0f;
  1715. float f_max_alibi_bias = 0.0f;
  1716. float f_logit_scale = 0.0f;
  1717. bool causal_attn = true;
  1718. bool use_alibi = false;
  1719. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1720. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1721. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1722. bool operator!=(const llama_hparams & other) const {
  1723. if (this->vocab_only != other.vocab_only) return true;
  1724. if (this->n_vocab != other.n_vocab) return true;
  1725. if (this->n_ctx_train != other.n_ctx_train) return true;
  1726. if (this->n_embd != other.n_embd) return true;
  1727. if (this->n_head != other.n_head) return true;
  1728. if (this->n_head_kv != other.n_head_kv) return true;
  1729. if (this->n_layer != other.n_layer) return true;
  1730. if (this->n_rot != other.n_rot) return true;
  1731. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1732. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1733. if (this->n_ff != other.n_ff) return true;
  1734. if (this->n_expert != other.n_expert) return true;
  1735. if (this->n_expert_used != other.n_expert_used) return true;
  1736. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1737. if (this->n_lora_q != other.n_lora_q) return true;
  1738. if (this->n_lora_kv != other.n_lora_kv) return true;
  1739. if (this->n_ff_exp != other.n_ff_exp) return true;
  1740. if (this->n_expert_shared != other.n_expert_shared) return true;
  1741. if (this->rope_finetuned != other.rope_finetuned) return true;
  1742. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1743. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1744. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1745. if (this->ssm_d_state != other.ssm_d_state) return true;
  1746. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1747. const float EPSILON = 1e-9f;
  1748. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1749. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1750. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1751. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1752. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1753. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1754. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1755. return false;
  1756. }
  1757. uint32_t n_gqa() const {
  1758. if (n_head_kv == 0) {
  1759. return 0;
  1760. }
  1761. return n_head/n_head_kv;
  1762. }
  1763. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1764. return n_embd_head_k * n_head_kv;
  1765. }
  1766. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1767. return n_embd_head_v * n_head_kv;
  1768. }
  1769. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1770. // corresponds to Mamba's conv_states size
  1771. // TODO: maybe support other convolution strides than 1
  1772. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1773. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1774. }
  1775. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1776. // corresponds to Mamba's ssm_states size
  1777. return ssm_d_state * ssm_d_inner;
  1778. }
  1779. };
  1780. struct llama_cparams {
  1781. uint32_t n_ctx; // context size used during inference
  1782. uint32_t n_batch;
  1783. uint32_t n_ubatch;
  1784. uint32_t n_seq_max;
  1785. uint32_t n_threads; // number of threads to use for generation
  1786. uint32_t n_threads_batch; // number of threads to use for batch processing
  1787. float rope_freq_base;
  1788. float rope_freq_scale;
  1789. uint32_t n_yarn_orig_ctx;
  1790. // These hyperparameters are not exposed in GGUF, because all
  1791. // existing YaRN models use the same values for them.
  1792. float yarn_ext_factor;
  1793. float yarn_attn_factor;
  1794. float yarn_beta_fast;
  1795. float yarn_beta_slow;
  1796. float defrag_thold;
  1797. bool embeddings;
  1798. bool causal_attn;
  1799. bool offload_kqv;
  1800. bool flash_attn;
  1801. enum llama_pooling_type pooling_type;
  1802. ggml_backend_sched_eval_callback cb_eval;
  1803. void * cb_eval_user_data;
  1804. };
  1805. struct llama_layer {
  1806. // normalization
  1807. struct ggml_tensor * attn_norm;
  1808. struct ggml_tensor * attn_norm_b;
  1809. struct ggml_tensor * attn_norm_2;
  1810. struct ggml_tensor * attn_norm_2_b;
  1811. struct ggml_tensor * attn_q_norm;
  1812. struct ggml_tensor * attn_q_norm_b;
  1813. struct ggml_tensor * attn_k_norm;
  1814. struct ggml_tensor * attn_k_norm_b;
  1815. struct ggml_tensor * attn_out_norm;
  1816. struct ggml_tensor * attn_out_norm_b;
  1817. struct ggml_tensor * attn_q_a_norm;
  1818. struct ggml_tensor * attn_kv_a_norm;
  1819. // attention
  1820. struct ggml_tensor * wq;
  1821. struct ggml_tensor * wk;
  1822. struct ggml_tensor * wv;
  1823. struct ggml_tensor * wo;
  1824. struct ggml_tensor * wqkv;
  1825. struct ggml_tensor * wq_a;
  1826. struct ggml_tensor * wq_b;
  1827. struct ggml_tensor * wkv_a_mqa;
  1828. struct ggml_tensor * wkv_b;
  1829. // attention bias
  1830. struct ggml_tensor * bq;
  1831. struct ggml_tensor * bk;
  1832. struct ggml_tensor * bv;
  1833. struct ggml_tensor * bo;
  1834. struct ggml_tensor * bqkv;
  1835. // normalization
  1836. struct ggml_tensor * ffn_norm;
  1837. struct ggml_tensor * ffn_norm_b;
  1838. struct ggml_tensor * layer_out_norm;
  1839. struct ggml_tensor * layer_out_norm_b;
  1840. struct ggml_tensor * ffn_norm_exps;
  1841. // ff
  1842. struct ggml_tensor * ffn_gate; // w1
  1843. struct ggml_tensor * ffn_down; // w2
  1844. struct ggml_tensor * ffn_up; // w3
  1845. // ff MoE
  1846. struct ggml_tensor * ffn_gate_inp;
  1847. struct ggml_tensor * ffn_gate_exps;
  1848. struct ggml_tensor * ffn_down_exps;
  1849. struct ggml_tensor * ffn_up_exps ;
  1850. // ff shared expert (shexp)
  1851. struct ggml_tensor * ffn_gate_inp_shexp;
  1852. struct ggml_tensor * ffn_gate_shexp;
  1853. struct ggml_tensor * ffn_down_shexp;
  1854. struct ggml_tensor * ffn_up_shexp;
  1855. // ff bias
  1856. struct ggml_tensor * ffn_gate_b = nullptr;
  1857. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1858. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1859. struct ggml_tensor * ffn_act;
  1860. // mamba proj
  1861. struct ggml_tensor * ssm_in;
  1862. struct ggml_tensor * ssm_x;
  1863. struct ggml_tensor * ssm_dt;
  1864. struct ggml_tensor * ssm_out;
  1865. // mamba
  1866. struct ggml_tensor * ssm_conv1d;
  1867. struct ggml_tensor * ssm_a;
  1868. struct ggml_tensor * ssm_d;
  1869. // mamba bias
  1870. struct ggml_tensor * ssm_conv1d_b;
  1871. struct ggml_tensor * ssm_dt_b;
  1872. // long rope factors
  1873. struct ggml_tensor * rope_long = nullptr;
  1874. struct ggml_tensor * rope_short = nullptr;
  1875. };
  1876. struct llama_kv_cell {
  1877. llama_pos pos = -1;
  1878. llama_pos delta = 0;
  1879. int32_t src = 0; // used by recurrent state models to copy states
  1880. std::set<llama_seq_id> seq_id;
  1881. bool has_seq_id(const llama_seq_id & id) const {
  1882. return seq_id.find(id) != seq_id.end();
  1883. }
  1884. bool is_empty() const {
  1885. return seq_id.empty();
  1886. }
  1887. bool is_same_seq(const llama_kv_cell & other) const {
  1888. return seq_id == other.seq_id;
  1889. }
  1890. };
  1891. // ring-buffer of cached KV data
  1892. struct llama_kv_cache {
  1893. bool has_shift = false;
  1894. bool do_defrag = false;
  1895. bool do_copy = false;
  1896. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1897. bool v_trans = true; // the value tensor is transposed
  1898. // Note: The value of head isn't only used to optimize searching
  1899. // for a free KV slot. llama_decode_internal also uses it, so it
  1900. // cannot be freely changed after a slot has been allocated.
  1901. uint32_t head = 0;
  1902. uint32_t size = 0;
  1903. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1904. // computed before each graph build
  1905. uint32_t n = 0;
  1906. ggml_type type_k = GGML_TYPE_F16;
  1907. ggml_type type_v = GGML_TYPE_F16;
  1908. std::vector<llama_kv_cell> cells;
  1909. std::vector<struct ggml_tensor *> k_l; // per layer
  1910. std::vector<struct ggml_tensor *> v_l;
  1911. std::vector<struct ggml_context *> ctxs;
  1912. std::vector<ggml_backend_buffer_t> bufs;
  1913. size_t total_size() const {
  1914. size_t size = 0;
  1915. for (ggml_backend_buffer_t buf : bufs) {
  1916. size += ggml_backend_buffer_get_size(buf);
  1917. }
  1918. return size;
  1919. }
  1920. ~llama_kv_cache() {
  1921. for (struct ggml_context * ctx : ctxs) {
  1922. ggml_free(ctx);
  1923. }
  1924. for (ggml_backend_buffer_t buf : bufs) {
  1925. ggml_backend_buffer_free(buf);
  1926. }
  1927. }
  1928. };
  1929. struct llama_control_vector {
  1930. std::vector<struct ggml_tensor *> tensors; // per layer
  1931. std::vector<struct ggml_context *> ctxs;
  1932. std::vector<ggml_backend_buffer_t> bufs;
  1933. int32_t layer_start = -1;
  1934. int32_t layer_end = -1;
  1935. ggml_tensor * tensor_for(int il) const {
  1936. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1937. return nullptr;
  1938. }
  1939. return tensors[il];
  1940. }
  1941. ~llama_control_vector() {
  1942. for (struct ggml_context * ctx : ctxs) {
  1943. ggml_free(ctx);
  1944. }
  1945. for (ggml_backend_buffer_t buf : bufs) {
  1946. ggml_backend_buffer_free(buf);
  1947. }
  1948. }
  1949. };
  1950. struct llama_vocab {
  1951. using id = int32_t;
  1952. using token = std::string;
  1953. using tattr = llama_token_attr;
  1954. struct token_data {
  1955. token text;
  1956. float score;
  1957. tattr attr;
  1958. };
  1959. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1960. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1961. std::unordered_map<token, id> token_to_id;
  1962. std::vector<token_data> id_to_token;
  1963. std::vector<id> cache_special_tokens;
  1964. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  1965. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1966. // default LLaMA special tokens
  1967. id special_bos_id = 1;
  1968. id special_eos_id = 2;
  1969. id special_unk_id = 0;
  1970. id special_sep_id = -1;
  1971. id special_pad_id = -1;
  1972. id special_cls_id = -1;
  1973. id special_mask_id = -1;
  1974. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1975. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1976. id linefeed_id = 13;
  1977. id special_prefix_id = -1;
  1978. id special_suffix_id = -1;
  1979. id special_middle_id = -1;
  1980. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1981. bool add_space_prefix = true;
  1982. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1983. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1984. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1985. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1986. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1987. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1988. if (it == bpe_ranks.end()) {
  1989. return -1;
  1990. }
  1991. return it->second;
  1992. }
  1993. };
  1994. struct llama_model {
  1995. e_model type = MODEL_UNKNOWN;
  1996. llm_arch arch = LLM_ARCH_UNKNOWN;
  1997. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1998. std::string name = "n/a";
  1999. llama_hparams hparams = {};
  2000. llama_vocab vocab;
  2001. struct ggml_tensor * tok_embd;
  2002. struct ggml_tensor * type_embd;
  2003. struct ggml_tensor * pos_embd;
  2004. struct ggml_tensor * tok_norm;
  2005. struct ggml_tensor * tok_norm_b;
  2006. struct ggml_tensor * output_norm;
  2007. struct ggml_tensor * output_norm_b;
  2008. struct ggml_tensor * output;
  2009. struct ggml_tensor * output_b;
  2010. std::vector<llama_layer> layers;
  2011. llama_split_mode split_mode;
  2012. int main_gpu;
  2013. int n_gpu_layers;
  2014. std::vector<std::string> rpc_servers;
  2015. // gguf metadata
  2016. std::unordered_map<std::string, std::string> gguf_kv;
  2017. // layer -> buffer type mapping
  2018. struct layer_buft {
  2019. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2020. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2021. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2022. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2023. ggml_backend_buffer_type_t buft; // everything else
  2024. };
  2025. layer_buft buft_input;
  2026. layer_buft buft_output;
  2027. std::vector<layer_buft> buft_layer;
  2028. // contexts where the model tensors metadata is stored
  2029. std::vector<struct ggml_context *> ctxs;
  2030. // the model memory buffers for the tensor data
  2031. std::vector<ggml_backend_buffer_t> bufs;
  2032. // model memory mapped files
  2033. llama_mmaps mappings;
  2034. // objects representing data potentially being locked in memory
  2035. llama_mlocks mlock_bufs;
  2036. llama_mlocks mlock_mmaps;
  2037. // for quantize-stats only
  2038. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2039. int64_t t_load_us = 0;
  2040. int64_t t_start_us = 0;
  2041. ~llama_model() {
  2042. for (struct ggml_context * ctx : ctxs) {
  2043. ggml_free(ctx);
  2044. }
  2045. for (ggml_backend_buffer_t buf : bufs) {
  2046. #ifdef GGML_USE_CUDA
  2047. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2048. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2049. }
  2050. #endif
  2051. ggml_backend_buffer_free(buf);
  2052. }
  2053. }
  2054. };
  2055. struct llama_context {
  2056. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2057. ~llama_context() {
  2058. ggml_backend_sched_free(sched);
  2059. for (ggml_backend_t backend : backends) {
  2060. ggml_backend_free(backend);
  2061. }
  2062. ggml_backend_buffer_free(buf_output);
  2063. }
  2064. llama_cparams cparams;
  2065. std::vector<ggml_backend_t> backends;
  2066. #ifdef GGML_USE_METAL
  2067. ggml_backend_t backend_metal = nullptr;
  2068. #endif
  2069. ggml_backend_t backend_cpu = nullptr;
  2070. const llama_model & model;
  2071. // key + value cache for the self attention
  2072. struct llama_kv_cache kv_self;
  2073. std::mt19937 rng;
  2074. bool has_evaluated_once = false;
  2075. int64_t t_start_us;
  2076. int64_t t_load_us;
  2077. int64_t t_sample_us = 0;
  2078. int64_t t_p_eval_us = 0;
  2079. int64_t t_eval_us = 0;
  2080. int64_t t_compute_start_us = 0;
  2081. int64_t n_queued_tokens = 0;
  2082. int32_t n_sample = 0; // number of tokens sampled
  2083. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2084. int32_t n_eval = 0; // number of eval calls
  2085. // host buffer for the model output (logits and embeddings)
  2086. ggml_backend_buffer_t buf_output = nullptr;
  2087. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2088. size_t logits_size = 0; // capacity (of floats) for logits
  2089. float * logits = nullptr;
  2090. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2091. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2092. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2093. bool logits_all = false;
  2094. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2095. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2096. size_t embd_size = 0; // capacity (of floats) for embeddings
  2097. float * embd = nullptr;
  2098. // sequence embeddings output (map of [n_embd] vectors)
  2099. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2100. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2101. // memory buffers used to evaluate the model
  2102. std::vector<uint8_t> buf_compute_meta;
  2103. ggml_backend_sched_t sched = nullptr;
  2104. ggml_abort_callback abort_callback = nullptr;
  2105. void * abort_callback_data = nullptr;
  2106. // input tensors
  2107. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2108. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2109. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2110. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2111. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2112. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2113. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2114. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2115. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2116. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2117. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2118. // control vectors
  2119. struct llama_control_vector cvec;
  2120. };
  2121. static size_t llama_get_device_count(const llama_model & model) {
  2122. size_t count = 1;
  2123. #if defined(GGML_USE_CUDA)
  2124. count = ggml_backend_cuda_get_device_count();
  2125. #elif defined(GGML_USE_SYCL)
  2126. count = ggml_backend_sycl_get_device_count();
  2127. #elif defined(GGML_USE_VULKAN)
  2128. count = ggml_backend_vk_get_device_count();
  2129. #endif
  2130. #if defined(GGML_USE_RPC)
  2131. count += model.rpc_servers.size();
  2132. #endif
  2133. return count;
  2134. GGML_UNUSED(model);
  2135. }
  2136. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2137. ggml_backend_buffer_type_t buft = nullptr;
  2138. #if defined(GGML_USE_RPC)
  2139. int dev_count = (int)llama_get_device_count(model);
  2140. int rpc_count = (int)model.rpc_servers.size();
  2141. if (gpu >= dev_count - rpc_count) {
  2142. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2143. return ggml_backend_rpc_buffer_type(endpoint);
  2144. }
  2145. #endif
  2146. #if defined(GGML_USE_METAL)
  2147. buft = ggml_backend_metal_buffer_type();
  2148. #elif defined(GGML_USE_CUDA)
  2149. buft = ggml_backend_cuda_buffer_type(gpu);
  2150. #elif defined(GGML_USE_VULKAN)
  2151. buft = ggml_backend_vk_buffer_type(gpu);
  2152. #elif defined(GGML_USE_SYCL)
  2153. buft = ggml_backend_sycl_buffer_type(gpu);
  2154. #elif defined(GGML_USE_CLBLAST)
  2155. buft = ggml_backend_opencl_buffer_type();
  2156. #elif defined(GGML_USE_KOMPUTE)
  2157. buft = ggml_backend_kompute_buffer_type(gpu);
  2158. if (buft == nullptr) {
  2159. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2160. }
  2161. #endif
  2162. if (buft == nullptr) {
  2163. buft = llama_default_buffer_type_cpu(true);
  2164. }
  2165. return buft;
  2166. GGML_UNUSED(model);
  2167. GGML_UNUSED(gpu);
  2168. }
  2169. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2170. ggml_backend_buffer_type_t buft = nullptr;
  2171. #ifdef GGML_USE_CUDA
  2172. if (ggml_backend_cuda_get_device_count() > 1) {
  2173. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2174. }
  2175. #endif
  2176. #ifdef GGML_USE_SYCL
  2177. if (ggml_backend_sycl_get_device_count() > 1) {
  2178. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2179. }
  2180. #endif
  2181. if (buft == nullptr) {
  2182. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2183. }
  2184. return buft;
  2185. GGML_UNUSED(tensor_split);
  2186. }
  2187. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2188. #if defined(GGML_USE_RPC)
  2189. int dev_count = (int)llama_get_device_count(model);
  2190. int rpc_count = (int)model.rpc_servers.size();
  2191. if (device >= dev_count - rpc_count) {
  2192. size_t total;
  2193. size_t free;
  2194. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2195. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2196. return free;
  2197. }
  2198. #endif
  2199. #if defined(GGML_USE_CUDA)
  2200. size_t total;
  2201. size_t free;
  2202. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2203. return free;
  2204. #elif defined(GGML_USE_SYCL)
  2205. size_t total;
  2206. size_t free;
  2207. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2208. return free;
  2209. #elif defined(GGML_USE_VULKAN)
  2210. size_t total;
  2211. size_t free;
  2212. ggml_backend_vk_get_device_memory(device, &free, &total);
  2213. return free;
  2214. #else
  2215. return 1;
  2216. #endif
  2217. GGML_UNUSED(model);
  2218. GGML_UNUSED(device);
  2219. }
  2220. //
  2221. // kv cache helpers
  2222. //
  2223. static bool llama_kv_cache_init(
  2224. struct llama_kv_cache & cache,
  2225. const llama_context * ctx,
  2226. ggml_type type_k,
  2227. ggml_type type_v,
  2228. uint32_t kv_size,
  2229. bool offload) {
  2230. const llama_model & model = ctx->model;
  2231. const llama_cparams & cparams = ctx->cparams;
  2232. const struct llama_hparams & hparams = model.hparams;
  2233. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2234. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2235. const int64_t n_layer = hparams.n_layer;
  2236. cache.has_shift = false;
  2237. // TODO: find a nicer way to add other recurrent model architectures
  2238. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2239. cache.v_trans = !cparams.flash_attn;
  2240. // TODO: support mixed recurrent Transformer architectures
  2241. // NOTE: (!a || b) is a logical implication (a -> b)
  2242. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2243. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2244. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2245. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2246. cache.head = 0;
  2247. cache.size = kv_size;
  2248. cache.used = 0;
  2249. cache.type_k = type_k;
  2250. cache.type_v = type_v;
  2251. cache.cells.clear();
  2252. cache.cells.resize(kv_size);
  2253. if (cache.recurrent) {
  2254. // init state copy sources
  2255. for (uint32_t i = 0; i < cache.size; ++i) {
  2256. cache.cells[i].src = i;
  2257. }
  2258. }
  2259. #ifdef GGML_USE_CLBLAST
  2260. offload = false;
  2261. #endif
  2262. // count used buffer types
  2263. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2264. if (offload) {
  2265. for (int64_t i = 0; i < n_layer; ++i) {
  2266. buft_layer_count[model.buft_layer[i].buft]++;
  2267. }
  2268. } else {
  2269. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2270. }
  2271. // create a context for each buffer type
  2272. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2273. for (auto & it : buft_layer_count) {
  2274. int n_layers = it.second;
  2275. struct ggml_init_params params = {
  2276. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2277. /*.mem_buffer =*/ NULL,
  2278. /*.no_alloc =*/ true,
  2279. };
  2280. ggml_context * ctx = ggml_init(params);
  2281. if (!ctx) {
  2282. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2283. return false;
  2284. }
  2285. ctx_map[it.first] = ctx;
  2286. cache.ctxs.push_back(ctx);
  2287. }
  2288. cache.k_l.reserve(n_layer);
  2289. cache.v_l.reserve(n_layer);
  2290. for (int i = 0; i < (int) n_layer; i++) {
  2291. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2292. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2293. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2294. ggml_format_name(k, "cache_k_l%d", i);
  2295. ggml_format_name(v, "cache_v_l%d", i);
  2296. cache.k_l.push_back(k);
  2297. cache.v_l.push_back(v);
  2298. }
  2299. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2300. for (auto it : ctx_map) {
  2301. ggml_backend_buffer_type_t buft = it.first;
  2302. ggml_context * ctx = it.second;
  2303. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2304. if (!buf) {
  2305. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2306. return false;
  2307. }
  2308. ggml_backend_buffer_clear(buf, 0);
  2309. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2310. cache.bufs.push_back(buf);
  2311. }
  2312. return true;
  2313. }
  2314. // find an empty slot of size "n_tokens" in the cache
  2315. // updates the cache head
  2316. // Note: On success, it's important that cache.head points
  2317. // to the first cell of the slot.
  2318. static bool llama_kv_cache_find_slot(
  2319. struct llama_kv_cache & cache,
  2320. const struct llama_batch & batch) {
  2321. const uint32_t n_tokens = batch.n_tokens;
  2322. if (cache.recurrent) {
  2323. // For recurrent state architectures (like Mamba),
  2324. // each KV cache cell can store the state for a whole sequence.
  2325. llama_seq_id min = cache.size - 1;
  2326. llama_seq_id max = 0;
  2327. for (uint32_t i = 0; i < n_tokens; ++i) {
  2328. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2329. llama_seq_id seq_id = batch.seq_id[i][j];
  2330. // make sure it's a valid seq_id
  2331. if ((uint32_t) seq_id < cache.size) {
  2332. if (seq_id > max) {
  2333. max = seq_id;
  2334. }
  2335. if (seq_id < min) {
  2336. min = seq_id;
  2337. }
  2338. // Assuming the tokens are in-order
  2339. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2340. // What should happen when the pos backtracks or skips a value?
  2341. // Clearing the state mid-batch would require special-casing which isn't done.
  2342. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2343. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2344. }
  2345. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2346. cache.used += 1;
  2347. }
  2348. cache.cells[seq_id].pos = batch.pos[i];
  2349. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2350. } else {
  2351. // too big seq_id
  2352. // TODO: would it be possible to resize the KV cache size instead?
  2353. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2354. return false;
  2355. }
  2356. }
  2357. }
  2358. // allow getting the range of used cells, from head to head + n
  2359. cache.head = min;
  2360. cache.n = max - min + 1;
  2361. // sanity check
  2362. return max >= min;
  2363. }
  2364. // otherwise, one cell per token.
  2365. if (n_tokens > cache.size) {
  2366. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2367. return false;
  2368. }
  2369. uint32_t n_tested = 0;
  2370. while (true) {
  2371. if (cache.head + n_tokens > cache.size) {
  2372. n_tested += cache.size - cache.head;
  2373. cache.head = 0;
  2374. continue;
  2375. }
  2376. bool found = true;
  2377. for (uint32_t i = 0; i < n_tokens; i++) {
  2378. if (cache.cells[cache.head + i].pos >= 0) {
  2379. found = false;
  2380. cache.head += i + 1;
  2381. n_tested += i + 1;
  2382. break;
  2383. }
  2384. }
  2385. if (found) {
  2386. break;
  2387. }
  2388. if (n_tested >= cache.size) {
  2389. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2390. return false;
  2391. }
  2392. }
  2393. for (uint32_t i = 0; i < n_tokens; i++) {
  2394. cache.cells[cache.head + i].pos = batch.pos[i];
  2395. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2396. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2397. }
  2398. }
  2399. cache.used += n_tokens;
  2400. return true;
  2401. }
  2402. // find how many cells are currently in use
  2403. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2404. for (uint32_t i = cache.size; i > 0; --i) {
  2405. const llama_kv_cell & cell = cache.cells[i - 1];
  2406. if (cell.pos >= 0 && !cell.is_empty()) {
  2407. return i;
  2408. }
  2409. }
  2410. return 0;
  2411. }
  2412. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2413. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2414. cache.cells[i].pos = -1;
  2415. cache.cells[i].seq_id.clear();
  2416. }
  2417. cache.head = 0;
  2418. cache.used = 0;
  2419. for (auto & buf : cache.bufs) {
  2420. ggml_backend_buffer_clear(buf, 0);
  2421. }
  2422. }
  2423. static bool llama_kv_cache_seq_rm(
  2424. struct llama_kv_cache & cache,
  2425. llama_seq_id seq_id,
  2426. llama_pos p0,
  2427. llama_pos p1) {
  2428. uint32_t new_head = cache.size;
  2429. if (p0 < 0) p0 = 0;
  2430. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2431. // models like Mamba can't have a state partially erased
  2432. if (cache.recurrent) {
  2433. if (seq_id >= (int64_t) cache.size) {
  2434. // could be fatal
  2435. return false;
  2436. }
  2437. if (0 <= seq_id) {
  2438. // partial intersection is invalid
  2439. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2440. return false;
  2441. }
  2442. } else {
  2443. // seq_id is negative, then the range should include everything or nothing
  2444. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2445. return false;
  2446. }
  2447. }
  2448. }
  2449. for (uint32_t i = 0; i < cache.size; ++i) {
  2450. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2451. if (seq_id < 0) {
  2452. cache.cells[i].seq_id.clear();
  2453. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2454. cache.cells[i].seq_id.erase(seq_id);
  2455. } else {
  2456. continue;
  2457. }
  2458. if (cache.cells[i].is_empty()) {
  2459. // keep count of the number of used cells
  2460. if (cache.cells[i].pos >= 0) cache.used--;
  2461. cache.cells[i].pos = -1;
  2462. if (new_head == cache.size) new_head = i;
  2463. }
  2464. }
  2465. }
  2466. // If we freed up a slot, set head to it so searching can start there.
  2467. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2468. return true;
  2469. }
  2470. static void llama_kv_cache_seq_cp(
  2471. struct llama_kv_cache & cache,
  2472. llama_seq_id seq_id_src,
  2473. llama_seq_id seq_id_dst,
  2474. llama_pos p0,
  2475. llama_pos p1) {
  2476. if (p0 < 0) p0 = 0;
  2477. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2478. if (cache.recurrent) {
  2479. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2480. seq_id_src = cache.cells[seq_id_src].src;
  2481. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2482. // intent to "copy from"
  2483. // supports copy chains thanks to taking the source of the source
  2484. cache.cells[seq_id_dst].src = seq_id_src;
  2485. // preserve the "keep or clear" status of the copied sequence
  2486. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2487. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2488. } else {
  2489. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2490. }
  2491. cache.do_copy = true;
  2492. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2493. }
  2494. return;
  2495. }
  2496. // otherwise, this is the KV cache of a Transformer-like model
  2497. cache.head = 0;
  2498. for (uint32_t i = 0; i < cache.size; ++i) {
  2499. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2500. cache.cells[i].seq_id.insert(seq_id_dst);
  2501. }
  2502. }
  2503. }
  2504. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2505. uint32_t new_head = cache.size;
  2506. for (uint32_t i = 0; i < cache.size; ++i) {
  2507. if (!cache.cells[i].has_seq_id(seq_id)) {
  2508. if (cache.cells[i].pos >= 0) cache.used--;
  2509. cache.cells[i].pos = -1;
  2510. cache.cells[i].seq_id.clear();
  2511. if (new_head == cache.size) new_head = i;
  2512. } else {
  2513. cache.cells[i].seq_id.clear();
  2514. cache.cells[i].seq_id.insert(seq_id);
  2515. }
  2516. }
  2517. // If we freed up a slot, set head to it so searching can start there.
  2518. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2519. }
  2520. static void llama_kv_cache_seq_add(
  2521. struct llama_kv_cache & cache,
  2522. llama_seq_id seq_id,
  2523. llama_pos p0,
  2524. llama_pos p1,
  2525. llama_pos delta) {
  2526. uint32_t new_head = cache.size;
  2527. if (p0 < 0) p0 = 0;
  2528. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2529. if (cache.recurrent) {
  2530. // for Mamba-like models, only the pos needs to be shifted
  2531. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2532. llama_kv_cell & cell = cache.cells[seq_id];
  2533. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2534. cell.pos += delta;
  2535. }
  2536. }
  2537. return;
  2538. }
  2539. for (uint32_t i = 0; i < cache.size; ++i) {
  2540. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2541. cache.has_shift = true;
  2542. cache.cells[i].pos += delta;
  2543. cache.cells[i].delta += delta;
  2544. if (cache.cells[i].pos < 0) {
  2545. if (!cache.cells[i].is_empty()) {
  2546. cache.used--;
  2547. }
  2548. cache.cells[i].pos = -1;
  2549. cache.cells[i].seq_id.clear();
  2550. if (new_head == cache.size) {
  2551. new_head = i;
  2552. }
  2553. }
  2554. }
  2555. }
  2556. // If we freed up a slot, set head to it so searching can start there.
  2557. // Otherwise we just start the next search from the beginning.
  2558. cache.head = new_head != cache.size ? new_head : 0;
  2559. }
  2560. static void llama_kv_cache_seq_div(
  2561. struct llama_kv_cache & cache,
  2562. llama_seq_id seq_id,
  2563. llama_pos p0,
  2564. llama_pos p1,
  2565. int d) {
  2566. if (p0 < 0) p0 = 0;
  2567. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2568. if (cache.recurrent) {
  2569. // for Mamba-like models, only the pos needs to be changed
  2570. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2571. llama_kv_cell & cell = cache.cells[seq_id];
  2572. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2573. cell.pos /= d;
  2574. }
  2575. }
  2576. return;
  2577. }
  2578. for (uint32_t i = 0; i < cache.size; ++i) {
  2579. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2580. cache.has_shift = true;
  2581. {
  2582. llama_pos p_old = cache.cells[i].pos;
  2583. cache.cells[i].pos /= d;
  2584. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2585. }
  2586. }
  2587. }
  2588. }
  2589. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2590. llama_pos result = 0;
  2591. for (uint32_t i = 0; i < cache.size; ++i) {
  2592. if (cache.cells[i].has_seq_id(seq_id)) {
  2593. result = std::max(result, cache.cells[i].pos);
  2594. }
  2595. }
  2596. return result;
  2597. }
  2598. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2599. cache.do_defrag = true;
  2600. }
  2601. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2602. // the FA kernels require padding to avoid extra runtime boundary checks
  2603. return cparams.flash_attn ? 256u : 32u;
  2604. }
  2605. //
  2606. // model loading and saving
  2607. //
  2608. enum llama_fver {
  2609. GGUF_FILE_VERSION_V1 = 1,
  2610. GGUF_FILE_VERSION_V2 = 2,
  2611. GGUF_FILE_VERSION_V3 = 3,
  2612. };
  2613. static const char * llama_file_version_name(llama_fver version) {
  2614. switch (version) {
  2615. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2616. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2617. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2618. }
  2619. return "unknown";
  2620. }
  2621. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2622. char buf[256];
  2623. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2624. for (size_t i = 1; i < ne.size(); i++) {
  2625. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2626. }
  2627. return buf;
  2628. }
  2629. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2630. char buf[256];
  2631. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2632. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2633. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2634. }
  2635. return buf;
  2636. }
  2637. namespace GGUFMeta {
  2638. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2639. struct GKV_Base_Type {
  2640. static constexpr gguf_type gt = gt_;
  2641. static T getter(const gguf_context * ctx, const int kid) {
  2642. return gfun(ctx, kid);
  2643. }
  2644. };
  2645. template<typename T> struct GKV_Base;
  2646. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2647. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2648. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2649. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2650. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2651. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2652. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2653. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2654. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2655. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2656. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2657. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2658. template<> struct GKV_Base<std::string> {
  2659. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2660. static std::string getter(const gguf_context * ctx, const int kid) {
  2661. return gguf_get_val_str(ctx, kid);
  2662. }
  2663. };
  2664. struct ArrayInfo {
  2665. const gguf_type gt;
  2666. const size_t length;
  2667. const void * data;
  2668. };
  2669. template<> struct GKV_Base<ArrayInfo> {
  2670. public:
  2671. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2672. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2673. return ArrayInfo {
  2674. gguf_get_arr_type(ctx, k),
  2675. size_t(gguf_get_arr_n(ctx, k)),
  2676. gguf_get_arr_data(ctx, k),
  2677. };
  2678. }
  2679. };
  2680. template<typename T>
  2681. class GKV : public GKV_Base<T> {
  2682. GKV() = delete;
  2683. public:
  2684. static T get_kv(const gguf_context * ctx, const int k) {
  2685. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2686. if (kt != GKV::gt) {
  2687. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2688. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2689. }
  2690. return GKV::getter(ctx, k);
  2691. }
  2692. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2693. switch (ty) {
  2694. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2695. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2696. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2697. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2698. }
  2699. return "unknown";
  2700. }
  2701. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2702. if (!ovrd) { return false; }
  2703. if (ovrd->tag == expected_type) {
  2704. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2705. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2706. switch (ovrd->tag) {
  2707. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2708. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2709. } break;
  2710. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2711. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2712. } break;
  2713. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2714. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2715. } break;
  2716. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2717. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2718. } break;
  2719. default:
  2720. // Shouldn't be possible to end up here, but just in case...
  2721. throw std::runtime_error(
  2722. format("Unsupported attempt to override %s type for metadata key %s\n",
  2723. override_type_to_str(ovrd->tag), ovrd->key));
  2724. }
  2725. return true;
  2726. }
  2727. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2728. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2729. return false;
  2730. }
  2731. template<typename OT>
  2732. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2733. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2734. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2735. target = ovrd->val_bool;
  2736. return true;
  2737. }
  2738. return false;
  2739. }
  2740. template<typename OT>
  2741. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2742. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2743. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2744. target = ovrd->val_i64;
  2745. return true;
  2746. }
  2747. return false;
  2748. }
  2749. template<typename OT>
  2750. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2751. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2752. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2753. target = ovrd->val_f64;
  2754. return true;
  2755. }
  2756. return false;
  2757. }
  2758. template<typename OT>
  2759. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2760. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2761. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2762. target = ovrd->val_str;
  2763. return true;
  2764. }
  2765. return false;
  2766. }
  2767. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2768. if (try_override<T>(target, ovrd)) {
  2769. return true;
  2770. }
  2771. if (k < 0) { return false; }
  2772. target = get_kv(ctx, k);
  2773. return true;
  2774. }
  2775. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2776. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2777. }
  2778. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2779. return set(ctx, key.c_str(), target, ovrd);
  2780. }
  2781. };
  2782. }
  2783. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2784. struct llama_model_loader {
  2785. int n_kv = 0;
  2786. int n_tensors = 0;
  2787. int n_created = 0;
  2788. int64_t n_elements = 0;
  2789. size_t n_bytes = 0;
  2790. bool use_mmap = false;
  2791. bool check_tensors;
  2792. llama_files files;
  2793. llama_ftype ftype;
  2794. llama_fver fver;
  2795. llama_mmaps mappings;
  2796. // Holds information on a model weight
  2797. struct llama_tensor_weight {
  2798. uint16_t idx; // source file index
  2799. size_t offs; // tensor data offset in the original file
  2800. ggml_tensor * tensor;
  2801. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2802. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2803. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2804. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2805. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2806. }
  2807. }
  2808. };
  2809. std::vector<llama_tensor_weight> weights;
  2810. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2811. struct gguf_context * meta = NULL;
  2812. std::vector<ggml_context *> contexts;
  2813. std::string arch_name;
  2814. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2815. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2816. int trace = 0;
  2817. if (getenv("LLAMA_TRACE")) {
  2818. trace = atoi(getenv("LLAMA_TRACE"));
  2819. }
  2820. if (param_overrides_p != nullptr) {
  2821. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2822. kv_overrides.insert({std::string(p->key), *p});
  2823. }
  2824. }
  2825. struct ggml_context * ctx = NULL;
  2826. struct gguf_init_params params = {
  2827. /*.no_alloc = */ true,
  2828. /*.ctx = */ &ctx,
  2829. };
  2830. meta = gguf_init_from_file(fname.c_str(), params);
  2831. if (!meta) {
  2832. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2833. }
  2834. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2835. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2836. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2837. contexts.emplace_back(ctx);
  2838. // Save tensors data offset of the main file.
  2839. // For subsidiary files, `meta` tensor data offset must not be used,
  2840. // so we build a unified tensors index for weights.
  2841. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2842. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2843. }
  2844. uint16_t n_split = 0;
  2845. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2846. // Load additional GGML contexts
  2847. if (n_split > 1) {
  2848. uint16_t idx = 0;
  2849. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2850. if (idx != 0) {
  2851. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2852. }
  2853. char split_prefix[PATH_MAX] = {0};
  2854. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2855. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2856. }
  2857. if (trace > 0) {
  2858. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2859. }
  2860. char split_path[PATH_MAX] = {0};
  2861. for (idx = 1; idx < n_split; idx++) {
  2862. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2863. struct gguf_init_params split_params = {
  2864. /*.no_alloc = */ true,
  2865. /*.ctx = */ &ctx,
  2866. };
  2867. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2868. if (!ctx_gguf) {
  2869. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2870. }
  2871. files.emplace_back(new llama_file(split_path, "rb"));
  2872. contexts.emplace_back(ctx);
  2873. // Save tensors data offset info of the shard.
  2874. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2875. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2876. }
  2877. gguf_free(ctx_gguf);
  2878. }
  2879. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2880. // sanity check
  2881. {
  2882. const int n_tensors_loaded = (int) weights.size();
  2883. if (n_tensors != n_tensors_loaded) {
  2884. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2885. }
  2886. }
  2887. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2888. }
  2889. n_kv = gguf_get_n_kv(meta);
  2890. n_tensors = weights.size();
  2891. fver = (enum llama_fver) gguf_get_version(meta);
  2892. std::set<std::string> tensor_names;
  2893. for (auto & w : weights) {
  2894. n_elements += ggml_nelements(w.tensor);
  2895. n_bytes += ggml_nbytes(w.tensor);
  2896. // make sure there is no duplicated tensor names
  2897. const std::string name(w.tensor->name);
  2898. auto found = tensor_names.find(name);
  2899. if (found != tensor_names.end()) {
  2900. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2901. }
  2902. tensor_names.insert(name);
  2903. }
  2904. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2905. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2906. // determine file type based on the number of tensors for each quantization and print meta data
  2907. // TODO: make optional
  2908. {
  2909. std::map<enum ggml_type, uint32_t> n_type;
  2910. uint32_t n_type_max = 0;
  2911. enum ggml_type type_max = GGML_TYPE_F32;
  2912. for (int i = 0; i < n_tensors; i++) {
  2913. const ggml_tensor * tensor = weights.at(i).tensor;
  2914. enum ggml_type type = tensor->type;
  2915. n_type[type]++;
  2916. if (n_type_max < n_type[type]) {
  2917. n_type_max = n_type[type];
  2918. type_max = type;
  2919. }
  2920. if (trace > 0) {
  2921. const uint16_t sid = weights.at(i).idx;
  2922. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2923. }
  2924. }
  2925. switch (type_max) {
  2926. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2927. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2928. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2929. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2930. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2931. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2932. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2933. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2934. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2935. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2936. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2937. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2938. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2939. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2940. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2941. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2942. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2943. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2944. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2945. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2946. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2947. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2948. default:
  2949. {
  2950. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2951. ftype = LLAMA_FTYPE_ALL_F32;
  2952. } break;
  2953. }
  2954. // this is a way to mark that we have "guessed" the file type
  2955. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2956. {
  2957. const int kid = gguf_find_key(meta, "general.file_type");
  2958. if (kid >= 0) {
  2959. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2960. }
  2961. }
  2962. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2963. for (int i = 0; i < n_kv; i++) {
  2964. const char * name = gguf_get_key(meta, i);
  2965. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2966. const std::string type_name =
  2967. type == GGUF_TYPE_ARRAY
  2968. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2969. : gguf_type_name(type);
  2970. std::string value = gguf_kv_to_str(meta, i);
  2971. const size_t MAX_VALUE_LEN = 40;
  2972. if (value.size() > MAX_VALUE_LEN) {
  2973. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2974. }
  2975. replace_all(value, "\n", "\\n");
  2976. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2977. }
  2978. // print type counts
  2979. for (auto & kv : n_type) {
  2980. if (kv.second == 0) {
  2981. continue;
  2982. }
  2983. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2984. }
  2985. }
  2986. if (!llama_mmap::SUPPORTED) {
  2987. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2988. use_mmap = false;
  2989. }
  2990. this->use_mmap = use_mmap;
  2991. this->check_tensors = check_tensors;
  2992. }
  2993. ~llama_model_loader() {
  2994. if (meta) {
  2995. gguf_free(meta);
  2996. }
  2997. for (auto * ctx : contexts) {
  2998. ggml_free(ctx);
  2999. }
  3000. }
  3001. template<typename T>
  3002. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3003. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3004. const int kid = gguf_find_key(meta, key.c_str());
  3005. if (kid < 0) {
  3006. if (required) {
  3007. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3008. }
  3009. return false;
  3010. }
  3011. struct GGUFMeta::ArrayInfo arr_info =
  3012. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3013. result = arr_info.length;
  3014. return true;
  3015. }
  3016. template<typename T>
  3017. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3018. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3019. return get_arr_n(llm_kv(kid), result, required);
  3020. }
  3021. template<typename T>
  3022. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3023. const int kid = gguf_find_key(meta, key.c_str());
  3024. if (kid < 0) {
  3025. if (required) {
  3026. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3027. }
  3028. return false;
  3029. }
  3030. struct GGUFMeta::ArrayInfo arr_info =
  3031. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3032. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3033. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3034. }
  3035. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3036. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3037. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3038. result.resize(arr_info.length);
  3039. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3040. return true;
  3041. }
  3042. template<typename T>
  3043. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3044. return get_arr(llm_kv(kid), result, required);
  3045. }
  3046. template<typename T>
  3047. bool get_key(const std::string & key, T & result, const bool required = true) {
  3048. auto it = kv_overrides.find(key);
  3049. const struct llama_model_kv_override * override =
  3050. it != kv_overrides.end() ? &it->second : nullptr;
  3051. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3052. if (required && !found) {
  3053. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3054. }
  3055. return found;
  3056. }
  3057. template<typename T>
  3058. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3059. return get_key(llm_kv(kid), result, required);
  3060. }
  3061. std::string get_arch_name() const {
  3062. return arch_name;
  3063. }
  3064. enum llm_arch get_arch() const {
  3065. return llm_kv.arch;
  3066. }
  3067. const char * get_tensor_name(int i) const {
  3068. return weights.at(i).tensor->name;
  3069. }
  3070. const llama_tensor_weight * get_weight(const char * name) const {
  3071. for (const auto & weight : weights) {
  3072. if (strcmp(name, weight.tensor->name) == 0) {
  3073. return &weight;
  3074. }
  3075. }
  3076. return nullptr;
  3077. }
  3078. const llama_tensor_weight * get_weight(int i) const {
  3079. return get_weight(get_tensor_name(i));
  3080. }
  3081. const llama_tensor_weight & require_weight(const char * name) const {
  3082. const llama_tensor_weight * weight = get_weight(name);
  3083. if (!weight) {
  3084. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3085. }
  3086. return *weight;
  3087. }
  3088. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3089. const auto * weight = get_weight(name);
  3090. if (!weight) {
  3091. return nullptr;
  3092. }
  3093. return weight->tensor;
  3094. }
  3095. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3096. struct ggml_tensor * tensor = get_tensor_meta(name);
  3097. if (!tensor) {
  3098. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3099. }
  3100. return tensor;
  3101. }
  3102. struct ggml_tensor * get_tensor_meta(int i) const {
  3103. return get_tensor_meta(get_tensor_name(i));
  3104. }
  3105. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3106. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3107. ggml_set_name(tensor, ggml_get_name(cur));
  3108. if (duplicated) {
  3109. size_data += ggml_nbytes(cur);
  3110. } else {
  3111. n_created++;
  3112. }
  3113. return tensor;
  3114. }
  3115. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3116. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3117. if (cur == NULL) {
  3118. if (!required) {
  3119. return NULL;
  3120. }
  3121. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3122. }
  3123. {
  3124. bool is_ok = true;
  3125. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3126. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3127. is_ok = false;
  3128. break;
  3129. }
  3130. }
  3131. if (!is_ok) {
  3132. throw std::runtime_error(
  3133. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3134. __func__, name.c_str(),
  3135. llama_format_tensor_shape(ne).c_str(),
  3136. llama_format_tensor_shape(cur).c_str()));
  3137. }
  3138. }
  3139. return cur;
  3140. }
  3141. static const int TENSOR_NOT_REQUIRED = 1;
  3142. static const int TENSOR_DUPLICATED = 2;
  3143. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3144. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3145. if (cur == NULL) {
  3146. return NULL;
  3147. }
  3148. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3149. }
  3150. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3151. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3152. if (cur == NULL) {
  3153. return NULL;
  3154. }
  3155. if (cur->type != base->type) {
  3156. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3157. }
  3158. std::array<int64_t, GGML_MAX_DIMS> dims;
  3159. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3160. dims[i] = i < ne.size() ? ne[i] : 1;
  3161. }
  3162. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3163. dims[0], dims[1], dims[2], dims[3],
  3164. cur->nb[1], cur->nb[2], cur->nb[3],
  3165. offset);
  3166. ggml_set_name(tensor, name.c_str());
  3167. n_created++;
  3168. return tensor;
  3169. }
  3170. void done_getting_tensors() const {
  3171. if (n_created != n_tensors) {
  3172. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3173. }
  3174. }
  3175. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3176. if (use_mmap) {
  3177. mappings.reserve(files.size());
  3178. mmaps_used.reserve(files.size());
  3179. for (const auto & file : files) {
  3180. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3181. mmaps_used.emplace_back(mapping->size, 0);
  3182. if (mlock_mmaps) {
  3183. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3184. mlock_mmap->init(mapping->addr);
  3185. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3186. }
  3187. mappings.emplace_back(std::move(mapping));
  3188. }
  3189. }
  3190. // compute the total size of all tensors for progress reporting
  3191. for (auto & w : weights) {
  3192. size_data += ggml_nbytes(w.tensor);
  3193. }
  3194. }
  3195. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3196. GGML_ASSERT(!mappings.empty());
  3197. const auto & mapping = mappings.at(idx);
  3198. *first = mapping->size;
  3199. *last = 0;
  3200. *addr = mapping->addr;
  3201. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3202. try {
  3203. const auto * weight = get_weight(ggml_get_name(tensor));
  3204. if (!weight) {
  3205. continue;
  3206. }
  3207. if (weight->idx != idx) {
  3208. continue;
  3209. }
  3210. *first = std::min(*first, weight->offs);
  3211. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3212. } catch(...) {
  3213. // the tensor is not in the model
  3214. }
  3215. }
  3216. }
  3217. // for backwards compatibility, does not support ggml-backend
  3218. void load_data_for(struct ggml_tensor * cur) const {
  3219. const auto & w = require_weight(ggml_get_name(cur));
  3220. if (use_mmap) {
  3221. const auto & mapping = mappings.at(w.idx);
  3222. if (cur->data == nullptr) {
  3223. cur->data = (uint8_t *)mapping->addr + w.offs;
  3224. } else {
  3225. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3226. }
  3227. } else {
  3228. GGML_ASSERT(cur->data != nullptr);
  3229. GGML_ASSERT(w.idx < files.size());
  3230. const auto & file = files.at(w.idx);
  3231. file->seek(w.offs, SEEK_SET);
  3232. file->read_raw(cur->data, ggml_nbytes(cur));
  3233. }
  3234. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3235. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3236. }
  3237. }
  3238. size_t size_done = 0;
  3239. size_t size_data = 0;
  3240. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3241. // Returns false if cancelled by progress_callback
  3242. bool load_all_data(
  3243. struct ggml_context * ctx,
  3244. llama_buf_map & bufs_mmap,
  3245. llama_mlocks * lmlocks,
  3246. llama_progress_callback progress_callback,
  3247. void * progress_callback_user_data) {
  3248. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3249. std::vector<no_init<uint8_t>> read_buf;
  3250. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3251. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3252. const auto * weight = get_weight(ggml_get_name(cur));
  3253. if (weight == nullptr) {
  3254. // this can happen with split experts models
  3255. continue;
  3256. }
  3257. if (progress_callback) {
  3258. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3259. return false;
  3260. }
  3261. }
  3262. size_t n_size = ggml_nbytes(cur);
  3263. if (use_mmap) {
  3264. const auto & mapping = mappings.at(weight->idx);
  3265. ggml_backend_buffer_t buf_mmap = nullptr;
  3266. if (bufs_mmap.count(weight->idx)) {
  3267. buf_mmap = bufs_mmap.at(weight->idx);
  3268. }
  3269. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3270. if (check_tensors) {
  3271. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3272. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3273. }));
  3274. }
  3275. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3276. if (buf_mmap && cur->data == nullptr) {
  3277. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3278. if (lmlocks) {
  3279. const auto & lmlock = lmlocks->at(weight->idx);
  3280. lmlock->grow_to(weight->offs + n_size);
  3281. }
  3282. auto & mmap_used = mmaps_used[weight->idx];
  3283. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3284. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3285. } else {
  3286. ggml_backend_tensor_set(cur, data, 0, n_size);
  3287. }
  3288. } else {
  3289. GGML_ASSERT(weight->idx < files.size());
  3290. const auto & file = files.at(weight->idx);
  3291. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3292. file->seek(weight->offs, SEEK_SET);
  3293. file->read_raw(cur->data, n_size);
  3294. if (check_tensors) {
  3295. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3296. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3297. }));
  3298. }
  3299. } else {
  3300. read_buf.resize(n_size);
  3301. file->seek(weight->offs, SEEK_SET);
  3302. file->read_raw(read_buf.data(), n_size);
  3303. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3304. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3305. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3306. }
  3307. }
  3308. }
  3309. size_done += n_size;
  3310. }
  3311. // check validation results
  3312. bool validation_failed = false;
  3313. for (auto & future : validation_result) {
  3314. auto result = future.get();
  3315. if (!result.second) {
  3316. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3317. validation_failed = true;
  3318. }
  3319. }
  3320. if (validation_failed) {
  3321. throw std::runtime_error("found tensors with invalid data");
  3322. }
  3323. // check if this is the last call and do final cleanup
  3324. if (size_done >= size_data) {
  3325. // unmap offloaded tensors and metadata
  3326. if (use_mmap) {
  3327. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3328. const auto & mmap_used = mmaps_used.at(idx);
  3329. auto & mapping = mappings.at(idx);
  3330. mapping->unmap_fragment(0, mmap_used.first);
  3331. if (mmap_used.second != 0) {
  3332. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3333. }
  3334. }
  3335. }
  3336. if (progress_callback) {
  3337. // Even though the model is done loading, we still honor
  3338. // cancellation since we need to free allocations.
