ggml-opencl.cpp 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #define CL_TARGET_OPENCL_VERSION 110
  7. #include <clblast.h>
  8. #include <stdlib.h>
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include "ggml.h"
  12. #define CL_DMMV_BLOCK_SIZE 32;
  13. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  14. static std::string program_source = MULTILINE_QUOTE(
  15. typedef char int8_t;
  16. typedef uchar uint8_t;
  17. typedef int int32_t;
  18. typedef uint uint32_t;
  19. struct __attribute__ ((packed)) block_q4_0
  20. {
  21. half d;
  22. uint8_t qs[QK4_0 / 2];
  23. };
  24. struct __attribute__ ((packed)) block_q4_1
  25. {
  26. half d;
  27. half m;
  28. uint8_t qs[QK4_1 / 2];
  29. };
  30. struct __attribute__ ((packed)) block_q5_0
  31. {
  32. half d;
  33. uint32_t qh;
  34. uint8_t qs[QK5_0 / 2];
  35. };
  36. struct __attribute__ ((packed)) block_q5_1
  37. {
  38. half d;
  39. half m;
  40. uint32_t qh;
  41. uint8_t qs[QK5_1 / 2];
  42. };
  43. struct __attribute__ ((packed)) block_q8_0
  44. {
  45. half d;
  46. int8_t qs[QK8_0];
  47. };
  48. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  49. const uint i = get_global_id(0);
  50. y[i] = vload_half(0, &x[i]);
  51. }
  52. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  53. const float d = vload_half(0, &x[ib].d);
  54. const uint8_t vui = x[ib].qs[iqs];
  55. const int8_t vi0 = vui & 0xF;
  56. const int8_t vi1 = vui >> 4;
  57. *v0 = (vi0 - 8)*d;
  58. *v1 = (vi1 - 8)*d;
  59. }
  60. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  61. const float d = vload_half(0, &x[ib].d);
  62. const float m = vload_half(0, &x[ib].m);
  63. const uint8_t vui = x[ib].qs[iqs];
  64. const int8_t vi0 = vui & 0xF;
  65. const int8_t vi1 = vui >> 4;
  66. *v0 = vi0*d + m;
  67. *v1 = vi1*d + m;
  68. }
  69. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  70. const float d = vload_half(0, &x[ib].d);
  71. uint32_t qh = x[ib].qh;
  72. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  73. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  74. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  75. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  76. *v0 = x0*d;
  77. *v1 = x1*d;
  78. }
  79. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  80. const float d = vload_half(0, &x[ib].d);
  81. const float m = vload_half(0, &x[ib].m);
  82. uint32_t qh = x[ib].qh;
  83. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  84. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  85. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  86. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  87. *v0 = x0*d + m;
  88. *v1 = x1*d + m;
  89. }
  90. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  91. const float d = vload_half(0, &x[ib].d);
  92. const int8_t vi0 = x[ib].qs[iqs + 0];
  93. const int8_t vi1 = x[ib].qs[iqs + 1];
  94. *v0 = vi0*d;
  95. *v1 = vi1*d;
  96. }
  97. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  98. *v0 = vload_half(0, &x[ib + 0]);
  99. *v1 = vload_half(0, &x[ib + 1]);
  100. }
  101. );
  102. std::string dequant_template = MULTILINE_QUOTE(
  103. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  104. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  105. if (i >= get_global_size(0)) {
  106. return;
  107. }
  108. const uint qk = QUANT_K;
  109. const uint qr = QUANT_R;
  110. const int ib = i/qk; // block index
  111. const int iqs = (i%qk)/qr; // quant index
  112. const int iybs = i - i%qk; // y block start index
  113. const int y_offset = qr == 1 ? 1 : qk/2;
  114. // dequantize
  115. float v0, v1;
  116. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  117. y[iybs + iqs + 0] = v0;
  118. y[iybs + iqs + y_offset] = v1;
  119. }
  120. );
  121. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  122. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  123. const int block_size = get_local_size(0);
  124. const int row = get_global_id(0) / block_size;
  125. const int tid = get_local_id(0);
  126. const uint qk = QUANT_K;
  127. const uint qr = QUANT_R;
  128. const int y_offset = qr == 1 ? 1 : qk/2;
  129. tmp[tid] = 0;
  130. for (int i = 0; i < ncols/block_size; i += 2) {
  131. const int col = i*block_size + 2*tid;
  132. const int ib = (row*ncols + col)/qk; // block index
  133. const int iqs = (col%qk)/qr; // quant index
  134. const int iybs = col - col%qk; // y block start index
  135. // dequantize
  136. float v0, v1;
  137. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  138. // matrix multiplication
