| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448 |
- #include <cstddef>
- #include <cstdint>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <assert.h>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
- typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
- typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);
- typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- #define QK4_0 32
- #define QR4_0 2
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- //================================= k-quants
- #define QK_K 256
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- } block_q2_k;
- static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding");
- typedef struct {
- uint8_t hmask[QK_K/8];
- uint8_t qs[QK_K/4]; // nibbles / quants
- uint8_t scales[3*QK_K/64];
- half d;
- } block_q3_k;
- static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_k;
- static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_k;
- static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding");
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_k;
- static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_k block size/padding");
- #define WARP_SIZE 32
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_DMMV_Y
- #define GGML_CUDA_DMMV_Y 1
- #endif
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const float d = x[ib].d;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = (vi0 - 8)*d;
- v1 = (vi1 - 8)*d;
- }
- static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = vi0*d + m;
- v1 = vi1*d + m;
- }
- static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const float d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
- v0 = x0*d;
- v1 = x1*d;
- }
- static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
- v0 = x0*d + m;
- v1 = x1*d + m;
- }
- static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const float d = x[ib].d;
- const int8_t vi0 = x[ib].qs[iqs + 0];
- const int8_t vi1 = x[ib].qs[iqs + 1];
- v0 = vi0*d;
- v1 = vi1*d;
- }
- //================================== k-quants
- static __global__ void dequantize_block_q2_k(const void * vx, float * yy) {
- const int i = blockIdx.x;
- const int tid = threadIdx.x;
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const block_q2_k * x = (const block_q2_k *) vx;
- const uint8_t q = x[i].qs[32*n + l];
- float * y = yy + i*QK_K + 128*n;
- float dall = x[i].d;
- float dmin = x[i].dmin;
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- }
- static __device__ void vec_dot_q2_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q2_k * x = (const block_q2_k *) vx;
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * s = x[ib].scales + 8*n;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
- + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
- + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
- + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
- + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
- + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
- + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
- + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
- result = sum;
- }
- static __global__ void dequantize_block_q3_k(const void * vx, float * yy) {
- int r = threadIdx.x/4;
- int i = blockIdx.x;
- int tid = r/2;
- int is0 = r%2;
- int l0 = 16*is0 + 4*(threadIdx.x%4);
- int n = tid / 4;
- int j = tid - 4*n;
- const block_q3_k * x = (const block_q3_k *) vx;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- float * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- }
- static __device__ void vec_dot_q3_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q3_k * x = (const block_q3_k *) vx;
- const uint32_t kmask1 = 0x03030303;
- const uint32_t kmask2 = 0x0f0f0f0f;
- uint32_t aux[3];
- uint32_t utmp[4];
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * hm = x[ib].hmask + l;
- const int8_t * s = (const int8_t *)utmp + 8*n;
- memcpy(aux, x[ib].scales, 12);
- utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
- utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
- utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
- utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
- const float dall = x[ib].d;
- const uint8_t m = 1 << (4*n);
- float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
- + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
- + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
- + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
- + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
- + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
- + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
- + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
- result = sum * dall;
- }
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- static __global__ void dequantize_block_q4_k(const void * vx, float * yy) {
- const block_q4_k * x = (const block_q4_k *) vx;
- const int i = blockIdx.x;
- //// assume 64 threads - this is very slightly better than the one below
- //const int tid = threadIdx.x;
- //const int il = tid/16;
- //const int ir = tid%16;
- //const int is = 2*il;
- //const int n = 2;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- }
- static __device__ void vec_dot_q4_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q4_k * x = (const block_q4_k *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * q = x[ib].qs + 32*j + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
- sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q5_k(const void * vx, float * yy) {
- const block_q5_k * x = (const block_q5_k *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- }
- static __device__ void vec_dot_q5_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q5_k * x = (const block_q5_k *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * ql = x[ib].qs + 32*j + ir;
- const uint8_t * qh = x[ib].qh + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- uint8_t hm = 1 << is;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
- }
- hm <<= 1;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q6_k(const void * vx, float * yy) {