  3339. return progress_callback(1.0f, progress_callback_user_data);
  3340. }
  3341. }
  3342. return true;
  3343. }
  3344. };
  3345. template<>
  3346. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3347. uint32_t tmp;
  3348. const bool found = get_key(kid, tmp, required);
  3349. if (found) {
  3350. result = (enum llama_pooling_type) tmp;
  3351. } else {
  3352. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3353. }
  3354. return found;
  3355. }
  3356. //
  3357. // load LLaMA models
  3358. //
  3359. static const char * llama_model_arch_name(llm_arch arch) {
  3360. auto it = LLM_ARCH_NAMES.find(arch);
  3361. if (it == LLM_ARCH_NAMES.end()) {
  3362. return "unknown";
  3363. }
  3364. return it->second;
  3365. }
  3366. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3367. if (ftype & LLAMA_FTYPE_GUESSED) {
  3368. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3369. }
  3370. switch (ftype) {
  3371. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3372. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3373. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3374. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3375. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3376. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3377. return "Q4_1, some F16";
  3378. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3379. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3380. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3381. // K-quants
  3382. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3383. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3384. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3385. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3386. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3387. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3388. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3389. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3390. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3391. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3392. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3393. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3394. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3395. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3396. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3397. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3398. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3399. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3400. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3401. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3402. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3403. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3404. default: return "unknown, may not work";
  3405. }
  3406. }
  3407. static const char * llama_model_type_name(e_model type) {
  3408. switch (type) {
  3409. case MODEL_14M: return "14M";
  3410. case MODEL_17M: return "17M";
  3411. case MODEL_22M: return "22M";
  3412. case MODEL_33M: return "33M";
  3413. case MODEL_70M: return "70M";
  3414. case MODEL_109M: return "109M";
  3415. case MODEL_137M: return "137M";
  3416. case MODEL_160M: return "160M";
  3417. case MODEL_335M: return "335M";
  3418. case MODEL_410M: return "410M";
  3419. case MODEL_0_5B: return "0.5B";
  3420. case MODEL_1B: return "1B";
  3421. case MODEL_1_4B: return "1.4B";
  3422. case MODEL_2B: return "2B";
  3423. case MODEL_2_8B: return "2.8B";
  3424. case MODEL_3B: return "3B";
  3425. case MODEL_4B: return "4B";
  3426. case MODEL_6_9B: return "6.9B";
  3427. case MODEL_7B: return "7B";
  3428. case MODEL_8B: return "8B";
  3429. case MODEL_12B: return "12B";
  3430. case MODEL_13B: return "13B";
  3431. case MODEL_14B: return "14B";
  3432. case MODEL_15B: return "15B";
  3433. case MODEL_16B: return "16B";
  3434. case MODEL_20B: return "20B";
  3435. case MODEL_30B: return "30B";
  3436. case MODEL_34B: return "34B";
  3437. case MODEL_35B: return "35B";
  3438. case MODEL_40B: return "40B";
  3439. case MODEL_65B: return "65B";
  3440. case MODEL_70B: return "70B";
  3441. case MODEL_236B: return "236B";
  3442. case MODEL_314B: return "314B";
  3443. case MODEL_SMALL: return "0.1B";
  3444. case MODEL_MEDIUM: return "0.4B";
  3445. case MODEL_LARGE: return "0.8B";
  3446. case MODEL_XL: return "1.5B";
  3447. case MODEL_A2_7B: return "A2.7B";
  3448. case MODEL_8x7B: return "8x7B";
  3449. case MODEL_8x22B: return "8x22B";
  3450. case MODEL_16x12B: return "16x12B";
  3451. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3452. default: return "?B";
  3453. }
  3454. }
  3455. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3456. switch (type) {
  3457. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3458. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3459. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3460. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3461. default: return "unknown";
  3462. }
  3463. }
  3464. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3465. model.arch = ml.get_arch();
  3466. if (model.arch == LLM_ARCH_UNKNOWN) {
  3467. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3468. }
  3469. }
  3470. static void llm_load_hparams(
  3471. llama_model_loader & ml,
  3472. llama_model & model) {
  3473. auto & hparams = model.hparams;
  3474. const gguf_context * ctx = ml.meta;
  3475. // get metadata as string
  3476. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3477. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3478. if (type == GGUF_TYPE_ARRAY) {
  3479. continue;
  3480. }
  3481. const char * name = gguf_get_key(ctx, i);
  3482. const std::string value = gguf_kv_to_str(ctx, i);
  3483. model.gguf_kv.emplace(name, value);
  3484. }
  3485. // get general kv
  3486. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3487. // get hparams kv
  3488. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3489. // everything past this point is not vocab-related
  3490. if (hparams.vocab_only) {
  3491. return;
  3492. }
  3493. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3494. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3495. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3496. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3497. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3498. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3499. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3500. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3501. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3502. if (hparams.n_expert > 0) {
  3503. GGML_ASSERT(hparams.n_expert_used > 0);
  3504. } else {
  3505. GGML_ASSERT(hparams.n_expert_used == 0);
  3506. }
  3507. // n_head_kv is optional, default to n_head
  3508. hparams.n_head_kv = hparams.n_head;
  3509. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3510. bool rope_finetuned = false;
  3511. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3512. hparams.rope_finetuned = rope_finetuned;
  3513. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3514. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3515. // rope_freq_base (optional)
  3516. hparams.rope_freq_base_train = 10000.0f;
  3517. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3518. std::string rope_scaling("linear");
  3519. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3520. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3521. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3522. // rope_freq_scale (inverse of the kv) is optional
  3523. float ropescale = 0.0f;
  3524. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3525. // try the old key name
  3526. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3527. }
  3528. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3529. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3530. // sanity check for n_rot (optional)
  3531. {
  3532. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3533. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3534. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3535. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3536. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3537. }
  3538. }
  3539. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3540. // gpt-j n_rot = rotary_dim
  3541. }
  3542. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3543. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3544. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3545. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3546. // arch-specific KVs
  3547. switch (model.arch) {
  3548. case LLM_ARCH_LLAMA:
  3549. {
  3550. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3551. if (hparams.n_expert == 8) {
  3552. switch (hparams.n_layer) {
  3553. case 32: model.type = e_model::MODEL_8x7B; break;
  3554. case 56: model.type = e_model::MODEL_8x22B; break;
  3555. default: model.type = e_model::MODEL_UNKNOWN;
  3556. }
  3557. } else {
  3558. switch (hparams.n_layer) {
  3559. case 22: model.type = e_model::MODEL_1B; break;
  3560. case 26: model.type = e_model::MODEL_3B; break;
  3561. // granite uses a vocab with len 49152
  3562. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3563. case 36: model.type = e_model::MODEL_8B; break; // granite
  3564. case 40: model.type = e_model::MODEL_13B; break;
  3565. case 48: model.type = e_model::MODEL_34B; break;
  3566. case 60: model.type = e_model::MODEL_30B; break;
  3567. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3568. default: model.type = e_model::MODEL_UNKNOWN;
  3569. }
  3570. }
  3571. } break;
  3572. case LLM_ARCH_MINICPM:
  3573. {
  3574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3575. switch (hparams.n_layer) {
  3576. case 40: model.type = e_model::MODEL_2B; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. }
  3579. } break;
  3580. case LLM_ARCH_GROK:
  3581. {
  3582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3583. switch (hparams.n_layer) {
  3584. case 64: model.type = e_model::MODEL_314B; break;
  3585. default: model.type = e_model::MODEL_UNKNOWN;
  3586. }
  3587. } break;
  3588. case LLM_ARCH_FALCON:
  3589. {
  3590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3591. switch (hparams.n_layer) {
  3592. case 32: model.type = e_model::MODEL_7B; break;
  3593. case 60: model.type = e_model::MODEL_40B; break;
  3594. default: model.type = e_model::MODEL_UNKNOWN;
  3595. }
  3596. } break;
  3597. case LLM_ARCH_BAICHUAN:
  3598. {
  3599. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3600. switch (hparams.n_layer) {
  3601. case 32: model.type = e_model::MODEL_7B; break;
  3602. case 40: model.type = e_model::MODEL_13B; break;
  3603. default: model.type = e_model::MODEL_UNKNOWN;
  3604. }
  3605. if (model.type == e_model::MODEL_13B) {
  3606. // TODO: become GGUF KV parameter
  3607. hparams.f_max_alibi_bias = 8.0f;
  3608. }
  3609. } break;
  3610. case LLM_ARCH_STARCODER:
  3611. {
  3612. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3613. switch (hparams.n_layer) {
  3614. case 24: model.type = e_model::MODEL_1B; break;
  3615. case 36: model.type = e_model::MODEL_3B; break;
  3616. case 42: model.type = e_model::MODEL_7B; break;
  3617. case 40: model.type = e_model::MODEL_15B; break;
  3618. default: model.type = e_model::MODEL_UNKNOWN;
  3619. }
  3620. } break;
  3621. case LLM_ARCH_REFACT:
  3622. {
  3623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3624. switch (hparams.n_layer) {
  3625. case 32: model.type = e_model::MODEL_1B; break;
  3626. default: model.type = e_model::MODEL_UNKNOWN;
  3627. }
  3628. // TODO: become GGUF KV parameter
  3629. hparams.f_max_alibi_bias = 8.0f;
  3630. } break;
  3631. case LLM_ARCH_BERT:
  3632. {
  3633. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3634. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3635. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3636. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3637. switch (hparams.n_layer) {
  3638. case 3:
  3639. model.type = e_model::MODEL_17M; break; // bge-micro
  3640. case 6:
  3641. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3642. case 12:
  3643. switch (hparams.n_embd) {
  3644. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3645. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3646. } break;
  3647. case 24:
  3648. model.type = e_model::MODEL_335M; break; // bge-large
  3649. }
  3650. } break;
  3651. case LLM_ARCH_JINA_BERT_V2:
  3652. {
  3653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3654. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3655. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3656. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3657. hparams.f_max_alibi_bias = 8.0f;
  3658. switch (hparams.n_layer) {
  3659. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3660. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3661. }
  3662. } break;
  3663. case LLM_ARCH_NOMIC_BERT:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3667. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3668. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3669. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3670. model.type = e_model::MODEL_137M;
  3671. }
  3672. } break;
  3673. case LLM_ARCH_BLOOM:
  3674. {
  3675. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3676. switch (hparams.n_layer) {
  3677. case 24: model.type = e_model::MODEL_1B; break;
  3678. case 30:
  3679. switch (hparams.n_embd) {
  3680. case 2560: model.type = e_model::MODEL_3B; break;
  3681. case 4096: model.type = e_model::MODEL_7B; break;
  3682. } break;
  3683. }
  3684. // TODO: become GGUF KV parameter
  3685. hparams.f_max_alibi_bias = 8.0f;
  3686. } break;
  3687. case LLM_ARCH_MPT:
  3688. {
  3689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3690. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3691. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3692. switch (hparams.n_layer) {
  3693. case 32: model.type = e_model::MODEL_7B; break;
  3694. case 48: model.type = e_model::MODEL_30B; break;
  3695. default: model.type = e_model::MODEL_UNKNOWN;
  3696. }
  3697. } break;
  3698. case LLM_ARCH_STABLELM:
  3699. {
  3700. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3701. switch (hparams.n_layer) {
  3702. case 24: model.type = e_model::MODEL_1B; break;
  3703. case 32: model.type = e_model::MODEL_3B; break;
  3704. case 40: model.type = e_model::MODEL_12B; break;
  3705. default: model.type = e_model::MODEL_UNKNOWN;
  3706. }
  3707. } break;
  3708. case LLM_ARCH_QWEN:
  3709. {
  3710. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3711. switch (hparams.n_layer) {
  3712. case 32: model.type = e_model::MODEL_7B; break;
  3713. case 40: model.type = e_model::MODEL_13B; break;
  3714. default: model.type = e_model::MODEL_UNKNOWN;
  3715. }
  3716. } break;
  3717. case LLM_ARCH_QWEN2:
  3718. {
  3719. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3720. switch (hparams.n_layer) {
  3721. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3722. case 32: model.type = e_model::MODEL_7B; break;
  3723. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3724. case 80: model.type = e_model::MODEL_70B; break;
  3725. default: model.type = e_model::MODEL_UNKNOWN;
  3726. }
  3727. } break;
  3728. case LLM_ARCH_QWEN2MOE:
  3729. {
  3730. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3731. switch (hparams.n_layer) {
  3732. case 24: model.type = e_model::MODEL_A2_7B; break;
  3733. default: model.type = e_model::MODEL_UNKNOWN;
  3734. }
  3735. } break;
  3736. case LLM_ARCH_PHI2:
  3737. {
  3738. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3739. switch (hparams.n_layer) {
  3740. case 24: model.type = e_model::MODEL_1B; break;
  3741. case 32: model.type = e_model::MODEL_3B; break;
  3742. default: model.type = e_model::MODEL_UNKNOWN;
  3743. }
  3744. } break;
  3745. case LLM_ARCH_PHI3:
  3746. {
  3747. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3748. switch (hparams.n_layer) {
  3749. case 24: model.type = e_model::MODEL_1B; break;
  3750. case 32: model.type = e_model::MODEL_3B; break;
  3751. case 40: model.type = e_model::MODEL_14B; break;
  3752. default: model.type = e_model::MODEL_UNKNOWN;
  3753. }
  3754. } break;
  3755. case LLM_ARCH_PLAMO:
  3756. {
  3757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3758. switch (hparams.n_layer) {
  3759. case 40: model.type = e_model::MODEL_13B; break;
  3760. default: model.type = e_model::MODEL_UNKNOWN;
  3761. }
  3762. } break;
  3763. case LLM_ARCH_GPT2:
  3764. {
  3765. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3766. switch (hparams.n_layer) {
  3767. case 12: model.type = e_model::MODEL_SMALL; break;
  3768. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3769. case 36: model.type = e_model::MODEL_LARGE; break;
  3770. case 48: model.type = e_model::MODEL_XL; break;
  3771. default: model.type = e_model::MODEL_UNKNOWN;
  3772. }
  3773. } break;
  3774. case LLM_ARCH_CODESHELL:
  3775. {
  3776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3777. switch (hparams.n_layer) {
  3778. case 42: model.type = e_model::MODEL_SMALL; break;
  3779. default: model.type = e_model::MODEL_UNKNOWN;
  3780. }
  3781. } break;
  3782. case LLM_ARCH_ORION:
  3783. {
  3784. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3785. switch (hparams.n_layer) {
  3786. case 40: model.type = e_model::MODEL_14B; break;
  3787. default: model.type = e_model::MODEL_UNKNOWN;
  3788. }
  3789. } break;
  3790. case LLM_ARCH_INTERNLM2:
  3791. {
  3792. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3793. switch (hparams.n_layer) {
  3794. case 32: model.type = e_model::MODEL_7B; break;
  3795. case 48: model.type = e_model::MODEL_20B; break;
  3796. default: model.type = e_model::MODEL_UNKNOWN;
  3797. }
  3798. } break;
  3799. case LLM_ARCH_GEMMA:
  3800. {
  3801. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3802. switch (hparams.n_layer) {
  3803. case 18: model.type = e_model::MODEL_2B; break;
  3804. case 28: model.type = e_model::MODEL_7B; break;
  3805. default: model.type = e_model::MODEL_UNKNOWN;
  3806. }
  3807. } break;
  3808. case LLM_ARCH_STARCODER2:
  3809. {
  3810. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3811. switch (hparams.n_layer) {
  3812. case 30: model.type = e_model::MODEL_3B; break;
  3813. case 32: model.type = e_model::MODEL_7B; break;
  3814. case 40: model.type = e_model::MODEL_15B; break;
  3815. case 52: model.type = e_model::MODEL_20B; break; // granite
  3816. case 88: model.type = e_model::MODEL_34B; break; // granite
  3817. default: model.type = e_model::MODEL_UNKNOWN;
  3818. }
  3819. } break;
  3820. case LLM_ARCH_MAMBA:
  3821. {
  3822. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3823. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3824. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3825. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3826. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3827. switch (hparams.n_layer) {
  3828. case 24:
  3829. switch (hparams.n_embd) {
  3830. case 768: model.type = e_model::MODEL_SMALL; break;
  3831. default: model.type = e_model::MODEL_UNKNOWN;
  3832. } break;
  3833. case 48:
  3834. switch (hparams.n_embd) {
  3835. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3836. case 1536: model.type = e_model::MODEL_LARGE; break;
  3837. case 2048: model.type = e_model::MODEL_XL; break;
  3838. default: model.type = e_model::MODEL_UNKNOWN;
  3839. } break;
  3840. case 64:
  3841. switch (hparams.n_embd) {
  3842. case 2560: model.type = e_model::MODEL_3B; break;
  3843. default: model.type = e_model::MODEL_UNKNOWN;
  3844. } break;
  3845. default: model.type = e_model::MODEL_UNKNOWN;
  3846. }
  3847. } break;
  3848. case LLM_ARCH_XVERSE:
  3849. {
  3850. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3851. switch (hparams.n_layer) {
  3852. case 32: model.type = e_model::MODEL_7B; break;
  3853. case 40: model.type = e_model::MODEL_13B; break;
  3854. case 80: model.type = e_model::MODEL_65B; break;
  3855. default: model.type = e_model::MODEL_UNKNOWN;
  3856. }
  3857. } break;
  3858. case LLM_ARCH_COMMAND_R:
  3859. {
  3860. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3861. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3862. switch (hparams.n_layer) {
  3863. case 40: model.type = e_model::MODEL_35B; break;
  3864. default: model.type = e_model::MODEL_UNKNOWN;
  3865. }
  3866. } break;
  3867. case LLM_ARCH_DBRX:
  3868. {
  3869. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3870. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3871. switch (hparams.n_layer) {
  3872. case 40: model.type = e_model::MODEL_16x12B; break;
  3873. default: model.type = e_model::MODEL_UNKNOWN;
  3874. }
  3875. } break;
  3876. case LLM_ARCH_OLMO:
  3877. {
  3878. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3879. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3880. switch (hparams.n_layer) {
  3881. case 22: model.type = e_model::MODEL_1B; break;
  3882. case 32: model.type = e_model::MODEL_7B; break;
  3883. case 80: model.type = e_model::MODEL_70B; break;
  3884. default: model.type = e_model::MODEL_UNKNOWN;
  3885. }
  3886. } break;
  3887. case LLM_ARCH_GPTNEOX:
  3888. {
  3889. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3890. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3891. switch (hparams.n_layer) {
  3892. case 6:
  3893. switch (hparams.n_ff) {
  3894. case 512: model.type = e_model::MODEL_14M; break;
  3895. case 2048: model.type = e_model::MODEL_70M; break;
  3896. default: model.type = e_model::MODEL_UNKNOWN;
  3897. } break;
  3898. case 12:
  3899. switch (hparams.n_ff) {
  3900. case 3072: model.type = e_model::MODEL_160M; break;
  3901. default: model.type = e_model::MODEL_UNKNOWN;
  3902. } break;
  3903. case 16:
  3904. switch (hparams.n_ff) {
  3905. case 8192: model.type = e_model::MODEL_1B; break;
  3906. default: model.type = e_model::MODEL_UNKNOWN;
  3907. } break;
  3908. case 24:
  3909. switch (hparams.n_ff) {
  3910. case 4096: model.type = e_model::MODEL_410M; break;
  3911. case 8192: model.type = e_model::MODEL_1_4B; break;
  3912. default: model.type = e_model::MODEL_UNKNOWN;
  3913. } break;
  3914. case 32:
  3915. switch (hparams.n_ff) {
  3916. case 10240: model.type = e_model::MODEL_2_8B; break;
  3917. case 16384: model.type = e_model::MODEL_6_9B; break;
  3918. default: model.type = e_model::MODEL_UNKNOWN;
  3919. } break;
  3920. case 36:
  3921. switch (hparams.n_ff) {
  3922. case 20480: model.type = e_model::MODEL_12B; break;
  3923. default: model.type = e_model::MODEL_UNKNOWN;
  3924. } break;
  3925. case 44:
  3926. switch (hparams.n_ff) {
  3927. case 24576: model.type = e_model::MODEL_20B; break;
  3928. default: model.type = e_model::MODEL_UNKNOWN;
  3929. } break;
  3930. default: model.type = e_model::MODEL_UNKNOWN;
  3931. }
  3932. } break;
  3933. case LLM_ARCH_ARCTIC:
  3934. {
  3935. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3936. if (hparams.n_expert == 128) {
  3937. switch (hparams.n_layer) {
  3938. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  3939. default: model.type = e_model::MODEL_UNKNOWN;
  3940. }
  3941. } else {
  3942. model.type = e_model::MODEL_UNKNOWN;
  3943. }
  3944. } break;
  3945. case LLM_ARCH_DEEPSEEK2:
  3946. {
  3947. bool is_lite = (hparams.n_layer == 27);
  3948. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3949. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  3950. if (!is_lite) {
  3951. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  3952. }
  3953. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  3954. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  3955. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  3956. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  3957. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  3958. switch (hparams.n_layer) {
  3959. case 27: model.type = e_model::MODEL_16B; break;
  3960. case 60: model.type = e_model::MODEL_236B; break;
  3961. default: model.type = e_model::MODEL_UNKNOWN;
  3962. }
  3963. } break;
  3964. default: (void)0;
  3965. }
  3966. model.ftype = ml.ftype;
  3967. if (hparams.f_max_alibi_bias > 0.0f) {
  3968. hparams.use_alibi = true;
  3969. }
  3970. hparams.rope_type = llama_rope_type(&model);
  3971. }
  3972. // TODO: This should probably be in llama.h
  3973. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3974. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3975. );
  3976. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3977. static void llm_load_vocab(
  3978. llama_model_loader & ml,
  3979. llama_model & model) {
  3980. auto & vocab = model.vocab;
  3981. struct gguf_context * ctx = ml.meta;
  3982. const auto kv = LLM_KV(model.arch);
  3983. // determine vocab type
  3984. {
  3985. std::string tokenizer_model;
  3986. std::string tokenizer_pre;
  3987. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3988. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3989. if (tokenizer_model == "no_vocab") {
  3990. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3991. // default special tokens
  3992. vocab.special_bos_id = -1;
  3993. vocab.special_eos_id = -1;
  3994. vocab.special_unk_id = -1;
  3995. vocab.special_sep_id = -1;
  3996. vocab.special_pad_id = -1;
  3997. vocab.special_cls_id = -1;
  3998. vocab.special_mask_id = -1;
  3999. vocab.linefeed_id = -1;
  4000. return;
  4001. } else if (tokenizer_model == "llama") {
  4002. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4003. // default special tokens
  4004. vocab.special_bos_id = 1;
  4005. vocab.special_eos_id = 2;
  4006. vocab.special_unk_id = 0;
  4007. vocab.special_sep_id = -1;
  4008. vocab.special_pad_id = -1;
  4009. vocab.special_cls_id = -1;
  4010. vocab.special_mask_id = -1;
  4011. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4012. // prior to support of FIM special tokens in GGUF, the following
  4013. // will allow those models to continue to work. The general names
  4014. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4015. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4016. // new versions of these models have been published.
  4017. std::string gen_name;
  4018. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4019. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4020. [](unsigned char c){ return std::tolower(c); });
  4021. if (gen_name.find("code") != std::string::npos) {
  4022. if (model.arch == LLM_ARCH_LLAMA) {
  4023. vocab.special_prefix_id = 32007;
  4024. vocab.special_suffix_id = 32008;
  4025. vocab.special_middle_id = 32009;
  4026. vocab.special_eot_id = 32010;
  4027. } else if (model.arch == LLM_ARCH_GEMMA) {
  4028. vocab.special_prefix_id = 67;
  4029. vocab.special_suffix_id = 69;
  4030. vocab.special_middle_id = 68;
  4031. // TODO: this is not EOT, it is "file separator" token, needs fix
  4032. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4033. //vocab.special_eot_id = 70;
  4034. vocab.special_eot_id = 107;
  4035. }
  4036. }
  4037. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4038. if (add_space_prefix_keyidx != -1) {
  4039. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4040. } // The default value of add_space_prefix is true.
  4041. } else if (tokenizer_model == "bert") {
  4042. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4043. // default special tokens
  4044. vocab.special_bos_id = -1;
  4045. vocab.special_eos_id = -1;
  4046. vocab.special_unk_id = 100;
  4047. vocab.special_sep_id = 102;
  4048. vocab.special_pad_id = 0;
  4049. vocab.special_cls_id = 101;
  4050. vocab.special_mask_id = 103;
  4051. vocab.add_space_prefix = false;
  4052. } else if (tokenizer_model == "gpt2") {
  4053. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4054. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4055. if (add_space_prefix_keyidx != -1) {
  4056. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4057. }
  4058. // read bpe merges and populate bpe ranks
  4059. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4060. if (merges_keyidx == -1) {
  4061. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4062. }
  4063. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4064. for (int i = 0; i < n_merges; i++) {
  4065. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4066. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4067. std::string first;
  4068. std::string second;
  4069. const size_t pos = word.find(' ', 1);
  4070. if (pos != std::string::npos) {
  4071. first = word.substr(0, pos);
  4072. second = word.substr(pos + 1);
  4073. }
  4074. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4075. }
  4076. // default special tokens
  4077. vocab.special_bos_id = 11;
  4078. vocab.special_eos_id = 11;
  4079. vocab.special_unk_id = -1;
  4080. vocab.special_sep_id = -1;
  4081. vocab.special_pad_id = -1;
  4082. vocab.special_cls_id = -1;
  4083. vocab.special_mask_id = -1;
  4084. } else {
  4085. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4086. }
  4087. // for now, only BPE models have pre-tokenizers
  4088. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4089. if (tokenizer_pre.empty()) {
  4090. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4091. LLAMA_LOG_WARN("%s: \n", __func__);
  4092. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4093. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4094. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4095. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4096. LLAMA_LOG_WARN("%s: \n", __func__);
  4097. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4098. } else if (
  4099. tokenizer_pre == "default") {
  4100. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4101. } else if (
  4102. tokenizer_pre == "llama3" ||
  4103. tokenizer_pre == "llama-v3" ||
  4104. tokenizer_pre == "llama-bpe") {
  4105. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4106. } else if (
  4107. tokenizer_pre == "deepseek-llm") {
  4108. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4109. } else if (
  4110. tokenizer_pre == "deepseek-coder") {
  4111. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4112. } else if (
  4113. tokenizer_pre == "falcon") {
  4114. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4115. } else if (
  4116. tokenizer_pre == "mpt") {
  4117. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4118. } else if (
  4119. tokenizer_pre == "starcoder") {
  4120. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4121. } else if (
  4122. tokenizer_pre == "gpt-2" ||
  4123. tokenizer_pre == "jina-es" ||
  4124. tokenizer_pre == "jina-de" ||
  4125. tokenizer_pre == "jina-v2-es" ||
  4126. tokenizer_pre == "jina-v2-de") {
  4127. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4128. } else if (
  4129. tokenizer_pre == "refact") {
  4130. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4131. } else if (
  4132. tokenizer_pre == "command-r") {
  4133. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4134. } else if (
  4135. tokenizer_pre == "qwen2") {
  4136. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4137. } else if (
  4138. tokenizer_pre == "stablelm2") {
  4139. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4140. } else if (
  4141. tokenizer_pre == "olmo") {
  4142. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4143. } else if (
  4144. tokenizer_pre == "dbrx") {
  4145. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4146. } else if (
  4147. tokenizer_pre == "smaug-bpe") {
  4148. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4149. } else {
  4150. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4151. }
  4152. } else {
  4153. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4154. }
  4155. }
  4156. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4157. if (token_idx == -1) {
  4158. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4159. }
  4160. const float * scores = nullptr;
  4161. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4162. if (score_idx != -1) {
  4163. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4164. }
  4165. const int * toktypes = nullptr;
  4166. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4167. if (toktype_idx != -1) {
  4168. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4169. }
  4170. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4171. vocab.id_to_token.resize(n_vocab);
  4172. for (uint32_t i = 0; i < n_vocab; i++) {
  4173. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4174. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4175. vocab.token_to_id[word] = i;
  4176. auto & token_data = vocab.id_to_token[i];
  4177. token_data.text = std::move(word);
  4178. token_data.score = scores ? scores[i] : 0.0f;
  4179. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4180. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4181. switch(toktypes[i]) {
  4182. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4183. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4184. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4185. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4186. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4187. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4188. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4189. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4190. }
  4191. }
  4192. }
  4193. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4194. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4195. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4196. try {
  4197. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4198. } catch (const std::exception & e) {
  4199. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4200. vocab.linefeed_id = vocab.special_pad_id;
  4201. }
  4202. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4203. vocab.linefeed_id = vocab.special_pad_id;
  4204. } else {
  4205. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4206. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4207. vocab.linefeed_id = ids[0];
  4208. }
  4209. // special tokens
  4210. {
  4211. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4212. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4213. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4214. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4215. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4216. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4217. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4218. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4219. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4220. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4221. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4222. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4223. };
  4224. for (const auto & it : special_token_types) {
  4225. const std::string & key = kv(std::get<0>(it));
  4226. int32_t & id = std::get<1>(it);
  4227. uint32_t new_id;
  4228. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4229. continue;
  4230. }
  4231. if (new_id >= vocab.id_to_token.size()) {
  4232. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4233. __func__, key.c_str(), new_id, id);
  4234. } else {
  4235. id = new_id;
  4236. }
  4237. }
  4238. // Handle add_bos_token and add_eos_token
  4239. {
  4240. bool temp = true;
  4241. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4242. vocab.special_add_bos = int(temp);
  4243. }
  4244. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4245. vocab.special_add_eos = int(temp);
  4246. }
  4247. }
  4248. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4249. //
  4250. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4251. // for now, we apply this workaround to find the EOT token based on its text
  4252. if (vocab.special_eot_id == -1) {
  4253. for (const auto & t : vocab.token_to_id) {
  4254. if (
  4255. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4256. // need to fix convert script
  4257. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4258. (t.first == "<|eot_id|>" ||
  4259. t.first == "<|im_end|>" ||
  4260. t.first == "<|end|>" ||
  4261. t.first == "<end_of_turn>" ||
  4262. t.first == "<|endoftext|>"
  4263. )
  4264. ) {
  4265. vocab.special_eot_id = t.second;
  4266. break;
  4267. }
  4268. }
  4269. }
  4270. }
  4271. // build special tokens cache
  4272. {
  4273. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4274. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4275. vocab.cache_special_tokens.push_back(id);
  4276. }
  4277. }
  4278. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4279. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4280. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4281. }
  4282. );
  4283. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4284. }
  4285. // build token to piece cache
  4286. {
  4287. size_t size_cache = 0;
  4288. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4289. for (uint32_t id = 0; id < n_vocab; ++id) {
  4290. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4291. size_cache += cache_token_to_piece[id].size();
  4292. }
  4293. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4294. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4295. }
  4296. // Handle per token attributes
  4297. //NOTE: Each model customizes per token attributes.
  4298. //NOTE: Per token attributes are missing from the GGUF file.
  4299. //TODO: Extract attributes from GGUF file.
  4300. {
  4301. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4302. for (auto substr : substrs) {
  4303. if (str.find(substr) < std::string::npos) {
  4304. return true;
  4305. }
  4306. }
  4307. return false;
  4308. };
  4309. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4310. uint32_t current = vocab.id_to_token.at(id).attr;
  4311. current = value ? (current | attr) : (current & ~attr);
  4312. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4313. };
  4314. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4315. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4316. };
  4317. std::string model_name;
  4318. std::string tokenizer_pre;
  4319. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4320. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4321. // model name to lowercase
  4322. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4323. [] (const std::string::value_type x) {
  4324. return std::tolower(x);
  4325. }
  4326. );
  4327. // set attributes by model/tokenizer name
  4328. if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
  4329. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4330. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4331. for (auto id : vocab.cache_special_tokens) {
  4332. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4333. }
  4334. for (auto token : {"</s>"}) {
  4335. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4336. }
  4337. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4338. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4339. }
  4340. }
  4341. }
  4342. }
  4343. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4344. const auto & hparams = model.hparams;
  4345. const auto & vocab = model.vocab;
  4346. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4347. // hparams
  4348. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4349. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4350. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4351. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4352. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4353. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4354. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4355. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4356. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4357. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4358. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4359. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4360. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4361. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4362. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4363. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4364. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4365. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4366. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4367. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4368. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4369. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4370. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4371. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4372. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4373. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4374. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4375. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4376. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4377. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4378. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4379. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4380. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4381. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4382. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4383. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4384. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4385. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4386. if (ml.n_elements >= 1e12) {
  4387. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4388. } else if (ml.n_elements >= 1e9) {
  4389. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4390. } else if (ml.n_elements >= 1e6) {
  4391. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4392. } else {
  4393. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4394. }
  4395. if (ml.n_bytes < GiB) {
  4396. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4397. } else {
  4398. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4399. }
  4400. // general kv
  4401. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4402. // special tokens
  4403. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4404. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4405. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4406. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4407. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4408. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4409. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4410. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4411. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4412. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4413. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4414. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4415. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4416. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4417. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4418. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4419. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4420. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4421. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4422. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4423. }
  4424. }
  4425. // Returns false if cancelled by progress_callback
  4426. static bool llm_load_tensors(
  4427. llama_model_loader & ml,
  4428. llama_model & model,
  4429. int n_gpu_layers,
  4430. enum llama_split_mode split_mode,
  4431. int main_gpu,
  4432. const float * tensor_split,
  4433. bool use_mlock,
  4434. llama_progress_callback progress_callback,
  4435. void * progress_callback_user_data) {
  4436. model.t_start_us = ggml_time_us();
  4437. auto & hparams = model.hparams;
  4438. #ifdef GGML_USE_SYCL
  4439. // disable MoE with SYCL until mul_mat_id is updated
  4440. if (hparams.n_expert > 0) {
  4441. n_gpu_layers = 0;
  4442. }
  4443. #endif
  4444. model.split_mode = split_mode;
  4445. model.main_gpu = main_gpu;
  4446. model.n_gpu_layers = n_gpu_layers;
  4447. const int64_t n_layer = hparams.n_layer;
  4448. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4449. bool use_mmap_buffer = true;
  4450. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4451. model.buft_input = llama_default_buffer_type_cpu(true);
  4452. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4453. model.buft_layer.resize(n_layer);
  4454. // assign cpu layers
  4455. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4456. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4457. }
  4458. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4459. // calculate the split points
  4460. int device_count = llama_get_device_count(model);
  4461. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4462. std::vector<float> splits(device_count);
  4463. if (all_zero) {
  4464. // default split, by free memory
  4465. for (int i = 0; i < device_count; ++i) {
  4466. splits[i] = llama_get_device_memory(model, i);
  4467. }
  4468. } else {
  4469. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4470. }
  4471. // sum and normalize the splits to get the split points
  4472. float split_sum = 0.0f;
  4473. for (int i = 0; i < device_count; ++i) {
  4474. split_sum += splits[i];
  4475. splits[i] = split_sum;
  4476. }
  4477. for (int i = 0; i < device_count; ++i) {
  4478. splits[i] /= split_sum;
  4479. }
  4480. // assign the repeating layers to the devices according to the splits
  4481. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4482. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4483. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4484. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4485. }
  4486. // assign the output layer
  4487. if (n_gpu_layers > n_layer) {
  4488. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4489. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4490. } else {
  4491. model.buft_output = llama_default_buffer_type_cpu(true);
  4492. }
  4493. } else {
  4494. ggml_backend_buffer_type_t split_buft;
  4495. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4496. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4497. } else {
  4498. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4499. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4500. }
  4501. // assign the repeating layers
  4502. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4503. model.buft_layer[i] = {
  4504. split_buft,
  4505. llama_default_buffer_type_offload(model, main_gpu)
  4506. };
  4507. }
  4508. // assign the output layer
  4509. if (n_gpu_layers > n_layer) {
  4510. model.buft_output = {
  4511. split_buft,
  4512. llama_default_buffer_type_offload(model, main_gpu)
  4513. };
  4514. } else {
  4515. model.buft_output = llama_default_buffer_type_cpu(true);
  4516. }
  4517. }
  4518. // count used buffer types
  4519. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4520. buft_layer_count[model.buft_input.buft]++;
  4521. buft_layer_count[model.buft_input.buft_matrix]++;
  4522. buft_layer_count[model.buft_output.buft]++;
  4523. buft_layer_count[model.buft_output.buft_matrix]++;
  4524. for (int64_t i = 0; i < n_layer; ++i) {
  4525. buft_layer_count[model.buft_layer[i].buft]++;
  4526. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4527. }
  4528. // create one context per buffer type
  4529. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4530. // for moe merged tensors
  4531. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4532. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4533. for (auto & it : buft_layer_count) {
  4534. struct ggml_init_params params = {
  4535. /*.mem_size =*/ ctx_size,
  4536. /*.mem_buffer =*/ NULL,
  4537. /*.no_alloc =*/ true,
  4538. };
  4539. ggml_context * ctx = ggml_init(params);
  4540. if (!ctx) {
  4541. throw std::runtime_error(format("failed to create context"));
  4542. }
  4543. ctx_map[it.first] = ctx;
  4544. model.ctxs.push_back(ctx);
  4545. }
  4546. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4547. // create tensors for the weights
  4548. {
  4549. const int64_t n_embd = hparams.n_embd;
  4550. const int64_t n_embd_head = n_embd / hparams.n_head;
  4551. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4552. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4553. const int64_t n_embd_gqa = n_embd_v_gqa;
  4554. const int64_t n_vocab = hparams.n_vocab;
  4555. const int64_t n_vocab_type = hparams.n_vocab_type;
  4556. const int64_t n_ff = hparams.n_ff;
  4557. const int64_t n_expert = hparams.n_expert;
  4558. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4559. throw std::runtime_error("model has expert layers but no expert layers are used");
  4560. }
  4561. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4562. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4563. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4564. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4565. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4566. model.layers.resize(n_layer);
  4567. const auto tn = LLM_TN(model.arch);
  4568. switch (model.arch) {
  4569. case LLM_ARCH_LLAMA:
  4570. case LLM_ARCH_REFACT:
  4571. case LLM_ARCH_MINICPM:
  4572. {
  4573. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4574. // output
  4575. {
  4576. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4577. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4578. // if output is NULL, init from the input tok embed
  4579. if (model.output == NULL) {
  4580. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4581. }
  4582. }
  4583. for (int i = 0; i < n_layer; ++i) {
  4584. ggml_context * ctx_layer = ctx_for_layer(i);
  4585. ggml_context * ctx_split = ctx_for_layer_split(i);
  4586. auto & layer = model.layers[i];
  4587. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4588. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4589. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4590. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4591. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4592. // optional bias tensors
  4593. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4594. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4595. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4596. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4597. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4598. if (n_expert == 0) {
  4599. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4600. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4601. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4602. // optional MLP bias
  4603. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4604. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4605. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4606. } else {
  4607. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4608. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4609. if (layer.ffn_gate_exps) {
  4610. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4611. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4612. } else {
  4613. // merge split expert into a single tensor for compatibility with older models
  4614. // requires disabling mmap
  4615. use_mmap_buffer = false;
  4616. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4617. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4618. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4619. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4620. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4621. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4622. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4623. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4624. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4625. for (uint32_t x = 0; x < n_expert; ++x) {
  4626. // the individual experts are loaded into a view of the merged tensor
  4627. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4628. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4629. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4630. }
  4631. }
  4632. }
  4633. }
  4634. } break;
  4635. case LLM_ARCH_GROK:
  4636. {
  4637. if (n_expert == 0) {
  4638. throw std::runtime_error("Grok model cannot have zero experts");
  4639. }
  4640. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4641. // output
  4642. {
  4643. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4644. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4645. // if output is NULL, init from the input tok embed
  4646. if (model.output == NULL) {
  4647. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4648. }
  4649. }
  4650. for (int i = 0; i < n_layer; ++i) {
  4651. ggml_context * ctx_layer = ctx_for_layer(i);
  4652. ggml_context * ctx_split = ctx_for_layer_split(i);
  4653. auto & layer = model.layers[i];
  4654. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4655. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4656. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4657. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4658. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4659. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4660. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4661. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4662. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4663. if (layer.ffn_gate_exps) {
  4664. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4665. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4666. } else {
  4667. // merge split expert into a single tensor for compatibility with older models
  4668. // requires disabling mmap
  4669. use_mmap_buffer = false;
  4670. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4671. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4672. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4673. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4674. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4675. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4676. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4677. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4678. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4679. for (uint32_t x = 0; x < n_expert; ++x) {
  4680. // the individual experts are loaded into a view of the merged tensor
  4681. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4682. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4683. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4684. }
  4685. }
  4686. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4687. }
  4688. } break;
  4689. case LLM_ARCH_DBRX:
  4690. {
  4691. if (n_expert == 0) {
  4692. throw std::runtime_error("DBRX model cannot have zero experts");
  4693. }
  4694. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4695. // output
  4696. {
  4697. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4698. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4699. }
  4700. for (int i = 0; i < n_layer; ++i) {
  4701. ggml_context * ctx_layer = ctx_for_layer(i);
  4702. ggml_context * ctx_split = ctx_for_layer_split(i);
  4703. auto & layer = model.layers[i];
  4704. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4705. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4706. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4707. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4708. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4709. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4710. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4711. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4712. }
  4713. } break;
  4714. case LLM_ARCH_BAICHUAN:
  4715. {
  4716. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4717. {
  4718. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4719. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4720. }
  4721. for (int i = 0; i < n_layer; ++i) {
  4722. ggml_context * ctx_layer = ctx_for_layer(i);
  4723. ggml_context * ctx_split = ctx_for_layer_split(i);
  4724. auto & layer = model.layers[i];
  4725. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4726. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4727. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4728. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4729. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4730. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4731. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4732. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4733. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4734. }
  4735. } break;
  4736. case LLM_ARCH_FALCON:
  4737. {
  4738. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4739. // output
  4740. {
  4741. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4742. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4743. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4744. if (!model.output) {
  4745. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4746. }
  4747. }
  4748. for (int i = 0; i < n_layer; ++i) {
  4749. ggml_context * ctx_layer = ctx_for_layer(i);
  4750. ggml_context * ctx_split = ctx_for_layer_split(i);
  4751. auto & layer = model.layers[i];
  4752. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4753. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4754. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4755. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4756. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4757. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4758. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4759. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4760. }
  4761. } break;
  4762. case LLM_ARCH_STARCODER:
  4763. {
  4764. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4765. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4766. // output
  4767. {
  4768. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4769. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4770. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4771. if (!model.output) {
  4772. // needs to be on GPU
  4773. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4774. }
  4775. }
  4776. for (int i = 0; i < n_layer; ++i) {
  4777. ggml_context * ctx_layer = ctx_for_layer(i);
  4778. ggml_context * ctx_split = ctx_for_layer_split(i);
  4779. auto & layer = model.layers[i];
  4780. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4781. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4782. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4783. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4784. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4785. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4786. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4787. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4788. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4789. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4790. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4791. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4792. }
  4793. } break;
  4794. case LLM_ARCH_BERT:
  4795. case LLM_ARCH_NOMIC_BERT:
  4796. {
  4797. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4798. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4799. if (model.arch == LLM_ARCH_BERT) {
  4800. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4801. }
  4802. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4803. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4804. for (int i = 0; i < n_layer; ++i) {
  4805. ggml_context * ctx_layer = ctx_for_layer(i);
  4806. ggml_context * ctx_split = ctx_for_layer_split(i);
  4807. auto & layer = model.layers[i];
  4808. if (model.arch == LLM_ARCH_BERT) {
  4809. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4810. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4811. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4812. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4813. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4814. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4815. } else {
  4816. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4817. }
  4818. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4819. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4820. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4821. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4822. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4823. if (model.arch == LLM_ARCH_BERT) {
  4824. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4825. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4826. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4827. } else {
  4828. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4829. }
  4830. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4831. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4832. }
  4833. } break;
  4834. case LLM_ARCH_JINA_BERT_V2:
  4835. {
  4836. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4837. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4838. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4839. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4840. for (int i = 0; i < n_layer; ++i) {
  4841. ggml_context * ctx_layer = ctx_for_layer(i);
  4842. ggml_context * ctx_split = ctx_for_layer_split(i);
  4843. auto & layer = model.layers[i]; // JinaBertLayer
  4844. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4845. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4846. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4847. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4848. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4849. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4850. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4851. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4852. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4853. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4854. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4855. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4856. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4857. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4858. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4859. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4860. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4861. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4862. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4863. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4864. }
  4865. } break;
  4866. case LLM_ARCH_BLOOM:
  4867. {
  4868. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4869. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4870. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4871. // output
  4872. {
  4873. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4874. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4875. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4876. }
  4877. for (int i = 0; i < n_layer; ++i) {
  4878. ggml_context * ctx_layer = ctx_for_layer(i);
  4879. ggml_context * ctx_split = ctx_for_layer_split(i);
  4880. auto & layer = model.layers[i];
  4881. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4882. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4883. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4884. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4885. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4886. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4887. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4888. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4889. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4890. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4891. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4892. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4893. }
  4894. } break;
  4895. case LLM_ARCH_MPT:
  4896. {
  4897. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4898. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4899. // output
  4900. {
  4901. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4902. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4903. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4904. if (!model.output) {
  4905. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4906. }
  4907. }
  4908. for (int i = 0; i < n_layer; ++i) {
  4909. ggml_context * ctx_layer = ctx_for_layer(i);
  4910. ggml_context * ctx_split = ctx_for_layer_split(i);
  4911. auto & layer = model.layers[i];
  4912. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4913. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4914. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4915. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4916. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4917. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4918. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4919. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4920. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4921. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4922. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4923. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4924. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4925. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4926. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4927. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4928. // AWQ ScaleActivation layer
  4929. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4930. }
  4931. } break;
  4932. case LLM_ARCH_STABLELM:
  4933. {
  4934. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4935. // output
  4936. {
  4937. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4938. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4939. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4940. }
  4941. for (int i = 0; i < n_layer; ++i) {
  4942. ggml_context * ctx_layer = ctx_for_layer(i);
  4943. ggml_context * ctx_split = ctx_for_layer_split(i);
  4944. auto & layer = model.layers[i];
  4945. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4946. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4947. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4948. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4949. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4950. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4951. // optional bias tensors, present in Stable LM 2 1.6B
  4952. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4953. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4954. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4955. // optional q and k layernorms, present in StableLM 2 12B
  4956. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4957. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4958. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4959. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4960. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4961. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4962. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4963. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4964. }
  4965. } break;
  4966. case LLM_ARCH_QWEN:
  4967. {
  4968. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4969. // output
  4970. {
  4971. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4972. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4973. }
  4974. for (int i = 0; i < n_layer; ++i) {
  4975. ggml_context * ctx_layer = ctx_for_layer(i);
  4976. ggml_context * ctx_split = ctx_for_layer_split(i);
  4977. auto & layer = model.layers[i];
  4978. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4979. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4980. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4981. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4982. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4983. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4984. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4985. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4986. }
  4987. } break;
  4988. case LLM_ARCH_QWEN2:
  4989. {
  4990. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4991. // output
  4992. {
  4993. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4994. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4995. // if output is NULL, init from the input tok embed
  4996. if (model.output == NULL) {
  4997. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4998. }
  4999. }
  5000. for (int i = 0; i < n_layer; ++i) {
  5001. ggml_context * ctx_layer = ctx_for_layer(i);
  5002. ggml_context * ctx_split = ctx_for_layer_split(i);
  5003. auto & layer = model.layers[i];
  5004. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5005. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5006. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5007. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5008. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5009. // optional bias tensors
  5010. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5011. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5012. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5013. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5014. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5015. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5016. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5017. }
  5018. } break;
  5019. case LLM_ARCH_QWEN2MOE:
  5020. {
  5021. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5022. // output
  5023. {
  5024. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5025. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5026. }
  5027. for (int i = 0; i < n_layer; ++i) {
  5028. ggml_context * ctx_layer = ctx_for_layer(i);
  5029. ggml_context * ctx_split = ctx_for_layer_split(i);
  5030. auto & layer = model.layers[i];
  5031. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5032. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5033. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5034. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5035. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5036. // optional bias tensors
  5037. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5038. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5039. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5040. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5041. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5042. GGML_ASSERT(hparams.n_expert > 0);
  5043. GGML_ASSERT(hparams.n_expert_used > 0);
  5044. // MoE branch
  5045. auto n_ff_exp = n_ff / hparams.n_expert_used;
  5046. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5047. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5048. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5049. // Shared expert branch
  5050. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5051. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  5052. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  5053. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  5054. }
  5055. } break;
  5056. case LLM_ARCH_PHI2:
  5057. {
  5058. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5059. // output
  5060. {
  5061. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5062. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5063. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5064. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5065. }
  5066. for (int i = 0; i < n_layer; ++i) {
  5067. ggml_context * ctx_layer = ctx_for_layer(i);
  5068. ggml_context * ctx_split = ctx_for_layer_split(i);
  5069. auto & layer = model.layers[i];
  5070. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5071. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5072. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5073. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5074. if (layer.wqkv == nullptr) {
  5075. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5076. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5077. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5078. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5079. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5080. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5081. }
  5082. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5083. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5084. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5085. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5086. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5087. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5088. }
  5089. } break;
  5090. case LLM_ARCH_PHI3:
  5091. {
