ggml.c 519 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #include "ggml-quants-k.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. // if C99 - static_assert is noop
  22. // ref: https://stackoverflow.com/a/53923785/4039976
  23. #ifndef static_assert
  24. #define static_assert(cond, msg) struct global_scope_noop_trick
  25. #endif
  26. #if defined(_WIN32)
  27. #include <windows.h>
  28. typedef volatile LONG atomic_int;
  29. typedef atomic_int atomic_bool;
  30. static void atomic_store(atomic_int* ptr, LONG val) {
  31. InterlockedExchange(ptr, val);
  32. }
  33. static LONG atomic_load(atomic_int* ptr) {
  34. return InterlockedCompareExchange(ptr, 0, 0);
  35. }
  36. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  37. return InterlockedExchangeAdd(ptr, inc);
  38. }
  39. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  40. return atomic_fetch_add(ptr, -(dec));
  41. }
  42. typedef HANDLE pthread_t;
  43. typedef DWORD thread_ret_t;
  44. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  45. (void) unused;
  46. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  47. if (handle == NULL)
  48. {
  49. return EAGAIN;
  50. }
  51. *out = handle;
  52. return 0;
  53. }
  54. static int pthread_join(pthread_t thread, void* unused) {
  55. (void) unused;
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. /*#define GGML_PERF*/
  83. #define GGML_DEBUG 0
  84. #define GGML_GELU_FP16
  85. #define GGML_SILU_FP16
  86. #define GGML_SOFT_MAX_UNROLL 4
  87. #define GGML_VEC_DOT_UNROLL 2
  88. #ifdef GGML_USE_ACCELERATE
  89. // uncomment to use vDSP for soft max computation
  90. // note: not sure if it is actually faster
  91. //#define GGML_SOFT_MAX_ACCELERATE
  92. #endif
  93. #if UINTPTR_MAX == 0xFFFFFFFF
  94. #define GGML_MEM_ALIGN 4
  95. #else
  96. #define GGML_MEM_ALIGN 16
  97. #endif
  98. #if defined(_MSC_VER) || defined(__MINGW32__)
  99. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  100. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  101. #else
  102. inline static void* ggml_aligned_malloc(size_t size) {
  103. void* aligned_memory = NULL;
  104. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  105. if (result != 0) {
  106. // Handle allocation failure
  107. return NULL;
  108. }
  109. return aligned_memory;
  110. }
  111. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  112. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  113. #endif
  114. #define UNUSED(x) (void)(x)
  115. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  116. #if defined(GGML_USE_ACCELERATE)
  117. #include <Accelerate/Accelerate.h>
  118. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  119. #include "ggml-opencl.h"
  120. #endif
  121. #elif defined(GGML_USE_OPENBLAS)
  122. #include <cblas.h>
  123. #elif defined(GGML_USE_CUBLAS)
  124. #include "ggml-cuda.h"
  125. #elif defined(GGML_USE_CLBLAST)
  126. #include "ggml-opencl.h"
  127. #endif
  128. #undef MIN
  129. #undef MAX
  130. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  131. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  132. // floating point type used to accumulate sums
  133. typedef double ggml_float;
  134. // 16-bit float
  135. // on Arm, we use __fp16
  136. // on x86, we use uint16_t
  137. #ifdef __ARM_NEON
  138. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  139. //
  140. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  141. //
  142. #include <arm_neon.h>
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  145. #define GGML_FP16_TO_FP32(x) ((float) (x))
  146. #define GGML_FP32_TO_FP16(x) (x)
  147. #else
  148. #ifdef __wasm_simd128__
  149. #include <wasm_simd128.h>
  150. #else
  151. #ifdef __POWER9_VECTOR__
  152. #include <altivec.h>
  153. #undef bool
  154. #define bool _Bool
  155. #else
  156. #if defined(_MSC_VER) || defined(__MINGW32__)
  157. #include <intrin.h>
  158. #else
  159. #if !defined(__riscv)
  160. #include <immintrin.h>
  161. #endif
  162. #endif
  163. #endif
  164. #endif
  165. #ifdef __F16C__
  166. #ifdef _MSC_VER
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  169. #else
  170. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  171. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  172. #endif
  173. #elif defined(__POWER9_VECTOR__)
  174. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  175. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  176. /* the inline asm below is about 12% faster than the lookup method */
  177. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  178. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  179. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  180. register float f;
  181. register double d;
  182. __asm__(
  183. "mtfprd %0,%2\n"
  184. "xscvhpdp %0,%0\n"
  185. "frsp %1,%0\n" :
  186. /* temp */ "=d"(d),
  187. /* out */ "=f"(f):
  188. /* in */ "r"(h));
  189. return f;
  190. }
  191. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  192. register double d;
  193. register ggml_fp16_t r;
  194. __asm__( /* xscvdphp can work on double or single precision */
  195. "xscvdphp %0,%2\n"
  196. "mffprd %1,%0\n" :
  197. /* temp */ "=d"(d),
  198. /* out */ "=r"(r):
  199. /* in */ "f"(f));
  200. return r;
  201. }
  202. #else
  203. // FP16 <-> FP32
  204. // ref: https://github.com/Maratyszcza/FP16
  205. static inline float fp32_from_bits(uint32_t w) {
  206. union {
  207. uint32_t as_bits;
  208. float as_value;
  209. } fp32;
  210. fp32.as_bits = w;
  211. return fp32.as_value;
  212. }
  213. static inline uint32_t fp32_to_bits(float f) {
  214. union {
  215. float as_value;
  216. uint32_t as_bits;
  217. } fp32;
  218. fp32.as_value = f;
  219. return fp32.as_bits;
  220. }
  221. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  222. const uint32_t w = (uint32_t) h << 16;
  223. const uint32_t sign = w & UINT32_C(0x80000000);
  224. const uint32_t two_w = w + w;
  225. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  226. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  227. const float exp_scale = 0x1.0p-112f;
  228. #else
  229. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  230. #endif
  231. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  232. const uint32_t magic_mask = UINT32_C(126) << 23;
  233. const float magic_bias = 0.5f;
  234. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  235. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  236. const uint32_t result = sign |
  237. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  238. return fp32_from_bits(result);
  239. }
  240. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  241. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  242. const float scale_to_inf = 0x1.0p+112f;
  243. const float scale_to_zero = 0x1.0p-110f;
  244. #else
  245. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  246. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  247. #endif
  248. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  249. const uint32_t w = fp32_to_bits(f);
  250. const uint32_t shl1_w = w + w;
  251. const uint32_t sign = w & UINT32_C(0x80000000);
  252. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  253. if (bias < UINT32_C(0x71000000)) {
  254. bias = UINT32_C(0x71000000);
  255. }
  256. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  257. const uint32_t bits = fp32_to_bits(base);
  258. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  259. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  260. const uint32_t nonsign = exp_bits + mantissa_bits;
  261. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  262. }
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  265. #endif // __F16C__
  266. #endif // __ARM_NEON
  267. //
  268. // global data
  269. //
  270. // precomputed gelu table for f16 (128 KB)
  271. static ggml_fp16_t table_gelu_f16[1 << 16];
  272. // precomputed silu table for f16 (128 KB)
  273. static ggml_fp16_t table_silu_f16[1 << 16];
  274. // precomputed exp table for f16 (128 KB)
  275. static ggml_fp16_t table_exp_f16[1 << 16];
  276. // precomputed f32 table for f16 (256 KB)
  277. static float table_f32_f16[1 << 16];
  278. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  279. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  280. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  281. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  282. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  283. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  284. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  285. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  286. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  287. // precomputed tables for expanding 8bits to 8 bytes:
  288. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  289. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  290. #endif
  291. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  292. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  293. // This is also true for POWER9.
  294. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  295. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  296. uint16_t s;
  297. memcpy(&s, &f, sizeof(uint16_t));
  298. return table_f32_f16[s];
  299. }
  300. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  301. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  302. #endif
  303. // note: do not use these inside ggml.c
  304. // these are meant to be used via the ggml.h API
  305. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  306. return (float) GGML_FP16_TO_FP32(x);
  307. }
  308. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  309. return GGML_FP32_TO_FP16(x);
  310. }
  311. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  312. for (size_t i = 0; i < n; i++) {
  313. y[i] = GGML_FP16_TO_FP32(x[i]);
  314. }
  315. }
  316. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  317. size_t i = 0;
  318. #if defined(__F16C__)
  319. for (; i + 7 < n; i += 8) {
  320. __m256 x_vec = _mm256_loadu_ps(x + i);
  321. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  322. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  323. }
  324. for(; i + 3 < n; i += 4) {
  325. __m128 x_vec = _mm_loadu_ps(x + i);
  326. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  327. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  328. }
  329. #endif
  330. for (; i < n; i++) {
  331. y[i] = GGML_FP32_TO_FP16(x[i]);
  332. }
  333. }
  334. //
  335. // timing
  336. //
  337. #if defined(_MSC_VER) || defined(__MINGW32__)
  338. static int64_t timer_freq;
  339. void ggml_time_init(void) {
  340. LARGE_INTEGER frequency;
  341. QueryPerformanceFrequency(&frequency);
  342. timer_freq = frequency.QuadPart;
  343. }
  344. int64_t ggml_time_ms(void) {
  345. LARGE_INTEGER t;
  346. QueryPerformanceCounter(&t);
  347. return (t.QuadPart * 1000) / timer_freq;
  348. }
  349. int64_t ggml_time_us(void) {
  350. LARGE_INTEGER t;
  351. QueryPerformanceCounter(&t);
  352. return (t.QuadPart * 1000000) / timer_freq;
  353. }
  354. #else
  355. void ggml_time_init(void) {}
  356. int64_t ggml_time_ms(void) {
  357. struct timespec ts;
  358. clock_gettime(CLOCK_MONOTONIC, &ts);
  359. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  360. }
  361. int64_t ggml_time_us(void) {
  362. struct timespec ts;
  363. clock_gettime(CLOCK_MONOTONIC, &ts);
  364. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  365. }
  366. #endif
  367. int64_t ggml_cycles(void) {
  368. return clock();
  369. }
  370. int64_t ggml_cycles_per_ms(void) {
  371. return CLOCKS_PER_SEC/1000;
  372. }
  373. #ifdef GGML_PERF
  374. #define ggml_perf_time_ms() ggml_time_ms()
  375. #define ggml_perf_time_us() ggml_time_us()
  376. #define ggml_perf_cycles() ggml_cycles()
  377. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  378. #else
  379. #define ggml_perf_time_ms() 0
  380. #define ggml_perf_time_us() 0
  381. #define ggml_perf_cycles() 0
  382. #define ggml_perf_cycles_per_ms() 0
  383. #endif
  384. //
  385. // cache line
  386. //
  387. #if defined(__cpp_lib_hardware_interference_size)
  388. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  389. #else
  390. #if defined(__POWER9_VECTOR__)
  391. #define CACHE_LINE_SIZE 128
  392. #else
  393. #define CACHE_LINE_SIZE 64
  394. #endif
  395. #endif
  396. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  397. //
  398. // quantization
  399. //
  400. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  401. // multiply int8_t, add results pairwise twice
  402. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  403. // Get absolute values of x vectors
  404. const __m128i ax = _mm_sign_epi8(x, x);
  405. // Sign the values of the y vectors
  406. const __m128i sy = _mm_sign_epi8(y, x);
  407. // Perform multiplication and create 16-bit values
  408. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  409. const __m128i ones = _mm_set1_epi16(1);
  410. return _mm_madd_epi16(ones, dot);
  411. }
  412. #if __AVX__ || __AVX2__ || __AVX512F__
  413. // horizontally add 8 floats
  414. static inline float hsum_float_8(const __m256 x) {
  415. __m128 res = _mm256_extractf128_ps(x, 1);
  416. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  417. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  418. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  419. return _mm_cvtss_f32(res);
  420. }
  421. // horizontally add 8 int32_t
  422. static inline int hsum_i32_8(const __m256i a) {
  423. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  424. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  425. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. // horizontally add 4 int32_t
  430. static inline int hsum_i32_4(const __m128i a) {
  431. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  432. const __m128i sum64 = _mm_add_epi32(hi64, a);
  433. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  434. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  435. }
  436. #if defined(__AVX2__) || defined(__AVX512F__)
  437. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  438. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  439. uint32_t x32;
  440. memcpy(&x32, x, sizeof(uint32_t));
  441. const __m256i shuf_mask = _mm256_set_epi64x(
  442. 0x0303030303030303, 0x0202020202020202,
  443. 0x0101010101010101, 0x0000000000000000);
  444. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  445. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  446. bytes = _mm256_or_si256(bytes, bit_mask);
  447. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  448. }
  449. // Unpack 32 4-bit fields into 32 bytes
  450. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  451. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  452. {
  453. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  454. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  455. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  456. return _mm256_and_si256(lowMask, bytes);
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  465. #if __AVXVNNI__
  466. const __m256i zero = _mm256_setzero_si256();
  467. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  468. return _mm256_cvtepi32_ps(summed_pairs);
  469. #else
  470. // Perform multiplication and create 16-bit values
  471. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  472. return sum_i16_pairs_float(dot);
  473. #endif
  474. }
  475. // multiply int8_t, add results pairwise twice and return as float vector
  476. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  477. #if __AVXVNNIINT8__
  478. const __m256i zero = _mm256_setzero_si256();
  479. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  480. return _mm256_cvtepi32_ps(summed_pairs);
  481. #else
  482. // Get absolute values of x vectors
  483. const __m256i ax = _mm256_sign_epi8(x, x);
  484. // Sign the values of the y vectors
  485. const __m256i sy = _mm256_sign_epi8(y, x);
  486. return mul_sum_us8_pairs_float(ax, sy);
  487. #endif
  488. }
  489. static inline __m128i packNibbles( __m256i bytes )
  490. {
  491. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  492. #if __AVX512F__
  493. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  494. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  495. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  496. #else
  497. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  498. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  499. __m256i low = _mm256_and_si256( lowByte, bytes );
  500. high = _mm256_srli_epi16( high, 4 );
  501. bytes = _mm256_or_si256( low, high );
  502. // Compress uint16_t lanes into bytes
  503. __m128i r0 = _mm256_castsi256_si128( bytes );
  504. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  505. return _mm_packus_epi16( r0, r1 );
  506. #endif
  507. }
  508. #elif defined(__AVX__)
  509. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  510. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  511. uint32_t x32;
  512. memcpy(&x32, x, sizeof(uint32_t));
  513. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  514. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  515. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  516. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  517. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  518. bytesl = _mm_or_si128(bytesl, bit_mask);
  519. bytesh = _mm_or_si128(bytesh, bit_mask);
  520. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  521. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  522. return _mm256_set_m128i(bytesh, bytesl);
  523. }
  524. // Unpack 32 4-bit fields into 32 bytes
  525. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  526. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  527. {
  528. // Load 16 bytes from memory
  529. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  530. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  531. const __m128i lowMask = _mm_set1_epi8(0xF);
  532. tmpl = _mm_and_si128(lowMask, tmpl);
  533. tmph = _mm_and_si128(lowMask, tmph);
  534. return _mm256_set_m128i(tmph, tmpl);
  535. }
  536. // add int16_t pairwise and return as float vector
  537. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  538. const __m128i ones = _mm_set1_epi16(1);
  539. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  540. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  541. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  542. return _mm256_cvtepi32_ps(summed_pairs);
  543. }
  544. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  545. const __m128i axl = _mm256_castsi256_si128(ax);
  546. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  547. const __m128i syl = _mm256_castsi256_si128(sy);
  548. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  549. // Perform multiplication and create 16-bit values
  550. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  551. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  552. return sum_i16_pairs_float(doth, dotl);
  553. }
  554. // multiply int8_t, add results pairwise twice and return as float vector
  555. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  556. const __m128i xl = _mm256_castsi256_si128(x);
  557. const __m128i xh = _mm256_extractf128_si256(x, 1);
  558. const __m128i yl = _mm256_castsi256_si128(y);
  559. const __m128i yh = _mm256_extractf128_si256(y, 1);
  560. // Get absolute values of x vectors
  561. const __m128i axl = _mm_sign_epi8(xl, xl);
  562. const __m128i axh = _mm_sign_epi8(xh, xh);
  563. // Sign the values of the y vectors
  564. const __m128i syl = _mm_sign_epi8(yl, xl);
  565. const __m128i syh = _mm_sign_epi8(yh, xh);
  566. // Perform multiplication and create 16-bit values
  567. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  568. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  569. return sum_i16_pairs_float(doth, dotl);
  570. }
  571. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  572. {
  573. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  574. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  575. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  576. __m128i low = _mm_and_si128( lowByte, bytes1 );
  577. high = _mm_srli_epi16( high, 4 );
  578. bytes1 = _mm_or_si128( low, high );
  579. high = _mm_andnot_si128( lowByte, bytes2 );
  580. low = _mm_and_si128( lowByte, bytes2 );
  581. high = _mm_srli_epi16( high, 4 );
  582. bytes2 = _mm_or_si128( low, high );
  583. return _mm_packus_epi16( bytes1, bytes2);
  584. }
  585. #endif
  586. #elif defined(__SSSE3__)
  587. // horizontally add 4x4 floats
  588. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  589. __m128 res_0 =_mm_hadd_ps(a, b);
  590. __m128 res_1 =_mm_hadd_ps(c, d);
  591. __m128 res =_mm_hadd_ps(res_0, res_1);
  592. res =_mm_hadd_ps(res, res);
  593. res =_mm_hadd_ps(res, res);
  594. return _mm_cvtss_f32(res);
  595. }
  596. #endif // __AVX__ || __AVX2__ || __AVX512F__
  597. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  598. #if defined(__ARM_NEON)
  599. #if !defined(__aarch64__)
  600. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  601. return
  602. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  603. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  604. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  605. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  606. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  607. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  608. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  609. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  610. }
  611. inline static int16_t vaddvq_s8(int8x16_t v) {
  612. return
  613. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  614. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  615. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  616. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  617. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  618. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  619. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  620. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  621. }
  622. inline static int32_t vaddvq_s16(int16x8_t v) {
  623. return
  624. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  625. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  626. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  627. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  628. }
  629. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  630. return
  631. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  632. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  633. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  634. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  635. }
  636. inline static int32_t vaddvq_s32(int32x4_t v) {
  637. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  638. }
  639. inline static float vaddvq_f32(float32x4_t v) {
  640. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  641. }
  642. inline static float vminvq_f32(float32x4_t v) {
  643. return
  644. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  645. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  646. }
  647. inline static float vmaxvq_f32(float32x4_t v) {
  648. return
  649. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  650. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  651. }
  652. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  653. int32x4_t res;
  654. res[0] = roundf(vgetq_lane_f32(v, 0));
  655. res[1] = roundf(vgetq_lane_f32(v, 1));
  656. res[2] = roundf(vgetq_lane_f32(v, 2));
  657. res[3] = roundf(vgetq_lane_f32(v, 3));
  658. return res;
  659. }
  660. #endif
  661. #endif
  662. #define QK4_0 32
  663. typedef struct {
  664. ggml_fp16_t d; // delta
  665. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  666. } block_q4_0;
  667. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  668. #define QK4_1 32
  669. typedef struct {
  670. ggml_fp16_t d; // delta
  671. ggml_fp16_t m; // min
  672. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  673. } block_q4_1;
  674. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  675. #define QK5_0 32
  676. typedef struct {
  677. ggml_fp16_t d; // delta
  678. uint8_t qh[4]; // 5-th bit of quants
  679. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  680. } block_q5_0;
  681. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  682. #define QK5_1 32
  683. typedef struct {
  684. ggml_fp16_t d; // delta
  685. ggml_fp16_t m; // min
  686. uint8_t qh[4]; // 5-th bit of quants
  687. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  688. } block_q5_1;
  689. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  690. #define QK8_0 32
  691. typedef struct {
  692. ggml_fp16_t d; // delta
  693. int8_t qs[QK8_0]; // quants
  694. } block_q8_0;
  695. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  696. #define QK8_1 32
  697. typedef struct {
  698. float d; // delta
  699. float s; // d * sum(qs[i])
  700. int8_t qs[QK8_1]; // quants
  701. } block_q8_1;
  702. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  703. // reference implementation for deterministic creation of model files
  704. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  705. static const int qk = QK4_0;
  706. assert(k % qk == 0);
  707. const int nb = k / qk;
  708. for (int i = 0; i < nb; i++) {
  709. float amax = 0.0f; // absolute max
  710. float max = 0.0f;
  711. for (int j = 0; j < qk; j++) {
  712. const float v = x[i*qk + j];
  713. if (amax < fabsf(v)) {
  714. amax = fabsf(v);
  715. max = v;
  716. }
  717. }
  718. const float d = max / -8;
  719. const float id = d ? 1.0f/d : 0.0f;
  720. y[i].d = GGML_FP32_TO_FP16(d);
  721. for (int j = 0; j < qk/2; ++j) {
  722. const float x0 = x[i*qk + 0 + j]*id;
  723. const float x1 = x[i*qk + qk/2 + j]*id;
  724. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  725. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  726. y[i].qs[j] = xi0;
  727. y[i].qs[j] |= xi1 << 4;
  728. }
  729. }
  730. }
  731. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  732. quantize_row_q4_0_reference(x, y, k);
  733. }
  734. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  735. const int qk = QK4_1;
  736. assert(k % qk == 0);
  737. const int nb = k / qk;
  738. for (int i = 0; i < nb; i++) {
  739. float min = FLT_MAX;
  740. float max = -FLT_MAX;
  741. for (int j = 0; j < qk; j++) {
  742. const float v = x[i*qk + j];
  743. if (v < min) min = v;
  744. if (v > max) max = v;
  745. }
  746. const float d = (max - min) / ((1 << 4) - 1);
  747. const float id = d ? 1.0f/d : 0.0f;
  748. y[i].d = GGML_FP32_TO_FP16(d);
  749. y[i].m = GGML_FP32_TO_FP16(min);
  750. for (int j = 0; j < qk/2; ++j) {
  751. const float x0 = (x[i*qk + 0 + j] - min)*id;
  752. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  753. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  754. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  755. y[i].qs[j] = xi0;
  756. y[i].qs[j] |= xi1 << 4;
  757. }
  758. }
  759. }
  760. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  761. quantize_row_q4_1_reference(x, y, k);
  762. }
  763. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  764. static const int qk = QK5_0;
  765. assert(k % qk == 0);
  766. const int nb = k / qk;
  767. for (int i = 0; i < nb; i++) {
  768. float amax = 0.0f; // absolute max
  769. float max = 0.0f;
  770. for (int j = 0; j < qk; j++) {
  771. const float v = x[i*qk + j];
  772. if (amax < fabsf(v)) {
  773. amax = fabsf(v);
  774. max = v;
  775. }
  776. }
  777. const float d = max / -16;
  778. const float id = d ? 1.0f/d : 0.0f;
  779. y[i].d = GGML_FP32_TO_FP16(d);
  780. uint32_t qh = 0;
  781. for (int j = 0; j < qk/2; ++j) {
  782. const float x0 = x[i*qk + 0 + j]*id;
  783. const float x1 = x[i*qk + qk/2 + j]*id;
  784. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  785. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  786. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  787. // get the 5-th bit and store it in qh at the right position
  788. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  789. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  790. }
  791. memcpy(&y[i].qh, &qh, sizeof(qh));
  792. }
  793. }
  794. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  795. quantize_row_q5_0_reference(x, y, k);
  796. }
  797. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  798. const int qk = QK5_1;
  799. assert(k % qk == 0);
  800. const int nb = k / qk;
  801. for (int i = 0; i < nb; i++) {
  802. float min = FLT_MAX;
  803. float max = -FLT_MAX;
  804. for (int j = 0; j < qk; j++) {
  805. const float v = x[i*qk + j];
  806. if (v < min) min = v;
  807. if (v > max) max = v;
  808. }
  809. const float d = (max - min) / ((1 << 5) - 1);
  810. const float id = d ? 1.0f/d : 0.0f;
  811. y[i].d = GGML_FP32_TO_FP16(d);
  812. y[i].m = GGML_FP32_TO_FP16(min);
  813. uint32_t qh = 0;
  814. for (int j = 0; j < qk/2; ++j) {
  815. const float x0 = (x[i*qk + 0 + j] - min)*id;
  816. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  817. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  818. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  819. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  820. // get the 5-th bit and store it in qh at the right position
  821. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  822. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  823. }
  824. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  825. }
  826. }
  827. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  828. quantize_row_q5_1_reference(x, y, k);
  829. }
  830. // reference implementation for deterministic creation of model files
  831. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  832. assert(k % QK8_0 == 0);
  833. const int nb = k / QK8_0;
  834. for (int i = 0; i < nb; i++) {
  835. float amax = 0.0f; // absolute max
  836. for (int j = 0; j < QK8_0; j++) {
  837. const float v = x[i*QK8_0 + j];
  838. amax = MAX(amax, fabsf(v));
  839. }
  840. const float d = amax / ((1 << 7) - 1);
  841. const float id = d ? 1.0f/d : 0.0f;
  842. y[i].d = GGML_FP32_TO_FP16(d);
  843. for (int j = 0; j < QK8_0; ++j) {
  844. const float x0 = x[i*QK8_0 + j]*id;
  845. y[i].qs[j] = roundf(x0);
  846. }
  847. }
  848. }
  849. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  850. assert(QK8_0 == 32);
  851. assert(k % QK8_0 == 0);
  852. const int nb = k / QK8_0;
  853. block_q8_0 * restrict y = vy;
  854. #if defined(__ARM_NEON)
  855. for (int i = 0; i < nb; i++) {
  856. float32x4_t srcv [8];
  857. float32x4_t asrcv[8];
  858. float32x4_t amaxv[8];
  859. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  860. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  861. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  862. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  863. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  864. const float amax = vmaxvq_f32(amaxv[0]);
  865. const float d = amax / ((1 << 7) - 1);
  866. const float id = d ? 1.0f/d : 0.0f;
  867. y[i].d = GGML_FP32_TO_FP16(d);
  868. for (int j = 0; j < 8; j++) {
  869. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  870. const int32x4_t vi = vcvtnq_s32_f32(v);
  871. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  872. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  873. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  874. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  875. }
  876. }
  877. #elif defined(__wasm_simd128__)
  878. for (int i = 0; i < nb; i++) {
  879. v128_t srcv [8];
  880. v128_t asrcv[8];
  881. v128_t amaxv[8];
  882. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  883. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  884. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  885. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  886. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  887. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  888. wasm_f32x4_extract_lane(amaxv[0], 1)),
  889. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  890. wasm_f32x4_extract_lane(amaxv[0], 3)));
  891. const float d = amax / ((1 << 7) - 1);
  892. const float id = d ? 1.0f/d : 0.0f;
  893. y[i].d = GGML_FP32_TO_FP16(d);
  894. for (int j = 0; j < 8; j++) {
  895. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  896. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  897. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  898. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  899. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  900. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  901. }
  902. }
  903. #elif defined(__AVX2__) || defined(__AVX__)
  904. for (int i = 0; i < nb; i++) {
  905. // Load elements into 4 AVX vectors
  906. __m256 v0 = _mm256_loadu_ps( x );
  907. __m256 v1 = _mm256_loadu_ps( x + 8 );
  908. __m256 v2 = _mm256_loadu_ps( x + 16 );
  909. __m256 v3 = _mm256_loadu_ps( x + 24 );
  910. x += 32;
  911. // Compute max(abs(e)) for the block
  912. const __m256 signBit = _mm256_set1_ps( -0.0f );
  913. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  914. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  915. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  916. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  917. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  918. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  919. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  920. const float maxScalar = _mm_cvtss_f32( max4 );