  139. tmp[tid] += v0 * y[iybs + iqs + 0];
  140. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  141. }
  142. // sum up partial sums and write back result
  143. barrier(CLK_LOCAL_MEM_FENCE);
  144. for (int s=block_size/2; s>0; s>>=1) {
  145. if (tid < s) {
  146. tmp[tid] += tmp[tid + s];
  147. }
  148. barrier(CLK_LOCAL_MEM_FENCE);
  149. }
  150. if (tid == 0) {
  151. dst[row] = tmp[0];
  152. }
  153. }
  154. );
  155. std::string mul_template = MULTILINE_QUOTE(
  156. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  157. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  158. if (i >= get_global_size(0)) {
  159. return;
  160. }
  161. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  162. }
  163. );
  164. #define CL_CHECK(err) \
  165. do { \
  166. cl_int err_ = (err); \
  167. if (err_ != CL_SUCCESS) { \
  168. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  169. #err, err_, __FILE__, __LINE__); \
  170. exit(1); \
  171. } \
  172. } while (0)
  173. #define CLBLAST_CHECK(err) \
  174. do { \
  175. CLBlastStatusCode err_ = (err); \
  176. if (err_ != CLBlastSuccess) { \
  177. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  178. #err, err_, __FILE__, __LINE__); \
  179. exit(1); \
  180. } \
  181. } while (0)
  182. std::array<std::string, 5> dequant_str_keys = {
  183. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  184. };
  185. std::array<std::string, 30> dequant_str_values = {
  186. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  187. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  188. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  189. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  190. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  191. "convert_row_f16", "half", "1", "1", "convert_f16"
  192. };
  193. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  194. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  195. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  196. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  197. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  198. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  199. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  200. };
  201. std::array<std::string, 2> mul_str_keys = {
  202. "KERNEL_NAME", "TYPE"
  203. };
  204. std::array<std::string, 2> mul_str_values = {
  205. "mul_f32", "float"
  206. };
  207. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  208. size_t pos = 0;
  209. while ((pos = s.find(from, pos)) != std::string::npos) {
  210. s.replace(pos, from.length(), to);
  211. pos += to.length();
  212. }
  213. return s;
  214. }
  215. std::string generate_kernels() {
  216. std::stringstream src;
  217. src << program_source << '\n';
  218. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  219. std::string dequant_kernel = dequant_template;
  220. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  221. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  222. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  223. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  224. }
  225. src << dequant_kernel << '\n';
  226. src << dmmv_kernel << '\n';
  227. }
  228. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  229. std::string mul_kernel = mul_template;
  230. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  231. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  232. }
  233. src << mul_kernel << '\n';
  234. }
  235. return src.str();
  236. }
  237. static cl_platform_id platform;
  238. static cl_device_id device;
  239. static cl_context context;
  240. static cl_command_queue queue;
  241. static cl_program program;
  242. static cl_kernel convert_row_f16_cl;
  243. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  244. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  245. static cl_kernel mul_f32_cl;
  246. static bool fp16_support;
  247. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  248. cl_program p;
  249. char *program_log;
  250. size_t program_size;
  251. size_t log_size;
  252. int err;
  253. program_size = strlen(program_buffer);
  254. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  255. if(err < 0) {
  256. fprintf(stderr, "OpenCL error creating program");
  257. exit(1);
  258. }
  259. const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  260. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
  261. err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