  5092. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5093. // output
  5094. {
  5095. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5096. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5097. }
  5098. for (int i = 0; i < n_layer; ++i) {
  5099. ggml_context* ctx_layer = ctx_for_layer(i);
  5100. ggml_context* ctx_split = ctx_for_layer_split(i);
  5101. auto & layer = model.layers[i];
  5102. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5103. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5104. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5105. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5106. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5107. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5108. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5109. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5110. }
  5111. } break;
  5112. case LLM_ARCH_PLAMO:
  5113. {
  5114. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5115. // output
  5116. {
  5117. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5118. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5119. }
  5120. for (int i = 0; i < n_layer; ++i) {
  5121. ggml_context * ctx_layer = ctx_for_layer(i);
  5122. ggml_context * ctx_split = ctx_for_layer_split(i);
  5123. auto & layer = model.layers[i];
  5124. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5125. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5126. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5127. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5128. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5129. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5130. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5131. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5132. }
  5133. } break;
  5134. case LLM_ARCH_GPT2:
  5135. {
  5136. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5137. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5138. // output
  5139. {
  5140. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5141. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5142. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5143. }
  5144. for (int i = 0; i < n_layer; ++i) {
  5145. ggml_context * ctx_layer = ctx_for_layer(i);
  5146. ggml_context * ctx_split = ctx_for_layer_split(i);
  5147. auto & layer = model.layers[i];
  5148. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5149. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5150. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5151. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5152. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5153. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5154. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5155. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5156. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5157. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5158. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5159. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5160. }
  5161. } break;
  5162. case LLM_ARCH_CODESHELL:
  5163. {
  5164. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5165. // output
  5166. {
  5167. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5168. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5169. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5170. }
  5171. for (int i = 0; i < n_layer; ++i) {
  5172. ggml_context * ctx_layer = ctx_for_layer(i);
  5173. ggml_context * ctx_split = ctx_for_layer_split(i);
  5174. auto & layer = model.layers[i];
  5175. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5176. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5177. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5178. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5179. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5180. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5181. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5182. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5183. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5184. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5185. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5186. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5187. }
  5188. } break;
  5189. case LLM_ARCH_ORION:
  5190. {
  5191. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5192. {
  5193. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5194. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5195. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5196. }
  5197. for (int i = 0; i < n_layer; ++i) {
  5198. ggml_context * ctx_layer = ctx_for_layer(i);
  5199. ggml_context * ctx_split = ctx_for_layer_split(i);
  5200. auto & layer = model.layers[i];
  5201. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5202. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5203. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5204. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5205. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5206. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5207. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5208. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5209. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5210. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5211. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5212. }
  5213. } break;
  5214. case LLM_ARCH_INTERNLM2:
  5215. {
  5216. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5217. // output
  5218. {
  5219. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5220. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5221. }
  5222. for (int i = 0; i < n_layer; ++i) {
  5223. ggml_context * ctx_layer = ctx_for_layer(i);
  5224. ggml_context * ctx_split = ctx_for_layer_split(i);
  5225. auto & layer = model.layers[i];
  5226. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5227. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5228. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5229. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5230. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5231. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5232. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5233. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5234. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5235. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5236. }
  5237. } break;
  5238. case LLM_ARCH_GEMMA:
  5239. {
  5240. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5241. // output
  5242. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5243. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5244. const int64_t n_ff = hparams.n_ff;
  5245. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5246. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5247. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5248. for (uint32_t i = 0; i < n_layer; ++i) {
  5249. ggml_context * ctx_layer = ctx_for_layer(i);
  5250. ggml_context * ctx_split = ctx_for_layer_split(i);
  5251. auto & layer = model.layers[i];
  5252. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5253. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5254. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5255. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5256. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5257. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5258. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5259. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5260. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5261. }
  5262. } break;
  5263. case LLM_ARCH_STARCODER2:
  5264. {
  5265. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5266. // output
  5267. {
  5268. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5269. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5270. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5271. // if output is NULL, init from the input tok embed
  5272. if (model.output == NULL) {
  5273. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5274. }
  5275. }
  5276. for (int i = 0; i < n_layer; ++i) {
  5277. ggml_context * ctx_layer = ctx_for_layer(i);
  5278. ggml_context * ctx_split = ctx_for_layer_split(i);
  5279. auto & layer = model.layers[i];
  5280. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5281. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5282. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5283. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5284. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5285. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5286. // optional bias tensors
  5287. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5288. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5289. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5290. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5291. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5292. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5293. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5294. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5295. // optional bias tensors
  5296. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5297. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5298. }
  5299. } break;
  5300. case LLM_ARCH_MAMBA:
  5301. {
  5302. const int64_t d_conv = hparams.ssm_d_conv;
  5303. const int64_t d_inner = hparams.ssm_d_inner;
  5304. const int64_t d_state = hparams.ssm_d_state;
  5305. const int64_t dt_rank = hparams.ssm_dt_rank;
  5306. // only an expansion factor of 2 is supported for now
  5307. GGML_ASSERT(2 * n_embd == d_inner);
  5308. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5309. // output
  5310. {
  5311. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5312. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5313. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5314. if (model.output == NULL) {
  5315. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5316. }
  5317. }
  5318. for (int i = 0; i < n_layer; ++i) {
  5319. ggml_context * ctx_layer = ctx_for_layer(i);
  5320. ggml_context * ctx_split = ctx_for_layer_split(i);
  5321. auto & layer = model.layers[i];
  5322. // norm
  5323. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5324. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5325. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5326. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5327. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5328. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5329. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5330. // no "weight" suffix for these
  5331. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5332. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5333. // out_proj
  5334. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5335. }
  5336. } break;
  5337. case LLM_ARCH_XVERSE:
  5338. {
  5339. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5340. {
  5341. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5342. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5343. }
  5344. for (int i = 0; i < n_layer; ++i) {
  5345. ggml_context * ctx_layer = ctx_for_layer(i);
  5346. ggml_context * ctx_split = ctx_for_layer_split(i);
  5347. auto & layer = model.layers[i];
  5348. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5349. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5350. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5351. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5352. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5353. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5354. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5355. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5356. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5357. }
  5358. } break;
  5359. case LLM_ARCH_COMMAND_R:
  5360. {
  5361. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5362. // output
  5363. {
  5364. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5365. // init output from the input tok embed
  5366. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5367. }
  5368. for (int i = 0; i < n_layer; ++i) {
  5369. ggml_context * ctx_layer = ctx_for_layer(i);
  5370. ggml_context * ctx_split = ctx_for_layer_split(i);
  5371. auto & layer = model.layers[i];
  5372. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5373. if (n_layer >= 64){
  5374. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5375. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5376. }
  5377. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5378. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5379. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5380. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5381. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5382. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5383. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5384. }
  5385. } break;
  5386. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5387. {
  5388. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5389. // output
  5390. {
  5391. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5392. // if output is NULL, init from the input tok embed
  5393. if (model.output == NULL) {
  5394. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5395. }
  5396. }
  5397. for (int i = 0; i < n_layer; ++i) {
  5398. ggml_context * ctx_split = ctx_for_layer_split(i);
  5399. auto & layer = model.layers[i];
  5400. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5401. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5402. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5403. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5404. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5405. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5406. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5407. }
  5408. } break;
  5409. case LLM_ARCH_GPTNEOX:
  5410. {
  5411. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5412. // output
  5413. {
  5414. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5415. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5416. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5417. }
  5418. for (int i = 0; i < n_layer; ++i) {
  5419. ggml_context * ctx_layer = ctx_for_layer(i);
  5420. ggml_context * ctx_split = ctx_for_layer_split(i);
  5421. auto & layer = model.layers[i];
  5422. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5423. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5424. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5425. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5426. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5427. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5428. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5429. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5430. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5431. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5432. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5433. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5434. }
  5435. } break;
  5436. case LLM_ARCH_ARCTIC:
  5437. {
  5438. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5439. // output
  5440. {
  5441. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5442. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5443. // if output is NULL, init from the input tok embed
  5444. if (model.output == NULL) {
  5445. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5446. }
  5447. }
  5448. for (int i = 0; i < n_layer; ++i) {
  5449. ggml_context * ctx_layer = ctx_for_layer(i);
  5450. ggml_context * ctx_split = ctx_for_layer_split(i);
  5451. auto & layer = model.layers[i];
  5452. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5453. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5454. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5455. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5456. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5457. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5458. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5459. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5460. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5461. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5462. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5463. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5464. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5465. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5466. }
  5467. } break;
  5468. case LLM_ARCH_DEEPSEEK2:
  5469. {
  5470. bool is_lite = (hparams.n_layer == 27);
  5471. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5472. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5473. const uint32_t q_lora_rank = hparams.n_lora_q;
  5474. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5475. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5476. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5477. // output
  5478. {
  5479. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5480. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5481. }
  5482. for (int i = 0; i < n_layer; ++i) {
  5483. ggml_context * ctx_layer = ctx_for_layer(i);
  5484. ggml_context * ctx_split = ctx_for_layer_split(i);
  5485. auto & layer = model.layers[i];
  5486. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5487. if (!is_lite) {
  5488. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5489. }
  5490. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5491. if (!is_lite) {
  5492. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5493. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5494. } else {
  5495. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5496. }
  5497. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5498. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5499. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5500. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5501. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5502. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5503. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5504. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5505. } else {
  5506. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5507. GGML_ASSERT(hparams.n_expert > 0);
  5508. GGML_ASSERT(hparams.n_expert_used > 0);
  5509. // MoE branch
  5510. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5511. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5512. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5513. // Shared expert branch
  5514. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5515. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5516. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5517. }
  5518. }
  5519. } break;
  5520. default:
  5521. throw std::runtime_error("unknown architecture");
  5522. }
  5523. }
  5524. ml.done_getting_tensors();
  5525. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5526. model.mappings.reserve(ml.mappings.size());
  5527. // create the backend buffers
  5528. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5529. ctx_bufs.reserve(ctx_map.size());
  5530. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5531. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5532. model.bufs.reserve(n_max_backend_buffer);
  5533. for (auto & it : ctx_map) {
  5534. ggml_backend_buffer_type_t buft = it.first;
  5535. ggml_context * ctx = it.second;
  5536. llama_buf_map bufs;
  5537. bufs.reserve(n_max_backend_buffer);
  5538. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5539. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5540. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5541. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5542. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5543. void * addr = nullptr;
  5544. size_t first, last;
  5545. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5546. if (first >= last) {
  5547. continue;
  5548. }
  5549. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5550. if (buf == nullptr) {
  5551. throw std::runtime_error("unable to allocate backend CPU buffer");
  5552. }
  5553. model.bufs.push_back(buf);
  5554. bufs.emplace(idx, buf);
  5555. #ifdef GGML_USE_CUDA
  5556. if (n_layer >= n_gpu_layers) {
  5557. ggml_backend_cuda_register_host_buffer(
  5558. ggml_backend_buffer_get_base(buf),
  5559. ggml_backend_buffer_get_size(buf));
  5560. }
  5561. #endif
  5562. }
  5563. }
  5564. #ifdef GGML_USE_METAL
  5565. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5566. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5567. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5568. void * addr = nullptr;
  5569. size_t first, last;
  5570. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5571. if (first >= last) {
  5572. continue;
  5573. }
  5574. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5575. if (buf == nullptr) {
  5576. throw std::runtime_error("unable to allocate backend metal buffer");
  5577. }
  5578. model.bufs.push_back(buf);
  5579. bufs.emplace(idx, buf);
  5580. }
  5581. }
  5582. #endif
  5583. else {
  5584. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5585. if (buf == nullptr) {
  5586. throw std::runtime_error("unable to allocate backend buffer");
  5587. }
  5588. model.bufs.push_back(buf);
  5589. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5590. model.mlock_bufs.emplace_back(new llama_mlock);
  5591. auto & mlock_buf = model.mlock_bufs.back();
  5592. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5593. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5594. }
  5595. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5596. bufs.emplace(idx, buf);
  5597. }
  5598. }
  5599. if (bufs.empty()) {
  5600. throw std::runtime_error("failed to allocate buffer");
  5601. }
  5602. for (auto & buf : bufs) {
  5603. // indicate that this buffer contains weights
  5604. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5605. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5606. }
  5607. ctx_bufs.emplace_back(ctx, bufs);
  5608. }
  5609. if (llama_supports_gpu_offload()) {
  5610. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5611. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5612. if (n_gpu_layers > (int) hparams.n_layer) {
  5613. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5614. }
  5615. const int max_backend_supported_layers = hparams.n_layer + 1;
  5616. const int max_offloadable_layers = hparams.n_layer + 1;
  5617. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5618. }
  5619. // print memory requirements
  5620. for (ggml_backend_buffer_t buf : model.bufs) {
  5621. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5622. }
  5623. // populate tensors_by_name
  5624. for (ggml_context * ctx : model.ctxs) {
  5625. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5626. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5627. }
  5628. }
  5629. // load tensor data
  5630. for (auto & it : ctx_bufs) {
  5631. ggml_context * ctx = it.first;
  5632. auto & bufs = it.second;
  5633. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5634. return false;
  5635. }
  5636. }
  5637. if (use_mmap_buffer) {
  5638. for (auto & mapping : ml.mappings) {
  5639. model.mappings.emplace_back(std::move(mapping));
  5640. }
  5641. }
  5642. // loading time will be recalculate after the first eval, so
  5643. // we take page faults deferred by mmap() into consideration
  5644. model.t_load_us = ggml_time_us() - model.t_start_us;
  5645. return true;
  5646. }
  5647. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5648. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5649. try {
  5650. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5651. model.hparams.vocab_only = params.vocab_only;
  5652. try {
  5653. llm_load_arch(ml, model);
  5654. } catch(const std::exception & e) {
  5655. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5656. }
  5657. try {
  5658. llm_load_hparams(ml, model);
  5659. } catch(const std::exception & e) {
  5660. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5661. }
  5662. try {
  5663. llm_load_vocab(ml, model);
  5664. } catch(const std::exception & e) {
  5665. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5666. }
  5667. llm_load_print_meta(ml, model);
  5668. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5669. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5670. throw std::runtime_error("vocab size mismatch");
  5671. }
  5672. if (params.vocab_only) {
  5673. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5674. return 0;
  5675. }
  5676. #ifdef GGML_USE_KOMPUTE
  5677. if (params.n_gpu_layers > 0 && (
  5678. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5679. || !(
  5680. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5681. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5682. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5683. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5684. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5685. )
  5686. )) {
  5687. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5688. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5689. params.n_gpu_layers = 0;
  5690. }
  5691. #endif
  5692. #ifdef GGML_USE_SYCL
  5693. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5694. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5695. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5696. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5697. } else {
  5698. ggml_backend_sycl_set_mul_device_mode();
  5699. }
  5700. #endif
  5701. if (!llm_load_tensors(
  5702. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5703. params.progress_callback, params.progress_callback_user_data
  5704. )) {
  5705. return -2;
  5706. }
  5707. } catch (const std::exception & err) {
  5708. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5709. return -1;
  5710. }
  5711. return 0;
  5712. }
  5713. //
  5714. // llm_build
  5715. //
  5716. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5717. enum llm_ffn_op_type {
  5718. LLM_FFN_SILU,
  5719. LLM_FFN_GELU,
  5720. LLM_FFN_RELU,
  5721. LLM_FFN_RELU_SQR,
  5722. };
  5723. enum llm_ffn_gate_type {
  5724. LLM_FFN_SEQ,
  5725. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5726. };
  5727. enum llm_norm_type {
  5728. LLM_NORM,
  5729. LLM_NORM_RMS,
  5730. };
  5731. static struct ggml_tensor * llm_build_inp_embd(
  5732. struct ggml_context * ctx,
  5733. struct llama_context & lctx,
  5734. const llama_hparams & hparams,
  5735. const llama_batch & batch,
  5736. struct ggml_tensor * tok_embd,
  5737. const llm_build_cb & cb) {
  5738. const int64_t n_embd = hparams.n_embd;
  5739. struct ggml_tensor * inpL;
  5740. if (batch.token) {
  5741. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5742. cb(lctx.inp_tokens, "inp_tokens", -1);
  5743. ggml_set_input(lctx.inp_tokens);
  5744. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5745. } else {
  5746. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5747. inpL = lctx.inp_embd;
  5748. ggml_set_input(lctx.inp_embd);
  5749. }
  5750. cb(inpL, "inp_embd", -1);
  5751. return inpL;
  5752. }
  5753. static void llm_build_kv_store(
  5754. struct ggml_context * ctx,
  5755. const llama_hparams & hparams,
  5756. const llama_cparams & cparams,
  5757. const llama_kv_cache & kv,
  5758. struct ggml_cgraph * graph,
  5759. struct ggml_tensor * k_cur,
  5760. struct ggml_tensor * v_cur,
  5761. int32_t n_tokens,
  5762. int32_t kv_head,
  5763. const llm_build_cb & cb,
  5764. int64_t il) {
  5765. const int64_t n_ctx = cparams.n_ctx;
  5766. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5767. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5768. GGML_ASSERT(kv.size == n_ctx);
  5769. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5770. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5771. cb(k_cache_view, "k_cache_view", il);
  5772. // note: storing RoPE-ed version of K in the KV cache
  5773. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5774. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5775. struct ggml_tensor * v_cache_view = nullptr;
  5776. if (cparams.flash_attn) {
  5777. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5778. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5779. } else {
  5780. // note: the V cache is transposed when not using flash attention
  5781. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5782. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5783. (kv_head)*ggml_element_size(kv.v_l[il]));
  5784. v_cur = ggml_transpose(ctx, v_cur);
  5785. }
  5786. cb(v_cache_view, "v_cache_view", il);
  5787. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5788. }
  5789. static struct ggml_tensor * llm_build_norm(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * cur,
  5792. const llama_hparams & hparams,
  5793. struct ggml_tensor * mw,
  5794. struct ggml_tensor * mb,
  5795. llm_norm_type type,
  5796. const llm_build_cb & cb,
  5797. int il) {
  5798. switch (type) {
  5799. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5800. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5801. }
  5802. if (mw || mb) {
  5803. cb(cur, "norm", il);
  5804. }
  5805. if (mw) {
  5806. cur = ggml_mul(ctx, cur, mw);
  5807. if (mb) {
  5808. cb(cur, "norm_w", il);
  5809. }
  5810. }
  5811. if (mb) {
  5812. cur = ggml_add(ctx, cur, mb);
  5813. }
  5814. return cur;
  5815. }
  5816. static struct ggml_tensor * llm_build_ffn(
  5817. struct ggml_context * ctx,
  5818. struct ggml_tensor * cur,
  5819. struct ggml_tensor * up,
  5820. struct ggml_tensor * up_b,
  5821. struct ggml_tensor * gate,
  5822. struct ggml_tensor * gate_b,
  5823. struct ggml_tensor * down,
  5824. struct ggml_tensor * down_b,
  5825. struct ggml_tensor * act_scales,
  5826. llm_ffn_op_type type_op,
  5827. llm_ffn_gate_type type_gate,
  5828. const llm_build_cb & cb,
  5829. int il) {
  5830. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5831. cb(tmp, "ffn_up", il);
  5832. if (up_b) {
  5833. tmp = ggml_add(ctx, tmp, up_b);
  5834. cb(tmp, "ffn_up_b", il);
  5835. }
  5836. if (gate) {
  5837. switch (type_gate) {
  5838. case LLM_FFN_SEQ:
  5839. {
  5840. cur = ggml_mul_mat(ctx, gate, tmp);
  5841. cb(cur, "ffn_gate", il);
  5842. } break;
  5843. case LLM_FFN_PAR:
  5844. {
  5845. cur = ggml_mul_mat(ctx, gate, cur);
  5846. cb(cur, "ffn_gate", il);
  5847. } break;
  5848. }
  5849. if (gate_b) {
  5850. cur = ggml_add(ctx, cur, gate_b);
  5851. cb(cur, "ffn_gate_b", il);
  5852. }
  5853. } else {
  5854. cur = tmp;
  5855. }
  5856. switch (type_op) {
  5857. case LLM_FFN_SILU:
  5858. {
  5859. cur = ggml_silu(ctx, cur);
  5860. cb(cur, "ffn_silu", il);
  5861. } break;
  5862. case LLM_FFN_GELU:
  5863. {
  5864. cur = ggml_gelu(ctx, cur);
  5865. cb(cur, "ffn_gelu", il);
  5866. if (act_scales != NULL) {
  5867. cur = ggml_div(ctx, cur, act_scales);
  5868. cb(cur, "ffn_act", il);
  5869. }
  5870. } break;
  5871. case LLM_FFN_RELU:
  5872. {
  5873. cur = ggml_relu(ctx, cur);
  5874. cb(cur, "ffn_relu", il);
  5875. } break;
  5876. case LLM_FFN_RELU_SQR:
  5877. {
  5878. cur = ggml_relu(ctx, cur);
  5879. cb(cur, "ffn_relu", il);
  5880. cur = ggml_sqr(ctx, cur);
  5881. cb(cur, "ffn_sqr(relu)", il);
  5882. } break;
  5883. }
  5884. if (type_gate == LLM_FFN_PAR) {
  5885. cur = ggml_mul(ctx, cur, tmp);
  5886. cb(cur, "ffn_gate_par", il);
  5887. }
  5888. cur = ggml_mul_mat(ctx, down, cur);
  5889. if (down_b) {
  5890. cb(cur, "ffn_down", il);
  5891. }
  5892. if (down_b) {
  5893. cur = ggml_add(ctx, cur, down_b);
  5894. }
  5895. return cur;
  5896. }
  5897. static struct ggml_tensor * llm_build_moe_ffn(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * cur,
  5900. struct ggml_tensor * gate_inp,
  5901. struct ggml_tensor * up_exps,
  5902. struct ggml_tensor * gate_exps,
  5903. struct ggml_tensor * down_exps,
  5904. int64_t n_expert,
  5905. int64_t n_expert_used,
  5906. llm_ffn_op_type type_op,
  5907. bool norm_w,
  5908. bool scale_w,
  5909. float w_scale,
  5910. const llm_build_cb & cb,
  5911. int il) {
  5912. int64_t n_embd = cur->ne[0];
  5913. int64_t n_tokens = cur->ne[1];
  5914. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5915. cb(logits, "ffn_moe_logits", il);
  5916. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5917. cb(probs, "ffn_moe_probs", il);
  5918. // select experts
  5919. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5920. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5921. cb(selected_experts, "ffn_moe_topk", il);
  5922. ggml_tensor * weights = ggml_get_rows(ctx,
  5923. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5924. cb(weights, "ffn_moe_weights", il);
  5925. if (norm_w) {
  5926. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5927. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5928. cb(weights_sum, "ffn_moe_weights_sum", il);
  5929. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5930. cb(weights, "ffn_moe_weights_norm", il);
  5931. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5932. }
  5933. if (scale_w) {
  5934. weights = ggml_scale(ctx, weights, w_scale);
  5935. cb(weights, "ffn_moe_weights_scaled", il);
  5936. }
  5937. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5938. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5939. cb(up, "ffn_moe_up", il);
  5940. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5941. cb(gate, "ffn_moe_gate", il);
  5942. switch (type_op) {
  5943. case LLM_FFN_SILU:
  5944. {
  5945. gate = ggml_silu(ctx, gate);
  5946. cb(gate, "ffn_moe_silu", il);
  5947. } break;
  5948. case LLM_FFN_GELU:
  5949. {
  5950. gate = ggml_gelu(ctx, gate);
  5951. cb(gate, "ffn_moe_gelu", il);
  5952. } break;
  5953. default:
  5954. GGML_ASSERT(false);
  5955. }
  5956. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5957. cb(par, "ffn_moe_gate_par", il);
  5958. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5959. cb(experts, "ffn_moe_down", il);
  5960. experts = ggml_mul(ctx, experts, weights);
  5961. // aggregate experts
  5962. ggml_tensor * moe_out = nullptr;
  5963. for (int i = 0; i < n_expert_used; ++i) {
  5964. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5965. experts->nb[2], i*experts->nb[1]);
  5966. if (i == 0) {
  5967. moe_out = cur_expert;
  5968. } else {
  5969. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5970. }
  5971. }
  5972. if (n_expert_used == 1) {
  5973. // avoid returning a non-contiguous tensor
  5974. moe_out = ggml_cont(ctx, moe_out);
  5975. }
  5976. return moe_out;
  5977. }
  5978. static struct ggml_tensor * llm_build_kqv(
  5979. struct ggml_context * ctx,
  5980. const llama_model & model,
  5981. const llama_hparams & hparams,
  5982. const llama_cparams & cparams,
  5983. const llama_kv_cache & kv,
  5984. struct ggml_cgraph * graph,
  5985. struct ggml_tensor * wo,
  5986. struct ggml_tensor * wo_b,
  5987. struct ggml_tensor * q_cur,
  5988. struct ggml_tensor * kq_mask,
  5989. int32_t n_tokens,
  5990. int32_t n_kv,
  5991. float kq_scale,
  5992. const llm_build_cb & cb,
  5993. int il) {
  5994. const int64_t n_ctx = cparams.n_ctx;
  5995. const int64_t n_head = hparams.n_head;
  5996. const int64_t n_head_kv = hparams.n_head_kv;
  5997. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5998. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5999. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6000. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6001. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6002. cb(q, "q", il);
  6003. struct ggml_tensor * k =
  6004. ggml_view_3d(ctx, kv.k_l[il],
  6005. n_embd_head_k, n_kv, n_head_kv,
  6006. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6007. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6008. 0);
  6009. cb(k, "k", il);
  6010. struct ggml_tensor * cur;
  6011. if (cparams.flash_attn) {
  6012. GGML_UNUSED(model);
  6013. GGML_UNUSED(n_ctx);
  6014. // split cached v into n_head heads (not transposed)
  6015. struct ggml_tensor * v =
  6016. ggml_view_3d(ctx, kv.v_l[il],
  6017. n_embd_head_v, n_kv, n_head_kv,
  6018. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6019. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6020. 0);
  6021. cb(v, "v", il);
  6022. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6023. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6024. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6025. }
  6026. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6027. } else {
  6028. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6029. cb(kq, "kq", il);
  6030. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6031. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6032. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6033. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6034. }
  6035. if (model.arch == LLM_ARCH_GROK) {
  6036. // need to do the following:
  6037. // multiply by attn_output_multiplyer of 0.08838834764831845
  6038. // and then :
  6039. // kq = 30 * tanh(kq / 30)
  6040. // before the softmax below
  6041. //try from phi2
  6042. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6043. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6044. kq = ggml_scale(ctx, kq, 30);
  6045. }
  6046. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6047. cb(kq, "kq_soft_max_ext", il);
  6048. GGML_ASSERT(kv.size == n_ctx);
  6049. // split cached v into n_head heads
  6050. struct ggml_tensor * v =
  6051. ggml_view_3d(ctx, kv.v_l[il],
  6052. n_kv, n_embd_head_v, n_head_kv,
  6053. ggml_element_size(kv.v_l[il])*n_ctx,
  6054. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6055. 0);
  6056. cb(v, "v", il);
  6057. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6058. cb(kqv, "kqv", il);
  6059. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6060. cb(kqv_merged, "kqv_merged", il);
  6061. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6062. cb(cur, "kqv_merged_cont", il);
  6063. }
  6064. ggml_build_forward_expand(graph, cur);
  6065. cur = ggml_mul_mat(ctx, wo, cur);
  6066. if (wo_b) {
  6067. cb(cur, "kqv_wo", il);
  6068. }
  6069. if (wo_b) {
  6070. cur = ggml_add(ctx, cur, wo_b);
  6071. }
  6072. return cur;
  6073. }
  6074. static struct ggml_tensor * llm_build_kv(
  6075. struct ggml_context * ctx,
  6076. const llama_model & model,
  6077. const llama_hparams & hparams,
  6078. const llama_cparams & cparams,
  6079. const llama_kv_cache & kv,
  6080. struct ggml_cgraph * graph,
  6081. struct ggml_tensor * wo,
  6082. struct ggml_tensor * wo_b,
  6083. struct ggml_tensor * k_cur,
  6084. struct ggml_tensor * v_cur,
  6085. struct ggml_tensor * q_cur,
  6086. struct ggml_tensor * kq_mask,
  6087. int32_t n_tokens,
  6088. int32_t kv_head,
  6089. int32_t n_kv,
  6090. float kq_scale,
  6091. const llm_build_cb & cb,
  6092. int il) {
  6093. // these nodes are added to the graph together so that they are not reordered
  6094. // by doing so, the number of splits in the graph is reduced
  6095. ggml_build_forward_expand(graph, q_cur);
  6096. ggml_build_forward_expand(graph, k_cur);
  6097. ggml_build_forward_expand(graph, v_cur);
  6098. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6099. struct ggml_tensor * cur;
  6100. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6101. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6102. cb(cur, "kqv_out", il);
  6103. return cur;
  6104. }
  6105. struct llm_build_context {
  6106. const llama_model & model;
  6107. llama_context & lctx;
  6108. const llama_hparams & hparams;
  6109. const llama_cparams & cparams;
  6110. const llama_batch & batch;
  6111. const llama_kv_cache & kv_self;
  6112. const int64_t n_embd;
  6113. const int64_t n_layer;
  6114. const int64_t n_rot;
  6115. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6116. const int64_t n_head;
  6117. const int64_t n_head_kv;
  6118. const int64_t n_embd_head_k;
  6119. const int64_t n_embd_k_gqa;
  6120. const int64_t n_embd_head_v;
  6121. const int64_t n_embd_v_gqa;
  6122. const int64_t n_expert;
  6123. const int64_t n_expert_used;
  6124. const float freq_base;
  6125. const float freq_scale;
  6126. const float ext_factor;
  6127. const float attn_factor;
  6128. const float beta_fast;
  6129. const float beta_slow;
  6130. const float norm_eps;
  6131. const float norm_rms_eps;
  6132. const int32_t n_tokens;
  6133. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6134. const int32_t n_outputs;
  6135. const int32_t kv_head; // index of where we store new KV data in the cache
  6136. const int32_t n_orig_ctx;
  6137. const bool flash_attn;
  6138. const enum llama_pooling_type pooling_type;
  6139. const enum llama_rope_type rope_type;
  6140. const llm_build_cb & cb;
  6141. std::vector<uint8_t> & buf_compute_meta;
  6142. struct ggml_context * ctx0 = nullptr;
  6143. // TODO: consider making the entire interface noexcept
  6144. llm_build_context(
  6145. llama_context & lctx,
  6146. const llama_batch & batch,
  6147. const llm_build_cb & cb,
  6148. bool worst_case) :
  6149. model (lctx.model),
  6150. lctx (lctx),
  6151. hparams (model.hparams),
  6152. cparams (lctx.cparams),
  6153. batch (batch),
  6154. kv_self (lctx.kv_self),
  6155. n_embd (hparams.n_embd),
  6156. n_layer (hparams.n_layer),
  6157. n_rot (hparams.n_rot),
  6158. n_ctx (cparams.n_ctx),
  6159. n_head (hparams.n_head),
  6160. n_head_kv (hparams.n_head_kv),
  6161. n_embd_head_k (hparams.n_embd_head_k),
  6162. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6163. n_embd_head_v (hparams.n_embd_head_v),
  6164. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6165. n_expert (hparams.n_expert),
  6166. n_expert_used (hparams.n_expert_used),
  6167. freq_base (cparams.rope_freq_base),
  6168. freq_scale (cparams.rope_freq_scale),
  6169. ext_factor (cparams.yarn_ext_factor),
  6170. attn_factor (cparams.yarn_attn_factor),
  6171. beta_fast (cparams.yarn_beta_fast),
  6172. beta_slow (cparams.yarn_beta_slow),
  6173. norm_eps (hparams.f_norm_eps),
  6174. norm_rms_eps (hparams.f_norm_rms_eps),
  6175. n_tokens (batch.n_tokens),
  6176. n_kv (worst_case ? kv_self.size : kv_self.n),
  6177. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6178. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6179. n_orig_ctx (cparams.n_yarn_orig_ctx),
  6180. flash_attn (cparams.flash_attn),
  6181. pooling_type (cparams.pooling_type),
  6182. rope_type (hparams.rope_type),
  6183. cb (cb),
  6184. buf_compute_meta (lctx.buf_compute_meta) {
  6185. // all initializations should be done in init()
  6186. }
  6187. void init() {
  6188. struct ggml_init_params params = {
  6189. /*.mem_size =*/ buf_compute_meta.size(),
  6190. /*.mem_buffer =*/ buf_compute_meta.data(),
  6191. /*.no_alloc =*/ true,
  6192. };
  6193. ctx0 = ggml_init(params);
  6194. lctx.inp_tokens = nullptr;
  6195. lctx.inp_embd = nullptr;
  6196. lctx.inp_pos = nullptr;
  6197. lctx.inp_out_ids = nullptr;
  6198. lctx.inp_KQ_mask = nullptr;
  6199. lctx.inp_K_shift = nullptr;
  6200. lctx.inp_mean = nullptr;
  6201. lctx.inp_cls = nullptr;
  6202. lctx.inp_s_copy = nullptr;
  6203. lctx.inp_s_mask = nullptr;
  6204. lctx.inp_s_seq = nullptr;
  6205. }
  6206. void free() {
  6207. if (ctx0) {
  6208. ggml_free(ctx0);
  6209. ctx0 = nullptr;
  6210. }
  6211. }
  6212. struct ggml_cgraph * build_k_shift() {
  6213. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6214. GGML_ASSERT(kv_self.size == n_ctx);
  6215. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6216. cb(lctx.inp_K_shift, "K_shift", -1);
  6217. ggml_set_input(lctx.inp_K_shift);
  6218. for (int il = 0; il < n_layer; ++il) {
  6219. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6220. struct ggml_tensor * tmp =
  6221. // we rotate only the first n_rot dimensions
  6222. ggml_rope_ext_inplace(ctx0,
  6223. ggml_view_3d(ctx0, kv_self.k_l[il],
  6224. n_embd_head_k, n_head_kv, n_ctx,
  6225. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6226. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6227. 0),
  6228. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6229. ext_factor, attn_factor, beta_fast, beta_slow);
  6230. cb(tmp, "K_shifted", il);
  6231. ggml_build_forward_expand(gf, tmp);
  6232. }
  6233. return gf;
  6234. }
  6235. struct ggml_cgraph * build_s_copy() {
  6236. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6237. GGML_ASSERT(kv_self.recurrent);
  6238. struct ggml_tensor * state_copy = build_inp_s_copy();
  6239. for (int il = 0; il < n_layer; ++il) {
  6240. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6241. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6242. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6243. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6244. // TODO: name the intermediate tensors with cb()
  6245. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6246. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6247. }
  6248. return gf;
  6249. }
  6250. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6251. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6252. for (uint32_t i = 0; i < ids.size(); ++i) {
  6253. const uint32_t id = ids[i];
  6254. if (i == id || id == ids.size()) {
  6255. continue;
  6256. }
  6257. uint32_t nm = 1;
  6258. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6259. nm++;
  6260. }
  6261. for (int il = 0; il < n_layer; ++il) {
  6262. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6263. n_embd_k_gqa, nm,
  6264. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6265. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6266. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6267. n_embd_k_gqa, nm,
  6268. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6269. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6270. ggml_tensor * view_v_src;
  6271. ggml_tensor * view_v_dst;
  6272. if (flash_attn) {
  6273. // NOTE: the V cache is not transposed when using flash attention
  6274. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6275. n_embd_v_gqa, nm,
  6276. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6277. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6278. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6279. n_embd_v_gqa, nm,
  6280. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6281. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6282. } else {
  6283. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6284. nm, n_embd_v_gqa,
  6285. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6286. ggml_row_size(kv_self.v_l[il]->type, i));
  6287. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6288. nm, n_embd_v_gqa,
  6289. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6290. ggml_row_size(kv_self.v_l[il]->type, id));
  6291. }
  6292. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6293. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6294. }
  6295. i += nm - 1;
  6296. }
  6297. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6298. return gf;
  6299. }
  6300. struct ggml_tensor * build_inp_pos() {
  6301. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6302. cb(lctx.inp_pos, "inp_pos", -1);
  6303. ggml_set_input(lctx.inp_pos);
  6304. return lctx.inp_pos;
  6305. }
  6306. struct ggml_tensor * build_rope_factors(int il) {
  6307. // choose long/short freq factors based on the context size
  6308. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6309. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  6310. return model.layers[il].rope_long;
  6311. }
  6312. return model.layers[il].rope_short;
  6313. }
  6314. struct ggml_tensor * build_inp_out_ids() {
  6315. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6316. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6317. ggml_set_input(lctx.inp_out_ids);
  6318. return lctx.inp_out_ids;
  6319. }
  6320. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6321. if (causal) {
  6322. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6323. } else {
  6324. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6325. }
  6326. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6327. ggml_set_input(lctx.inp_KQ_mask);
  6328. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6329. }
  6330. struct ggml_tensor * build_inp_mean() {
  6331. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6332. cb(lctx.inp_mean, "inp_mean", -1);
  6333. ggml_set_input(lctx.inp_mean);
  6334. return lctx.inp_mean;
  6335. }
  6336. struct ggml_tensor * build_inp_cls() {
  6337. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6338. cb(lctx.inp_cls, "inp_cls", -1);
  6339. ggml_set_input(lctx.inp_cls);
  6340. return lctx.inp_cls;
  6341. }
  6342. struct ggml_tensor * build_inp_s_copy() {
  6343. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6344. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6345. ggml_set_input(lctx.inp_s_copy);
  6346. return lctx.inp_s_copy;
  6347. }
  6348. struct ggml_tensor * build_inp_s_mask() {
  6349. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6350. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6351. ggml_set_input(lctx.inp_s_mask);
  6352. return lctx.inp_s_mask;
  6353. }
  6354. struct ggml_tensor * build_inp_s_seq() {
  6355. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6356. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6357. ggml_set_input(lctx.inp_s_seq);
  6358. return lctx.inp_s_seq;
  6359. }
  6360. struct ggml_cgraph * build_llama() {
  6361. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6362. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6363. int32_t n_tokens = this->n_tokens;
  6364. const int64_t n_embd_head = hparams.n_embd_head_v;
  6365. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6366. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6367. struct ggml_tensor * cur;
  6368. struct ggml_tensor * inpL;
  6369. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6370. // inp_pos - contains the positions
  6371. struct ggml_tensor * inp_pos = build_inp_pos();
  6372. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6373. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6374. for (int il = 0; il < n_layer; ++il) {
  6375. struct ggml_tensor * inpSA = inpL;
  6376. // norm
  6377. cur = llm_build_norm(ctx0, inpL, hparams,
  6378. model.layers[il].attn_norm, NULL,
  6379. LLM_NORM_RMS, cb, il);
  6380. cb(cur, "attn_norm", il);
  6381. // self-attention
  6382. {
  6383. // compute Q and K and RoPE them
  6384. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6385. cb(Qcur, "Qcur", il);
  6386. if (model.layers[il].bq) {
  6387. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6388. cb(Qcur, "Qcur", il);
  6389. }
  6390. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6391. cb(Kcur, "Kcur", il);
  6392. if (model.layers[il].bk) {
  6393. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6394. cb(Kcur, "Kcur", il);
  6395. }
  6396. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6397. cb(Vcur, "Vcur", il);
  6398. if (model.layers[il].bv) {
  6399. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6400. cb(Vcur, "Vcur", il);
  6401. }
  6402. Qcur = ggml_rope_ext(
  6403. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6404. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6405. ext_factor, attn_factor, beta_fast, beta_slow
  6406. );
  6407. cb(Qcur, "Qcur", il);
  6408. Kcur = ggml_rope_ext(
  6409. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6410. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6411. ext_factor, attn_factor, beta_fast, beta_slow
  6412. );
  6413. cb(Kcur, "Kcur", il);
  6414. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6415. model.layers[il].wo, model.layers[il].bo,
  6416. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6417. }
  6418. if (il == n_layer - 1) {
  6419. // skip computing output for unused tokens
  6420. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6421. n_tokens = n_outputs;
  6422. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6423. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6424. }
  6425. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6426. cb(ffn_inp, "ffn_inp", il);
  6427. // feed-forward network
  6428. if (model.layers[il].ffn_gate_inp == nullptr) {
  6429. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6430. model.layers[il].ffn_norm, NULL,
  6431. LLM_NORM_RMS, cb, il);
  6432. cb(cur, "ffn_norm", il);
  6433. cur = llm_build_ffn(ctx0, cur,
  6434. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6435. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6436. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6437. NULL,
  6438. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6439. cb(cur, "ffn_out", il);
  6440. } else {
  6441. // MoE branch
  6442. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6443. model.layers[il].ffn_norm, NULL,
  6444. LLM_NORM_RMS, cb, il);
  6445. cb(cur, "ffn_norm", il);
  6446. cur = llm_build_moe_ffn(ctx0, cur,
  6447. model.layers[il].ffn_gate_inp,
  6448. model.layers[il].ffn_up_exps,
  6449. model.layers[il].ffn_gate_exps,
  6450. model.layers[il].ffn_down_exps,
  6451. n_expert, n_expert_used,
  6452. LLM_FFN_SILU, true,
  6453. false, 0.0,
  6454. cb, il);
  6455. cb(cur, "ffn_moe_out", il);
  6456. }
  6457. cur = ggml_add(ctx0, cur, ffn_inp);
  6458. cb(cur, "ffn_out", il);
  6459. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6460. if (layer_dir != nullptr) {
  6461. cur = ggml_add(ctx0, cur, layer_dir);
  6462. }
  6463. cb(cur, "l_out", il);
  6464. // input for next layer
  6465. inpL = cur;
  6466. }
  6467. cur = inpL;
  6468. cur = llm_build_norm(ctx0, cur, hparams,
  6469. model.output_norm, NULL,
  6470. LLM_NORM_RMS, cb, -1);
  6471. cb(cur, "result_norm", -1);
  6472. // lm_head
  6473. cur = ggml_mul_mat(ctx0, model.output, cur);
  6474. cb(cur, "result_output", -1);
  6475. ggml_build_forward_expand(gf, cur);
  6476. return gf;
  6477. }
  6478. struct ggml_cgraph * build_baichuan() {
  6479. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6480. const int64_t n_embd_head = hparams.n_embd_head_v;
  6481. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6482. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6483. struct ggml_tensor * cur;
  6484. struct ggml_tensor * inpL;
  6485. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6486. // inp_pos - contains the positions
  6487. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6488. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6489. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6490. for (int il = 0; il < n_layer; ++il) {
  6491. struct ggml_tensor * inpSA = inpL;
  6492. cur = llm_build_norm(ctx0, inpL, hparams,
  6493. model.layers[il].attn_norm, NULL,
  6494. LLM_NORM_RMS, cb, il);
  6495. cb(cur, "attn_norm", il);
  6496. // self-attention
  6497. {
  6498. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6499. cb(Qcur, "Qcur", il);
  6500. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6501. cb(Kcur, "Kcur", il);
  6502. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6503. cb(Vcur, "Vcur", il);
  6504. switch (model.type) {
  6505. case MODEL_7B:
  6506. Qcur = ggml_rope_ext(
  6507. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6508. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6509. ext_factor, attn_factor, beta_fast, beta_slow
  6510. );
  6511. Kcur = ggml_rope_ext(
  6512. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6513. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6514. ext_factor, attn_factor, beta_fast, beta_slow
  6515. );
  6516. break;
  6517. case MODEL_13B:
  6518. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6519. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6520. break;
  6521. default:
  6522. GGML_ASSERT(false);
  6523. }
  6524. cb(Qcur, "Qcur", il);
  6525. cb(Kcur, "Kcur", il);
  6526. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6527. model.layers[il].wo, NULL,
  6528. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6529. }
  6530. if (il == n_layer - 1) {
  6531. // skip computing output for unused tokens
  6532. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6533. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6534. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6535. }
  6536. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6537. cb(ffn_inp, "ffn_inp", il);
  6538. // feed-forward network
  6539. {
  6540. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6541. model.layers[il].ffn_norm, NULL,
  6542. LLM_NORM_RMS, cb, il);
  6543. cb(cur, "ffn_norm", il);
  6544. cur = llm_build_ffn(ctx0, cur,
  6545. model.layers[il].ffn_up, NULL,
  6546. model.layers[il].ffn_gate, NULL,
  6547. model.layers[il].ffn_down, NULL,
  6548. NULL,
  6549. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6550. cb(cur, "ffn_out", il);
  6551. }
  6552. cur = ggml_add(ctx0, cur, ffn_inp);
  6553. cb(cur, "l_out", il);
  6554. // input for next layer
  6555. inpL = cur;
  6556. }
  6557. cur = inpL;
  6558. cur = llm_build_norm(ctx0, cur, hparams,
  6559. model.output_norm, NULL,
  6560. LLM_NORM_RMS, cb, -1);
  6561. cb(cur, "result_norm", -1);
  6562. // lm_head
  6563. cur = ggml_mul_mat(ctx0, model.output, cur);
  6564. cb(cur, "result_output", -1);
  6565. ggml_build_forward_expand(gf, cur);
  6566. return gf;
  6567. }
  6568. struct ggml_cgraph * build_xverse() {
  6569. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6570. const int64_t n_embd_head = hparams.n_embd_head_v;
  6571. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6572. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6573. struct ggml_tensor * cur;
  6574. struct ggml_tensor * inpL;
  6575. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6576. // inp_pos - contains the positions
  6577. struct ggml_tensor * inp_pos = build_inp_pos();
  6578. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6579. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6580. for (int il = 0; il < n_layer; ++il) {
  6581. struct ggml_tensor * inpSA = inpL;
  6582. cur = llm_build_norm(ctx0, inpL, hparams,
  6583. model.layers[il].attn_norm, NULL,
  6584. LLM_NORM_RMS, cb, il);
  6585. cb(cur, "attn_norm", il);
  6586. // self-attention
  6587. {
  6588. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6589. cb(Qcur, "Qcur", il);
  6590. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6591. cb(Kcur, "Kcur", il);
  6592. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6593. cb(Vcur, "Vcur", il);
  6594. Qcur = ggml_rope_ext(
  6595. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6596. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6597. ext_factor, attn_factor, beta_fast, beta_slow
  6598. );
  6599. cb(Qcur, "Qcur", il);
  6600. Kcur = ggml_rope_ext(
  6601. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6602. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6603. ext_factor, attn_factor, beta_fast, beta_slow
  6604. );
  6605. cb(Kcur, "Kcur", il);
  6606. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6607. model.layers[il].wo, NULL,
  6608. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6609. }
  6610. if (il == n_layer - 1) {
  6611. // skip computing output for unused tokens
  6612. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6613. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6614. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6615. }
  6616. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6617. cb(ffn_inp, "ffn_inp", il);
  6618. // feed-forward network
  6619. {
  6620. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6621. model.layers[il].ffn_norm, NULL,
  6622. LLM_NORM_RMS, cb, il);
  6623. cb(cur, "ffn_norm", il);
  6624. cur = llm_build_ffn(ctx0, cur,
  6625. model.layers[il].ffn_up, NULL,
  6626. model.layers[il].ffn_gate, NULL,
  6627. model.layers[il].ffn_down, NULL,
  6628. NULL,
  6629. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6630. cb(cur, "ffn_out", il);
  6631. }
  6632. cur = ggml_add(ctx0, cur, ffn_inp);
  6633. cb(cur, "l_out", il);
  6634. // input for next layer
  6635. inpL = cur;
  6636. }
  6637. cur = inpL;
  6638. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6639. cb(cur, "result_norm", -1);
  6640. // lm_head
  6641. cur = ggml_mul_mat(ctx0, model.output, cur);
  6642. cb(cur, "result_output", -1);
  6643. ggml_build_forward_expand(gf, cur);
  6644. return gf;
  6645. }
  6646. struct ggml_cgraph * build_falcon() {
  6647. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6648. const int64_t n_embd_head = hparams.n_embd_head_v;
  6649. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6650. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6651. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6652. struct ggml_tensor * cur;
  6653. struct ggml_tensor * inpL;
  6654. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6655. // inp_pos - contains the positions
  6656. struct ggml_tensor * inp_pos = build_inp_pos();
  6657. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6658. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6659. for (int il = 0; il < n_layer; ++il) {
  6660. struct ggml_tensor * attn_norm;
  6661. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6662. model.layers[il].attn_norm,
  6663. model.layers[il].attn_norm_b,
  6664. LLM_NORM, cb, il);
  6665. cb(attn_norm, "attn_norm", il);
  6666. // self-attention
  6667. {
  6668. if (model.layers[il].attn_norm_2) {
  6669. // Falcon-40B
  6670. cur = llm_build_norm(ctx0, inpL, hparams,
  6671. model.layers[il].attn_norm_2,
  6672. model.layers[il].attn_norm_2_b,
  6673. LLM_NORM, cb, il);
  6674. cb(cur, "attn_norm_2", il);
  6675. } else {
  6676. cur = attn_norm;
  6677. }
  6678. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6679. cb(cur, "wqkv", il);
  6680. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6681. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6682. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6683. cb(Qcur, "Qcur", il);
  6684. cb(Kcur, "Kcur", il);
  6685. cb(Vcur, "Vcur", il);
  6686. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6687. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6688. // using mode = 2 for neox mode
  6689. Qcur = ggml_rope_ext(
  6690. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6691. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6692. );
  6693. cb(Qcur, "Qcur", il);
  6694. Kcur = ggml_rope_ext(
  6695. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6696. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6697. );
  6698. cb(Kcur, "Kcur", il);
  6699. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6700. model.layers[il].wo, NULL,
  6701. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6702. }
  6703. if (il == n_layer - 1) {
  6704. // skip computing output for unused tokens
  6705. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6706. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6707. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6708. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6709. }
  6710. struct ggml_tensor * ffn_inp = cur;
  6711. // feed forward
  6712. {
  6713. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6714. model.layers[il].ffn_up, NULL,
  6715. NULL, NULL,
  6716. model.layers[il].ffn_down, NULL,
  6717. NULL,
  6718. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6719. cb(cur, "ffn_out", il);
  6720. }
  6721. cur = ggml_add(ctx0, cur, ffn_inp);
  6722. cb(cur, "l_out", il);
  6723. cur = ggml_add(ctx0, cur, inpL);
  6724. cb(cur, "l_out", il);
  6725. // input for next layer
  6726. inpL = cur;
  6727. }
  6728. cur = inpL;
  6729. // norm
  6730. cur = llm_build_norm(ctx0, cur, hparams,
  6731. model.output_norm,
  6732. model.output_norm_b,
  6733. LLM_NORM, cb, -1);
  6734. cb(cur, "result_norm", -1);
  6735. cur = ggml_mul_mat(ctx0, model.output, cur);
  6736. cb(cur, "result_output", -1);
  6737. ggml_build_forward_expand(gf, cur);
  6738. return gf;
  6739. }
  6740. struct ggml_cgraph * build_grok() {
  6741. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6742. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6743. int32_t n_tokens = this->n_tokens;
  6744. const int64_t n_embd_head = hparams.n_embd_head_v;
  6745. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6746. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6747. struct ggml_tensor * cur;
  6748. struct ggml_tensor * inpL;
  6749. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6750. // multiply by embedding_multiplier_scale of 78.38367176906169
  6751. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6752. // inp_pos - contains the positions
  6753. struct ggml_tensor * inp_pos = build_inp_pos();
  6754. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6755. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6756. for (int il = 0; il < n_layer; ++il) {
  6757. struct ggml_tensor * inpSA = inpL;
  6758. // norm
  6759. cur = llm_build_norm(ctx0, inpL, hparams,
  6760. model.layers[il].attn_norm, NULL,
  6761. LLM_NORM_RMS, cb, il);
  6762. cb(cur, "attn_norm", il);
  6763. // self-attention
  6764. {
  6765. // compute Q and K and RoPE them
  6766. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6767. cb(Qcur, "Qcur", il);
  6768. if (model.layers[il].bq) {
  6769. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6770. cb(Qcur, "Qcur", il);
  6771. }
  6772. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6773. cb(Kcur, "Kcur", il);
  6774. if (model.layers[il].bk) {
  6775. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6776. cb(Kcur, "Kcur", il);
  6777. }
  6778. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6779. cb(Vcur, "Vcur", il);
  6780. if (model.layers[il].bv) {
  6781. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6782. cb(Vcur, "Vcur", il);
  6783. }
  6784. Qcur = ggml_rope_ext(
  6785. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6786. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6787. ext_factor, attn_factor, beta_fast, beta_slow
  6788. );
  6789. cb(Qcur, "Qcur", il);
  6790. Kcur = ggml_rope_ext(
  6791. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6792. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6793. ext_factor, attn_factor, beta_fast, beta_slow
  6794. );
  6795. cb(Kcur, "Kcur", il);
  6796. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6797. model.layers[il].wo, model.layers[il].bo,
  6798. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6799. }
  6800. if (il == n_layer - 1) {
  6801. // skip computing output for unused tokens
  6802. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6803. n_tokens = n_outputs;
  6804. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6805. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6806. }
  6807. // Grok
  6808. // if attn_out_norm is present then apply it before adding the input
  6809. if (model.layers[il].attn_out_norm) {
  6810. cur = llm_build_norm(ctx0, cur, hparams,
  6811. model.layers[il].attn_out_norm, NULL,
  6812. LLM_NORM_RMS, cb, il);
  6813. cb(cur, "attn_out_norm", il);
  6814. }
  6815. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6816. cb(ffn_inp, "ffn_inp", il);
  6817. // feed-forward network
  6818. // MoE branch
  6819. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6820. model.layers[il].ffn_norm, NULL,
  6821. LLM_NORM_RMS, cb, il);
  6822. cb(cur, "ffn_norm", il);
  6823. cur = llm_build_moe_ffn(ctx0, cur,
  6824. model.layers[il].ffn_gate_inp,
  6825. model.layers[il].ffn_up_exps,
  6826. model.layers[il].ffn_gate_exps,
  6827. model.layers[il].ffn_down_exps,
  6828. n_expert, n_expert_used,
  6829. LLM_FFN_GELU, true,
  6830. false, 0.0,
  6831. cb, il);
  6832. cb(cur, "ffn_moe_out", il);
  6833. // Grok
  6834. // if layer_out_norm is present then apply it before adding the input
  6835. // Idea: maybe ffn_out_norm is a better name
  6836. if (model.layers[il].layer_out_norm) {
  6837. cur = llm_build_norm(ctx0, cur, hparams,
  6838. model.layers[il].layer_out_norm, NULL,
  6839. LLM_NORM_RMS, cb, il);
  6840. cb(cur, "layer_out_norm", il);
  6841. }
  6842. cur = ggml_add(ctx0, cur, ffn_inp);
  6843. cb(cur, "ffn_out", il);
  6844. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6845. if (layer_dir != nullptr) {
  6846. cur = ggml_add(ctx0, cur, layer_dir);
  6847. }
  6848. cb(cur, "l_out", il);
  6849. // input for next layer
  6850. inpL = cur;
  6851. }
  6852. cur = inpL;
  6853. cur = llm_build_norm(ctx0, cur, hparams,
  6854. model.output_norm, NULL,
  6855. LLM_NORM_RMS, cb, -1);
  6856. cb(cur, "result_norm", -1);
  6857. // lm_head
  6858. cur = ggml_mul_mat(ctx0, model.output, cur);
  6859. // Grok
  6860. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6861. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6862. cb(cur, "result_output", -1);
  6863. ggml_build_forward_expand(gf, cur);
  6864. return gf;
  6865. }
  6866. struct ggml_cgraph * build_dbrx() {
  6867. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6868. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6869. int32_t n_tokens = this->n_tokens;
  6870. const int64_t n_embd_head = hparams.n_embd_head_v;
  6871. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6872. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6873. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6874. struct ggml_tensor * cur;
  6875. struct ggml_tensor * inpL;
  6876. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6877. // inp_pos - contains the positions
  6878. struct ggml_tensor * inp_pos = build_inp_pos();
  6879. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6880. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6881. for (int il = 0; il < n_layer; ++il) {
  6882. struct ggml_tensor * inpSA = inpL;
  6883. // norm
  6884. cur = llm_build_norm(ctx0, inpL, hparams,
  6885. model.layers[il].attn_norm, NULL,
  6886. LLM_NORM, cb, il);
  6887. cb(cur, "attn_norm", il);
  6888. // self-attention
  6889. {
  6890. struct ggml_tensor * Qcur = nullptr;
  6891. struct ggml_tensor * Kcur = nullptr;
  6892. struct ggml_tensor * Vcur = nullptr;
  6893. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6894. cb(cur, "wqkv", il);
  6895. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6896. cb(cur, "wqkv_clamped", il);
  6897. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6898. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6899. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6900. cb(Qcur, "Qcur", il);
  6901. cb(Kcur, "Kcur", il);
  6902. cb(Vcur, "Vcur", il);
  6903. Qcur = ggml_rope_ext(
  6904. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6905. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6906. ext_factor, attn_factor, beta_fast, beta_slow
  6907. );
  6908. cb(Qcur, "Qcur", il);
  6909. Kcur = ggml_rope_ext(
  6910. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6911. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6912. ext_factor, attn_factor, beta_fast, beta_slow
  6913. );
  6914. cb(Kcur, "Kcur", il);
  6915. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6916. model.layers[il].wo, NULL,
  6917. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6918. }
  6919. if (il == n_layer - 1) {
  6920. // skip computing output for unused tokens
  6921. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6922. n_tokens = n_outputs;
  6923. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6924. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6925. }
  6926. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6927. cb(ffn_inp, "ffn_inp", il);
  6928. // feed-forward network
  6929. // MoE branch
  6930. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6931. model.layers[il].attn_out_norm, NULL,
  6932. LLM_NORM, cb, il);
  6933. cb(cur, "attn_out_norm", il);
  6934. cur = llm_build_moe_ffn(ctx0, cur,
  6935. model.layers[il].ffn_gate_inp,
  6936. model.layers[il].ffn_up_exps,
  6937. model.layers[il].ffn_gate_exps,
  6938. model.layers[il].ffn_down_exps,
  6939. n_expert, n_expert_used,
  6940. LLM_FFN_SILU, true,
  6941. false, 0.0,
  6942. cb, il);
  6943. cb(cur, "ffn_moe_out", il);
  6944. cur = ggml_add(ctx0, cur, ffn_inp);
  6945. cb(cur, "ffn_out", il);
  6946. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6947. if (layer_dir != nullptr) {
  6948. cur = ggml_add(ctx0, cur, layer_dir);
  6949. }
  6950. cb(cur, "l_out", il);
  6951. // input for next layer
  6952. inpL = cur;
  6953. }
  6954. cur = inpL;
  6955. cur = llm_build_norm(ctx0, cur, hparams,
  6956. model.output_norm, NULL,
  6957. LLM_NORM, cb, -1);
  6958. cb(cur, "result_norm", -1);
  6959. // lm_head
  6960. cur = ggml_mul_mat(ctx0, model.output, cur);
  6961. cb(cur, "result_output", -1);
  6962. ggml_build_forward_expand(gf, cur);
  6963. return gf;
  6964. }