  921. // Quantize these floats
  922. const float d = maxScalar / 127.f;
  923. y[i].d = GGML_FP32_TO_FP16(d);
  924. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  925. const __m256 mul = _mm256_set1_ps( id );
  926. // Apply the multiplier
  927. v0 = _mm256_mul_ps( v0, mul );
  928. v1 = _mm256_mul_ps( v1, mul );
  929. v2 = _mm256_mul_ps( v2, mul );
  930. v3 = _mm256_mul_ps( v3, mul );
  931. // Round to nearest integer
  932. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  933. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  934. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  935. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  936. // Convert floats to integers
  937. __m256i i0 = _mm256_cvtps_epi32( v0 );
  938. __m256i i1 = _mm256_cvtps_epi32( v1 );
  939. __m256i i2 = _mm256_cvtps_epi32( v2 );
  940. __m256i i3 = _mm256_cvtps_epi32( v3 );
  941. #if defined(__AVX2__)
  942. // Convert int32 to int16
  943. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  944. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  945. // Convert int16 to int8
  946. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  947. // We got our precious signed bytes, but the order is now wrong
  948. // These AVX2 pack instructions process 16-byte pieces independently
  949. // The following instruction is fixing the order
  950. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  951. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  952. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  953. #else
  954. // Since we don't have in AVX some necessary functions,
  955. // we split the registers in half and call AVX2 analogs from SSE
  956. __m128i ni0 = _mm256_castsi256_si128( i0 );
  957. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  958. __m128i ni2 = _mm256_castsi256_si128( i1 );
  959. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  960. __m128i ni4 = _mm256_castsi256_si128( i2 );
  961. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  962. __m128i ni6 = _mm256_castsi256_si128( i3 );
  963. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  964. // Convert int32 to int16
  965. ni0 = _mm_packs_epi32( ni0, ni1 );
  966. ni2 = _mm_packs_epi32( ni2, ni3 );
  967. ni4 = _mm_packs_epi32( ni4, ni5 );
  968. ni6 = _mm_packs_epi32( ni6, ni7 );
  969. // Convert int16 to int8
  970. ni0 = _mm_packs_epi16( ni0, ni2 );
  971. ni4 = _mm_packs_epi16( ni4, ni6 );
  972. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  973. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  974. #endif
  975. }
  976. #else
  977. // scalar
  978. quantize_row_q8_0_reference(x, y, k);
  979. #endif
  980. }
  981. // reference implementation for deterministic creation of model files
  982. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  983. assert(QK8_1 == 32);
  984. assert(k % QK8_1 == 0);
  985. const int nb = k / QK8_1;
  986. for (int i = 0; i < nb; i++) {
  987. float amax = 0.0f; // absolute max
  988. for (int j = 0; j < QK8_1; j++) {
  989. const float v = x[i*QK8_1 + j];
  990. amax = MAX(amax, fabsf(v));
  991. }
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = d;
  995. int sum = 0;
  996. for (int j = 0; j < QK8_1/2; ++j) {
  997. const float v0 = x[i*QK8_1 + j]*id;
  998. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  999. y[i].qs[ j] = roundf(v0);
  1000. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1001. sum += y[i].qs[ j];
  1002. sum += y[i].qs[QK8_1/2 + j];
  1003. }
  1004. y[i].s = sum*d;
  1005. }
  1006. }
  1007. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1008. assert(k % QK8_1 == 0);
  1009. const int nb = k / QK8_1;
  1010. block_q8_1 * restrict y = vy;
  1011. #if defined(__ARM_NEON)
  1012. for (int i = 0; i < nb; i++) {
  1013. float32x4_t srcv [8];
  1014. float32x4_t asrcv[8];
  1015. float32x4_t amaxv[8];
  1016. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1017. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1018. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1019. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1020. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1021. const float amax = vmaxvq_f32(amaxv[0]);
  1022. const float d = amax / ((1 << 7) - 1);
  1023. const float id = d ? 1.0f/d : 0.0f;
  1024. y[i].d = d;
  1025. int32x4_t accv = vdupq_n_s32(0);
  1026. for (int j = 0; j < 8; j++) {
  1027. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1028. const int32x4_t vi = vcvtnq_s32_f32(v);
  1029. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1030. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1031. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1032. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1033. accv = vaddq_s32(accv, vi);
  1034. }
  1035. y[i].s = d * vaddvq_s32(accv);
  1036. }
  1037. #elif defined(__wasm_simd128__)
  1038. for (int i = 0; i < nb; i++) {
  1039. v128_t srcv [8];
  1040. v128_t asrcv[8];
  1041. v128_t amaxv[8];
  1042. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1043. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1044. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1045. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1046. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1047. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1048. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1049. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1050. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1051. const float d = amax / ((1 << 7) - 1);
  1052. const float id = d ? 1.0f/d : 0.0f;
  1053. y[i].d = d;
  1054. v128_t accv = wasm_i32x4_splat(0);
  1055. for (int j = 0; j < 8; j++) {
  1056. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1057. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1058. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1059. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1060. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1061. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1062. accv = wasm_i32x4_add(accv, vi);
  1063. }
  1064. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1065. wasm_i32x4_extract_lane(accv, 1) +
  1066. wasm_i32x4_extract_lane(accv, 2) +
  1067. wasm_i32x4_extract_lane(accv, 3));
  1068. }
  1069. #elif defined(__AVX2__) || defined(__AVX__)
  1070. for (int i = 0; i < nb; i++) {
  1071. // Load elements into 4 AVX vectors
  1072. __m256 v0 = _mm256_loadu_ps( x );
  1073. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1074. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1075. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1076. x += 32;
  1077. // Compute max(abs(e)) for the block
  1078. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1079. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1080. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1081. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1082. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1083. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1084. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1085. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1086. const float maxScalar = _mm_cvtss_f32( max4 );
  1087. // Quantize these floats
  1088. const float d = maxScalar / 127.f;
  1089. y[i].d = d;
  1090. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1091. const __m256 mul = _mm256_set1_ps( id );
  1092. // Apply the multiplier
  1093. v0 = _mm256_mul_ps( v0, mul );
  1094. v1 = _mm256_mul_ps( v1, mul );
  1095. v2 = _mm256_mul_ps( v2, mul );
  1096. v3 = _mm256_mul_ps( v3, mul );
  1097. // Round to nearest integer
  1098. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1099. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1100. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1101. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1102. // Convert floats to integers
  1103. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1104. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1105. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1106. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1107. #if defined(__AVX2__)
  1108. // Compute the sum of the quants and set y[i].s
  1109. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1110. // Convert int32 to int16
  1111. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1112. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1113. // Convert int16 to int8
  1114. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1115. // We got our precious signed bytes, but the order is now wrong
  1116. // These AVX2 pack instructions process 16-byte pieces independently
  1117. // The following instruction is fixing the order
  1118. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1119. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1120. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1121. #else
  1122. // Since we don't have in AVX some necessary functions,
  1123. // we split the registers in half and call AVX2 analogs from SSE
  1124. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1125. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1126. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1127. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1128. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1129. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1130. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1131. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1132. // Compute the sum of the quants and set y[i].s
  1133. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1134. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1135. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1136. // Convert int32 to int16
  1137. ni0 = _mm_packs_epi32( ni0, ni1 );
  1138. ni2 = _mm_packs_epi32( ni2, ni3 );
  1139. ni4 = _mm_packs_epi32( ni4, ni5 );
  1140. ni6 = _mm_packs_epi32( ni6, ni7 );
  1141. // Convert int16 to int8
  1142. ni0 = _mm_packs_epi16( ni0, ni2 );
  1143. ni4 = _mm_packs_epi16( ni4, ni6 );
  1144. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1145. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1146. #endif
  1147. }
  1148. #else
  1149. // scalar
  1150. quantize_row_q8_1_reference(x, y, k);
  1151. #endif
  1152. }
  1153. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1154. static const int qk = QK4_0;
  1155. assert(k % qk == 0);
  1156. const int nb = k / qk;
  1157. for (int i = 0; i < nb; i++) {
  1158. const float d = GGML_FP16_TO_FP32(x[i].d);
  1159. for (int j = 0; j < qk/2; ++j) {
  1160. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1161. const int x1 = (x[i].qs[j] >> 4) - 8;
  1162. y[i*qk + j + 0 ] = x0*d;
  1163. y[i*qk + j + qk/2] = x1*d;
  1164. }
  1165. }
  1166. }
  1167. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1168. static const int qk = QK4_1;
  1169. assert(k % qk == 0);
  1170. const int nb = k / qk;
  1171. for (int i = 0; i < nb; i++) {
  1172. const float d = GGML_FP16_TO_FP32(x[i].d);
  1173. const float m = GGML_FP16_TO_FP32(x[i].m);
  1174. for (int j = 0; j < qk/2; ++j) {
  1175. const int x0 = (x[i].qs[j] & 0x0F);
  1176. const int x1 = (x[i].qs[j] >> 4);
  1177. y[i*qk + j + 0 ] = x0*d + m;
  1178. y[i*qk + j + qk/2] = x1*d + m;
  1179. }
  1180. }
  1181. }
  1182. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1183. static const int qk = QK5_0;
  1184. assert(k % qk == 0);
  1185. const int nb = k / qk;
  1186. for (int i = 0; i < nb; i++) {
  1187. const float d = GGML_FP16_TO_FP32(x[i].d);
  1188. uint32_t qh;
  1189. memcpy(&qh, x[i].qh, sizeof(qh));
  1190. for (int j = 0; j < qk/2; ++j) {
  1191. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1192. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1193. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1194. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1195. y[i*qk + j + 0 ] = x0*d;
  1196. y[i*qk + j + qk/2] = x1*d;
  1197. }
  1198. }
  1199. }
  1200. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1201. static const int qk = QK5_1;
  1202. assert(k % qk == 0);
  1203. const int nb = k / qk;
  1204. for (int i = 0; i < nb; i++) {
  1205. const float d = GGML_FP16_TO_FP32(x[i].d);
  1206. const float m = GGML_FP16_TO_FP32(x[i].m);
  1207. uint32_t qh;
  1208. memcpy(&qh, x[i].qh, sizeof(qh));
  1209. for (int j = 0; j < qk/2; ++j) {
  1210. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1211. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1212. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1213. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1214. y[i*qk + j + 0 ] = x0*d + m;
  1215. y[i*qk + j + qk/2] = x1*d + m;
  1216. }
  1217. }
  1218. }
  1219. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1220. static const int qk = QK8_0;
  1221. assert(k % qk == 0);
  1222. const int nb = k / qk;
  1223. const block_q8_0 * restrict x = vx;
  1224. for (int i = 0; i < nb; i++) {
  1225. const float d = GGML_FP16_TO_FP32(x[i].d);
  1226. for (int j = 0; j < qk; ++j) {
  1227. y[i*qk + j] = x[i].qs[j]*d;
  1228. }
  1229. }
  1230. }
  1231. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1234. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1235. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1236. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1237. [GGML_TYPE_Q4_0] = {
  1238. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1239. .quantize_row_q = quantize_row_q4_0,
  1240. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1241. .quantize_row_q_dot = quantize_row_q8_0,
  1242. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1243. .vec_dot_type = GGML_TYPE_Q8_0,
  1244. },
  1245. [GGML_TYPE_Q4_1] = {
  1246. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1247. .quantize_row_q = quantize_row_q4_1,
  1248. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1249. .quantize_row_q_dot = quantize_row_q8_1,
  1250. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1251. .vec_dot_type = GGML_TYPE_Q8_1,
  1252. },
  1253. [GGML_TYPE_Q5_0] = {
  1254. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1255. .quantize_row_q = quantize_row_q5_0,
  1256. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1257. .quantize_row_q_dot = quantize_row_q8_0,
  1258. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1259. .vec_dot_type = GGML_TYPE_Q8_0,
  1260. },
  1261. [GGML_TYPE_Q5_1] = {
  1262. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1263. .quantize_row_q = quantize_row_q5_1,
  1264. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1265. .quantize_row_q_dot = quantize_row_q8_1,
  1266. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1267. .vec_dot_type = GGML_TYPE_Q8_1,
  1268. },
  1269. [GGML_TYPE_Q8_0] = {
  1270. .dequantize_row_q = dequantize_row_q8_0,
  1271. .quantize_row_q = quantize_row_q8_0,
  1272. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1273. .quantize_row_q_dot = quantize_row_q8_0,
  1274. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1275. .vec_dot_type = GGML_TYPE_Q8_0,
  1276. },
  1277. [GGML_TYPE_Q8_1] = {
  1278. .dequantize_row_q = NULL, // TODO
  1279. .quantize_row_q = quantize_row_q8_1,
  1280. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1281. .quantize_row_q_dot = quantize_row_q8_1,
  1282. .vec_dot_q = NULL, // TODO
  1283. .vec_dot_type = GGML_TYPE_Q8_1,
  1284. },
  1285. [GGML_TYPE_Q2_K] = {
  1286. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k,
  1287. .quantize_row_q = quantize_row_q2_k,
  1288. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference,
  1289. .quantize_row_q_dot = quantize_row_q8_k,
  1290. .vec_dot_q = ggml_vec_dot_q2_k_q8_k,
  1291. .vec_dot_type = GGML_TYPE_Q8_K,
  1292. },
  1293. [GGML_TYPE_Q3_K] = {
  1294. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k,
  1295. .quantize_row_q = quantize_row_q3_k,
  1296. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference,
  1297. .quantize_row_q_dot = quantize_row_q8_k,
  1298. .vec_dot_q = ggml_vec_dot_q3_k_q8_k,
  1299. .vec_dot_type = GGML_TYPE_Q8_K,
  1300. },
  1301. [GGML_TYPE_Q4_K] = {
  1302. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k,
  1303. .quantize_row_q = quantize_row_q4_k,
  1304. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference,
  1305. .quantize_row_q_dot = quantize_row_q8_k,
  1306. .vec_dot_q = ggml_vec_dot_q4_k_q8_k,
  1307. .vec_dot_type = GGML_TYPE_Q8_K,
  1308. },
  1309. [GGML_TYPE_Q5_K] = {
  1310. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k,
  1311. .quantize_row_q = quantize_row_q5_k,
  1312. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference,
  1313. .quantize_row_q_dot = quantize_row_q8_k,
  1314. .vec_dot_q = ggml_vec_dot_q5_k_q8_k,
  1315. .vec_dot_type = GGML_TYPE_Q8_K,
  1316. },
  1317. [GGML_TYPE_Q6_K] = {
  1318. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k,
  1319. .quantize_row_q = quantize_row_q6_k,
  1320. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference,
  1321. .quantize_row_q_dot = quantize_row_q8_k,
  1322. .vec_dot_q = ggml_vec_dot_q6_k_q8_k,
  1323. .vec_dot_type = GGML_TYPE_Q8_K,
  1324. },
  1325. };
  1326. // For internal test use
  1327. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1328. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1329. return quantize_fns[i];
  1330. }
  1331. //
  1332. // simd mappings
  1333. //
  1334. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1335. // we then implement the fundamental computation operations below using only these macros
  1336. // adding support for new architectures requires to define the corresponding SIMD macros
  1337. //
  1338. // GGML_F32_STEP / GGML_F16_STEP
  1339. // number of elements to process in a single step
  1340. //
  1341. // GGML_F32_EPR / GGML_F16_EPR
  1342. // number of elements to fit in a single register
  1343. //
  1344. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1345. #define GGML_SIMD
  1346. // F32 NEON
  1347. #define GGML_F32_STEP 16
  1348. #define GGML_F32_EPR 4
  1349. #define GGML_F32x4 float32x4_t
  1350. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1351. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1352. #define GGML_F32x4_LOAD vld1q_f32
  1353. #define GGML_F32x4_STORE vst1q_f32
  1354. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1355. #define GGML_F32x4_ADD vaddq_f32
  1356. #define GGML_F32x4_MUL vmulq_f32
  1357. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1358. #define GGML_F32x4_REDUCE(res, x) \
  1359. { \
  1360. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1361. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1362. } \
  1363. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1364. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1365. } \
  1366. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1367. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1368. } \
  1369. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1370. }
  1371. #define GGML_F32_VEC GGML_F32x4
  1372. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1373. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1374. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1375. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1376. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1377. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1378. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1379. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1380. // F16 NEON
  1381. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1382. #define GGML_F16_STEP 32
  1383. #define GGML_F16_EPR 8
  1384. #define GGML_F16x8 float16x8_t
  1385. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1386. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1387. #define GGML_F16x8_LOAD vld1q_f16
  1388. #define GGML_F16x8_STORE vst1q_f16
  1389. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1390. #define GGML_F16x8_ADD vaddq_f16
  1391. #define GGML_F16x8_MUL vmulq_f16
  1392. #define GGML_F16x8_REDUCE(res, x) \
  1393. { \
  1394. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1395. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1396. } \
  1397. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1398. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1399. } \
  1400. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1401. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1402. } \
  1403. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1404. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1405. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1406. }
  1407. #define GGML_F16_VEC GGML_F16x8
  1408. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1409. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1410. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1411. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1412. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1413. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1414. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1415. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1416. #else
  1417. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1418. // and take advantage of the vcvt_ functions to convert to/from FP16
  1419. #define GGML_F16_STEP 16
  1420. #define GGML_F16_EPR 4
  1421. #define GGML_F32Cx4 float32x4_t
  1422. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1423. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1424. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1425. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1426. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1427. #define GGML_F32Cx4_ADD vaddq_f32
  1428. #define GGML_F32Cx4_MUL vmulq_f32
  1429. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1430. #define GGML_F16_VEC GGML_F32Cx4
  1431. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1432. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1433. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1434. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1435. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1436. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1437. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1438. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1439. #endif
  1440. #elif defined(__AVX__)
  1441. #define GGML_SIMD
  1442. // F32 AVX
  1443. #define GGML_F32_STEP 32
  1444. #define GGML_F32_EPR 8
  1445. #define GGML_F32x8 __m256
  1446. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1447. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1448. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1449. #define GGML_F32x8_STORE _mm256_storeu_ps
  1450. #if defined(__FMA__)
  1451. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1452. #else
  1453. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1454. #endif
  1455. #define GGML_F32x8_ADD _mm256_add_ps
  1456. #define GGML_F32x8_MUL _mm256_mul_ps
  1457. #define GGML_F32x8_REDUCE(res, x) \
  1458. { \
  1459. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1460. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1461. } \
  1462. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1463. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1464. } \
  1465. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1466. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1467. } \
  1468. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1469. _mm256_extractf128_ps(x[0], 1)); \
  1470. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1471. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1472. }
  1473. // TODO: is this optimal ?
  1474. #define GGML_F32_VEC GGML_F32x8
  1475. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1476. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1477. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1478. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1479. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1480. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1481. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1482. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1483. // F16 AVX
  1484. #define GGML_F16_STEP 32
  1485. #define GGML_F16_EPR 8
  1486. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1487. #define GGML_F32Cx8 __m256
  1488. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1489. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1490. #if defined(__F16C__)
  1491. // the _mm256_cvt intrinsics require F16C
  1492. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1493. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1494. #else
  1495. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1496. float tmp[8];
  1497. for (int i = 0; i < 8; i++) {
  1498. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1499. }
  1500. return _mm256_loadu_ps(tmp);
  1501. }
  1502. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1503. float arr[8];
  1504. _mm256_storeu_ps(arr, y);
  1505. for (int i = 0; i < 8; i++)
  1506. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1507. }
  1508. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1509. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1510. #endif
  1511. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1512. #define GGML_F32Cx8_ADD _mm256_add_ps
  1513. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1514. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1515. #define GGML_F16_VEC GGML_F32Cx8
  1516. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1517. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1518. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1519. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1520. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1521. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1522. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1523. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1524. #elif defined(__POWER9_VECTOR__)
  1525. #define GGML_SIMD
  1526. // F32 POWER9
  1527. #define GGML_F32_STEP 32
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 vector float
  1530. #define GGML_F32x4_ZERO 0.0f
  1531. #define GGML_F32x4_SET1 vec_splats
  1532. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1533. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1534. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1535. #define GGML_F32x4_ADD vec_add
  1536. #define GGML_F32x4_MUL vec_mul
  1537. #define GGML_F32x4_REDUCE(res, x) \
  1538. { \
  1539. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1540. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1541. } \
  1542. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1543. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1544. } \
  1545. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1546. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1547. } \
  1548. res = vec_extract(x[0], 0) + \
  1549. vec_extract(x[0], 1) + \
  1550. vec_extract(x[0], 2) + \
  1551. vec_extract(x[0], 3); \
  1552. }
  1553. #define GGML_F32_VEC GGML_F32x4
  1554. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1555. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1556. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1557. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1558. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1559. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1560. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1561. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1562. // F16 POWER9
  1563. #define GGML_F16_STEP GGML_F32_STEP
  1564. #define GGML_F16_EPR GGML_F32_EPR
  1565. #define GGML_F16_VEC GGML_F32x4
  1566. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1567. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1568. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1569. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1570. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1571. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1572. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1573. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1574. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1575. #define GGML_F16_VEC_STORE(p, r, i) \
  1576. if (i & 0x1) \
  1577. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1578. r[i - GGML_ENDIAN_BYTE(0)]), \
  1579. 0, p - GGML_F16_EPR)
  1580. #elif defined(__wasm_simd128__)
  1581. #define GGML_SIMD
  1582. // F32 WASM
  1583. #define GGML_F32_STEP 16
  1584. #define GGML_F32_EPR 4
  1585. #define GGML_F32x4 v128_t
  1586. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1587. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1588. #define GGML_F32x4_LOAD wasm_v128_load
  1589. #define GGML_F32x4_STORE wasm_v128_store
  1590. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1591. #define GGML_F32x4_ADD wasm_f32x4_add
  1592. #define GGML_F32x4_MUL wasm_f32x4_mul
  1593. #define GGML_F32x4_REDUCE(res, x) \
  1594. { \
  1595. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1596. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1597. } \
  1598. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1599. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1600. } \
  1601. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1602. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1603. } \
  1604. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1605. wasm_f32x4_extract_lane(x[0], 1) + \
  1606. wasm_f32x4_extract_lane(x[0], 2) + \
  1607. wasm_f32x4_extract_lane(x[0], 3); \
  1608. }
  1609. #define GGML_F32_VEC GGML_F32x4
  1610. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1611. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1612. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1613. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1614. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1615. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1616. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1617. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1618. // F16 WASM
  1619. #define GGML_F16_STEP 16
  1620. #define GGML_F16_EPR 4
  1621. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1622. float tmp[4];
  1623. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1624. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1625. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1626. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1627. return wasm_v128_load(tmp);
  1628. }
  1629. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1630. float tmp[4];
  1631. wasm_v128_store(tmp, x);
  1632. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1633. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1634. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1635. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1636. }
  1637. #define GGML_F16x4 v128_t
  1638. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1639. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1640. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1641. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1642. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1643. #define GGML_F16x4_ADD wasm_f32x4_add
  1644. #define GGML_F16x4_MUL wasm_f32x4_mul
  1645. #define GGML_F16x4_REDUCE(res, x) \
  1646. { \
  1647. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1648. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1651. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1652. } \
  1653. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1654. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1655. } \
  1656. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1657. wasm_f32x4_extract_lane(x[0], 1) + \
  1658. wasm_f32x4_extract_lane(x[0], 2) + \
  1659. wasm_f32x4_extract_lane(x[0], 3); \
  1660. }
  1661. #define GGML_F16_VEC GGML_F16x4
  1662. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1663. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1664. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1665. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1666. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1667. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1668. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1669. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1670. #elif defined(__SSE3__)
  1671. #define GGML_SIMD
  1672. // F32 SSE
  1673. #define GGML_F32_STEP 32
  1674. #define GGML_F32_EPR 4
  1675. #define GGML_F32x4 __m128
  1676. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1677. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1678. #define GGML_F32x4_LOAD _mm_loadu_ps
  1679. #define GGML_F32x4_STORE _mm_storeu_ps
  1680. #if defined(__FMA__)
  1681. // TODO: Does this work?
  1682. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1683. #else
  1684. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1685. #endif
  1686. #define GGML_F32x4_ADD _mm_add_ps
  1687. #define GGML_F32x4_MUL _mm_mul_ps
  1688. #define GGML_F32x4_REDUCE(res, x) \
  1689. { \
  1690. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1691. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1692. } \
  1693. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1694. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1695. } \
  1696. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1697. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1698. } \
  1699. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1700. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1701. }
  1702. // TODO: is this optimal ?