  262. if(err < 0) {
  263. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  264. program_log = (char*) malloc(log_size + 1);
  265. program_log[log_size] = '\0';
  266. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  267. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  268. free(program_log);
  269. exit(1);
  270. }
  271. return p;
  272. }
  273. void ggml_cl_init(void) {
  274. cl_int err;
  275. struct cl_device;
  276. struct cl_platform {
  277. cl_platform_id id;
  278. unsigned number;
  279. char name[128];
  280. char vendor[128];
  281. struct cl_device * devices;
  282. unsigned n_devices;
  283. struct cl_device * default_device;
  284. };
  285. struct cl_device {
  286. struct cl_platform * platform;
  287. cl_device_id id;
  288. unsigned number;
  289. cl_device_type type;
  290. char name[128];
  291. };
  292. enum { NPLAT = 16, NDEV = 16 };
  293. struct cl_platform platforms[NPLAT];
  294. unsigned n_platforms = 0;
  295. struct cl_device devices[NDEV];
  296. unsigned n_devices = 0;
  297. struct cl_device * default_device = NULL;
  298. platform = NULL;
  299. device = NULL;
  300. cl_platform_id platform_ids[NPLAT];
  301. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  302. for (unsigned i = 0; i < n_platforms; i++) {
  303. struct cl_platform * p = &platforms[i];
  304. p->number = i;
  305. p->id = platform_ids[i];
  306. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  307. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  308. cl_device_id device_ids[NDEV];
  309. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  310. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  311. p->n_devices = 0;
  312. } else {
  313. CL_CHECK(clGetDeviceIDsError);
  314. }
  315. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  316. p->default_device = NULL;
  317. for (unsigned j = 0; j < p->n_devices; j++) {
  318. struct cl_device * d = &devices[n_devices];
  319. d->number = n_devices++;
  320. d->id = device_ids[j];
  321. d->platform = p;
  322. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  323. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  324. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  325. p->default_device = d;
  326. }
  327. }
  328. if (default_device == NULL && p->default_device != NULL) {
  329. default_device = p->default_device;
  330. }
  331. }
  332. if (n_devices == 0) {
  333. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  334. exit(1);
  335. }
  336. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  337. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  338. int user_platform_number = -1;
  339. int user_device_number = -1;
  340. unsigned n;
  341. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  342. user_platform_number = (int)n;
  343. }
  344. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  345. user_device_number = (int)n;
  346. }
  347. if (user_platform_number != -1 && user_device_number != -1) {
  348. cl_platform* platform = &platforms[user_platform_number];
  349. if ((unsigned)user_device_number >= platform->n_devices) {
  350. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  351. exit(1);
  352. }
  353. default_device = &platform->devices[user_device_number];
  354. } else {
  355. struct cl_device * selected_devices = devices;
  356. unsigned n_selected_devices = n_devices;
  357. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  358. for (unsigned i = 0; i < n_platforms; i++) {
  359. struct cl_platform * p = &platforms[i];
  360. if (strstr(p->name, user_platform_string) != NULL ||
  361. strstr(p->vendor, user_platform_string) != NULL) {
  362. user_platform_number = (int)i;
  363. break;
  364. }
  365. }
  366. if (user_platform_number == -1) {
  367. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  368. exit(1);
  369. }
  370. }
  371. if (user_platform_number != -1) {
  372. struct cl_platform * p = &platforms[user_platform_number];
  373. selected_devices = p->devices;
  374. n_selected_devices = p->n_devices;
  375. default_device = p->default_device;
  376. if (n_selected_devices == 0) {
  377. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  378. exit(1);
  379. }
  380. }
  381. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  382. for (unsigned i = 0; i < n_selected_devices; i++) {
  383. struct cl_device * d = &selected_devices[i];
  384. if (strstr(d->name, user_device_string) != NULL) {
  385. user_device_number = d->number;
  386. break;
  387. }
  388. }