  6965. struct ggml_cgraph * build_starcoder() {
  6966. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6967. const int64_t n_embd_head = hparams.n_embd_head_v;
  6968. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6969. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6970. struct ggml_tensor * cur;
  6971. struct ggml_tensor * inpL;
  6972. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6973. // inp_pos - contains the positions
  6974. struct ggml_tensor * inp_pos = build_inp_pos();
  6975. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6976. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6977. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6978. cb(pos, "pos_embd", -1);
  6979. inpL = ggml_add(ctx0, inpL, pos);
  6980. cb(inpL, "inpL", -1);
  6981. for (int il = 0; il < n_layer; ++il) {
  6982. cur = llm_build_norm(ctx0, inpL, hparams,
  6983. model.layers[il].attn_norm,
  6984. model.layers[il].attn_norm_b,
  6985. LLM_NORM, cb, il);
  6986. cb(cur, "attn_norm", il);
  6987. // self-attention
  6988. {
  6989. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6990. cb(cur, "wqkv", il);
  6991. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6992. cb(cur, "bqkv", il);
  6993. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6994. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6995. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6996. cb(Qcur, "Qcur", il);
  6997. cb(Kcur, "Kcur", il);
  6998. cb(Vcur, "Vcur", il);
  6999. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7000. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7001. model.layers[il].wo, model.layers[il].bo,
  7002. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7003. }
  7004. if (il == n_layer - 1) {
  7005. // skip computing output for unused tokens
  7006. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7007. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7008. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7009. }
  7010. // add the input
  7011. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7012. cb(ffn_inp, "ffn_inp", il);
  7013. // FF
  7014. {
  7015. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7016. model.layers[il].ffn_norm,
  7017. model.layers[il].ffn_norm_b,
  7018. LLM_NORM, cb, il);
  7019. cb(cur, "ffn_norm", il);
  7020. cur = llm_build_ffn(ctx0, cur,
  7021. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7022. NULL, NULL,
  7023. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7024. NULL,
  7025. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7026. cb(cur, "ffn_out", il);
  7027. }
  7028. inpL = ggml_add(ctx0, cur, ffn_inp);
  7029. cb(inpL, "l_out", il);
  7030. }
  7031. cur = llm_build_norm(ctx0, inpL, hparams,
  7032. model.output_norm,
  7033. model.output_norm_b,
  7034. LLM_NORM, cb, -1);
  7035. cb(cur, "result_norm", -1);
  7036. cur = ggml_mul_mat(ctx0, model.output, cur);
  7037. cb(cur, "result_output", -1);
  7038. ggml_build_forward_expand(gf, cur);
  7039. return gf;
  7040. }
  7041. struct ggml_cgraph * build_refact() {
  7042. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7043. const int64_t n_embd_head = hparams.n_embd_head_v;
  7044. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7045. struct ggml_tensor * cur;
  7046. struct ggml_tensor * inpL;
  7047. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7048. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7049. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7050. for (int il = 0; il < n_layer; ++il) {
  7051. struct ggml_tensor * inpSA = inpL;
  7052. cur = llm_build_norm(ctx0, inpL, hparams,
  7053. model.layers[il].attn_norm, NULL,
  7054. LLM_NORM_RMS, cb, il);
  7055. cb(cur, "attn_norm", il);
  7056. // self-attention
  7057. {
  7058. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7059. cb(Qcur, "Qcur", il);
  7060. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7061. cb(Kcur, "Kcur", il);
  7062. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7063. cb(Vcur, "Vcur", il);
  7064. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7065. cb(Kcur, "Kcur", il);
  7066. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7067. cb(Qcur, "Qcur", il);
  7068. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7069. model.layers[il].wo, NULL,
  7070. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7071. }
  7072. if (il == n_layer - 1) {
  7073. // skip computing output for unused tokens
  7074. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7075. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7076. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7077. }
  7078. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7079. cb(ffn_inp, "ffn_inp", il);
  7080. // feed-forward network
  7081. {
  7082. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7083. model.layers[il].ffn_norm, NULL,
  7084. LLM_NORM_RMS, cb, il);
  7085. cb(cur, "ffn_norm", il);
  7086. cur = llm_build_ffn(ctx0, cur,
  7087. model.layers[il].ffn_up, NULL,
  7088. model.layers[il].ffn_gate, NULL,
  7089. model.layers[il].ffn_down, NULL,
  7090. NULL,
  7091. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7092. cb(cur, "ffn_out", il);
  7093. }
  7094. cur = ggml_add(ctx0, cur, ffn_inp);
  7095. cb(cur, "l_out", il);
  7096. // input for next layer
  7097. inpL = cur;
  7098. }
  7099. cur = inpL;
  7100. cur = llm_build_norm(ctx0, cur, hparams,
  7101. model.output_norm, NULL,
  7102. LLM_NORM_RMS, cb, -1);
  7103. cb(cur, "result_norm", -1);
  7104. // lm_head
  7105. cur = ggml_mul_mat(ctx0, model.output, cur);
  7106. cb(cur, "result_output", -1);
  7107. ggml_build_forward_expand(gf, cur);
  7108. return gf;
  7109. }
  7110. struct ggml_cgraph * build_bert() {
  7111. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7112. const int64_t n_embd_head = hparams.n_embd_head_v;
  7113. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7114. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7115. struct ggml_tensor * cur;
  7116. struct ggml_tensor * inpL;
  7117. struct ggml_tensor * inp_pos = nullptr;
  7118. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7119. inp_pos = build_inp_pos();
  7120. }
  7121. struct ggml_tensor * inp_mean = build_inp_mean();
  7122. struct ggml_tensor * inp_cls = build_inp_cls();
  7123. // construct input embeddings (token, type, position)
  7124. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7125. // token types are hardcoded to zero ("Sentence A")
  7126. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7127. inpL = ggml_add(ctx0, inpL, type_row0);
  7128. if (model.arch == LLM_ARCH_BERT) {
  7129. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7130. }
  7131. cb(inpL, "inp_embd", -1);
  7132. // embed layer norm
  7133. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7134. cb(inpL, "inp_norm", -1);
  7135. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7136. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7137. // iterate layers
  7138. for (int il = 0; il < n_layer; ++il) {
  7139. struct ggml_tensor * cur = inpL;
  7140. struct ggml_tensor * Qcur;
  7141. struct ggml_tensor * Kcur;
  7142. struct ggml_tensor * Vcur;
  7143. // self-attention
  7144. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7145. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7146. cb(Qcur, "Qcur", il);
  7147. if (model.layers[il].attn_q_norm) {
  7148. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7149. model.layers[il].attn_q_norm,
  7150. model.layers[il].attn_q_norm_b,
  7151. LLM_NORM, cb, il);
  7152. }
  7153. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7154. cb(Kcur, "Kcur", il);
  7155. if (model.layers[il].attn_k_norm) {
  7156. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7157. model.layers[il].attn_k_norm,
  7158. model.layers[il].attn_k_norm_b,
  7159. LLM_NORM, cb, il);
  7160. }
  7161. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7162. cb(Vcur, "Vcur", il);
  7163. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7164. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7165. } else {
  7166. // compute Q and K and RoPE them
  7167. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7168. cb(cur, "wqkv", il);
  7169. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7170. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7171. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7172. cb(Qcur, "Qcur", il);
  7173. cb(Kcur, "Kcur", il);
  7174. cb(Vcur, "Vcur", il);
  7175. Qcur = ggml_rope_ext(
  7176. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7177. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7178. ext_factor, attn_factor, beta_fast, beta_slow
  7179. );
  7180. cb(Qcur, "Qcur", il);
  7181. Kcur = ggml_rope_ext(
  7182. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7183. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7184. ext_factor, attn_factor, beta_fast, beta_slow
  7185. );
  7186. cb(Kcur, "Kcur", il);
  7187. }
  7188. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7189. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7190. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7191. cb(kq, "kq", il);
  7192. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7193. cb(kq, "kq_soft_max_ext", il);
  7194. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7195. cb(v, "v", il);
  7196. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7197. cb(kqv, "kqv", il);
  7198. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7199. cb(kqv_merged, "kqv_merged", il);
  7200. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7201. cb(cur, "kqv_merged_cont", il);
  7202. ggml_build_forward_expand(gf, cur);
  7203. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7204. if (model.layers[il].bo) {
  7205. cb(cur, "kqv_wo", il);
  7206. }
  7207. if (model.layers[il].bo) {
  7208. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7209. }
  7210. cb(cur, "kqv_out", il);
  7211. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7212. // skip computing output for unused tokens
  7213. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7214. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7215. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7216. }
  7217. // re-add the layer input
  7218. cur = ggml_add(ctx0, cur, inpL);
  7219. // attention layer norm
  7220. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7221. struct ggml_tensor * ffn_inp = cur;
  7222. cb(ffn_inp, "ffn_inp", il);
  7223. // feed-forward network
  7224. if (model.arch == LLM_ARCH_BERT) {
  7225. cur = llm_build_ffn(ctx0, cur,
  7226. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7227. NULL, NULL,
  7228. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7229. NULL,
  7230. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7231. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7232. cur = llm_build_ffn(ctx0, cur,
  7233. model.layers[il].ffn_up, NULL,
  7234. model.layers[il].ffn_gate, NULL,
  7235. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7236. NULL,
  7237. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7238. } else {
  7239. cur = llm_build_ffn(ctx0, cur,
  7240. model.layers[il].ffn_up, NULL,
  7241. model.layers[il].ffn_gate, NULL,
  7242. model.layers[il].ffn_down, NULL,
  7243. NULL,
  7244. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7245. }
  7246. cb(cur, "ffn_out", il);
  7247. // attentions bypass the intermediate layer
  7248. cur = ggml_add(ctx0, cur, ffn_inp);
  7249. // output layer norm
  7250. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7251. // input for next layer
  7252. inpL = cur;
  7253. }
  7254. // final output
  7255. cur = inpL;
  7256. cb(cur, "result_embd", -1);
  7257. // pooling layer
  7258. switch (pooling_type) {
  7259. case LLAMA_POOLING_TYPE_NONE:
  7260. {
  7261. // nop
  7262. } break;
  7263. case LLAMA_POOLING_TYPE_MEAN:
  7264. {
  7265. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7266. cb(cur, "result_embd_pooled", -1);
  7267. } break;
  7268. case LLAMA_POOLING_TYPE_CLS:
  7269. {
  7270. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7271. cb(cur, "result_embd_pooled", -1);
  7272. } break;
  7273. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7274. {
  7275. GGML_ASSERT(false && "Invalid pooling type");
  7276. } break;
  7277. }
  7278. ggml_build_forward_expand(gf, cur);
  7279. return gf;
  7280. }
  7281. struct ggml_cgraph * build_bloom() {
  7282. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7283. const int64_t n_embd_head = hparams.n_embd_head_v;
  7284. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7285. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7286. struct ggml_tensor * cur;
  7287. struct ggml_tensor * inpL;
  7288. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7289. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7290. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7291. inpL = llm_build_norm(ctx0, inpL, hparams,
  7292. model.tok_norm,
  7293. model.tok_norm_b,
  7294. LLM_NORM, cb, -1);
  7295. cb(inpL, "inp_norm", -1);
  7296. for (int il = 0; il < n_layer; ++il) {
  7297. cur = llm_build_norm(ctx0, inpL, hparams,
  7298. model.layers[il].attn_norm,
  7299. model.layers[il].attn_norm_b,
  7300. LLM_NORM, cb, il);
  7301. cb(cur, "attn_norm", il);
  7302. // self-attention
  7303. {
  7304. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7305. cb(cur, "wqkv", il);
  7306. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7307. cb(cur, "bqkv", il);
  7308. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7309. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7310. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7311. cb(Qcur, "Qcur", il);
  7312. cb(Kcur, "Kcur", il);
  7313. cb(Vcur, "Vcur", il);
  7314. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7315. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7316. model.layers[il].wo, model.layers[il].bo,
  7317. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7318. }
  7319. if (il == n_layer - 1) {
  7320. // skip computing output for unused tokens
  7321. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7322. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7323. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7324. }
  7325. // Add the input
  7326. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7327. cb(ffn_inp, "ffn_inp", il);
  7328. // FF
  7329. {
  7330. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7331. model.layers[il].ffn_norm,
  7332. model.layers[il].ffn_norm_b,
  7333. LLM_NORM, cb, il);
  7334. cb(cur, "ffn_norm", il);
  7335. cur = llm_build_ffn(ctx0, cur,
  7336. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7337. NULL, NULL,
  7338. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7339. NULL,
  7340. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7341. cb(cur, "ffn_out", il);
  7342. }
  7343. inpL = ggml_add(ctx0, cur, ffn_inp);
  7344. cb(inpL, "l_out", il);
  7345. }
  7346. cur = llm_build_norm(ctx0, inpL, hparams,
  7347. model.output_norm,
  7348. model.output_norm_b,
  7349. LLM_NORM, cb, -1);
  7350. cb(cur, "result_norm", -1);
  7351. cur = ggml_mul_mat(ctx0, model.output, cur);
  7352. cb(cur, "result_output", -1);
  7353. ggml_build_forward_expand(gf, cur);
  7354. return gf;
  7355. }
  7356. struct ggml_cgraph * build_mpt() {
  7357. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7358. const int64_t n_embd_head = hparams.n_embd_head_v;
  7359. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7360. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7361. struct ggml_tensor * cur;
  7362. struct ggml_tensor * pos;
  7363. struct ggml_tensor * inpL;
  7364. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7365. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7366. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7367. if (model.pos_embd) {
  7368. // inp_pos - contains the positions
  7369. struct ggml_tensor * inp_pos = build_inp_pos();
  7370. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7371. cb(pos, "pos_embd", -1);
  7372. inpL = ggml_add(ctx0, inpL, pos);
  7373. cb(inpL, "inpL", -1);
  7374. }
  7375. for (int il = 0; il < n_layer; ++il) {
  7376. struct ggml_tensor * attn_norm;
  7377. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7378. model.layers[il].attn_norm,
  7379. model.layers[il].attn_norm_b,
  7380. LLM_NORM, cb, il);
  7381. cb(attn_norm, "attn_norm", il);
  7382. // self-attention
  7383. {
  7384. cur = attn_norm;
  7385. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7386. cb(cur, "wqkv", il);
  7387. if (model.layers[il].bqkv){
  7388. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7389. cb(cur, "bqkv", il);
  7390. }
  7391. if (hparams.f_clamp_kqv > 0.0f) {
  7392. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7393. cb(cur, "wqkv_clamped", il);
  7394. }
  7395. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7396. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7397. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7398. cb(Qcur, "Qcur", il);
  7399. cb(Kcur, "Kcur", il);
  7400. cb(Vcur, "Vcur", il);
  7401. // Q/K Layernorm
  7402. if (model.layers[il].attn_q_norm) {
  7403. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7404. model.layers[il].attn_q_norm,
  7405. model.layers[il].attn_q_norm_b,
  7406. LLM_NORM, cb, il);
  7407. cb(Qcur, "Qcur", il);
  7408. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7409. model.layers[il].attn_k_norm,
  7410. model.layers[il].attn_k_norm_b,
  7411. LLM_NORM, cb, il);
  7412. cb(Kcur, "Kcur", il);
  7413. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7414. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7415. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7416. model.layers[il].wo, model.layers[il].bo,
  7417. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7418. } else {
  7419. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7420. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7421. model.layers[il].wo, model.layers[il].bo,
  7422. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7423. }
  7424. }
  7425. if (il == n_layer - 1) {
  7426. // skip computing output for unused tokens
  7427. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7428. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7429. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7430. }
  7431. // Add the input
  7432. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7433. cb(ffn_inp, "ffn_inp", il);
  7434. // feed forward
  7435. {
  7436. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7437. model.layers[il].ffn_norm,
  7438. model.layers[il].ffn_norm_b,
  7439. LLM_NORM, cb, il);
  7440. cb(cur, "ffn_norm", il);
  7441. cur = llm_build_ffn(ctx0, cur,
  7442. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7443. NULL, NULL,
  7444. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7445. model.layers[il].ffn_act,
  7446. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7447. cb(cur, "ffn_out", il);
  7448. }
  7449. cur = ggml_add(ctx0, cur, ffn_inp);
  7450. cb(cur, "l_out", il);
  7451. // input for next layer
  7452. inpL = cur;
  7453. }
  7454. cur = inpL;
  7455. cur = llm_build_norm(ctx0, cur, hparams,
  7456. model.output_norm,
  7457. model.output_norm_b,
  7458. LLM_NORM, cb, -1);
  7459. cb(cur, "result_norm", -1);
  7460. cur = ggml_mul_mat(ctx0, model.output, cur);
  7461. cb(cur, "result_output", -1);
  7462. ggml_build_forward_expand(gf, cur);
  7463. return gf;
  7464. }
  7465. struct ggml_cgraph * build_stablelm() {
  7466. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7467. const int64_t n_embd_head = hparams.n_embd_head_v;
  7468. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7469. struct ggml_tensor * cur;
  7470. struct ggml_tensor * inpL;
  7471. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7472. // inp_pos - contains the positions
  7473. struct ggml_tensor * inp_pos = build_inp_pos();
  7474. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7475. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7476. for (int il = 0; il < n_layer; ++il) {
  7477. // norm
  7478. cur = llm_build_norm(ctx0, inpL, hparams,
  7479. model.layers[il].attn_norm,
  7480. model.layers[il].attn_norm_b,
  7481. LLM_NORM, cb, il);
  7482. cb(cur, "attn_norm", il);
  7483. struct ggml_tensor * inpSA = cur;
  7484. // self-attention
  7485. {
  7486. // compute Q and K and RoPE them
  7487. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7488. cb(Qcur, "Qcur", il);
  7489. if (model.layers[il].bq) {
  7490. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7491. cb(Qcur, "Qcur", il);
  7492. }
  7493. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7494. cb(Kcur, "Kcur", il);
  7495. if (model.layers[il].bk) {
  7496. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7497. cb(Kcur, "Kcur", il);
  7498. }
  7499. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7500. cb(Vcur, "Vcur", il);
  7501. if (model.layers[il].bv) {
  7502. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7503. cb(Vcur, "Vcur", il);
  7504. }
  7505. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7506. cb(Qcur, "Qcur", il);
  7507. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7508. cb(Kcur, "Kcur", il);
  7509. if (model.layers[il].attn_q_norm) {
  7510. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7511. model.layers[il].attn_q_norm,
  7512. NULL,
  7513. LLM_NORM, cb, il);
  7514. cb(Qcur, "Qcur", il);
  7515. }
  7516. if (model.layers[il].attn_k_norm) {
  7517. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7518. model.layers[il].attn_k_norm,
  7519. NULL,
  7520. LLM_NORM, cb, il);
  7521. cb(Kcur, "Kcur", il);
  7522. }
  7523. Qcur = ggml_rope_ext(
  7524. ctx0, Qcur, inp_pos, nullptr,
  7525. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7526. ext_factor, attn_factor, beta_fast, beta_slow
  7527. );
  7528. cb(Qcur, "Qcur", il);
  7529. Kcur = ggml_rope_ext(
  7530. ctx0, Kcur, inp_pos, nullptr,
  7531. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7532. ext_factor, attn_factor, beta_fast, beta_slow
  7533. );
  7534. cb(Kcur, "Kcur", il);
  7535. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7536. model.layers[il].wo, NULL,
  7537. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7538. }
  7539. if (il == n_layer - 1) {
  7540. // skip computing output for unused tokens
  7541. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7542. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7543. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7544. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7545. }
  7546. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7547. cb(ffn_inp, "ffn_inp", il);
  7548. // feed-forward network
  7549. {
  7550. if (model.layers[il].ffn_norm) {
  7551. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7552. model.layers[il].ffn_norm,
  7553. model.layers[il].ffn_norm_b,
  7554. LLM_NORM, cb, il);
  7555. cb(cur, "ffn_norm", il);
  7556. } else {
  7557. // parallel residual
  7558. cur = inpSA;
  7559. }
  7560. cur = llm_build_ffn(ctx0, cur,
  7561. model.layers[il].ffn_up, NULL,
  7562. model.layers[il].ffn_gate, NULL,
  7563. model.layers[il].ffn_down, NULL,
  7564. NULL,
  7565. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7566. cb(cur, "ffn_out", il);
  7567. }
  7568. cur = ggml_add(ctx0, cur, ffn_inp);
  7569. cb(cur, "l_out", il);
  7570. // input for next layer
  7571. inpL = cur;
  7572. }
  7573. cur = inpL;
  7574. cur = llm_build_norm(ctx0, cur, hparams,
  7575. model.output_norm,
  7576. model.output_norm_b,
  7577. LLM_NORM, cb, -1);
  7578. cb(cur, "result_norm", -1);
  7579. // lm_head
  7580. cur = ggml_mul_mat(ctx0, model.output, cur);
  7581. cb(cur, "result_output", -1);
  7582. ggml_build_forward_expand(gf, cur);
  7583. return gf;
  7584. }
  7585. struct ggml_cgraph * build_qwen() {
  7586. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7587. const int64_t n_embd_head = hparams.n_embd_head_v;
  7588. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7589. struct ggml_tensor * cur;
  7590. struct ggml_tensor * inpL;
  7591. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7592. // inp_pos - contains the positions
  7593. struct ggml_tensor * inp_pos = build_inp_pos();
  7594. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7595. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7596. for (int il = 0; il < n_layer; ++il) {
  7597. struct ggml_tensor * inpSA = inpL;
  7598. cur = llm_build_norm(ctx0, inpL, hparams,
  7599. model.layers[il].attn_norm, NULL,
  7600. LLM_NORM_RMS, cb, il);
  7601. cb(cur, "attn_norm", il);
  7602. // self-attention
  7603. {
  7604. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7605. cb(cur, "wqkv", il);
  7606. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7607. cb(cur, "bqkv", il);
  7608. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7609. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7610. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7611. cb(Qcur, "Qcur", il);
  7612. cb(Kcur, "Kcur", il);
  7613. cb(Vcur, "Vcur", il);
  7614. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7615. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7616. // using mode = 2 for neox mode
  7617. Qcur = ggml_rope_ext(
  7618. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7619. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7620. );
  7621. cb(Qcur, "Qcur", il);
  7622. Kcur = ggml_rope_ext(
  7623. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7624. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7625. );
  7626. cb(Kcur, "Kcur", il);
  7627. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7628. model.layers[il].wo, NULL,
  7629. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7630. }
  7631. if (il == n_layer - 1) {
  7632. // skip computing output for unused tokens
  7633. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7634. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7635. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7636. }
  7637. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7638. cb(ffn_inp, "ffn_inp", il);
  7639. // feed-forward forward
  7640. {
  7641. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7642. model.layers[il].ffn_norm, NULL,
  7643. LLM_NORM_RMS, cb, il);
  7644. cb(cur, "ffn_norm", il);
  7645. cur = llm_build_ffn(ctx0, cur,
  7646. model.layers[il].ffn_up, NULL,
  7647. model.layers[il].ffn_gate, NULL,
  7648. model.layers[il].ffn_down, NULL,
  7649. NULL,
  7650. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7651. cb(cur, "ffn_out", il);
  7652. }
  7653. cur = ggml_add(ctx0, cur, ffn_inp);
  7654. cb(cur, "l_out", il);
  7655. // input for next layer
  7656. inpL = cur;
  7657. }
  7658. cur = inpL;
  7659. cur = llm_build_norm(ctx0, cur, hparams,
  7660. model.output_norm, NULL,
  7661. LLM_NORM_RMS, cb, -1);
  7662. cb(cur, "result_norm", -1);
  7663. // lm_head
  7664. cur = ggml_mul_mat(ctx0, model.output, cur);
  7665. cb(cur, "result_output", -1);
  7666. ggml_build_forward_expand(gf, cur);
  7667. return gf;
  7668. }
  7669. struct ggml_cgraph * build_qwen2() {
  7670. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7671. const int64_t n_embd_head = hparams.n_embd_head_v;
  7672. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7673. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7674. struct ggml_tensor * cur;
  7675. struct ggml_tensor * inpL;
  7676. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7677. // inp_pos - contains the positions
  7678. struct ggml_tensor * inp_pos = build_inp_pos();
  7679. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7680. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7681. for (int il = 0; il < n_layer; ++il) {
  7682. struct ggml_tensor * inpSA = inpL;
  7683. // norm
  7684. cur = llm_build_norm(ctx0, inpL, hparams,
  7685. model.layers[il].attn_norm, NULL,
  7686. LLM_NORM_RMS, cb, il);
  7687. cb(cur, "attn_norm", il);
  7688. // self-attention
  7689. {
  7690. // compute Q and K and RoPE them
  7691. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7692. cb(Qcur, "Qcur", il);
  7693. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7694. cb(Qcur, "Qcur", il);
  7695. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7696. cb(Kcur, "Kcur", il);
  7697. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7698. cb(Kcur, "Kcur", il);
  7699. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7700. cb(Vcur, "Vcur", il);
  7701. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7702. cb(Vcur, "Vcur", il);
  7703. Qcur = ggml_rope_ext(
  7704. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7705. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7706. ext_factor, attn_factor, beta_fast, beta_slow
  7707. );
  7708. cb(Qcur, "Qcur", il);
  7709. Kcur = ggml_rope_ext(
  7710. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7711. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7712. ext_factor, attn_factor, beta_fast, beta_slow
  7713. );
  7714. cb(Kcur, "Kcur", il);
  7715. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7716. model.layers[il].wo, model.layers[il].bo,
  7717. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7718. }
  7719. if (il == n_layer - 1) {
  7720. // skip computing output for unused tokens
  7721. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7722. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7723. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7724. }
  7725. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7726. cb(ffn_inp, "ffn_inp", il);
  7727. // feed-forward network
  7728. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7729. model.layers[il].ffn_norm, NULL,
  7730. LLM_NORM_RMS, cb, il);
  7731. cb(cur, "ffn_norm", il);
  7732. cur = llm_build_ffn(ctx0, cur,
  7733. model.layers[il].ffn_up, NULL,
  7734. model.layers[il].ffn_gate, NULL,
  7735. model.layers[il].ffn_down, NULL,
  7736. NULL,
  7737. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7738. cb(cur, "ffn_out", il);
  7739. cur = ggml_add(ctx0, cur, ffn_inp);
  7740. cb(cur, "l_out", il);
  7741. // input for next layer
  7742. inpL = cur;
  7743. }
  7744. cur = inpL;
  7745. cur = llm_build_norm(ctx0, cur, hparams,
  7746. model.output_norm, NULL,
  7747. LLM_NORM_RMS, cb, -1);
  7748. cb(cur, "result_norm", -1);
  7749. // lm_head
  7750. cur = ggml_mul_mat(ctx0, model.output, cur);
  7751. cb(cur, "result_output", -1);
  7752. ggml_build_forward_expand(gf, cur);
  7753. return gf;
  7754. }
  7755. struct ggml_cgraph * build_qwen2moe() {
  7756. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7757. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7758. int32_t n_tokens = this->n_tokens;
  7759. const int64_t n_embd_head = hparams.n_embd_head_v;
  7760. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7761. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7762. struct ggml_tensor * cur;
  7763. struct ggml_tensor * inpL;
  7764. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7765. // inp_pos - contains the positions
  7766. struct ggml_tensor * inp_pos = build_inp_pos();
  7767. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7768. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7769. for (int il = 0; il < n_layer; ++il) {
  7770. struct ggml_tensor * inpSA = inpL;
  7771. // norm
  7772. cur = llm_build_norm(ctx0, inpL, hparams,
  7773. model.layers[il].attn_norm, NULL,
  7774. LLM_NORM_RMS, cb, il);
  7775. cb(cur, "attn_norm", il);
  7776. // self_attention
  7777. {
  7778. // compute Q and K and RoPE them
  7779. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7780. cb(Qcur, "Qcur", il);
  7781. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7782. cb(Qcur, "Qcur", il);
  7783. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7784. cb(Kcur, "Kcur", il);
  7785. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7786. cb(Kcur, "Kcur", il);
  7787. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7788. cb(Vcur, "Vcur", il);
  7789. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7790. cb(Vcur, "Vcur", il);
  7791. Qcur = ggml_rope_ext(
  7792. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7793. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7794. ext_factor, attn_factor, beta_fast, beta_slow
  7795. );
  7796. cb(Qcur, "Qcur", il);
  7797. Kcur = ggml_rope_ext(
  7798. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7799. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7800. ext_factor, attn_factor, beta_fast, beta_slow
  7801. );
  7802. cb(Kcur, "Kcur", il);
  7803. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7804. model.layers[il].wo, model.layers[il].bo,
  7805. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7806. }
  7807. if (il == n_layer - 1) {
  7808. // skip computing output for unused tokens
  7809. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7810. n_tokens = n_outputs;
  7811. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7812. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7813. }
  7814. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7815. cb(ffn_inp, "ffn_inp", il);
  7816. // MoE branch
  7817. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7818. model.layers[il].ffn_norm, NULL,
  7819. LLM_NORM_RMS, cb, il);
  7820. cb(cur, "ffn_norm", il);
  7821. ggml_tensor * moe_out =
  7822. llm_build_moe_ffn(ctx0, cur,
  7823. model.layers[il].ffn_gate_inp,
  7824. model.layers[il].ffn_up_exps,
  7825. model.layers[il].ffn_gate_exps,
  7826. model.layers[il].ffn_down_exps,
  7827. n_expert, n_expert_used,
  7828. LLM_FFN_SILU, false,
  7829. false, 0.0,
  7830. cb, il);
  7831. cb(cur, "ffn_moe_out", il);
  7832. // FFN shared expert
  7833. {
  7834. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7835. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7836. // sigmoid
  7837. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7838. cb(cur_gate, "ffn_shexp_gate", il);
  7839. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7840. model.layers[il].ffn_up_shexp, NULL,
  7841. model.layers[il].ffn_gate_shexp, NULL,
  7842. model.layers[il].ffn_down_shexp, NULL,
  7843. NULL,
  7844. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7845. cb(cur_ffn, "ffn_shexp", il);
  7846. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7847. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7848. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7849. cb(moe_out, "ffn_out", il);
  7850. cur = moe_out;
  7851. }
  7852. cur = ggml_add(ctx0, cur, ffn_inp);
  7853. cb(cur, "l_out", il);
  7854. // input for next layer
  7855. inpL = cur;
  7856. }
  7857. cur = inpL;
  7858. cur = llm_build_norm(ctx0, cur, hparams,
  7859. model.output_norm, NULL,
  7860. LLM_NORM_RMS, cb, -1);
  7861. cb(cur, "result_norm", -1);
  7862. // lm_head
  7863. cur = ggml_mul_mat(ctx0, model.output, cur);
  7864. cb(cur, "result_output", -1);
  7865. ggml_build_forward_expand(gf, cur);
  7866. return gf;
  7867. }
  7868. struct ggml_cgraph * build_phi2() {
  7869. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7870. const int64_t n_embd_head = hparams.n_embd_head_v;
  7871. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7872. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7873. struct ggml_tensor * cur;
  7874. struct ggml_tensor * attn_norm_output;
  7875. struct ggml_tensor * ffn_output;
  7876. struct ggml_tensor * inpL;
  7877. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7878. // inp_pos - contains the positions
  7879. struct ggml_tensor * inp_pos = build_inp_pos();
  7880. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7881. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7882. for (int il = 0; il < n_layer; ++il) {
  7883. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7884. model.layers[il].attn_norm,
  7885. model.layers[il].attn_norm_b,
  7886. LLM_NORM, cb, il);
  7887. cb(attn_norm_output, "attn_norm", il);
  7888. // self-attention
  7889. {
  7890. struct ggml_tensor * Qcur = nullptr;
  7891. struct ggml_tensor * Kcur = nullptr;
  7892. struct ggml_tensor * Vcur = nullptr;
  7893. if (model.layers[il].wqkv) {
  7894. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7895. cb(cur, "wqkv", il);
  7896. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7897. cb(cur, "bqkv", il);
  7898. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7899. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7900. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7901. } else {
  7902. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7903. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7904. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7905. }
  7906. cb(Qcur, "Qcur", il);
  7907. cb(Kcur, "Kcur", il);
  7908. cb(Vcur, "Vcur", il);
  7909. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7910. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7911. Qcur = ggml_rope_ext(
  7912. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7913. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7914. );
  7915. cb(Qcur, "Qcur", il);
  7916. // with phi2, we scale the Q to avoid precision issues
  7917. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7918. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7919. cb(Qcur, "Qcur", il);
  7920. Kcur = ggml_rope_ext(
  7921. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7922. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7923. );
  7924. cb(Kcur, "Kcur", il);
  7925. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7926. model.layers[il].wo, model.layers[il].bo,
  7927. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7928. }
  7929. if (il == n_layer - 1) {
  7930. // skip computing output for unused tokens
  7931. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7932. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7933. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7934. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7935. }
  7936. // FF
  7937. {
  7938. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7939. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7940. NULL, NULL,
  7941. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7942. NULL,
  7943. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7944. cb(ffn_output, "ffn_out", il);
  7945. }
  7946. cur = ggml_add(ctx0, cur, ffn_output);
  7947. cb(cur, "l_out", il);
  7948. cur = ggml_add(ctx0, cur, inpL);
  7949. cb(cur, "l_out", il);
  7950. inpL = cur;
  7951. }
  7952. cur = llm_build_norm(ctx0, inpL, hparams,
  7953. model.output_norm,
  7954. model.output_norm_b,
  7955. LLM_NORM, cb, -1);
  7956. cb(cur, "result_norm", -1);
  7957. cur = ggml_mul_mat(ctx0, model.output, cur);
  7958. cb(cur, "result_output_no_bias", -1);
  7959. cur = ggml_add(ctx0, cur, model.output_b);
  7960. cb(cur, "result_output", -1);
  7961. ggml_build_forward_expand(gf, cur);
  7962. return gf;
  7963. }
  7964. struct ggml_cgraph * build_phi3() {
  7965. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7966. const int64_t n_embd_head = hparams.n_embd_head_v;
  7967. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7968. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7969. struct ggml_tensor * cur;
  7970. struct ggml_tensor * inpL;
  7971. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7972. // inp_pos - contains the positions
  7973. struct ggml_tensor * inp_pos = build_inp_pos();
  7974. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7975. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7976. for (int il = 0; il < n_layer; ++il) {
  7977. auto residual = inpL;
  7978. // self-attention
  7979. {
  7980. // rope freq factors for 128k context
  7981. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7982. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7983. model.layers[il].attn_norm,
  7984. NULL,
  7985. LLM_NORM_RMS, cb, il);
  7986. cb(attn_norm_output, "attn_norm", il);
  7987. struct ggml_tensor * Qcur = nullptr;
  7988. struct ggml_tensor * Kcur = nullptr;
  7989. struct ggml_tensor * Vcur = nullptr;
  7990. if (model.layers[il].wqkv) {
  7991. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7992. cb(cur, "wqkv", il);
  7993. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7994. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7995. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7996. }
  7997. else {
  7998. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7999. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8000. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8001. }
  8002. cb(Qcur, "Qcur", il);
  8003. cb(Kcur, "Kcur", il);
  8004. cb(Vcur, "Vcur", il);
  8005. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8006. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8007. Qcur = ggml_rope_ext(
  8008. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  8009. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8010. );
  8011. cb(Qcur, "Qcur", il);
  8012. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8013. cb(Qcur, "Qcur", il);
  8014. Kcur = ggml_rope_ext(
  8015. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  8016. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8017. );
  8018. cb(Kcur, "Kcur", il);
  8019. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8020. model.layers[il].wo, model.layers[il].bo,
  8021. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8022. }
  8023. if (il == n_layer - 1) {
  8024. // skip computing output for unused tokens
  8025. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8026. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8027. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8028. }
  8029. cur = ggml_add(ctx0, cur, residual);
  8030. residual = cur;
  8031. cur = llm_build_norm(ctx0, cur, hparams,
  8032. model.layers[il].ffn_norm, NULL,
  8033. LLM_NORM_RMS, cb, il);
  8034. cb(cur, "ffn_norm", il);
  8035. // FF
  8036. // special-case: the up and gate tensors are merged into a single tensor
  8037. // TOOD: support into llm_build_ffn
  8038. {
  8039. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8040. cb(up, "ffn_up", il);
  8041. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8042. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8043. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8044. cb(y, "ffn_gate", il);
  8045. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8046. cb(down, "ffn_down", il);
  8047. cur = down;
  8048. cb(cur, "ffn_out", il);
  8049. }
  8050. cur = ggml_add(ctx0, residual, cur);
  8051. cb(cur, "l_out", il);
  8052. inpL = cur;
  8053. }
  8054. cur = llm_build_norm(ctx0, inpL, hparams,
  8055. model.output_norm,
  8056. NULL,
  8057. LLM_NORM_RMS, cb, -1);
  8058. cb(cur, "result_norm", -1);
  8059. cur = ggml_mul_mat(ctx0, model.output, cur);
  8060. cb(cur, "result_output", -1);
  8061. ggml_build_forward_expand(gf, cur);
  8062. return gf;
  8063. }
  8064. struct ggml_cgraph * build_plamo() {
  8065. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8066. const int64_t n_embd_head = hparams.n_embd_head_v;
  8067. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8068. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8069. struct ggml_tensor * cur;
  8070. struct ggml_tensor * inpL;
  8071. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8072. // inp_pos - contains the positions
  8073. struct ggml_tensor * inp_pos = build_inp_pos();
  8074. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8075. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8076. for (int il = 0; il < n_layer; ++il) {
  8077. // norm
  8078. cur = llm_build_norm(ctx0, inpL, hparams,
  8079. model.layers[il].attn_norm, NULL,
  8080. LLM_NORM_RMS, cb, il);
  8081. cb(cur, "attn_norm", il);
  8082. struct ggml_tensor * attention_norm = cur;
  8083. // self-attention
  8084. {
  8085. // compute Q and K and RoPE them
  8086. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8087. cb(Qcur, "Qcur", il);
  8088. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8089. cb(Kcur, "Kcur", il);
  8090. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8091. cb(Vcur, "Vcur", il);
  8092. Qcur = ggml_rope_ext(
  8093. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8094. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8095. ext_factor, attn_factor, beta_fast, beta_slow);
  8096. cb(Qcur, "Qcur", il);
  8097. Kcur = ggml_rope_ext(
  8098. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8099. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8100. ext_factor, attn_factor, beta_fast, beta_slow);
  8101. cb(Kcur, "Kcur", il);
  8102. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8103. model.layers[il].wo, NULL,
  8104. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8105. }
  8106. struct ggml_tensor * sa_out = cur;
  8107. cur = attention_norm;
  8108. if (il == n_layer - 1) {
  8109. // skip computing output for unused tokens
  8110. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8111. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8112. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8113. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8114. }
  8115. // feed-forward network
  8116. {
  8117. cur = llm_build_ffn(ctx0, cur,
  8118. model.layers[il].ffn_up, NULL,
  8119. model.layers[il].ffn_gate, NULL,
  8120. model.layers[il].ffn_down, NULL,
  8121. NULL,
  8122. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8123. cb(cur, "ffn_out", il);
  8124. }
  8125. cur = ggml_add(ctx0, cur, sa_out);
  8126. cb(cur, "l_out", il);
  8127. cur = ggml_add(ctx0, cur, inpL);
  8128. cb(cur, "l_out", il);
  8129. // input for next layer
  8130. inpL = cur;
  8131. }
  8132. cur = inpL;
  8133. cur = llm_build_norm(ctx0, cur, hparams,
  8134. model.output_norm, NULL,
  8135. LLM_NORM_RMS, cb, -1);
  8136. cb(cur, "result_norm", -1);
  8137. // lm_head
  8138. cur = ggml_mul_mat(ctx0, model.output, cur);
  8139. cb(cur, "result_output", -1);
  8140. ggml_build_forward_expand(gf, cur);
  8141. return gf;
  8142. }
  8143. struct ggml_cgraph * build_gpt2() {
  8144. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8145. const int64_t n_embd_head = hparams.n_embd_head_v;
  8146. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8147. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8148. struct ggml_tensor * cur;
  8149. struct ggml_tensor * pos;
  8150. struct ggml_tensor * inpL;
  8151. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8152. // inp_pos - contains the positions
  8153. struct ggml_tensor * inp_pos = build_inp_pos();
  8154. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8155. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8156. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8157. cb(pos, "pos_embd", -1);
  8158. inpL = ggml_add(ctx0, inpL, pos);
  8159. cb(inpL, "inpL", -1);
  8160. for (int il = 0; il < n_layer; ++il) {
  8161. cur = llm_build_norm(ctx0, inpL, hparams,
  8162. model.layers[il].attn_norm,
  8163. model.layers[il].attn_norm_b,
  8164. LLM_NORM, cb, il);
  8165. cb(cur, "attn_norm", il);
  8166. // self-attention
  8167. {
  8168. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8169. cb(cur, "wqkv", il);
  8170. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8171. cb(cur, "bqkv", il);
  8172. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8173. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8174. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8175. cb(Qcur, "Qcur", il);
  8176. cb(Kcur, "Kcur", il);
  8177. cb(Vcur, "Vcur", il);
  8178. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8179. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8180. model.layers[il].wo, model.layers[il].bo,
  8181. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8182. }
  8183. if (il == n_layer - 1) {
  8184. // skip computing output for unused tokens
  8185. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8186. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8187. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8188. }
  8189. // add the input
  8190. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8191. cb(ffn_inp, "ffn_inp", il);
  8192. // FF
  8193. {
  8194. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8195. model.layers[il].ffn_norm,
  8196. model.layers[il].ffn_norm_b,
  8197. LLM_NORM, cb, il);
  8198. cb(cur, "ffn_norm", il);
  8199. cur = llm_build_ffn(ctx0, cur,
  8200. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8201. NULL, NULL,
  8202. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8203. NULL,
  8204. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8205. cb(cur, "ffn_out", il);
  8206. }
  8207. inpL = ggml_add(ctx0, cur, ffn_inp);
  8208. cb(inpL, "l_out", il);
  8209. }
  8210. cur = llm_build_norm(ctx0, inpL, hparams,
  8211. model.output_norm,
  8212. model.output_norm_b,
  8213. LLM_NORM, cb, -1);
  8214. cb(cur, "result_norm", -1);
  8215. cur = ggml_mul_mat(ctx0, model.output, cur);
  8216. cb(cur, "result_output", -1);
  8217. ggml_build_forward_expand(gf, cur);
  8218. return gf;
  8219. }
  8220. struct ggml_cgraph * build_codeshell() {
  8221. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8222. const int64_t n_embd_head = hparams.n_embd_head_v;
  8223. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8224. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8225. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8226. struct ggml_tensor * cur;
  8227. struct ggml_tensor * inpL;
  8228. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8229. // inp_pos - contains the positions
  8230. struct ggml_tensor * inp_pos = build_inp_pos();
  8231. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8232. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8233. for (int il = 0; il < n_layer; ++il) {
  8234. cur = llm_build_norm(ctx0, inpL, hparams,
  8235. model.layers[il].attn_norm,
  8236. model.layers[il].attn_norm_b,
  8237. LLM_NORM, cb, il);
  8238. cb(cur, "attn_norm", il);
  8239. // self-attention
  8240. {
  8241. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8242. cb(cur, "wqkv", il);
  8243. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8244. cb(cur, "bqkv", il);
  8245. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8246. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8247. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8248. cb(tmpq, "tmpq", il);
  8249. cb(tmpk, "tmpk", il);
  8250. cb(Vcur, "Vcur", il);
  8251. struct ggml_tensor * Qcur = ggml_rope_ext(
  8252. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8253. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8254. ext_factor, attn_factor, beta_fast, beta_slow
  8255. );
  8256. cb(Qcur, "Qcur", il);
  8257. struct ggml_tensor * Kcur = ggml_rope_ext(
  8258. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8259. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8260. ext_factor, attn_factor, beta_fast, beta_slow
  8261. );
  8262. cb(Kcur, "Kcur", il);
  8263. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8264. model.layers[il].wo, model.layers[il].bo,
  8265. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8266. }
  8267. if (il == n_layer - 1) {
  8268. // skip computing output for unused tokens
  8269. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8270. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8271. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8272. }
  8273. // add the input
  8274. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8275. cb(ffn_inp, "ffn_inp", il);
  8276. // FF
  8277. {
  8278. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8279. model.layers[il].ffn_norm,
  8280. model.layers[il].ffn_norm_b,
  8281. LLM_NORM, cb, il);
  8282. cb(cur, "ffn_norm", il);
  8283. cur = llm_build_ffn(ctx0, cur,
  8284. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8285. NULL, NULL,
  8286. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8287. NULL,
  8288. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8289. cb(cur, "ffn_out", il);
  8290. }
  8291. inpL = ggml_add(ctx0, cur, ffn_inp);
  8292. cb(inpL, "l_out", il);
  8293. }
  8294. cur = llm_build_norm(ctx0, inpL, hparams,
  8295. model.output_norm,
  8296. model.output_norm_b,
  8297. LLM_NORM, cb, -1);
  8298. cb(cur, "result_norm", -1);
  8299. cur = ggml_mul_mat(ctx0, model.output, cur);
  8300. cb(cur, "result_output", -1);
  8301. ggml_build_forward_expand(gf, cur);
  8302. return gf;
  8303. }
  8304. struct ggml_cgraph * build_orion() {
  8305. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8306. const int64_t n_embd_head = hparams.n_embd_head_v;
  8307. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8308. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8309. struct ggml_tensor * cur;
  8310. struct ggml_tensor * inpL;
  8311. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8312. // inp_pos - contains the positions
  8313. struct ggml_tensor * inp_pos = build_inp_pos();
  8314. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8315. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8316. for (int il = 0; il < n_layer; ++il) {
  8317. struct ggml_tensor * inpSA = inpL;
  8318. // norm
  8319. cur = llm_build_norm(ctx0, inpL, hparams,
  8320. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8321. LLM_NORM, cb, il);
  8322. cb(cur, "attn_norm", il);
  8323. // self-attention
  8324. {
  8325. // compute Q and K and RoPE them
  8326. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8327. cb(Qcur, "Qcur", il);
  8328. // if (model.layers[il].bq) {
  8329. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8330. // cb(Qcur, "Qcur", il);
  8331. // }
  8332. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8333. cb(Kcur, "Kcur", il);
  8334. // if (model.layers[il].bk) {
  8335. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8336. // cb(Kcur, "Kcur", il);
  8337. // }
  8338. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8339. cb(Vcur, "Vcur", il);
  8340. // if (model.layers[il].bv) {
  8341. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8342. // cb(Vcur, "Vcur", il);
  8343. // }
  8344. Qcur = ggml_rope_ext(
  8345. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8346. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8347. ext_factor, attn_factor, beta_fast, beta_slow
  8348. );
  8349. cb(Qcur, "Qcur", il);
  8350. Kcur = ggml_rope_ext(
  8351. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8352. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8353. ext_factor, attn_factor, beta_fast, beta_slow
  8354. );
  8355. cb(Kcur, "Kcur", il);
  8356. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8357. model.layers[il].wo, NULL,
  8358. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8359. }
  8360. if (il == n_layer - 1) {
  8361. // skip computing output for unused tokens
  8362. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8363. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8364. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8365. }
  8366. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8367. cb(ffn_inp, "ffn_inp", il);
  8368. // feed-forward network
  8369. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8370. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8371. LLM_NORM, cb, il);
  8372. cb(cur, "ffn_norm", il);
  8373. cur = llm_build_ffn(ctx0, cur,
  8374. model.layers[il].ffn_up, NULL,
  8375. model.layers[il].ffn_gate, NULL,
  8376. model.layers[il].ffn_down, NULL,
  8377. NULL,
  8378. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8379. cb(cur, "ffn_out", il);
  8380. cur = ggml_add(ctx0, cur, ffn_inp);
  8381. cb(cur, "l_out", il);
  8382. // input for next layer
  8383. inpL = cur;
  8384. }
  8385. cur = inpL;
  8386. cur = llm_build_norm(ctx0, cur, hparams,
  8387. model.output_norm, model.output_norm_b,
  8388. LLM_NORM, cb, -1);
  8389. cb(cur, "result_norm", -1);
  8390. // lm_head
  8391. cur = ggml_mul_mat(ctx0, model.output, cur);
  8392. cb(cur, "result_output", -1);
  8393. ggml_build_forward_expand(gf, cur);
  8394. return gf;
  8395. }
  8396. struct ggml_cgraph * build_internlm2() {
  8397. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8398. const int64_t n_embd_head = hparams.n_embd_head_v;
  8399. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8400. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8401. struct ggml_tensor * cur;
  8402. struct ggml_tensor * inpL;
  8403. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8404. // inp_pos - contains the positions
  8405. struct ggml_tensor * inp_pos = build_inp_pos();
  8406. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8407. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8408. for (int il = 0; il < n_layer; ++il) {
  8409. struct ggml_tensor * inpSA = inpL;
  8410. // norm
  8411. cur = llm_build_norm(ctx0, inpL, hparams,
  8412. model.layers[il].attn_norm, NULL,
  8413. LLM_NORM_RMS, cb, il);
  8414. cb(cur, "attn_norm", il);
  8415. // self-attention
  8416. {
  8417. // compute Q and K and RoPE them
  8418. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8419. cb(Qcur, "Qcur", il);
  8420. if (model.layers[il].bq) {
  8421. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8422. cb(Qcur, "Qcur", il);
  8423. }
  8424. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8425. cb(Kcur, "Kcur", il);
  8426. if (model.layers[il].bk) {
  8427. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8428. cb(Kcur, "Kcur", il);
  8429. }
  8430. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8431. cb(Vcur, "Vcur", il);
  8432. if (model.layers[il].bv) {
  8433. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8434. cb(Vcur, "Vcur", il);
  8435. }
  8436. Qcur = ggml_rope_ext(
  8437. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8438. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8439. ext_factor, attn_factor, beta_fast, beta_slow
  8440. );
  8441. cb(Qcur, "Qcur", il);
  8442. Kcur = ggml_rope_ext(
  8443. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8444. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8445. ext_factor, attn_factor, beta_fast, beta_slow
  8446. );
  8447. cb(Kcur, "Kcur", il);
  8448. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8449. model.layers[il].wo, model.layers[il].bo,
  8450. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8451. }
  8452. if (il == n_layer - 1) {
  8453. // skip computing output for unused tokens
  8454. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8455. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8456. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8457. }
  8458. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8459. cb(ffn_inp, "ffn_inp", il);
  8460. // feed-forward network
  8461. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8462. model.layers[il].ffn_norm, NULL,
  8463. LLM_NORM_RMS, cb, il);
  8464. cb(cur, "ffn_norm", il);
  8465. cur = llm_build_ffn(ctx0, cur,
  8466. model.layers[il].ffn_up, NULL,
  8467. model.layers[il].ffn_gate, NULL,
  8468. model.layers[il].ffn_down, NULL,
  8469. NULL,
  8470. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8471. cb(cur, "ffn_out", il);
  8472. cur = ggml_add(ctx0, cur, ffn_inp);
  8473. cb(cur, "l_out", il);
  8474. // input for next layer
  8475. inpL = cur;
  8476. }
  8477. cur = inpL;
  8478. cur = llm_build_norm(ctx0, cur, hparams,
  8479. model.output_norm, NULL,
  8480. LLM_NORM_RMS, cb, -1);
  8481. cb(cur, "result_norm", -1);
  8482. // lm_head
  8483. cur = ggml_mul_mat(ctx0, model.output, cur);
  8484. cb(cur, "result_output", -1);
  8485. ggml_build_forward_expand(gf, cur);
  8486. return gf;
  8487. }
  8488. // ref: https://arxiv.org/abs/2203.03466
  8489. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8490. // based on the original build_llama() function
  8491. struct ggml_cgraph * build_minicpm() {
  8492. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8493. const int64_t n_embd_head = hparams.n_embd_head_v;
  8494. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8495. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8496. const int64_t n_embd = hparams.n_embd;
  8497. //TODO: if the model varies, these parameters need to be read from the model
  8498. const int64_t n_embd_base = 256;
  8499. const float scale_embd = 12.0f;
  8500. const float scale_depth = 1.4f;
  8501. struct ggml_tensor * cur;
  8502. struct ggml_tensor * inpL;
  8503. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8504. // scale the input embeddings
  8505. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8506. cb(inpL, "inp_scaled", -1);
  8507. // inp_pos - contains the positions
  8508. struct ggml_tensor * inp_pos = build_inp_pos();
  8509. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8510. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8511. for (int il = 0; il < n_layer; ++il) {
  8512. struct ggml_tensor * inpSA = inpL;
  8513. // norm
  8514. cur = llm_build_norm(ctx0, inpL, hparams,
  8515. model.layers[il].attn_norm, NULL,
  8516. LLM_NORM_RMS, cb, il);
  8517. cb(cur, "attn_norm", il);
  8518. // self-attention
  8519. {
  8520. // compute Q and K and RoPE them
  8521. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8522. cb(Qcur, "Qcur", il);
  8523. if (model.layers[il].bq) {
  8524. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8525. cb(Qcur, "Qcur", il);
  8526. }
  8527. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8528. cb(Kcur, "Kcur", il);
  8529. if (model.layers[il].bk) {
  8530. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8531. cb(Kcur, "Kcur", il);
  8532. }
  8533. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8534. cb(Vcur, "Vcur", il);
  8535. if (model.layers[il].bv) {
  8536. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8537. cb(Vcur, "Vcur", il);
  8538. }
  8539. Qcur = ggml_rope_ext(
  8540. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8541. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8542. ext_factor, attn_factor, beta_fast, beta_slow
  8543. );
  8544. cb(Qcur, "Qcur", il);
  8545. Kcur = ggml_rope_ext(
  8546. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8547. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8548. ext_factor, attn_factor, beta_fast, beta_slow
  8549. );
  8550. cb(Kcur, "Kcur", il);
  8551. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8552. model.layers[il].wo, model.layers[il].bo,
  8553. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8554. }
  8555. if (il == n_layer - 1) {
  8556. // skip computing output for unused tokens
  8557. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8558. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8559. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8560. }
  8561. // scale_res - scale the hidden states for residual connection
  8562. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8563. cur = ggml_scale(ctx0, cur, scale_res);
  8564. cb(cur, "hidden_scaled", -1);
  8565. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8566. cb(ffn_inp, "ffn_inp", il);
  8567. // feed-forward network
  8568. {
  8569. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8570. model.layers[il].ffn_norm, NULL,
  8571. LLM_NORM_RMS, cb, il);
  8572. cb(cur, "ffn_norm", il);
  8573. cur = llm_build_ffn(ctx0, cur,
  8574. model.layers[il].ffn_up, NULL,
  8575. model.layers[il].ffn_gate, NULL,
  8576. model.layers[il].ffn_down, NULL,
  8577. NULL,
  8578. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8579. cb(cur, "ffn_out", il);
  8580. }
  8581. // scale the hidden states for residual connection
  8582. cur = ggml_scale(ctx0, cur, scale_res);
  8583. cb(cur, "hidden_scaled_ffn", -1);
  8584. cur = ggml_add(ctx0, cur, ffn_inp);
  8585. cb(cur, "l_out", il);
  8586. // input for next layer
  8587. inpL = cur;
  8588. }
  8589. cur = inpL;
  8590. cur = llm_build_norm(ctx0, cur, hparams,
  8591. model.output_norm, NULL,
  8592. LLM_NORM_RMS, cb, -1);
  8593. cb(cur, "result_norm", -1);
  8594. // lm_head scaling
  8595. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8596. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8597. cb(cur, "lmhead_scaling", -1);
  8598. // lm_head
  8599. cur = ggml_mul_mat(ctx0, model.output, cur);
  8600. cb(cur, "result_output", -1);
  8601. ggml_build_forward_expand(gf, cur);
  8602. return gf;
  8603. }
  8604. struct ggml_cgraph * build_gemma() {
  8605. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8606. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8607. struct ggml_tensor * cur;
  8608. struct ggml_tensor * inpL;
  8609. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8610. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8611. cb(inpL, "inp_scaled", -1);
  8612. // inp_pos - contains the positions
  8613. struct ggml_tensor * inp_pos = build_inp_pos();
  8614. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8615. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8616. for (int il = 0; il < n_layer; ++il) {
  8617. // norm
  8618. cur = llm_build_norm(ctx0, inpL, hparams,
  8619. model.layers[il].attn_norm, NULL,
  8620. LLM_NORM_RMS, cb, il);
  8621. cb(cur, "attn_norm", il);
  8622. // self-attention
  8623. {
  8624. // compute Q and K and RoPE them
  8625. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8626. cb(Qcur, "Qcur", il);
  8627. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8628. cb(Kcur, "Kcur", il);
  8629. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8630. cb(Vcur, "Vcur", il);
  8631. Qcur = ggml_rope_ext(
  8632. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8633. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8634. ext_factor, attn_factor, beta_fast, beta_slow);
  8635. cb(Qcur, "Qcur", il);
  8636. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8637. cb(Qcur, "Qcur_scaled", il);
  8638. Kcur = ggml_rope_ext(
  8639. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8640. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8641. ext_factor, attn_factor, beta_fast, beta_slow);
  8642. cb(Kcur, "Kcur", il);
  8643. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8644. model.layers[il].wo, NULL,
  8645. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8646. }
  8647. if (il == n_layer - 1) {
  8648. // skip computing output for unused tokens
  8649. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8650. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8651. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8652. }
  8653. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8654. cb(sa_out, "sa_out", il);
  8655. cur = llm_build_norm(ctx0, sa_out, hparams,
  8656. model.layers[il].ffn_norm, NULL,
  8657. LLM_NORM_RMS, cb, il);
  8658. cb(cur, "ffn_norm", il);
  8659. // feed-forward network
  8660. {
  8661. cur = llm_build_ffn(ctx0, cur,
  8662. model.layers[il].ffn_up, NULL,
  8663. model.layers[il].ffn_gate, NULL,
  8664. model.layers[il].ffn_down, NULL,
  8665. NULL,
  8666. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8667. cb(cur, "ffn_out", il);
  8668. }
  8669. cur = ggml_add(ctx0, cur, sa_out);
  8670. cb(cur, "l_out", il);
  8671. // input for next layer
  8672. inpL = cur;
  8673. }
  8674. cur = inpL;
  8675. cur = llm_build_norm(ctx0, cur, hparams,
  8676. model.output_norm, NULL,
  8677. LLM_NORM_RMS, cb, -1);
  8678. cb(cur, "result_norm", -1);
  8679. // lm_head
  8680. cur = ggml_mul_mat(ctx0, model.output, cur);
  8681. cb(cur, "result_output", -1);
  8682. ggml_build_forward_expand(gf, cur);
  8683. return gf;
  8684. }
  8685. struct ggml_cgraph * build_starcoder2() {
  8686. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8687. const int64_t n_embd_head = hparams.n_embd_head_v;
  8688. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8689. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8690. struct ggml_tensor * cur;
  8691. struct ggml_tensor * inpL;
  8692. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8693. // inp_pos - contains the positions
  8694. struct ggml_tensor * inp_pos = build_inp_pos();
  8695. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8696. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8697. for (int il = 0; il < n_layer; ++il) {
  8698. struct ggml_tensor * inpSA = inpL;
  8699. // norm
  8700. cur = llm_build_norm(ctx0, inpL, hparams,
  8701. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8702. LLM_NORM, cb, il);
  8703. cb(cur, "attn_norm", il);
  8704. // self-attention
  8705. {
  8706. // compute Q and K and RoPE them
  8707. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8708. cb(Qcur, "Qcur", il);
  8709. if (model.layers[il].bq) {
  8710. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8711. cb(Qcur, "Qcur", il);
  8712. }
  8713. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8714. cb(Kcur, "Kcur", il);
  8715. if (model.layers[il].bk) {
  8716. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8717. cb(Kcur, "Kcur", il);
  8718. }
  8719. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8720. cb(Vcur, "Vcur", il);
  8721. if (model.layers[il].bv) {
  8722. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8723. cb(Vcur, "Vcur", il);
  8724. }
  8725. Qcur = ggml_rope_ext(
  8726. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8727. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8728. ext_factor, attn_factor, beta_fast, beta_slow
  8729. );
  8730. cb(Qcur, "Qcur", il);
  8731. Kcur = ggml_rope_ext(
  8732. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8733. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8734. ext_factor, attn_factor, beta_fast, beta_slow
  8735. );
  8736. cb(Kcur, "Kcur", il);
  8737. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8738. model.layers[il].wo, model.layers[il].bo,
  8739. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8740. }
  8741. if (il == n_layer - 1) {
  8742. // skip computing output for unused tokens
  8743. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8744. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8745. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8746. }
  8747. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8748. cb(ffn_inp, "ffn_inp", il);
  8749. // feed-forward network
  8750. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8751. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8752. LLM_NORM, cb, il);
  8753. cb(cur, "ffn_norm", il);
  8754. cur = llm_build_ffn(ctx0, cur,
  8755. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8756. NULL, NULL,
  8757. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8758. NULL,
  8759. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8760. cb(cur, "ffn_out", il);
  8761. cur = ggml_add(ctx0, cur, ffn_inp);
  8762. cb(cur, "l_out", il);
  8763. // input for next layer
  8764. inpL = cur;
  8765. }
  8766. cur = inpL;
  8767. cur = llm_build_norm(ctx0, cur, hparams,
  8768. model.output_norm, model.output_norm_b,
  8769. LLM_NORM, cb, -1);
  8770. cb(cur, "result_norm", -1);
  8771. // lm_head
  8772. cur = ggml_mul_mat(ctx0, model.output, cur);
  8773. cb(cur, "result_output", -1);
  8774. ggml_build_forward_expand(gf, cur);
  8775. return gf;
  8776. }
  8777. struct ggml_cgraph * build_mamba() {
  8778. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8779. const int64_t d_model = n_embd;
  8780. const int64_t d_conv = hparams.ssm_d_conv;
  8781. const int64_t d_inner = hparams.ssm_d_inner;
  8782. GGML_ASSERT(2 * d_model == d_inner);
  8783. const int64_t d_state = hparams.ssm_d_state;
  8784. const int64_t dt_rank = hparams.ssm_dt_rank;
  8785. struct ggml_tensor * cur;
  8786. struct ggml_tensor * inpL;
  8787. // {n_embd, n_tokens}
  8788. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8789. struct ggml_tensor * state_mask = build_inp_s_mask();
  8790. struct ggml_tensor * state_seq = build_inp_s_seq();
  8791. for (int il = 0; il < n_layer; ++il) {
  8792. // (ab)using the KV cache to store the states
  8793. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8794. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8795. // clear states of sequences which are starting at the beginning of this batch
  8796. {
  8797. conv_states = ggml_mul(ctx0,
  8798. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8799. state_mask);
  8800. ssm_states = ggml_mul(ctx0,
  8801. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8802. state_mask);
  8803. }
  8804. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8805. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8806. // norm
  8807. cur = llm_build_norm(ctx0, inpL, hparams,
  8808. model.layers[il].attn_norm, NULL,
  8809. LLM_NORM_RMS, cb, il);
  8810. cb(cur, "attn_norm", il);
  8811. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8812. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8813. // split the above in two
  8814. // => {d_inner, n_tokens}
  8815. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8816. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8817. // conv
  8818. {
  8819. // Custom operator which is needed only to ease simultaneous sequence processing.