  1703. #define GGML_F32_VEC GGML_F32x4
  1704. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1705. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1706. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1707. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1708. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1709. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1710. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1711. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1712. // F16 SSE
  1713. #define GGML_F16_STEP 32
  1714. #define GGML_F16_EPR 4
  1715. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1716. float tmp[4];
  1717. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1718. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1719. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1720. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1721. return _mm_loadu_ps(tmp);
  1722. }
  1723. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1724. float arr[4];
  1725. _mm_storeu_ps(arr, y);
  1726. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1727. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1728. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1729. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1730. }
  1731. #define GGML_F32Cx4 __m128
  1732. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1733. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1734. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1735. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1736. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1737. #define GGML_F32Cx4_ADD _mm_add_ps
  1738. #define GGML_F32Cx4_MUL _mm_mul_ps
  1739. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1740. #define GGML_F16_VEC GGML_F32Cx4
  1741. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1742. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1743. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1744. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1745. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1746. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1747. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1748. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1749. #endif
  1750. // GGML_F32_ARR / GGML_F16_ARR
  1751. // number of registers to use per step
  1752. #ifdef GGML_SIMD
  1753. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1754. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1755. #endif
  1756. //
  1757. // fundamental operations
  1758. //
  1759. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1760. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1761. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1762. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1763. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1764. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1765. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1766. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1767. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1768. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1769. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1770. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1771. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1772. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1773. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1774. #ifdef GGML_SIMD
  1775. float sumf = 0.0f;
  1776. const int np = (n & ~(GGML_F32_STEP - 1));
  1777. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1778. GGML_F32_VEC ax[GGML_F32_ARR];
  1779. GGML_F32_VEC ay[GGML_F32_ARR];
  1780. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1781. for (int j = 0; j < GGML_F32_ARR; j++) {
  1782. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1783. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1784. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1785. }
  1786. }
  1787. // reduce sum0..sum3 to sum0
  1788. GGML_F32_VEC_REDUCE(sumf, sum);
  1789. // leftovers
  1790. for (int i = np; i < n; ++i) {
  1791. sumf += x[i]*y[i];
  1792. }
  1793. #else
  1794. // scalar
  1795. ggml_float sumf = 0.0;
  1796. for (int i = 0; i < n; ++i) {
  1797. sumf += (ggml_float)(x[i]*y[i]);
  1798. }
  1799. #endif
  1800. *s = sumf;
  1801. }
  1802. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1803. ggml_float sumf = 0.0;
  1804. #if defined(GGML_SIMD)
  1805. const int np = (n & ~(GGML_F16_STEP - 1));
  1806. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1807. GGML_F16_VEC ax[GGML_F16_ARR];
  1808. GGML_F16_VEC ay[GGML_F16_ARR];
  1809. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1810. for (int j = 0; j < GGML_F16_ARR; j++) {
  1811. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1812. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1813. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1814. }
  1815. }
  1816. // reduce sum0..sum3 to sum0
  1817. GGML_F16_VEC_REDUCE(sumf, sum);
  1818. // leftovers
  1819. for (int i = np; i < n; ++i) {
  1820. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1821. }
  1822. #else
  1823. for (int i = 0; i < n; ++i) {
  1824. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1825. }
  1826. #endif
  1827. *s = sumf;
  1828. }
  1829. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1830. const int qk = QK8_0;
  1831. const int nb = n / qk;
  1832. assert(n % qk == 0);
  1833. assert(nb % 2 == 0);
  1834. const block_q4_0 * restrict x = vx;
  1835. const block_q8_0 * restrict y = vy;
  1836. #if defined(__ARM_NEON)
  1837. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1838. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1839. for (int i = 0; i < nb; i += 2) {
  1840. const block_q4_0 * restrict x0 = &x[i + 0];
  1841. const block_q4_0 * restrict x1 = &x[i + 1];
  1842. const block_q8_0 * restrict y0 = &y[i + 0];
  1843. const block_q8_0 * restrict y1 = &y[i + 1];
  1844. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1845. const int8x16_t s8b = vdupq_n_s8(0x8);
  1846. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1847. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1848. // 4-bit -> 8-bit
  1849. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1850. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1851. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1852. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1853. // sub 8
  1854. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1855. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1856. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1857. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1858. // load y
  1859. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1860. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1861. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1862. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1863. #if defined(__ARM_FEATURE_DOTPROD)
  1864. // dot product into int32x4_t
  1865. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1866. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1867. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1868. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1869. #else
  1870. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1871. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1872. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1873. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1874. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1875. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1876. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1877. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1878. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1879. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1880. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1881. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1882. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1883. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1884. #endif
  1885. }
  1886. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1887. #elif defined(__AVX2__)
  1888. // Initialize accumulator with zeros
  1889. __m256 acc = _mm256_setzero_ps();
  1890. // Main loop
  1891. for (int i = 0; i < nb; ++i) {
  1892. /* Compute combined scale for the block */
  1893. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1894. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1895. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1896. const __m256i off = _mm256_set1_epi8( 8 );
  1897. bx = _mm256_sub_epi8( bx, off );
  1898. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1899. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1900. /* Multiply q with scale and accumulate */
  1901. acc = _mm256_fmadd_ps( d, q, acc );
  1902. }
  1903. *s = hsum_float_8(acc);
  1904. #elif defined(__AVX__)
  1905. // Initialize accumulator with zeros
  1906. __m256 acc = _mm256_setzero_ps();
  1907. // Main loop
  1908. for (int i = 0; i < nb; ++i) {
  1909. // Compute combined scale for the block
  1910. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1911. const __m128i lowMask = _mm_set1_epi8(0xF);
  1912. const __m128i off = _mm_set1_epi8(8);
  1913. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1914. __m128i bx = _mm_and_si128(lowMask, tmp);
  1915. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1916. bx = _mm_sub_epi8(bx, off);
  1917. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1918. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1919. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1920. bx = _mm_sub_epi8(bx, off);
  1921. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1922. // Convert int32_t to float
  1923. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1924. // Apply the scale, and accumulate
  1925. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1926. }
  1927. *s = hsum_float_8(acc);
  1928. #elif defined(__SSSE3__)
  1929. // set constants
  1930. const __m128i lowMask = _mm_set1_epi8(0xF);
  1931. const __m128i off = _mm_set1_epi8(8);
  1932. // Initialize accumulator with zeros
  1933. __m128 acc_0 = _mm_setzero_ps();
  1934. __m128 acc_1 = _mm_setzero_ps();
  1935. __m128 acc_2 = _mm_setzero_ps();
  1936. __m128 acc_3 = _mm_setzero_ps();
  1937. // First round without accumulation
  1938. {
  1939. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1940. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1941. // Compute combined scale for the block 0 and 1
  1942. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1943. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1944. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1945. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1946. bx_0 = _mm_sub_epi8(bx_0, off);
  1947. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1948. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1949. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1950. bx_1 = _mm_sub_epi8(bx_1, off);
  1951. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1952. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1953. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1954. // Compute combined scale for the block 2 and 3
  1955. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1956. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1957. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1958. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1959. bx_2 = _mm_sub_epi8(bx_2, off);
  1960. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1961. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1962. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1963. bx_3 = _mm_sub_epi8(bx_3, off);
  1964. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1965. // Convert int32_t to float
  1966. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1967. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1968. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1969. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1970. // Apply the scale
  1971. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1972. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1973. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1974. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1975. }
  1976. // Main loop
  1977. for (int i = 2; i < nb; i+=2) {
  1978. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1979. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1980. // Compute combined scale for the block 0 and 1
  1981. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1982. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1983. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1984. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1985. bx_0 = _mm_sub_epi8(bx_0, off);
  1986. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1987. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1988. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1989. bx_1 = _mm_sub_epi8(bx_1, off);
  1990. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1991. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1992. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1993. // Compute combined scale for the block 2 and 3
  1994. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1995. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1996. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1997. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1998. bx_2 = _mm_sub_epi8(bx_2, off);
  1999. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2000. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2001. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2002. bx_3 = _mm_sub_epi8(bx_3, off);
  2003. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2004. // Convert int32_t to float
  2005. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2006. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2007. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2008. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2009. // Apply the scale
  2010. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2011. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2012. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2013. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2014. // Acummulate
  2015. acc_0 = _mm_add_ps(p0_d, acc_0);
  2016. acc_1 = _mm_add_ps(p1_d, acc_1);
  2017. acc_2 = _mm_add_ps(p2_d, acc_2);
  2018. acc_3 = _mm_add_ps(p3_d, acc_3);
  2019. }
  2020. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2021. #else
  2022. // scalar
  2023. float sumf = 0.0;
  2024. for (int i = 0; i < nb; i++) {
  2025. int sumi = 0;
  2026. for (int j = 0; j < qk/2; ++j) {
  2027. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2028. const int v1 = (x[i].qs[j] >> 4) - 8;
  2029. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2030. }
  2031. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2032. }
  2033. *s = sumf;
  2034. #endif
  2035. }
  2036. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2037. const int qk = QK8_1;
  2038. const int nb = n / qk;
  2039. assert(n % qk == 0);
  2040. assert(nb % 2 == 0);
  2041. const block_q4_1 * restrict x = vx;
  2042. const block_q8_1 * restrict y = vy;
  2043. // TODO: add WASM SIMD
  2044. #if defined(__ARM_NEON)
  2045. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2046. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2047. float summs = 0;
  2048. for (int i = 0; i < nb; i += 2) {
  2049. const block_q4_1 * restrict x0 = &x[i + 0];
  2050. const block_q4_1 * restrict x1 = &x[i + 1];
  2051. const block_q8_1 * restrict y0 = &y[i + 0];
  2052. const block_q8_1 * restrict y1 = &y[i + 1];
  2053. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2054. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2055. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2056. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2057. // 4-bit -> 8-bit
  2058. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2059. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2060. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2061. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2062. // load y
  2063. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2064. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2065. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2066. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2067. #if defined(__ARM_FEATURE_DOTPROD)
  2068. // dot product into int32x4_t
  2069. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2070. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2071. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2072. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2073. #else
  2074. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2075. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2076. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2077. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2078. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2079. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2080. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2081. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2082. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2083. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2084. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2085. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2086. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2087. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2088. #endif
  2089. }
  2090. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2091. #elif defined(__AVX2__) || defined(__AVX__)
  2092. // Initialize accumulator with zeros
  2093. __m256 acc = _mm256_setzero_ps();
  2094. float summs = 0;
  2095. // Main loop
  2096. for (int i = 0; i < nb; ++i) {
  2097. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2098. const float d1 = y[i].d;
  2099. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2100. const __m256 d0v = _mm256_set1_ps( d0 );
  2101. const __m256 d1v = _mm256_set1_ps( d1 );
  2102. // Compute combined scales
  2103. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2104. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2105. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2106. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2107. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2108. // Accumulate d0*d1*x*y
  2109. #if defined(__AVX2__)
  2110. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2111. #else
  2112. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2113. #endif
  2114. }
  2115. *s = hsum_float_8(acc) + summs;
  2116. #else
  2117. // scalar
  2118. float sumf = 0.0;
  2119. for (int i = 0; i < nb; i++) {
  2120. int sumi = 0;
  2121. for (int j = 0; j < qk/2; ++j) {
  2122. const int v0 = (x[i].qs[j] & 0x0F);
  2123. const int v1 = (x[i].qs[j] >> 4);
  2124. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2125. }
  2126. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2127. }
  2128. *s = sumf;
  2129. #endif
  2130. }
  2131. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2132. const int qk = QK8_0;
  2133. const int nb = n / qk;
  2134. assert(n % qk == 0);
  2135. assert(nb % 2 == 0);
  2136. assert(qk == QK5_0);
  2137. const block_q5_0 * restrict x = vx;
  2138. const block_q8_0 * restrict y = vy;
  2139. #if defined(__ARM_NEON)
  2140. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2141. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2142. uint32_t qh0;
  2143. uint32_t qh1;
  2144. uint64_t tmp0[4];
  2145. uint64_t tmp1[4];
  2146. for (int i = 0; i < nb; i += 2) {
  2147. const block_q5_0 * restrict x0 = &x[i];
  2148. const block_q5_0 * restrict x1 = &x[i + 1];
  2149. const block_q8_0 * restrict y0 = &y[i];
  2150. const block_q8_0 * restrict y1 = &y[i + 1];
  2151. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2152. // extract the 5th bit via lookup table ((!b) << 4)
  2153. memcpy(&qh0, x0->qh, sizeof(qh0));
  2154. memcpy(&qh1, x1->qh, sizeof(qh1));
  2155. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2156. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2157. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2158. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2159. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2160. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2161. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2162. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2163. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2164. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2165. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2166. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2167. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2168. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2169. // 4-bit -> 8-bit
  2170. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2171. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2172. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2173. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2174. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2175. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2176. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2177. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2178. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2179. // load y
  2180. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2181. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2182. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2183. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2184. #if defined(__ARM_FEATURE_DOTPROD)
  2185. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2186. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2187. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2188. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2189. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2190. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2191. #else
  2192. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2193. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2194. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2195. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2196. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2197. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2198. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2199. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2200. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2201. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2202. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2203. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2204. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2205. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2206. #endif
  2207. }
  2208. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2209. #elif defined(__wasm_simd128__)
  2210. v128_t sumv = wasm_f32x4_splat(0.0f);
  2211. uint32_t qh;
  2212. uint64_t tmp[4];
  2213. // TODO: check if unrolling this is better
  2214. for (int i = 0; i < nb; ++i) {
  2215. const block_q5_0 * restrict x0 = &x[i];
  2216. const block_q8_0 * restrict y0 = &y[i];
  2217. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2218. // extract the 5th bit
  2219. memcpy(&qh, x0->qh, sizeof(qh));
  2220. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2221. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2222. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2223. tmp[3] = table_b2b_1[(qh >> 24) ];
  2224. const v128_t qhl = wasm_v128_load(tmp + 0);
  2225. const v128_t qhh = wasm_v128_load(tmp + 2);
  2226. const v128_t v0 = wasm_v128_load(x0->qs);
  2227. // 4-bit -> 8-bit
  2228. const v128_t v0l = wasm_v128_and (v0, m4b);
  2229. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2230. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2231. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2232. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2233. // load y
  2234. const v128_t v1l = wasm_v128_load(y0->qs);
  2235. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2236. // int8x16 -> int16x8
  2237. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2238. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2239. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2240. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2241. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2242. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2243. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2244. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2245. // dot product
  2246. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2247. wasm_i32x4_add(
  2248. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2249. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2250. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2251. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2252. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2253. }
  2254. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2255. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2256. #elif defined(__AVX2__)
  2257. // Initialize accumulator with zeros
  2258. __m256 acc = _mm256_setzero_ps();
  2259. // Main loop
  2260. for (int i = 0; i < nb; i++) {
  2261. /* Compute combined scale for the block */
  2262. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2263. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2264. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2265. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2266. bx = _mm256_or_si256(bx, bxhi);
  2267. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2268. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2269. /* Multiply q with scale and accumulate */
  2270. acc = _mm256_fmadd_ps(d, q, acc);
  2271. }
  2272. *s = hsum_float_8(acc);
  2273. #elif defined(__AVX__)
  2274. // Initialize accumulator with zeros
  2275. __m256 acc = _mm256_setzero_ps();
  2276. __m128i mask = _mm_set1_epi8((char)0xF0);
  2277. // Main loop
  2278. for (int i = 0; i < nb; i++) {
  2279. /* Compute combined scale for the block */
  2280. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2281. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2282. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2283. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2284. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2285. bxhil = _mm_andnot_si128(bxhil, mask);
  2286. bxhih = _mm_andnot_si128(bxhih, mask);
  2287. __m128i bxl = _mm256_castsi256_si128(bx);
  2288. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2289. bxl = _mm_or_si128(bxl, bxhil);
  2290. bxh = _mm_or_si128(bxh, bxhih);
  2291. bx = _mm256_set_m128i(bxh, bxl);
  2292. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2293. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2294. /* Multiply q with scale and accumulate */
  2295. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2296. }
  2297. *s = hsum_float_8(acc);
  2298. #else
  2299. // scalar
  2300. float sumf = 0.0;
  2301. for (int i = 0; i < nb; i++) {
  2302. uint32_t qh;
  2303. memcpy(&qh, x[i].qh, sizeof(qh));
  2304. int sumi = 0;
  2305. for (int j = 0; j < qk/2; ++j) {
  2306. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2307. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2308. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2309. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2310. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2311. }
  2312. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2313. }
  2314. *s = sumf;
  2315. #endif
  2316. }
  2317. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2318. const int qk = QK8_1;
  2319. const int nb = n / qk;
  2320. assert(n % qk == 0);
  2321. assert(nb % 2 == 0);
  2322. assert(qk == QK5_1);
  2323. const block_q5_1 * restrict x = vx;
  2324. const block_q8_1 * restrict y = vy;
  2325. #if defined(__ARM_NEON)
  2326. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2327. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2328. float summs0 = 0.0f;
  2329. float summs1 = 0.0f;
  2330. uint32_t qh0;
  2331. uint32_t qh1;
  2332. uint64_t tmp0[4];
  2333. uint64_t tmp1[4];
  2334. for (int i = 0; i < nb; i += 2) {
  2335. const block_q5_1 * restrict x0 = &x[i];
  2336. const block_q5_1 * restrict x1 = &x[i + 1];
  2337. const block_q8_1 * restrict y0 = &y[i];
  2338. const block_q8_1 * restrict y1 = &y[i + 1];
  2339. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2340. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2341. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2342. // extract the 5th bit via lookup table ((b) << 4)
  2343. memcpy(&qh0, x0->qh, sizeof(qh0));
  2344. memcpy(&qh1, x1->qh, sizeof(qh1));
  2345. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2346. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2347. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2348. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2349. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2350. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2351. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2352. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2353. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2354. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2355. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2356. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2357. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2358. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2359. // 4-bit -> 8-bit
  2360. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2361. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2362. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2363. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2364. // add high bit
  2365. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2366. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2367. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2368. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2369. // load y
  2370. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2371. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2372. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2373. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2374. #if defined(__ARM_FEATURE_DOTPROD)
  2375. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2376. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2377. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2378. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2379. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2380. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2381. #else
  2382. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2383. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2384. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2385. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2386. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2387. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2388. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2389. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2390. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2391. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2392. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2393. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2394. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2396. #endif
  2397. }
  2398. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2399. #elif defined(__wasm_simd128__)
  2400. v128_t sumv = wasm_f32x4_splat(0.0f);
  2401. float summs = 0.0f;
  2402. uint32_t qh;
  2403. uint64_t tmp[4];
  2404. // TODO: check if unrolling this is better
  2405. for (int i = 0; i < nb; ++i) {
  2406. const block_q5_1 * restrict x0 = &x[i];
  2407. const block_q8_1 * restrict y0 = &y[i];
  2408. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2409. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2410. // extract the 5th bit
  2411. memcpy(&qh, x0->qh, sizeof(qh));
  2412. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2413. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2414. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2415. tmp[3] = table_b2b_0[(qh >> 24) ];
  2416. const v128_t qhl = wasm_v128_load(tmp + 0);
  2417. const v128_t qhh = wasm_v128_load(tmp + 2);
  2418. const v128_t v0 = wasm_v128_load(x0->qs);
  2419. // 4-bit -> 8-bit
  2420. const v128_t v0l = wasm_v128_and (v0, m4b);
  2421. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2422. // add high bit
  2423. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2424. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2425. // load y
  2426. const v128_t v1l = wasm_v128_load(y0->qs);
  2427. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2428. // int8x16 -> int16x8
  2429. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2430. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2431. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2432. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2433. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2434. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2435. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2436. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2437. // dot product
  2438. sumv = wasm_f32x4_add(sumv,
  2439. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2440. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2441. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2442. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2443. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2444. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2445. }
  2446. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2447. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2448. #elif defined(__AVX2__)
  2449. // Initialize accumulator with zeros
  2450. __m256 acc = _mm256_setzero_ps();
  2451. float summs = 0.0f;
  2452. // Main loop
  2453. for (int i = 0; i < nb; i++) {
  2454. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2455. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2456. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2457. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2458. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2459. bx = _mm256_or_si256(bx, bxhi);
  2460. const __m256 dy = _mm256_set1_ps(y[i].d);
  2461. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2462. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2463. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2464. }
  2465. *s = hsum_float_8(acc) + summs;
  2466. #elif defined(__AVX__)
  2467. // Initialize accumulator with zeros
  2468. __m256 acc = _mm256_setzero_ps();
  2469. __m128i mask = _mm_set1_epi8(0x10);
  2470. float summs = 0.0f;
  2471. // Main loop
  2472. for (int i = 0; i < nb; i++) {
  2473. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2474. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2475. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2476. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2477. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2478. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2479. bxhil = _mm_and_si128(bxhil, mask);
  2480. bxhih = _mm_and_si128(bxhih, mask);
  2481. __m128i bxl = _mm256_castsi256_si128(bx);
  2482. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2483. bxl = _mm_or_si128(bxl, bxhil);
  2484. bxh = _mm_or_si128(bxh, bxhih);
  2485. bx = _mm256_set_m128i(bxh, bxl);
  2486. const __m256 dy = _mm256_set1_ps(y[i].d);
  2487. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2488. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2489. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2490. }
  2491. *s = hsum_float_8(acc) + summs;
  2492. #else
  2493. // scalar
  2494. float sumf = 0.0;
  2495. for (int i = 0; i < nb; i++) {
  2496. uint32_t qh;
  2497. memcpy(&qh, x[i].qh, sizeof(qh));
  2498. int sumi = 0;
  2499. for (int j = 0; j < qk/2; ++j) {
  2500. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2501. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2502. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2503. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2504. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2505. }
  2506. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2507. }
  2508. *s = sumf;
  2509. #endif
  2510. }
  2511. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2512. const int qk = QK8_0;
  2513. const int nb = n / qk;
  2514. assert(n % qk == 0);
  2515. assert(nb % 2 == 0);
  2516. const block_q8_0 * restrict x = vx;
  2517. const block_q8_0 * restrict y = vy;
  2518. #if defined(__ARM_NEON)
  2519. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2520. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2521. for (int i = 0; i < nb; i += 2) {
  2522. const block_q8_0 * restrict x0 = &x[i + 0];
  2523. const block_q8_0 * restrict x1 = &x[i + 1];
  2524. const block_q8_0 * restrict y0 = &y[i + 0];
  2525. const block_q8_0 * restrict y1 = &y[i + 1];
  2526. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2527. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2528. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2529. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2530. // load y
  2531. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2532. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2533. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2534. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2535. #if defined(__ARM_FEATURE_DOTPROD)
  2536. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2537. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2538. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2539. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2540. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2541. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2542. #else
  2543. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2544. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2545. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2546. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2547. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2548. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2549. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2550. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2551. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2552. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2553. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2554. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2555. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2556. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2557. #endif
  2558. }
  2559. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2560. #elif defined(__AVX2__) || defined(__AVX__)
  2561. // Initialize accumulator with zeros
  2562. __m256 acc = _mm256_setzero_ps();
  2563. // Main loop
  2564. for (int i = 0; i < nb; ++i) {
  2565. // Compute combined scale for the block
  2566. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2567. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2568. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2569. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2570. // Multiply q with scale and accumulate
  2571. #if defined(__AVX2__)
  2572. acc = _mm256_fmadd_ps( d, q, acc );
  2573. #else
  2574. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2575. #endif
  2576. }
  2577. *s = hsum_float_8(acc);
  2578. #else
  2579. // scalar
  2580. float sumf = 0.0;
  2581. for (int i = 0; i < nb; i++) {
  2582. int sumi = 0;
  2583. for (int j = 0; j < qk; j++) {
  2584. sumi += x[i].qs[j]*y[i].qs[j];
  2585. }
  2586. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2587. }
  2588. *s = sumf;
  2589. #endif
  2590. }
  2591. // compute GGML_VEC_DOT_UNROLL dot products at once
  2592. // xs - x row stride in bytes
  2593. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2594. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2595. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2596. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2597. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2598. }
  2599. #if defined(GGML_SIMD)
  2600. const int np = (n & ~(GGML_F16_STEP - 1));
  2601. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2602. GGML_F16_VEC ax[GGML_F16_ARR];
  2603. GGML_F16_VEC ay[GGML_F16_ARR];
  2604. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2605. for (int j = 0; j < GGML_F16_ARR; j++) {
  2606. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2607. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2608. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2609. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2610. }
  2611. }
  2612. }
  2613. // reduce sum0..sum3 to sum0
  2614. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2615. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2616. }
  2617. // leftovers
  2618. for (int i = np; i < n; ++i) {
  2619. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2620. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2621. }
  2622. }
  2623. #else
  2624. for (int i = 0; i < n; ++i) {
  2625. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2626. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2627. }
  2628. }
  2629. #endif
  2630. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2631. s[i] = sumf[i];
  2632. }
  2633. }
  2634. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2635. #if defined(GGML_SIMD)
  2636. const int np = (n & ~(GGML_F32_STEP - 1));
  2637. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2638. GGML_F32_VEC ax[GGML_F32_ARR];
  2639. GGML_F32_VEC ay[GGML_F32_ARR];
  2640. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2641. for (int j = 0; j < GGML_F32_ARR; j++) {
  2642. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2643. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2644. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2645. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2646. }
  2647. }
  2648. // leftovers
  2649. for (int i = np; i < n; ++i) {
  2650. y[i] += x[i]*v;
  2651. }
  2652. #else
  2653. // scalar
  2654. for (int i = 0; i < n; ++i) {
  2655. y[i] += x[i]*v;
  2656. }
  2657. #endif
  2658. }
  2659. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2660. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2661. #if defined(GGML_SIMD)
  2662. const int np = (n & ~(GGML_F32_STEP - 1));
  2663. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2664. GGML_F32_VEC ay[GGML_F32_ARR];
  2665. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2666. for (int j = 0; j < GGML_F32_ARR; j++) {
  2667. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2668. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2669. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2670. }
  2671. }
  2672. // leftovers
  2673. for (int i = np; i < n; ++i) {
  2674. y[i] *= v;
  2675. }
  2676. #else
  2677. // scalar
  2678. for (int i = 0; i < n; ++i) {
  2679. y[i] *= v;
  2680. }
  2681. #endif
  2682. }
  2683. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2684. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2685. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2686. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2687. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2688. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2689. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2690. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2691. static const float GELU_COEF_A = 0.044715f;
  2692. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2693. inline static float ggml_gelu_f32(float x) {
  2694. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2695. }
  2696. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2697. const uint16_t * i16 = (const uint16_t *) x;
  2698. for (int i = 0; i < n; ++i) {
  2699. y[i] = table_gelu_f16[i16[i]];
  2700. }
  2701. }
  2702. #ifdef GGML_GELU_FP16
  2703. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2704. uint16_t t;
  2705. for (int i = 0; i < n; ++i) {
  2706. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2707. memcpy(&t, &fp16, sizeof(uint16_t));
  2708. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2709. }
  2710. }
  2711. #else
  2712. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2713. for (int i = 0; i < n; ++i) {
  2714. y[i] = ggml_gelu_f32(x[i]);
  2715. }
  2716. }
  2717. #endif
  2718. // Sigmoid Linear Unit (SiLU) function
  2719. inline static float ggml_silu_f32(float x) {
  2720. return x/(1.0f + expf(-x));
  2721. }
  2722. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2723. // const uint16_t * i16 = (const uint16_t *) x;
  2724. // for (int i = 0; i < n; ++i) {
  2725. // y[i] = table_silu_f16[i16[i]];
  2726. // }
  2727. //}
  2728. #ifdef GGML_SILU_FP16
  2729. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2730. uint16_t t;
  2731. for (int i = 0; i < n; ++i) {
  2732. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2733. memcpy(&t, &fp16, sizeof(uint16_t));
  2734. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2735. }
  2736. }
  2737. #else
  2738. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2739. for (int i = 0; i < n; ++i) {
  2740. y[i] = ggml_silu_f32(x[i]);
  2741. }
  2742. }
  2743. #endif
  2744. inline static float ggml_silu_backward_f32(float x, float dy) {
  2745. const float s = 1.0f/(1.0f + expf(-x));
  2746. return dy*s*(1.0f + x*(1.0f - s));
  2747. }
  2748. #ifdef GGML_SILU_FP16
  2749. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2750. for (int i = 0; i < n; ++i) {
  2751. // we did not use x[i] to compute forward silu but its f16 equivalent
  2752. // take derivative at f16 of x[i]:
  2753. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2754. float usedx = GGML_FP16_TO_FP32(fp16);
  2755. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2756. }
  2757. }
  2758. #else
  2759. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2760. for (int i = 0; i < n; ++i) {
  2761. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2762. }
  2763. }
  2764. #endif
  2765. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2766. #ifndef GGML_USE_ACCELERATE
  2767. ggml_float sum = 0.0;
  2768. for (int i = 0; i < n; ++i) {
  2769. sum += (ggml_float)x[i];
  2770. }
  2771. *s = sum;
  2772. #else
  2773. vDSP_sve(x, 1, s, n);
  2774. #endif
  2775. }
  2776. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2777. ggml_float sum = 0.0;
  2778. for (int i = 0; i < n; ++i) {
  2779. sum += (ggml_float)x[i];
  2780. }
  2781. *s = sum;
  2782. }
  2783. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2784. #ifndef GGML_USE_ACCELERATE
  2785. float max = -INFINITY;
  2786. for (int i = 0; i < n; ++i) {
  2787. max = MAX(max, x[i]);
  2788. }
  2789. *s = max;
  2790. #else
  2791. vDSP_maxv(x, 1, s, n);
  2792. #endif
  2793. }
  2794. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2795. ggml_vec_norm_f32(n, s, x);
  2796. *s = 1.f/(*s);
  2797. }
  2798. //
  2799. // logging
  2800. //
  2801. #if (GGML_DEBUG >= 1)
  2802. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2803. #else
  2804. #define GGML_PRINT_DEBUG(...)
  2805. #endif
  2806. #if (GGML_DEBUG >= 5)
  2807. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2808. #else
  2809. #define GGML_PRINT_DEBUG_5(...)
  2810. #endif
  2811. #if (GGML_DEBUG >= 10)
  2812. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2813. #else
  2814. #define GGML_PRINT_DEBUG_10(...)