  389. if (user_device_number == -1) {
  390. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  391. exit(1);
  392. }
  393. }
  394. if (user_device_number != -1) {
  395. selected_devices = &devices[user_device_number];
  396. n_selected_devices = 1;
  397. default_device = &selected_devices[0];
  398. }
  399. GGML_ASSERT(n_selected_devices > 0);
  400. if (default_device == NULL) {
  401. default_device = &selected_devices[0];
  402. }
  403. }
  404. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  405. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  406. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  407. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  408. }
  409. platform = default_device->platform->id;
  410. device = default_device->id;
  411. size_t ext_str_size;
  412. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  413. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  414. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  415. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  416. // Check if ext_buffer contains cl_khr_fp16
  417. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  418. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  419. cl_context_properties properties[] = {
  420. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  421. };
  422. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  423. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  424. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  425. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  426. )));
  427. const std::string kernel_src = generate_kernels();
  428. program = build_program_from_source(context, device, kernel_src.c_str());
  429. // FP16 to FP32 kernel
  430. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  431. // Dequantize kernels
  432. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  433. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  434. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  435. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  436. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  437. // dequant mul mat kernel
  438. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  439. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  440. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  441. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  442. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  443. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  444. // mul kernel
  445. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  446. }
  447. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  448. switch (type) {
  449. case GGML_TYPE_Q4_0:
  450. return &dequantize_row_q4_0_cl;
  451. case GGML_TYPE_Q4_1:
  452. return &dequantize_row_q4_1_cl;
  453. case GGML_TYPE_Q5_0:
  454. return &dequantize_row_q5_0_cl;
  455. case GGML_TYPE_Q5_1:
  456. return &dequantize_row_q5_1_cl;
  457. case GGML_TYPE_Q8_0:
  458. return &dequantize_row_q8_0_cl;
  459. case GGML_TYPE_F16:
  460. return &convert_row_f16_cl;
  461. default:
  462. return nullptr;
  463. }
  464. }
  465. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  466. switch (type) {
  467. case GGML_TYPE_Q4_0:
  468. return &dequantize_mul_mat_vec_q4_0_cl;
  469. case GGML_TYPE_Q4_1:
  470. return &dequantize_mul_mat_vec_q4_1_cl;
  471. case GGML_TYPE_Q5_0:
  472. return &dequantize_mul_mat_vec_q5_0_cl;
  473. case GGML_TYPE_Q5_1:
  474. return &dequantize_mul_mat_vec_q5_1_cl;
  475. case GGML_TYPE_Q8_0:
  476. return &dequantize_mul_mat_vec_q8_0_cl;
  477. case GGML_TYPE_F16:
  478. return &convert_mul_mat_vec_f16_cl;
  479. default:
  480. return nullptr;
  481. }
  482. }
  483. // buffer pool for cl
  484. #define MAX_CL_BUFFERS 256
  485. struct scoped_spin_lock {
  486. std::atomic_flag& lock;
  487. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  488. while (lock.test_and_set(std::memory_order_acquire)) {
  489. ; // spin
  490. }
  491. }
  492. ~scoped_spin_lock() {
  493. lock.clear(std::memory_order_release);
  494. }
  495. scoped_spin_lock(const scoped_spin_lock&) = delete;
  496. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  497. };
  498. struct cl_buffer {
  499. cl_mem mem;
  500. size_t size = 0;
  501. };
  502. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  503. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  504. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
  505. scoped_spin_lock lock(g_cl_pool_lock);
  506. cl_int err;