  8820. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8821. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8822. // then element-wise multiply that with the conv1d weigth,
  8823. // then sum the elements of each row,
  8824. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8825. // then permute away the ne[0] dimension,
  8826. // and then you're left with the resulting x tensor.
  8827. // The new conv_states is the last (d_conv - 1) columns
  8828. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8829. // For simultaneous sequences, it's more complicated.
  8830. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8831. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8832. ggml_build_forward_expand(gf,
  8833. ggml_cpy(ctx0,
  8834. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8835. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8836. // extract x from x_conv
  8837. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8838. // bias
  8839. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8840. x = ggml_silu(ctx0, x);
  8841. }
  8842. // ssm
  8843. {
  8844. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8845. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8846. // split
  8847. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8848. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8849. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8850. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8851. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8852. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8853. // Custom operator to optimize the parallel associative scan
  8854. // as described in the Annex D of the Mamba paper.
  8855. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8856. // because only a single tensor can be returned.
  8857. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8858. // store last states (the second part of y_ssm_states)
  8859. ggml_build_forward_expand(gf,
  8860. ggml_cpy(ctx0,
  8861. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8862. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8863. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8864. if (il == n_layer - 1) {
  8865. // skip computing output for unused tokens
  8866. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8867. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8868. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8869. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8870. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8871. }
  8872. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8873. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8874. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8875. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8876. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8877. }
  8878. // residual
  8879. cur = ggml_add(ctx0, cur, inpL);
  8880. cb(cur, "l_out", il);
  8881. // input for next layer
  8882. inpL = cur;
  8883. }
  8884. // final rmsnorm
  8885. cur = llm_build_norm(ctx0, inpL, hparams,
  8886. model.output_norm, NULL,
  8887. LLM_NORM_RMS, cb, -1);
  8888. cb(cur, "result_norm", -1);
  8889. // lm_head
  8890. cur = ggml_mul_mat(ctx0, model.output, cur);
  8891. cb(cur, "result_output", -1);
  8892. ggml_build_forward_expand(gf, cur);
  8893. return gf;
  8894. }
  8895. struct ggml_cgraph * build_command_r() {
  8896. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8897. const int64_t n_embd_head = hparams.n_embd_head_v;
  8898. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8899. const float f_logit_scale = hparams.f_logit_scale;
  8900. struct ggml_tensor * cur;
  8901. struct ggml_tensor * inpL;
  8902. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8903. // inp_pos - contains the positions
  8904. struct ggml_tensor * inp_pos = build_inp_pos();
  8905. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8906. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8907. for (int il = 0; il < n_layer; ++il) {
  8908. // norm
  8909. cur = llm_build_norm(ctx0, inpL, hparams,
  8910. model.layers[il].attn_norm, NULL,
  8911. LLM_NORM, cb, il);
  8912. cb(cur, "attn_norm", il);
  8913. struct ggml_tensor * ffn_inp = cur;
  8914. // self-attention
  8915. {
  8916. // compute Q and K and RoPE them
  8917. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8918. cb(Qcur, "Qcur", il);
  8919. if (model.layers[il].bq) {
  8920. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8921. cb(Qcur, "Qcur", il);
  8922. }
  8923. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8924. cb(Kcur, "Kcur", il);
  8925. if (model.layers[il].bk) {
  8926. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8927. cb(Kcur, "Kcur", il);
  8928. }
  8929. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8930. cb(Vcur, "Vcur", il);
  8931. if (model.layers[il].bv) {
  8932. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8933. cb(Vcur, "Vcur", il);
  8934. }
  8935. if (model.layers[il].attn_q_norm) {
  8936. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8937. ggml_element_size(Qcur) * n_embd_head,
  8938. ggml_element_size(Qcur) * n_embd_head * n_head,
  8939. 0);
  8940. cb(Qcur, "Qcur", il);
  8941. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8942. ggml_element_size(Kcur) * n_embd_head,
  8943. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8944. 0);
  8945. cb(Kcur, "Kcur", il);
  8946. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8947. model.layers[il].attn_q_norm,
  8948. NULL,
  8949. LLM_NORM, cb, il);
  8950. cb(Qcur, "Qcur", il);
  8951. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8952. model.layers[il].attn_k_norm,
  8953. NULL,
  8954. LLM_NORM, cb, il);
  8955. cb(Kcur, "Kcur", il);
  8956. }
  8957. Qcur = ggml_rope_ext(
  8958. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8959. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8960. ext_factor, attn_factor, beta_fast, beta_slow
  8961. );
  8962. cb(Qcur, "Qcur", il);
  8963. Kcur = ggml_rope_ext(
  8964. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8965. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8966. ext_factor, attn_factor, beta_fast, beta_slow
  8967. );
  8968. cb(Kcur, "Kcur", il);
  8969. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8970. model.layers[il].wo, model.layers[il].bo,
  8971. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8972. }
  8973. if (il == n_layer - 1) {
  8974. // skip computing output for unused tokens
  8975. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8976. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8977. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8978. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8979. }
  8980. struct ggml_tensor * attn_out = cur;
  8981. // feed-forward network
  8982. {
  8983. cur = llm_build_ffn(ctx0, ffn_inp,
  8984. model.layers[il].ffn_up, NULL,
  8985. model.layers[il].ffn_gate, NULL,
  8986. model.layers[il].ffn_down, NULL,
  8987. NULL,
  8988. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8989. cb(cur, "ffn_out", il);
  8990. }
  8991. // add together residual + FFN + self-attention
  8992. cur = ggml_add(ctx0, cur, inpL);
  8993. cur = ggml_add(ctx0, cur, attn_out);
  8994. cb(cur, "l_out", il);
  8995. // input for next layer
  8996. inpL = cur;
  8997. }
  8998. cur = inpL;
  8999. cur = llm_build_norm(ctx0, cur, hparams,
  9000. model.output_norm, NULL,
  9001. LLM_NORM, cb, -1);
  9002. cb(cur, "result_norm", -1);
  9003. // lm_head
  9004. cur = ggml_mul_mat(ctx0, model.output, cur);
  9005. if (f_logit_scale) {
  9006. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9007. }
  9008. cb(cur, "result_output", -1);
  9009. ggml_build_forward_expand(gf, cur);
  9010. return gf;
  9011. }
  9012. // ref: https://allenai.org/olmo
  9013. // based on the original build_llama() function, changes:
  9014. // * non-parametric layer norm
  9015. // * clamp qkv
  9016. // * removed bias
  9017. // * removed MoE
  9018. struct ggml_cgraph * build_olmo() {
  9019. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9020. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9021. int32_t n_tokens = this->n_tokens;
  9022. const int64_t n_embd_head = hparams.n_embd_head_v;
  9023. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9024. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9025. struct ggml_tensor * cur;
  9026. struct ggml_tensor * inpL;
  9027. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9028. // inp_pos - contains the positions
  9029. struct ggml_tensor * inp_pos = build_inp_pos();
  9030. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9031. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9032. for (int il = 0; il < n_layer; ++il) {
  9033. struct ggml_tensor * inpSA = inpL;
  9034. // norm
  9035. cur = llm_build_norm(ctx0, inpL, hparams,
  9036. NULL, NULL,
  9037. LLM_NORM, cb, il);
  9038. cb(cur, "attn_norm", il);
  9039. // self-attention
  9040. {
  9041. // compute Q and K and RoPE them
  9042. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9043. cb(Qcur, "Qcur", il);
  9044. if (hparams.f_clamp_kqv > 0.0f) {
  9045. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9046. cb(Qcur, "Qcur", il);
  9047. }
  9048. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9049. cb(Kcur, "Kcur", il);
  9050. if (hparams.f_clamp_kqv > 0.0f) {
  9051. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9052. cb(Kcur, "Kcur", il);
  9053. }
  9054. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9055. cb(Vcur, "Vcur", il);
  9056. if (hparams.f_clamp_kqv > 0.0f) {
  9057. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9058. cb(Vcur, "Vcur", il);
  9059. }
  9060. Qcur = ggml_rope_ext(
  9061. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9062. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9063. ext_factor, attn_factor, beta_fast, beta_slow
  9064. );
  9065. cb(Qcur, "Qcur", il);
  9066. Kcur = ggml_rope_ext(
  9067. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9068. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9069. ext_factor, attn_factor, beta_fast, beta_slow
  9070. );
  9071. cb(Kcur, "Kcur", il);
  9072. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9073. model.layers[il].wo, nullptr,
  9074. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9075. }
  9076. if (il == n_layer - 1) {
  9077. // skip computing output for unused tokens
  9078. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9079. n_tokens = n_outputs;
  9080. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9081. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9082. }
  9083. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9084. cb(ffn_inp, "ffn_inp", il);
  9085. // feed-forward network
  9086. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9087. NULL, NULL,
  9088. LLM_NORM, cb, il);
  9089. cb(cur, "ffn_norm", il);
  9090. cur = llm_build_ffn(ctx0, cur,
  9091. model.layers[il].ffn_up, NULL,
  9092. model.layers[il].ffn_gate, NULL,
  9093. model.layers[il].ffn_down, NULL,
  9094. NULL,
  9095. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9096. cb(cur, "ffn_out", il);
  9097. cur = ggml_add(ctx0, cur, ffn_inp);
  9098. cb(cur, "ffn_out", il);
  9099. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9100. if (layer_dir != nullptr) {
  9101. cur = ggml_add(ctx0, cur, layer_dir);
  9102. }
  9103. cb(cur, "l_out", il);
  9104. // input for next layer
  9105. inpL = cur;
  9106. }
  9107. cur = inpL;
  9108. cur = llm_build_norm(ctx0, cur, hparams,
  9109. NULL, NULL,
  9110. LLM_NORM, cb, -1);
  9111. cb(cur, "result_norm", -1);
  9112. // lm_head
  9113. cur = ggml_mul_mat(ctx0, model.output, cur);
  9114. cb(cur, "result_output", -1);
  9115. ggml_build_forward_expand(gf, cur);
  9116. return gf;
  9117. }
  9118. struct ggml_cgraph * build_gptneox() {
  9119. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9120. const int64_t n_embd_head = hparams.n_embd_head_v;
  9121. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9122. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9123. struct ggml_tensor * cur;
  9124. struct ggml_tensor * inpL;
  9125. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9126. // inp_pos - contains the positions
  9127. struct ggml_tensor * inp_pos = build_inp_pos();
  9128. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9129. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9130. for (int il = 0; il < n_layer; ++il) {
  9131. cur = llm_build_norm(ctx0, inpL, hparams,
  9132. model.layers[il].attn_norm,
  9133. model.layers[il].attn_norm_b,
  9134. LLM_NORM, cb, il);
  9135. cb(cur, "attn_norm", il);
  9136. // self-attention
  9137. {
  9138. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9139. cb(cur, "wqkv", il);
  9140. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9141. cb(cur, "bqkv", il);
  9142. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9143. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9144. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9145. cb(Qcur, "Qcur", il);
  9146. cb(Kcur, "Kcur", il);
  9147. cb(Vcur, "Vcur", il);
  9148. Qcur = ggml_rope_ext(
  9149. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9150. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9151. ext_factor, attn_factor, beta_fast, beta_slow
  9152. );
  9153. cb(Qcur, "Qcur", il);
  9154. Kcur = ggml_rope_ext(
  9155. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9156. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9157. ext_factor, attn_factor, beta_fast, beta_slow
  9158. );
  9159. cb(Kcur, "Kcur", il);
  9160. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9161. model.layers[il].wo, model.layers[il].bo,
  9162. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9163. }
  9164. if (il == n_layer - 1) {
  9165. // skip computing output for unused tokens
  9166. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9167. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9168. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9169. }
  9170. // ffn
  9171. if (hparams.use_par_res) {
  9172. // attention and ffn are computed in parallel
  9173. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9174. struct ggml_tensor * attn_out = cur;
  9175. cur = llm_build_norm(ctx0, inpL, hparams,
  9176. model.layers[il].ffn_norm,
  9177. model.layers[il].ffn_norm_b,
  9178. LLM_NORM, cb, il);
  9179. cb(cur, "ffn_norm", il);
  9180. cur = llm_build_ffn(ctx0, cur,
  9181. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9182. NULL, NULL,
  9183. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9184. NULL,
  9185. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9186. cb(cur, "ffn_out", il);
  9187. cur = ggml_add(ctx0, cur, inpL);
  9188. cb(cur, "ffn_out", il);
  9189. inpL = ggml_add(ctx0, cur, attn_out);
  9190. cb(inpL, "l_out", il);
  9191. } else {
  9192. // attention and ffn are computed sequentially
  9193. // x = x + attn(ln1(x))
  9194. // x = x + ffn(ln2(x))
  9195. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9196. cb(ffn_inp, "ffn_inp", il);
  9197. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9198. model.layers[il].ffn_norm,
  9199. model.layers[il].ffn_norm_b,
  9200. LLM_NORM, cb, il);
  9201. cb(cur, "ffn_norm", il);
  9202. cur = llm_build_ffn(ctx0, cur,
  9203. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9204. NULL, NULL,
  9205. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9206. NULL,
  9207. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9208. cb(cur, "ffn_out", il);
  9209. inpL = ggml_add(ctx0, cur, ffn_inp);
  9210. cb(inpL, "l_out", il);
  9211. }
  9212. }
  9213. cur = llm_build_norm(ctx0, inpL, hparams,
  9214. model.output_norm,
  9215. model.output_norm_b,
  9216. LLM_NORM, cb, -1);
  9217. cb(cur, "result_norm", -1);
  9218. cur = ggml_mul_mat(ctx0, model.output, cur);
  9219. cb(cur, "result_output", -1);
  9220. ggml_build_forward_expand(gf, cur);
  9221. return gf;
  9222. }
  9223. struct ggml_cgraph * build_arctic() {
  9224. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9225. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9226. int32_t n_tokens = this->n_tokens;
  9227. const int64_t n_embd_head = hparams.n_embd_head_v;
  9228. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9229. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9230. struct ggml_tensor * cur;
  9231. struct ggml_tensor * inpL;
  9232. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9233. // inp_pos - contains the positions
  9234. struct ggml_tensor * inp_pos = build_inp_pos();
  9235. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9236. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9237. for (int il = 0; il < n_layer; ++il) {
  9238. struct ggml_tensor * inpSA = inpL;
  9239. // norm
  9240. cur = llm_build_norm(ctx0, inpL, hparams,
  9241. model.layers[il].attn_norm, NULL,
  9242. LLM_NORM_RMS, cb, il);
  9243. cb(cur, "attn_norm", il);
  9244. // self-attention
  9245. {
  9246. // compute Q and K and RoPE them
  9247. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9248. cb(Qcur, "Qcur", il);
  9249. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9250. cb(Kcur, "Kcur", il);
  9251. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9252. cb(Vcur, "Vcur", il);
  9253. Qcur = ggml_rope_ext(
  9254. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9255. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9256. ext_factor, attn_factor, beta_fast, beta_slow
  9257. );
  9258. cb(Qcur, "Qcur", il);
  9259. Kcur = ggml_rope_ext(
  9260. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9261. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9262. ext_factor, attn_factor, beta_fast, beta_slow
  9263. );
  9264. cb(Kcur, "Kcur", il);
  9265. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9266. model.layers[il].wo, NULL,
  9267. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9268. }
  9269. if (il == n_layer - 1) {
  9270. // skip computing output for unused tokens
  9271. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9272. n_tokens = n_outputs;
  9273. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9274. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9275. }
  9276. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9277. cb(ffn_inp, "ffn_inp", il);
  9278. // feed-forward network
  9279. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9280. model.layers[il].ffn_norm, NULL,
  9281. LLM_NORM_RMS, cb, il);
  9282. cb(cur, "ffn_norm", il);
  9283. cur = llm_build_ffn(ctx0, cur,
  9284. model.layers[il].ffn_up, NULL,
  9285. model.layers[il].ffn_gate, NULL,
  9286. model.layers[il].ffn_down, NULL,
  9287. NULL,
  9288. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9289. cb(cur, "ffn_out", il);
  9290. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9291. cb(ffn_out, "ffn_out", il);
  9292. // MoE
  9293. cur = llm_build_norm(ctx0, inpSA, hparams,
  9294. model.layers[il].ffn_norm_exps, NULL,
  9295. LLM_NORM_RMS, cb, il);
  9296. cb(cur, "ffn_norm_exps", il);
  9297. cur = llm_build_moe_ffn(ctx0, cur,
  9298. model.layers[il].ffn_gate_inp,
  9299. model.layers[il].ffn_up_exps,
  9300. model.layers[il].ffn_gate_exps,
  9301. model.layers[il].ffn_down_exps,
  9302. n_expert, n_expert_used,
  9303. LLM_FFN_SILU, true,
  9304. false, 0.0,
  9305. cb, il);
  9306. cb(cur, "ffn_moe_out", il);
  9307. cur = ggml_add(ctx0, cur, ffn_out);
  9308. cb(cur, "ffn_out", il);
  9309. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9310. if (layer_dir != nullptr) {
  9311. cur = ggml_add(ctx0, cur, layer_dir);
  9312. }
  9313. cb(cur, "l_out", il);
  9314. // input for next layer
  9315. inpL = cur;
  9316. }
  9317. cur = inpL;
  9318. cur = llm_build_norm(ctx0, cur, hparams,
  9319. model.output_norm, NULL,
  9320. LLM_NORM_RMS, cb, -1);
  9321. cb(cur, "result_norm", -1);
  9322. // lm_head
  9323. cur = ggml_mul_mat(ctx0, model.output, cur);
  9324. cb(cur, "result_output", -1);
  9325. ggml_build_forward_expand(gf, cur);
  9326. return gf;
  9327. }
  9328. struct ggml_cgraph * build_deepseek2() {
  9329. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9330. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9331. int32_t n_tokens = this->n_tokens;
  9332. bool is_lite = (hparams.n_layer == 27);
  9333. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9334. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9335. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9336. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9337. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9338. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9339. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9340. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9341. struct ggml_tensor * cur;
  9342. struct ggml_tensor * inpL;
  9343. // {n_embd, n_tokens}
  9344. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9345. // inp_pos - contains the positions
  9346. struct ggml_tensor * inp_pos = build_inp_pos();
  9347. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9348. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9349. for (int il = 0; il < n_layer; ++il) {
  9350. struct ggml_tensor * inpSA = inpL;
  9351. // norm
  9352. cur = llm_build_norm(ctx0, inpL, hparams,
  9353. model.layers[il].attn_norm, NULL,
  9354. LLM_NORM_RMS, cb, il);
  9355. cb(cur, "attn_norm", il);
  9356. // self_attention
  9357. {
  9358. struct ggml_tensor * q = NULL;
  9359. if (!is_lite) {
  9360. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9361. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9362. cb(q, "q", il);
  9363. q = llm_build_norm(ctx0, q, hparams,
  9364. model.layers[il].attn_q_a_norm, NULL,
  9365. LLM_NORM_RMS, cb, il);
  9366. cb(q, "q", il);
  9367. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9368. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9369. cb(q, "q", il);
  9370. } else {
  9371. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9372. cb(q, "q", il);
  9373. }
  9374. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9375. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9376. ggml_row_size(q->type, hparams.n_embd_head_k),
  9377. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9378. 0);
  9379. cb(q_nope, "q_nope", il);
  9380. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9381. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9382. ggml_row_size(q->type, hparams.n_embd_head_k),
  9383. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9384. ggml_row_size(q->type, n_embd_head_qk_nope));
  9385. cb(q_pe, "q_pe", il);
  9386. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9387. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9388. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9389. // split into {kv_lora_rank, n_tokens}
  9390. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9391. kv_pe_compresseed->nb[1],
  9392. 0);
  9393. cb(kv_compressed, "kv_compressed", il);
  9394. // and {n_embd_head_qk_rope, n_tokens}
  9395. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9396. kv_pe_compresseed->nb[1],
  9397. kv_pe_compresseed->nb[1],
  9398. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9399. cb(k_pe, "k_pe", il);
  9400. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9401. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9402. model.layers[il].attn_kv_a_norm, NULL,
  9403. LLM_NORM_RMS, cb, il);
  9404. cb(kv_compressed, "kv_compressed", il);
  9405. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9406. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9407. cb(kv, "kv", il);
  9408. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9409. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9410. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9411. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9412. 0);
  9413. cb(k_nope, "k_nope", il);
  9414. // and {n_head * n_embd_head_v, n_tokens}
  9415. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9416. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9417. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9418. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9419. cb(v_states, "v_states", il);
  9420. v_states = ggml_cont(ctx0, v_states);
  9421. cb(v_states, "v_states", il);
  9422. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9423. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9424. 0);
  9425. cb(v_states, "v_states", il);
  9426. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9427. q_pe = ggml_rope_ext(
  9428. ctx0, q_pe, inp_pos, nullptr,
  9429. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9430. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9431. );
  9432. cb(q_pe, "q_pe", il);
  9433. // shared RoPE key
  9434. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9435. k_pe = ggml_rope_ext(
  9436. ctx0, k_pe, inp_pos, nullptr,
  9437. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9438. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9439. );
  9440. cb(k_pe, "k_pe", il);
  9441. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9442. cb(q_states, "q_states", il);
  9443. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9444. cb(k_states, "k_states", il);
  9445. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9446. model.layers[il].wo, NULL,
  9447. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9448. }
  9449. if (il == n_layer - 1) {
  9450. // skip computing output for unused tokens
  9451. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9452. n_tokens = n_outputs;
  9453. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9454. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9455. }
  9456. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9457. cb(ffn_inp, "ffn_inp", il);
  9458. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9459. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9460. model.layers[il].ffn_norm, NULL,
  9461. LLM_NORM_RMS, cb, il);
  9462. cb(cur, "ffn_norm", il);
  9463. cur = llm_build_ffn(ctx0, cur,
  9464. model.layers[il].ffn_up, NULL,
  9465. model.layers[il].ffn_gate, NULL,
  9466. model.layers[il].ffn_down, NULL,
  9467. NULL,
  9468. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9469. cb(cur, "ffn_out", il);
  9470. } else {
  9471. // MoE branch
  9472. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9473. model.layers[il].ffn_norm, NULL,
  9474. LLM_NORM_RMS, cb, il);
  9475. cb(cur, "ffn_norm", il);
  9476. ggml_tensor * moe_out =
  9477. llm_build_moe_ffn(ctx0, cur,
  9478. model.layers[il].ffn_gate_inp,
  9479. model.layers[il].ffn_up_exps,
  9480. model.layers[il].ffn_gate_exps,
  9481. model.layers[il].ffn_down_exps,
  9482. n_expert, n_expert_used,
  9483. LLM_FFN_SILU, false,
  9484. true, hparams.expert_weights_scale,
  9485. cb, il);
  9486. cb(moe_out, "ffn_moe_out", il);
  9487. // FFN shared expert
  9488. {
  9489. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9490. model.layers[il].ffn_up_shexp, NULL,
  9491. model.layers[il].ffn_gate_shexp, NULL,
  9492. model.layers[il].ffn_down_shexp, NULL,
  9493. NULL,
  9494. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9495. cb(ffn_shexp, "ffn_shexp", il);
  9496. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9497. cb(cur, "ffn_out", il);
  9498. }
  9499. }
  9500. cur = ggml_add(ctx0, cur, ffn_inp);
  9501. cb(cur, "l_out", il);
  9502. // input for next layer
  9503. inpL = cur;
  9504. }
  9505. cur = inpL;
  9506. cur = llm_build_norm(ctx0, cur, hparams,
  9507. model.output_norm, NULL,
  9508. LLM_NORM_RMS, cb, -1);
  9509. cb(cur, "result_norm", -1);
  9510. // lm_head
  9511. cur = ggml_mul_mat(ctx0, model.output, cur);
  9512. cb(cur, "result_output", -1);
  9513. ggml_build_forward_expand(gf, cur);
  9514. return gf;
  9515. }
  9516. };
  9517. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9518. llama_batch dummy;
  9519. dummy.n_tokens = 0;
  9520. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9521. struct llm_build_context llm(lctx, dummy, cb, false);
  9522. llm.init();
  9523. struct ggml_cgraph * result = llm.build_defrag(ids);
  9524. llm.free();
  9525. return result;
  9526. }
  9527. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9528. llama_batch dummy;
  9529. dummy.n_tokens = 0;
  9530. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9531. struct llm_build_context llm(lctx, dummy, cb, false);
  9532. llm.init();
  9533. struct ggml_cgraph * result = llm.build_k_shift();
  9534. llm.free();
  9535. return result;
  9536. }
  9537. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9538. llama_batch dummy;
  9539. dummy.n_tokens = 0;
  9540. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9541. struct llm_build_context llm(lctx, dummy, cb, false);
  9542. llm.init();
  9543. struct ggml_cgraph * result = llm.build_s_copy();
  9544. llm.free();
  9545. return result;
  9546. }
  9547. static struct ggml_cgraph * llama_build_graph(
  9548. llama_context & lctx,
  9549. const llama_batch & batch,
  9550. bool worst_case) {
  9551. const auto & model = lctx.model;
  9552. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9553. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9554. if (il >= 0) {
  9555. ggml_format_name(cur, "%s-%d", name, il);
  9556. } else {
  9557. ggml_set_name(cur, name);
  9558. }
  9559. if (!lctx.cparams.offload_kqv) {
  9560. if (strcmp(name, "kqv_merged_cont") == 0) {
  9561. // all nodes between the KV store and the attention output are run on the CPU
  9562. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9563. }
  9564. }
  9565. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9566. // FIXME: fix in ggml_backend_sched
  9567. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9568. if (batch.n_tokens < 32 || full_offload) {
  9569. if (il != -1 && strcmp(name, "norm") == 0) {
  9570. for (auto * backend : lctx.backends) {
  9571. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9572. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9573. break;
  9574. }
  9575. }
  9576. }
  9577. }
  9578. };
  9579. struct ggml_cgraph * result = NULL;
  9580. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9581. llm.init();
  9582. switch (model.arch) {
  9583. case LLM_ARCH_LLAMA:
  9584. {
  9585. result = llm.build_llama();
  9586. } break;
  9587. case LLM_ARCH_BAICHUAN:
  9588. {
  9589. result = llm.build_baichuan();
  9590. } break;
  9591. case LLM_ARCH_FALCON:
  9592. {
  9593. result = llm.build_falcon();
  9594. } break;
  9595. case LLM_ARCH_GROK:
  9596. {
  9597. result = llm.build_grok();
  9598. } break;
  9599. case LLM_ARCH_STARCODER:
  9600. {
  9601. result = llm.build_starcoder();
  9602. } break;
  9603. case LLM_ARCH_REFACT:
  9604. {
  9605. result = llm.build_refact();
  9606. } break;
  9607. case LLM_ARCH_BERT:
  9608. case LLM_ARCH_JINA_BERT_V2:
  9609. case LLM_ARCH_NOMIC_BERT:
  9610. {
  9611. result = llm.build_bert();
  9612. } break;
  9613. case LLM_ARCH_BLOOM:
  9614. {
  9615. result = llm.build_bloom();
  9616. } break;
  9617. case LLM_ARCH_MPT:
  9618. {
  9619. result = llm.build_mpt();
  9620. } break;
  9621. case LLM_ARCH_STABLELM:
  9622. {
  9623. result = llm.build_stablelm();
  9624. } break;
  9625. case LLM_ARCH_QWEN:
  9626. {
  9627. result = llm.build_qwen();
  9628. } break;
  9629. case LLM_ARCH_QWEN2:
  9630. {
  9631. result = llm.build_qwen2();
  9632. } break;
  9633. case LLM_ARCH_QWEN2MOE:
  9634. {
  9635. result = llm.build_qwen2moe();
  9636. } break;
  9637. case LLM_ARCH_PHI2:
  9638. {
  9639. result = llm.build_phi2();
  9640. } break;
  9641. case LLM_ARCH_PHI3:
  9642. {
  9643. result = llm.build_phi3();
  9644. } break;
  9645. case LLM_ARCH_PLAMO:
  9646. {
  9647. result = llm.build_plamo();
  9648. } break;
  9649. case LLM_ARCH_GPT2:
  9650. {
  9651. result = llm.build_gpt2();
  9652. } break;
  9653. case LLM_ARCH_CODESHELL:
  9654. {
  9655. result = llm.build_codeshell();
  9656. } break;
  9657. case LLM_ARCH_ORION:
  9658. {
  9659. result = llm.build_orion();
  9660. } break;
  9661. case LLM_ARCH_INTERNLM2:
  9662. {
  9663. result = llm.build_internlm2();
  9664. } break;
  9665. case LLM_ARCH_MINICPM:
  9666. {
  9667. result = llm.build_minicpm();
  9668. } break;
  9669. case LLM_ARCH_GEMMA:
  9670. {
  9671. result = llm.build_gemma();
  9672. } break;
  9673. case LLM_ARCH_STARCODER2:
  9674. {
  9675. result = llm.build_starcoder2();
  9676. } break;
  9677. case LLM_ARCH_MAMBA:
  9678. {
  9679. result = llm.build_mamba();
  9680. } break;
  9681. case LLM_ARCH_XVERSE:
  9682. {
  9683. result = llm.build_xverse();
  9684. } break;
  9685. case LLM_ARCH_COMMAND_R:
  9686. {
  9687. result = llm.build_command_r();
  9688. } break;
  9689. case LLM_ARCH_DBRX:
  9690. {
  9691. result = llm.build_dbrx();
  9692. } break;
  9693. case LLM_ARCH_OLMO:
  9694. {
  9695. result = llm.build_olmo();
  9696. } break;
  9697. case LLM_ARCH_GPTNEOX:
  9698. {
  9699. result = llm.build_gptneox();
  9700. } break;
  9701. case LLM_ARCH_ARCTIC:
  9702. {
  9703. result = llm.build_arctic();
  9704. } break;
  9705. case LLM_ARCH_DEEPSEEK2:
  9706. {
  9707. result = llm.build_deepseek2();
  9708. } break;
  9709. default:
  9710. GGML_ASSERT(false);
  9711. }
  9712. llm.free();
  9713. return result;
  9714. }
  9715. static void llama_set_k_shift(llama_context & lctx) {
  9716. const int64_t kv_size = lctx.kv_self.size;
  9717. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9718. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9719. for (int i = 0; i < kv_size; ++i) {
  9720. data[i] = lctx.kv_self.cells[i].delta;
  9721. }
  9722. }
  9723. static void llama_set_s_copy(llama_context & lctx) {
  9724. const int64_t kv_size = lctx.kv_self.size;
  9725. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9726. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9727. for (int i = 0; i < kv_size; ++i) {
  9728. data[i] = lctx.kv_self.cells[i].src;
  9729. }
  9730. }
  9731. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9732. //
  9733. // set input data
  9734. //
  9735. const auto & hparams = lctx.model.hparams;
  9736. const auto & cparams = lctx.cparams;
  9737. const auto & kv_self = lctx.kv_self;
  9738. if (batch.token) {
  9739. const int64_t n_tokens = batch.n_tokens;
  9740. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9741. }
  9742. if (batch.embd) {
  9743. const int64_t n_embd = hparams.n_embd;
  9744. const int64_t n_tokens = batch.n_tokens;
  9745. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9746. }
  9747. if (batch.pos && lctx.inp_pos) {
  9748. const int64_t n_tokens = batch.n_tokens;
  9749. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9750. }
  9751. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9752. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9753. const int64_t n_tokens = batch.n_tokens;
  9754. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9755. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9756. if (lctx.n_outputs == n_tokens) {
  9757. for (int i = 0; i < n_tokens; ++i) {
  9758. data[i] = i;
  9759. }
  9760. } else if (batch.logits) {
  9761. int32_t n_outputs = 0;
  9762. for (int i = 0; i < n_tokens; ++i) {
  9763. if (batch.logits[i]) {
  9764. data[n_outputs++] = i;
  9765. }
  9766. }
  9767. // the graph needs to have been passed the correct number of outputs
  9768. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9769. } else if (lctx.n_outputs == 1) {
  9770. // only keep last output
  9771. data[0] = n_tokens - 1;
  9772. } else {
  9773. GGML_ASSERT(lctx.n_outputs == 0);
  9774. }
  9775. }
  9776. GGML_ASSERT(
  9777. // (!a || b) is a logical implication (a -> b)
  9778. // !hparams.causal_attn -> !cparams.causal_attn
  9779. (hparams.causal_attn || !cparams.causal_attn) &&
  9780. "causal attention with embedding models is not supported"
  9781. );
  9782. if (lctx.inp_KQ_mask) {
  9783. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9784. if (cparams.causal_attn) {
  9785. const int64_t n_kv = kv_self.n;
  9786. const int64_t n_tokens = batch.n_tokens;
  9787. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9788. float * data = (float *) lctx.inp_KQ_mask->data;
  9789. // For causal attention, use only the previous KV cells
  9790. // of the correct sequence for each token of the batch.
  9791. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9792. for (int h = 0; h < 1; ++h) {
  9793. for (int j = 0; j < n_tokens; ++j) {
  9794. const llama_pos pos = batch.pos[j];
  9795. const llama_seq_id seq_id = batch.seq_id[j][0];
  9796. for (int i = 0; i < n_kv; ++i) {
  9797. float f;
  9798. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9799. f = -INFINITY;
  9800. } else {
  9801. if (hparams.use_alibi) {
  9802. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9803. } else {
  9804. f = 0.0f;
  9805. }
  9806. }
  9807. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9808. }
  9809. }
  9810. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9811. for (int j = 0; j < n_kv; ++j) {
  9812. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9813. }
  9814. }
  9815. }
  9816. } else {
  9817. // when using kv cache, the mask needs to match the kv cache size
  9818. const int64_t n_tokens = batch.n_tokens;
  9819. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9820. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9821. float * data = (float *) lctx.inp_KQ_mask->data;
  9822. for (int h = 0; h < 1; ++h) {
  9823. for (int j = 0; j < n_tokens; ++j) {
  9824. const llama_seq_id seq_id = batch.seq_id[j][0];
  9825. for (int i = 0; i < n_tokens; ++i) {
  9826. float f = -INFINITY;
  9827. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9828. if (batch.seq_id[i][s] == seq_id) {
  9829. if (hparams.use_alibi) {
  9830. f = -fabs(batch.pos[i] - batch.pos[j]);
  9831. } else {
  9832. f = 0.0f;
  9833. }
  9834. break;
  9835. }
  9836. }
  9837. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9838. }
  9839. for (int i = n_tokens; i < n_stride; ++i) {
  9840. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9841. }
  9842. }
  9843. }
  9844. }
  9845. }
  9846. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9847. const int64_t n_tokens = batch.n_tokens;
  9848. GGML_ASSERT(lctx.inp_mean);
  9849. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9850. float * data = (float *) lctx.inp_mean->data;
  9851. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9852. std::vector<uint64_t> sum(n_tokens, 0);
  9853. for (int i = 0; i < n_tokens; ++i) {
  9854. const llama_seq_id seq_id = batch.seq_id[i][0];
  9855. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9856. sum[seq_id] += 1;
  9857. }
  9858. std::vector<float> div(n_tokens, 0.0f);
  9859. for (int i = 0; i < n_tokens; ++i) {
  9860. const uint64_t s = sum[i];
  9861. if (s > 0) {
  9862. div[i] = 1.0f/float(s);
  9863. }
  9864. }
  9865. for (int i = 0; i < n_tokens; ++i) {
  9866. const llama_seq_id seq_id = batch.seq_id[i][0];
  9867. data[seq_id*n_tokens + i] = div[seq_id];
  9868. }
  9869. }
  9870. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9871. const int64_t n_tokens = batch.n_tokens;
  9872. GGML_ASSERT(lctx.inp_cls);
  9873. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9874. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9875. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9876. for (int i = 0; i < n_tokens; ++i) {
  9877. const llama_seq_id seq_id = batch.seq_id[i][0];
  9878. const llama_pos pos = batch.pos[i];
  9879. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9880. if (pos == 0) {
  9881. data[seq_id] = i;
  9882. }
  9883. }
  9884. }
  9885. if (kv_self.recurrent) {
  9886. const int64_t n_kv = kv_self.n;
  9887. if (lctx.inp_s_mask) {
  9888. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9889. float * data = (float *) lctx.inp_s_mask->data;
  9890. // states which are not affected by the current batch are left untouched
  9891. for (int i = 0; i < n_kv; ++i) {
  9892. llama_seq_id seq_id = i + lctx.kv_self.head;
  9893. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9894. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9895. data[i] = (float) has_self_seq;
  9896. // ensure current sequences will be kept
  9897. if (!has_self_seq && kv_cell.pos >= 0) {
  9898. kv_cell.seq_id.insert(seq_id);
  9899. }
  9900. }
  9901. }
  9902. // For Mamba (and other recurrent architectures),
  9903. // update the correct state(s)/sequence(s) for each token of the batch.
  9904. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9905. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9906. if (lctx.inp_s_seq) {
  9907. const int64_t n_tokens = batch.n_tokens;
  9908. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9909. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9910. for (int j = 0; j < n_tokens; ++j) {
  9911. const int32_t n_seq = batch.n_seq_id[j];
  9912. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9913. for (int i = 0; i < n_kv; ++i) {
  9914. if (i < n_seq) {
  9915. // for this type of model, the head is the minimum seq_id of the batch
  9916. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9917. } else {
  9918. data[j*n_kv + i] = -1;
  9919. }
  9920. }
  9921. }
  9922. }
  9923. }
  9924. }
  9925. // Make sure enough space is available for outputs.
  9926. // Returns max number of outputs for which space was reserved.
  9927. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9928. const auto & cparams = lctx.cparams;
  9929. const auto & hparams = lctx.model.hparams;
  9930. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9931. const auto n_batch = cparams.n_batch;
  9932. const auto n_vocab = hparams.n_vocab;
  9933. const auto n_embd = hparams.n_embd;
  9934. // TODO: use a per-batch flag for logits presence instead
  9935. const bool has_logits = cparams.causal_attn;
  9936. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9937. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9938. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9939. if (lctx.output_ids.empty()) {
  9940. // init, never resized afterwards
  9941. lctx.output_ids.resize(n_batch);
  9942. }
  9943. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9944. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9945. // alloc only when more than the current capacity is required
  9946. // TODO: also consider shrinking the buffer
  9947. if (!lctx.buf_output || prev_size < new_size) {
  9948. if (lctx.buf_output) {
  9949. #ifndef NDEBUG
  9950. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9951. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9952. #endif
  9953. ggml_backend_buffer_free(lctx.buf_output);
  9954. lctx.buf_output = nullptr;
  9955. lctx.logits = nullptr;
  9956. lctx.embd = nullptr;
  9957. }
  9958. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9959. if (lctx.buf_output == nullptr) {
  9960. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9961. return 0;
  9962. }
  9963. }
  9964. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9965. lctx.logits = has_logits ? output_base : nullptr;
  9966. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9967. lctx.output_size = n_outputs_max;
  9968. lctx.logits_size = logits_size;
  9969. lctx.embd_size = embd_size;
  9970. // set all ids as invalid (negative)
  9971. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9972. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9973. lctx.n_outputs = 0;
  9974. return n_outputs_max;
  9975. }
  9976. static void llama_graph_compute(
  9977. llama_context & lctx,
  9978. ggml_cgraph * gf,
  9979. int n_threads) {
  9980. #ifdef GGML_USE_METAL
  9981. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9982. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9983. }
  9984. #endif
  9985. if (lctx.backend_cpu != nullptr) {
  9986. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9987. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9988. }
  9989. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9990. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9991. }
  9992. // decode a batch of tokens by evaluating the transformer
  9993. //
  9994. // - lctx: llama context
  9995. // - batch: batch to evaluate
  9996. //
  9997. // return 0 on success
  9998. // return positive int on warning
  9999. // return negative int on error
  10000. //
  10001. static int llama_decode_internal(
  10002. llama_context & lctx,
  10003. llama_batch batch_all) { // TODO: rename back to batch
  10004. const uint32_t n_tokens_all = batch_all.n_tokens;
  10005. if (n_tokens_all == 0) {
  10006. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10007. return -1;
  10008. }
  10009. const auto & model = lctx.model;
  10010. const auto & hparams = model.hparams;
  10011. const auto & cparams = lctx.cparams;
  10012. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10013. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10014. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10015. if (lctx.t_compute_start_us == 0) {
  10016. lctx.t_compute_start_us = ggml_time_us();
  10017. }
  10018. lctx.n_queued_tokens += n_tokens_all;
  10019. auto & kv_self = lctx.kv_self;
  10020. const int64_t n_embd = hparams.n_embd;
  10021. const int64_t n_vocab = hparams.n_vocab;
  10022. uint32_t n_outputs = 0;
  10023. uint32_t n_outputs_prev = 0;
  10024. const auto n_ubatch = cparams.n_ubatch;
  10025. std::vector<llama_pos> pos;
  10026. std::vector<int32_t> n_seq_id;
  10027. std::vector<llama_seq_id *> seq_id_arr;
  10028. std::vector<std::vector<llama_seq_id>> seq_id;
  10029. // count outputs
  10030. if (batch_all.logits) {
  10031. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10032. n_outputs += batch_all.logits[i] != 0;
  10033. }
  10034. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  10035. n_outputs = n_tokens_all;
  10036. } else {
  10037. // keep last output only
  10038. n_outputs = 1;
  10039. }
  10040. // reserve output buffer
  10041. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10042. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10043. return -2;
  10044. };
  10045. // set output mappings
  10046. if (batch_all.logits) {
  10047. int32_t i_logits = 0;
  10048. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10049. if (batch_all.logits[i]) {
  10050. lctx.output_ids[i] = i_logits++;
  10051. }
  10052. }
  10053. } else {
  10054. for (uint32_t i = 0; i < n_outputs; ++i) {
  10055. lctx.output_ids[i] = i;
  10056. }
  10057. }
  10058. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10059. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10060. llama_batch u_batch = {
  10061. /* .n_tokens = */ (int32_t) n_tokens,
  10062. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10063. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10064. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10065. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10066. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10067. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10068. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10069. /* .all_pos_1 = */ batch_all.all_pos_1,
  10070. /* .all_seq_id = */ batch_all.all_seq_id,
  10071. };
  10072. // count the outputs in this u_batch
  10073. {
  10074. int32_t n_outputs_new = 0;
  10075. if (u_batch.logits) {
  10076. for (uint32_t i = 0; i < n_tokens; i++) {
  10077. n_outputs_new += u_batch.logits[i] != 0;
  10078. }
  10079. } else if (n_outputs == n_tokens_all) {
  10080. n_outputs_new = n_tokens;
  10081. } else {
  10082. // keep last output only
  10083. if (cur_token + n_tokens >= n_tokens_all) {
  10084. n_outputs_new = 1;
  10085. }
  10086. }
  10087. // needs to happen before the graph is built
  10088. lctx.n_outputs = n_outputs_new;
  10089. }
  10090. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10091. GGML_ASSERT(n_threads > 0);
  10092. // helpers for smoother batch API transition
  10093. // after deprecating the llama_eval calls, these will be removed
  10094. if (u_batch.pos == nullptr) {
  10095. pos.resize(n_tokens);
  10096. for (uint32_t i = 0; i < n_tokens; i++) {
  10097. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10098. }
  10099. u_batch.pos = pos.data();
  10100. }
  10101. if (u_batch.seq_id == nullptr) {
  10102. n_seq_id.resize(n_tokens);
  10103. seq_id.resize(n_tokens);
  10104. seq_id_arr.resize(n_tokens);
  10105. for (uint32_t i = 0; i < n_tokens; i++) {
  10106. n_seq_id[i] = 1;
  10107. seq_id[i].resize(1);
  10108. seq_id[i][0] = u_batch.all_seq_id;
  10109. seq_id_arr[i] = seq_id[i].data();
  10110. }
  10111. u_batch.n_seq_id = n_seq_id.data();
  10112. u_batch.seq_id = seq_id_arr.data();
  10113. }
  10114. // non-causal masks do not use the KV cache
  10115. if (hparams.causal_attn) {
  10116. llama_kv_cache_update(&lctx);
  10117. // if we have enough unused cells before the current head ->
  10118. // better to start searching from the beginning of the cache, hoping to fill it
  10119. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10120. kv_self.head = 0;
  10121. }
  10122. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10123. return 1;
  10124. }
  10125. if (!kv_self.recurrent) {
  10126. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10127. // after enough generations, the benefit from this heuristic disappears
  10128. // if we start defragmenting the cache, the benefit from this will be more important
  10129. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10130. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10131. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10132. }
  10133. }
  10134. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10135. ggml_backend_sched_reset(lctx.sched);
  10136. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10137. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10138. // the output is always the last tensor in the graph
  10139. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10140. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10141. if (lctx.n_outputs == 0) {
  10142. // no output
  10143. res = nullptr;
  10144. embd = nullptr;
  10145. } else if (!hparams.causal_attn) {
  10146. res = nullptr; // do not extract logits for embedding models such as BERT
  10147. // token or sequence embeddings
  10148. embd = gf->nodes[gf->n_nodes - 1];
  10149. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10150. } else if (cparams.embeddings) {
  10151. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10152. int i_embd = gf->n_nodes - 2;
  10153. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10154. i_embd = gf->n_nodes - i;
  10155. if (i_embd < 0) { break; }
  10156. embd = gf->nodes[i_embd];
  10157. }
  10158. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10159. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10160. if (!cparams.causal_attn) {
  10161. res = nullptr; // do not extract logits when not needed
  10162. // skip computing logits
  10163. // TODO: is this safe?
  10164. gf->n_nodes = i_embd + 1;
  10165. }
  10166. } else {
  10167. embd = nullptr; // do not extract embeddings when not needed
  10168. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10169. }
  10170. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10171. // for big prompts, if BLAS is enabled, it is better to use only one thread
  10172. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  10173. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  10174. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  10175. // with the BLAS calls. need a better solution
  10176. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  10177. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  10178. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  10179. n_threads = std::min(4, n_threads);
  10180. }
  10181. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10182. llama_set_inputs(lctx, u_batch);
  10183. llama_graph_compute(lctx, gf, n_threads);
  10184. // update the kv ring buffer
  10185. {
  10186. kv_self.head += n_tokens;
  10187. // Ensure kv cache head points to a valid index.
  10188. if (kv_self.head >= kv_self.size) {
  10189. kv_self.head = 0;
  10190. }
  10191. }
  10192. #ifdef GGML_PERF
  10193. // print timing information per ggml operation (for debugging purposes)
  10194. // requires GGML_PERF to be defined
  10195. ggml_graph_print(gf);
  10196. #endif
  10197. // plot the computation graph in dot format (for debugging purposes)
  10198. //if (n_past%100 == 0) {
  10199. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10200. //}
  10201. // extract logits
  10202. if (res) {
  10203. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10204. GGML_ASSERT(backend_res != nullptr);
  10205. GGML_ASSERT(lctx.logits != nullptr);
  10206. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10207. const int32_t n_outputs_new = lctx.n_outputs;
  10208. if (n_outputs_new) {
  10209. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10210. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10211. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10212. }
  10213. }
  10214. // extract embeddings
  10215. if (embd) {
  10216. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10217. GGML_ASSERT(backend_embd != nullptr);
  10218. switch (cparams.pooling_type) {
  10219. case LLAMA_POOLING_TYPE_NONE:
  10220. {
  10221. // extract token embeddings
  10222. GGML_ASSERT(lctx.embd != nullptr);
  10223. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10224. const int32_t n_outputs_new = lctx.n_outputs;
  10225. if (n_outputs_new) {
  10226. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10227. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10228. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10229. }
  10230. } break;
  10231. case LLAMA_POOLING_TYPE_CLS:
  10232. case LLAMA_POOLING_TYPE_MEAN:
  10233. {
  10234. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10235. // extract sequence embeddings
  10236. auto & embd_seq_out = lctx.embd_seq;
  10237. embd_seq_out.clear();
  10238. for (uint32_t i = 0; i < n_tokens; i++) {
  10239. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10240. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10241. continue;
  10242. }
  10243. embd_seq_out[seq_id].resize(n_embd);
  10244. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10245. }
  10246. } break;
  10247. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10248. {
  10249. GGML_ASSERT(false && "unknown pooling type");
  10250. } break;
  10251. }
  10252. }
  10253. n_outputs_prev += lctx.n_outputs;
  10254. }
  10255. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10256. lctx.n_outputs = n_outputs;
  10257. // wait for the computation to finish (automatically done when obtaining the model output)
  10258. //llama_synchronize(&lctx);
  10259. // decide if we need to defrag the kv cache
  10260. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10261. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10262. // queue defragmentation for next llama_kv_cache_update
  10263. if (fragmentation > cparams.defrag_thold) {
  10264. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10265. llama_kv_cache_defrag(kv_self);
  10266. }
  10267. }
  10268. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10269. // overlap with device computation.
  10270. ggml_backend_sched_reset(lctx.sched);
  10271. return 0;
  10272. }
  10273. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10274. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10275. auto & kv_self = lctx.kv_self;
  10276. const auto & hparams = lctx.model.hparams;
  10277. const uint32_t n_layer = hparams.n_layer;
  10278. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10279. const uint32_t n_used = kv_self.used;
  10280. assert(n_used <= n_kv);
  10281. //const int64_t t_start = ggml_time_us();
  10282. // number of cells moved
  10283. uint32_t n_moves = 0;
  10284. // each move requires 6*n_layer tensors (see build_defrag)
  10285. // - source view, destination view, copy operation
  10286. // - x2 for keys and values
  10287. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10288. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10289. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10290. // determine which KV cells to move where
  10291. //
  10292. // cell i moves to ids[i]
  10293. //
  10294. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10295. //
  10296. std::vector<uint32_t> ids(n_kv, n_kv);
  10297. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10298. const auto & cell0 = kv_self.cells[i0];
  10299. if (!cell0.is_empty()) {
  10300. ids[i0] = i0;
  10301. continue;
  10302. }
  10303. // found a hole - fill it with data from the end of the cache
  10304. uint32_t nh = 1;
  10305. // determine the size of the hole
  10306. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10307. nh++;
  10308. }
  10309. uint32_t nf = 0;
  10310. uint32_t is = n_kv - 1;
  10311. // starting from the end, find nh non-empty cells
  10312. for (; is > i0; --is) {
  10313. const auto & cell1 = kv_self.cells[is];
  10314. if (cell1.is_empty() || ids[is] != n_kv) {
  10315. continue;
  10316. }
  10317. // non-empty cell which is not yet moved
  10318. nf++;
  10319. if (nf == nh) {
  10320. break;
  10321. }
  10322. }
  10323. // this can only happen if `n_used` is not accurate, which would be a bug
  10324. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10325. nf = 0;
  10326. uint32_t i1 = is;
  10327. // are we moving a continuous block of memory?
  10328. bool cont = false;
  10329. // should we stop searching for the next move?