  2815. #endif
  2816. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2817. //
  2818. // data types
  2819. //
  2820. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2821. [GGML_TYPE_F32] = 1,
  2822. [GGML_TYPE_F16] = 1,
  2823. [GGML_TYPE_Q4_0] = QK4_0,
  2824. [GGML_TYPE_Q4_1] = QK4_1,
  2825. [GGML_TYPE_Q5_0] = QK5_0,
  2826. [GGML_TYPE_Q5_1] = QK5_1,
  2827. [GGML_TYPE_Q8_0] = QK8_0,
  2828. [GGML_TYPE_Q8_1] = QK8_1,
  2829. [GGML_TYPE_Q2_K] = QK_K,
  2830. [GGML_TYPE_Q3_K] = QK_K,
  2831. [GGML_TYPE_Q4_K] = QK_K,
  2832. [GGML_TYPE_Q5_K] = QK_K,
  2833. [GGML_TYPE_Q6_K] = QK_K,
  2834. [GGML_TYPE_Q8_K] = QK_K,
  2835. [GGML_TYPE_I8] = 1,
  2836. [GGML_TYPE_I16] = 1,
  2837. [GGML_TYPE_I32] = 1,
  2838. };
  2839. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2840. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2841. [GGML_TYPE_F32] = sizeof(float),
  2842. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2843. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2844. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2845. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2846. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2847. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2848. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2849. [GGML_TYPE_Q2_K] = sizeof(block_q2_k),
  2850. [GGML_TYPE_Q3_K] = sizeof(block_q3_k),
  2851. [GGML_TYPE_Q4_K] = sizeof(block_q4_k),
  2852. [GGML_TYPE_Q5_K] = sizeof(block_q5_k),
  2853. [GGML_TYPE_Q6_K] = sizeof(block_q6_k),
  2854. [GGML_TYPE_Q8_K] = sizeof(block_q8_k),
  2855. [GGML_TYPE_I8] = sizeof(int8_t),
  2856. [GGML_TYPE_I16] = sizeof(int16_t),
  2857. [GGML_TYPE_I32] = sizeof(int32_t),
  2858. };
  2859. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2860. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2861. [GGML_TYPE_F32] = "f32",
  2862. [GGML_TYPE_F16] = "f16",
  2863. [GGML_TYPE_Q4_0] = "q4_0",
  2864. [GGML_TYPE_Q4_1] = "q4_1",
  2865. [GGML_TYPE_Q5_0] = "q5_0",
  2866. [GGML_TYPE_Q5_1] = "q5_1",
  2867. [GGML_TYPE_Q8_0] = "q8_0",
  2868. [GGML_TYPE_Q8_1] = "q8_1",
  2869. [GGML_TYPE_Q2_K] = "q2_k",
  2870. [GGML_TYPE_Q3_K] = "q3_k",
  2871. [GGML_TYPE_Q4_K] = "q4_k",
  2872. [GGML_TYPE_Q5_K] = "q5_k",
  2873. [GGML_TYPE_Q6_K] = "q6_k",
  2874. [GGML_TYPE_Q8_K] = "q8_k",
  2875. [GGML_TYPE_I8] = "i8",
  2876. [GGML_TYPE_I16] = "i16",
  2877. [GGML_TYPE_I32] = "i32",
  2878. };
  2879. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2880. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2881. [GGML_TYPE_F32] = false,
  2882. [GGML_TYPE_F16] = false,
  2883. [GGML_TYPE_Q4_0] = true,
  2884. [GGML_TYPE_Q4_1] = true,
  2885. [GGML_TYPE_Q5_0] = true,
  2886. [GGML_TYPE_Q5_1] = true,
  2887. [GGML_TYPE_Q8_0] = true,
  2888. [GGML_TYPE_Q8_1] = true,
  2889. [GGML_TYPE_Q2_K] = true,
  2890. [GGML_TYPE_Q3_K] = true,
  2891. [GGML_TYPE_Q4_K] = true,
  2892. [GGML_TYPE_Q5_K] = true,
  2893. [GGML_TYPE_Q6_K] = true,
  2894. [GGML_TYPE_Q8_K] = true,
  2895. [GGML_TYPE_I8] = false,
  2896. [GGML_TYPE_I16] = false,
  2897. [GGML_TYPE_I32] = false,
  2898. };
  2899. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2900. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2901. "NONE",
  2902. "DUP",
  2903. "ADD",
  2904. "ADD1",
  2905. "ACC",
  2906. "SUB",
  2907. "MUL",
  2908. "DIV",
  2909. "SQR",
  2910. "SQRT",
  2911. "LOG",
  2912. "SUM",
  2913. "SUM_ROWS",
  2914. "MEAN",
  2915. "REPEAT",
  2916. "ABS",
  2917. "SGN",
  2918. "NEG",
  2919. "STEP",
  2920. "RELU",
  2921. "GELU",
  2922. "SILU",
  2923. "SILU_BACK",
  2924. "NORM",
  2925. "RMS_NORM",
  2926. "RMS_NORM_BACK",
  2927. "MUL_MAT",
  2928. "SCALE",
  2929. "SET",
  2930. "CPY",
  2931. "CONT",
  2932. "RESHAPE",
  2933. "VIEW",
  2934. "PERMUTE",
  2935. "TRANSPOSE",
  2936. "GET_ROWS",
  2937. "GET_ROWS_BACK",
  2938. "DIAG",
  2939. "DIAG_MASK_INF",
  2940. "DIAG_MASK_ZERO",
  2941. "SOFT_MAX",
  2942. "ROPE",
  2943. "ROPE_BACK",
  2944. "ALIBI",
  2945. "CLAMP",
  2946. "CONV_1D_1S",
  2947. "CONV_1D_2S",
  2948. "FLASH_ATTN",
  2949. "FLASH_FF",
  2950. "MAP_UNARY",
  2951. "MAP_BINARY",
  2952. };
  2953. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2954. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2955. "none",
  2956. "x",
  2957. "x+y",
  2958. "x+y",
  2959. "view(x,nb,offset)+=y->x",
  2960. "x-y",
  2961. "x*y",
  2962. "x/y",
  2963. "x^2",
  2964. "√x",
  2965. "log(x)",
  2966. "Σx",
  2967. "Σx_k",
  2968. "Σx/n",
  2969. "repeat(x)",
  2970. "abs(x)",
  2971. "sgn(x)",
  2972. "-x",
  2973. "step(x)",
  2974. "relu(x)",
  2975. "gelu(x)",
  2976. "silu(x)",
  2977. "silu_back(x)",
  2978. "norm(x)",
  2979. "rms_norm(x)",
  2980. "rms_norm_back(x)",
  2981. "X*Y",
  2982. "x*v",
  2983. "y-\\>view(x)",
  2984. "x-\\>y",
  2985. "cont(x)",
  2986. "reshape(x)",
  2987. "view(x)",
  2988. "permute(x)",
  2989. "transpose(x)",
  2990. "get_rows(x)",
  2991. "get_rows_back(x)",
  2992. "diag(x)",
  2993. "diag_mask_inf(x)",
  2994. "diag_mask_zero(x)",
  2995. "soft_max(x)",
  2996. "rope(x)",
  2997. "rope_back(x)",
  2998. "alibi(x)",
  2999. "clamp(x)",
  3000. "conv_1d_1s(x)",
  3001. "conv_1d_2s(x)",
  3002. "flash_attn(x)",
  3003. "flash_ff(x)",
  3004. "f(x)",
  3005. "f(x,y)",
  3006. };
  3007. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3008. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3009. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3010. //
  3011. // ggml context
  3012. //
  3013. struct ggml_context {
  3014. size_t mem_size;
  3015. void * mem_buffer;
  3016. bool mem_buffer_owned;
  3017. bool no_alloc;
  3018. int n_objects;
  3019. struct ggml_object * objects_begin;
  3020. struct ggml_object * objects_end;
  3021. struct ggml_scratch scratch;
  3022. struct ggml_scratch scratch_save;
  3023. };
  3024. struct ggml_context_container {
  3025. bool used;
  3026. struct ggml_context context;
  3027. };
  3028. //
  3029. // compute types
  3030. //
  3031. enum ggml_task_type {
  3032. GGML_TASK_INIT = 0,
  3033. GGML_TASK_COMPUTE,
  3034. GGML_TASK_FINALIZE,
  3035. };
  3036. struct ggml_compute_params {
  3037. enum ggml_task_type type;
  3038. int ith, nth;
  3039. // work buffer for all threads
  3040. size_t wsize;
  3041. void * wdata;
  3042. };
  3043. //
  3044. // ggml state
  3045. //
  3046. struct ggml_state {
  3047. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3048. };
  3049. // global state
  3050. static struct ggml_state g_state;
  3051. static atomic_int g_state_barrier = 0;
  3052. // barrier via spin lock
  3053. inline static void ggml_critical_section_start(void) {
  3054. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3055. while (processing > 0) {
  3056. // wait for other threads to finish
  3057. atomic_fetch_sub(&g_state_barrier, 1);
  3058. sched_yield(); // TODO: reconsider this
  3059. processing = atomic_fetch_add(&g_state_barrier, 1);
  3060. }
  3061. }
  3062. // TODO: make this somehow automatically executed
  3063. // some sort of "sentry" mechanism
  3064. inline static void ggml_critical_section_end(void) {
  3065. atomic_fetch_sub(&g_state_barrier, 1);
  3066. }
  3067. ////////////////////////////////////////////////////////////////////////////////
  3068. void ggml_print_object(const struct ggml_object * obj) {
  3069. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3070. obj->offs, obj->size, (const void *) obj->next);
  3071. }
  3072. void ggml_print_objects(const struct ggml_context * ctx) {
  3073. struct ggml_object * obj = ctx->objects_begin;
  3074. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3075. while (obj != NULL) {
  3076. ggml_print_object(obj);
  3077. obj = obj->next;
  3078. }
  3079. GGML_PRINT("%s: --- end ---\n", __func__);
  3080. }
  3081. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3082. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3083. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3084. }
  3085. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3086. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3087. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3088. }
  3089. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3090. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3091. // this should handle cases where the tensor is not contiguous in memory
  3092. // probaby just:
  3093. //
  3094. // return tensor->ne[3]*tensor->nb[3]
  3095. //
  3096. // is enough, but just in case, adding the second part
  3097. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3098. }
  3099. int ggml_blck_size(enum ggml_type type) {
  3100. return GGML_BLCK_SIZE[type];
  3101. }
  3102. size_t ggml_type_size(enum ggml_type type) {
  3103. return GGML_TYPE_SIZE[type];
  3104. }
  3105. float ggml_type_sizef(enum ggml_type type) {
  3106. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3107. }
  3108. const char * ggml_type_name(enum ggml_type type) {
  3109. return GGML_TYPE_NAME[type];
  3110. }
  3111. const char * ggml_op_name(enum ggml_op op) {
  3112. return GGML_OP_NAME[op];
  3113. }
  3114. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3115. return GGML_TYPE_SIZE[tensor->type];
  3116. }
  3117. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3119. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3120. }
  3121. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3123. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3124. }
  3125. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3126. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3127. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3128. }
  3129. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3130. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3131. return
  3132. (t0->ne[0] == t1->ne[0]) &&
  3133. (t0->ne[2] == t1->ne[2]) &&
  3134. (t0->ne[3] == t1->ne[3]);
  3135. }
  3136. bool ggml_is_quantized(enum ggml_type type) {
  3137. return GGML_IS_QUANTIZED[type];
  3138. }
  3139. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3140. enum ggml_type wtype = GGML_TYPE_COUNT;
  3141. switch (ftype) {
  3142. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3143. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3144. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3145. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3146. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3147. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3148. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3149. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3150. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3151. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3152. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3153. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3154. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3155. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3156. }
  3157. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3158. return wtype;
  3159. }
  3160. size_t ggml_tensor_overhead(void) {
  3161. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3162. }
  3163. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3164. return tensor->nb[0] > tensor->nb[1];
  3165. }
  3166. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3168. return
  3169. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3170. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3171. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3172. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3173. }
  3174. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3175. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3176. return
  3177. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3178. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3179. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3180. }
  3181. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3182. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3183. return
  3184. (t0->ne[0] == t1->ne[0] ) &&
  3185. (t0->ne[1] == t1->ne[1] ) &&
  3186. (t0->ne[2] == t1->ne[2] ) &&
  3187. (t0->ne[3] == t1->ne[3] );
  3188. }
  3189. // check if t1 can be represented as a repeatition of t0
  3190. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3191. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3192. return
  3193. (t1->ne[0]%t0->ne[0] == 0) &&
  3194. (t1->ne[1]%t0->ne[1] == 0) &&
  3195. (t1->ne[2]%t0->ne[2] == 0) &&
  3196. (t1->ne[3]%t0->ne[3] == 0);
  3197. }
  3198. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3199. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3200. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3201. }
  3202. static inline int ggml_up32(int n) {
  3203. return (n + 31) & ~31;
  3204. }
  3205. //static inline int ggml_up64(int n) {
  3206. // return (n + 63) & ~63;
  3207. //}
  3208. static inline int ggml_up(int n, int m) {
  3209. // assert m is a power of 2
  3210. GGML_ASSERT((m & (m - 1)) == 0);
  3211. return (n + m - 1) & ~(m - 1);
  3212. }
  3213. // assert that pointer is aligned to GGML_MEM_ALIGN
  3214. #define ggml_assert_aligned(ptr) \
  3215. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3216. ////////////////////////////////////////////////////////////////////////////////
  3217. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3218. // make this function thread safe
  3219. ggml_critical_section_start();
  3220. static bool is_first_call = true;
  3221. if (is_first_call) {
  3222. // initialize time system (required on Windows)
  3223. ggml_time_init();
  3224. // initialize GELU, SILU and EXP F32 tables
  3225. {
  3226. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3227. ggml_fp16_t ii;
  3228. for (int i = 0; i < (1 << 16); ++i) {
  3229. uint16_t ui = i;
  3230. memcpy(&ii, &ui, sizeof(ii));
  3231. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3232. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3233. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3234. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3235. }
  3236. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3237. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3238. }
  3239. // initialize g_state
  3240. {
  3241. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3242. g_state = (struct ggml_state) {
  3243. /*.contexts =*/ { { 0 } },
  3244. };
  3245. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3246. g_state.contexts[i].used = false;
  3247. }
  3248. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3249. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3250. }
  3251. #if defined(GGML_USE_CUBLAS)
  3252. ggml_init_cublas();
  3253. #elif defined(GGML_USE_CLBLAST)
  3254. ggml_cl_init();
  3255. #endif
  3256. is_first_call = false;
  3257. }
  3258. // find non-used context in g_state
  3259. struct ggml_context * ctx = NULL;
  3260. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3261. if (!g_state.contexts[i].used) {
  3262. g_state.contexts[i].used = true;
  3263. ctx = &g_state.contexts[i].context;
  3264. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3265. break;
  3266. }
  3267. }
  3268. if (ctx == NULL) {
  3269. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3270. ggml_critical_section_end();
  3271. return NULL;
  3272. }
  3273. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3274. *ctx = (struct ggml_context) {
  3275. /*.mem_size =*/ mem_size,
  3276. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3277. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3278. /*.no_alloc =*/ params.no_alloc,
  3279. /*.n_objects =*/ 0,
  3280. /*.objects_begin =*/ NULL,
  3281. /*.objects_end =*/ NULL,
  3282. /*.scratch =*/ { 0, 0, NULL, },
  3283. /*.scratch_save =*/ { 0, 0, NULL, },
  3284. };
  3285. GGML_ASSERT(ctx->mem_buffer != NULL);
  3286. ggml_assert_aligned(ctx->mem_buffer);
  3287. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3288. ggml_critical_section_end();
  3289. return ctx;
  3290. }
  3291. void ggml_free(struct ggml_context * ctx) {
  3292. // make this function thread safe
  3293. ggml_critical_section_start();
  3294. bool found = false;
  3295. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3296. if (&g_state.contexts[i].context == ctx) {
  3297. g_state.contexts[i].used = false;
  3298. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3299. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3300. if (ctx->mem_buffer_owned) {
  3301. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3302. }
  3303. found = true;
  3304. break;
  3305. }
  3306. }
  3307. if (!found) {
  3308. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3309. }
  3310. ggml_critical_section_end();
  3311. }
  3312. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3313. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3314. }
  3315. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3316. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3317. ctx->scratch = scratch;
  3318. return result;
  3319. }
  3320. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3321. ctx->no_alloc = no_alloc;
  3322. }
  3323. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3324. return ctx->mem_buffer;
  3325. }
  3326. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3327. return ctx->mem_size;
  3328. }
  3329. // IMPORTANT:
  3330. // when creating "opt" tensors, always save and load the scratch buffer
  3331. // this is an error prone process, but it is necessary to support inplace
  3332. // operators when using scratch buffers
  3333. // TODO: implement a better way
  3334. void ggml_scratch_save(struct ggml_context * ctx) {
  3335. ctx->scratch_save = ctx->scratch;
  3336. ctx->scratch.data = NULL;
  3337. }
  3338. void ggml_scratch_load(struct ggml_context * ctx) {
  3339. ctx->scratch = ctx->scratch_save;
  3340. }
  3341. ////////////////////////////////////////////////////////////////////////////////
  3342. struct ggml_tensor * ggml_new_tensor_impl(
  3343. struct ggml_context * ctx,
  3344. enum ggml_type type,
  3345. int n_dims,
  3346. const int64_t* ne,
  3347. void* data) {
  3348. // always insert objects at the end of the context's memory pool
  3349. struct ggml_object * obj_cur = ctx->objects_end;
  3350. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3351. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3352. const size_t cur_end = cur_offs + cur_size;
  3353. size_t size_needed = 0;
  3354. if (data == NULL && !ctx->no_alloc) {
  3355. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3356. for (int i = 1; i < n_dims; i++) {
  3357. size_needed *= ne[i];
  3358. }
  3359. // align to GGML_MEM_ALIGN
  3360. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3361. }
  3362. char * const mem_buffer = ctx->mem_buffer;
  3363. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3364. if (ctx->scratch.data == NULL || data != NULL) {
  3365. size_needed += GGML_TENSOR_SIZE;
  3366. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3367. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3368. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3369. assert(false);
  3370. return NULL;
  3371. }
  3372. *obj_new = (struct ggml_object) {
  3373. .offs = cur_end + GGML_OBJECT_SIZE,
  3374. .size = size_needed,
  3375. .next = NULL,
  3376. };
  3377. } else {
  3378. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3379. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3380. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3381. assert(false);
  3382. return NULL;
  3383. }
  3384. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3385. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3386. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3387. assert(false);
  3388. return NULL;
  3389. }
  3390. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3391. *obj_new = (struct ggml_object) {
  3392. .offs = cur_end + GGML_OBJECT_SIZE,
  3393. .size = GGML_TENSOR_SIZE,
  3394. .next = NULL,
  3395. };
  3396. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3397. ctx->scratch.offs += size_needed;
  3398. }
  3399. if (obj_cur != NULL) {
  3400. obj_cur->next = obj_new;
  3401. } else {
  3402. // this is the first object in this context
  3403. ctx->objects_begin = obj_new;
  3404. }
  3405. ctx->objects_end = obj_new;
  3406. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3407. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3408. ggml_assert_aligned(result);
  3409. *result = (struct ggml_tensor) {
  3410. /*.type =*/ type,
  3411. /*.backend =*/ GGML_BACKEND_CPU,
  3412. /*.n_dims =*/ n_dims,
  3413. /*.ne =*/ { 1, 1, 1, 1 },
  3414. /*.nb =*/ { 0, 0, 0, 0 },
  3415. /*.op =*/ GGML_OP_NONE,
  3416. /*.is_param =*/ false,
  3417. /*.grad =*/ NULL,
  3418. /*.src0 =*/ NULL,
  3419. /*.src1 =*/ NULL,
  3420. /*.opt =*/ { NULL },
  3421. /*.n_tasks =*/ 0,
  3422. /*.perf_runs =*/ 0,
  3423. /*.perf_cycles =*/ 0,
  3424. /*.perf_time_us =*/ 0,
  3425. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3426. /*.name =*/ { 0 },
  3427. /*.pad =*/ { 0 },
  3428. };
  3429. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3430. //ggml_assert_aligned(result->data);
  3431. for (int i = 0; i < n_dims; i++) {
  3432. result->ne[i] = ne[i];
  3433. }
  3434. result->nb[0] = GGML_TYPE_SIZE[type];
  3435. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3436. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3437. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3438. }
  3439. ctx->n_objects++;
  3440. return result;
  3441. }
  3442. struct ggml_tensor * ggml_new_tensor(
  3443. struct ggml_context * ctx,
  3444. enum ggml_type type,
  3445. int n_dims,
  3446. const int64_t * ne) {
  3447. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3448. }
  3449. struct ggml_tensor * ggml_new_tensor_1d(
  3450. struct ggml_context * ctx,
  3451. enum ggml_type type,
  3452. int64_t ne0) {
  3453. return ggml_new_tensor(ctx, type, 1, &ne0);
  3454. }
  3455. struct ggml_tensor * ggml_new_tensor_2d(
  3456. struct ggml_context * ctx,
  3457. enum ggml_type type,
  3458. int64_t ne0,
  3459. int64_t ne1) {
  3460. const int64_t ne[2] = { ne0, ne1 };
  3461. return ggml_new_tensor(ctx, type, 2, ne);
  3462. }
  3463. struct ggml_tensor * ggml_new_tensor_3d(
  3464. struct ggml_context * ctx,
  3465. enum ggml_type type,
  3466. int64_t ne0,
  3467. int64_t ne1,
  3468. int64_t ne2) {
  3469. const int64_t ne[3] = { ne0, ne1, ne2 };
  3470. return ggml_new_tensor(ctx, type, 3, ne);
  3471. }
  3472. struct ggml_tensor * ggml_new_tensor_4d(
  3473. struct ggml_context * ctx,
  3474. enum ggml_type type,
  3475. int64_t ne0,
  3476. int64_t ne1,
  3477. int64_t ne2,
  3478. int64_t ne3) {
  3479. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3480. return ggml_new_tensor(ctx, type, 4, ne);
  3481. }
  3482. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3483. ggml_scratch_save(ctx);
  3484. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3485. ggml_scratch_load(ctx);
  3486. ggml_set_i32(result, value);
  3487. return result;
  3488. }
  3489. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3490. ggml_scratch_save(ctx);
  3491. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3492. ggml_scratch_load(ctx);
  3493. ggml_set_f32(result, value);
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3497. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3498. }
  3499. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3500. memset(tensor->data, 0, ggml_nbytes(tensor));
  3501. return tensor;
  3502. }
  3503. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3504. const int n = ggml_nrows(tensor);
  3505. const int nc = tensor->ne[0];
  3506. const size_t n1 = tensor->nb[1];
  3507. char * const data = tensor->data;
  3508. switch (tensor->type) {
  3509. case GGML_TYPE_I8:
  3510. {
  3511. assert(tensor->nb[0] == sizeof(int8_t));
  3512. for (int i = 0; i < n; i++) {
  3513. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3514. }
  3515. } break;
  3516. case GGML_TYPE_I16:
  3517. {
  3518. assert(tensor->nb[0] == sizeof(int16_t));
  3519. for (int i = 0; i < n; i++) {
  3520. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3521. }
  3522. } break;
  3523. case GGML_TYPE_I32:
  3524. {
  3525. assert(tensor->nb[0] == sizeof(int32_t));
  3526. for (int i = 0; i < n; i++) {
  3527. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3528. }
  3529. } break;
  3530. case GGML_TYPE_F16:
  3531. {
  3532. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3533. for (int i = 0; i < n; i++) {
  3534. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3535. }
  3536. } break;
  3537. case GGML_TYPE_F32:
  3538. {
  3539. assert(tensor->nb[0] == sizeof(float));
  3540. for (int i = 0; i < n; i++) {
  3541. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3542. }
  3543. } break;
  3544. default:
  3545. {
  3546. GGML_ASSERT(false);
  3547. } break;
  3548. }
  3549. return tensor;
  3550. }
  3551. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3552. const int n = ggml_nrows(tensor);
  3553. const int nc = tensor->ne[0];
  3554. const size_t n1 = tensor->nb[1];
  3555. char * const data = tensor->data;
  3556. switch (tensor->type) {
  3557. case GGML_TYPE_I8:
  3558. {
  3559. assert(tensor->nb[0] == sizeof(int8_t));
  3560. for (int i = 0; i < n; i++) {
  3561. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3562. }
  3563. } break;
  3564. case GGML_TYPE_I16:
  3565. {
  3566. assert(tensor->nb[0] == sizeof(int16_t));
  3567. for (int i = 0; i < n; i++) {
  3568. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3569. }
  3570. } break;
  3571. case GGML_TYPE_I32:
  3572. {
  3573. assert(tensor->nb[0] == sizeof(int32_t));
  3574. for (int i = 0; i < n; i++) {
  3575. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3576. }
  3577. } break;
  3578. case GGML_TYPE_F16:
  3579. {
  3580. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3581. for (int i = 0; i < n; i++) {
  3582. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3583. }
  3584. } break;
  3585. case GGML_TYPE_F32:
  3586. {
  3587. assert(tensor->nb[0] == sizeof(float));
  3588. for (int i = 0; i < n; i++) {
  3589. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3590. }
  3591. } break;
  3592. default:
  3593. {
  3594. GGML_ASSERT(false);
  3595. } break;
  3596. }
  3597. return tensor;
  3598. }
  3599. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3600. switch (tensor->type) {
  3601. case GGML_TYPE_I8:
  3602. {
  3603. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3604. return ((int8_t *)(tensor->data))[i];
  3605. } break;
  3606. case GGML_TYPE_I16:
  3607. {
  3608. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3609. return ((int16_t *)(tensor->data))[i];
  3610. } break;
  3611. case GGML_TYPE_I32:
  3612. {
  3613. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3614. return ((int32_t *)(tensor->data))[i];
  3615. } break;
  3616. case GGML_TYPE_F16:
  3617. {
  3618. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3619. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3620. } break;
  3621. case GGML_TYPE_F32:
  3622. {
  3623. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3624. return ((float *)(tensor->data))[i];
  3625. } break;
  3626. default:
  3627. {
  3628. GGML_ASSERT(false);
  3629. } break;
  3630. }
  3631. return 0.0f;
  3632. }
  3633. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3634. switch (tensor->type) {
  3635. case GGML_TYPE_I8:
  3636. {
  3637. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3638. ((int8_t *)(tensor->data))[i] = value;
  3639. } break;
  3640. case GGML_TYPE_I16:
  3641. {
  3642. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3643. ((int16_t *)(tensor->data))[i] = value;
  3644. } break;
  3645. case GGML_TYPE_I32:
  3646. {
  3647. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3648. ((int32_t *)(tensor->data))[i] = value;
  3649. } break;
  3650. case GGML_TYPE_F16:
  3651. {
  3652. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3653. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3654. } break;
  3655. case GGML_TYPE_F32:
  3656. {
  3657. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3658. ((float *)(tensor->data))[i] = value;
  3659. } break;
  3660. default:
  3661. {
  3662. GGML_ASSERT(false);
  3663. } break;
  3664. }
  3665. }
  3666. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3667. switch (tensor->type) {
  3668. case GGML_TYPE_I8:
  3669. {
  3670. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3671. return ((int8_t *)(tensor->data))[i];
  3672. } break;
  3673. case GGML_TYPE_I16:
  3674. {
  3675. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3676. return ((int16_t *)(tensor->data))[i];
  3677. } break;
  3678. case GGML_TYPE_I32:
  3679. {
  3680. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3681. return ((int32_t *)(tensor->data))[i];
  3682. } break;
  3683. case GGML_TYPE_F16:
  3684. {
  3685. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3686. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3687. } break;
  3688. case GGML_TYPE_F32:
  3689. {
  3690. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3691. return ((float *)(tensor->data))[i];
  3692. } break;
  3693. default:
  3694. {
  3695. GGML_ASSERT(false);
  3696. } break;
  3697. }
  3698. return 0.0f;
  3699. }
  3700. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3701. switch (tensor->type) {
  3702. case GGML_TYPE_I8:
  3703. {
  3704. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3705. ((int8_t *)(tensor->data))[i] = value;
  3706. } break;
  3707. case GGML_TYPE_I16:
  3708. {
  3709. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3710. ((int16_t *)(tensor->data))[i] = value;
  3711. } break;
  3712. case GGML_TYPE_I32:
  3713. {
  3714. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3715. ((int32_t *)(tensor->data))[i] = value;
  3716. } break;
  3717. case GGML_TYPE_F16:
  3718. {
  3719. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3720. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3721. } break;
  3722. case GGML_TYPE_F32:
  3723. {
  3724. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3725. ((float *)(tensor->data))[i] = value;
  3726. } break;
  3727. default:
  3728. {
  3729. GGML_ASSERT(false);
  3730. } break;
  3731. }
  3732. }
  3733. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3734. return tensor->data;
  3735. }
  3736. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3737. assert(tensor->type == GGML_TYPE_F32);
  3738. return (float *)(tensor->data);
  3739. }
  3740. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3741. return tensor->name;
  3742. }
  3743. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3744. strncpy(tensor->name, name, sizeof(tensor->name));
  3745. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3746. }
  3747. struct ggml_tensor * ggml_view_tensor(
  3748. struct ggml_context * ctx,
  3749. const struct ggml_tensor * src) {
  3750. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3751. result->nb[0] = src->nb[0];
  3752. result->nb[1] = src->nb[1];
  3753. result->nb[2] = src->nb[2];
  3754. result->nb[3] = src->nb[3];
  3755. return result;
  3756. }
  3757. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3758. struct ggml_object * obj = ctx->objects_begin;
  3759. char * const mem_buffer = ctx->mem_buffer;
  3760. while (obj != NULL) {
  3761. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3762. if (strcmp(cur->name, name) == 0) {
  3763. return cur;
  3764. }
  3765. obj = obj->next;
  3766. }
  3767. return NULL;
  3768. }
  3769. ////////////////////////////////////////////////////////////////////////////////
  3770. // ggml_dup
  3771. struct ggml_tensor * ggml_dup_impl(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. bool inplace) {
  3775. bool is_node = false;
  3776. if (!inplace && (a->grad)) {
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3780. result->op = GGML_OP_DUP;
  3781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3782. result->src0 = a;
  3783. result->src1 = NULL;
  3784. return result;
  3785. }
  3786. struct ggml_tensor * ggml_dup(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a) {
  3789. return ggml_dup_impl(ctx, a, false);
  3790. }
  3791. struct ggml_tensor * ggml_dup_inplace(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a) {
  3794. return ggml_dup_impl(ctx, a, true);
  3795. }
  3796. // ggml_add
  3797. struct ggml_tensor * ggml_add_impl(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. struct ggml_tensor * b,
  3801. bool inplace) {
  3802. GGML_ASSERT(ggml_are_same_shape(a, b));
  3803. bool is_node = false;
  3804. if (!inplace && (a->grad || b->grad)) {
  3805. is_node = true;
  3806. }
  3807. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3808. result->op = GGML_OP_ADD;
  3809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3810. result->src0 = a;
  3811. result->src1 = b;
  3812. return result;
  3813. }
  3814. struct ggml_tensor * ggml_add(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. struct ggml_tensor * b) {
  3818. return ggml_add_impl(ctx, a, b, false);
  3819. }
  3820. struct ggml_tensor * ggml_add_inplace(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a,
  3823. struct ggml_tensor * b) {
  3824. return ggml_add_impl(ctx, a, b, true);
  3825. }
  3826. // ggml_add1
  3827. struct ggml_tensor * ggml_add1_impl(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b,
  3831. bool inplace) {
  3832. GGML_ASSERT(ggml_is_scalar(b));
  3833. GGML_ASSERT(ggml_is_padded_1d(a));
  3834. bool is_node = false;
  3835. if (!inplace && (a->grad || b->grad)) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. result->op = GGML_OP_ADD1;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src0 = a;
  3842. result->src1 = b;
  3843. return result;
  3844. }
  3845. struct ggml_tensor * ggml_add1(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. struct ggml_tensor * b) {
  3849. return ggml_add1_impl(ctx, a, b, false);
  3850. }
  3851. struct ggml_tensor * ggml_add1_inplace(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. struct ggml_tensor * b) {
  3855. return ggml_add1_impl(ctx, a, b, true);
  3856. }
  3857. // ggml_acc
  3858. struct ggml_tensor * ggml_acc_impl(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. struct ggml_tensor * b,
  3862. size_t nb1,
  3863. size_t nb2,
  3864. size_t nb3,
  3865. size_t offset,
  3866. bool inplace) {
  3867. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3868. GGML_ASSERT(ggml_is_contiguous(a));
  3869. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3870. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3871. bool is_node = false;
  3872. if (!inplace && (a->grad || b->grad)) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. ggml_scratch_save(ctx);
  3877. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3878. ((int32_t *) c->data)[0] = nb1;
  3879. ((int32_t *) c->data)[1] = nb2;
  3880. ((int32_t *) c->data)[2] = nb3;
  3881. ((int32_t *) c->data)[3] = offset;
  3882. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3883. ggml_scratch_load(ctx);
  3884. result->op = GGML_OP_ACC;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = b;
  3888. result->opt[0] = c;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_acc(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b,
  3895. size_t nb1,
  3896. size_t nb2,
  3897. size_t nb3,
  3898. size_t offset) {
  3899. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3900. }
  3901. struct ggml_tensor * ggml_acc_inplace(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. size_t nb1,
  3906. size_t nb2,
  3907. size_t nb3,
  3908. size_t offset) {
  3909. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3910. }
  3911. // ggml_sub
  3912. struct ggml_tensor * ggml_sub_impl(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a,
  3915. struct ggml_tensor * b,
  3916. bool inplace) {
  3917. GGML_ASSERT(ggml_are_same_shape(a, b));
  3918. bool is_node = false;
  3919. if (!inplace && (a->grad || b->grad)) {
  3920. is_node = true;
  3921. }
  3922. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3923. result->op = GGML_OP_SUB;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src0 = a;
  3926. result->src1 = b;
  3927. return result;
  3928. }
  3929. struct ggml_tensor * ggml_sub(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. return ggml_sub_impl(ctx, a, b, false);
  3934. }
  3935. struct ggml_tensor * ggml_sub_inplace(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b) {
  3939. return ggml_sub_impl(ctx, a, b, true);
  3940. }
  3941. // ggml_mul
  3942. struct ggml_tensor * ggml_mul_impl(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b,
  3946. bool inplace) {
  3947. // TODO: support less-strict constraint
  3948. // GGML_ASSERT(ggml_can_repeat(b, a));
  3949. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3950. bool is_node = false;
  3951. if (!inplace && (a->grad || b->grad)) {
  3952. // TODO: support backward pass for broadcasting
  3953. GGML_ASSERT(ggml_are_same_shape(a, b));
  3954. is_node = true;
  3955. }
  3956. if (inplace) {
  3957. GGML_ASSERT(is_node == false);
  3958. }
  3959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3960. result->op = GGML_OP_MUL;
  3961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3962. result->src0 = a;
  3963. result->src1 = b;
  3964. return result;
  3965. }
  3966. struct ggml_tensor * ggml_mul(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. struct ggml_tensor * b) {
  3970. return ggml_mul_impl(ctx, a, b, false);
  3971. }
  3972. struct ggml_tensor * ggml_mul_inplace(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. struct ggml_tensor * b) {
  3976. return ggml_mul_impl(ctx, a, b, true);
  3977. }
  3978. // ggml_div
  3979. struct ggml_tensor * ggml_div_impl(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b,
  3983. bool inplace) {
  3984. GGML_ASSERT(ggml_are_same_shape(a, b));
  3985. bool is_node = false;
  3986. if (!inplace && (a->grad || b->grad)) {
  3987. is_node = true;
  3988. }
  3989. if (inplace) {
  3990. GGML_ASSERT(is_node == false);
  3991. }
  3992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3993. result->op = GGML_OP_DIV;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src0 = a;
  3996. result->src1 = b;
  3997. return result;
  3998. }
  3999. struct ggml_tensor * ggml_div(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b) {
  4003. return ggml_div_impl(ctx, a, b, false);
  4004. }
  4005. struct ggml_tensor * ggml_div_inplace(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. struct ggml_tensor * b) {
  4009. return ggml_div_impl(ctx, a, b, true);
  4010. }
  4011. // ggml_sqr
  4012. struct ggml_tensor * ggml_sqr_impl(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. bool inplace) {
  4016. bool is_node = false;
  4017. if (!inplace && (a->grad)) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4021. result->op = GGML_OP_SQR;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src0 = a;
  4024. result->src1 = NULL;
  4025. return result;
  4026. }
  4027. struct ggml_tensor * ggml_sqr(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a) {
  4030. return ggml_sqr_impl(ctx, a, false);
  4031. }
  4032. struct ggml_tensor * ggml_sqr_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. return ggml_sqr_impl(ctx, a, true);
  4036. }
  4037. // ggml_sqrt
  4038. struct ggml_tensor * ggml_sqrt_impl(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. bool inplace) {
  4042. bool is_node = false;
  4043. if (!inplace && (a->grad)) {
  4044. is_node = true;
  4045. }
  4046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4047. result->op = GGML_OP_SQRT;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src0 = a;
  4050. result->src1 = NULL;
  4051. return result;
  4052. }
  4053. struct ggml_tensor * ggml_sqrt(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a) {
  4056. return ggml_sqrt_impl(ctx, a, false);
  4057. }
  4058. struct ggml_tensor * ggml_sqrt_inplace(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a) {
  4061. return ggml_sqrt_impl(ctx, a, true);
  4062. }
  4063. // ggml_log
  4064. struct ggml_tensor * ggml_log_impl(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. bool inplace) {
  4068. bool is_node = false;
  4069. if (!inplace && (a->grad)) {
  4070. is_node = true;
  4071. }
  4072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4073. result->op = GGML_OP_LOG;
  4074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4075. result->src0 = a;
  4076. result->src1 = NULL;
  4077. return result;
  4078. }
  4079. struct ggml_tensor * ggml_log(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a) {
  4082. return ggml_log_impl(ctx, a, false);
  4083. }
  4084. struct ggml_tensor * ggml_log_inplace(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a) {
  4087. return ggml_log_impl(ctx, a, true);
  4088. }
  4089. // ggml_sum
  4090. struct ggml_tensor * ggml_sum(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. is_node = true;
  4096. }
  4097. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4098. result->op = GGML_OP_SUM;
  4099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4100. result->src0 = a;
  4101. result->src1 = NULL;
  4102. return result;
  4103. }
  4104. // ggml_sum_rows
  4105. struct ggml_tensor * ggml_sum_rows(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a) {
  4108. bool is_node = false;
  4109. if (a->grad) {
  4110. is_node = true;
  4111. }
  4112. int64_t ne[4] = {1,1,1,1};
  4113. for (int i=1; i<a->n_dims; ++i) {
  4114. ne[i] = a->ne[i];
  4115. }
  4116. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4117. result->op = GGML_OP_SUM_ROWS;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src0 = a;
  4120. result->src1 = NULL;
  4121. return result;
  4122. }
  4123. // ggml_mean
  4124. struct ggml_tensor * ggml_mean(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a) {
  4127. bool is_node = false;
  4128. if (a->grad) {
  4129. GGML_ASSERT(false); // TODO: implement
  4130. is_node = true;
  4131. }
  4132. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4133. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4134. result->op = GGML_OP_MEAN;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = NULL;
  4138. return result;
  4139. }
  4140. // ggml_repeat
  4141. struct ggml_tensor * ggml_repeat(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b) {
  4145. GGML_ASSERT(ggml_can_repeat(a, b));
  4146. bool is_node = false;
  4147. if (a->grad) {
  4148. is_node = true;
  4149. }
  4150. if (ggml_are_same_shape(a, b) && !is_node) {
  4151. return a;
  4152. }
  4153. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4154. result->op = GGML_OP_REPEAT;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = b;
  4158. return result;
  4159. }
  4160. // ggml_abs
  4161. struct ggml_tensor * ggml_abs_impl(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. bool inplace) {
  4165. bool is_node = false;
  4166. if (!inplace && (a->grad)) {
  4167. is_node = true;
  4168. }
  4169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4170. result->op = GGML_OP_ABS;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src0 = a;
  4173. result->src1 = NULL;
  4174. return result;
  4175. }
  4176. struct ggml_tensor * ggml_abs(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_abs_impl(ctx, a, false);
  4180. }
  4181. struct ggml_tensor * ggml_abs_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_abs_impl(ctx, a, true);
  4185. }
  4186. // ggml_sgn
  4187. struct ggml_tensor * ggml_sgn_impl(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. bool inplace) {
  4191. bool is_node = false;
  4192. if (!inplace && (a->grad)) {
  4193. is_node = true;
  4194. }
  4195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4196. result->op = GGML_OP_SGN;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src0 = a;
  4199. result->src1 = NULL;
  4200. return result;
  4201. }
  4202. struct ggml_tensor * ggml_sgn(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a) {
  4205. return ggml_sgn_impl(ctx, a, false);
  4206. }
  4207. struct ggml_tensor * ggml_sgn_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_sgn_impl(ctx, a, true);
  4211. }
  4212. // ggml_neg
  4213. struct ggml_tensor * ggml_neg_impl(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. bool inplace) {
  4217. bool is_node = false;
  4218. if (!inplace && (a->grad)) {
  4219. is_node = true;
  4220. }
  4221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4222. result->op = GGML_OP_NEG;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src0 = a;
  4225. result->src1 = NULL;
  4226. return result;
  4227. }
  4228. struct ggml_tensor * ggml_neg(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_neg_impl(ctx, a, false);
  4232. }
  4233. struct ggml_tensor * ggml_neg_inplace(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_neg_impl(ctx, a, true);
  4237. }
  4238. // ggml_step
  4239. struct ggml_tensor * ggml_step_impl(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. bool inplace) {
  4243. bool is_node = false;
  4244. if (!inplace && (a->grad)) {
  4245. is_node = true;
  4246. }
  4247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4248. result->op = GGML_OP_STEP;
  4249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4250. result->src0 = a;
  4251. result->src1 = NULL;
  4252. return result;
  4253. }
  4254. struct ggml_tensor * ggml_step(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a) {
  4257. return ggml_step_impl(ctx, a, false);
  4258. }
  4259. struct ggml_tensor * ggml_step_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a) {
  4262. return ggml_step_impl(ctx, a, true);
  4263. }
  4264. // ggml_relu
  4265. struct ggml_tensor * ggml_relu_impl(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. bool inplace) {
  4269. bool is_node = false;
  4270. if (!inplace && (a->grad)) {
  4271. is_node = true;
  4272. }
  4273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4274. result->op = GGML_OP_RELU;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src0 = a;
  4277. result->src1 = NULL;
  4278. return result;
  4279. }
  4280. struct ggml_tensor * ggml_relu(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_relu_impl(ctx, a, false);
  4284. }
  4285. struct ggml_tensor * ggml_relu_inplace(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_relu_impl(ctx, a, true);
  4289. }
  4290. // ggml_gelu
  4291. struct ggml_tensor * ggml_gelu_impl(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. bool inplace) {
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad)) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. result->op = GGML_OP_GELU;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src0 = a;
  4303. result->src1 = NULL;
  4304. return result;
  4305. }
  4306. struct ggml_tensor * ggml_gelu(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_gelu_impl(ctx, a, false);
  4310. }
  4311. struct ggml_tensor * ggml_gelu_inplace(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_gelu_impl(ctx, a, true);
  4315. }
  4316. // ggml_silu
  4317. struct ggml_tensor * ggml_silu_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. bool inplace) {
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad)) {
  4323. is_node = true;
  4324. }
  4325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4326. result->op = GGML_OP_SILU;
  4327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4328. result->src0 = a;
  4329. result->src1 = NULL;
  4330. return result;
  4331. }
  4332. struct ggml_tensor * ggml_silu(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_silu_impl(ctx, a, false);
  4336. }
  4337. struct ggml_tensor * ggml_silu_inplace(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_silu_impl(ctx, a, true);
  4341. }
  4342. // ggml_silu_back
  4343. struct ggml_tensor * ggml_silu_back(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a,
  4346. struct ggml_tensor * b) {
  4347. bool is_node = false;
  4348. if (a->grad || b->grad) {
  4349. // TODO: implement backward
  4350. is_node = true;
  4351. }
  4352. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4353. result->op = GGML_OP_SILU_BACK;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src0 = a;
  4356. result->src1 = b;
  4357. return result;
  4358. }
  4359. // ggml_norm
  4360. struct ggml_tensor * ggml_norm_impl(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. bool inplace) {
  4364. bool is_node = false;
  4365. if (!inplace && (a->grad)) {
  4366. GGML_ASSERT(false); // TODO: implement backward
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. result->op = GGML_OP_NORM;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = NULL; // TODO: maybe store epsilon here?