- const block_q6_k * x = (const block_q6_k *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- float * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- }
- static __device__ void vec_dot_q6_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q6_k * x = (const block_q6_k *) vx;
- const int ip = iqs / 128; // 0 or 1
- const int il = (iqs - 128*ip)/8; // 0...15
- const int is = 8*ip;
- const float * y = yy + 128*ip + il;
- const float d = x[ib].d;
- const uint8_t * ql = x[ib].ql + 64*ip + il;
- const uint8_t * qh = x[ib].qh + 32*ip + il;
- const int8_t * sc = x[ib].scales + is;
- result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
- + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
- + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
- + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
- + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
- + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
- + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
- + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const half * x = (const half *) vx;
- v0 = __half2float(x[ib + 0]);
- v1 = __half2float(x[ib + 1]);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * vx, float * y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- float & v0 = y[iybs + iqs + 0];
- float & v1 = y[iybs + iqs + y_offset];
- dequantize_kernel(vx, ib, iqs, v0, v1);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- float tmp = 0; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- float v0, v1;
- dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- // matrix multiplication
- tmp += v0 * y[iybs + iqs + j/qr + 0];
- tmp += v1 * y[iybs + iqs + j/qr + y_offset];
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- }
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- template <int n_thread, dot_kernel_k_t dot_kernel>
- static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const int iter_stride = QK_K;
- const int vals_per_iter = iter_stride / n_thread;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- float tmp = 0; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = ib0 + col/QK_K; // x block index
- const int iqs = col%QK_K; // x quant index
- const int iybs = col - col%QK_K; // y block start index
- float v;
- dot_kernel(vx, ib, iqs, y + iybs, v);
- tmp += v;
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q2_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q2_k<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q3_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q3_k<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q4_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_k<<<nb, 32, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q5_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q5_k<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q6_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q6_k<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q2_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q2_k><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q3_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q3_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q4_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q4_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q5_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q6_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_k_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_k_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_k_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_k_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_k_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_mul_mat_vec_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_mul_mat_vec_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_mul_mat_vec_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_mul_mat_vec_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_mul_mat_vec_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_mul_mat_vec_q2_k_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_mul_mat_vec_q3_k_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_mul_mat_vec_q4_k_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_mul_mat_vec_q5_k_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_mul_mat_vec_q6_k_cuda;
- case GGML_TYPE_F16:
- return convert_mul_mat_vec_f16_cuda;
- default:
- return nullptr;
- }
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
- #define GGML_CUDA_MAX_EVENTS 64
- static cublasHandle_t g_cublasH = nullptr;
- static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
- void ggml_init_cublas() {
- if (g_cublasH == nullptr) {
- // create streams
- for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
- }
- // create events
- for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublasH));
- CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
- const uint64_t ne0 = src->ne[0];
- const uint64_t ne1 = src->ne[1];
- const uint64_t nb0 = src->nb[0];
- const uint64_t nb1 = src->nb[1];
- const uint64_t nb2 = src->nb[2];
- const uint64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const size_t ts = ggml_type_size(type);
- const size_t bs = ggml_blck_size(type);
- const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
- } else {
- for (uint64_t i1 = 0; i1 < ne1; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[2];
- const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- size_t x_size, d_size;
- float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
- float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
- float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const int i0 = i03*ne02 + i02;
- float * c_X2 = d_X + i0*ne01*ne00;
- float * c_D2 = d_D + i0*ne01*ne00;
- cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
- // copy src0 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // wait for data
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const int64_t i13 = i03%ne13;
- const int64_t i12 = i02%ne12;
- const int64_t i11 = i01%ne11;
- const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
- float * c_X1 = c_X2 + i01*ne00;
- float * c_Y = d_Y + i1*ne10;
- float * c_D1 = c_D2 + i01*ne00;
- // compute
- mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