  10330. bool stop = false;
  10331. // go back and move the nf cells to the hole
  10332. for (; i1 < n_kv; ++i1) {
  10333. auto & cell1 = kv_self.cells[i1];
  10334. if (cell1.is_empty() || ids[i1] != n_kv) {
  10335. if (n_moves == max_moves) {
  10336. stop = true;
  10337. break;
  10338. }
  10339. cont = false;
  10340. continue;
  10341. }
  10342. // this cell goes to (i0 + nf)
  10343. ids[i1] = i0 + nf;
  10344. // move the cell meta data
  10345. kv_self.cells[i0 + nf] = cell1;
  10346. // clear the old cell and move the head there
  10347. cell1 = llama_kv_cell();
  10348. kv_self.head = n_used;
  10349. if (!cont) {
  10350. n_moves++;
  10351. cont = true;
  10352. }
  10353. nf++;
  10354. if (nf == nh) {
  10355. break;
  10356. }
  10357. }
  10358. if (stop || n_moves == max_moves) {
  10359. break;
  10360. }
  10361. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10362. i0 += nh - 1;
  10363. }
  10364. if (n_moves == 0) {
  10365. return;
  10366. }
  10367. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10368. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10369. #if 0
  10370. // CPU defrag
  10371. //
  10372. // TODO: optimizations are possible:
  10373. // - multiple threads
  10374. // - avoid copying to the host memory when already there
  10375. //
  10376. // likely not worth the effort, as we have ggml_graph based defrag
  10377. //
  10378. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10379. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10380. const uint32_t kv_size = kv_self.size;
  10381. std::vector<uint8_t> buf_k;
  10382. std::vector<uint8_t> buf_v;
  10383. for (uint32_t il = 0; il < n_layer; ++il) {
  10384. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10385. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10386. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10387. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10388. buf_k.resize(k_size);
  10389. buf_v.resize(v_size);
  10390. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10391. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10392. // batch move [i, i+nm) to [id, id+nm)
  10393. // note: cells can move only to a lower index
  10394. for (uint32_t i = 0; i < n_kv; ++i) {
  10395. const uint32_t id = ids[i];
  10396. if (i == id || id == n_kv) {
  10397. continue;
  10398. }
  10399. uint32_t nm = 1;
  10400. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10401. nm++;
  10402. }
  10403. // move keys
  10404. {
  10405. const int64_t os = i*k_size_row;
  10406. const int64_t od = id*k_size_row;
  10407. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10408. }
  10409. // move values (note: they are transposed)
  10410. {
  10411. const int64_t os = i;
  10412. const int64_t od = id;
  10413. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10414. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10415. }
  10416. }
  10417. i += nm - 1;
  10418. }
  10419. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10420. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10421. }
  10422. #else
  10423. // ggml_graph defrag
  10424. ggml_backend_sched_reset(lctx.sched);
  10425. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10426. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10427. #endif
  10428. //const int64_t t_end = ggml_time_us();
  10429. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10430. }
  10431. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10432. bool need_reserve = false;
  10433. // apply K-shift if needed
  10434. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10435. {
  10436. ggml_backend_sched_reset(lctx.sched);
  10437. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10438. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10439. llama_set_k_shift(lctx);
  10440. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10441. need_reserve = true;
  10442. }
  10443. {
  10444. auto & kv_self = lctx.kv_self;
  10445. kv_self.has_shift = false;
  10446. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10447. kv_self.cells[i].delta = 0;
  10448. }
  10449. }
  10450. }
  10451. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10452. {
  10453. ggml_backend_sched_reset(lctx.sched);
  10454. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10455. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10456. llama_set_s_copy(lctx);
  10457. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10458. need_reserve = true;
  10459. }
  10460. {
  10461. auto & kv_self = lctx.kv_self;
  10462. kv_self.do_copy = false;
  10463. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10464. kv_self.cells[i].src = i;
  10465. }
  10466. }
  10467. }
  10468. // defragment the KV cache if needed
  10469. if (lctx.kv_self.do_defrag) {
  10470. llama_kv_cache_defrag_internal(lctx);
  10471. need_reserve = true;
  10472. lctx.kv_self.do_defrag = false;
  10473. }
  10474. // reserve a worst case graph again
  10475. if (need_reserve) {
  10476. // TODO: extract to a function
  10477. // build worst-case graph
  10478. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10479. int n_past = lctx.cparams.n_ctx - n_tokens;
  10480. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10481. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10482. // initialize scheduler with the worst-case graph
  10483. ggml_backend_sched_reset(lctx.sched);
  10484. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10485. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10486. }
  10487. }
  10488. }
  10489. //
  10490. // tokenizer
  10491. //
  10492. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10493. return vocab.type;
  10494. }
  10495. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10496. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10497. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10498. }
  10499. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10500. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10501. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10502. }
  10503. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10504. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10505. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10506. }
  10507. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10508. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10509. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10510. }
  10511. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10512. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10513. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10514. }
  10515. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10516. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10517. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10518. const auto & token_data = vocab.id_to_token.at(id);
  10519. switch (llama_vocab_get_type(vocab)) {
  10520. case LLAMA_VOCAB_TYPE_SPM: {
  10521. auto buf = token_data.text.substr(3, 2);
  10522. return strtol(buf.c_str(), NULL, 16);
  10523. }
  10524. case LLAMA_VOCAB_TYPE_BPE: {
  10525. GGML_ASSERT(false);
  10526. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10527. }
  10528. case LLAMA_VOCAB_TYPE_WPM: {
  10529. GGML_ASSERT(false);
  10530. }
  10531. default:
  10532. GGML_ASSERT(false);
  10533. }
  10534. }
  10535. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10536. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10537. static const char * hex = "0123456789ABCDEF";
  10538. switch (llama_vocab_get_type(vocab)) {
  10539. case LLAMA_VOCAB_TYPE_SPM: {
  10540. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10541. auto token = vocab.token_to_id.find(buf);
  10542. if (token != vocab.token_to_id.end()) {
  10543. return (*token).second;
  10544. }
  10545. // Try to fall back to just the byte as a string
  10546. const char buf2[2] = { (char)ch, 0 };
  10547. return vocab.token_to_id.at(buf2);
  10548. }
  10549. case LLAMA_VOCAB_TYPE_WPM:
  10550. case LLAMA_VOCAB_TYPE_BPE: {
  10551. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10552. }
  10553. default:
  10554. GGML_ASSERT(false);
  10555. }
  10556. }
  10557. static void llama_escape_whitespace(std::string & text) {
  10558. replace_all(text, " ", "\xe2\x96\x81");
  10559. }
  10560. static void llama_unescape_whitespace(std::string & word) {
  10561. replace_all(word, "\xe2\x96\x81", " ");
  10562. }
  10563. struct llm_symbol {
  10564. using index = int;
  10565. index prev;
  10566. index next;
  10567. const char * text;
  10568. size_t n;
  10569. };
  10570. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10571. // SPM tokenizer
  10572. // original implementation:
  10573. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10574. struct llm_bigram_spm {
  10575. struct comparator {
  10576. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10577. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10578. }
  10579. };
  10580. using queue_storage = std::vector<llm_bigram_spm>;
  10581. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10582. llm_symbol::index left;
  10583. llm_symbol::index right;
  10584. float score;
  10585. size_t size;
  10586. };
  10587. struct llm_tokenizer_spm {
  10588. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10589. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10590. // split string into utf8 chars
  10591. int index = 0;
  10592. size_t offs = 0;
  10593. while (offs < text.size()) {
  10594. llm_symbol sym;
  10595. size_t len = utf8_len(text[offs]);
  10596. sym.text = text.c_str() + offs;
  10597. sym.n = std::min(len, text.size() - offs);
  10598. offs += sym.n;
  10599. sym.prev = index - 1;
  10600. sym.next = offs == text.size() ? -1 : index + 1;
  10601. index++;
  10602. symbols.emplace_back(sym);
  10603. }
  10604. // seed the work queue with all possible 2-character tokens.
  10605. for (size_t i = 1; i < symbols.size(); ++i) {
  10606. try_add_bigram(i - 1, i);
  10607. }
  10608. // keep substituting the highest frequency pairs for as long as we can.
  10609. while (!work_queue.empty()) {
  10610. auto bigram = work_queue.top();
  10611. work_queue.pop();
  10612. auto & left_sym = symbols[bigram.left];
  10613. auto & right_sym = symbols[bigram.right];
  10614. // if one of the symbols already got merged, skip it.
  10615. if (left_sym.n == 0 || right_sym.n == 0 ||
  10616. left_sym.n + right_sym.n != bigram.size) {
  10617. continue;
  10618. }
  10619. // merge the right sym into the left one
  10620. left_sym.n += right_sym.n;
  10621. right_sym.n = 0;
  10622. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10623. // remove the right sym from the chain
  10624. left_sym.next = right_sym.next;
  10625. if (right_sym.next >= 0) {
  10626. symbols[right_sym.next].prev = bigram.left;
  10627. }
  10628. // find more substitutions
  10629. try_add_bigram(left_sym.prev, bigram.left);
  10630. try_add_bigram(bigram.left, left_sym.next);
  10631. }
  10632. for (int i = 0; i != -1; i = symbols[i].next) {
  10633. auto & symbol = symbols[i];
  10634. resegment(symbol, output);
  10635. }
  10636. }
  10637. private:
  10638. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10639. auto text = std::string(symbol.text, symbol.n);
  10640. auto token = vocab.token_to_id.find(text);
  10641. // Do we need to support is_unused?
  10642. if (token != vocab.token_to_id.end()) {
  10643. output.push_back((*token).second);
  10644. return;
  10645. }
  10646. const auto p = rev_merge.find(text);
  10647. if (p == rev_merge.end()) {
  10648. // output any symbols that did not form tokens as bytes.
  10649. output.reserve(output.size() + symbol.n);
  10650. for (int j = 0; j < (int)symbol.n; ++j) {
  10651. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10652. output.push_back(token_id);
  10653. }
  10654. return;
  10655. }
  10656. resegment(symbols[p->second.first], output);
  10657. resegment(symbols[p->second.second], output);
  10658. }
  10659. void try_add_bigram(int left, int right) {
  10660. if (left == -1 || right == -1) {
  10661. return;
  10662. }
  10663. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10664. auto token = vocab.token_to_id.find(text);
  10665. if (token == vocab.token_to_id.end()) {
  10666. return;
  10667. }
  10668. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10669. return;
  10670. }
  10671. const auto & tok_data = vocab.id_to_token[(*token).second];
  10672. llm_bigram_spm bigram;
  10673. bigram.left = left;
  10674. bigram.right = right;
  10675. bigram.score = tok_data.score;
  10676. bigram.size = text.size();
  10677. work_queue.push(bigram);
  10678. // Do we need to support is_unused?
  10679. rev_merge[text] = std::make_pair(left, right);
  10680. }
  10681. const llama_vocab & vocab;
  10682. std::vector<llm_symbol> symbols;
  10683. llm_bigram_spm::queue work_queue;
  10684. std::map<std::string, std::pair<int, int>> rev_merge;
  10685. };
  10686. // BPE tokenizer
  10687. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10688. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10689. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10690. struct llm_bigram_bpe {
  10691. struct comparator {
  10692. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10693. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10694. }
  10695. };
  10696. using queue_storage = std::vector<llm_bigram_bpe>;
  10697. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10698. llm_symbol::index left;
  10699. llm_symbol::index right;
  10700. std::string text;
  10701. int rank;
  10702. size_t size;
  10703. };
  10704. struct llm_tokenizer_bpe {
  10705. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10706. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10707. int final_prev_index = -1;
  10708. bool ignore_merges = false;
  10709. std::vector<std::string> word_collection;
  10710. switch (vocab.type) {
  10711. case LLAMA_VOCAB_TYPE_BPE:
  10712. switch (vocab.type_pre) {
  10713. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10714. ignore_merges = true;
  10715. word_collection = unicode_regex_split(text, {
  10716. // original regex from tokenizer.json
  10717. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10718. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10719. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10720. });
  10721. break;
  10722. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10723. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10724. word_collection = unicode_regex_split(text, {
  10725. // same as llama3
  10726. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10727. });
  10728. break;
  10729. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10730. word_collection = unicode_regex_split(text, {
  10731. "[\r\n]",
  10732. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10733. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10734. "\\s+$",
  10735. "[一-龥ࠀ-一가-퟿]+",
  10736. "\\p{N}+",
  10737. });
  10738. break;
  10739. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10740. word_collection = unicode_regex_split(text, {
  10741. "[\r\n]",
  10742. "\\s?\\p{L}+",
  10743. "\\s?\\p{P}+",
  10744. "[一-龥ࠀ-一가-퟿]+",
  10745. "\\p{N}",
  10746. });
  10747. break;
  10748. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10749. word_collection = unicode_regex_split(text, {
  10750. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10751. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10752. "[0-9][0-9][0-9]",
  10753. });
  10754. break;
  10755. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10756. // TODO: MPT pre-tokenization regexes are unknown
  10757. // the following are close, but not exact. run the following:
  10758. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10759. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10760. word_collection = unicode_regex_split(text, {
  10761. "\\s?\\p{L}+",
  10762. "\\s?\\p{P}+",
  10763. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10764. });
  10765. break;
  10766. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10767. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10768. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10769. word_collection = unicode_regex_split(text, {
  10770. "\\p{N}",
  10771. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10772. });
  10773. break;
  10774. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10775. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10776. word_collection = unicode_regex_split(text, {
  10777. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10778. });
  10779. break;
  10780. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10781. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10782. word_collection = unicode_regex_split(text, {
  10783. // original regex from tokenizer.json
  10784. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10785. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10786. });
  10787. break;
  10788. default:
  10789. // default regex for BPE tokenization pre-processing
  10790. word_collection = unicode_regex_split(text, {
  10791. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10792. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10793. "\\p{N}+",
  10794. "[0-9][0-9][0-9]",
  10795. });
  10796. break;
  10797. }
  10798. break;
  10799. default:
  10800. GGML_ASSERT(false);
  10801. break;
  10802. }
  10803. symbols_final.clear();
  10804. for (auto & word : word_collection) {
  10805. work_queue = llm_bigram_bpe::queue();
  10806. symbols.clear();
  10807. int index = 0;
  10808. size_t offset = 0;
  10809. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10810. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10811. offset = word.size();
  10812. }
  10813. while (offset < word.size()) {
  10814. llm_symbol sym;
  10815. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10816. sym.text = word.c_str() + offset;
  10817. sym.n = char_len;
  10818. offset += sym.n;
  10819. sym.prev = index - 1;
  10820. sym.next = offset == word.size() ? -1 : index + 1;
  10821. index++;
  10822. symbols.emplace_back(sym);
  10823. }
  10824. for (size_t i = 1; i < symbols.size(); ++i) {
  10825. add_new_bigram(i - 1, i);
  10826. }
  10827. // build token(s)
  10828. while (!work_queue.empty()) {
  10829. auto bigram = work_queue.top();
  10830. work_queue.pop();
  10831. auto & left_symbol = symbols[bigram.left];
  10832. auto & right_symbol = symbols[bigram.right];
  10833. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10834. continue;
  10835. }
  10836. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10837. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10838. if (left_token + right_token != bigram.text) {
  10839. continue; // Skip this bigram if it's outdated
  10840. }
  10841. // merge the right sym into the left one
  10842. left_symbol.n += right_symbol.n;
  10843. right_symbol.n = 0;
  10844. // remove the right sym from the chain
  10845. left_symbol.next = right_symbol.next;
  10846. if (right_symbol.next >= 0) {
  10847. symbols[right_symbol.next].prev = bigram.left;
  10848. }
  10849. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10850. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10851. }
  10852. // add the finished tokens to the final list keeping correct order for next and prev
  10853. for (auto & sym : symbols) {
  10854. if (sym.n > 0) {
  10855. sym.prev = final_prev_index;
  10856. sym.next = -1;
  10857. if (final_prev_index != -1) {
  10858. symbols_final[final_prev_index].next = symbols_final.size();
  10859. }
  10860. symbols_final.emplace_back(sym);
  10861. final_prev_index = symbols_final.size() - 1;
  10862. }
  10863. }
  10864. }
  10865. symbols = symbols_final;
  10866. if (!symbols.empty()) {
  10867. for (int i = 0; i != -1; i = symbols[i].next) {
  10868. auto & symbol = symbols[i];
  10869. if (symbol.n == 0) {
  10870. continue;
  10871. }
  10872. const std::string str = std::string(symbol.text, symbol.n);
  10873. const auto token = vocab.token_to_id.find(str);
  10874. if (token == vocab.token_to_id.end()) {
  10875. for (auto j = str.begin(); j != str.end(); ++j) {
  10876. std::string byte_str(1, *j);
  10877. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10878. if (token_multibyte == vocab.token_to_id.end()) {
  10879. throw std::runtime_error("ERROR: byte not found in vocab");
  10880. }
  10881. output.push_back((*token_multibyte).second);
  10882. }
  10883. } else {
  10884. output.push_back((*token).second);
  10885. }
  10886. }
  10887. }
  10888. }
  10889. private:
  10890. void add_new_bigram(int left, int right) {
  10891. if (left == -1 || right == -1) {
  10892. return;
  10893. }
  10894. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10895. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10896. int rank_found = -1;
  10897. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10898. if (rank_found < 0) {
  10899. return;
  10900. }
  10901. llm_bigram_bpe bigram;
  10902. bigram.left = left;
  10903. bigram.right = right;
  10904. bigram.text = left_token + right_token;
  10905. bigram.size = left_token.size() + right_token.size();
  10906. bigram.rank = rank_found;
  10907. work_queue.push(bigram);
  10908. }
  10909. const llama_vocab & vocab;
  10910. std::vector<llm_symbol> symbols;
  10911. std::vector<llm_symbol> symbols_final;
  10912. llm_bigram_bpe::queue work_queue;
  10913. };
  10914. struct llm_tokenizer_wpm {
  10915. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10916. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10917. const auto & token_map = vocab.token_to_id;
  10918. // normalize and split by whitespace
  10919. std::vector<std::string> words = preprocess(text);
  10920. // bos token prepended already
  10921. // find the longest tokens that form the words
  10922. for (const std::string &word : words) {
  10923. // skip empty words
  10924. if (word.size() == 0) {
  10925. continue;
  10926. }
  10927. // prepend phantom space
  10928. const std::string word1 = "\xe2\x96\x81" + word;
  10929. const int n = word1.size();
  10930. const size_t current_tokens = output.size();
  10931. // we're at the start of a new word
  10932. // move through character position in word
  10933. for (int i = 0; i < n; ++i) {
  10934. // loop through possible match length
  10935. bool match = false;
  10936. for (int j = n; j > i; j--) {
  10937. auto it = token_map.find(word1.substr(i, j - i));
  10938. if (it != token_map.end()) {
  10939. output.push_back(it->second);
  10940. match = true;
  10941. i = j - 1;
  10942. break;
  10943. }
  10944. }
  10945. if (!match) { // discard all
  10946. output.resize(current_tokens);
  10947. break; // and discard next tokens
  10948. }
  10949. }
  10950. // we didn't find any matches for this word
  10951. if (current_tokens == output.size()) {
  10952. output.push_back(vocab.special_unk_id);
  10953. }
  10954. }
  10955. }
  10956. std::vector<std::string> preprocess(const std::string & text) {
  10957. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10958. std::vector<std::string> words(1, "");
  10959. for (const char32_t cpt : cpts_nfd) {
  10960. const auto flags = unicode_cpt_flags(cpt);
  10961. if (flags.is_whitespace) {
  10962. if (words.back().size()) { // finish previous word if any
  10963. words.emplace_back();
  10964. }
  10965. continue;
  10966. }
  10967. assert (!flags.is_separator);
  10968. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  10969. continue;
  10970. }
  10971. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  10972. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  10973. if (words.back().size()) { // finish previous word if any
  10974. words.emplace_back();
  10975. }
  10976. words.back() = s; // single char word
  10977. words.emplace_back(); // start a new word
  10978. } else {
  10979. words.back() += s; // append char to word
  10980. }
  10981. }
  10982. if (!words.back().size()) {
  10983. words.pop_back();
  10984. }
  10985. return words;
  10986. }
  10987. static bool is_chinese_char(uint32_t cpt) {
  10988. return
  10989. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  10990. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  10991. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10992. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10993. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10994. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10995. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  10996. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  10997. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  10998. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  10999. }
  11000. const llama_vocab & vocab;
  11001. };
  11002. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11003. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11004. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11005. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11006. struct fragment_buffer_variant {
  11007. fragment_buffer_variant(llama_vocab::id _token)
  11008. :
  11009. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11010. token(_token),
  11011. raw_text(_dummy),
  11012. offset(0),
  11013. length(0) {}
  11014. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11015. :
  11016. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11017. token((llama_vocab::id) - 1),
  11018. raw_text(_raw_text),
  11019. offset(_offset),
  11020. length(_length){
  11021. GGML_ASSERT(_offset >= 0);
  11022. GGML_ASSERT(_length >= 1);
  11023. GGML_ASSERT(offset + length <= raw_text.length());
  11024. }
  11025. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11026. const llama_vocab::id token;
  11027. const std::string _dummy;
  11028. const std::string & raw_text;
  11029. const uint64_t offset;
  11030. const uint64_t length;
  11031. };
  11032. // #define PRETOKENIZERDEBUG
  11033. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11034. // for each special token
  11035. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11036. const auto & data = vocab.id_to_token[special_id];
  11037. const auto & special_token = data.text;
  11038. // for each text fragment
  11039. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11040. while (it != buffer.end()) {
  11041. auto & fragment = (*it);
  11042. // if a fragment is text ( not yet processed )
  11043. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11044. auto & raw_text = fragment.raw_text;
  11045. auto raw_text_base_offset = fragment.offset;
  11046. auto raw_text_base_length = fragment.length;
  11047. // loop over the text
  11048. while (true) {
  11049. // find the first occurrence of a given special token in this fragment
  11050. // passing offset argument only limit the "search area" but match coordinates
  11051. // are still relative to the source full raw_text
  11052. auto match = raw_text.find(special_token, raw_text_base_offset);
  11053. // no occurrences found, stop processing this fragment for a given special token
  11054. if (match == std::string::npos) break;
  11055. // check if match is within bounds of offset <-> length
  11056. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11057. #ifdef PRETOKENIZERDEBUG
  11058. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11059. #endif
  11060. auto source = std::distance(buffer.begin(), it);
  11061. // if match is further than base offset
  11062. // then we have some text to the left of it
  11063. if (match > raw_text_base_offset) {
  11064. // left
  11065. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11066. int64_t left_reminder_length = match - raw_text_base_offset;
  11067. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11068. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11069. left_reminder_length--;
  11070. }
  11071. }
  11072. if (left_reminder_length > 0) {
  11073. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11074. it++;
  11075. }
  11076. #ifdef PRETOKENIZERDEBUG
  11077. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11078. #endif
  11079. }
  11080. // special token
  11081. buffer.emplace_after(it, special_id);
  11082. it++;
  11083. // right
  11084. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11085. int64_t right_reminder_offset = match + special_token.length();
  11086. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11087. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11088. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11089. right_reminder_offset++;
  11090. right_reminder_length--;
  11091. }
  11092. }
  11093. if (right_reminder_length > 0) {
  11094. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11095. it++;
  11096. }
  11097. #ifdef PRETOKENIZERDEBUG
  11098. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11099. #endif
  11100. if (source == 0) {
  11101. buffer.erase_after(buffer.before_begin());
  11102. } else {
  11103. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11104. }
  11105. // repeat for the right side
  11106. raw_text_base_offset = right_reminder_offset;
  11107. raw_text_base_length = right_reminder_length;
  11108. #ifdef PRETOKENIZERDEBUG
  11109. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11110. #endif
  11111. } else {
  11112. if (source == 0) {
  11113. buffer.erase_after(buffer.before_begin());
  11114. } else {
  11115. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11116. }
  11117. break;
  11118. }
  11119. }
  11120. }
  11121. it++;
  11122. }
  11123. }
  11124. }
  11125. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11126. std::vector<llama_vocab::id> output;
  11127. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11128. if (!raw_text.empty()) {
  11129. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11130. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11131. }
  11132. switch (vocab.type) {
  11133. case LLAMA_VOCAB_TYPE_SPM:
  11134. {
  11135. // OG tokenizer behavior:
  11136. //
  11137. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11138. // tokenizer.encode('', add_special_tokens=False) returns []
  11139. bool is_prev_special = false;
  11140. if (add_special && vocab.special_add_bos != 0) {
  11141. GGML_ASSERT(vocab.special_bos_id != -1);
  11142. output.push_back(vocab.special_bos_id);
  11143. is_prev_special = true;
  11144. }
  11145. for (const auto & fragment : fragment_buffer) {
  11146. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11147. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11148. if (vocab.add_space_prefix) {
  11149. if (!output.size() || is_prev_special) { // prefix with space if first token
  11150. raw_text = " " + raw_text;
  11151. }
  11152. }
  11153. #ifdef PRETOKENIZERDEBUG
  11154. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11155. #endif
  11156. llm_tokenizer_spm tokenizer(vocab);
  11157. llama_escape_whitespace(raw_text);
  11158. tokenizer.tokenize(raw_text, output);
  11159. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11160. output.push_back(fragment.token);
  11161. is_prev_special = true;
  11162. }
  11163. }
  11164. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11165. LLAMA_LOG_WARN(
  11166. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11167. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11168. "Are you sure this is what you want?\n", __FUNCTION__);
  11169. }
  11170. if (add_special && vocab.special_add_eos == 1) {
  11171. GGML_ASSERT(vocab.special_eos_id != -1);
  11172. output.push_back(vocab.special_eos_id);
  11173. }
  11174. } break;
  11175. case LLAMA_VOCAB_TYPE_BPE:
  11176. {
  11177. if (add_special && vocab.special_add_bos != 0) {
  11178. GGML_ASSERT(vocab.special_bos_id != -1);
  11179. output.push_back(vocab.special_bos_id);
  11180. }
  11181. for (const auto & fragment : fragment_buffer) {
  11182. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11183. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11184. #ifdef PRETOKENIZERDEBUG
  11185. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11186. #endif
  11187. llm_tokenizer_bpe tokenizer(vocab);
  11188. tokenizer.tokenize(raw_text, output);
  11189. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11190. output.push_back(fragment.token);
  11191. }
  11192. }
  11193. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11194. LLAMA_LOG_WARN(
  11195. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11196. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11197. "Are you sure this is what you want?\n", __FUNCTION__);
  11198. }
  11199. if (add_special && vocab.special_add_eos == 1) {
  11200. GGML_ASSERT(vocab.special_add_eos != -1);
  11201. output.push_back(vocab.special_eos_id);
  11202. }
  11203. } break;
  11204. case LLAMA_VOCAB_TYPE_WPM:
  11205. {
  11206. if (add_special) {
  11207. GGML_ASSERT(vocab.special_cls_id != -1);
  11208. output.push_back(vocab.special_cls_id);
  11209. }
  11210. for (const auto & fragment : fragment_buffer) {
  11211. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11212. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11213. #ifdef PRETOKENIZERDEBUG
  11214. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11215. #endif
  11216. llm_tokenizer_wpm tokenizer(vocab);
  11217. tokenizer.tokenize(raw_text, output);
  11218. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11219. output.push_back(fragment.token);
  11220. }
  11221. }
  11222. if (add_special) {
  11223. GGML_ASSERT(vocab.special_sep_id != -1);
  11224. output.push_back(vocab.special_sep_id);
  11225. }
  11226. } break;
  11227. case LLAMA_VOCAB_TYPE_NONE:
  11228. GGML_ASSERT(false);
  11229. }
  11230. return output;
  11231. }
  11232. //
  11233. // grammar - internal
  11234. //
  11235. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11236. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11237. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11238. const std::string & src,
  11239. llama_partial_utf8 partial_start) {
  11240. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11241. const char * pos = src.c_str();
  11242. std::vector<uint32_t> code_points;
  11243. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11244. code_points.reserve(src.size() + 1);
  11245. uint32_t value = partial_start.value;
  11246. int n_remain = partial_start.n_remain;
  11247. // continue previous decode, if applicable
  11248. while (*pos != 0 && n_remain > 0) {
  11249. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11250. if ((next_byte >> 6) != 2) {
  11251. // invalid sequence, abort
  11252. code_points.push_back(0);
  11253. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11254. }
  11255. value = (value << 6) + (next_byte & 0x3F);
  11256. ++pos;
  11257. --n_remain;
  11258. }
  11259. if (partial_start.n_remain > 0 && n_remain == 0) {
  11260. code_points.push_back(value);
  11261. }
  11262. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11263. while (*pos != 0) {
  11264. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11265. uint8_t highbits = first_byte >> 4;
  11266. n_remain = lookup[highbits] - 1;
  11267. if (n_remain < 0) {
  11268. // invalid sequence, abort
  11269. code_points.clear();
  11270. code_points.push_back(0);
  11271. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11272. }
  11273. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11274. value = first_byte & mask;
  11275. ++pos;
  11276. while (*pos != 0 && n_remain > 0) {
  11277. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11278. ++pos;
  11279. --n_remain;
  11280. }
  11281. if (n_remain == 0) {
  11282. code_points.push_back(value);
  11283. }
  11284. }
  11285. code_points.push_back(0);
  11286. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11287. }
  11288. // returns true iff pos points to the end of one of the definitions of a rule
  11289. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11290. switch (pos->type) {
  11291. case LLAMA_GRETYPE_END: return true; // NOLINT
  11292. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11293. default: return false;
  11294. }
  11295. }
  11296. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11297. // asserts that pos is pointing to a char range element
  11298. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11299. const llama_grammar_element * pos,
  11300. const uint32_t chr) {
  11301. bool found = false;
  11302. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11303. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11304. do {
  11305. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11306. // inclusive range, e.g. [a-z]
  11307. found = found || (pos->value <= chr && chr <= pos[1].value);
  11308. pos += 2;
  11309. } else {
  11310. // exact char match, e.g. [a] or "a"
  11311. found = found || pos->value == chr;
  11312. pos += 1;
  11313. }
  11314. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11315. return std::make_pair(found == is_positive_char, pos);
  11316. }
  11317. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11318. // range at pos (regular or inverse range)
  11319. // asserts that pos is pointing to a char range element
  11320. static bool llama_grammar_match_partial_char(
  11321. const llama_grammar_element * pos,
  11322. const llama_partial_utf8 partial_utf8) {
  11323. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11324. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11325. uint32_t partial_value = partial_utf8.value;
  11326. int n_remain = partial_utf8.n_remain;
  11327. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11328. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11329. return false;
  11330. }
  11331. // range of possible code points this partial UTF-8 sequence could complete to
  11332. uint32_t low = partial_value << (n_remain * 6);
  11333. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11334. if (low == 0) {
  11335. if (n_remain == 2) {
  11336. low = 1 << 11;
  11337. } else if (n_remain == 3) {
  11338. low = 1 << 16;
  11339. }
  11340. }
  11341. do {
  11342. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11343. // inclusive range, e.g. [a-z]
  11344. if (pos->value <= high && low <= pos[1].value) {
  11345. return is_positive_char;
  11346. }
  11347. pos += 2;
  11348. } else {
  11349. // exact char match, e.g. [a] or "a"
  11350. if (low <= pos->value && pos->value <= high) {
  11351. return is_positive_char;
  11352. }
  11353. pos += 1;
  11354. }
  11355. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11356. return !is_positive_char;
  11357. }
  11358. // transforms a grammar pushdown stack into N possible stacks, all ending
  11359. // at a character range (terminal element)
  11360. static void llama_grammar_advance_stack(
  11361. const std::vector<std::vector<llama_grammar_element>> & rules,
  11362. const std::vector<const llama_grammar_element *> & stack,
  11363. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11364. if (stack.empty()) {
  11365. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11366. new_stacks.emplace_back(stack);
  11367. }
  11368. return;
  11369. }
  11370. const llama_grammar_element * pos = stack.back();
  11371. switch (pos->type) {
  11372. case LLAMA_GRETYPE_RULE_REF: {
  11373. const size_t rule_id = static_cast<size_t>(pos->value);
  11374. const llama_grammar_element * subpos = rules[rule_id].data();
  11375. do {
  11376. // init new stack without the top (pos)
  11377. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11378. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11379. // if this rule ref is followed by another element, add that to stack
  11380. new_stack.push_back(pos + 1);
  11381. }
  11382. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11383. // if alternate is nonempty, add to stack
  11384. new_stack.push_back(subpos);
  11385. }
  11386. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11387. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11388. // scan to end of alternate def
  11389. subpos++;
  11390. }
  11391. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11392. // there's another alternate def of this rule to process
  11393. subpos++;
  11394. } else {
  11395. break;
  11396. }
  11397. } while (true);
  11398. break;
  11399. }
  11400. case LLAMA_GRETYPE_CHAR:
  11401. case LLAMA_GRETYPE_CHAR_NOT:
  11402. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11403. // only add the stack if it's not a duplicate of one we already have
  11404. new_stacks.emplace_back(stack);
  11405. }
  11406. break;
  11407. default:
  11408. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11409. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11410. // those
  11411. GGML_ASSERT(false);
  11412. }
  11413. }
  11414. // takes a set of possible pushdown stacks on a grammar, which are required to
  11415. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11416. // produces the N possible stacks if the given char is accepted at those
  11417. // positions
  11418. void llama_grammar_accept(
  11419. const std::vector<std::vector<llama_grammar_element>> & rules,
  11420. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11421. const uint32_t chr,
  11422. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11423. new_stacks.clear();
  11424. for (const auto & stack : stacks) {
  11425. if (stack.empty()) {
  11426. continue;
  11427. }
  11428. auto match = llama_grammar_match_char(stack.back(), chr);
  11429. if (match.first) {
  11430. const llama_grammar_element * pos = match.second;
  11431. // update top of stack to next element, if any
  11432. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11433. if (!llama_grammar_is_end_of_sequence(pos)) {
  11434. new_stack.push_back(pos);
  11435. }
  11436. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11437. }
  11438. }
  11439. }
  11440. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11441. const std::vector<std::vector<llama_grammar_element>> & rules,
  11442. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11443. const std::vector<llama_grammar_candidate> & candidates);
  11444. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11445. const std::vector<std::vector<llama_grammar_element>> & rules,
  11446. const std::vector<const llama_grammar_element *> & stack,
  11447. const std::vector<llama_grammar_candidate> & candidates) {
  11448. std::vector<llama_grammar_candidate> rejects;
  11449. rejects.reserve(candidates.size());
  11450. if (stack.empty()) {
  11451. for (const auto & tok : candidates) {
  11452. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11453. rejects.push_back(tok);
  11454. }
  11455. }
  11456. return rejects;
  11457. }
  11458. const llama_grammar_element * stack_pos = stack.back();
  11459. std::vector<llama_grammar_candidate> next_candidates;
  11460. next_candidates.reserve(candidates.size());
  11461. for (const auto & tok : candidates) {
  11462. if (*tok.code_points == 0) {
  11463. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11464. // that cannot satisfy this position in grammar
  11465. if (tok.partial_utf8.n_remain != 0 &&
  11466. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11467. rejects.push_back(tok);
  11468. }
  11469. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11470. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11471. } else {
  11472. rejects.push_back(tok);
  11473. }
  11474. }
  11475. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11476. // update top of stack to next element, if any
  11477. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11478. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11479. stack_after.push_back(stack_pos_after);
  11480. }
  11481. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11482. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11483. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11484. for (const auto & tok : next_rejects) {
  11485. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11486. }
  11487. return rejects;
  11488. }
  11489. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11490. const std::vector<std::vector<llama_grammar_element>> & rules,
  11491. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11492. const std::vector<llama_grammar_candidate> & candidates) {
  11493. GGML_ASSERT(!stacks.empty()); // REVIEW
  11494. if (candidates.empty()) {
  11495. return std::vector<llama_grammar_candidate>();
  11496. }
  11497. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11498. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11499. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11500. }
  11501. return rejects;
  11502. }
  11503. static bool llama_grammar_detect_left_recursion(
  11504. const std::vector<std::vector<llama_grammar_element>> & rules,
  11505. size_t rule_index,
  11506. std::vector<bool> * rules_visited,
  11507. std::vector<bool> * rules_in_progress,
  11508. std::vector<bool> * rules_may_be_empty) {
  11509. if ((*rules_in_progress)[rule_index]) {
  11510. return true;
  11511. }
  11512. (*rules_in_progress)[rule_index] = true;
  11513. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11514. // First check if the rule might produce the empty string. This could be done combined with the second
  11515. // step but it's more readable as two steps.
  11516. bool at_rule_start = true;
  11517. for (size_t i = 0; i < rule.size(); i++) {
  11518. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11519. if (at_rule_start) {
  11520. (*rules_may_be_empty)[rule_index] = true;
  11521. break;
  11522. }
  11523. at_rule_start = true;
  11524. } else {
  11525. at_rule_start = false;
  11526. }
  11527. }
  11528. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11529. // be empty)
  11530. bool recurse_into_nonterminal = true;
  11531. for (size_t i = 0; i < rule.size(); i++) {
  11532. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11533. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11534. return true;
  11535. }
  11536. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11537. recurse_into_nonterminal = false;
  11538. }
  11539. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11540. recurse_into_nonterminal = true;
  11541. } else {
  11542. recurse_into_nonterminal = false;
  11543. }
  11544. }
  11545. (*rules_in_progress)[rule_index] = false;
  11546. (*rules_visited)[rule_index] = true;
  11547. return false;
  11548. }
  11549. //
  11550. // grammar - external
  11551. //
  11552. struct llama_grammar * llama_grammar_init(
  11553. const llama_grammar_element ** rules,
  11554. size_t n_rules,
  11555. size_t start_rule_index) {
  11556. const llama_grammar_element * pos;
  11557. // copy rule definitions into vectors
  11558. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11559. for (size_t i = 0; i < n_rules; i++) {
  11560. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11561. vec_rules[i].push_back(*pos);
  11562. }
  11563. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11564. }
  11565. // Check for left recursion
  11566. std::vector<bool> rules_visited(n_rules);
  11567. std::vector<bool> rules_in_progress(n_rules);
  11568. std::vector<bool> rules_may_be_empty(n_rules);
  11569. for (size_t i = 0; i < n_rules; i++) {
  11570. if (rules_visited[i]) {
  11571. continue;
  11572. }
  11573. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11574. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11575. }
  11576. }
  11577. // loop over alternates of start rule to build initial stacks
  11578. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11579. pos = vec_rules[start_rule_index].data();
  11580. do {
  11581. std::vector<const llama_grammar_element *> stack;
  11582. if (!llama_grammar_is_end_of_sequence(pos)) {
  11583. // if alternate is nonempty, add to stack
  11584. stack.push_back(pos);
  11585. }
  11586. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11587. while (!llama_grammar_is_end_of_sequence(pos)) {
  11588. // scan to end of alternate def
  11589. pos++;
  11590. }
  11591. if (pos->type == LLAMA_GRETYPE_ALT) {
  11592. // there's another alternate def of this rule to process
  11593. pos++;
  11594. } else {
  11595. break;
  11596. }
  11597. } while (true);
  11598. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11599. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11600. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11601. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11602. }
  11603. void llama_grammar_free(struct llama_grammar * grammar) {
  11604. delete grammar;
  11605. }
  11606. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11607. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11608. // redirect elements in stacks to point to new rules
  11609. for (size_t is = 0; is < result->stacks.size(); is++) {
  11610. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11611. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11612. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11613. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11614. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11615. }
  11616. }
  11617. }
  11618. }
  11619. }
  11620. return result;
  11621. }
  11622. //
  11623. // sampling
  11624. //
  11625. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11626. if (seed == LLAMA_DEFAULT_SEED) {
  11627. seed = time(NULL);
  11628. }
  11629. ctx->rng.seed(seed);
  11630. }
  11631. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11632. GGML_ASSERT(candidates->size > 0);
  11633. const int64_t t_start_sample_us = ggml_time_us();
  11634. // Sort the logits in descending order
  11635. if (!candidates->sorted) {
  11636. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11637. return a.logit > b.logit;
  11638. });
  11639. candidates->sorted = true;
  11640. }
  11641. float max_l = candidates->data[0].logit;
  11642. float cum_sum = 0.0f;
  11643. for (size_t i = 0; i < candidates->size; ++i) {
  11644. float p = expf(candidates->data[i].logit - max_l);
  11645. candidates->data[i].p = p;
  11646. cum_sum += p;
  11647. }
  11648. for (size_t i = 0; i < candidates->size; ++i) {
  11649. candidates->data[i].p /= cum_sum;
  11650. }
  11651. if (ctx) {
  11652. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11653. }
  11654. }
  11655. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11656. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11657. // if (k >= (int32_t)candidates->size) {
  11658. // return;
  11659. // }
  11660. const int64_t t_start_sample_us = ggml_time_us();
  11661. if (k <= 0) {
  11662. k = candidates->size;
  11663. }
  11664. k = std::max(k, (int) min_keep);
  11665. k = std::min(k, (int) candidates->size);
  11666. // Sort scores in descending order
  11667. if (!candidates->sorted) {
  11668. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11669. return a.logit > b.logit;
  11670. };
  11671. if (k <= 128) {
  11672. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11673. } else {
  11674. constexpr int nbuckets = 128;
  11675. constexpr float bucket_low = -10.0f;
  11676. constexpr float bucket_high = 10.0f;
  11677. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11678. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11679. std::vector<int> bucket_idx(candidates->size);
  11680. std::vector<int> histo(nbuckets, 0);
  11681. for (int i = 0; i < (int)candidates->size; ++i) {
  11682. const float val = candidates->data[i].logit;
  11683. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11684. ib = std::max(0, std::min(nbuckets-1, ib));
  11685. bucket_idx[i] = ib;
  11686. ++histo[ib];
  11687. }
  11688. int nhave = 0;
  11689. int ib = nbuckets - 1;
  11690. for ( ; ib >= 0; --ib) {
  11691. nhave += histo[ib];
  11692. if (nhave >= k) break;
  11693. }
  11694. std::vector<llama_token_data> tmp_tokens(nhave);
  11695. auto ptr = tmp_tokens.data();
  11696. std::vector<llama_token_data*> bucket_ptrs;
  11697. bucket_ptrs.reserve(nbuckets - ib);
  11698. for (int j = nbuckets - 1; j >= ib; --j) {
  11699. bucket_ptrs.push_back(ptr);
  11700. ptr += histo[j];
  11701. }
  11702. for (int i = 0; i < (int)candidates->size; ++i) {
  11703. int j = bucket_idx[i];
  11704. if (j >= ib) {
  11705. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11706. }
  11707. }
  11708. ptr = tmp_tokens.data();
  11709. int ndone = 0;
  11710. for (int j = nbuckets-1; j > ib; --j) {
  11711. std::sort(ptr, ptr + histo[j], comp);
  11712. ptr += histo[j];
  11713. ndone += histo[j];
  11714. }
  11715. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11716. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11717. }
  11718. candidates->sorted = true;
  11719. }
  11720. candidates->size = k;
  11721. if (ctx) {
  11722. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11723. }
  11724. }
  11725. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11726. if (p >= 1.0f) {
  11727. return;
  11728. }
  11729. llama_sample_softmax(ctx, candidates);
  11730. const int64_t t_start_sample_us = ggml_time_us();
  11731. // Compute the cumulative probabilities
  11732. float cum_sum = 0.0f;
  11733. size_t last_idx = candidates->size;
  11734. for (size_t i = 0; i < candidates->size; ++i) {
  11735. cum_sum += candidates->data[i].p;
  11736. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11737. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11738. if (cum_sum >= p && i + 1 >= min_keep) {
  11739. last_idx = i + 1;
  11740. break;
  11741. }
  11742. }
  11743. // Resize the output vector to keep only the top-p tokens
  11744. candidates->size = last_idx;
  11745. if (ctx) {
  11746. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11747. }
  11748. }
  11749. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11750. if (p <= 0.0f || !candidates->size) {
  11751. return;
  11752. }
  11753. const int64_t t_start_sample_us = ggml_time_us();
  11754. bool min_p_applied = false;
  11755. // if the candidates aren't sorted, try the unsorted implementation first
  11756. if (!candidates->sorted) {
  11757. std::vector<llama_token_data> filtered_tokens;
  11758. float max_logit = -FLT_MAX;
  11759. for (size_t i = 0; i < candidates->size; ++i) {
  11760. max_logit = std::max(max_logit, candidates->data[i].logit);
  11761. }
  11762. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11763. for (size_t i = 0; i < candidates->size; ++i) {
  11764. if (candidates->data[i].logit >= min_logit) {
  11765. filtered_tokens.push_back(candidates->data[i]);
  11766. }
  11767. }
  11768. // if we have enough values the operation was a success
  11769. if (filtered_tokens.size() >= min_keep) {
  11770. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11771. candidates->size = filtered_tokens.size();
  11772. min_p_applied = true;
  11773. }
  11774. }
  11775. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11776. if (!min_p_applied) {
  11777. // Sort the logits in descending order
  11778. if (!candidates->sorted) {
  11779. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11780. return a.logit > b.logit;
  11781. });
  11782. candidates->sorted = true;
  11783. }
  11784. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11785. size_t i = 1; // first token always matches
  11786. for (; i < candidates->size; ++i) {
  11787. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11788. break; // prob too small
  11789. }
  11790. }
  11791. // Resize the output vector to keep only the matching tokens
  11792. candidates->size = i;
  11793. }
  11794. if (ctx) {
  11795. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11796. }
  11797. }
  11798. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11799. if (z >= 1.0f || candidates->size <= 2) {
  11800. return;
  11801. }
  11802. llama_sample_softmax(nullptr, candidates);
  11803. const int64_t t_start_sample_us = ggml_time_us();
  11804. // Compute the first and second derivatives
  11805. std::vector<float> first_derivatives(candidates->size - 1);
  11806. std::vector<float> second_derivatives(candidates->size - 2);
  11807. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11808. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11809. }
  11810. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11811. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11812. }
  11813. // Calculate absolute value of second derivatives
  11814. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11815. second_derivatives[i] = std::abs(second_derivatives[i]);
  11816. }
  11817. // Normalize the second derivatives
  11818. {
  11819. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11820. if (second_derivatives_sum > 1e-6f) {
  11821. for (float & value : second_derivatives) {
  11822. value /= second_derivatives_sum;
  11823. }
  11824. } else {
  11825. for (float & value : second_derivatives) {
  11826. value = 1.0f / second_derivatives.size();
  11827. }
  11828. }
  11829. }
  11830. float cum_sum = 0.0f;
  11831. size_t last_idx = candidates->size;
  11832. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11833. cum_sum += second_derivatives[i];
  11834. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11835. if (cum_sum > z && i >= min_keep) {
  11836. last_idx = i;
  11837. break;
  11838. }
  11839. }
  11840. // Resize the output vector to keep only the tokens above the tail location
  11841. candidates->size = last_idx;
  11842. if (ctx) {
  11843. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11844. }
  11845. }
  11846. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11847. // Reference implementation:
  11848. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11849. if (p >= 1.0f) {
  11850. return;
  11851. }
  11852. // Compute the softmax of logits and calculate entropy
  11853. llama_sample_softmax(nullptr, candidates);
  11854. const int64_t t_start_sample_us = ggml_time_us();
  11855. float entropy = 0.0f;
  11856. for (size_t i = 0; i < candidates->size; ++i) {
  11857. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11858. }
  11859. // Compute the absolute difference between negative log probability and entropy for each candidate
  11860. std::vector<float> shifted_scores;
  11861. for (size_t i = 0; i < candidates->size; ++i) {
  11862. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11863. shifted_scores.push_back(shifted_score);
  11864. }
  11865. // Sort tokens based on the shifted_scores and their corresponding indices
  11866. std::vector<size_t> indices(candidates->size);
  11867. std::iota(indices.begin(), indices.end(), 0);
  11868. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11869. return shifted_scores[a] < shifted_scores[b];
  11870. });
  11871. // Compute the cumulative probabilities
  11872. float cum_sum = 0.0f;
  11873. size_t last_idx = indices.size();
  11874. for (size_t i = 0; i < indices.size(); ++i) {
  11875. size_t idx = indices[i];
  11876. cum_sum += candidates->data[idx].p;
  11877. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11878. if (cum_sum > p && i >= min_keep - 1) {
  11879. last_idx = i + 1;
  11880. break;
  11881. }
  11882. }
  11883. // Resize the output vector to keep only the locally typical tokens
  11884. std::vector<llama_token_data> new_candidates;
  11885. for (size_t i = 0; i < last_idx; ++i) {
  11886. size_t idx = indices[i];
  11887. new_candidates.push_back(candidates->data[idx]);
  11888. }
  11889. // Replace the data in candidates with the new_candidates data
  11890. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11891. candidates->size = new_candidates.size();
  11892. candidates->sorted = false;
  11893. if (ctx) {
  11894. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11895. }
  11896. }
  11897. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11898. const int64_t t_start_sample_us = ggml_time_us();
  11899. // no need to do anything if there is only one (or zero) candidates
  11900. if(candidates_p->size <= 1) {
  11901. return;
  11902. }
  11903. // Calculate maximum possible entropy
  11904. float max_entropy = -logf(1.0f / candidates_p->size);
  11905. llama_sample_softmax(nullptr, candidates_p);
  11906. // Calculate entropy of the softmax probabilities
  11907. float entropy = 0.0f;
  11908. for (size_t i = 0; i < candidates_p->size; ++i) {
  11909. float prob = candidates_p->data[i].p;
  11910. if (prob > 0.0f) { // Ensure no log(0)
  11911. entropy -= prob * logf(prob);
  11912. }
  11913. }
  11914. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11915. float normalized_entropy = entropy / max_entropy;
  11916. // Map the normalized entropy to the desired temperature range using the power function
  11917. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11918. #ifdef DEBUG
  11919. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11920. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11921. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11922. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11923. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11924. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11925. #endif
  11926. // Apply the dynamically calculated temperature scaling
  11927. for (size_t i = 0; i < candidates_p->size; ++i) {
  11928. candidates_p->data[i].logit /= dyn_temp;
  11929. }
  11930. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11931. double max_l_double = candidates_p->data[0].logit;
  11932. double cum_sum_double = 0.0;
  11933. for (size_t i = 0; i < candidates_p->size; ++i) {
  11934. double p = exp(candidates_p->data[i].logit - max_l_double);
  11935. candidates_p->data[i].p = p; // Store the scaled probability
  11936. cum_sum_double += p;
  11937. }
  11938. for (size_t i = 0; i < candidates_p->size; ++i) {
  11939. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11940. }
  11941. #ifdef DEBUG
  11942. // Print the updated top 25 probabilities after temperature scaling
  11943. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11944. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11945. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11946. }
  11947. #endif
  11948. if (ctx) {
  11949. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11950. }
  11951. }
  11952. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11953. const int64_t t_start_sample_us = ggml_time_us();
  11954. for (size_t i = 0; i < candidates_p->size; ++i) {
  11955. candidates_p->data[i].logit /= temp;
  11956. }
  11957. if (ctx) {
  11958. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11959. }
  11960. }
  11961. void llama_sample_repetition_penalties(
  11962. struct llama_context * ctx,
  11963. llama_token_data_array * candidates,
  11964. const llama_token * last_tokens,
  11965. size_t penalty_last_n,
  11966. float penalty_repeat,
  11967. float penalty_freq,
  11968. float penalty_present) {
  11969. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11970. return;
  11971. }
  11972. const int64_t t_start_sample_us = ggml_time_us();
  11973. // Create a frequency map to count occurrences of each token in last_tokens
  11974. std::unordered_map<llama_token, int> token_count;
  11975. for (size_t i = 0; i < penalty_last_n; ++i) {
  11976. token_count[last_tokens[i]]++;
  11977. }
  11978. // Apply frequency and presence penalties to the candidates
  11979. for (size_t i = 0; i < candidates->size; ++i) {
  11980. const auto token_iter = token_count.find(candidates->data[i].id);
  11981. if (token_iter == token_count.end()) {
  11982. continue;
  11983. }
  11984. const int count = token_iter->second;
  11985. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11986. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11987. if (candidates->data[i].logit <= 0) {
  11988. candidates->data[i].logit *= penalty_repeat;
  11989. } else {
  11990. candidates->data[i].logit /= penalty_repeat;
  11991. }
  11992. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11993. }
  11994. candidates->sorted = false;
  11995. if (ctx) {
  11996. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11997. }
  11998. }
  11999. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12000. GGML_ASSERT(ctx);
  12001. int64_t t_start_sample_us = ggml_time_us();
  12002. bool allow_eog = false;
  12003. for (const auto & stack : grammar->stacks) {
  12004. if (stack.empty()) {
  12005. allow_eog = true;
  12006. break;
  12007. }
  12008. }
  12009. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12010. candidates_decoded.reserve(candidates->size);
  12011. std::vector<llama_grammar_candidate> candidates_grammar;
  12012. candidates_grammar.reserve(candidates->size);
  12013. for (size_t i = 0; i < candidates->size; ++i) {
  12014. const llama_token id = candidates->data[i].id;
  12015. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12016. if (llama_token_is_eog(&ctx->model, id)) {
  12017. if (!allow_eog) {
  12018. candidates->data[i].logit = -INFINITY;
  12019. }
  12020. } else if (piece.empty() || piece[0] == 0) {
  12021. candidates->data[i].logit = -INFINITY;
  12022. } else {
  12023. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12024. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12025. }
  12026. }
  12027. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12028. for (const auto & reject : rejects) {
  12029. candidates->data[reject.index].logit = -INFINITY;
  12030. }
  12031. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12032. }
  12033. static void llama_log_softmax(float * array, size_t size) {
  12034. float max_l = *std::max_element(array, array + size);
  12035. float sum = 0.f;
  12036. for (size_t i = 0; i < size; ++i) {
  12037. float p = expf(array[i] - max_l);
  12038. sum += p;
  12039. array[i] = p;
  12040. }
  12041. for (size_t i = 0; i < size; ++i) {
  12042. array[i] = logf(array[i] / sum);
  12043. }
  12044. }
  12045. void llama_sample_apply_guidance(
  12046. struct llama_context * ctx,
  12047. float * logits,
  12048. float * logits_guidance,
  12049. float scale) {
  12050. GGML_ASSERT(ctx);
  12051. const auto t_start_sample_us = ggml_time_us();
  12052. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12053. llama_log_softmax(logits, n_vocab);
  12054. llama_log_softmax(logits_guidance, n_vocab);
  12055. for (int i = 0; i < n_vocab; ++i) {
  12056. auto & l = logits[i];
  12057. const auto & g = logits_guidance[i];
  12058. l = scale * (l - g) + g;
  12059. }
  12060. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12061. }
  12062. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12063. GGML_ASSERT(ctx);
  12064. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12065. int64_t t_start_sample_us;
  12066. t_start_sample_us = ggml_time_us();
  12067. llama_sample_softmax(nullptr, candidates);
  12068. // Estimate s_hat using the most probable m tokens
  12069. float s_hat = 0.0;
  12070. float sum_ti_bi = 0.0;
  12071. float sum_ti_sq = 0.0;
  12072. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12073. float t_i = logf(float(i + 2) / float(i + 1));
  12074. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12075. sum_ti_bi += t_i * b_i;
  12076. sum_ti_sq += t_i * t_i;
  12077. }
  12078. s_hat = sum_ti_bi / sum_ti_sq;
  12079. // Compute k from the estimated s_hat and target surprise value
  12080. float epsilon_hat = s_hat - 1;
  12081. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12082. // Sample the next word X using top-k sampling
  12083. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12084. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12085. llama_token X = llama_sample_token(ctx, candidates);
  12086. t_start_sample_us = ggml_time_us();
  12087. // Compute error as the difference between observed surprise and target surprise value
  12088. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12089. return candidate.id == X;
  12090. }));
  12091. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12092. float e = observed_surprise - tau;
  12093. // Update mu using the learning rate and error
  12094. *mu = *mu - eta * e;
  12095. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12096. return X;
  12097. }
  12098. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12099. int64_t t_start_sample_us;
  12100. t_start_sample_us = ggml_time_us();
  12101. llama_sample_softmax(ctx, candidates);
  12102. // Truncate the words with surprise values greater than mu
  12103. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12104. return -log2f(candidate.p) > *mu;
  12105. }));
  12106. if (candidates->size == 0) {
  12107. candidates->size = 1;
  12108. }
  12109. if (ctx) {
  12110. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12111. }
  12112. // Normalize the probabilities of the remaining words
  12113. llama_sample_softmax(ctx, candidates);
  12114. // Sample the next word X from the remaining words
  12115. llama_token X = llama_sample_token(ctx, candidates);
  12116. t_start_sample_us = ggml_time_us();
  12117. // Compute error as the difference between observed surprise and target surprise value
  12118. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12119. return candidate.id == X;
  12120. }));
  12121. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12122. float e = observed_surprise - tau;
  12123. // Update mu using the learning rate and error
  12124. *mu = *mu - eta * e;
  12125. if (ctx) {
  12126. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12127. }
  12128. return X;
  12129. }
  12130. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12131. const int64_t t_start_sample_us = ggml_time_us();
  12132. // Find max element
  12133. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12134. return a.logit < b.logit;
  12135. });
  12136. llama_token result = max_iter->id;
  12137. if (ctx) {
  12138. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12139. ctx->n_sample++;
  12140. }
  12141. return result;
  12142. }
  12143. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12144. GGML_ASSERT(ctx);
  12145. const int64_t t_start_sample_us = ggml_time_us();
  12146. llama_sample_softmax(nullptr, candidates);
  12147. std::vector<float> probs;
  12148. probs.reserve(candidates->size);
  12149. for (size_t i = 0; i < candidates->size; ++i) {
  12150. probs.push_back(candidates->data[i].p);
  12151. }
  12152. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12153. int idx = dist(rng);
  12154. llama_token result = candidates->data[idx].id;
  12155. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12156. ctx->n_sample++;
  12157. return result;
  12158. }
  12159. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12160. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12161. }
  12162. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12163. const int64_t t_start_sample_us = ggml_time_us();
  12164. if (llama_token_is_eog(&ctx->model, token)) {
  12165. for (const auto & stack : grammar->stacks) {
  12166. if (stack.empty()) {
  12167. return;
  12168. }
  12169. }
  12170. GGML_ASSERT(false);
  12171. }
  12172. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12173. // Note terminating 0 in decoded string
  12174. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12175. const auto & code_points = decoded.first;
  12176. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12177. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12178. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12179. grammar->stacks = tmp_new_stacks;
  12180. }
  12181. grammar->partial_utf8 = decoded.second;
  12182. GGML_ASSERT(!grammar->stacks.empty());
  12183. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12184. }
  12185. //
  12186. // Beam search
  12187. //
  12188. struct llama_beam {
  12189. std::vector<llama_token> tokens;
  12190. float p; // Cumulative beam probability (renormalized relative to all beams)
  12191. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  12192. // Sort beams by probability. In case of ties, prefer beams at eob.