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_norm(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_norm_impl(ctx, a, false);
  4380. }
  4381. struct ggml_tensor * ggml_norm_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_norm_impl(ctx, a, true);
  4385. }
  4386. struct ggml_tensor * ggml_rms_norm_impl(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. bool inplace) {
  4390. bool is_node = false;
  4391. if (!inplace && (a->grad)) {
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_RMS_NORM;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src0 = a;
  4398. result->src1 = NULL; // TODO: maybe store epsilon here?
  4399. return result;
  4400. }
  4401. struct ggml_tensor * ggml_rms_norm(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_rms_norm_impl(ctx, a, false);
  4405. }
  4406. struct ggml_tensor * ggml_rms_norm_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_rms_norm_impl(ctx, a, true);
  4410. }
  4411. struct ggml_tensor * ggml_rms_norm_back(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b) {
  4415. bool is_node = false;
  4416. if (a->grad) {
  4417. // TODO: implement backward
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4421. result->op = GGML_OP_RMS_NORM_BACK;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src0 = a;
  4424. result->src1 = b;
  4425. return result;
  4426. }
  4427. // ggml_mul_mat
  4428. struct ggml_tensor * ggml_mul_mat(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * b) {
  4432. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4433. GGML_ASSERT(!ggml_is_transposed(a));
  4434. bool is_node = false;
  4435. if (a->grad || b->grad) {
  4436. is_node = true;
  4437. }
  4438. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4439. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4440. result->op = GGML_OP_MUL_MAT;
  4441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4442. result->src0 = a;
  4443. result->src1 = b;
  4444. return result;
  4445. }
  4446. // ggml_scale
  4447. struct ggml_tensor * ggml_scale_impl(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. bool inplace) {
  4452. GGML_ASSERT(ggml_is_scalar(b));
  4453. GGML_ASSERT(ggml_is_padded_1d(a));
  4454. bool is_node = false;
  4455. if (!inplace && (a->grad || b->grad)) {
  4456. is_node = true;
  4457. }
  4458. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4459. result->op = GGML_OP_SCALE;
  4460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4461. result->src0 = a;
  4462. result->src1 = b;
  4463. return result;
  4464. }
  4465. struct ggml_tensor * ggml_scale(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. struct ggml_tensor * b) {
  4469. return ggml_scale_impl(ctx, a, b, false);
  4470. }
  4471. struct ggml_tensor * ggml_scale_inplace(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. struct ggml_tensor * b) {
  4475. return ggml_scale_impl(ctx, a, b, true);
  4476. }
  4477. // ggml_set
  4478. struct ggml_tensor * ggml_set_impl(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b,
  4482. size_t nb1,
  4483. size_t nb2,
  4484. size_t nb3,
  4485. size_t offset,
  4486. bool inplace) {
  4487. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4488. bool is_node = false;
  4489. if (!inplace && (a->grad || b->grad)) {
  4490. is_node = true;
  4491. }
  4492. // make a view of the destination
  4493. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4494. ggml_scratch_save(ctx);
  4495. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4496. (( int32_t * ) c->data)[0] = nb1;
  4497. (( int32_t * ) c->data)[1] = nb2;
  4498. (( int32_t * ) c->data)[2] = nb3;
  4499. (( int32_t * ) c->data)[3] = offset;
  4500. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4501. ggml_scratch_load(ctx);
  4502. result->op = GGML_OP_SET;
  4503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4504. result->src0 = a;
  4505. result->src1 = b;
  4506. result->opt[0] = c;
  4507. return result;
  4508. }
  4509. struct ggml_tensor * ggml_set(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. struct ggml_tensor * b,
  4513. size_t nb1,
  4514. size_t nb2,
  4515. size_t nb3,
  4516. size_t offset) {
  4517. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4518. }
  4519. struct ggml_tensor * ggml_set_inplace(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. size_t nb1,
  4524. size_t nb2,
  4525. size_t nb3,
  4526. size_t offset) {
  4527. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4528. }
  4529. struct ggml_tensor * ggml_set_1d(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. struct ggml_tensor * b,
  4533. size_t offset) {
  4534. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4535. }
  4536. struct ggml_tensor * ggml_set_1d_inplace(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. struct ggml_tensor * b,
  4540. size_t offset) {
  4541. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4542. }
  4543. struct ggml_tensor * ggml_set_2d(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. struct ggml_tensor * b,
  4547. size_t nb1,
  4548. size_t offset) {
  4549. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4550. }
  4551. struct ggml_tensor * ggml_set_2d_inplace(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. struct ggml_tensor * b,
  4555. size_t nb1,
  4556. size_t offset) {
  4557. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4558. }
  4559. // ggml_cpy
  4560. struct ggml_tensor * ggml_cpy_impl(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. struct ggml_tensor * b,
  4564. bool inplace) {
  4565. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4566. bool is_node = false;
  4567. if (!inplace && (a->grad || b->grad)) {
  4568. is_node = true;
  4569. }
  4570. // make a view of the destination
  4571. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4572. result->op = GGML_OP_CPY;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src0 = a;
  4575. result->src1 = b;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_cpy(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b) {
  4582. return ggml_cpy_impl(ctx, a, b, false);
  4583. }
  4584. struct ggml_tensor * ggml_cpy_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a,
  4587. struct ggml_tensor * b) {
  4588. return ggml_cpy_impl(ctx, a, b, true);
  4589. }
  4590. // ggml_cont
  4591. struct ggml_tensor * ggml_cont_impl(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a,
  4594. bool inplace) {
  4595. bool is_node = false;
  4596. if (!inplace && a->grad) {
  4597. is_node = true;
  4598. }
  4599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4600. result->op = GGML_OP_CONT;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src0 = a;
  4603. result->src1 = NULL;
  4604. return result;
  4605. }
  4606. struct ggml_tensor * ggml_cont(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a) {
  4609. return ggml_cont_impl(ctx, a, false);
  4610. }
  4611. struct ggml_tensor * ggml_cont_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_cont_impl(ctx, a, true);
  4615. }
  4616. // ggml_reshape
  4617. struct ggml_tensor * ggml_reshape(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b) {
  4621. GGML_ASSERT(ggml_is_contiguous(a));
  4622. GGML_ASSERT(ggml_is_contiguous(b));
  4623. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4624. bool is_node = false;
  4625. if (a->grad) {
  4626. is_node = true;
  4627. }
  4628. if (b->grad) {
  4629. // gradient propagation is not supported
  4630. //GGML_ASSERT(false);
  4631. }
  4632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4633. result->op = GGML_OP_RESHAPE;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src0 = a;
  4636. result->src1 = NULL;
  4637. return result;
  4638. }
  4639. struct ggml_tensor * ggml_reshape_1d(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. int64_t ne0) {
  4643. GGML_ASSERT(ggml_is_contiguous(a));
  4644. GGML_ASSERT(ggml_nelements(a) == ne0);
  4645. bool is_node = false;
  4646. if (a->grad) {
  4647. is_node = true;
  4648. }
  4649. const int64_t ne[1] = { ne0 };
  4650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4651. result->op = GGML_OP_RESHAPE;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL;
  4655. return result;
  4656. }
  4657. struct ggml_tensor * ggml_reshape_2d(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int64_t ne0,
  4661. int64_t ne1) {
  4662. GGML_ASSERT(ggml_is_contiguous(a));
  4663. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4664. bool is_node = false;
  4665. if (a->grad) {
  4666. is_node = true;
  4667. }
  4668. const int64_t ne[2] = { ne0, ne1 };
  4669. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4670. result->op = GGML_OP_RESHAPE;
  4671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4672. result->src0 = a;
  4673. result->src1 = NULL;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_reshape_3d(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. int64_t ne0,
  4680. int64_t ne1,
  4681. int64_t ne2) {
  4682. GGML_ASSERT(ggml_is_contiguous(a));
  4683. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4684. bool is_node = false;
  4685. if (a->grad) {
  4686. is_node = true;
  4687. }
  4688. const int64_t ne[3] = { ne0, ne1, ne2 };
  4689. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4690. result->op = GGML_OP_RESHAPE;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src0 = a;
  4693. result->src1 = NULL;
  4694. return result;
  4695. }
  4696. struct ggml_tensor * ggml_reshape_4d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2,
  4702. int64_t ne3) {
  4703. GGML_ASSERT(ggml_is_contiguous(a));
  4704. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4705. bool is_node = false;
  4706. if (a->grad) {
  4707. is_node = true;
  4708. }
  4709. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4710. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4711. result->op = GGML_OP_RESHAPE;
  4712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4713. result->src0 = a;
  4714. result->src1 = NULL;
  4715. return result;
  4716. }
  4717. // ggml_view_1d
  4718. struct ggml_tensor * ggml_view_1d(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. int64_t ne0,
  4722. size_t offset) {
  4723. bool is_node = false;
  4724. if (a->grad) {
  4725. is_node = true;
  4726. }
  4727. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4728. ggml_scratch_save(ctx);
  4729. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4730. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4731. ggml_scratch_load(ctx);
  4732. result->op = GGML_OP_VIEW;
  4733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4734. result->src0 = a;
  4735. result->src1 = NULL;
  4736. result->opt[0] = offs;
  4737. if (is_node) {
  4738. memcpy(result->padding, &offset, sizeof(offset));
  4739. }
  4740. return result;
  4741. }
  4742. // ggml_view_2d
  4743. struct ggml_tensor * ggml_view_2d(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. int64_t ne0,
  4747. int64_t ne1,
  4748. size_t nb1,
  4749. size_t offset) {
  4750. bool is_node = false;
  4751. if (a->grad) {
  4752. is_node = true;
  4753. }
  4754. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4755. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4756. ggml_scratch_save(ctx);
  4757. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4758. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4759. ggml_scratch_load(ctx);
  4760. result->nb[1] = nb1;
  4761. result->nb[2] = result->nb[1]*ne1;
  4762. result->nb[3] = result->nb[2];
  4763. result->op = GGML_OP_VIEW;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = NULL;
  4767. result->opt[0] = offs;
  4768. if (is_node) {
  4769. memcpy(result->padding, &offset, sizeof(offset));
  4770. }
  4771. return result;
  4772. }
  4773. // ggml_view_3d
  4774. struct ggml_tensor * ggml_view_3d(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. int64_t ne0,
  4778. int64_t ne1,
  4779. int64_t ne2,
  4780. size_t nb1,
  4781. size_t nb2,
  4782. size_t offset) {
  4783. bool is_node = false;
  4784. if (a->grad) {
  4785. is_node = true;
  4786. }
  4787. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4788. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4789. ggml_scratch_save(ctx);
  4790. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4791. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4792. ggml_scratch_load(ctx);
  4793. result->nb[1] = nb1;
  4794. result->nb[2] = nb2;
  4795. result->nb[3] = result->nb[2]*ne2;
  4796. result->op = GGML_OP_VIEW;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src0 = a;
  4799. result->src1 = NULL;
  4800. result->opt[0] = offs;
  4801. if (is_node) {
  4802. memcpy(result->padding, &offset, sizeof(offset));
  4803. }
  4804. return result;
  4805. }
  4806. // ggml_view_4d
  4807. struct ggml_tensor * ggml_view_4d(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. int64_t ne0,
  4811. int64_t ne1,
  4812. int64_t ne2,
  4813. int64_t ne3,
  4814. size_t nb1,
  4815. size_t nb2,
  4816. size_t nb3,
  4817. size_t offset) {
  4818. bool is_node = false;
  4819. if (a->grad) {
  4820. is_node = true;
  4821. }
  4822. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4823. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4824. ggml_scratch_save(ctx);
  4825. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4826. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4827. ggml_scratch_load(ctx);
  4828. result->nb[1] = nb1;
  4829. result->nb[2] = nb2;
  4830. result->nb[3] = nb3;
  4831. result->op = GGML_OP_VIEW;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src0 = a;
  4834. result->src1 = NULL;
  4835. result->opt[0] = offs;
  4836. if (is_node) {
  4837. memcpy(result->padding, &offset, sizeof(offset));
  4838. }
  4839. return result;
  4840. }
  4841. // ggml_permute
  4842. struct ggml_tensor * ggml_permute(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. int axis0,
  4846. int axis1,
  4847. int axis2,
  4848. int axis3) {
  4849. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4850. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4851. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4852. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4853. GGML_ASSERT(axis0 != axis1);
  4854. GGML_ASSERT(axis0 != axis2);
  4855. GGML_ASSERT(axis0 != axis3);
  4856. GGML_ASSERT(axis1 != axis2);
  4857. GGML_ASSERT(axis1 != axis3);
  4858. GGML_ASSERT(axis2 != axis3);
  4859. bool is_node = false;
  4860. if (a->grad) {
  4861. is_node = true;
  4862. }
  4863. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4864. int ne[GGML_MAX_DIMS];
  4865. int nb[GGML_MAX_DIMS];
  4866. ne[axis0] = a->ne[0];
  4867. ne[axis1] = a->ne[1];
  4868. ne[axis2] = a->ne[2];
  4869. ne[axis3] = a->ne[3];
  4870. nb[axis0] = a->nb[0];
  4871. nb[axis1] = a->nb[1];
  4872. nb[axis2] = a->nb[2];
  4873. nb[axis3] = a->nb[3];
  4874. result->ne[0] = ne[0];
  4875. result->ne[1] = ne[1];
  4876. result->ne[2] = ne[2];
  4877. result->ne[3] = ne[3];
  4878. result->nb[0] = nb[0];
  4879. result->nb[1] = nb[1];
  4880. result->nb[2] = nb[2];
  4881. result->nb[3] = nb[3];
  4882. result->op = GGML_OP_PERMUTE;
  4883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4884. result->src0 = a;
  4885. result->src1 = NULL;
  4886. if (is_node) {
  4887. result->padding[0] = axis0;
  4888. result->padding[1] = axis1;
  4889. result->padding[2] = axis2;
  4890. result->padding[3] = axis3;
  4891. }
  4892. return result;
  4893. }
  4894. // ggml_transpose
  4895. struct ggml_tensor * ggml_transpose(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a) {
  4898. bool is_node = false;
  4899. if (a->grad) {
  4900. is_node = true;
  4901. }
  4902. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4903. result->ne[0] = a->ne[1];
  4904. result->ne[1] = a->ne[0];
  4905. result->nb[0] = a->nb[1];
  4906. result->nb[1] = a->nb[0];
  4907. result->op = GGML_OP_TRANSPOSE;
  4908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4909. result->src0 = a;
  4910. result->src1 = NULL;
  4911. return result;
  4912. }
  4913. // ggml_get_rows
  4914. struct ggml_tensor * ggml_get_rows(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b) {
  4918. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4919. bool is_node = false;
  4920. if (a->grad || b->grad) {
  4921. is_node = true;
  4922. }
  4923. // TODO: implement non F32 return
  4924. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4925. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4926. result->op = GGML_OP_GET_ROWS;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src0 = a;
  4929. result->src1 = b;
  4930. return result;
  4931. }
  4932. // ggml_get_rows_back
  4933. struct ggml_tensor * ggml_get_rows_back(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b,
  4937. struct ggml_tensor * c) {
  4938. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4939. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4940. bool is_node = false;
  4941. if (a->grad || b->grad) {
  4942. is_node = true;
  4943. }
  4944. // TODO: implement non F32 return
  4945. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4946. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4947. result->op = GGML_OP_GET_ROWS_BACK;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src0 = a;
  4950. result->src1 = b;
  4951. result->opt[0] = c;
  4952. return result;
  4953. }
  4954. // ggml_diag
  4955. struct ggml_tensor * ggml_diag(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a) {
  4958. GGML_ASSERT(a->ne[1] == 1);
  4959. bool is_node = false;
  4960. if (a->grad) {
  4961. is_node = true;
  4962. }
  4963. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4964. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4965. result->op = GGML_OP_DIAG;
  4966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4967. result->src0 = a;
  4968. result->src1 = NULL;
  4969. return result;
  4970. }
  4971. // ggml_diag_mask_inf
  4972. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. int n_past,
  4976. bool inplace) {
  4977. bool is_node = false;
  4978. if (a->grad) {
  4979. is_node = true;
  4980. }
  4981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4982. ggml_scratch_save(ctx);
  4983. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4984. ((int32_t *) b->data)[0] = n_past;
  4985. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4986. ggml_scratch_load(ctx);
  4987. result->op = GGML_OP_DIAG_MASK_INF;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src0 = a;
  4990. result->src1 = b;
  4991. return result;
  4992. }
  4993. struct ggml_tensor * ggml_diag_mask_inf(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. int n_past) {
  4997. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4998. }
  4999. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. int n_past) {
  5003. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5004. }
  5005. // ggml_diag_mask_zero
  5006. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. int n_past,
  5010. bool inplace) {
  5011. bool is_node = false;
  5012. if (a->grad) {
  5013. is_node = true;
  5014. }
  5015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5016. ggml_scratch_save(ctx);
  5017. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5018. ggml_set_name(b, "n_past, inplace");
  5019. ((int32_t *) b->data)[0] = n_past;
  5020. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5021. ggml_scratch_load(ctx);
  5022. result->op = GGML_OP_DIAG_MASK_ZERO;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src0 = a;
  5025. result->src1 = b;
  5026. return result;
  5027. }
  5028. struct ggml_tensor * ggml_diag_mask_zero(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int n_past) {
  5032. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5033. }
  5034. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. int n_past) {
  5038. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5039. }
  5040. // ggml_soft_max
  5041. struct ggml_tensor * ggml_soft_max_impl(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. bool inplace) {
  5045. bool is_node = false;
  5046. if (a->grad) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5050. result->op = GGML_OP_SOFT_MAX;
  5051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5052. result->src0 = a;
  5053. result->src1 = NULL;
  5054. return result;
  5055. }
  5056. struct ggml_tensor * ggml_soft_max(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a) {
  5059. return ggml_soft_max_impl(ctx, a, false);
  5060. }
  5061. struct ggml_tensor * ggml_soft_max_inplace(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a) {
  5064. return ggml_soft_max_impl(ctx, a, true);
  5065. }
  5066. // ggml_rope
  5067. struct ggml_tensor * ggml_rope_impl(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int n_past,
  5071. int n_dims,
  5072. int mode,
  5073. bool inplace) {
  5074. GGML_ASSERT(n_past >= 0);
  5075. bool is_node = false;
  5076. if (!inplace && a->grad) {
  5077. is_node = true;
  5078. }
  5079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5080. ggml_scratch_save(ctx);
  5081. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5082. ((int32_t *) b->data)[0] = n_past;
  5083. ((int32_t *) b->data)[1] = n_dims;
  5084. ((int32_t *) b->data)[2] = mode;
  5085. ggml_scratch_load(ctx);
  5086. result->op = GGML_OP_ROPE;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src0 = a;
  5089. result->src1 = b;
  5090. return result;
  5091. }
  5092. struct ggml_tensor * ggml_rope(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. int n_past,
  5096. int n_dims,
  5097. int mode) {
  5098. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5099. }
  5100. struct ggml_tensor * ggml_rope_inplace(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. int n_past,
  5104. int n_dims,
  5105. int mode) {
  5106. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5107. }
  5108. // ggml_rope_back
  5109. struct ggml_tensor * ggml_rope_back(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. int n_past,
  5113. int n_dims,
  5114. int mode) {
  5115. GGML_ASSERT(n_past >= 0);
  5116. bool is_node = false;
  5117. if (a->grad) {
  5118. GGML_ASSERT(false); // TODO: implement backward
  5119. is_node = true;
  5120. }
  5121. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5122. ggml_scratch_save(ctx);
  5123. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5124. ggml_set_name(b, "n_past, n_dims, mode");
  5125. ((int32_t *) b->data)[0] = n_past;
  5126. ((int32_t *) b->data)[1] = n_dims;
  5127. ((int32_t *) b->data)[2] = mode;
  5128. ggml_scratch_load(ctx);
  5129. result->op = GGML_OP_ROPE_BACK;
  5130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5131. result->src0 = a;
  5132. result->src1 = b;
  5133. return result;
  5134. }
  5135. // ggml_alibi
  5136. struct ggml_tensor * ggml_alibi(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. int n_past,
  5140. int n_head,
  5141. float bias_max) {
  5142. GGML_ASSERT(n_past >= 0);
  5143. bool is_node = false;
  5144. if (a->grad) {
  5145. GGML_ASSERT(false); // TODO: implement backward
  5146. is_node = true;
  5147. }
  5148. // TODO: when implement backward, fix this:
  5149. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5150. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5151. ggml_scratch_save(ctx);
  5152. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5153. ((int32_t *) b->data)[0] = n_past;
  5154. ((int32_t *) b->data)[1] = n_head;
  5155. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5156. (((float *) b->data)[2]) = bias_max;
  5157. ggml_scratch_load(ctx);
  5158. result->op = GGML_OP_ALIBI;
  5159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5160. result->src0 = a;
  5161. result->src1 = b;
  5162. return result;
  5163. }
  5164. // ggml_clamp
  5165. struct ggml_tensor * ggml_clamp(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. float min,
  5169. float max) {
  5170. bool is_node = false;
  5171. if (a->grad) {
  5172. GGML_ASSERT(false); // TODO: implement backward
  5173. is_node = true;
  5174. }
  5175. // TODO: when implement backward, fix this:
  5176. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5177. ggml_scratch_save(ctx);
  5178. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5179. ((float *) b->data)[0] = min;
  5180. ((float *) b->data)[1] = max;
  5181. ggml_scratch_load(ctx);
  5182. result->op = GGML_OP_CLAMP;
  5183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5184. result->src0 = a;
  5185. result->src1 = b;
  5186. return result;
  5187. }
  5188. // ggml_conv_1d_1s
  5189. struct ggml_tensor * ggml_conv_1d_1s(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. struct ggml_tensor * b) {
  5193. GGML_ASSERT(ggml_is_matrix(b));
  5194. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5195. GGML_ASSERT(a->ne[3] == 1);
  5196. bool is_node = false;
  5197. if (a->grad || b->grad) {
  5198. GGML_ASSERT(false); // TODO: implement backward
  5199. is_node = true;
  5200. }
  5201. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5202. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5203. result->op = GGML_OP_CONV_1D_1S;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src0 = a;
  5206. result->src1 = b;
  5207. return result;
  5208. }
  5209. // ggml_conv_1d_2s
  5210. struct ggml_tensor * ggml_conv_1d_2s(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. struct ggml_tensor * b) {
  5214. GGML_ASSERT(ggml_is_matrix(b));
  5215. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5216. GGML_ASSERT(a->ne[3] == 1);
  5217. bool is_node = false;
  5218. if (a->grad || b->grad) {
  5219. GGML_ASSERT(false); // TODO: implement backward
  5220. is_node = true;
  5221. }
  5222. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5223. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5224. result->op = GGML_OP_CONV_1D_2S;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src0 = a;
  5227. result->src1 = b;
  5228. return result;
  5229. }
  5230. // ggml_flash_attn
  5231. struct ggml_tensor * ggml_flash_attn(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * q,
  5234. struct ggml_tensor * k,
  5235. struct ggml_tensor * v,
  5236. bool masked) {
  5237. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5238. // TODO: check if vT can be multiplied by (k*qT)
  5239. bool is_node = false;
  5240. if (q->grad || k->grad || v->grad) {
  5241. GGML_ASSERT(false); // TODO: implement backward
  5242. is_node = true;
  5243. }
  5244. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5245. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5246. result->op = GGML_OP_FLASH_ATTN;
  5247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5248. result->src0 = q;
  5249. result->src1 = k;
  5250. result->opt[0] = v;
  5251. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5252. return result;
  5253. }
  5254. // ggml_flash_ff
  5255. struct ggml_tensor * ggml_flash_ff(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. struct ggml_tensor * b0,
  5259. struct ggml_tensor * b1,
  5260. struct ggml_tensor * c0,
  5261. struct ggml_tensor * c1) {
  5262. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5263. // TODO: more checks
  5264. bool is_node = false;
  5265. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5266. GGML_ASSERT(false); // TODO: implement backward
  5267. is_node = true;
  5268. }
  5269. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5270. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5271. result->op = GGML_OP_FLASH_FF;
  5272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5273. result->src0 = a;
  5274. result->src1 = b0;
  5275. result->opt[0] = b1;
  5276. result->opt[1] = c0;
  5277. result->opt[2] = c1;
  5278. return result;
  5279. }
  5280. // ggml_map_unary
  5281. struct ggml_tensor * ggml_map_unary_impl_f32(
  5282. struct ggml_context * ctx,
  5283. struct ggml_tensor * a,
  5284. const ggml_unary_op_f32_t fun,
  5285. bool inplace) {
  5286. bool is_node = false;
  5287. if (!inplace && a->grad) {
  5288. is_node = true;
  5289. }
  5290. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5291. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5292. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5293. result->op = GGML_OP_MAP_UNARY;
  5294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5295. result->src0 = a;
  5296. result->opt[0] = addr_tensor;
  5297. return result;
  5298. }
  5299. struct ggml_tensor * ggml_map_unary_f32(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. const ggml_unary_op_f32_t fun) {
  5303. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5304. }
  5305. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. const ggml_unary_op_f32_t fun) {
  5309. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5310. }
  5311. // ggml_map_binary
  5312. struct ggml_tensor * ggml_map_binary_impl_f32(
  5313. struct ggml_context * ctx,
  5314. struct ggml_tensor * a,
  5315. struct ggml_tensor * b,
  5316. const ggml_binary_op_f32_t fun,
  5317. bool inplace) {
  5318. GGML_ASSERT(ggml_are_same_shape(a, b));
  5319. bool is_node = false;
  5320. if (!inplace && (a->grad || b->grad)) {
  5321. is_node = true;
  5322. }
  5323. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5324. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5325. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5326. result->op = GGML_OP_MAP_BINARY;
  5327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5328. result->src0 = a;
  5329. result->src1 = b;
  5330. result->opt[0] = addr_tensor;
  5331. return result;
  5332. }
  5333. struct ggml_tensor * ggml_map_binary_f32(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * a,
  5336. struct ggml_tensor * b,
  5337. const ggml_binary_op_f32_t fun) {
  5338. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5339. }
  5340. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. struct ggml_tensor * b,
  5344. const ggml_binary_op_f32_t fun) {
  5345. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5346. }
  5347. ////////////////////////////////////////////////////////////////////////////////
  5348. void ggml_set_param(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * tensor) {
  5351. tensor->is_param = true;
  5352. GGML_ASSERT(tensor->grad == NULL);
  5353. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5354. }
  5355. // ggml_compute_forward_dup
  5356. static void ggml_compute_forward_dup_same_cont(
  5357. const struct ggml_compute_params * params,
  5358. const struct ggml_tensor * src0,