  507. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  508. cl_buffer& b = g_cl_buffer_pool[i];
  509. if (b.size > 0 && b.size >= size) {
  510. cl_mem mem = b.mem;
  511. *actual_size = b.size;
  512. b.size = 0;
  513. return mem;
  514. }
  515. }
  516. cl_mem mem;
  517. CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err));
  518. *actual_size = size;
  519. return mem;
  520. }
  521. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  522. scoped_spin_lock lock(g_cl_pool_lock);
  523. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  524. cl_buffer& b = g_cl_buffer_pool[i];
  525. if (b.size == 0) {
  526. b.mem = mem;
  527. b.size = size;
  528. return;
  529. }
  530. }
  531. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  532. clReleaseMemObject(mem);
  533. }
  534. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  535. cl_int err;
  536. const uint64_t ne0 = src->ne[0];
  537. const uint64_t ne1 = src->ne[1];
  538. const uint64_t nb0 = src->nb[0];
  539. const uint64_t nb1 = src->nb[1];
  540. const uint64_t nb2 = src->nb[2];
  541. const uint64_t nb3 = src->nb[3];
  542. const enum ggml_type type = src->type;
  543. const size_t ts = ggml_type_size(type);
  544. const size_t bs = ggml_blck_size(type);
  545. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  546. if (nb0 == ts && nb1 == ts*ne0/bs) {
  547. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  548. return err;
  549. }
  550. if (nb0 == ts) {
  551. const size_t buffer_origin[3] = { offset, 0, 0 };
  552. const size_t host_origin[3] = { 0, 0, 0 };
  553. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  554. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  555. return err;
  556. }
  557. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  558. // pretend the row is a matrix with cols=1
  559. const size_t buffer_origin[3] = { offset, i1, 0 };
  560. const size_t host_origin[3] = { 0, 0, 0 };
  561. const size_t region[3] = { ts/bs, ne0, 1 };
  562. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  563. if (err != CL_SUCCESS) {
  564. break;
  565. }
  566. }
  567. return err;
  568. }
  569. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  570. GGML_ASSERT(src1->backend == GGML_BACKEND_CL);
  571. const int64_t ne00 = src0->ne[0];
  572. const int64_t ne01 = src0->ne[1];
  573. const int64_t ne02 = src0->ne[2];
  574. const int64_t ne03 = src0->ne[2];
  575. const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
  576. const int64_t ne10 = src1->ne[0];
  577. const int64_t ne11 = src1->ne[1];
  578. const int64_t ne12 = src1->ne[2];
  579. const int64_t ne13 = src1->ne[3];
  580. const int64_t nb10 = src1->nb[0];
  581. const int nb2 = dst->nb[2];
  582. const int nb3 = dst->nb[3];
  583. size_t x_size;
  584. size_t d_size;
  585. cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0
  586. cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
  587. cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst
  588. for (int64_t i03 = 0; i03 < ne03; i03++) {
  589. for (int64_t i02 = 0; i02 < ne02; i02++) {
  590. const int i0 = i03*ne02 + i02;
  591. cl_event ev;
  592. // copy src0 to device
  593. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
  594. if (nb10 == sizeof(float)) {
  595. // Contiguous, avoid overhead from queueing many kernel runs
  596. const int64_t i13 = i03%ne13;
  597. const int64_t i12 = i02%ne12;
  598. const int i1 = i13*ne12*ne11 + i12*ne11;
  599. cl_int x_offset = 0;
  600. cl_int y_offset = i1*ne10;
  601. cl_int d_offset = 0;
  602. size_t global = ne00 * ne01;
  603. cl_int ky = ne10;
  604. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  605. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  606. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  607. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  608. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  609. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  610. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  611. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  612. } else {
  613. for (int64_t i01 = 0; i01 < ne01; i01++) {
  614. const int64_t i13 = i03%ne13;
  615. const int64_t i12 = i02%ne12;
  616. const int64_t i11 = i01%ne11;
  617. const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
  618. cl_int x_offset = i01*ne00;
  619. cl_int y_offset = i1*ne10;
  620. cl_int d_offset = i01*ne00;
  621. // compute
  622. size_t global = ne00;
  623. cl_int ky = ne10;