  12193. bool operator<(const llama_beam & rhs) const {
  12194. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  12195. }
  12196. // Shift off first n tokens and discard them.
  12197. void shift_tokens(const size_t n) {
  12198. if (n) {
  12199. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  12200. tokens.resize(tokens.size() - n);
  12201. }
  12202. }
  12203. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  12204. };
  12205. // A struct for calculating logit-related info.
  12206. struct llama_logit_info {
  12207. const float * const logits;
  12208. const int n_vocab;
  12209. const float max_l;
  12210. const float normalizer;
  12211. struct sum_exp {
  12212. float max_l;
  12213. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  12214. };
  12215. llama_logit_info(llama_context * ctx)
  12216. : logits(llama_get_logits(ctx))
  12217. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  12218. , max_l(*std::max_element(logits, logits + n_vocab))
  12219. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  12220. { }
  12221. llama_token_data get_token_data(const llama_token token_id) const {
  12222. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  12223. return {token_id, logits[token_id], p};
  12224. }
  12225. // Return top k token_data by logit.
  12226. std::vector<llama_token_data> top_k(size_t k) {
  12227. std::vector<llama_token_data> min_heap; // min-heap by logit
  12228. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  12229. min_heap.reserve(k_min);
  12230. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  12231. min_heap.push_back(get_token_data(token_id));
  12232. }
  12233. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  12234. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  12235. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  12236. if (min_heap.front().logit < logits[token_id]) {
  12237. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  12238. min_heap.back().id = token_id;
  12239. min_heap.back().logit = logits[token_id];
  12240. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  12241. }
  12242. }
  12243. return min_heap;
  12244. }
  12245. float probability_from_logit(float logit) const {
  12246. return normalizer * std::exp(logit - max_l);
  12247. }
  12248. };
  12249. struct llama_beam_search_data {
  12250. llama_context * ctx;
  12251. size_t n_beams;
  12252. int n_past;
  12253. int n_predict;
  12254. std::vector<llama_beam> beams;
  12255. std::vector<llama_beam> next_beams;
  12256. // Re-calculated on each loop iteration
  12257. size_t common_prefix_length;
  12258. // Used to communicate to/from callback on beams state.
  12259. std::vector<llama_beam_view> beam_views;
  12260. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  12261. : ctx(ctx)
  12262. , n_beams(n_beams)
  12263. , n_past(n_past)
  12264. , n_predict(n_predict)
  12265. , beam_views(n_beams) {
  12266. beams.reserve(n_beams);
  12267. next_beams.reserve(n_beams);
  12268. }
  12269. // Collapse beams to a single beam given by index.
  12270. void collapse_beams(const size_t beam_idx) {
  12271. if (0u < beam_idx) {
  12272. std::swap(beams[0], beams[beam_idx]);
  12273. }
  12274. beams.resize(1);
  12275. }
  12276. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  12277. // The repetitive patterns below reflect the 2 stages of heaps:
  12278. // * Gather elements until the vector is full, then call std::make_heap() on it.
  12279. // * If the heap is full and a new element is found that should be included, pop the
  12280. // least element to the back(), replace it with the new, then push it into the heap.
  12281. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  12282. // Min-heaps use a greater-than comparator.
  12283. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  12284. if (beam.eob) {
  12285. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  12286. if (next_beams.size() < n_beams) {
  12287. next_beams.push_back(std::move(beam));
  12288. if (next_beams.size() == n_beams) {
  12289. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  12290. }
  12291. } else if (next_beams.front().p < beam.p) {
  12292. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12293. next_beams.back() = std::move(beam);
  12294. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12295. }
  12296. } else {
  12297. // beam is not at end-of-sentence, so branch with next top_k tokens.
  12298. if (!beam.tokens.empty()) {
  12299. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  12300. }
  12301. llama_logit_info logit_info(ctx);
  12302. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  12303. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  12304. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  12305. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  12306. size_t i=0;
  12307. if (next_beams.size() < n_beams) {
  12308. for (; next_beams.size() < n_beams ; ++i) {
  12309. llama_beam next_beam = beam;
  12310. next_beam.tokens.push_back(next_tokens[i].id);
  12311. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  12312. next_beams.push_back(std::move(next_beam));
  12313. }
  12314. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  12315. } else {
  12316. for (; next_beams.front().p == 0.0f ; ++i) {
  12317. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12318. next_beams.back() = beam;
  12319. next_beams.back().tokens.push_back(next_tokens[i].id);
  12320. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  12321. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12322. }
  12323. }
  12324. for (; i < n_beams ; ++i) {
  12325. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  12326. if (next_beams.front().p < next_p) {
  12327. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12328. next_beams.back() = beam;
  12329. next_beams.back().tokens.push_back(next_tokens[i].id);
  12330. next_beams.back().p = next_p;
  12331. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12332. }
  12333. }
  12334. }
  12335. }
  12336. // Find common_prefix_length based on beams.
  12337. // Requires beams is not empty.
  12338. size_t find_common_prefix_length() {
  12339. size_t common_prefix_length = beams[0].tokens.size();
  12340. for (size_t i = 1 ; i < beams.size() ; ++i) {
  12341. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  12342. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  12343. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  12344. common_prefix_length = j;
  12345. break;
  12346. }
  12347. }
  12348. }
  12349. return common_prefix_length;
  12350. }
  12351. // Construct beams_state to send back to caller via the callback function.
  12352. // Side effect: set common_prefix_length = find_common_prefix_length();
  12353. llama_beams_state get_beams_state(const bool last_call) {
  12354. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12355. beam_views[i] = beams[i].view();
  12356. }
  12357. common_prefix_length = find_common_prefix_length();
  12358. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  12359. }
  12360. // Loop:
  12361. // * while i < n_predict, AND
  12362. // * any of the beams have not yet reached end-of-beam (eob), AND
  12363. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  12364. // (since all other beam probabilities can only decrease)
  12365. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  12366. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  12367. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  12368. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  12369. !beams[top_beam_index()].eob ; ++i) {
  12370. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  12371. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  12372. if (common_prefix_length) {
  12373. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  12374. n_past += common_prefix_length;
  12375. }
  12376. // Zero-out next_beam probabilities to place them last in following min-heap.
  12377. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  12378. for (llama_beam & beam : beams) {
  12379. beam.shift_tokens(common_prefix_length);
  12380. fill_next_beams_by_top_probabilities(beam);
  12381. }
  12382. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  12383. beams.swap(next_beams);
  12384. renormalize_beam_probabilities(beams);
  12385. }
  12386. collapse_beams(top_beam_index());
  12387. callback(callback_data, get_beams_state(true));
  12388. }
  12389. // As beams grow, the cumulative probabilities decrease.
  12390. // Renormalize them to avoid floating point underflow.
  12391. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  12392. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  12393. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  12394. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  12395. }
  12396. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  12397. size_t top_beam_index() {
  12398. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  12399. }
  12400. // Copy (p,eob) for each beam which may have been changed by the callback.
  12401. void update_beams_from_beam_views() {
  12402. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12403. beams[i].p = beam_views[i].p;
  12404. beams[i].eob = beam_views[i].eob;
  12405. }
  12406. }
  12407. };
  12408. void llama_beam_search(llama_context * ctx,
  12409. llama_beam_search_callback_fn_t callback, void * callback_data,
  12410. size_t n_beams, int n_past, int n_predict) {
  12411. assert(ctx);
  12412. const int64_t t_start_sample_us = ggml_time_us();
  12413. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  12414. beam_search_data.loop(callback, callback_data);
  12415. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12416. ctx->n_sample++;
  12417. }
  12418. //
  12419. // quantization
  12420. //
  12421. struct quantize_state_internal {
  12422. const llama_model & model;
  12423. const llama_model_quantize_params * params;
  12424. int n_attention_wv = 0;
  12425. int n_ffn_down = 0;
  12426. int n_ffn_gate = 0;
  12427. int n_ffn_up = 0;
  12428. int i_attention_wv = 0;
  12429. int i_ffn_down = 0;
  12430. int i_ffn_gate = 0;
  12431. int i_ffn_up = 0;
  12432. int n_k_quantized = 0;
  12433. int n_fallback = 0;
  12434. bool has_imatrix = false;
  12435. // used to figure out if a model shares tok_embd with the output weight
  12436. bool has_output = false;
  12437. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12438. : model(model)
  12439. , params(params)
  12440. {}
  12441. };
  12442. static void llama_tensor_dequantize_internal(
  12443. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12444. const size_t nelements, const int nthread
  12445. ) {
  12446. if (output.size() < nelements) {
  12447. output.resize(nelements);
  12448. }
  12449. float * f32_output = (float *) output.data();
  12450. ggml_type_traits_t qtype;
  12451. if (ggml_is_quantized(tensor->type)) {
  12452. qtype = ggml_internal_get_type_traits(tensor->type);
  12453. if (qtype.to_float == NULL) {
  12454. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12455. }
  12456. } else if (tensor->type != GGML_TYPE_F16 &&
  12457. tensor->type != GGML_TYPE_BF16) {
  12458. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12459. }
  12460. if (nthread < 2) {
  12461. if (tensor->type == GGML_TYPE_F16) {
  12462. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12463. } else if (tensor->type == GGML_TYPE_BF16) {
  12464. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12465. } else if (ggml_is_quantized(tensor->type)) {
  12466. qtype.to_float(tensor->data, f32_output, nelements);
  12467. } else {
  12468. GGML_ASSERT(false); // unreachable
  12469. }
  12470. return;
  12471. }
  12472. size_t block_size;
  12473. if (tensor->type == GGML_TYPE_F16 ||
  12474. tensor->type == GGML_TYPE_BF16) {
  12475. block_size = 1;
  12476. } else {
  12477. block_size = (size_t)ggml_blck_size(tensor->type);
  12478. }
  12479. size_t block_size_bytes = ggml_type_size(tensor->type);
  12480. GGML_ASSERT(nelements % block_size == 0);
  12481. size_t nblocks = nelements / block_size;
  12482. size_t blocks_per_thread = nblocks / nthread;
  12483. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12484. size_t in_buff_offs = 0;
  12485. size_t out_buff_offs = 0;
  12486. for (int tnum = 0; tnum < nthread; tnum++) {
  12487. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12488. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12489. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12490. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12491. if (typ == GGML_TYPE_F16) {
  12492. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12493. } else if (typ == GGML_TYPE_BF16) {
  12494. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12495. } else {
  12496. qtype.to_float(inbuf, outbuf, nels);
  12497. }
  12498. };
  12499. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12500. in_buff_offs += thr_block_bytes;
  12501. out_buff_offs += thr_elems;
  12502. }
  12503. for (auto & w : workers) { w.join(); }
  12504. workers.clear();
  12505. }
  12506. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12507. const std::string name = ggml_get_name(tensor);
  12508. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12509. const llm_arch arch = qs.model.arch;
  12510. const auto tn = LLM_TN(arch);
  12511. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12512. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12513. };
  12514. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12515. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12516. if (n_expert > 1) {
  12517. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12518. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12519. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12520. // tensor name.
  12521. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12522. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12523. }
  12524. if (i_layer < 0 || i_layer >= n_layer) {
  12525. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12526. }
  12527. }
  12528. return std::make_pair(i_layer, n_layer);
  12529. };
  12530. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12531. // with the quantization of the output tensor
  12532. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12533. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12534. new_type = qs.params->output_tensor_type;
  12535. } else {
  12536. int nx = tensor->ne[0];
  12537. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12538. new_type = GGML_TYPE_Q8_0;
  12539. }
  12540. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12541. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12542. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12543. new_type = GGML_TYPE_Q5_K;
  12544. }
  12545. else if (new_type != GGML_TYPE_Q8_0) {
  12546. new_type = GGML_TYPE_Q6_K;
  12547. }
  12548. }
  12549. } else if (name == "token_embd.weight") {
  12550. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12551. new_type = qs.params->token_embedding_type;
  12552. } else {
  12553. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12554. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12555. new_type = GGML_TYPE_Q2_K;
  12556. }
  12557. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12558. new_type = GGML_TYPE_IQ3_S;
  12559. }
  12560. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12561. new_type = GGML_TYPE_IQ3_S;
  12562. }
  12563. }
  12564. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12565. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12566. if (name.find("attn_v.weight") != std::string::npos) {
  12567. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12568. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12569. ++qs.i_attention_wv;
  12570. }
  12571. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12572. new_type = GGML_TYPE_Q4_K;
  12573. }
  12574. else if (name.find("ffn_down") != std::string::npos) {
  12575. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12576. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12577. }
  12578. ++qs.i_ffn_down;
  12579. }
  12580. else if (name.find("attn_output.weight") != std::string::npos) {
  12581. if (qs.model.hparams.n_expert == 8) {
  12582. new_type = GGML_TYPE_Q5_K;
  12583. } else {
  12584. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12585. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12586. }
  12587. }
  12588. } else if (name.find("attn_v.weight") != std::string::npos) {
  12589. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12590. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12591. }
  12592. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12593. new_type = GGML_TYPE_Q4_K;
  12594. }
  12595. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12596. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12597. }
  12598. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12599. new_type = GGML_TYPE_Q4_K;
  12600. }
  12601. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12602. new_type = GGML_TYPE_Q4_K;
  12603. }
  12604. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12605. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12606. }
  12607. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12608. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12609. new_type = GGML_TYPE_Q5_K;
  12610. }
  12611. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12612. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12613. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12614. if (qs.model.type == MODEL_70B) {
  12615. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12616. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12617. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12618. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12619. }
  12620. if (qs.model.hparams.n_expert == 8) {
  12621. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12622. // TODO: explore better strategies
  12623. new_type = GGML_TYPE_Q8_0;
  12624. }
  12625. ++qs.i_attention_wv;
  12626. } else if (name.find("attn_k.weight") != std::string::npos) {
  12627. if (qs.model.hparams.n_expert == 8) {
  12628. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12629. // TODO: explore better strategies
  12630. new_type = GGML_TYPE_Q8_0;
  12631. }
  12632. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12633. new_type = GGML_TYPE_IQ3_XXS;
  12634. }
  12635. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12636. new_type = GGML_TYPE_IQ2_S;
  12637. }
  12638. } else if (name.find("attn_q.weight") != std::string::npos) {
  12639. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12640. new_type = GGML_TYPE_IQ3_XXS;
  12641. }
  12642. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12643. new_type = GGML_TYPE_IQ2_S;
  12644. }
  12645. } else if (name.find("ffn_down") != std::string::npos) {
  12646. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12647. int i_layer = info.first, n_layer = info.second;
  12648. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12649. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12650. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12651. }
  12652. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12653. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12654. }
  12655. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12656. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12657. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12658. : GGML_TYPE_Q3_K;
  12659. }
  12660. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12661. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12662. new_type = GGML_TYPE_Q4_K;
  12663. }
  12664. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12665. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12666. }
  12667. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12668. if (arch == LLM_ARCH_FALCON) {
  12669. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12670. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12671. } else {
  12672. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12673. }
  12674. }
  12675. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12676. new_type = GGML_TYPE_Q5_K;
  12677. }
  12678. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12679. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12680. new_type = GGML_TYPE_Q5_K;
  12681. }
  12682. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12683. && qs.has_imatrix && i_layer < n_layer/8) {
  12684. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12685. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12686. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12687. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12688. }
  12689. ++qs.i_ffn_down;
  12690. } else if (name.find("attn_output.weight") != std::string::npos) {
  12691. if (arch != LLM_ARCH_FALCON) {
  12692. if (qs.model.hparams.n_expert == 8) {
  12693. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12694. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12695. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12696. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12697. new_type = GGML_TYPE_Q5_K;
  12698. }
  12699. } else {
  12700. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12701. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12702. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12703. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12704. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12705. }
  12706. } else {
  12707. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12708. }
  12709. }
  12710. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12711. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12712. new_type = GGML_TYPE_Q4_K;
  12713. }
  12714. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12715. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12716. }
  12717. else if (name.find("ffn_gate") != std::string::npos) {
  12718. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12719. int i_layer = info.first, n_layer = info.second;
  12720. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12721. new_type = GGML_TYPE_IQ3_XXS;
  12722. }
  12723. ++qs.i_ffn_gate;
  12724. }
  12725. else if (name.find("ffn_up") != std::string::npos) {
  12726. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12727. int i_layer = info.first, n_layer = info.second;
  12728. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12729. new_type = GGML_TYPE_IQ3_XXS;
  12730. }
  12731. ++qs.i_ffn_up;
  12732. }
  12733. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12734. //}
  12735. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12736. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12737. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12738. //}
  12739. // This can be used to reduce the size of the Q5_K_S model.
  12740. // The associated PPL increase is fully in line with the size reduction
  12741. //else {
  12742. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12743. //}
  12744. bool convert_incompatible_tensor = false;
  12745. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12746. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12747. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12748. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12749. new_type == GGML_TYPE_IQ1_M) {
  12750. int nx = tensor->ne[0];
  12751. int ny = tensor->ne[1];
  12752. if (nx % QK_K != 0) {
  12753. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12754. convert_incompatible_tensor = true;
  12755. } else {
  12756. ++qs.n_k_quantized;
  12757. }
  12758. }
  12759. if (convert_incompatible_tensor) {
  12760. switch (new_type) {
  12761. case GGML_TYPE_IQ2_XXS:
  12762. case GGML_TYPE_IQ2_XS:
  12763. case GGML_TYPE_IQ2_S:
  12764. case GGML_TYPE_IQ3_XXS:
  12765. case GGML_TYPE_IQ3_S:
  12766. case GGML_TYPE_IQ1_S:
  12767. case GGML_TYPE_IQ1_M:
  12768. case GGML_TYPE_Q2_K:
  12769. case GGML_TYPE_Q3_K:
  12770. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12771. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12772. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12773. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12774. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12775. }
  12776. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12777. ++qs.n_fallback;
  12778. }
  12779. return new_type;
  12780. }
  12781. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12782. if (nthread < 2) {
  12783. // single-thread
  12784. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12785. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12786. throw std::runtime_error("quantized data validation failed");
  12787. }
  12788. return new_size;
  12789. }
  12790. std::mutex mutex;
  12791. int64_t counter = 0;
  12792. size_t new_size = 0;
  12793. bool valid = true;
  12794. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12795. nrows, n_per_row, imatrix]() {
  12796. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12797. size_t local_size = 0;
  12798. while (true) {
  12799. std::unique_lock<std::mutex> lock(mutex);
  12800. int64_t first_row = counter; counter += nrows_per_chunk;
  12801. if (first_row >= nrows) {
  12802. if (local_size > 0) {
  12803. new_size += local_size;
  12804. }
  12805. break;
  12806. }
  12807. lock.unlock();
  12808. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12809. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12810. local_size += this_size;
  12811. // validate the quantized data
  12812. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12813. void * this_data = (char *) new_data + first_row * row_size;
  12814. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12815. std::unique_lock<std::mutex> lock(mutex);
  12816. valid = false;
  12817. break;
  12818. }
  12819. }
  12820. };
  12821. for (int it = 0; it < nthread - 1; ++it) {
  12822. workers.emplace_back(compute);
  12823. }
  12824. compute();
  12825. for (auto & w : workers) { w.join(); }
  12826. workers.clear();
  12827. if (!valid) {
  12828. throw std::runtime_error("quantized data validation failed");
  12829. }
  12830. return new_size;
  12831. }
  12832. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12833. ggml_type default_type;
  12834. llama_ftype ftype = params->ftype;
  12835. switch (params->ftype) {
  12836. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12837. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12838. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12839. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12840. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12841. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12842. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12843. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12844. // K-quants
  12845. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12846. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12847. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12848. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12849. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12850. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12851. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12852. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12853. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12854. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12855. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12856. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12857. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12858. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12859. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12860. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12861. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12862. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12863. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12864. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12865. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12866. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12867. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12868. }
  12869. int nthread = params->nthread;
  12870. if (nthread <= 0) {
  12871. nthread = std::thread::hardware_concurrency();
  12872. }
  12873. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12874. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12875. #if defined(__linux__) || defined(_WIN32)
  12876. constexpr bool use_mmap = true;
  12877. #else
  12878. constexpr bool use_mmap = false;
  12879. #endif
  12880. llama_model_kv_override * kv_overrides = nullptr;
  12881. if (params->kv_overrides) {
  12882. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12883. kv_overrides = v->data();
  12884. }
  12885. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12886. ml.init_mappings(false); // no prefetching
  12887. llama_model model;
  12888. llm_load_arch(ml, model);
  12889. llm_load_hparams(ml, model);
  12890. struct quantize_state_internal qs(model, params);
  12891. if (params->only_copy) {
  12892. ftype = model.ftype;
  12893. }
  12894. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12895. if (params->imatrix) {
  12896. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12897. if (imatrix_data) {
  12898. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12899. qs.has_imatrix = true;
  12900. }
  12901. }
  12902. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12903. struct gguf_context * ctx_out = gguf_init_empty();
  12904. // copy the KV pairs from the input file
  12905. gguf_set_kv (ctx_out, ml.meta);
  12906. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12907. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12908. // Remove split metadata
  12909. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12910. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12911. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12912. if (params->kv_overrides) {
  12913. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12914. for (auto & o : overrides) {
  12915. if (o.key[0] == 0) break;
  12916. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12917. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12918. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12919. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12920. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12921. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12922. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12923. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12924. } else {
  12925. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12926. }
  12927. }
  12928. }
  12929. for (int i = 0; i < ml.n_tensors; ++i) {
  12930. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12931. const std::string name = ggml_get_name(meta);
  12932. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12933. if (name.find("attn_v.weight") != std::string::npos ||
  12934. name.find("attn_qkv.weight") != std::string::npos) {
  12935. ++qs.n_attention_wv;
  12936. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12937. qs.has_output = true;
  12938. }
  12939. }
  12940. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12941. // sanity checks
  12942. //
  12943. // - qs.n_attention_wv == 0 for Mamba models
  12944. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12945. //
  12946. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12947. size_t total_size_org = 0;
  12948. size_t total_size_new = 0;
  12949. std::vector<std::thread> workers;
  12950. workers.reserve(nthread);
  12951. int idx = 0;
  12952. std::vector<no_init<uint8_t>> read_data;
  12953. std::vector<no_init<uint8_t>> work;
  12954. std::vector<no_init<float>> f32_conv_buf;
  12955. uint16_t n_split = 1;
  12956. // Assume split index is continuous
  12957. if (params->keep_split) {
  12958. for (int i = 0; i < ml.n_tensors; ++i) {
  12959. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12960. }
  12961. }
  12962. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12963. ctx_outs[0] = ctx_out;
  12964. // populate the original tensors so we get an initial meta data
  12965. for (int i = 0; i < ml.n_tensors; ++i) {
  12966. auto weight = ml.get_weight(i);
  12967. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12968. struct ggml_tensor * tensor = weight->tensor;
  12969. if (ctx_outs[i_split] == NULL) {
  12970. ctx_outs[i_split] = gguf_init_empty();
  12971. }
  12972. gguf_add_tensor(ctx_outs[i_split], tensor);
  12973. }
  12974. // Set split info if needed
  12975. if (n_split > 1) {
  12976. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12977. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12978. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12979. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12980. }
  12981. }
  12982. int cur_split = -1;
  12983. std::ofstream fout;
  12984. auto close_ofstream = [&]() {
  12985. // Write metadata and close file handler
  12986. if (fout.is_open()) {
  12987. fout.seekp(0);
  12988. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12989. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12990. fout.write((const char *) data.data(), data.size());
  12991. fout.close();
  12992. }
  12993. };
  12994. auto new_ofstream = [&](int index) {
  12995. cur_split = index;
  12996. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12997. std::string fname = fname_out;
  12998. if (params->keep_split) {
  12999. char split_path[PATH_MAX] = {0};
  13000. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  13001. fname = std::string(split_path);
  13002. }
  13003. fout = std::ofstream(fname, std::ios::binary);
  13004. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  13005. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  13006. // placeholder for the meta data
  13007. ::zeros(fout, meta_size);
  13008. };
  13009. const auto tn = LLM_TN(model.arch);
  13010. new_ofstream(0);
  13011. for (int i = 0; i < ml.n_tensors; ++i) {
  13012. auto weight = ml.get_weight(i);
  13013. struct ggml_tensor * tensor = weight->tensor;
  13014. if (weight->idx != cur_split && params->keep_split) {
  13015. close_ofstream();
  13016. new_ofstream(weight->idx);
  13017. }
  13018. const std::string name = ggml_get_name(tensor);
  13019. if (!ml.use_mmap) {
  13020. if (read_data.size() < ggml_nbytes(tensor)) {
  13021. read_data.resize(ggml_nbytes(tensor));
  13022. }
  13023. tensor->data = read_data.data();
  13024. }
  13025. ml.load_data_for(tensor);
  13026. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  13027. ++idx, ml.n_tensors,
  13028. ggml_get_name(tensor),
  13029. llama_format_tensor_shape(tensor).c_str(),
  13030. ggml_type_name(tensor->type));
  13031. // This used to be a regex, but <regex> has an extreme cost to compile times.
  13032. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  13033. // quantize only 2D and 3D tensors (experts)
  13034. quantize &= (ggml_n_dims(tensor) >= 2);
  13035. // do not quantize norm tensors
  13036. quantize &= name.find("_norm.weight") == std::string::npos;
  13037. quantize &= params->quantize_output_tensor || name != "output.weight";
  13038. quantize &= !params->only_copy;
  13039. // do not quantize expert gating tensors
  13040. // NOTE: can't use LLM_TN here because the layer number is not known
  13041. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  13042. // do not quantize positional embeddings and token types (BERT)
  13043. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  13044. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  13045. // do not quantize Mamba's small yet 2D weights
  13046. // NOTE: can't use LLM_TN here because the layer number is not known
  13047. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  13048. quantize &= name.find("ssm_x.weight") == std::string::npos;
  13049. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  13050. enum ggml_type new_type;
  13051. void * new_data;
  13052. size_t new_size;
  13053. if (quantize) {
  13054. new_type = default_type;
  13055. // get more optimal quantization type based on the tensor shape, layer, etc.
  13056. if (!params->pure && ggml_is_quantized(default_type)) {
  13057. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  13058. }
  13059. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  13060. new_type = params->token_embedding_type;
  13061. }
  13062. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  13063. new_type = params->output_tensor_type;
  13064. }
  13065. // If we've decided to quantize to the same type the tensor is already
  13066. // in then there's nothing to do.
  13067. quantize = tensor->type != new_type;
  13068. }
  13069. if (!quantize) {
  13070. new_type = tensor->type;
  13071. new_data = tensor->data;
  13072. new_size = ggml_nbytes(tensor);
  13073. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13074. } else {
  13075. const int64_t nelements = ggml_nelements(tensor);
  13076. const float * imatrix = nullptr;
  13077. if (imatrix_data) {
  13078. auto it = imatrix_data->find(tensor->name);
  13079. if (it == imatrix_data->end()) {
  13080. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13081. } else {
  13082. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13083. imatrix = it->second.data();
  13084. } else {
  13085. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13086. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13087. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13088. // this is a significant error and it may be good idea to abort the process if this happens,
  13089. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13090. // tok_embd should be ignored in this case, since it always causes this warning
  13091. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13092. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13093. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13094. }
  13095. }
  13096. }
  13097. }
  13098. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13099. new_type == GGML_TYPE_IQ2_XS ||
  13100. new_type == GGML_TYPE_IQ2_S ||
  13101. new_type == GGML_TYPE_IQ1_S ||
  13102. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13103. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13104. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13105. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13106. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13107. LLAMA_LOG_ERROR("============================================================\n\n");
  13108. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13109. }
  13110. float * f32_data;
  13111. if (tensor->type == GGML_TYPE_F32) {
  13112. f32_data = (float *) tensor->data;
  13113. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13114. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13115. } else {
  13116. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13117. f32_data = (float *) f32_conv_buf.data();
  13118. }
  13119. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13120. fflush(stdout);
  13121. if (work.size() < (size_t)nelements * 4) {
  13122. work.resize(nelements * 4); // upper bound on size
  13123. }
  13124. new_data = work.data();
  13125. const int64_t n_per_row = tensor->ne[0];
  13126. const int64_t nrows = tensor->ne[1];
  13127. static const int64_t min_chunk_size = 32 * 512;
  13128. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13129. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13130. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13131. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13132. // quantize each expert separately since they have different importance matrices
  13133. new_size = 0;
  13134. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13135. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13136. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13137. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13138. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13139. }
  13140. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13141. }
  13142. total_size_org += ggml_nbytes(tensor);
  13143. total_size_new += new_size;
  13144. // update the gguf meta data as we go
  13145. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13146. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13147. // write tensor data + padding
  13148. fout.write((const char *) new_data, new_size);
  13149. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13150. }
  13151. close_ofstream();
  13152. for (auto & c:ctx_outs) {
  13153. gguf_free(c);
  13154. }
  13155. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13156. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13157. if (qs.n_fallback > 0) {
  13158. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13159. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13160. }
  13161. }
  13162. static int llama_apply_lora_from_file_internal(
  13163. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13164. ) {
  13165. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13166. const int64_t t_start_lora_us = ggml_time_us();
  13167. llama_file fin(path_lora, "rb");
  13168. // verify magic and version
  13169. {
  13170. uint32_t magic = fin.read_u32();
  13171. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13172. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13173. return 1;
  13174. }
  13175. uint32_t format_version = fin.read_u32();
  13176. if (format_version != 1) {
  13177. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13178. return 1;
  13179. }
  13180. }
  13181. int32_t lora_r = fin.read_u32();
  13182. int32_t lora_alpha = fin.read_u32();
  13183. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13184. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13185. // load base model
  13186. std::unique_ptr<llama_model_loader> ml;
  13187. if (path_base_model) {
  13188. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13189. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13190. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13191. }
  13192. struct tensor_meta {
  13193. std::string name;
  13194. ggml_type type;
  13195. int32_t ne[2];
  13196. size_t offset;
  13197. };
  13198. std::map<std::string, tensor_meta> tensor_meta_map;
  13199. // load all tensor meta
  13200. while (true) {
  13201. if (fin.tell() == fin.size) {
  13202. // eof
  13203. break;
  13204. }
  13205. int32_t n_dims;
  13206. int32_t name_len;
  13207. int32_t ftype;
  13208. fin.read_raw(&n_dims, sizeof(n_dims));
  13209. fin.read_raw(&name_len, sizeof(name_len));
  13210. fin.read_raw(&ftype, sizeof(ftype));
  13211. if (n_dims != 1 && n_dims != 2) {
  13212. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13213. return 1;
  13214. }
  13215. int32_t ne[2] = { 1, 1 };
  13216. for (int i = 0; i < n_dims; ++i) {
  13217. fin.read_raw(&ne[i], sizeof(ne[i]));
  13218. }
  13219. std::string name;
  13220. {
  13221. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13222. char buf[GGML_MAX_NAME];
  13223. fin.read_raw(buf, name_len);
  13224. name = std::string(buf, name_len);
  13225. }
  13226. // check for lora suffix
  13227. std::string lora_suffix;
  13228. if (name.length() > 6) {
  13229. lora_suffix = name.substr(name.length() - 6);
  13230. }
  13231. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13232. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13233. return 1;
  13234. }
  13235. // tensor type
  13236. ggml_type wtype;
  13237. switch (ftype) {
  13238. case 0: wtype = GGML_TYPE_F32; break;
  13239. case 1: wtype = GGML_TYPE_F16; break;
  13240. default:
  13241. {
  13242. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13243. __func__, ftype);
  13244. return 1;
  13245. }
  13246. }
  13247. // data offset
  13248. size_t offset = fin.tell();
  13249. offset = (offset + 31) & -32;
  13250. // skip tensor data
  13251. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13252. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13253. }
  13254. bool warned = false;
  13255. int n_tensors = 0;
  13256. // apply
  13257. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13258. if (backend_cpu == nullptr) {
  13259. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13260. return 1;
  13261. }
  13262. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13263. std::vector<no_init<uint8_t>> read_buf;
  13264. for (const auto & it : model.tensors_by_name) {
  13265. const std::string & base_name = it.first;
  13266. ggml_tensor * model_t = it.second;
  13267. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13268. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13269. continue;
  13270. }
  13271. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13272. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13273. ggml_init_params lora_init_params = {
  13274. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13275. /* .mem_buffer */ nullptr,
  13276. /* .no_alloc */ true,
  13277. };
  13278. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13279. if (lora_ctx == nullptr) {
  13280. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13281. ggml_backend_free(backend_cpu);
  13282. return 1;
  13283. }
  13284. // create tensors
  13285. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13286. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13287. ggml_set_name(loraA, metaA.name.c_str());
  13288. ggml_set_name(loraB, metaB.name.c_str());
  13289. ggml_tensor * base_t;
  13290. if (ml) {
  13291. if (!ml->get_tensor_meta(base_name.c_str())) {
  13292. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13293. return 1;
  13294. }
  13295. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13296. } else {
  13297. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13298. }
  13299. ggml_set_name(base_t, base_name.c_str());
  13300. // allocate in backend buffer
  13301. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13302. if (lora_buf == nullptr) {
  13303. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13304. return 1;
  13305. }
  13306. // load tensor data
  13307. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13308. read_buf.resize(ggml_nbytes(tensor));
  13309. fin.seek(tensor_meta.offset, SEEK_SET);
  13310. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13311. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13312. };
  13313. load_tensor(metaA, loraA);
  13314. load_tensor(metaB, loraB);
  13315. // load base model tensor data
  13316. if (ml) {
  13317. ml->load_data_for(base_t);
  13318. } else {
  13319. ggml_backend_tensor_copy(model_t, base_t);
  13320. }
  13321. if (ggml_is_quantized(base_t->type) && !warned) {
  13322. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13323. "use a f16 or f32 base model with --lora-base\n", __func__);
  13324. warned = true;
  13325. }
  13326. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13327. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13328. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13329. ggml_free(lora_ctx);
  13330. ggml_backend_buffer_free(lora_buf);
  13331. ggml_backend_free(backend_cpu);
  13332. return 1;
  13333. }
  13334. auto build_lora_graph = [&]() {
  13335. // w = w + BA*s
  13336. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13337. ggml_set_name(BA, "BA");
  13338. if (scaling != 1.0f) {
  13339. BA = ggml_scale(lora_ctx, BA, scaling);
  13340. ggml_set_name(BA, "BA_scaled");
  13341. }
  13342. ggml_tensor * r;
  13343. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13344. ggml_set_name(r, "r_add");
  13345. if (base_t->type != model_t->type) {
  13346. // convert the result to the model type
  13347. r = ggml_cast(lora_ctx, r, model_t->type);
  13348. ggml_set_name(r, "r_cast");
  13349. }
  13350. return r;
  13351. };
  13352. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13353. ggml_tensor * r = build_lora_graph();
  13354. ggml_build_forward_expand(gf, r);
  13355. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13356. if (graph_buf == nullptr) {
  13357. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13358. ggml_free(lora_ctx);
  13359. ggml_backend_buffer_free(lora_buf);
  13360. ggml_backend_free(backend_cpu);
  13361. return 1;
  13362. }
  13363. ggml_backend_graph_compute(backend_cpu, gf);
  13364. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13365. #if 0
  13366. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13367. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13368. // sched compute
  13369. ggml_build_forward_expand(gf, build_graph());
  13370. ggml_backend_sched_init_measure(sched, gf);
  13371. // create the graph again, since the previous one was destroyed by the measure
  13372. ggml_graph_clear(gf);
  13373. ggml_build_forward_expand(gf, build_graph());
  13374. ggml_backend_sched_graph_compute(sched, gf);
  13375. ggml_backend_sched_free(sched);
  13376. #endif
  13377. ggml_backend_buffer_free(lora_buf);
  13378. ggml_backend_buffer_free(graph_buf);
  13379. ggml_free(lora_ctx);
  13380. n_tensors++;
  13381. if (n_tensors % 4 == 0) {
  13382. LLAMA_LOG_INFO(".");
  13383. }
  13384. }
  13385. ggml_backend_free(backend_cpu);
  13386. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13387. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13388. return 0;
  13389. }
  13390. //
  13391. // interface implementation
  13392. //
  13393. struct llama_model_params llama_model_default_params() {
  13394. struct llama_model_params result = {
  13395. /*.n_gpu_layers =*/ 0,
  13396. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13397. /*.main_gpu =*/ 0,
  13398. /*.tensor_split =*/ nullptr,
  13399. /*.rpc_servers =*/ nullptr,
  13400. /*.progress_callback =*/ nullptr,
  13401. /*.progress_callback_user_data =*/ nullptr,
  13402. /*.kv_overrides =*/ nullptr,
  13403. /*.vocab_only =*/ false,
  13404. /*.use_mmap =*/ true,
  13405. /*.use_mlock =*/ false,
  13406. /*.check_tensors =*/ false,
  13407. };
  13408. #ifdef GGML_USE_METAL
  13409. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13410. result.n_gpu_layers = 999;
  13411. #endif
  13412. return result;
  13413. }
  13414. struct llama_context_params llama_context_default_params() {
  13415. struct llama_context_params result = {
  13416. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13417. /*.n_ctx =*/ 512,
  13418. /*.n_batch =*/ 2048,
  13419. /*.n_ubatch =*/ 512,
  13420. /*.n_seq_max =*/ 1,
  13421. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13422. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13423. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13424. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13425. /*.rope_freq_base =*/ 0.0f,
  13426. /*.rope_freq_scale =*/ 0.0f,
  13427. /*.yarn_ext_factor =*/ -1.0f,
  13428. /*.yarn_attn_factor =*/ 1.0f,
  13429. /*.yarn_beta_fast =*/ 32.0f,
  13430. /*.yarn_beta_slow =*/ 1.0f,
  13431. /*.yarn_orig_ctx =*/ 0,
  13432. /*.defrag_thold =*/ -1.0f,
  13433. /*.cb_eval =*/ nullptr,
  13434. /*.cb_eval_user_data =*/ nullptr,
  13435. /*.type_k =*/ GGML_TYPE_F16,
  13436. /*.type_v =*/ GGML_TYPE_F16,
  13437. /*.logits_all =*/ false,
  13438. /*.embeddings =*/ false,
  13439. /*.offload_kqv =*/ true,
  13440. /*.flash_attn =*/ false,
  13441. /*.abort_callback =*/ nullptr,
  13442. /*.abort_callback_data =*/ nullptr,
  13443. };
  13444. return result;
  13445. }
  13446. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13447. struct llama_model_quantize_params result = {
  13448. /*.nthread =*/ 0,
  13449. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13450. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13451. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13452. /*.allow_requantize =*/ false,
  13453. /*.quantize_output_tensor =*/ true,
  13454. /*.only_copy =*/ false,
  13455. /*.pure =*/ false,
  13456. /*.keep_split =*/ false,
  13457. /*.imatrix =*/ nullptr,
  13458. /*.kv_overrides =*/ nullptr,
  13459. };
  13460. return result;
  13461. }
  13462. size_t llama_max_devices(void) {
  13463. #if defined(GGML_USE_RPC)
  13464. return GGML_RPC_MAX_SERVERS;
  13465. #elif defined(GGML_USE_METAL)
  13466. return 1;
  13467. #elif defined(GGML_USE_CUDA)
  13468. return GGML_CUDA_MAX_DEVICES;
  13469. #elif defined(GGML_USE_SYCL)
  13470. return GGML_SYCL_MAX_DEVICES;
  13471. #elif defined(GGML_USE_VULKAN)
  13472. return GGML_VK_MAX_DEVICES;
  13473. #else
  13474. return 1;
  13475. #endif
  13476. }
  13477. bool llama_supports_mmap(void) {
  13478. return llama_mmap::SUPPORTED;
  13479. }
  13480. bool llama_supports_mlock(void) {
  13481. return llama_mlock::SUPPORTED;
  13482. }
  13483. bool llama_supports_gpu_offload(void) {
  13484. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13485. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13486. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13487. return true;
  13488. #else
  13489. return false;
  13490. #endif
  13491. }
  13492. void llama_backend_init(void) {
  13493. ggml_time_init();
  13494. // needed to initialize f16 tables
  13495. {
  13496. struct ggml_init_params params = { 0, NULL, false };
  13497. struct ggml_context * ctx = ggml_init(params);
  13498. ggml_free(ctx);
  13499. }
  13500. }
  13501. void llama_numa_init(enum ggml_numa_strategy numa) {
  13502. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13503. ggml_numa_init(numa);
  13504. }
  13505. }
  13506. void llama_backend_free(void) {
  13507. ggml_quantize_free();
  13508. }
  13509. int64_t llama_time_us(void) {
  13510. return ggml_time_us();
  13511. }
  13512. struct llama_model * llama_load_model_from_file(
  13513. const char * path_model,
  13514. struct llama_model_params params) {
  13515. ggml_time_init();
  13516. llama_model * model = new llama_model;
  13517. unsigned cur_percentage = 0;
  13518. if (params.progress_callback == NULL) {
  13519. params.progress_callback_user_data = &cur_percentage;
  13520. params.progress_callback = [](float progress, void * ctx) {
  13521. unsigned * cur_percentage_p = (unsigned *) ctx;
  13522. unsigned percentage = (unsigned) (100 * progress);
  13523. while (percentage > *cur_percentage_p) {
  13524. *cur_percentage_p = percentage;
  13525. LLAMA_LOG_INFO(".");
  13526. if (percentage >= 100) {
  13527. LLAMA_LOG_INFO("\n");
  13528. }
  13529. }
  13530. return true;
  13531. };
  13532. }
  13533. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13534. // split the servers set them into model->rpc_servers
  13535. std::string servers(params.rpc_servers);
  13536. size_t pos = 0;
  13537. while ((pos = servers.find(",")) != std::string::npos) {
  13538. std::string server = servers.substr(0, pos);
  13539. model->rpc_servers.push_back(server);
  13540. servers.erase(0, pos + 1);
  13541. }
  13542. model->rpc_servers.push_back(servers);
  13543. }
  13544. int status = llama_model_load(path_model, *model, params);
  13545. GGML_ASSERT(status <= 0);
  13546. if (status < 0) {
  13547. if (status == -1) {
  13548. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13549. } else if (status == -2) {
  13550. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13551. }
  13552. delete model;
  13553. return nullptr;
  13554. }
  13555. return model;
  13556. }
  13557. void llama_free_model(struct llama_model * model) {
  13558. delete model;
  13559. }
  13560. struct llama_context * llama_new_context_with_model(
  13561. struct llama_model * model,
  13562. struct llama_context_params params) {
  13563. if (!model) {
  13564. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13565. return nullptr;
  13566. }
  13567. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13568. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13569. return nullptr;
  13570. }
  13571. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13572. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13573. return nullptr;
  13574. }
  13575. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13576. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13577. params.flash_attn = false;
  13578. }
  13579. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13580. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13581. return nullptr;
  13582. }
  13583. llama_context * ctx = new llama_context(*model);
  13584. const auto & hparams = model->hparams;
  13585. auto & cparams = ctx->cparams;
  13586. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13587. cparams.n_threads = params.n_threads;
  13588. cparams.n_threads_batch = params.n_threads_batch;
  13589. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13590. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13591. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13592. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13593. cparams.defrag_thold = params.defrag_thold;
  13594. cparams.embeddings = params.embeddings;
  13595. cparams.offload_kqv = params.offload_kqv;
  13596. cparams.flash_attn = params.flash_attn;
  13597. cparams.pooling_type = params.pooling_type;
  13598. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13599. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13600. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13601. // this is necessary due to kv_self.n being padded later during inference
  13602. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13603. // with causal attention, the batch size is limited by the context size
  13604. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13605. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13606. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13607. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13608. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13609. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13610. cparams.n_batch = GGML_KQ_MASK_PAD;
  13611. }
  13612. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13613. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13614. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13615. hparams.n_ctx_train;
  13616. cparams.cb_eval = params.cb_eval;
  13617. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13618. auto rope_scaling_type = params.rope_scaling_type;
  13619. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13620. rope_scaling_type = hparams.rope_scaling_type_train;
  13621. }
  13622. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13623. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13624. }
  13625. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13626. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13627. }
  13628. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13629. cparams.causal_attn = hparams.causal_attn;
  13630. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13631. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13632. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13633. } else {
  13634. cparams.pooling_type = hparams.pooling_type;
  13635. }
  13636. }
  13637. if (params.seed == LLAMA_DEFAULT_SEED) {
  13638. params.seed = time(NULL);
  13639. }
  13640. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13641. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13642. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13643. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13644. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13645. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13646. ctx->abort_callback = params.abort_callback;
  13647. ctx->abort_callback_data = params.abort_callback_data;
  13648. ctx->rng = std::mt19937(params.seed);
  13649. ctx->logits_all = params.logits_all;
  13650. uint32_t kv_size = cparams.n_ctx;
  13651. ggml_type type_k = params.type_k;
  13652. ggml_type type_v = params.type_v;
  13653. // Mamba only needs a constant number of KV cache cells per sequence
  13654. if (model->arch == LLM_ARCH_MAMBA) {
  13655. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13656. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13657. // it's probably best to keep as much precision as possible for the states
  13658. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13659. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13660. }
  13661. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13662. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13663. if (!hparams.vocab_only) {
  13664. // initialize backends
  13665. #if defined(GGML_USE_METAL)
  13666. if (model->n_gpu_layers > 0) {
  13667. ctx->backend_metal = ggml_backend_metal_init();
  13668. if (ctx->backend_metal == nullptr) {
  13669. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13670. llama_free(ctx);
  13671. return nullptr;
  13672. }
  13673. ctx->backends.push_back(ctx->backend_metal);
  13674. }
  13675. #elif defined(GGML_USE_CUDA)
  13676. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13677. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13678. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13679. if (backend == nullptr) {
  13680. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13681. llama_free(ctx);
  13682. return nullptr;
  13683. }
  13684. ctx->backends.push_back(backend);
  13685. } else {
  13686. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13687. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13688. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13689. if (backend == nullptr) {
  13690. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13691. llama_free(ctx);
  13692. return nullptr;
  13693. }
  13694. ctx->backends.push_back(backend);
  13695. }
  13696. }
  13697. #elif defined(GGML_USE_VULKAN)
  13698. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13699. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13700. llama_free(ctx);
  13701. return nullptr;
  13702. }
  13703. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13704. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13705. if (backend == nullptr) {
  13706. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13707. llama_free(ctx);
  13708. return nullptr;
  13709. }
  13710. ctx->backends.push_back(backend);
  13711. } else {
  13712. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13713. ggml_backend_t backend = ggml_backend_vk_init(device);
  13714. if (backend == nullptr) {
  13715. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13716. llama_free(ctx);
  13717. return nullptr;
  13718. }
  13719. ctx->backends.push_back(backend);
  13720. }
  13721. }
  13722. #elif defined(GGML_USE_SYCL)
  13723. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13724. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13725. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13726. if (backend == nullptr) {
  13727. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13728. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13729. llama_free(ctx);
  13730. return nullptr;
  13731. }
  13732. ctx->backends.push_back(backend);
  13733. } else {
  13734. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13735. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13736. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13737. if (backend == nullptr) {
  13738. int id_list[GGML_SYCL_MAX_DEVICES];
  13739. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13740. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13741. llama_free(ctx);
  13742. return nullptr;
  13743. }
  13744. ctx->backends.push_back(backend);
  13745. }
  13746. }
  13747. #elif defined(GGML_USE_KOMPUTE)
  13748. if (model->n_gpu_layers > 0) {
  13749. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13750. if (backend == nullptr) {
  13751. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13752. llama_free(ctx);
  13753. return nullptr;
  13754. }
  13755. ctx->backends.push_back(backend);
  13756. }
  13757. #endif
  13758. #if defined(GGML_USE_RPC)
  13759. if (model->n_gpu_layers > 0) {
  13760. for (const auto & endpoint : model->rpc_servers) {
  13761. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13762. if (backend == nullptr) {
  13763. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13764. llama_free(ctx);
  13765. return nullptr;
  13766. }
  13767. ctx->backends.push_back(backend);
  13768. }
  13769. }
  13770. #endif
  13771. ctx->backend_cpu = ggml_backend_cpu_init();
  13772. if (ctx->backend_cpu == nullptr) {
  13773. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13774. llama_free(ctx);
  13775. return nullptr;
  13776. }
  13777. ctx->backends.push_back(ctx->backend_cpu);
  13778. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13779. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13780. llama_free(ctx);
  13781. return nullptr;
  13782. }
  13783. {
  13784. size_t memory_size_k = 0;
  13785. size_t memory_size_v = 0;
  13786. for (auto & k : ctx->kv_self.k_l) {
  13787. memory_size_k += ggml_nbytes(k);
  13788. }
  13789. for (auto & v : ctx->kv_self.v_l) {
  13790. memory_size_v += ggml_nbytes(v);
  13791. }
  13792. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13793. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13794. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13795. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13796. }
  13797. // graph outputs buffer
  13798. {
  13799. // resized during inference when a batch uses more outputs
  13800. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13801. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13802. llama_free(ctx);
  13803. return nullptr;
  13804. }
  13805. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13806. ggml_backend_buffer_name(ctx->buf_output),
  13807. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13808. }
  13809. // scheduler and compute buffers
  13810. {
  13811. // buffer types used for the compute buffer of each backend
  13812. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13813. for (auto * backend : ctx->backends) {
  13814. if (ggml_backend_is_cpu(backend)) {
  13815. // use host buffers for the CPU backend compute buffer
  13816. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13817. } else {
  13818. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13819. }
  13820. }
  13821. // buffer used to store the computation graph and the tensor meta data
  13822. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13823. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13824. bool pipeline_parallel =
  13825. llama_get_device_count(*model) > 1 &&
  13826. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13827. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13828. params.offload_kqv;
  13829. #ifndef GGML_USE_CUDA
  13830. // pipeline parallelism requires support for async compute and events
  13831. // currently this is only implemented in the CUDA backend
  13832. pipeline_parallel = false;
  13833. #endif
  13834. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13835. if (pipeline_parallel) {
  13836. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13837. }
  13838. // build worst-case graph
  13839. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13840. int n_past = cparams.n_ctx - n_tokens;
  13841. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13842. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13843. // initialize scheduler with the worst-case graph
  13844. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13845. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13846. llama_free(ctx);
  13847. return nullptr;
  13848. }
  13849. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13850. ggml_backend_t backend = ctx->backends[i];
  13851. ggml_backend_buffer_type_t buft = backend_buft[i];
  13852. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13853. if (size > 1) {
  13854. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13855. ggml_backend_buft_name(buft),
  13856. size / 1024.0 / 1024.0);
  13857. }
  13858. }
  13859. // note: the number of splits during measure is higher than during inference due to the kv shift
  13860. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13861. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13862. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13863. }
  13864. }
  13865. return ctx;
  13866. }
  13867. void llama_free(struct llama_context * ctx) {
  13868. delete ctx;
  13869. }
  13870. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13871. return &ctx->model;
  13872. }
  13873. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13874. return ctx->cparams.n_ctx;
  13875. }
  13876. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13877. return ctx->cparams.n_batch;
  13878. }
  13879. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13880. return ctx->cparams.n_ubatch;
  13881. }
  13882. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13883. return ctx->kv_self.size;
  13884. }
  13885. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13886. return model->vocab.type;
  13887. }
  13888. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13889. switch (model->arch) {
  13890. // these models do not use RoPE
  13891. case LLM_ARCH_GPT2:
  13892. case LLM_ARCH_GPTJ:
  13893. case LLM_ARCH_MPT:
  13894. case LLM_ARCH_REFACT:
  13895. case LLM_ARCH_BLOOM:
  13896. case LLM_ARCH_MAMBA:
  13897. case LLM_ARCH_JINA_BERT_V2:
  13898. return LLAMA_ROPE_TYPE_NONE;
  13899. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13900. case LLM_ARCH_LLAMA:
  13901. case LLM_ARCH_BAICHUAN:
  13902. case LLM_ARCH_STARCODER:
  13903. case LLM_ARCH_PLAMO:
  13904. case LLM_ARCH_CODESHELL:
  13905. case LLM_ARCH_ORION:
  13906. case LLM_ARCH_INTERNLM2:
  13907. case LLM_ARCH_MINICPM:
  13908. case LLM_ARCH_XVERSE:
  13909. case LLM_ARCH_COMMAND_R:
  13910. case LLM_ARCH_OLMO:
  13911. case LLM_ARCH_ARCTIC:
  13912. case LLM_ARCH_DEEPSEEK2:
  13913. return LLAMA_ROPE_TYPE_NORM;
  13914. // the pairs of head values are offset by n_rot/2
  13915. case LLM_ARCH_FALCON:
  13916. case LLM_ARCH_GROK:
  13917. case LLM_ARCH_DBRX:
  13918. case LLM_ARCH_BERT:
  13919. case LLM_ARCH_NOMIC_BERT:
  13920. case LLM_ARCH_STABLELM:
  13921. case LLM_ARCH_QWEN:
  13922. case LLM_ARCH_QWEN2:
  13923. case LLM_ARCH_QWEN2MOE:
  13924. case LLM_ARCH_PHI2:
  13925. case LLM_ARCH_PHI3:
  13926. case LLM_ARCH_GEMMA:
  13927. case LLM_ARCH_STARCODER2:
  13928. case LLM_ARCH_GPTNEOX:
  13929. return LLAMA_ROPE_TYPE_NEOX;
  13930. // all model arches should be listed explicitly here
  13931. case LLM_ARCH_UNKNOWN:
  13932. GGML_ASSERT(false && "unknown architecture");
  13933. break;
  13934. }
  13935. return LLAMA_ROPE_TYPE_NONE;
  13936. }
  13937. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13938. return ctx->cparams.pooling_type;
  13939. }
  13940. int32_t llama_n_vocab(const struct llama_model * model) {
  13941. return model->hparams.n_vocab;
  13942. }
  13943. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13944. return model->hparams.n_ctx_train;
  13945. }
  13946. int32_t llama_n_embd(const struct llama_model * model) {
  13947. return model->hparams.n_embd;
  13948. }
  13949. int32_t llama_n_layer(const struct llama_model * model) {
  13950. return model->hparams.n_layer;
  13951. }
  13952. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13953. return model->hparams.rope_freq_scale_train;
  13954. }
  13955. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13956. const auto & it = model->gguf_kv.find(key);
  13957. if (it == model->gguf_kv.end()) {
  13958. if (buf_size > 0) {
  13959. buf[0] = '\0';
  13960. }
  13961. return -1;
  13962. }
  13963. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13964. }