  5359. struct ggml_tensor * dst) {
  5360. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5361. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5362. GGML_ASSERT(src0->type == dst->type);
  5363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5364. return;
  5365. }
  5366. const size_t nb00 = src0->nb[0];
  5367. const size_t nb0 = dst->nb[0];
  5368. const int ith = params->ith; // thread index
  5369. const int nth = params->nth; // number of threads
  5370. // parallelize by elements
  5371. const int ne = ggml_nelements(dst);
  5372. const int dr = (ne + nth - 1) / nth;
  5373. const int ie0 = dr * ith;
  5374. const int ie1 = MIN(ie0 + dr, ne);
  5375. if (ie0 < ie1) {
  5376. memcpy(
  5377. ((char *) dst->data + ie0*nb0),
  5378. ((char *) src0->data + ie0*nb00),
  5379. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5380. }
  5381. }
  5382. static void ggml_compute_forward_dup_f16(
  5383. const struct ggml_compute_params * params,
  5384. const struct ggml_tensor * src0,
  5385. struct ggml_tensor * dst) {
  5386. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5388. return;
  5389. }
  5390. const int64_t ne00 = src0->ne[0];
  5391. const int64_t ne01 = src0->ne[1];
  5392. const int64_t ne02 = src0->ne[2];
  5393. const int64_t ne03 = src0->ne[3];
  5394. const int64_t ne0 = dst->ne[0];
  5395. const int64_t ne1 = dst->ne[1];
  5396. const int64_t ne2 = dst->ne[2];
  5397. const int64_t ne3 = dst->ne[3];
  5398. const size_t nb00 = src0->nb[0];
  5399. const size_t nb01 = src0->nb[1];
  5400. const size_t nb02 = src0->nb[2];
  5401. const size_t nb03 = src0->nb[3];
  5402. const size_t nb0 = dst->nb[0];
  5403. const size_t nb1 = dst->nb[1];
  5404. const size_t nb2 = dst->nb[2];
  5405. const size_t nb3 = dst->nb[3];
  5406. const int ith = params->ith; // thread index
  5407. const int nth = params->nth; // number of threads
  5408. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5409. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5410. return;
  5411. }
  5412. // parallelize by rows
  5413. const int nr = ne01;
  5414. // number of rows per thread
  5415. const int dr = (nr + nth - 1) / nth;
  5416. // row range for this thread
  5417. const int ir0 = dr * ith;
  5418. const int ir1 = MIN(ir0 + dr, nr);
  5419. if (src0->type == dst->type &&
  5420. ne00 == ne0 &&
  5421. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5422. // copy by rows
  5423. const size_t rs = ne00*nb00;
  5424. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5425. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5426. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5427. memcpy(
  5428. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5429. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5430. rs);
  5431. }
  5432. }
  5433. }
  5434. return;
  5435. }
  5436. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5437. if (ggml_is_contiguous(dst)) {
  5438. if (nb00 == sizeof(ggml_fp16_t)) {
  5439. if (dst->type == GGML_TYPE_F16) {
  5440. size_t id = 0;
  5441. const size_t rs = ne00 * nb00;
  5442. char * dst_ptr = (char *) dst->data;
  5443. for (int i03 = 0; i03 < ne03; i03++) {
  5444. for (int i02 = 0; i02 < ne02; i02++) {
  5445. id += rs * ir0;
  5446. for (int i01 = ir0; i01 < ir1; i01++) {
  5447. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5448. memcpy(dst_ptr + id, src0_ptr, rs);
  5449. id += rs;
  5450. }
  5451. id += rs * (ne01 - ir1);
  5452. }
  5453. }
  5454. } else if (dst->type == GGML_TYPE_F32) {
  5455. size_t id = 0;
  5456. float * dst_ptr = (float *) dst->data;
  5457. for (int i03 = 0; i03 < ne03; i03++) {
  5458. for (int i02 = 0; i02 < ne02; i02++) {
  5459. id += ne00 * ir0;
  5460. for (int i01 = ir0; i01 < ir1; i01++) {
  5461. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5462. for (int i00 = 0; i00 < ne00; i00++) {
  5463. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5464. id++;
  5465. }
  5466. }
  5467. id += ne00 * (ne01 - ir1);
  5468. }
  5469. }
  5470. } else if (ggml_is_quantized(dst->type)) {
  5471. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5472. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5473. size_t id = 0;
  5474. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5475. char * dst_ptr = (char *) dst->data;
  5476. for (int i03 = 0; i03 < ne03; i03++) {
  5477. for (int i02 = 0; i02 < ne02; i02++) {
  5478. id += rs * ir0;
  5479. for (int i01 = ir0; i01 < ir1; i01++) {
  5480. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5481. for (int i00 = 0; i00 < ne00; i00++) {
  5482. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5483. }
  5484. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5485. id += rs;
  5486. }
  5487. id += rs * (ne01 - ir1);
  5488. }
  5489. }
  5490. } else {
  5491. GGML_ASSERT(false); // TODO: implement
  5492. }
  5493. } else {
  5494. //printf("%s: this is not optimal - fix me\n", __func__);
  5495. if (dst->type == GGML_TYPE_F32) {
  5496. size_t id = 0;
  5497. float * dst_ptr = (float *) dst->data;
  5498. for (int i03 = 0; i03 < ne03; i03++) {
  5499. for (int i02 = 0; i02 < ne02; i02++) {
  5500. id += ne00 * ir0;
  5501. for (int i01 = ir0; i01 < ir1; i01++) {
  5502. for (int i00 = 0; i00 < ne00; i00++) {
  5503. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5504. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5505. id++;
  5506. }
  5507. }
  5508. id += ne00 * (ne01 - ir1);
  5509. }
  5510. }
  5511. } else if (dst->type == GGML_TYPE_F16) {
  5512. size_t id = 0;
  5513. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5514. for (int i03 = 0; i03 < ne03; i03++) {
  5515. for (int i02 = 0; i02 < ne02; i02++) {
  5516. id += ne00 * ir0;
  5517. for (int i01 = ir0; i01 < ir1; i01++) {
  5518. for (int i00 = 0; i00 < ne00; i00++) {
  5519. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5520. dst_ptr[id] = *src0_ptr;
  5521. id++;
  5522. }
  5523. }
  5524. id += ne00 * (ne01 - ir1);
  5525. }
  5526. }
  5527. } else {
  5528. GGML_ASSERT(false); // TODO: implement
  5529. }
  5530. }
  5531. return;
  5532. }
  5533. // dst counters
  5534. int64_t i10 = 0;
  5535. int64_t i11 = 0;
  5536. int64_t i12 = 0;
  5537. int64_t i13 = 0;
  5538. if (dst->type == GGML_TYPE_F16) {
  5539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5541. i10 += ne00 * ir0;
  5542. while (i10 >= ne0) {
  5543. i10 -= ne0;
  5544. if (++i11 == ne1) {
  5545. i11 = 0;
  5546. if (++i12 == ne2) {
  5547. i12 = 0;
  5548. if (++i13 == ne3) {
  5549. i13 = 0;
  5550. }
  5551. }
  5552. }
  5553. }
  5554. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5555. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5556. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5557. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5558. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5559. if (++i10 == ne00) {
  5560. i10 = 0;
  5561. if (++i11 == ne01) {
  5562. i11 = 0;
  5563. if (++i12 == ne02) {
  5564. i12 = 0;
  5565. if (++i13 == ne03) {
  5566. i13 = 0;
  5567. }
  5568. }
  5569. }
  5570. }
  5571. }
  5572. }
  5573. i10 += ne00 * (ne01 - ir1);
  5574. while (i10 >= ne0) {
  5575. i10 -= ne0;
  5576. if (++i11 == ne1) {
  5577. i11 = 0;
  5578. if (++i12 == ne2) {
  5579. i12 = 0;
  5580. if (++i13 == ne3) {
  5581. i13 = 0;
  5582. }
  5583. }
  5584. }
  5585. }
  5586. }
  5587. }
  5588. } else if (dst->type == GGML_TYPE_F32) {
  5589. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5590. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5591. i10 += ne00 * ir0;
  5592. while (i10 >= ne0) {
  5593. i10 -= ne0;
  5594. if (++i11 == ne1) {
  5595. i11 = 0;
  5596. if (++i12 == ne2) {
  5597. i12 = 0;
  5598. if (++i13 == ne3) {
  5599. i13 = 0;
  5600. }
  5601. }
  5602. }
  5603. }
  5604. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5605. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5606. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5607. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5608. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5609. if (++i10 == ne0) {
  5610. i10 = 0;
  5611. if (++i11 == ne1) {
  5612. i11 = 0;
  5613. if (++i12 == ne2) {
  5614. i12 = 0;
  5615. if (++i13 == ne3) {
  5616. i13 = 0;
  5617. }
  5618. }
  5619. }
  5620. }
  5621. }
  5622. }
  5623. i10 += ne00 * (ne01 - ir1);
  5624. while (i10 >= ne0) {
  5625. i10 -= ne0;
  5626. if (++i11 == ne1) {
  5627. i11 = 0;
  5628. if (++i12 == ne2) {
  5629. i12 = 0;
  5630. if (++i13 == ne3) {
  5631. i13 = 0;
  5632. }
  5633. }
  5634. }
  5635. }
  5636. }
  5637. }
  5638. } else {
  5639. GGML_ASSERT(false); // TODO: implement
  5640. }
  5641. }
  5642. static void ggml_compute_forward_dup_f32(
  5643. const struct ggml_compute_params * params,
  5644. const struct ggml_tensor * src0,
  5645. struct ggml_tensor * dst) {
  5646. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5648. return;
  5649. }
  5650. const int64_t ne00 = src0->ne[0];
  5651. const int64_t ne01 = src0->ne[1];
  5652. const int64_t ne02 = src0->ne[2];
  5653. const int64_t ne03 = src0->ne[3];
  5654. const int64_t ne0 = dst->ne[0];
  5655. const int64_t ne1 = dst->ne[1];
  5656. const int64_t ne2 = dst->ne[2];
  5657. const int64_t ne3 = dst->ne[3];
  5658. const size_t nb00 = src0->nb[0];
  5659. const size_t nb01 = src0->nb[1];
  5660. const size_t nb02 = src0->nb[2];
  5661. const size_t nb03 = src0->nb[3];
  5662. const size_t nb0 = dst->nb[0];
  5663. const size_t nb1 = dst->nb[1];
  5664. const size_t nb2 = dst->nb[2];
  5665. const size_t nb3 = dst->nb[3];
  5666. const int ith = params->ith; // thread index
  5667. const int nth = params->nth; // number of threads
  5668. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5669. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5670. return;
  5671. }
  5672. // parallelize by rows
  5673. const int nr = ne01;
  5674. // number of rows per thread
  5675. const int dr = (nr + nth - 1) / nth;
  5676. // row range for this thread
  5677. const int ir0 = dr * ith;
  5678. const int ir1 = MIN(ir0 + dr, nr);
  5679. if (src0->type == dst->type &&
  5680. ne00 == ne0 &&
  5681. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5682. // copy by rows
  5683. const size_t rs = ne00*nb00;
  5684. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5685. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5686. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5687. memcpy(
  5688. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5689. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5690. rs);
  5691. }
  5692. }
  5693. }
  5694. return;
  5695. }
  5696. if (ggml_is_contiguous(dst)) {
  5697. // TODO: simplify
  5698. if (nb00 == sizeof(float)) {
  5699. if (dst->type == GGML_TYPE_F32) {
  5700. size_t id = 0;
  5701. const size_t rs = ne00 * nb00;
  5702. char * dst_ptr = (char *) dst->data;
  5703. for (int i03 = 0; i03 < ne03; i03++) {
  5704. for (int i02 = 0; i02 < ne02; i02++) {
  5705. id += rs * ir0;
  5706. for (int i01 = ir0; i01 < ir1; i01++) {
  5707. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5708. memcpy(dst_ptr + id, src0_ptr, rs);
  5709. id += rs;
  5710. }
  5711. id += rs * (ne01 - ir1);
  5712. }
  5713. }
  5714. } else if (dst->type == GGML_TYPE_F16) {
  5715. size_t id = 0;
  5716. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5717. for (int i03 = 0; i03 < ne03; i03++) {
  5718. for (int i02 = 0; i02 < ne02; i02++) {
  5719. id += ne00 * ir0;
  5720. for (int i01 = ir0; i01 < ir1; i01++) {
  5721. for (int i00 = 0; i00 < ne00; i00++) {
  5722. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5723. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5724. id++;
  5725. }
  5726. }
  5727. id += ne00 * (ne01 - ir1);
  5728. }
  5729. }
  5730. } else if (ggml_is_quantized(dst->type)) {
  5731. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5732. size_t id = 0;
  5733. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5734. char * dst_ptr = (char *) dst->data;
  5735. for (int i03 = 0; i03 < ne03; i03++) {
  5736. for (int i02 = 0; i02 < ne02; i02++) {
  5737. id += rs * ir0;
  5738. for (int i01 = ir0; i01 < ir1; i01++) {
  5739. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5740. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5741. id += rs;
  5742. }
  5743. id += rs * (ne01 - ir1);
  5744. }
  5745. }
  5746. } else {
  5747. GGML_ASSERT(false); // TODO: implement
  5748. }
  5749. } else {
  5750. //printf("%s: this is not optimal - fix me\n", __func__);
  5751. if (dst->type == GGML_TYPE_F32) {
  5752. size_t id = 0;
  5753. float * dst_ptr = (float *) dst->data;
  5754. for (int i03 = 0; i03 < ne03; i03++) {
  5755. for (int i02 = 0; i02 < ne02; i02++) {
  5756. id += ne00 * ir0;
  5757. for (int i01 = ir0; i01 < ir1; i01++) {
  5758. for (int i00 = 0; i00 < ne00; i00++) {
  5759. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5760. dst_ptr[id] = *src0_ptr;
  5761. id++;
  5762. }
  5763. }
  5764. id += ne00 * (ne01 - ir1);
  5765. }
  5766. }
  5767. } else if (dst->type == GGML_TYPE_F16) {
  5768. size_t id = 0;
  5769. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5770. for (int i03 = 0; i03 < ne03; i03++) {
  5771. for (int i02 = 0; i02 < ne02; i02++) {
  5772. id += ne00 * ir0;
  5773. for (int i01 = ir0; i01 < ir1; i01++) {
  5774. for (int i00 = 0; i00 < ne00; i00++) {
  5775. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5776. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5777. id++;
  5778. }
  5779. }
  5780. id += ne00 * (ne01 - ir1);
  5781. }
  5782. }
  5783. } else {
  5784. GGML_ASSERT(false); // TODO: implement
  5785. }
  5786. }
  5787. return;
  5788. }
  5789. // dst counters
  5790. int64_t i10 = 0;
  5791. int64_t i11 = 0;
  5792. int64_t i12 = 0;
  5793. int64_t i13 = 0;
  5794. if (dst->type == GGML_TYPE_F32) {
  5795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5797. i10 += ne00 * ir0;
  5798. while (i10 >= ne0) {
  5799. i10 -= ne0;
  5800. if (++i11 == ne1) {
  5801. i11 = 0;
  5802. if (++i12 == ne2) {
  5803. i12 = 0;
  5804. if (++i13 == ne3) {
  5805. i13 = 0;
  5806. }
  5807. }
  5808. }
  5809. }
  5810. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5811. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5812. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5813. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5814. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5815. if (++i10 == ne0) {
  5816. i10 = 0;
  5817. if (++i11 == ne1) {
  5818. i11 = 0;
  5819. if (++i12 == ne2) {
  5820. i12 = 0;
  5821. if (++i13 == ne3) {
  5822. i13 = 0;
  5823. }
  5824. }
  5825. }
  5826. }
  5827. }
  5828. }
  5829. i10 += ne00 * (ne01 - ir1);
  5830. while (i10 >= ne0) {
  5831. i10 -= ne0;
  5832. if (++i11 == ne1) {
  5833. i11 = 0;
  5834. if (++i12 == ne2) {
  5835. i12 = 0;
  5836. if (++i13 == ne3) {
  5837. i13 = 0;
  5838. }
  5839. }
  5840. }
  5841. }
  5842. }
  5843. }
  5844. } else if (dst->type == GGML_TYPE_F16) {
  5845. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5846. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5847. i10 += ne00 * ir0;
  5848. while (i10 >= ne0) {
  5849. i10 -= ne0;
  5850. if (++i11 == ne1) {
  5851. i11 = 0;
  5852. if (++i12 == ne2) {
  5853. i12 = 0;
  5854. if (++i13 == ne3) {
  5855. i13 = 0;
  5856. }
  5857. }
  5858. }
  5859. }
  5860. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5861. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5862. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5863. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5864. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5865. if (++i10 == ne0) {
  5866. i10 = 0;
  5867. if (++i11 == ne1) {
  5868. i11 = 0;
  5869. if (++i12 == ne2) {
  5870. i12 = 0;
  5871. if (++i13 == ne3) {
  5872. i13 = 0;
  5873. }
  5874. }
  5875. }
  5876. }
  5877. }
  5878. }
  5879. i10 += ne00 * (ne01 - ir1);
  5880. while (i10 >= ne0) {
  5881. i10 -= ne0;
  5882. if (++i11 == ne1) {
  5883. i11 = 0;
  5884. if (++i12 == ne2) {
  5885. i12 = 0;
  5886. if (++i13 == ne3) {
  5887. i13 = 0;
  5888. }
  5889. }
  5890. }
  5891. }
  5892. }
  5893. }
  5894. } else {
  5895. GGML_ASSERT(false); // TODO: implement
  5896. }
  5897. }
  5898. static void ggml_compute_forward_dup(
  5899. const struct ggml_compute_params * params,
  5900. const struct ggml_tensor * src0,
  5901. struct ggml_tensor * dst) {
  5902. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5903. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5904. return;
  5905. }
  5906. switch (src0->type) {
  5907. case GGML_TYPE_F16:
  5908. {
  5909. ggml_compute_forward_dup_f16(params, src0, dst);
  5910. } break;
  5911. case GGML_TYPE_F32:
  5912. {
  5913. ggml_compute_forward_dup_f32(params, src0, dst);
  5914. } break;
  5915. default:
  5916. {
  5917. GGML_ASSERT(false);
  5918. } break;
  5919. }
  5920. }
  5921. // ggml_compute_forward_add
  5922. static void ggml_compute_forward_add_f32(
  5923. const struct ggml_compute_params * params,
  5924. const struct ggml_tensor * src0,
  5925. const struct ggml_tensor * src1,
  5926. struct ggml_tensor * dst) {
  5927. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5929. return;
  5930. }
  5931. const int ith = params->ith;
  5932. const int nth = params->nth;
  5933. const int nr = ggml_nrows(src0);
  5934. const int64_t ne0 = src0->ne[0];
  5935. const int64_t ne1 = src0->ne[1];
  5936. const int64_t ne2 = src0->ne[2];
  5937. const size_t nb00 = src0->nb[0];
  5938. const size_t nb01 = src0->nb[1];
  5939. const size_t nb02 = src0->nb[2];
  5940. const size_t nb03 = src0->nb[3];
  5941. const size_t nb10 = src1->nb[0];
  5942. const size_t nb11 = src1->nb[1];
  5943. const size_t nb12 = src1->nb[2];
  5944. const size_t nb13 = src1->nb[3];
  5945. const size_t nb0 = dst->nb[0];
  5946. const size_t nb1 = dst->nb[1];
  5947. const size_t nb2 = dst->nb[2];
  5948. const size_t nb3 = dst->nb[3];
  5949. GGML_ASSERT( nb0 == sizeof(float));
  5950. GGML_ASSERT(nb00 == sizeof(float));
  5951. // rows per thread
  5952. const int dr = (nr + nth - 1)/nth;
  5953. // row range for this thread
  5954. const int ir0 = dr*ith;
  5955. const int ir1 = MIN(ir0 + dr, nr);
  5956. if (nb10 == sizeof(float)) {
  5957. for (int ir = ir0; ir < ir1; ++ir) {
  5958. // src0, src1 and dst are same shape => same indices
  5959. const int i3 = ir/(ne2*ne1);
  5960. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5961. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5962. #ifdef GGML_USE_ACCELERATE
  5963. vDSP_vadd(
  5964. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5965. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5966. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5967. ne0);
  5968. #else
  5969. ggml_vec_add_f32(ne0,
  5970. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5971. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5972. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5973. #endif
  5974. // }
  5975. // }
  5976. }
  5977. } else {
  5978. // src1 is not contiguous
  5979. for (int ir = ir0; ir < ir1; ++ir) {
  5980. // src0, src1 and dst are same shape => same indices
  5981. const int i3 = ir/(ne2*ne1);
  5982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5984. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5985. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5986. for (int i0 = 0; i0 < ne0; i0++) {
  5987. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5988. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5989. }
  5990. }
  5991. }
  5992. }
  5993. static void ggml_compute_forward_add_f16_f32(
  5994. const struct ggml_compute_params * params,
  5995. const struct ggml_tensor * src0,
  5996. const struct ggml_tensor * src1,
  5997. struct ggml_tensor * dst) {
  5998. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6000. return;
  6001. }
  6002. const int ith = params->ith;
  6003. const int nth = params->nth;
  6004. const int nr = ggml_nrows(src0);
  6005. const int64_t ne0 = src0->ne[0];
  6006. const int64_t ne1 = src0->ne[1];
  6007. const int64_t ne2 = src0->ne[2];
  6008. const size_t nb00 = src0->nb[0];
  6009. const size_t nb01 = src0->nb[1];
  6010. const size_t nb02 = src0->nb[2];
  6011. const size_t nb03 = src0->nb[3];
  6012. const size_t nb10 = src1->nb[0];
  6013. const size_t nb11 = src1->nb[1];
  6014. const size_t nb12 = src1->nb[2];
  6015. const size_t nb13 = src1->nb[3];
  6016. const size_t nb0 = dst->nb[0];
  6017. const size_t nb1 = dst->nb[1];
  6018. const size_t nb2 = dst->nb[2];
  6019. const size_t nb3 = dst->nb[3];
  6020. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6021. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6022. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6023. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6024. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6025. // rows per thread
  6026. const int dr = (nr + nth - 1)/nth;
  6027. // row range for this thread
  6028. const int ir0 = dr*ith;
  6029. const int ir1 = MIN(ir0 + dr, nr);
  6030. if (nb10 == sizeof(float)) {
  6031. for (int ir = ir0; ir < ir1; ++ir) {
  6032. // src0, src1 and dst are same shape => same indices
  6033. const int i3 = ir/(ne2*ne1);
  6034. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6035. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6036. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6037. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6038. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6039. for (int i = 0; i < ne0; i++) {
  6040. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6041. }
  6042. }
  6043. }
  6044. else {
  6045. // src1 is not contiguous
  6046. GGML_ASSERT(false);
  6047. }
  6048. }
  6049. static void ggml_compute_forward_add_f16_f16(
  6050. const struct ggml_compute_params * params,
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6056. return;
  6057. }
  6058. const int ith = params->ith;
  6059. const int nth = params->nth;
  6060. const int nr = ggml_nrows(src0);
  6061. const int64_t ne0 = src0->ne[0];
  6062. const int64_t ne1 = src0->ne[1];
  6063. const int64_t ne2 = src0->ne[2];
  6064. const size_t nb00 = src0->nb[0];
  6065. const size_t nb01 = src0->nb[1];
  6066. const size_t nb02 = src0->nb[2];
  6067. const size_t nb03 = src0->nb[3];
  6068. const size_t nb10 = src1->nb[0];
  6069. const size_t nb11 = src1->nb[1];
  6070. const size_t nb12 = src1->nb[2];
  6071. const size_t nb13 = src1->nb[3];
  6072. const size_t nb0 = dst->nb[0];
  6073. const size_t nb1 = dst->nb[1];
  6074. const size_t nb2 = dst->nb[2];
  6075. const size_t nb3 = dst->nb[3];
  6076. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6077. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6078. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6079. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6080. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6081. // rows per thread
  6082. const int dr = (nr + nth - 1)/nth;
  6083. // row range for this thread
  6084. const int ir0 = dr*ith;
  6085. const int ir1 = MIN(ir0 + dr, nr);
  6086. if (nb10 == sizeof(ggml_fp16_t)) {
  6087. for (int ir = ir0; ir < ir1; ++ir) {
  6088. // src0, src1 and dst are same shape => same indices
  6089. const int i3 = ir/(ne2*ne1);
  6090. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6091. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6092. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6093. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6094. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6095. for (int i = 0; i < ne0; i++) {
  6096. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6097. }
  6098. }
  6099. }
  6100. else {
  6101. // src1 is not contiguous
  6102. GGML_ASSERT(false);
  6103. }
  6104. }
  6105. static void ggml_compute_forward_add_q_f32(
  6106. const struct ggml_compute_params * params,
  6107. const struct ggml_tensor * src0,
  6108. const struct ggml_tensor * src1,
  6109. struct ggml_tensor * dst) {
  6110. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6112. return;
  6113. }
  6114. const int nr = ggml_nrows(src0);
  6115. const int64_t ne00 = src0->ne[0];
  6116. const int64_t ne01 = src0->ne[1];
  6117. const int64_t ne02 = src0->ne[2];
  6118. //const int64_t ne03 = src0->ne[3];
  6119. const size_t nb00 = src0->nb[0];
  6120. const size_t nb01 = src0->nb[1];
  6121. const size_t nb02 = src0->nb[2];
  6122. const size_t nb03 = src0->nb[3];
  6123. const size_t nb10 = src1->nb[0];
  6124. const size_t nb11 = src1->nb[1];
  6125. const size_t nb12 = src1->nb[2];
  6126. const size_t nb13 = src1->nb[3];
  6127. const size_t nb0 = dst->nb[0];
  6128. const size_t nb1 = dst->nb[1];
  6129. const size_t nb2 = dst->nb[2];
  6130. const size_t nb3 = dst->nb[3];
  6131. const int ith = params->ith;
  6132. const int nth = params->nth;
  6133. const enum ggml_type type = src0->type;
  6134. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6135. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6136. // we don't support permuted src0 or src1
  6137. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6138. GGML_ASSERT(nb10 == sizeof(float));
  6139. // dst cannot be transposed or permuted
  6140. GGML_ASSERT(nb0 <= nb1);
  6141. GGML_ASSERT(nb1 <= nb2);
  6142. GGML_ASSERT(nb2 <= nb3);
  6143. GGML_ASSERT(ggml_is_quantized(src0->type));
  6144. GGML_ASSERT(dst->type == src0->type);
  6145. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6146. // rows per thread
  6147. const int dr = (nr + nth - 1)/nth;
  6148. // row range for this thread
  6149. const int ir0 = dr*ith;
  6150. const int ir1 = MIN(ir0 + dr, nr);
  6151. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6152. for (int ir = ir0; ir < ir1; ++ir) {
  6153. // src0 indices
  6154. const int i03 = ir/(ne02*ne01);
  6155. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6156. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6157. // src1 and dst are same shape as src0 => same indices
  6158. const int i13 = i03;
  6159. const int i12 = i02;
  6160. const int i11 = i01;
  6161. const int i3 = i03;
  6162. const int i2 = i02;
  6163. const int i1 = i01;
  6164. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6165. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6166. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6167. assert(ne00 % 32 == 0);
  6168. // unquantize row from src0 to temp buffer
  6169. dequantize_row_q(src0_row, wdata, ne00);
  6170. // add src1
  6171. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6172. // quantize row to dst
  6173. quantize_row_q(wdata, dst_row, ne00);
  6174. }
  6175. }
  6176. static void ggml_compute_forward_add(
  6177. const struct ggml_compute_params * params,
  6178. const struct ggml_tensor * src0,
  6179. const struct ggml_tensor * src1,
  6180. struct ggml_tensor * dst) {
  6181. switch (src0->type) {
  6182. case GGML_TYPE_F32:
  6183. {
  6184. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6185. } break;
  6186. case GGML_TYPE_F16:
  6187. {
  6188. if (src1->type == GGML_TYPE_F16) {
  6189. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6190. }
  6191. else if (src1->type == GGML_TYPE_F32) {
  6192. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6193. }
  6194. else {
  6195. GGML_ASSERT(false);
  6196. }
  6197. } break;
  6198. case GGML_TYPE_Q4_0:
  6199. case GGML_TYPE_Q4_1:
  6200. case GGML_TYPE_Q5_0:
  6201. case GGML_TYPE_Q5_1:
  6202. case GGML_TYPE_Q8_0:
  6203. case GGML_TYPE_Q2_K:
  6204. case GGML_TYPE_Q3_K:
  6205. case GGML_TYPE_Q4_K:
  6206. case GGML_TYPE_Q5_K:
  6207. case GGML_TYPE_Q6_K:
  6208. {
  6209. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6210. } break;
  6211. default:
  6212. {
  6213. GGML_ASSERT(false);
  6214. } break;
  6215. }
  6216. }
  6217. // ggml_compute_forward_add1
  6218. static void ggml_compute_forward_add1_f32(
  6219. const struct ggml_compute_params * params,
  6220. const struct ggml_tensor * src0,
  6221. const struct ggml_tensor * src1,
  6222. struct ggml_tensor * dst) {
  6223. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6224. GGML_ASSERT(ggml_is_scalar(src1));
  6225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6226. return;
  6227. }
  6228. const int ith = params->ith;
  6229. const int nth = params->nth;
  6230. const int nr = ggml_nrows(src0);
  6231. const int64_t ne0 = src0->ne[0];
  6232. const int64_t ne1 = src0->ne[1];
  6233. const int64_t ne2 = src0->ne[2];
  6234. const size_t nb00 = src0->nb[0];
  6235. const size_t nb01 = src0->nb[1];
  6236. const size_t nb02 = src0->nb[2];
  6237. const size_t nb03 = src0->nb[3];
  6238. const size_t nb0 = dst->nb[0];
  6239. const size_t nb1 = dst->nb[1];
  6240. const size_t nb2 = dst->nb[2];
  6241. const size_t nb3 = dst->nb[3];
  6242. GGML_ASSERT( nb0 == sizeof(float));
  6243. GGML_ASSERT(nb00 == sizeof(float));
  6244. // rows per thread
  6245. const int dr = (nr + nth - 1)/nth;
  6246. // row range for this thread
  6247. const int ir0 = dr*ith;
  6248. const int ir1 = MIN(ir0 + dr, nr);
  6249. for (int ir = ir0; ir < ir1; ++ir) {
  6250. // src0 and dst are same shape => same indices
  6251. const int i3 = ir/(ne2*ne1);
  6252. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6253. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6254. #ifdef GGML_USE_ACCELERATE
  6255. UNUSED(ggml_vec_add1_f32);
  6256. vDSP_vadd(
  6257. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6258. (float *) ((char *) src1->data), 0,
  6259. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6260. ne0);
  6261. #else
  6262. ggml_vec_add1_f32(ne0,
  6263. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6264. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6265. *(float *) src1->data);
  6266. #endif
  6267. }
  6268. }
  6269. static void ggml_compute_forward_add1_f16_f32(
  6270. const struct ggml_compute_params * params,
  6271. const struct ggml_tensor * src0,
  6272. const struct ggml_tensor * src1,
  6273. struct ggml_tensor * dst) {
  6274. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6275. GGML_ASSERT(ggml_is_scalar(src1));
  6276. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6277. return;
  6278. }
  6279. // scalar to add
  6280. const float v = *(float *) src1->data;
  6281. const int ith = params->ith;
  6282. const int nth = params->nth;
  6283. const int nr = ggml_nrows(src0);
  6284. const int64_t ne0 = src0->ne[0];