  624. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  625. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  626. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  627. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  628. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  629. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  630. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  631. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  632. }
  633. }
  634. CL_CHECK(clReleaseEvent(ev));
  635. CL_CHECK(clFinish(queue));
  636. // copy dst to host
  637. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  638. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  639. }
  640. }
  641. ggml_cl_pool_free(d_X, x_size);
  642. ggml_cl_pool_free(d_D, d_size);
  643. }
  644. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  645. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  646. ggml_cl_mul_f32(src0, src1, dst);
  647. }
  648. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  649. const int64_t ne00 = src0->ne[0];
  650. const int64_t ne01 = src0->ne[1];
  651. const int64_t ne02 = src0->ne[2];
  652. const int64_t ne03 = src0->ne[3];
  653. const int64_t ne10 = src1->ne[0];
  654. const int64_t ne11 = src1->ne[1];
  655. const int nb2 = dst->nb[2];
  656. const int nb3 = dst->nb[3];
  657. const float alpha = 1.0f;
  658. const float beta = 0.0f;
  659. const int x_ne = ne01 * ne00;
  660. const int y_ne = ne11 * ne10;
  661. const int d_ne = ne11 * ne01;
  662. size_t x_size;
  663. size_t y_size;
  664. size_t d_size;
  665. cl_mem d_X;
  666. if (src0->backend == GGML_BACKEND_CL) {
  667. d_X = (cl_mem) src0->data;
  668. } else {
  669. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
  670. }
  671. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
  672. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  673. for (int64_t i03 = 0; i03 < ne03; i03++) {
  674. for (int64_t i02 = 0; i02 < ne02; i02++) {
  675. // copy data to device
  676. if (src0->backend != GGML_BACKEND_CL) {
  677. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  678. }
  679. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  680. CL_CHECK(clFinish(queue));
  681. // compute
  682. cl_event ev_sgemm;
  683. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  684. clblast::Transpose::kYes, clblast::Transpose::kNo,
  685. ne01, ne11, ne10,
  686. alpha,
  687. d_X, 0, ne00,
  688. d_Y, 0, ne10,
  689. beta,
  690. d_D, 0, ne01,
  691. &queue, &ev_sgemm);
  692. if (status != clblast::StatusCode::kSuccess) {
  693. GGML_ASSERT(false);
  694. }
  695. // copy dst to host
  696. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  697. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  698. }
  699. }
  700. if (src0->backend != GGML_BACKEND_CL) {
  701. ggml_cl_pool_free(d_X, x_size);
  702. }
  703. ggml_cl_pool_free(d_Y, y_size);
  704. ggml_cl_pool_free(d_D, d_size);
  705. }
  706. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  707. GGML_ASSERT(fp16_support);
  708. const int64_t ne00 = src0->ne[0];
  709. const int64_t ne01 = src0->ne[1];
  710. const int64_t ne02 = src0->ne[2];
  711. const int64_t ne03 = src0->ne[3];
  712. const int64_t ne10 = src1->ne[0];
  713. const int64_t ne11 = src1->ne[1];
  714. const int nb10 = src1->nb[0];
  715. const int nb11 = src1->nb[1];
  716. const int nb12 = src1->nb[2];
  717. const int nb13 = src1->nb[3];
  718. const int nb2 = dst->nb[2];
  719. const int nb3 = dst->nb[3];
  720. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  721. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  722. const int x_ne = ne01 * ne00;
  723. const int y_ne = ne11 * ne10;
  724. const int d_ne = ne11 * ne01;
  725. size_t x_size;
  726. size_t y_size;
  727. size_t d_size;
  728. cl_mem d_X;
  729. if (src0->backend == GGML_BACKEND_CL) {
  730. d_X = (cl_mem) src0->data;
  731. } else {
  732. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
  733. }
  734. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
  735. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  736. bool src1_cont_rows = nb10 == sizeof(float);
  737. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  738. for (int64_t i03 = 0; i03 < ne03; i03++) {
  739. for (int64_t i02 = 0; i02 < ne02; i02++) {
  740. // copy src0 to device
  741. if (src0->backend != GGML_BACKEND_CL) {
  742. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  743. }
  744. // convert src1 to fp16
  745. // TODO: use multiple threads