  13965. int32_t llama_model_meta_count(const struct llama_model * model) {
  13966. return (int)model->gguf_kv.size();
  13967. }
  13968. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13969. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13970. if (buf_size > 0) {
  13971. buf[0] = '\0';
  13972. }
  13973. return -1;
  13974. }
  13975. auto it = model->gguf_kv.begin();
  13976. std::advance(it, i);
  13977. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13978. }
  13979. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13980. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13981. if (buf_size > 0) {
  13982. buf[0] = '\0';
  13983. }
  13984. return -1;
  13985. }
  13986. auto it = model->gguf_kv.begin();
  13987. std::advance(it, i);
  13988. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13989. }
  13990. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13991. return snprintf(buf, buf_size, "%s %s %s",
  13992. llama_model_arch_name(model->arch),
  13993. llama_model_type_name(model->type),
  13994. llama_model_ftype_name(model->ftype).c_str());
  13995. }
  13996. uint64_t llama_model_size(const struct llama_model * model) {
  13997. uint64_t size = 0;
  13998. for (const auto & it : model->tensors_by_name) {
  13999. size += ggml_nbytes(it.second);
  14000. }
  14001. return size;
  14002. }
  14003. uint64_t llama_model_n_params(const struct llama_model * model) {
  14004. uint64_t nparams = 0;
  14005. for (const auto & it : model->tensors_by_name) {
  14006. nparams += ggml_nelements(it.second);
  14007. }
  14008. return nparams;
  14009. }
  14010. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  14011. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  14012. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  14013. return it.first == name;
  14014. });
  14015. if (it == model->tensors_by_name.end()) {
  14016. return nullptr;
  14017. }
  14018. return it->second;
  14019. }
  14020. uint32_t llama_model_quantize(
  14021. const char * fname_inp,
  14022. const char * fname_out,
  14023. const llama_model_quantize_params * params) {
  14024. try {
  14025. llama_model_quantize_internal(fname_inp, fname_out, params);
  14026. return 0;
  14027. } catch (const std::exception & err) {
  14028. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  14029. return 1;
  14030. }
  14031. }
  14032. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  14033. try {
  14034. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  14035. } catch (const std::exception & err) {
  14036. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  14037. return 1;
  14038. }
  14039. }
  14040. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  14041. GGML_ASSERT(cvec.tensors.empty());
  14042. GGML_ASSERT(cvec.ctxs.empty());
  14043. GGML_ASSERT(cvec.bufs.empty());
  14044. // count layer buffer types
  14045. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  14046. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  14047. buft_layer_count[model.buft_layer[i].buft]++;
  14048. }
  14049. // allocate contexts
  14050. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14051. for (auto & it : buft_layer_count) {
  14052. int n_layers = it.second;
  14053. struct ggml_init_params params = {
  14054. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  14055. /*.mem_buffer =*/ NULL,
  14056. /*.no_alloc =*/ true,
  14057. };
  14058. ggml_context * ctx = ggml_init(params);
  14059. if (!ctx) {
  14060. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  14061. return 1;
  14062. }
  14063. ctx_map[it.first] = ctx;
  14064. }
  14065. // make tensors
  14066. cvec.tensors.reserve(model.hparams.n_layer);
  14067. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  14068. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14069. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  14070. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  14071. cvec.tensors.push_back(tensor);
  14072. }
  14073. // allocate tensors / buffers and zero
  14074. cvec.ctxs.reserve(ctx_map.size());
  14075. cvec.bufs.reserve(ctx_map.size());
  14076. for (auto it : ctx_map) {
  14077. ggml_backend_buffer_type_t buft = it.first;
  14078. ggml_context * ctx = it.second;
  14079. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14080. if (!buf) {
  14081. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14082. return false;
  14083. }
  14084. ggml_backend_buffer_clear(buf, 0);
  14085. cvec.ctxs.push_back(ctx);
  14086. cvec.bufs.push_back(buf);
  14087. }
  14088. return true;
  14089. }
  14090. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14091. const llama_model & model = lctx->model;
  14092. llama_control_vector & cvec = lctx->cvec;
  14093. if (data == nullptr) {
  14094. // disable the current control vector (but leave allocated for later)
  14095. cvec.layer_start = -1;
  14096. cvec.layer_end = -1;
  14097. return 0;
  14098. }
  14099. if (n_embd != (int) model.hparams.n_embd) {
  14100. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14101. return 1;
  14102. }
  14103. if (cvec.tensors.empty()) {
  14104. if (!llama_control_vector_init(cvec, model)) {
  14105. return 1;
  14106. }
  14107. }
  14108. cvec.layer_start = il_start;
  14109. cvec.layer_end = il_end;
  14110. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14111. assert(cvec.tensors[il] != nullptr);
  14112. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14113. if (off + n_embd <= len) {
  14114. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14115. }
  14116. }
  14117. return 0;
  14118. }
  14119. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14120. struct llama_kv_cache_view result = {
  14121. /*.n_cells = */ 0,
  14122. /*.n_seq_max = */ n_seq_max,
  14123. /*.token_count = */ 0,
  14124. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14125. /*.max_contiguous = */ 0,
  14126. /*.max_contiguous_idx = */ -1,
  14127. /*.cells = */ nullptr,
  14128. /*.cells_sequences = */ nullptr,
  14129. };
  14130. return result;
  14131. }
  14132. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14133. if (view->cells != nullptr) {
  14134. free(view->cells);
  14135. view->cells = nullptr;
  14136. }
  14137. if (view->cells_sequences != nullptr) {
  14138. free(view->cells_sequences);
  14139. view->cells_sequences = nullptr;
  14140. }
  14141. }
  14142. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14143. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14144. view->n_cells = int32_t(ctx->kv_self.size);
  14145. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14146. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14147. view->cells = (struct llama_kv_cache_view_cell *)p;
  14148. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14149. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14150. view->cells_sequences = (llama_seq_id *)p;
  14151. }
  14152. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14153. llama_kv_cache_view_cell * c_curr = view->cells;
  14154. llama_seq_id * cs_curr = view->cells_sequences;
  14155. int32_t used_cells = 0;
  14156. int32_t token_count = 0;
  14157. int32_t curr_contig_idx = -1;
  14158. uint32_t max_contig = 0;
  14159. int32_t max_contig_idx = -1;
  14160. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14161. const size_t curr_size = kv_cells[i].seq_id.size();
  14162. token_count += curr_size;
  14163. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14164. if (curr_size > 0) {
  14165. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14166. max_contig = i - curr_contig_idx;
  14167. max_contig_idx = curr_contig_idx;
  14168. }
  14169. curr_contig_idx = -1;
  14170. } else if (curr_contig_idx < 0) {
  14171. curr_contig_idx = i;
  14172. }
  14173. int seq_idx = 0;
  14174. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14175. if (seq_idx >= view->n_seq_max) {
  14176. break;
  14177. }
  14178. cs_curr[seq_idx] = it;
  14179. seq_idx++;
  14180. }
  14181. if (seq_idx != 0) {
  14182. used_cells++;
  14183. }
  14184. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14185. cs_curr[seq_idx] = -1;
  14186. }
  14187. }
  14188. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14189. max_contig_idx = curr_contig_idx;
  14190. max_contig = kv_cells.size() - curr_contig_idx;
  14191. }
  14192. view->max_contiguous = max_contig;
  14193. view->max_contiguous_idx = max_contig_idx;
  14194. view->token_count = token_count;
  14195. view->used_cells = used_cells;
  14196. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14197. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14198. __func__, ctx->kv_self.used, used_cells);
  14199. }
  14200. }
  14201. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14202. int result = 0;
  14203. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14204. result += ctx->kv_self.cells[i].seq_id.size();
  14205. }
  14206. return result;
  14207. }
  14208. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14209. return ctx->kv_self.used;
  14210. }
  14211. void llama_kv_cache_clear(struct llama_context * ctx) {
  14212. llama_kv_cache_clear(ctx->kv_self);
  14213. }
  14214. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14215. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14216. }
  14217. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14218. if (seq_id_src == seq_id_dst) {
  14219. return;
  14220. }
  14221. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14222. }
  14223. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14224. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14225. }
  14226. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14227. if (delta == 0) {
  14228. return;
  14229. }
  14230. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14231. }
  14232. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14233. if (d == 1) {
  14234. return;
  14235. }
  14236. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14237. }
  14238. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14239. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14240. }
  14241. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14242. llama_kv_cache_defrag(ctx->kv_self);
  14243. }
  14244. void llama_kv_cache_update(struct llama_context * ctx) {
  14245. llama_kv_cache_update_internal(*ctx);
  14246. }
  14247. // deprecated
  14248. size_t llama_get_state_size(const struct llama_context * ctx) {
  14249. return llama_state_get_size(ctx);
  14250. }
  14251. // deprecated
  14252. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14253. return llama_state_get_data(ctx, dst);
  14254. }
  14255. // deprecated
  14256. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14257. return llama_state_set_data(ctx, src);
  14258. }
  14259. // deprecated
  14260. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14261. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14262. }
  14263. // deprecated
  14264. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14265. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14266. }
  14267. // Returns the *maximum* size of the state
  14268. size_t llama_state_get_size(const struct llama_context * ctx) {
  14269. const auto & cparams = ctx->cparams;
  14270. const auto & hparams = ctx->model.hparams;
  14271. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14272. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14273. const size_t s_rng_size = sizeof(size_t);
  14274. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14275. const size_t s_n_outputs = sizeof(size_t);
  14276. // assume worst case for outputs although only currently set ones are serialized
  14277. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14278. const size_t s_logits_size = sizeof(size_t);
  14279. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14280. const size_t s_embedding_size = sizeof(size_t);
  14281. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14282. const size_t s_kv_buf_size = sizeof(size_t);
  14283. const size_t s_kv_head = sizeof(uint32_t);
  14284. const size_t s_kv_size = sizeof(uint32_t);
  14285. const size_t s_kv_used = sizeof(uint32_t);
  14286. const size_t s_v_trans = sizeof(uint32_t);
  14287. const size_t s_kv = ctx->kv_self.total_size();
  14288. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14289. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14290. const size_t s_total = (
  14291. + s_rng_size
  14292. + s_rng
  14293. + s_n_outputs
  14294. + s_output_pos
  14295. + s_logits_size
  14296. + s_logits
  14297. + s_embedding_size
  14298. + s_embedding
  14299. + s_kv_buf_size
  14300. + s_kv_head
  14301. + s_kv_size
  14302. + s_kv_used
  14303. + s_v_trans
  14304. + s_kv
  14305. + s_kv_cells
  14306. );
  14307. // on session change it is very likely that the state size has changed - so we need to update this function
  14308. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14309. return s_total;
  14310. }
  14311. // llama_context_data
  14312. struct llama_data_context {
  14313. virtual void write(const void * src, size_t size) = 0;
  14314. virtual size_t get_size_written() = 0;
  14315. virtual ~llama_data_context() = default;
  14316. };
  14317. struct llama_data_buffer_context : llama_data_context {
  14318. uint8_t * ptr;
  14319. size_t size_written = 0;
  14320. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14321. void write(const void * src, size_t size) override {
  14322. memcpy(ptr, src, size);
  14323. ptr += size;
  14324. size_written += size;
  14325. }
  14326. size_t get_size_written() override {
  14327. return size_written;
  14328. }
  14329. };
  14330. struct llama_data_file_context : llama_data_context {
  14331. llama_file * file;
  14332. size_t size_written = 0;
  14333. llama_data_file_context(llama_file * f) : file(f) {}
  14334. void write(const void * src, size_t size) override {
  14335. file->write_raw(src, size);
  14336. size_written += size;
  14337. }
  14338. size_t get_size_written() override {
  14339. return size_written;
  14340. }
  14341. };
  14342. /** copy state data into either a buffer or file depending on the passed in context
  14343. *
  14344. * file context:
  14345. * llama_file file("/path", "wb");
  14346. * llama_data_file_context data_ctx(&file);
  14347. * llama_state_get_data(ctx, &data_ctx);
  14348. *
  14349. * buffer context:
  14350. * std::vector<uint8_t> buf(max_size, 0);
  14351. * llama_data_buffer_context data_ctx(&buf.data());
  14352. * llama_state_get_data(ctx, &data_ctx);
  14353. *
  14354. */
  14355. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14356. llama_synchronize(ctx);
  14357. // copy rng
  14358. {
  14359. std::ostringstream rng_ss;
  14360. rng_ss << ctx->rng;
  14361. const std::string & rng_str = rng_ss.str();
  14362. const size_t rng_size = rng_str.size();
  14363. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14364. data_ctx->write(&rng_size, sizeof(rng_size));
  14365. data_ctx->write(rng_str.data(), rng_size);
  14366. }
  14367. // copy outputs
  14368. {
  14369. // Can't use ctx->n_outputs because it's not for the
  14370. // entire last batch when n_ubatch is smaller than n_batch
  14371. size_t n_outputs = 0;
  14372. // copy output ids
  14373. {
  14374. std::vector<int32_t> output_pos;
  14375. const size_t n_batch = ctx->cparams.n_batch;
  14376. const auto & output_ids = ctx->output_ids;
  14377. output_pos.resize(ctx->output_size);
  14378. // build a more compact representation of the output ids
  14379. for (size_t i = 0; i < n_batch; ++i) {
  14380. // map an output id to a position in the batch
  14381. int32_t pos = output_ids[i];
  14382. if (pos >= 0) {
  14383. if ((size_t) pos >= n_outputs) {
  14384. n_outputs = pos + 1;
  14385. }
  14386. GGML_ASSERT((size_t) pos < ctx->output_size);
  14387. output_pos[pos] = i;
  14388. }
  14389. }
  14390. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14391. if (n_outputs) {
  14392. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14393. }
  14394. }
  14395. // copy logits
  14396. {
  14397. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14398. data_ctx->write(&logits_size, sizeof(logits_size));
  14399. if (logits_size) {
  14400. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14401. }
  14402. }
  14403. // copy embeddings
  14404. {
  14405. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14406. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14407. if (embeddings_size) {
  14408. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14409. }
  14410. }
  14411. }
  14412. // copy kv cache
  14413. {
  14414. const auto & kv_self = ctx->kv_self;
  14415. const auto & hparams = ctx->model.hparams;
  14416. const uint32_t n_layer = hparams.n_layer;
  14417. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14418. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14419. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14420. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14421. const uint32_t kv_size = kv_self.size;
  14422. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14423. const uint32_t kv_used = kv_self.used;
  14424. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14425. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14426. data_ctx->write(&kv_head, sizeof(kv_head));
  14427. data_ctx->write(&kv_size, sizeof(kv_size));
  14428. data_ctx->write(&kv_used, sizeof(kv_used));
  14429. data_ctx->write(&v_trans, sizeof(v_trans));
  14430. if (kv_buf_size) {
  14431. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14432. std::vector<uint8_t> tmp_buf;
  14433. for (int il = 0; il < (int) n_layer; ++il) {
  14434. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14435. tmp_buf.resize(k_size);
  14436. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14437. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14438. if (kv_self.recurrent || !kv_self.v_trans) {
  14439. // v is contiguous for recurrent models
  14440. // TODO: use other tensors for state models than k and v
  14441. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14442. tmp_buf.resize(v_size);
  14443. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14444. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14445. continue;
  14446. }
  14447. // v is not contiguous, copy row by row
  14448. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14449. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14450. tmp_buf.resize(v_row_size);
  14451. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14452. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14453. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14454. }
  14455. }
  14456. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14457. }
  14458. for (uint32_t i = 0; i < kv_head; ++i) {
  14459. const auto & cell = kv_self.cells[i];
  14460. const llama_pos pos = cell.pos;
  14461. const size_t seq_id_size = cell.seq_id.size();
  14462. data_ctx->write(&pos, sizeof(pos));
  14463. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14464. for (auto seq_id : cell.seq_id) {
  14465. data_ctx->write(&seq_id, sizeof(seq_id));
  14466. }
  14467. }
  14468. }
  14469. }
  14470. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14471. llama_data_buffer_context data_ctx(dst);
  14472. llama_state_get_data_internal(ctx, &data_ctx);
  14473. return data_ctx.get_size_written();
  14474. }
  14475. // Sets the state reading from the specified source address
  14476. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14477. llama_synchronize(ctx);
  14478. const uint8_t * inp = src;
  14479. // set rng
  14480. {
  14481. size_t rng_size;
  14482. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14483. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14484. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14485. std::istringstream rng_ss(rng_str);
  14486. rng_ss >> ctx->rng;
  14487. GGML_ASSERT(!rng_ss.fail());
  14488. }
  14489. // set output ids
  14490. {
  14491. size_t n_outputs;
  14492. std::vector<int32_t> output_pos;
  14493. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14494. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14495. if (n_outputs) {
  14496. output_pos.resize(n_outputs);
  14497. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14498. inp += n_outputs * sizeof(int32_t);
  14499. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14500. int32_t id = output_pos[i];
  14501. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14502. ctx->output_ids[id] = i;
  14503. }
  14504. ctx->n_outputs = n_outputs;
  14505. }
  14506. }
  14507. // set logits
  14508. {
  14509. size_t logits_size;
  14510. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14511. GGML_ASSERT(ctx->logits_size >= logits_size);
  14512. if (logits_size) {
  14513. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14514. inp += logits_size * sizeof(float);
  14515. }
  14516. }
  14517. // set embeddings
  14518. {
  14519. size_t embeddings_size;
  14520. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14521. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14522. if (embeddings_size) {
  14523. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14524. inp += embeddings_size * sizeof(float);
  14525. }
  14526. }
  14527. // set kv cache
  14528. {
  14529. const auto & kv_self = ctx->kv_self;
  14530. const auto & hparams = ctx->model.hparams;
  14531. const uint32_t n_layer = hparams.n_layer;
  14532. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14533. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14534. size_t kv_buf_size;
  14535. uint32_t kv_head;
  14536. uint32_t kv_size;
  14537. uint32_t kv_used;
  14538. uint32_t v_trans;
  14539. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14540. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14541. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14542. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14543. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14544. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14545. if (kv_self.size != kv_size) {
  14546. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14547. GGML_ASSERT(kv_self.size >= kv_head);
  14548. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14549. __func__, kv_head, kv_size, kv_self.size);
  14550. }
  14551. llama_kv_cache_clear(ctx);
  14552. if (kv_buf_size) {
  14553. const size_t pre_kv_buf_size = inp - src;
  14554. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14555. for (int il = 0; il < (int) n_layer; ++il) {
  14556. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14557. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14558. inp += k_size;
  14559. if (kv_self.recurrent || !kv_self.v_trans) {
  14560. // v is contiguous for recurrent models
  14561. // TODO: use other tensors for state models than k and v
  14562. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14563. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14564. inp += v_size;
  14565. continue;
  14566. }
  14567. // v is not contiguous, copy row by row
  14568. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14569. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14570. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14571. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14572. inp += v_row_size;
  14573. }
  14574. }
  14575. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14576. }
  14577. ctx->kv_self.head = kv_head;
  14578. ctx->kv_self.used = kv_used;
  14579. for (uint32_t i = 0; i < kv_head; ++i) {
  14580. llama_pos pos;
  14581. size_t seq_id_size;
  14582. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14583. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14584. ctx->kv_self.cells[i].pos = pos;
  14585. llama_seq_id seq_id;
  14586. for (size_t j = 0; j < seq_id_size; ++j) {
  14587. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14588. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14589. }
  14590. }
  14591. }
  14592. const size_t nread = inp - src;
  14593. const size_t max_size = llama_state_get_size(ctx);
  14594. GGML_ASSERT(nread <= max_size);
  14595. return nread;
  14596. }
  14597. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14598. llama_file file(path_session, "rb");
  14599. // sanity checks
  14600. {
  14601. const uint32_t magic = file.read_u32();
  14602. const uint32_t version = file.read_u32();
  14603. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14604. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14605. return false;
  14606. }
  14607. llama_hparams session_hparams;
  14608. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14609. if (session_hparams != ctx->model.hparams) {
  14610. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14611. return false;
  14612. }
  14613. }
  14614. // load the prompt
  14615. {
  14616. const uint32_t n_token_count = file.read_u32();
  14617. if (n_token_count > n_token_capacity) {
  14618. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14619. return false;
  14620. }
  14621. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14622. *n_token_count_out = n_token_count;
  14623. }
  14624. // restore the context state
  14625. {
  14626. const size_t n_state_size_cur = file.size - file.tell();
  14627. const size_t n_state_size_max = llama_state_get_size(ctx);
  14628. if (n_state_size_cur > n_state_size_max) {
  14629. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14630. return false;
  14631. }
  14632. std::vector<uint8_t> state_data(n_state_size_max);
  14633. file.read_raw(state_data.data(), n_state_size_cur);
  14634. llama_state_set_data(ctx, state_data.data());
  14635. }
  14636. return true;
  14637. }
  14638. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14639. try {
  14640. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14641. } catch (const std::exception & err) {
  14642. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14643. return false;
  14644. }
  14645. }
  14646. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14647. llama_file file(path_session, "wb");
  14648. file.write_u32(LLAMA_SESSION_MAGIC);
  14649. file.write_u32(LLAMA_SESSION_VERSION);
  14650. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14651. // save the prompt
  14652. file.write_u32((uint32_t) n_token_count);
  14653. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14654. // save the context state using stream saving
  14655. llama_data_file_context data_ctx(&file);
  14656. llama_state_get_data_internal(ctx, &data_ctx);
  14657. return true;
  14658. }
  14659. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14660. try {
  14661. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14662. } catch (const std::exception & err) {
  14663. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14664. return false;
  14665. }
  14666. }
  14667. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14668. // save the size of size_t as a uint32_t for safety check
  14669. const size_t size_t_size_size = sizeof(uint32_t);
  14670. // other values
  14671. const size_t s_cell_count_size = sizeof(uint32_t);
  14672. const size_t s_layer_count_size = sizeof(uint32_t);
  14673. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14674. size_t s_cell_count = 0;
  14675. size_t s_cell_data_size = 0;
  14676. const auto & kv_self = ctx->kv_self;
  14677. const auto & hparams = ctx->model.hparams;
  14678. const uint32_t n_layer = hparams.n_layer;
  14679. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14680. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14681. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14682. const auto & cell = kv_self.cells[i];
  14683. if (cell.seq_id.count(seq_id) > 0) {
  14684. ++s_cell_count;
  14685. s_cell_data_size += sizeof(llama_pos);
  14686. }
  14687. }
  14688. for (int il = 0; il < (int)n_layer; ++il) {
  14689. // types of keys and values
  14690. s_cell_data_size += sizeof(int32_t) * 2;
  14691. // k_size_row and v_size_el values of layer
  14692. s_cell_data_size += sizeof(size_t) * 2;
  14693. // keys
  14694. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14695. s_cell_data_size += k_size_row * s_cell_count;
  14696. // values (transposed)
  14697. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14698. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14699. }
  14700. const size_t s_total = (
  14701. size_t_size_size +
  14702. s_cell_count_size +
  14703. s_layer_count_size +
  14704. n_embd_v_gqa_size +
  14705. s_cell_data_size
  14706. );
  14707. return s_total;
  14708. }
  14709. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14710. llama_synchronize(ctx);
  14711. const auto & kv_self = ctx->kv_self;
  14712. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14713. // Save the size of size_t as a uint32_t for safety check
  14714. const uint32_t size_t_size = sizeof(size_t);
  14715. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14716. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14717. uint32_t cell_count = 0;
  14718. // Count the number of cells with the specified seq_id
  14719. // Find all the ranges of cells with this seq id
  14720. {
  14721. uint32_t cell_range_begin = kv_self.size;
  14722. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14723. const auto & cell = kv_self.cells[i];
  14724. if (cell.has_seq_id(seq_id)) {
  14725. ++cell_count;
  14726. if (cell_range_begin == kv_self.size) {
  14727. cell_range_begin = i;
  14728. }
  14729. }
  14730. else {
  14731. if (cell_range_begin != kv_self.size) {
  14732. cell_ranges.emplace_back(cell_range_begin, i);
  14733. cell_range_begin = kv_self.size;
  14734. }
  14735. }
  14736. }
  14737. if (cell_range_begin != kv_self.size) {
  14738. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14739. }
  14740. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14741. uint32_t cell_count_check = 0;
  14742. for (const auto & range : cell_ranges) {
  14743. cell_count_check += range.second - range.first;
  14744. }
  14745. GGML_ASSERT(cell_count == cell_count_check);
  14746. }
  14747. // Write the cell count
  14748. data_ctx.write(&cell_count, sizeof(cell_count));
  14749. const auto & hparams = ctx->model.hparams;
  14750. const uint32_t n_layer = hparams.n_layer;
  14751. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14752. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14753. // Write the layer count
  14754. data_ctx.write(&n_layer, sizeof(n_layer));
  14755. // Write n_embd_v_gqa
  14756. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14757. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14758. for (const auto & range : cell_ranges) {
  14759. for (uint32_t i = range.first; i < range.second; ++i) {
  14760. const auto & cell = kv_self.cells[i];
  14761. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14762. }
  14763. }
  14764. // Iterate and write all the keys first, each row is a cell
  14765. // Get whole range at a time
  14766. std::vector<uint8_t> tmp_buf;
  14767. for (int il = 0; il < (int)n_layer; ++il) {
  14768. // Write key type
  14769. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14770. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14771. // Write row size of key
  14772. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14773. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14774. // Read each range of cells of k_size length each into tmp_buf and write out
  14775. for (const auto & range : cell_ranges) {
  14776. const size_t range_size = range.second - range.first;
  14777. tmp_buf.resize(range_size * k_size_row);
  14778. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14779. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14780. }
  14781. }
  14782. // TODO: simplify, reduce copy-paste
  14783. if (!kv_self.v_trans) {
  14784. for (int il = 0; il < (int)n_layer; ++il) {
  14785. // Write value type
  14786. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14787. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14788. // Write row size of value
  14789. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14790. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14791. // Read each range of cells of v_size length each into tmp_buf and write out
  14792. for (const auto & range : cell_ranges) {
  14793. const size_t range_size = range.second - range.first;
  14794. tmp_buf.resize(range_size * v_size_row);
  14795. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14796. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14797. }
  14798. }
  14799. } else {
  14800. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14801. const uint32_t kv_size = kv_self.size;
  14802. for (int il = 0; il < (int)n_layer; ++il) {
  14803. // Write value type
  14804. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14805. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14806. // Write element size
  14807. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14808. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14809. // For each row, we get the element values of each cell
  14810. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14811. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14812. for (const auto & range : cell_ranges) {
  14813. const size_t range_size = range.second - range.first;
  14814. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14815. tmp_buf.resize(range_size * v_size_el);
  14816. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14817. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14818. }
  14819. }
  14820. }
  14821. }
  14822. return data_ctx.get_size_written();
  14823. }
  14824. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14825. llama_data_buffer_context data_ctx(dst);
  14826. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14827. }
  14828. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14829. llama_synchronize(ctx);
  14830. auto & kv_self = ctx->kv_self;
  14831. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14832. // Wipe the slot
  14833. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14834. const uint8_t * inp = src;
  14835. // Read size of size_t
  14836. uint32_t size_t_size;
  14837. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14838. inp += sizeof(size_t_size);
  14839. if (size_t_size != sizeof(size_t)) {
  14840. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14841. return 0;
  14842. }
  14843. // Read the cell count
  14844. uint32_t cell_count;
  14845. memcpy(&cell_count, inp, sizeof(cell_count));
  14846. inp += sizeof(cell_count);
  14847. // Read the layer count
  14848. uint32_t n_layer_ref;
  14849. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14850. inp += sizeof(n_layer_ref);
  14851. // Read n_embd_v_gqa
  14852. uint32_t n_embd_v_gqa_ref;
  14853. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14854. inp += sizeof(n_embd_v_gqa_ref);
  14855. // Sanity check model compatibility
  14856. const auto & hparams = ctx->model.hparams;
  14857. const uint32_t n_layer = hparams.n_layer;
  14858. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14859. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14860. if (n_layer != n_layer_ref) {
  14861. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14862. return 0;
  14863. }
  14864. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14865. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14866. return 0;
  14867. }
  14868. // Allocate the new cells for the slot
  14869. if (cell_count) {
  14870. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14871. batch.n_tokens = cell_count;
  14872. for (uint32_t i = 0; i < cell_count; ++i) {
  14873. llama_pos pos;
  14874. memcpy(&pos, inp, sizeof(pos));
  14875. inp += sizeof(pos);
  14876. batch.pos[i] = pos;
  14877. batch.n_seq_id[i] = 1;
  14878. batch.seq_id[i][0] = dest_seq_id;
  14879. }
  14880. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14881. llama_batch_free(batch);
  14882. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14883. return 0;
  14884. }
  14885. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14886. // Assume that this is one contiguous block of cells
  14887. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14888. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14889. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14890. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14891. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14892. // Cleanup
  14893. llama_batch_free(batch);
  14894. }
  14895. const uint32_t kv_size = kv_self.size;
  14896. const uint32_t kv_head = kv_self.head;
  14897. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14898. for (int il = 0; il < (int)n_layer; ++il) {
  14899. // Read type of key
  14900. int32_t k_type_i_ref;
  14901. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14902. inp += sizeof(k_type_i_ref);
  14903. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14904. if (k_type_i != k_type_i_ref) {
  14905. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14906. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14907. return 0;
  14908. }
  14909. // Read row size of key
  14910. size_t k_size_row_ref;
  14911. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14912. inp += sizeof(k_size_row_ref);
  14913. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14914. if (k_size_row != k_size_row_ref) {
  14915. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14916. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14917. return 0;
  14918. }
  14919. if (cell_count) {
  14920. // Read and set the keys for the whole cell range
  14921. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14922. inp += cell_count * k_size_row;
  14923. }
  14924. }
  14925. // TODO: simplify, reduce copy-paste
  14926. if (!kv_self.v_trans) {
  14927. for (int il = 0; il < (int)n_layer; ++il) {
  14928. // Read type of value
  14929. int32_t v_type_i_ref;
  14930. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14931. inp += sizeof(v_type_i_ref);
  14932. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14933. if (v_type_i != v_type_i_ref) {
  14934. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14935. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14936. return 0;
  14937. }
  14938. // Read row size of value
  14939. size_t v_size_row_ref;
  14940. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14941. inp += sizeof(v_size_row_ref);
  14942. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14943. if (v_size_row != v_size_row_ref) {
  14944. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14945. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14946. return 0;
  14947. }
  14948. if (cell_count) {
  14949. // Read and set the values for the whole cell range
  14950. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14951. inp += cell_count * v_size_row;
  14952. }
  14953. }
  14954. } else {
  14955. // For each layer, read the values for each cell (transposed)
  14956. for (int il = 0; il < (int)n_layer; ++il) {
  14957. // Read type of value
  14958. int32_t v_type_i_ref;
  14959. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14960. inp += sizeof(v_type_i_ref);
  14961. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14962. if (v_type_i != v_type_i_ref) {
  14963. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14964. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14965. return 0;
  14966. }
  14967. // Read element size of value
  14968. size_t v_size_el_ref;
  14969. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14970. inp += sizeof(v_size_el_ref);
  14971. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14972. if (v_size_el != v_size_el_ref) {
  14973. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14974. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14975. return 0;
  14976. }
  14977. if (cell_count) {
  14978. // For each row in the transposed matrix, read the values for the whole cell range
  14979. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14980. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14981. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14982. inp += cell_count * v_size_el;
  14983. }
  14984. }
  14985. }
  14986. }
  14987. const size_t nread = inp - src;
  14988. return nread;
  14989. }
  14990. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14991. llama_file file(filepath, "wb");
  14992. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14993. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14994. // save the prompt
  14995. file.write_u32((uint32_t)n_token_count);
  14996. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14997. // save the context state using stream saving
  14998. llama_data_file_context data_ctx(&file);
  14999. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  15000. const size_t res = file.tell();
  15001. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  15002. return res;
  15003. }
  15004. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15005. llama_file file(filepath, "rb");
  15006. // version checks
  15007. {
  15008. const uint32_t magic = file.read_u32();
  15009. const uint32_t version = file.read_u32();
  15010. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  15011. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  15012. return 0;
  15013. }
  15014. }
  15015. // load the prompt
  15016. {
  15017. const uint32_t n_token_count = file.read_u32();
  15018. if (n_token_count > n_token_capacity) {
  15019. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  15020. return 0;
  15021. }
  15022. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  15023. *n_token_count_out = n_token_count;
  15024. }
  15025. // restore the context state
  15026. {
  15027. const size_t state_size = file.size - file.tell();
  15028. std::vector<uint8_t> state_data(state_size);
  15029. file.read_raw(state_data.data(), state_size);
  15030. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  15031. if (!nread) {
  15032. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  15033. return 0;
  15034. }
  15035. GGML_ASSERT(nread <= state_size);
  15036. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  15037. }
  15038. return file.tell();
  15039. }
  15040. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15041. try {
  15042. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  15043. } catch (const std::exception & err) {
  15044. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  15045. return 0;
  15046. }
  15047. }
  15048. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15049. try {
  15050. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  15051. } catch (const std::exception & err) {
  15052. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  15053. return 0;
  15054. }
  15055. }
  15056. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  15057. ctx->cparams.n_threads = n_threads;
  15058. ctx->cparams.n_threads_batch = n_threads_batch;
  15059. }
  15060. uint32_t llama_n_threads(struct llama_context * ctx) {
  15061. return ctx->cparams.n_threads;
  15062. }
  15063. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  15064. return ctx->cparams.n_threads_batch;
  15065. }
  15066. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  15067. ctx->abort_callback = abort_callback;
  15068. ctx->abort_callback_data = abort_callback_data;
  15069. }
  15070. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  15071. ctx->cparams.causal_attn = causal_attn;
  15072. }
  15073. struct llama_batch llama_batch_get_one(
  15074. llama_token * tokens,
  15075. int32_t n_tokens,
  15076. llama_pos pos_0,
  15077. llama_seq_id seq_id) {
  15078. return {
  15079. /*n_tokens =*/ n_tokens,
  15080. /*tokens =*/ tokens,
  15081. /*embd =*/ nullptr,
  15082. /*pos =*/ nullptr,
  15083. /*n_seq_id =*/ nullptr,
  15084. /*seq_id =*/ nullptr,
  15085. /*logits =*/ nullptr,
  15086. /*all_pos_0 =*/ pos_0,
  15087. /*all_pos_1 =*/ 1,
  15088. /*all_seq_id =*/ seq_id,
  15089. };
  15090. }
  15091. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15092. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15093. if (embd) {
  15094. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15095. } else {
  15096. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15097. }
  15098. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15099. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15100. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15101. for (int i = 0; i < n_tokens_alloc; ++i) {
  15102. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15103. }
  15104. batch.seq_id[n_tokens_alloc] = nullptr;
  15105. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15106. return batch;
  15107. }
  15108. void llama_batch_free(struct llama_batch batch) {
  15109. if (batch.token) free(batch.token);
  15110. if (batch.embd) free(batch.embd);
  15111. if (batch.pos) free(batch.pos);
  15112. if (batch.n_seq_id) free(batch.n_seq_id);
  15113. if (batch.seq_id) {
  15114. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15115. free(batch.seq_id[i]);
  15116. }
  15117. free(batch.seq_id);
  15118. }
  15119. if (batch.logits) free(batch.logits);
  15120. }
  15121. int32_t llama_decode(
  15122. struct llama_context * ctx,
  15123. struct llama_batch batch) {
  15124. const int ret = llama_decode_internal(*ctx, batch);
  15125. if (ret < 0) {
  15126. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15127. }
  15128. return ret;
  15129. }
  15130. void llama_synchronize(struct llama_context * ctx) {
  15131. ggml_backend_sched_synchronize(ctx->sched);
  15132. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15133. // the stats will be added to the prompt evaluation stats
  15134. // this should only happen when using batch size 1 to evaluate a batch
  15135. // add the evaluation to the stats
  15136. if (ctx->n_queued_tokens == 1) {
  15137. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15138. ctx->n_eval++;
  15139. } else if (ctx->n_queued_tokens > 1) {
  15140. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15141. ctx->n_p_eval += ctx->n_queued_tokens;
  15142. }
  15143. // get a more accurate load time, upon first eval
  15144. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15145. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15146. ctx->has_evaluated_once = true;
  15147. }
  15148. ctx->n_queued_tokens = 0;
  15149. ctx->t_compute_start_us = 0;
  15150. }
  15151. float * llama_get_logits(struct llama_context * ctx) {
  15152. llama_synchronize(ctx);
  15153. return ctx->logits;
  15154. }
  15155. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15156. int32_t j = -1;
  15157. llama_synchronize(ctx);
  15158. try {
  15159. if (ctx->logits == nullptr) {
  15160. throw std::runtime_error("no logits");
  15161. }
  15162. if (i < 0) {
  15163. j = ctx->n_outputs + i;
  15164. if (j < 0) {
  15165. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15166. }
  15167. } else if ((size_t) i >= ctx->output_ids.size()) {
  15168. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15169. } else {
  15170. j = ctx->output_ids[i];
  15171. }
  15172. if (j < 0) {
  15173. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15174. }
  15175. if (j >= ctx->n_outputs) {
  15176. // This should not happen
  15177. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15178. }
  15179. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15180. } catch (const std::exception & err) {
  15181. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15182. #ifndef NDEBUG
  15183. GGML_ASSERT(false);
  15184. #endif
  15185. return nullptr;
  15186. }
  15187. }
  15188. float * llama_get_embeddings(struct llama_context * ctx) {
  15189. llama_synchronize(ctx);
  15190. return ctx->embd;
  15191. }
  15192. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15193. int32_t j = -1;
  15194. llama_synchronize(ctx);
  15195. try {
  15196. if (ctx->embd == nullptr) {
  15197. throw std::runtime_error("no embeddings");
  15198. }
  15199. if (i < 0) {
  15200. j = ctx->n_outputs + i;
  15201. if (j < 0) {
  15202. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15203. }
  15204. } else if ((size_t) i >= ctx->output_ids.size()) {
  15205. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15206. } else {
  15207. j = ctx->output_ids[i];
  15208. }
  15209. if (j < 0) {
  15210. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15211. }
  15212. if (j >= ctx->n_outputs) {
  15213. // This should not happen
  15214. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15215. }
  15216. return ctx->embd + j*ctx->model.hparams.n_embd;
  15217. } catch (const std::exception & err) {
  15218. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15219. #ifndef NDEBUG
  15220. GGML_ASSERT(false);
  15221. #endif
  15222. return nullptr;
  15223. }
  15224. }
  15225. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15226. llama_synchronize(ctx);
  15227. auto it = ctx->embd_seq.find(seq_id);
  15228. if (it == ctx->embd_seq.end()) {
  15229. return nullptr;
  15230. }
  15231. return it->second.data();
  15232. }
  15233. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15234. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15235. return model->vocab.id_to_token[token].text.c_str();
  15236. }
  15237. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15238. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15239. return model->vocab.id_to_token[token].score;
  15240. }
  15241. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15242. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15243. return model->vocab.id_to_token[token].attr;
  15244. }
  15245. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15246. return token != -1 && (
  15247. token == llama_token_eos(model) ||
  15248. token == llama_token_eot(model)
  15249. );
  15250. }
  15251. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15252. return llama_is_control_token(model->vocab, token);
  15253. }
  15254. llama_token llama_token_bos(const struct llama_model * model) {
  15255. return model->vocab.special_bos_id;
  15256. }
  15257. llama_token llama_token_eos(const struct llama_model * model) {
  15258. return model->vocab.special_eos_id;
  15259. }
  15260. llama_token llama_token_cls(const struct llama_model * model) {
  15261. return model->vocab.special_cls_id;
  15262. }
  15263. llama_token llama_token_sep(const struct llama_model * model) {
  15264. return model->vocab.special_sep_id;
  15265. }
  15266. llama_token llama_token_nl(const struct llama_model * model) {
  15267. return model->vocab.linefeed_id;
  15268. }
  15269. int32_t llama_add_bos_token(const struct llama_model * model) {
  15270. return model->vocab.special_add_bos;
  15271. }
  15272. int32_t llama_add_eos_token(const struct llama_model * model) {
  15273. return model->vocab.special_add_eos;
  15274. }
  15275. llama_token llama_token_prefix(const struct llama_model * model) {
  15276. return model->vocab.special_prefix_id;
  15277. }
  15278. llama_token llama_token_middle(const struct llama_model * model) {
  15279. return model->vocab.special_middle_id;
  15280. }
  15281. llama_token llama_token_suffix(const struct llama_model * model) {
  15282. return model->vocab.special_suffix_id;
  15283. }
  15284. llama_token llama_token_eot(const struct llama_model * model) {
  15285. return model->vocab.special_eot_id;
  15286. }
  15287. int32_t llama_tokenize(
  15288. const struct llama_model * model,
  15289. const char * text,
  15290. int32_t text_len,
  15291. llama_token * tokens,
  15292. int32_t n_tokens_max,
  15293. bool add_special,
  15294. bool parse_special) {
  15295. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15296. if (n_tokens_max < (int) res.size()) {
  15297. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15298. return -((int) res.size());
  15299. }
  15300. for (size_t i = 0; i < res.size(); i++) {
  15301. tokens[i] = res[i];
  15302. }
  15303. return res.size();
  15304. }
  15305. static std::string llama_decode_text(const std::string & text) {
  15306. std::string decoded_text;
  15307. const auto cpts = unicode_cpts_from_utf8(text);
  15308. for (const auto cpt : cpts) {
  15309. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15310. try {
  15311. decoded_text += unicode_utf8_to_byte(utf8);
  15312. } catch (const std::out_of_range & e) {
  15313. decoded_text += "[UNK_BYTE_0x";
  15314. for (const auto c : utf8) {
  15315. decoded_text += format("%02x", (uint8_t) c);
  15316. }
  15317. decoded_text += text + "]";
  15318. }
  15319. }
  15320. return decoded_text;
  15321. }
  15322. // does not write null-terminator to buf
  15323. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15324. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15325. if (!special && llama_is_control_token(model->vocab, token)) {
  15326. return 0;
  15327. }
  15328. // if we have a cache - use it
  15329. {
  15330. const auto & cache = model->vocab.cache_token_to_piece;
  15331. if (!cache.empty()) {
  15332. const auto & res = cache.at(token);
  15333. if (length < (int) res.size()) {
  15334. return -(int) res.size();
  15335. }
  15336. memcpy(buf, res.c_str(), res.size());
  15337. return res.size();
  15338. }
  15339. }
  15340. if (0 <= token && token < llama_n_vocab(model)) {
  15341. switch (llama_vocab_get_type(model->vocab)) {
  15342. case LLAMA_VOCAB_TYPE_WPM:
  15343. case LLAMA_VOCAB_TYPE_SPM: {
  15344. // NOTE: we accept all unsupported token types,
  15345. // suppressing them like CONTROL tokens.
  15346. if (llama_is_normal_token(model->vocab, token)) {
  15347. std::string result = model->vocab.id_to_token[token].text;
  15348. llama_unescape_whitespace(result);
  15349. if (length < (int) result.length()) {
  15350. return -(int) result.length();
  15351. }
  15352. memcpy(buf, result.c_str(), result.length());
  15353. return result.length();
  15354. } else if (
  15355. (llama_is_user_defined_token(model->vocab, token)) ||
  15356. (llama_is_control_token (model->vocab, token) && special)) {
  15357. std::string result = model->vocab.id_to_token[token].text;
  15358. if (length < (int) result.length()) {
  15359. return -(int) result.length();
  15360. }
  15361. memcpy(buf, result.c_str(), result.length());
  15362. return result.length();
  15363. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15364. if (length < 3) {
  15365. return -3;
  15366. }
  15367. memcpy(buf, "\xe2\x96\x85", 3);
  15368. return 3;
  15369. } else if (llama_is_byte_token(model->vocab, token)) {
  15370. if (length < 1) {
  15371. return -1;
  15372. }
  15373. buf[0] = llama_token_to_byte(model->vocab, token);
  15374. return 1;
  15375. }
  15376. break;
  15377. }
  15378. case LLAMA_VOCAB_TYPE_BPE: {
  15379. // NOTE: we accept all unsupported token types,
  15380. // suppressing them like CONTROL tokens.
  15381. if (llama_is_normal_token(model->vocab, token)) {
  15382. std::string result = model->vocab.id_to_token[token].text;
  15383. result = llama_decode_text(result);
  15384. if (length < (int) result.length()) {
  15385. return -(int) result.length();
  15386. }
  15387. memcpy(buf, result.c_str(), result.length());
  15388. return result.length();
  15389. } else if (
  15390. (llama_is_user_defined_token(model->vocab, token)) ||
  15391. (llama_is_control_token (model->vocab, token) && special)) {
  15392. std::string result = model->vocab.id_to_token[token].text;
  15393. if (length < (int) result.length()) {
  15394. return -(int) result.length();
  15395. }
  15396. memcpy(buf, result.c_str(), result.length());
  15397. return result.length();
  15398. }
  15399. break;
  15400. }
  15401. default:
  15402. GGML_ASSERT(false);
  15403. }
  15404. }
  15405. return 0;
  15406. }
  15407. // trim whitespace from the beginning and end of a string
  15408. static std::string trim(const std::string & str) {
  15409. size_t start = 0;
  15410. size_t end = str.size();
  15411. while (start < end && isspace(str[start])) {
  15412. start += 1;
  15413. }
  15414. while (end > start && isspace(str[end - 1])) {
  15415. end -= 1;
  15416. }
  15417. return str.substr(start, end - start);
  15418. }
  15419. // Simple version of "llama_apply_chat_template" that only works with strings
  15420. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15421. static int32_t llama_chat_apply_template_internal(
  15422. const std::string & tmpl,
  15423. const std::vector<const llama_chat_message *> & chat,
  15424. std::string & dest, bool add_ass) {
  15425. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15426. std::stringstream ss;
  15427. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15428. // chatml template
  15429. for (auto message : chat) {
  15430. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15431. }
  15432. if (add_ass) {
  15433. ss << "<|im_start|>assistant\n";
  15434. }
  15435. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15436. // llama2 template and its variants
  15437. // [variant] support system message
  15438. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15439. // [variant] space before + after response
  15440. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15441. // [variant] add BOS inside history
  15442. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15443. // [variant] trim spaces from the input message
  15444. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15445. // construct the prompt
  15446. bool is_inside_turn = true; // skip BOS at the beginning
  15447. ss << "[INST] ";
  15448. for (auto message : chat) {
  15449. std::string content = strip_message ? trim(message->content) : message->content;
  15450. std::string role(message->role);
  15451. if (!is_inside_turn) {
  15452. is_inside_turn = true;
  15453. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15454. }
  15455. if (role == "system") {
  15456. if (support_system_message) {
  15457. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15458. } else {
  15459. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15460. ss << content << "\n";
  15461. }
  15462. } else if (role == "user") {
  15463. ss << content << " [/INST]";
  15464. } else {
  15465. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15466. is_inside_turn = false;
  15467. }
  15468. }
  15469. // llama2 templates seem to not care about "add_generation_prompt"
  15470. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15471. // Phi 3
  15472. for (auto message : chat) {
  15473. std::string role(message->role);
  15474. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15475. }
  15476. if (add_ass) {
  15477. ss << "<|assistant|>\n";
  15478. }
  15479. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15480. // zephyr template
  15481. for (auto message : chat) {
  15482. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15483. }
  15484. if (add_ass) {
  15485. ss << "<|assistant|>\n";
  15486. }
  15487. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15488. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15489. for (auto message : chat) {
  15490. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15491. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15492. }
  15493. if (add_ass) {
  15494. ss << "<s>assistant\n";
  15495. }
  15496. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15497. // google/gemma-7b-it
  15498. std::string system_prompt = "";
  15499. for (auto message : chat) {
  15500. std::string role(message->role);
  15501. if (role == "system") {
  15502. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15503. system_prompt = trim(message->content);
  15504. continue;
  15505. }
  15506. // in gemma, "assistant" is "model"
  15507. role = role == "assistant" ? "model" : message->role;
  15508. ss << "<start_of_turn>" << role << "\n";
  15509. if (!system_prompt.empty() && role != "model") {
  15510. ss << system_prompt << "\n\n";
  15511. system_prompt = "";
  15512. }
  15513. ss << trim(message->content) << "<end_of_turn>\n";
  15514. }
  15515. if (add_ass) {
  15516. ss << "<start_of_turn>model\n";
  15517. }
  15518. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15519. // OrionStarAI/Orion-14B-Chat
  15520. std::string system_prompt = "";
  15521. for (auto message : chat) {
  15522. std::string role(message->role);
  15523. if (role == "system") {
  15524. // there is no system message support, we will merge it with user prompt
  15525. system_prompt = message->content;
  15526. continue;
  15527. } else if (role == "user") {
  15528. ss << "Human: ";
  15529. if (!system_prompt.empty()) {
  15530. ss << system_prompt << "\n\n";
  15531. system_prompt = "";
  15532. }
  15533. ss << message->content << "\n\nAssistant: </s>";
  15534. } else {
  15535. ss << message->content << "</s>";
  15536. }
  15537. }
  15538. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15539. // openchat/openchat-3.5-0106,
  15540. for (auto message : chat) {
  15541. std::string role(message->role);
  15542. if (role == "system") {
  15543. ss << message->content << "<|end_of_turn|>";
  15544. } else {
  15545. role[0] = toupper(role[0]);
  15546. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15547. }
  15548. }
  15549. if (add_ass) {
  15550. ss << "GPT4 Correct Assistant:";
  15551. }
  15552. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15553. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15554. for (auto message : chat) {
  15555. std::string role(message->role);
  15556. if (role == "system") {
  15557. // Orca-Vicuna variant uses a system prefix
  15558. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15559. ss << "SYSTEM: " << message->content << "\n";
  15560. } else {
  15561. ss << message->content << "\n\n";
  15562. }
  15563. } else if (role == "user") {
  15564. ss << "USER: " << message->content << "\n";
  15565. } else if (role == "assistant") {
  15566. ss << "ASSISTANT: " << message->content << "</s>\n";
  15567. }
  15568. }
  15569. if (add_ass) {
  15570. ss << "ASSISTANT:";
  15571. }
  15572. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15573. // deepseek-ai/deepseek-coder-33b-instruct
  15574. for (auto message : chat) {
  15575. std::string role(message->role);
  15576. if (role == "system") {
  15577. ss << message->content;
  15578. } else if (role == "user") {
  15579. ss << "### Instruction:\n" << message->content << "\n";
  15580. } else if (role == "assistant") {
  15581. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15582. }
  15583. }
  15584. if (add_ass) {
  15585. ss << "### Response:\n";
  15586. }
  15587. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15588. // CohereForAI/c4ai-command-r-plus
  15589. for (auto message : chat) {
  15590. std::string role(message->role);
  15591. if (role == "system") {
  15592. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15593. } else if (role == "user") {
  15594. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15595. } else if (role == "assistant") {
  15596. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15597. }
  15598. }
  15599. if (add_ass) {
  15600. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15601. }
  15602. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15603. // Llama 3
  15604. for (auto message : chat) {
  15605. std::string role(message->role);
  15606. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15607. }
  15608. if (add_ass) {
  15609. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15610. }
  15611. } else {
  15612. // template not supported
  15613. return -1;
  15614. }
  15615. dest = ss.str();
  15616. return dest.size();
  15617. }
  15618. LLAMA_API int32_t llama_chat_apply_template(
  15619. const struct llama_model * model,
  15620. const char * tmpl,
  15621. const struct llama_chat_message * chat,
  15622. size_t n_msg,
  15623. bool add_ass,
  15624. char * buf,
  15625. int32_t length) {
  15626. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15627. if (tmpl == nullptr) {
  15628. GGML_ASSERT(model != nullptr);
  15629. // load template from model
  15630. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15631. std::string template_key = "tokenizer.chat_template";
  15632. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15633. if (res < 0) {
  15634. // worst case: there is no information about template, we will use chatml by default
  15635. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15636. } else {
  15637. curr_tmpl = std::string(model_template.data(), model_template.size());
  15638. }
  15639. }
  15640. // format the chat to string
  15641. std::vector<const llama_chat_message *> chat_vec;
  15642. chat_vec.resize(n_msg);
  15643. for (size_t i = 0; i < n_msg; i++) {
  15644. chat_vec[i] = &chat[i];
  15645. }
  15646. std::string formatted_chat;
  15647. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15648. if (res < 0) {
  15649. return res;
  15650. }
  15651. if (buf && length > 0) {
  15652. strncpy(buf, formatted_chat.c_str(), length);
  15653. }
  15654. return res;
  15655. }
  15656. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15657. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15658. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15659. return strlen(split_path);
  15660. }
  15661. return 0;
  15662. }
  15663. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15664. std::string str_split_path(split_path);
  15665. char postfix[32];
  15666. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15667. std::string str_postfix(postfix);
  15668. // check if dest ends with postfix
  15669. int size_prefix = str_split_path.size() - str_postfix.size();
  15670. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15671. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15672. return size_prefix;
  15673. }
  15674. return 0;
  15675. }
  15676. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15677. struct llama_timings result = {
  15678. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15679. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15680. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15681. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15682. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15683. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15684. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15685. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15686. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15687. };
  15688. return result;
  15689. }
  15690. void llama_print_timings(struct llama_context * ctx) {
  15691. const llama_timings timings = llama_get_timings(ctx);
  15692. LLAMA_LOG_INFO("\n");
  15693. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15694. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15695. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15696. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15697. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15698. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15699. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15700. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15701. }
  15702. void llama_reset_timings(struct llama_context * ctx) {
  15703. ctx->t_start_us = ggml_time_us();
  15704. ctx->t_sample_us = ctx->n_sample = 0;
  15705. ctx->t_eval_us = ctx->n_eval = 0;
  15706. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15707. }
  15708. const char * llama_print_system_info(void) {
  15709. static std::string s;
  15710. s = "";
  15711. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15712. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15713. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15714. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15715. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15716. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15717. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15718. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15719. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15720. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15721. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15722. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15723. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15724. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15725. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15726. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15727. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15728. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15729. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15730. #ifdef GGML_USE_LLAMAFILE
  15731. s += "LLAMAFILE = 1 | ";
  15732. #else
  15733. s += "LLAMAFILE = 0 | ";
  15734. #endif
  15735. return s.c_str();
  15736. }
  15737. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15738. fprintf(stream, "\n");
  15739. fprintf(stream, "###########\n");
  15740. fprintf(stream, "# Timings #\n");
  15741. fprintf(stream, "###########\n");
  15742. fprintf(stream, "\n");
  15743. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15744. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15745. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15746. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15747. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15748. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15749. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15750. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15751. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15752. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15753. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15754. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15755. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15756. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15757. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15758. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15759. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15760. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15761. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15762. }
  15763. // For internal test use
  15764. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15765. struct llama_context * ctx
  15766. ) {
  15767. return ctx->model.tensors_by_name;
  15768. }
  15769. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15770. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15771. g_state.log_callback_user_data = user_data;
  15772. #ifdef GGML_USE_METAL
  15773. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15774. #elif defined(GGML_USE_CUDA)
  15775. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15776. #endif
  15777. }
  15778. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15779. va_list args_copy;
  15780. va_copy(args_copy, args);
  15781. char buffer[128];
  15782. int len = vsnprintf(buffer, 128, format, args);
  15783. if (len < 128) {
  15784. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15785. } else {
  15786. char* buffer2 = new char[len+1];
  15787. vsnprintf(buffer2, len+1, format, args_copy);
  15788. buffer2[len] = 0;
  15789. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15790. delete[] buffer2;
  15791. }
  15792. va_end(args_copy);
  15793. }
  15794. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15795. va_list args;
  15796. va_start(args, format);
  15797. llama_log_internal_v(level, format, args);
  15798. va_end(args);
  15799. }
  15800. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15801. (void) level;
  15802. (void) user_data;
  15803. fputs(text, stderr);
  15804. fflush(stderr);
  15805. }