  6285. const int64_t ne1 = src0->ne[1];
  6286. const int64_t ne2 = src0->ne[2];
  6287. const size_t nb00 = src0->nb[0];
  6288. const size_t nb01 = src0->nb[1];
  6289. const size_t nb02 = src0->nb[2];
  6290. const size_t nb03 = src0->nb[3];
  6291. const size_t nb0 = dst->nb[0];
  6292. const size_t nb1 = dst->nb[1];
  6293. const size_t nb2 = dst->nb[2];
  6294. const size_t nb3 = dst->nb[3];
  6295. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6296. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6297. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6298. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6299. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6300. // rows per thread
  6301. const int dr = (nr + nth - 1)/nth;
  6302. // row range for this thread
  6303. const int ir0 = dr*ith;
  6304. const int ir1 = MIN(ir0 + dr, nr);
  6305. for (int ir = ir0; ir < ir1; ++ir) {
  6306. // src0 and dst are same shape => same indices
  6307. const int i3 = ir/(ne2*ne1);
  6308. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6309. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6310. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6311. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6312. for (int i = 0; i < ne0; i++) {
  6313. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6314. }
  6315. }
  6316. }
  6317. static void ggml_compute_forward_add1_f16_f16(
  6318. const struct ggml_compute_params * params,
  6319. const struct ggml_tensor * src0,
  6320. const struct ggml_tensor * src1,
  6321. struct ggml_tensor * dst) {
  6322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6323. GGML_ASSERT(ggml_is_scalar(src1));
  6324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6325. return;
  6326. }
  6327. // scalar to add
  6328. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6329. const int ith = params->ith;
  6330. const int nth = params->nth;
  6331. const int nr = ggml_nrows(src0);
  6332. const int64_t ne0 = src0->ne[0];
  6333. const int64_t ne1 = src0->ne[1];
  6334. const int64_t ne2 = src0->ne[2];
  6335. const size_t nb00 = src0->nb[0];
  6336. const size_t nb01 = src0->nb[1];
  6337. const size_t nb02 = src0->nb[2];
  6338. const size_t nb03 = src0->nb[3];
  6339. const size_t nb0 = dst->nb[0];
  6340. const size_t nb1 = dst->nb[1];
  6341. const size_t nb2 = dst->nb[2];
  6342. const size_t nb3 = dst->nb[3];
  6343. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6344. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6345. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6346. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6347. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6348. // rows per thread
  6349. const int dr = (nr + nth - 1)/nth;
  6350. // row range for this thread
  6351. const int ir0 = dr*ith;
  6352. const int ir1 = MIN(ir0 + dr, nr);
  6353. for (int ir = ir0; ir < ir1; ++ir) {
  6354. // src0 and dst are same shape => same indices
  6355. const int i3 = ir/(ne2*ne1);
  6356. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6357. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6358. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6359. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6360. for (int i = 0; i < ne0; i++) {
  6361. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6362. }
  6363. }
  6364. }
  6365. static void ggml_compute_forward_add1_q_f32(
  6366. const struct ggml_compute_params * params,
  6367. const struct ggml_tensor * src0,
  6368. const struct ggml_tensor * src1,
  6369. struct ggml_tensor * dst) {
  6370. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6371. GGML_ASSERT(ggml_is_scalar(src1));
  6372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6373. return;
  6374. }
  6375. // scalar to add
  6376. const float v = *(float *) src1->data;
  6377. const int ith = params->ith;
  6378. const int nth = params->nth;
  6379. const int nr = ggml_nrows(src0);
  6380. const int64_t ne0 = src0->ne[0];
  6381. const int64_t ne1 = src0->ne[1];
  6382. const int64_t ne2 = src0->ne[2];
  6383. const size_t nb00 = src0->nb[0];
  6384. const size_t nb01 = src0->nb[1];
  6385. const size_t nb02 = src0->nb[2];
  6386. const size_t nb03 = src0->nb[3];
  6387. const size_t nb0 = dst->nb[0];
  6388. const size_t nb1 = dst->nb[1];
  6389. const size_t nb2 = dst->nb[2];
  6390. const size_t nb3 = dst->nb[3];
  6391. const enum ggml_type type = src0->type;
  6392. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6393. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6394. // we don't support permuted src0
  6395. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6396. // dst cannot be transposed or permuted
  6397. GGML_ASSERT(nb0 <= nb1);
  6398. GGML_ASSERT(nb1 <= nb2);
  6399. GGML_ASSERT(nb2 <= nb3);
  6400. GGML_ASSERT(ggml_is_quantized(src0->type));
  6401. GGML_ASSERT(dst->type == src0->type);
  6402. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6403. // rows per thread
  6404. const int dr = (nr + nth - 1)/nth;
  6405. // row range for this thread
  6406. const int ir0 = dr*ith;
  6407. const int ir1 = MIN(ir0 + dr, nr);
  6408. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6409. for (int ir = ir0; ir < ir1; ++ir) {
  6410. // src0 and dst are same shape => same indices
  6411. const int i3 = ir/(ne2*ne1);
  6412. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6413. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6414. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6415. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6416. assert(ne0 % 32 == 0);
  6417. // unquantize row from src0 to temp buffer
  6418. dequantize_row_q(src0_row, wdata, ne0);
  6419. // add src1
  6420. ggml_vec_acc1_f32(ne0, wdata, v);
  6421. // quantize row to dst
  6422. quantize_row_q(wdata, dst_row, ne0);
  6423. }
  6424. }
  6425. static void ggml_compute_forward_add1(
  6426. const struct ggml_compute_params * params,
  6427. const struct ggml_tensor * src0,
  6428. const struct ggml_tensor * src1,
  6429. struct ggml_tensor * dst) {
  6430. switch (src0->type) {
  6431. case GGML_TYPE_F32:
  6432. {
  6433. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6434. } break;
  6435. case GGML_TYPE_F16:
  6436. {
  6437. if (src1->type == GGML_TYPE_F16) {
  6438. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6439. }
  6440. else if (src1->type == GGML_TYPE_F32) {
  6441. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6442. }
  6443. else {
  6444. GGML_ASSERT(false);
  6445. }
  6446. } break;
  6447. case GGML_TYPE_Q4_0:
  6448. case GGML_TYPE_Q4_1:
  6449. case GGML_TYPE_Q5_0:
  6450. case GGML_TYPE_Q5_1:
  6451. case GGML_TYPE_Q8_0:
  6452. case GGML_TYPE_Q8_1:
  6453. case GGML_TYPE_Q2_K:
  6454. case GGML_TYPE_Q3_K:
  6455. case GGML_TYPE_Q4_K:
  6456. case GGML_TYPE_Q5_K:
  6457. case GGML_TYPE_Q6_K:
  6458. {
  6459. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6460. } break;
  6461. default:
  6462. {
  6463. GGML_ASSERT(false);
  6464. } break;
  6465. }
  6466. }
  6467. // ggml_compute_forward_acc
  6468. static void ggml_compute_forward_acc_f32(
  6469. const struct ggml_compute_params * params,
  6470. const struct ggml_tensor * src0,
  6471. const struct ggml_tensor * src1,
  6472. const struct ggml_tensor * opt0,
  6473. struct ggml_tensor * dst) {
  6474. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6475. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6476. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6477. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6478. // view src0 and dst with these strides and data offset inbytes during acc
  6479. // nb0 is implicitely element_size because src0 and dst are contiguous
  6480. size_t nb1 = ((int32_t *) opt0->data)[0];
  6481. size_t nb2 = ((int32_t *) opt0->data)[1];
  6482. size_t nb3 = ((int32_t *) opt0->data)[2];
  6483. size_t offset = ((int32_t *) opt0->data)[3];
  6484. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6485. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6486. // memcpy needs to be synchronized across threads to avoid race conditions.
  6487. // => do it in INIT phase
  6488. memcpy(
  6489. ((char *) dst->data),
  6490. ((char *) src0->data),
  6491. ggml_nbytes(dst));
  6492. }
  6493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6494. return;
  6495. }
  6496. const int ith = params->ith;
  6497. const int nth = params->nth;
  6498. const int nr = ggml_nrows(src1);
  6499. const int nc = src1->ne[0];
  6500. const int64_t ne10 = src1->ne[0];
  6501. const int64_t ne11 = src1->ne[1];
  6502. const int64_t ne12 = src1->ne[2];
  6503. const int64_t ne13 = src1->ne[3];
  6504. const size_t nb10 = src1->nb[0];
  6505. const size_t nb11 = src1->nb[1];
  6506. const size_t nb12 = src1->nb[2];
  6507. const size_t nb13 = src1->nb[3];
  6508. // src0 and dst as viewed during acc
  6509. const size_t nb0 = ggml_element_size(src0);
  6510. const size_t nb00 = nb0;
  6511. const size_t nb01 = nb1;
  6512. const size_t nb02 = nb2;
  6513. const size_t nb03 = nb3;
  6514. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6515. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6516. GGML_ASSERT(nb10 == sizeof(float));
  6517. // rows per thread
  6518. const int dr = (nr + nth - 1)/nth;
  6519. // row range for this thread
  6520. const int ir0 = dr*ith;
  6521. const int ir1 = MIN(ir0 + dr, nr);
  6522. for (int ir = ir0; ir < ir1; ++ir) {
  6523. // src0 and dst are viewed with shape of src1 and offset
  6524. // => same indices
  6525. const int i3 = ir/(ne12*ne11);
  6526. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6527. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6528. #ifdef GGML_USE_ACCELERATE
  6529. vDSP_vadd(
  6530. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6531. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6532. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6533. #else
  6534. ggml_vec_add_f32(nc,
  6535. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6536. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6537. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6538. #endif
  6539. }
  6540. }
  6541. static void ggml_compute_forward_acc(
  6542. const struct ggml_compute_params * params,
  6543. const struct ggml_tensor * src0,
  6544. const struct ggml_tensor * src1,
  6545. const struct ggml_tensor * opt0,
  6546. struct ggml_tensor * dst) {
  6547. switch (src0->type) {
  6548. case GGML_TYPE_F32:
  6549. {
  6550. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6551. } break;
  6552. case GGML_TYPE_F16:
  6553. case GGML_TYPE_Q4_0:
  6554. case GGML_TYPE_Q4_1:
  6555. case GGML_TYPE_Q5_0:
  6556. case GGML_TYPE_Q5_1:
  6557. case GGML_TYPE_Q8_0:
  6558. case GGML_TYPE_Q8_1:
  6559. case GGML_TYPE_Q2_K:
  6560. case GGML_TYPE_Q3_K:
  6561. case GGML_TYPE_Q4_K:
  6562. case GGML_TYPE_Q5_K:
  6563. case GGML_TYPE_Q6_K:
  6564. default:
  6565. {
  6566. GGML_ASSERT(false);
  6567. } break;
  6568. }
  6569. }
  6570. // ggml_compute_forward_sub
  6571. static void ggml_compute_forward_sub_f32(
  6572. const struct ggml_compute_params * params,
  6573. const struct ggml_tensor * src0,
  6574. const struct ggml_tensor * src1,
  6575. struct ggml_tensor * dst) {
  6576. assert(params->ith == 0);
  6577. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6579. return;
  6580. }
  6581. const int nr = ggml_nrows(src0);
  6582. const int64_t ne0 = src0->ne[0];
  6583. const int64_t ne1 = src0->ne[1];
  6584. const int64_t ne2 = src0->ne[2];
  6585. const size_t nb00 = src0->nb[0];
  6586. const size_t nb01 = src0->nb[1];
  6587. const size_t nb02 = src0->nb[2];
  6588. const size_t nb03 = src0->nb[3];
  6589. const size_t nb10 = src1->nb[0];
  6590. const size_t nb11 = src1->nb[1];
  6591. const size_t nb12 = src1->nb[2];
  6592. const size_t nb13 = src1->nb[3];
  6593. const size_t nb0 = dst->nb[0];
  6594. const size_t nb1 = dst->nb[1];
  6595. const size_t nb2 = dst->nb[2];
  6596. const size_t nb3 = dst->nb[3];
  6597. GGML_ASSERT( nb0 == sizeof(float));
  6598. GGML_ASSERT(nb00 == sizeof(float));
  6599. if (nb10 == sizeof(float)) {
  6600. for (int ir = 0; ir < nr; ++ir) {
  6601. // src0, src1 and dst are same shape => same indices
  6602. const int i3 = ir/(ne2*ne1);
  6603. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6604. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6605. #ifdef GGML_USE_ACCELERATE
  6606. vDSP_vsub(
  6607. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6608. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6609. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6610. ne0);
  6611. #else
  6612. ggml_vec_sub_f32(ne0,
  6613. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6614. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6615. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6616. #endif
  6617. // }
  6618. // }
  6619. }
  6620. } else {
  6621. // src1 is not contiguous
  6622. for (int ir = 0; ir < nr; ++ir) {
  6623. // src0, src1 and dst are same shape => same indices
  6624. const int i3 = ir/(ne2*ne1);
  6625. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6626. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6627. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6628. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6629. for (int i0 = 0; i0 < ne0; i0++) {
  6630. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6631. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6632. }
  6633. }
  6634. }
  6635. }
  6636. static void ggml_compute_forward_sub(
  6637. const struct ggml_compute_params * params,
  6638. const struct ggml_tensor * src0,
  6639. const struct ggml_tensor * src1,
  6640. struct ggml_tensor * dst) {
  6641. switch (src0->type) {
  6642. case GGML_TYPE_F32:
  6643. {
  6644. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6645. } break;
  6646. default:
  6647. {
  6648. GGML_ASSERT(false);
  6649. } break;
  6650. }
  6651. }
  6652. // ggml_compute_forward_mul
  6653. static void ggml_compute_forward_mul_f32(
  6654. const struct ggml_compute_params * params,
  6655. const struct ggml_tensor * src0,
  6656. const struct ggml_tensor * src1,
  6657. struct ggml_tensor * dst) {
  6658. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6660. return;
  6661. }
  6662. const int ith = params->ith;
  6663. const int nth = params->nth;
  6664. #ifdef GGML_USE_CUBLAS
  6665. if (src1->backend == GGML_BACKEND_CUDA) {
  6666. if (ith == 0) {
  6667. ggml_cuda_mul(src0, src1, dst);
  6668. }
  6669. return;
  6670. }
  6671. #elif defined(GGML_USE_CLBLAST)
  6672. if (src1->backend == GGML_BACKEND_CL) {
  6673. if (ith == 0) {
  6674. ggml_cl_mul(src0, src1, dst);
  6675. }
  6676. return;
  6677. }
  6678. #endif
  6679. const int64_t nr = ggml_nrows(src0);
  6680. const int64_t ne00 = src0->ne[0];
  6681. const int64_t ne01 = src0->ne[1];
  6682. const int64_t ne02 = src0->ne[2];
  6683. const int64_t ne10 = src1->ne[0];
  6684. const int64_t ne11 = src1->ne[1];
  6685. const int64_t ne12 = src1->ne[2];
  6686. const int64_t ne13 = src1->ne[3];
  6687. const size_t nb00 = src0->nb[0];
  6688. const size_t nb01 = src0->nb[1];
  6689. const size_t nb02 = src0->nb[2];
  6690. const size_t nb03 = src0->nb[3];
  6691. const size_t nb10 = src1->nb[0];
  6692. const size_t nb11 = src1->nb[1];
  6693. const size_t nb12 = src1->nb[2];
  6694. const size_t nb13 = src1->nb[3];
  6695. const size_t nb0 = dst->nb[0];
  6696. const size_t nb1 = dst->nb[1];
  6697. const size_t nb2 = dst->nb[2];
  6698. const size_t nb3 = dst->nb[3];
  6699. GGML_ASSERT( nb0 == sizeof(float));
  6700. GGML_ASSERT(nb00 == sizeof(float));
  6701. GGML_ASSERT(ne00 == ne10);
  6702. if (nb10 == sizeof(float)) {
  6703. for (int64_t ir = ith; ir < nr; ir += nth) {
  6704. // src0 and dst are same shape => same indices
  6705. const int64_t i03 = ir/(ne02*ne01);
  6706. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6707. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6708. const int64_t i13 = i03 % ne13;
  6709. const int64_t i12 = i02 % ne12;
  6710. const int64_t i11 = i01 % ne11;
  6711. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6712. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6713. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6714. #ifdef GGML_USE_ACCELERATE
  6715. UNUSED(ggml_vec_mul_f32);
  6716. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6717. #else
  6718. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6719. #endif
  6720. // }
  6721. // }
  6722. }
  6723. } else {
  6724. // src1 is not contiguous
  6725. for (int64_t ir = ith; ir < nr; ir += nth) {
  6726. // src0 and dst are same shape => same indices
  6727. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6728. const int64_t i03 = ir/(ne02*ne01);
  6729. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6730. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6731. const int64_t i13 = i03 % ne13;
  6732. const int64_t i12 = i02 % ne12;
  6733. const int64_t i11 = i01 % ne11;
  6734. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6735. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6736. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6737. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6738. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6739. }
  6740. }
  6741. }
  6742. }
  6743. static void ggml_compute_forward_mul(
  6744. const struct ggml_compute_params * params,
  6745. const struct ggml_tensor * src0,
  6746. const struct ggml_tensor * src1,
  6747. struct ggml_tensor * dst) {
  6748. switch (src0->type) {
  6749. case GGML_TYPE_F32:
  6750. {
  6751. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6752. } break;
  6753. default:
  6754. {
  6755. GGML_ASSERT(false);
  6756. } break;
  6757. }
  6758. }
  6759. // ggml_compute_forward_div
  6760. static void ggml_compute_forward_div_f32(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. const struct ggml_tensor * src1,
  6764. struct ggml_tensor * dst) {
  6765. assert(params->ith == 0);
  6766. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6768. return;
  6769. }
  6770. const int nr = ggml_nrows(src0);
  6771. const int64_t ne0 = src0->ne[0];
  6772. const int64_t ne1 = src0->ne[1];
  6773. const int64_t ne2 = src0->ne[2];
  6774. const size_t nb00 = src0->nb[0];
  6775. const size_t nb01 = src0->nb[1];
  6776. const size_t nb02 = src0->nb[2];
  6777. const size_t nb03 = src0->nb[3];
  6778. const size_t nb10 = src1->nb[0];
  6779. const size_t nb11 = src1->nb[1];
  6780. const size_t nb12 = src1->nb[2];
  6781. const size_t nb13 = src1->nb[3];
  6782. const size_t nb0 = dst->nb[0];
  6783. const size_t nb1 = dst->nb[1];
  6784. const size_t nb2 = dst->nb[2];
  6785. const size_t nb3 = dst->nb[3];
  6786. GGML_ASSERT( nb0 == sizeof(float));
  6787. GGML_ASSERT(nb00 == sizeof(float));
  6788. if (nb10 == sizeof(float)) {
  6789. for (int ir = 0; ir < nr; ++ir) {
  6790. // src0, src1 and dst are same shape => same indices
  6791. const int i3 = ir/(ne2*ne1);
  6792. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6793. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6794. #ifdef GGML_USE_ACCELERATE
  6795. vDSP_vdiv(
  6796. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6797. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6798. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6799. ne0);
  6800. #else
  6801. ggml_vec_div_f32(ne0,
  6802. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6803. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6804. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6805. #endif
  6806. // }
  6807. // }
  6808. }
  6809. } else {
  6810. // src1 is not contiguous
  6811. for (int ir = 0; ir < nr; ++ir) {
  6812. // src0, src1 and dst are same shape => same indices
  6813. const int i3 = ir/(ne2*ne1);
  6814. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6815. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6816. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6817. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6818. for (int i0 = 0; i0 < ne0; i0++) {
  6819. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6820. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6821. }
  6822. }
  6823. }
  6824. }
  6825. static void ggml_compute_forward_div(
  6826. const struct ggml_compute_params * params,
  6827. const struct ggml_tensor * src0,
  6828. const struct ggml_tensor * src1,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_F32:
  6832. {
  6833. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6834. } break;
  6835. default:
  6836. {
  6837. GGML_ASSERT(false);
  6838. } break;
  6839. }
  6840. }
  6841. // ggml_compute_forward_sqr
  6842. static void ggml_compute_forward_sqr_f32(
  6843. const struct ggml_compute_params * params,
  6844. const struct ggml_tensor * src0,
  6845. struct ggml_tensor * dst) {
  6846. assert(params->ith == 0);
  6847. assert(ggml_are_same_shape(src0, dst));
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. const int n = ggml_nrows(src0);
  6852. const int nc = src0->ne[0];
  6853. assert( dst->nb[0] == sizeof(float));
  6854. assert(src0->nb[0] == sizeof(float));
  6855. for (int i = 0; i < n; i++) {
  6856. ggml_vec_sqr_f32(nc,
  6857. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6858. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6859. }
  6860. }
  6861. static void ggml_compute_forward_sqr(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_sqr_f32(params, src0, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_sqrt
  6877. static void ggml_compute_forward_sqrt_f32(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. assert(params->ith == 0);
  6882. assert(ggml_are_same_shape(src0, dst));
  6883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6884. return;
  6885. }
  6886. const int n = ggml_nrows(src0);
  6887. const int nc = src0->ne[0];
  6888. assert( dst->nb[0] == sizeof(float));
  6889. assert(src0->nb[0] == sizeof(float));
  6890. for (int i = 0; i < n; i++) {
  6891. ggml_vec_sqrt_f32(nc,
  6892. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6893. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6894. }
  6895. }
  6896. static void ggml_compute_forward_sqrt(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. struct ggml_tensor * dst) {
  6900. switch (src0->type) {
  6901. case GGML_TYPE_F32:
  6902. {
  6903. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6904. } break;
  6905. default:
  6906. {
  6907. GGML_ASSERT(false);
  6908. } break;
  6909. }
  6910. }
  6911. // ggml_compute_forward_log
  6912. static void ggml_compute_forward_log_f32(
  6913. const struct ggml_compute_params * params,
  6914. const struct ggml_tensor * src0,
  6915. struct ggml_tensor * dst) {
  6916. GGML_ASSERT(params->ith == 0);
  6917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. const int n = ggml_nrows(src0);
  6922. const int nc = src0->ne[0];
  6923. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6924. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6925. for (int i = 0; i < n; i++) {
  6926. ggml_vec_log_f32(nc,
  6927. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6928. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6929. }
  6930. }
  6931. static void ggml_compute_forward_log(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. switch (src0->type) {
  6936. case GGML_TYPE_F32:
  6937. {
  6938. ggml_compute_forward_log_f32(params, src0, dst);
  6939. } break;
  6940. default:
  6941. {
  6942. GGML_ASSERT(false);
  6943. } break;
  6944. }
  6945. }
  6946. // ggml_compute_forward_sum
  6947. static void ggml_compute_forward_sum_f32(
  6948. const struct ggml_compute_params * params,
  6949. const struct ggml_tensor * src0,
  6950. struct ggml_tensor * dst) {
  6951. assert(params->ith == 0);
  6952. assert(ggml_is_scalar(dst));
  6953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6954. return;
  6955. }
  6956. assert(ggml_is_scalar(dst));
  6957. assert(src0->nb[0] == sizeof(float));
  6958. const int64_t ne00 = src0->ne[0];
  6959. const int64_t ne01 = src0->ne[1];
  6960. const int64_t ne02 = src0->ne[2];
  6961. const int64_t ne03 = src0->ne[3];
  6962. const size_t nb01 = src0->nb[1];
  6963. const size_t nb02 = src0->nb[2];
  6964. const size_t nb03 = src0->nb[3];
  6965. ggml_float sum = 0;
  6966. ggml_float row_sum = 0;
  6967. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6968. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6969. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6970. ggml_vec_sum_ggf(ne00,
  6971. &row_sum,
  6972. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6973. sum += row_sum;
  6974. }
  6975. }
  6976. }
  6977. ((float *) dst->data)[0] = sum;
  6978. }
  6979. static void ggml_compute_forward_sum(
  6980. const struct ggml_compute_params * params,
  6981. const struct ggml_tensor * src0,
  6982. struct ggml_tensor * dst) {
  6983. switch (src0->type) {
  6984. case GGML_TYPE_F32:
  6985. {
  6986. ggml_compute_forward_sum_f32(params, src0, dst);
  6987. } break;
  6988. default:
  6989. {
  6990. GGML_ASSERT(false);
  6991. } break;
  6992. }
  6993. }
  6994. // ggml_compute_forward_sum_rows
  6995. static void ggml_compute_forward_sum_rows_f32(
  6996. const struct ggml_compute_params * params,
  6997. const struct ggml_tensor * src0,
  6998. struct ggml_tensor * dst) {
  6999. GGML_ASSERT(params->ith == 0);
  7000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7001. return;
  7002. }
  7003. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7004. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7005. const int64_t ne00 = src0->ne[0];
  7006. const int64_t ne01 = src0->ne[1];
  7007. const int64_t ne02 = src0->ne[2];
  7008. const int64_t ne03 = src0->ne[3];
  7009. const int64_t ne0 = dst->ne[0];
  7010. const int64_t ne1 = dst->ne[1];
  7011. const int64_t ne2 = dst->ne[2];
  7012. const int64_t ne3 = dst->ne[3];
  7013. GGML_ASSERT(ne0 == 1);
  7014. GGML_ASSERT(ne1 == ne01);
  7015. GGML_ASSERT(ne2 == ne02);
  7016. GGML_ASSERT(ne3 == ne03);
  7017. const size_t nb01 = src0->nb[1];
  7018. const size_t nb02 = src0->nb[2];
  7019. const size_t nb03 = src0->nb[3];
  7020. const size_t nb1 = dst->nb[1];
  7021. const size_t nb2 = dst->nb[2];
  7022. const size_t nb3 = dst->nb[3];
  7023. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7024. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7025. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7026. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7027. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7028. float row_sum = 0;
  7029. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7030. dst_row[0] = row_sum;
  7031. }
  7032. }
  7033. }
  7034. }
  7035. static void ggml_compute_forward_sum_rows(
  7036. const struct ggml_compute_params * params,
  7037. const struct ggml_tensor * src0,
  7038. struct ggml_tensor * dst) {
  7039. switch (src0->type) {
  7040. case GGML_TYPE_F32:
  7041. {
  7042. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7043. } break;
  7044. default:
  7045. {
  7046. GGML_ASSERT(false);
  7047. } break;
  7048. }
  7049. }
  7050. // ggml_compute_forward_mean
  7051. static void ggml_compute_forward_mean_f32(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. struct ggml_tensor * dst) {
  7055. assert(params->ith == 0);
  7056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7057. return;
  7058. }
  7059. assert(src0->nb[0] == sizeof(float));
  7060. const int64_t ne00 = src0->ne[0];
  7061. const int64_t ne01 = src0->ne[1];
  7062. const int64_t ne02 = src0->ne[2];
  7063. const int64_t ne03 = src0->ne[3];
  7064. const size_t nb01 = src0->nb[1];
  7065. const size_t nb02 = src0->nb[2];
  7066. const size_t nb03 = src0->nb[3];
  7067. const int64_t ne0 = dst->ne[0];
  7068. const int64_t ne1 = dst->ne[1];
  7069. const int64_t ne2 = dst->ne[2];
  7070. const int64_t ne3 = dst->ne[3];
  7071. assert(ne0 == 1);
  7072. assert(ne1 == ne01);
  7073. assert(ne2 == ne02);
  7074. assert(ne3 == ne03);
  7075. UNUSED(ne0);
  7076. UNUSED(ne1);
  7077. UNUSED(ne2);
  7078. UNUSED(ne3);
  7079. const size_t nb1 = dst->nb[1];
  7080. const size_t nb2 = dst->nb[2];
  7081. const size_t nb3 = dst->nb[3];
  7082. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7083. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7084. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7085. ggml_vec_sum_f32(ne00,
  7086. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7087. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7088. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7089. }
  7090. }
  7091. }
  7092. }
  7093. static void ggml_compute_forward_mean(
  7094. const struct ggml_compute_params * params,
  7095. const struct ggml_tensor * src0,
  7096. struct ggml_tensor * dst) {
  7097. switch (src0->type) {
  7098. case GGML_TYPE_F32:
  7099. {
  7100. ggml_compute_forward_mean_f32(params, src0, dst);
  7101. } break;
  7102. default:
  7103. {
  7104. GGML_ASSERT(false);
  7105. } break;
  7106. }
  7107. }
  7108. // ggml_compute_forward_repeat
  7109. static void ggml_compute_forward_repeat_f32(
  7110. const struct ggml_compute_params * params,
  7111. const struct ggml_tensor * src0,
  7112. struct ggml_tensor * dst) {
  7113. GGML_ASSERT(params->ith == 0);
  7114. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7116. return;
  7117. }
  7118. const int64_t ne0 = dst->ne[0];
  7119. const int64_t ne1 = dst->ne[1];
  7120. const int64_t ne2 = dst->ne[2];
  7121. const int64_t ne3 = dst->ne[3];
  7122. const int64_t ne00 = src0->ne[0];
  7123. const int64_t ne01 = src0->ne[1];
  7124. const int64_t ne02 = src0->ne[2];
  7125. const int64_t ne03 = src0->ne[3];
  7126. const size_t nb0 = dst->nb[0];
  7127. const size_t nb1 = dst->nb[1];
  7128. const size_t nb2 = dst->nb[2];
  7129. const size_t nb3 = dst->nb[3];
  7130. const size_t nb00 = src0->nb[0];
  7131. const size_t nb01 = src0->nb[1];
  7132. const size_t nb02 = src0->nb[2];
  7133. const size_t nb03 = src0->nb[3];
  7134. // guaranteed to be an integer due to the check in ggml_can_repeat
  7135. const int nr0 = (int)(ne0/ne00);
  7136. const int nr1 = (int)(ne1/ne01);
  7137. const int nr2 = (int)(ne2/ne02);
  7138. const int nr3 = (int)(ne3/ne03);
  7139. // TODO: support for transposed / permuted tensors
  7140. GGML_ASSERT(nb0 == sizeof(float));
  7141. GGML_ASSERT(nb00 == sizeof(float));
  7142. // TODO: maybe this is not optimal?