  746. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  747. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  748. if (src1_cont_rows) {
  749. if (src1_cont_cols) {
  750. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  751. }
  752. else {
  753. for (int64_t i01 = 0; i01 < ne11; i01++) {
  754. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  755. }
  756. }
  757. }
  758. else {
  759. for (int64_t i01 = 0; i01 < ne11; i01++) {
  760. for (int64_t i00 = 0; i00 < ne10; i00++) {
  761. // very slow due to no inlining
  762. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  763. }
  764. }
  765. }
  766. // copy src1 to device
  767. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  768. CL_CHECK(clFinish(queue));
  769. // compute
  770. cl_event ev_sgemm;
  771. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  772. clblast::Transpose::kYes, clblast::Transpose::kNo,
  773. ne01, ne11, ne10,
  774. alpha,
  775. d_X, 0, ne00,
  776. d_Y, 0, ne10,
  777. beta,
  778. d_D, 0, ne01,
  779. &queue, &ev_sgemm);
  780. if (status != clblast::StatusCode::kSuccess) {
  781. GGML_ASSERT(false);
  782. }
  783. // copy dst to host, then convert to float
  784. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  785. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  786. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  787. }
  788. }
  789. if (src0->backend != GGML_BACKEND_CL) {
  790. ggml_cl_pool_free(d_X, x_size);
  791. }
  792. ggml_cl_pool_free(d_Y, y_size);
  793. ggml_cl_pool_free(d_D, d_size);
  794. }
  795. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  796. const int64_t ne00 = src0->ne[0];
  797. const int64_t ne01 = src0->ne[1];
  798. const int64_t ne02 = src0->ne[2];
  799. const int64_t ne03 = src0->ne[3];
  800. const int64_t ne10 = src1->ne[0];
  801. const int64_t ne11 = src1->ne[1];
  802. const int nb2 = dst->nb[2];
  803. const int nb3 = dst->nb[3];
  804. const ggml_type type = src0->type;
  805. const bool mul_mat_vec = ne11 == 1;
  806. const float alpha = 1.0f;
  807. const float beta = 0.0f;
  808. const int x_ne = ne01 * ne00;
  809. const int y_ne = ne11 * ne10;
  810. const int d_ne = ne11 * ne01;
  811. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  812. size_t x_size;
  813. size_t y_size;
  814. size_t d_size;
  815. size_t q_size;
  816. cl_mem d_X;
  817. if (!mul_mat_vec) {
  818. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
  819. }
  820. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
  821. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  822. cl_mem d_Q;
  823. if (src0->backend == GGML_BACKEND_CPU) {
  824. d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
  825. }
  826. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  827. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  828. GGML_ASSERT(to_fp32_cl != nullptr);
  829. size_t ev_idx = 0;
  830. std::vector<cl_event> events;
  831. for (int64_t i03 = 0; i03 < ne03; i03++) {
  832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  833. // copy src0 to device if necessary
  834. if (src0->backend == GGML_BACKEND_CPU) {
  835. events.emplace_back();
  836. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  837. } else if (src0->backend == GGML_BACKEND_CL) {
  838. d_Q = (cl_mem) src0->data;
  839. } else {
  840. GGML_ASSERT(false);
  841. }
  842. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  843. // copy src1 to device
  844. events.emplace_back();
  845. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
  846. // compute
  847. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  848. const size_t local = CL_DMMV_BLOCK_SIZE;
  849. const cl_int ncols = ne00;
  850. events.emplace_back();
  851. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  852. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  853. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  854. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  855. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  856. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  857. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  858. // convert src0 to fp32 on device
  859. const size_t global = x_ne;
  860. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  861. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  862. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  863. // copy src1 to device
  864. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  865. events.emplace_back();
  866. // wait for conversion