- CUDA_CHECK(cudaGetLastError());
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- size_t x_size, y_size, d_size;
- float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
- float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- float * c_X = d_X + i * x_ne;
- float * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- // copy data to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, ne00,
- c_Y, ne10,
- &beta, c_D, ne01));
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- size_t x_size, y_size, d_size;
- half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
- half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- bool src1_cont_rows = nb10 == sizeof(float);
- bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- half * c_X = d_X + i * x_ne;
- half * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- // copy src0 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
- // convert src1 to fp16
- // TODO: use multiple threads
- ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
- char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
- if (src1_cont_rows) {
- if (src1_cont_cols) {
- ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
- }
- }
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- for (int64_t i00 = 0; i00 < ne10; i00++) {
- // very slow due to no inlining
- tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
- }
- }
- }
- // copy src1 to device
- CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, CUDA_R_16F, ne00,
- c_Y, CUDA_R_16F, ne10,
- &beta, c_D, CUDA_R_32F, ne01,
- CUBLAS_COMPUTE_32F_FAST_16F,
- CUBLAS_GEMM_DEFAULT));
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const ggml_type type = src0->type;
- const bool mul_mat_vec = ne11 == 1;
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
- size_t x_size, y_size, d_size, q_size;
- float * d_X = nullptr;
- if (!mul_mat_vec) {
- d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
- }
- float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
- dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
- float * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- char * c_Q = d_Q + i * q_sz;
- // copy src0 to device if necessary
- if (src0->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
- } else if (src0->backend == GGML_BACKEND_CUDA) {
- c_Q = ((char *) src0->data) + i * q_sz;
- } else {
- GGML_ASSERT(false);
- }
- if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // copy src1 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // wait for data
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- // compute
- //printf("Calling dmmv\n");
- dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
- CUDA_CHECK(cudaGetLastError());
- } else { // general dequantization kernel + cuBLAS matrix matrix multiplication
- float * c_X = d_X + i * x_ne;
- //typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
- // convert src0 to fp32 on device
- to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
- CUDA_CHECK(cudaGetLastError());
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // copy src1 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // wait for conversion
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, ne00,
- c_Y, ne10,
- &beta, c_D, ne01));
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- if (!mul_mat_vec) {
- ggml_cuda_pool_free(d_X, x_size);
- }
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- ggml_cuda_pool_free(d_Q, q_size);
- }
- void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_mul_f32(src0, src1, dst);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
- return true;
- }
- return false;
- }
- bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
- size_t src0_sz = ggml_nbytes(src0);
- size_t src1_sz = ggml_nbytes(src1);
- // mul_mat_q: src0 is converted to fp32 on device
- size_t mul_mat_q_transfer = src0_sz + src1_sz;
- // mul_mat_f16: src1 is converted to fp16 on cpu
- size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
- // choose the smaller one to transfer to the device
- // TODO: this is not always the best choice due to the overhead of converting to fp16
- return mul_mat_f16_transfer < mul_mat_q_transfer;
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
- GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
- if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_mul_mat_f32(src0, src1, dst);
- }
- else if (src0->type == GGML_TYPE_F16) {
- if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
- ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
- }
- else {
- ggml_cuda_mul_mat_q_f32(src0, src1, dst);
- }
- }
- else if (ggml_is_quantized(src0->type)) {
- ggml_cuda_mul_mat_q_f32(src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- }
- size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
- return ggml_nelements(src1) * sizeof(ggml_fp16_t);
- }
- else {
- return 0;
- }
- }
- void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
- const int64_t ne0 = tensor->ne[0];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne3 = tensor->ne[3];
- const ggml_type type = tensor->type;
- const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
- size_t q_size;
- char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
- cudaStream_t cudaStream2 = g_cudaStreams2[0];
- // copy tensor to device
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- int i = i3*ne2 + i2;
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
- }
- }
- tensor->data = dst;
- tensor->backend = GGML_BACKEND_CUDA;
- }
- void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
- FILE * fp = fopen(fname, "rb");
- const size_t size = ggml_nbytes(tensor);
- void * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- void * buf_host = malloc(size);
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
- #else
- int ret = fseek(fp, (long) offset, SEEK_SET);
- #endif
- GGML_ASSERT(ret == 0); // same
- size_t ret2 = fread(buf_host, size, 1, fp);
- if (ret2 != 1) {
- fprintf(stderr, "unexpectedly reached end of file");
- exit(1);
- }
- cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
- cudaDeviceSynchronize();
- tensor->data = buf;
- free(buf_host);
- fclose(fp);
- }
|