  867. CL_CHECK(clFinish(queue));
  868. // compute
  869. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  870. clblast::Transpose::kYes, clblast::Transpose::kNo,
  871. ne01, ne11, ne10,
  872. alpha,
  873. d_X, 0, ne00,
  874. d_Y, 0, ne10,
  875. beta,
  876. d_D, 0, ne01,
  877. &queue, events.data() + ev_idx++);
  878. if (status != clblast::StatusCode::kSuccess) {
  879. GGML_ASSERT(false);
  880. }
  881. }
  882. // copy dst to host
  883. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  884. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  885. for (auto *event : events) {
  886. clReleaseEvent(event);
  887. }
  888. ev_idx = 0;
  889. events.clear();
  890. }
  891. }
  892. if (!mul_mat_vec) {
  893. ggml_cl_pool_free(d_X, x_size);
  894. }
  895. ggml_cl_pool_free(d_Y, y_size);
  896. ggml_cl_pool_free(d_D, d_size);
  897. if (src0->backend == GGML_BACKEND_CPU) {
  898. ggml_cl_pool_free(d_Q, q_size);
  899. }
  900. }
  901. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  902. const int64_t ne10 = src1->ne[0];
  903. const int64_t ne0 = dst->ne[0];
  904. const int64_t ne1 = dst->ne[1];
  905. // TODO: find the optimal values for these
  906. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  907. src1->type == GGML_TYPE_F32 &&
  908. dst->type == GGML_TYPE_F32 &&
  909. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) {
  910. return true;
  911. }
  912. return false;
  913. }
  914. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  915. // If device doesn't support FP16
  916. if (!fp16_support) {
  917. return false;
  918. }
  919. size_t src0_sz = ggml_nbytes(src0);
  920. size_t src1_sz = ggml_nbytes(src1);
  921. // mul_mat_q: src0 is converted to fp32 on device
  922. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  923. // mul_mat_f16: src1 is converted to fp16 on cpu
  924. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  925. // choose the smaller one to transfer to the device
  926. // TODO: this is not always the best choice due to the overhead of converting to fp16
  927. return mul_mat_f16_transfer < mul_mat_q_transfer;
  928. }
  929. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  930. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  931. if (src0->type == GGML_TYPE_F32) {
  932. ggml_cl_mul_mat_f32(src0, src1, dst);
  933. }
  934. else if (src0->type == GGML_TYPE_F16) {
  935. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  936. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  937. }
  938. else {
  939. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  940. }
  941. }
  942. else if (ggml_is_quantized(src0->type)) {
  943. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  944. }
  945. else {
  946. GGML_ASSERT(false);
  947. }
  948. }
  949. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  950. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  951. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  952. }
  953. return 0;
  954. }
  955. void ggml_cl_transform_tensor(ggml_tensor * tensor) {
  956. const int64_t ne0 = tensor->ne[0];
  957. const int64_t ne1 = tensor->ne[1];
  958. const int64_t ne2 = tensor->ne[2];
  959. const int64_t ne3 = tensor->ne[3];
  960. const ggml_type type = tensor->type;
  961. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  962. size_t q_size;
  963. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
  964. // copy tensor to device
  965. for (int64_t i3 = 0; i3 < ne3; i3++) {
  966. for (int64_t i2 = 0; i2 < ne2; i2++) {
  967. int i = i3*ne2 + i2;
  968. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  969. }
  970. }
  971. CL_CHECK(clFinish(queue));
  972. tensor->data = dst;
  973. tensor->backend = GGML_BACKEND_CL;
  974. }
  975. void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
  976. cl_int err;
  977. FILE * fp = fopen(fname, "rb");
  978. const size_t size = ggml_nbytes(tensor);
  979. cl_mem dst;
  980. CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
  981. void * buf_host = malloc(size);
  982. #ifdef _WIN32
  983. int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
  984. #else
  985. int ret = fseek(fp, (long) offset, SEEK_SET);
  986. #endif
  987. GGML_ASSERT(ret == 0); // same
  988. size_t ret2 = fread(buf_host, size, 1, fp);
  989. if (ret2 != 1) {
  990. fprintf(stderr, "unexpectedly reached end of file");
  991. exit(1);
  992. }
  993. clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
  994. tensor->data = dst;
  995. free(buf_host);
  996. fclose(fp);
  997. }