  7143. for (int i3 = 0; i3 < nr3; i3++) {
  7144. for (int k3 = 0; k3 < ne03; k3++) {
  7145. for (int i2 = 0; i2 < nr2; i2++) {
  7146. for (int k2 = 0; k2 < ne02; k2++) {
  7147. for (int i1 = 0; i1 < nr1; i1++) {
  7148. for (int k1 = 0; k1 < ne01; k1++) {
  7149. for (int i0 = 0; i0 < nr0; i0++) {
  7150. ggml_vec_cpy_f32(ne00,
  7151. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7152. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7153. }
  7154. }
  7155. }
  7156. }
  7157. }
  7158. }
  7159. }
  7160. }
  7161. static void ggml_compute_forward_repeat(
  7162. const struct ggml_compute_params * params,
  7163. const struct ggml_tensor * src0,
  7164. struct ggml_tensor * dst) {
  7165. switch (src0->type) {
  7166. case GGML_TYPE_F32:
  7167. {
  7168. ggml_compute_forward_repeat_f32(params, src0, dst);
  7169. } break;
  7170. default:
  7171. {
  7172. GGML_ASSERT(false);
  7173. } break;
  7174. }
  7175. }
  7176. // ggml_compute_forward_abs
  7177. static void ggml_compute_forward_abs_f32(
  7178. const struct ggml_compute_params * params,
  7179. const struct ggml_tensor * src0,
  7180. struct ggml_tensor * dst) {
  7181. assert(params->ith == 0);
  7182. assert(ggml_are_same_shape(src0, dst));
  7183. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7184. return;
  7185. }
  7186. const int n = ggml_nrows(src0);
  7187. const int nc = src0->ne[0];
  7188. assert(dst->nb[0] == sizeof(float));
  7189. assert(src0->nb[0] == sizeof(float));
  7190. for (int i = 0; i < n; i++) {
  7191. ggml_vec_abs_f32(nc,
  7192. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7193. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7194. }
  7195. }
  7196. static void ggml_compute_forward_abs(
  7197. const struct ggml_compute_params * params,
  7198. const struct ggml_tensor * src0,
  7199. struct ggml_tensor * dst) {
  7200. switch (src0->type) {
  7201. case GGML_TYPE_F32:
  7202. {
  7203. ggml_compute_forward_abs_f32(params, src0, dst);
  7204. } break;
  7205. default:
  7206. {
  7207. GGML_ASSERT(false);
  7208. } break;
  7209. }
  7210. }
  7211. // ggml_compute_forward_sgn
  7212. static void ggml_compute_forward_sgn_f32(
  7213. const struct ggml_compute_params * params,
  7214. const struct ggml_tensor * src0,
  7215. struct ggml_tensor * dst) {
  7216. assert(params->ith == 0);
  7217. assert(ggml_are_same_shape(src0, dst));
  7218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7219. return;
  7220. }
  7221. const int n = ggml_nrows(src0);
  7222. const int nc = src0->ne[0];
  7223. assert(dst->nb[0] == sizeof(float));
  7224. assert(src0->nb[0] == sizeof(float));
  7225. for (int i = 0; i < n; i++) {
  7226. ggml_vec_sgn_f32(nc,
  7227. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7228. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7229. }
  7230. }
  7231. static void ggml_compute_forward_sgn(
  7232. const struct ggml_compute_params * params,
  7233. const struct ggml_tensor * src0,
  7234. struct ggml_tensor * dst) {
  7235. switch (src0->type) {
  7236. case GGML_TYPE_F32:
  7237. {
  7238. ggml_compute_forward_sgn_f32(params, src0, dst);
  7239. } break;
  7240. default:
  7241. {
  7242. GGML_ASSERT(false);
  7243. } break;
  7244. }
  7245. }
  7246. // ggml_compute_forward_neg
  7247. static void ggml_compute_forward_neg_f32(
  7248. const struct ggml_compute_params * params,
  7249. const struct ggml_tensor * src0,
  7250. struct ggml_tensor * dst) {
  7251. assert(params->ith == 0);
  7252. assert(ggml_are_same_shape(src0, dst));
  7253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7254. return;
  7255. }
  7256. const int n = ggml_nrows(src0);
  7257. const int nc = src0->ne[0];
  7258. assert(dst->nb[0] == sizeof(float));
  7259. assert(src0->nb[0] == sizeof(float));
  7260. for (int i = 0; i < n; i++) {
  7261. ggml_vec_neg_f32(nc,
  7262. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7263. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7264. }
  7265. }
  7266. static void ggml_compute_forward_neg(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. struct ggml_tensor * dst) {
  7270. switch (src0->type) {
  7271. case GGML_TYPE_F32:
  7272. {
  7273. ggml_compute_forward_neg_f32(params, src0, dst);
  7274. } break;
  7275. default:
  7276. {
  7277. GGML_ASSERT(false);
  7278. } break;
  7279. }
  7280. }
  7281. // ggml_compute_forward_step
  7282. static void ggml_compute_forward_step_f32(
  7283. const struct ggml_compute_params * params,
  7284. const struct ggml_tensor * src0,
  7285. struct ggml_tensor * dst) {
  7286. assert(params->ith == 0);
  7287. assert(ggml_are_same_shape(src0, dst));
  7288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7289. return;
  7290. }
  7291. const int n = ggml_nrows(src0);
  7292. const int nc = src0->ne[0];
  7293. assert(dst->nb[0] == sizeof(float));
  7294. assert(src0->nb[0] == sizeof(float));
  7295. for (int i = 0; i < n; i++) {
  7296. ggml_vec_step_f32(nc,
  7297. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7298. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7299. }
  7300. }
  7301. static void ggml_compute_forward_step(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. struct ggml_tensor * dst) {
  7305. switch (src0->type) {
  7306. case GGML_TYPE_F32:
  7307. {
  7308. ggml_compute_forward_step_f32(params, src0, dst);
  7309. } break;
  7310. default:
  7311. {
  7312. GGML_ASSERT(false);
  7313. } break;
  7314. }
  7315. }
  7316. // ggml_compute_forward_relu
  7317. static void ggml_compute_forward_relu_f32(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. struct ggml_tensor * dst) {
  7321. assert(params->ith == 0);
  7322. assert(ggml_are_same_shape(src0, dst));
  7323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7324. return;
  7325. }
  7326. const int n = ggml_nrows(src0);
  7327. const int nc = src0->ne[0];
  7328. assert(dst->nb[0] == sizeof(float));
  7329. assert(src0->nb[0] == sizeof(float));
  7330. for (int i = 0; i < n; i++) {
  7331. ggml_vec_relu_f32(nc,
  7332. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7333. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7334. }
  7335. }
  7336. static void ggml_compute_forward_relu(
  7337. const struct ggml_compute_params * params,
  7338. const struct ggml_tensor * src0,
  7339. struct ggml_tensor * dst) {
  7340. switch (src0->type) {
  7341. case GGML_TYPE_F32:
  7342. {
  7343. ggml_compute_forward_relu_f32(params, src0, dst);
  7344. } break;
  7345. default:
  7346. {
  7347. GGML_ASSERT(false);
  7348. } break;
  7349. }
  7350. }
  7351. // ggml_compute_forward_gelu
  7352. static void ggml_compute_forward_gelu_f32(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. struct ggml_tensor * dst) {
  7356. GGML_ASSERT(ggml_is_contiguous(src0));
  7357. GGML_ASSERT(ggml_is_contiguous(dst));
  7358. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7360. return;
  7361. }
  7362. const int ith = params->ith;
  7363. const int nth = params->nth;
  7364. const int nc = src0->ne[0];
  7365. const int nr = ggml_nrows(src0);
  7366. // rows per thread
  7367. const int dr = (nr + nth - 1)/nth;
  7368. // row range for this thread
  7369. const int ir0 = dr*ith;
  7370. const int ir1 = MIN(ir0 + dr, nr);
  7371. for (int i1 = ir0; i1 < ir1; i1++) {
  7372. ggml_vec_gelu_f32(nc,
  7373. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7374. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7375. #ifndef NDEBUG
  7376. for (int k = 0; k < nc; k++) {
  7377. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7378. UNUSED(x);
  7379. assert(!isnan(x));
  7380. assert(!isinf(x));
  7381. }
  7382. #endif
  7383. }
  7384. }
  7385. static void ggml_compute_forward_gelu(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_gelu_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. //printf("XXXXXXXX gelu\n");
  7400. }
  7401. // ggml_compute_forward_silu
  7402. static void ggml_compute_forward_silu_f32(
  7403. const struct ggml_compute_params * params,
  7404. const struct ggml_tensor * src0,
  7405. struct ggml_tensor * dst) {
  7406. GGML_ASSERT(ggml_is_contiguous(src0));
  7407. GGML_ASSERT(ggml_is_contiguous(dst));
  7408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7410. return;
  7411. }
  7412. const int ith = params->ith;
  7413. const int nth = params->nth;
  7414. const int nc = src0->ne[0];
  7415. const int nr = ggml_nrows(src0);
  7416. // rows per thread
  7417. const int dr = (nr + nth - 1)/nth;
  7418. // row range for this thread
  7419. const int ir0 = dr*ith;
  7420. const int ir1 = MIN(ir0 + dr, nr);
  7421. for (int i1 = ir0; i1 < ir1; i1++) {
  7422. ggml_vec_silu_f32(nc,
  7423. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7424. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7425. #ifndef NDEBUG
  7426. for (int k = 0; k < nc; k++) {
  7427. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7428. UNUSED(x);
  7429. assert(!isnan(x));
  7430. assert(!isinf(x));
  7431. }
  7432. #endif
  7433. }
  7434. }
  7435. static void ggml_compute_forward_silu(
  7436. const struct ggml_compute_params * params,
  7437. const struct ggml_tensor * src0,
  7438. struct ggml_tensor * dst) {
  7439. switch (src0->type) {
  7440. case GGML_TYPE_F32:
  7441. {
  7442. ggml_compute_forward_silu_f32(params, src0, dst);
  7443. } break;
  7444. default:
  7445. {
  7446. GGML_ASSERT(false);
  7447. } break;
  7448. }
  7449. }
  7450. // ggml_compute_forward_silu_back
  7451. static void ggml_compute_forward_silu_back_f32(
  7452. const struct ggml_compute_params * params,
  7453. const struct ggml_tensor * src0,
  7454. const struct ggml_tensor * grad,
  7455. struct ggml_tensor * dst) {
  7456. GGML_ASSERT(ggml_is_contiguous(grad));
  7457. GGML_ASSERT(ggml_is_contiguous(src0));
  7458. GGML_ASSERT(ggml_is_contiguous(dst));
  7459. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7460. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7462. return;
  7463. }
  7464. const int ith = params->ith;
  7465. const int nth = params->nth;
  7466. const int nc = src0->ne[0];
  7467. const int nr = ggml_nrows(src0);
  7468. // rows per thread
  7469. const int dr = (nr + nth - 1)/nth;
  7470. // row range for this thread
  7471. const int ir0 = dr*ith;
  7472. const int ir1 = MIN(ir0 + dr, nr);
  7473. for (int i1 = ir0; i1 < ir1; i1++) {
  7474. ggml_vec_silu_backward_f32(nc,
  7475. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7476. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7477. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7478. #ifndef NDEBUG
  7479. for (int k = 0; k < nc; k++) {
  7480. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7481. UNUSED(x);
  7482. assert(!isnan(x));
  7483. assert(!isinf(x));
  7484. }
  7485. #endif
  7486. }
  7487. }
  7488. static void ggml_compute_forward_silu_back(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. const struct ggml_tensor * grad,
  7492. struct ggml_tensor * dst) {
  7493. switch (src0->type) {
  7494. case GGML_TYPE_F32:
  7495. {
  7496. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7497. } break;
  7498. default:
  7499. {
  7500. GGML_ASSERT(false);
  7501. } break;
  7502. }
  7503. }
  7504. // ggml_compute_forward_norm
  7505. static void ggml_compute_forward_norm_f32(
  7506. const struct ggml_compute_params * params,
  7507. const struct ggml_tensor * src0,
  7508. struct ggml_tensor * dst) {
  7509. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7511. return;
  7512. }
  7513. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. const int64_t ne00 = src0->ne[0];
  7517. const int64_t ne01 = src0->ne[1];
  7518. const int64_t ne02 = src0->ne[2];
  7519. const int64_t ne03 = src0->ne[3];
  7520. const size_t nb01 = src0->nb[1];
  7521. const size_t nb02 = src0->nb[2];
  7522. const size_t nb03 = src0->nb[3];
  7523. const size_t nb1 = dst->nb[1];
  7524. const size_t nb2 = dst->nb[2];
  7525. const size_t nb3 = dst->nb[3];
  7526. const float eps = 1e-5f; // TODO: make this a parameter
  7527. // TODO: optimize
  7528. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7529. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7530. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7531. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7532. ggml_float sum = 0.0;
  7533. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7534. sum += (ggml_float)x[i00];
  7535. }
  7536. float mean = sum/ne00;
  7537. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7538. ggml_float sum2 = 0.0;
  7539. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7540. float v = x[i00] - mean;
  7541. y[i00] = v;
  7542. sum2 += (ggml_float)(v*v);
  7543. }
  7544. float variance = sum2/ne00;
  7545. const float scale = 1.0f/sqrtf(variance + eps);
  7546. ggml_vec_scale_f32(ne00, y, scale);
  7547. }
  7548. }
  7549. }
  7550. }
  7551. static void ggml_compute_forward_norm(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. struct ggml_tensor * dst) {
  7555. switch (src0->type) {
  7556. case GGML_TYPE_F32:
  7557. {
  7558. ggml_compute_forward_norm_f32(params, src0, dst);
  7559. } break;
  7560. default:
  7561. {
  7562. GGML_ASSERT(false);
  7563. } break;
  7564. }
  7565. }
  7566. static void ggml_compute_forward_rms_norm_f32(
  7567. const struct ggml_compute_params * params,
  7568. const struct ggml_tensor * src0,
  7569. struct ggml_tensor * dst) {
  7570. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7572. return;
  7573. }
  7574. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7575. const int ith = params->ith;
  7576. const int nth = params->nth;
  7577. const int64_t ne00 = src0->ne[0];
  7578. const int64_t ne01 = src0->ne[1];
  7579. const int64_t ne02 = src0->ne[2];
  7580. const int64_t ne03 = src0->ne[3];
  7581. const size_t nb01 = src0->nb[1];
  7582. const size_t nb02 = src0->nb[2];
  7583. const size_t nb03 = src0->nb[3];
  7584. const size_t nb1 = dst->nb[1];
  7585. const size_t nb2 = dst->nb[2];
  7586. const size_t nb3 = dst->nb[3];
  7587. const float eps = 1e-6f; // TODO: make this a parameter
  7588. // TODO: optimize
  7589. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7590. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7591. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7592. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7593. ggml_float sum = 0.0;
  7594. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7595. sum += (ggml_float)(x[i00] * x[i00]);
  7596. }
  7597. const float mean = sum/ne00;
  7598. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7599. memcpy(y, x, ne00 * sizeof(float));
  7600. // for (int i00 = 0; i00 < ne00; i00++) {
  7601. // y[i00] = x[i00];
  7602. // }
  7603. const float scale = 1.0f/sqrtf(mean + eps);
  7604. ggml_vec_scale_f32(ne00, y, scale);
  7605. }
  7606. }
  7607. }
  7608. }
  7609. static void ggml_compute_forward_rms_norm(
  7610. const struct ggml_compute_params * params,
  7611. const struct ggml_tensor * src0,
  7612. struct ggml_tensor * dst) {
  7613. switch (src0->type) {
  7614. case GGML_TYPE_F32:
  7615. {
  7616. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7617. } break;
  7618. default:
  7619. {
  7620. GGML_ASSERT(false);
  7621. } break;
  7622. }
  7623. }
  7624. static void ggml_compute_forward_rms_norm_back_f32(
  7625. const struct ggml_compute_params * params,
  7626. const struct ggml_tensor * src0,
  7627. const struct ggml_tensor * src1,
  7628. struct ggml_tensor * dst) {
  7629. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7631. return;
  7632. }
  7633. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7634. const int ith = params->ith;
  7635. const int nth = params->nth;
  7636. const int64_t ne00 = src0->ne[0];
  7637. const int64_t ne01 = src0->ne[1];
  7638. const int64_t ne02 = src0->ne[2];
  7639. const int64_t ne03 = src0->ne[3];
  7640. const size_t nb01 = src0->nb[1];
  7641. const size_t nb02 = src0->nb[2];
  7642. const size_t nb03 = src0->nb[3];
  7643. const size_t nb11 = src1->nb[1];
  7644. const size_t nb12 = src1->nb[2];
  7645. const size_t nb13 = src1->nb[3];
  7646. const size_t nb1 = dst->nb[1];
  7647. const size_t nb2 = dst->nb[2];
  7648. const size_t nb3 = dst->nb[3];
  7649. const float eps = 1e-6f; // TODO: make this a parameter
  7650. // TODO: optimize
  7651. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7653. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7654. // src1 is same shape as src0 => same indices
  7655. const int64_t i11 = i01;
  7656. const int64_t i12 = i02;
  7657. const int64_t i13 = i03;
  7658. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7659. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7660. ggml_float sum_xx = 0.0;
  7661. ggml_float sum_xdz = 0.0;
  7662. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7663. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7664. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7665. }
  7666. //const float mean = (float)(sum_xx)/ne00;
  7667. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7668. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7669. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7670. // we could cache rms from forward pass to improve performance.
  7671. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7672. //const float rms = sqrtf(mean_eps);
  7673. const float rrms = 1.0f / sqrtf(mean_eps);
  7674. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7675. {
  7676. // z = rms_norm(x)
  7677. //
  7678. // rms_norm(src0) =
  7679. // scale(
  7680. // src0,
  7681. // div(
  7682. // 1,
  7683. // sqrt(
  7684. // add(
  7685. // scale(
  7686. // sum(
  7687. // sqr(
  7688. // src0)),
  7689. // (1.0/N)),
  7690. // eps))));
  7691. // postorder:
  7692. // ## op args grad
  7693. // 00 param src0 grad[#00]
  7694. // 01 const 1
  7695. // 02 sqr (#00) grad[#02]
  7696. // 03 sum (#02) grad[#03]
  7697. // 04 const 1/N
  7698. // 05 scale (#03, #04) grad[#05]
  7699. // 06 const eps
  7700. // 07 add (#05, #06) grad[#07]
  7701. // 08 sqrt (#07) grad[#08]
  7702. // 09 div (#01,#08) grad[#09]
  7703. // 10 scale (#00,#09) grad[#10]
  7704. //
  7705. // backward pass, given grad[#10]
  7706. // #10: scale
  7707. // grad[#00] += scale(grad[#10],#09)
  7708. // grad[#09] += sum(mul(grad[#10],#00))
  7709. // #09: div
  7710. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7711. // #08: sqrt
  7712. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7713. // #07: add
  7714. // grad[#05] += grad[#07]
  7715. // #05: scale
  7716. // grad[#03] += scale(grad[#05],#04)
  7717. // #03: sum
  7718. // grad[#02] += repeat(grad[#03], #02)
  7719. // #02:
  7720. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7721. //
  7722. // substitute and simplify:
  7723. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7724. // grad[#02] = repeat(grad[#03], #02)
  7725. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7726. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7727. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7728. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7729. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7730. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7731. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7732. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7733. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7734. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7735. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7736. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7737. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7738. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7739. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7740. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7741. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7742. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7743. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7744. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7745. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7746. // a = b*c + d*e
  7747. // a = b*c*f/f + d*e*f/f
  7748. // a = (b*c*f + d*e*f)*(1/f)
  7749. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7750. // a = (b + d*e/c)*c
  7751. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7752. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7753. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7754. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7755. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7756. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7757. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7758. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7759. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7760. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7761. }
  7762. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7763. // post-order:
  7764. // dx := x
  7765. // dx := scale(dx,-mean_xdz/mean_eps)
  7766. // dx := add(dx, dz)
  7767. // dx := scale(dx, rrms)
  7768. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7769. ggml_vec_cpy_f32 (ne00, dx, x);
  7770. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7771. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7772. ggml_vec_acc_f32 (ne00, dx, dz);
  7773. ggml_vec_scale_f32(ne00, dx, rrms);
  7774. }
  7775. }
  7776. }
  7777. }
  7778. static void ggml_compute_forward_rms_norm_back(
  7779. const struct ggml_compute_params * params,
  7780. const struct ggml_tensor * src0,
  7781. const struct ggml_tensor * src1,
  7782. struct ggml_tensor * dst) {
  7783. switch (src0->type) {
  7784. case GGML_TYPE_F32:
  7785. {
  7786. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7787. } break;
  7788. default:
  7789. {
  7790. GGML_ASSERT(false);
  7791. } break;
  7792. }
  7793. }
  7794. // ggml_compute_forward_mul_mat
  7795. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7796. // helper function to determine if it is better to use BLAS or not
  7797. // for large matrices, BLAS is faster
  7798. static bool ggml_compute_forward_mul_mat_use_blas(
  7799. const struct ggml_tensor * src0,
  7800. const struct ggml_tensor * src1,
  7801. struct ggml_tensor * dst) {
  7802. //const int64_t ne00 = src0->ne[0];
  7803. //const int64_t ne01 = src0->ne[1];
  7804. const int64_t ne10 = src1->ne[0];
  7805. const int64_t ne0 = dst->ne[0];
  7806. const int64_t ne1 = dst->ne[1];
  7807. // TODO: find the optimal values for these
  7808. if (ggml_is_contiguous(src0) &&
  7809. ggml_is_contiguous(src1) &&
  7810. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7811. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7812. return true;
  7813. }
  7814. return false;
  7815. }
  7816. #endif
  7817. static void ggml_compute_forward_mul_mat_f32(
  7818. const struct ggml_compute_params * params,
  7819. const struct ggml_tensor * src0,
  7820. const struct ggml_tensor * src1,
  7821. struct ggml_tensor * dst) {
  7822. int64_t t0 = ggml_perf_time_us();
  7823. UNUSED(t0);
  7824. const int64_t ne00 = src0->ne[0];
  7825. const int64_t ne01 = src0->ne[1];
  7826. const int64_t ne02 = src0->ne[2];
  7827. const int64_t ne03 = src0->ne[3];
  7828. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7829. const int64_t ne10 = src1->ne[0];
  7830. #endif
  7831. const int64_t ne11 = src1->ne[1];
  7832. #ifndef NDEBUG
  7833. const int64_t ne12 = src1->ne[2];
  7834. const int64_t ne13 = src1->ne[3];
  7835. const int64_t ne0 = dst->ne[0];
  7836. const int64_t ne1 = dst->ne[1];
  7837. const int64_t ne2 = dst->ne[2];
  7838. const int64_t ne3 = dst->ne[3];
  7839. const int nb00 = src0->nb[0];
  7840. #endif
  7841. const int nb01 = src0->nb[1];
  7842. const int nb02 = src0->nb[2];
  7843. const int nb03 = src0->nb[3];
  7844. #ifndef NDEBUG
  7845. const int nb10 = src1->nb[0];
  7846. #endif
  7847. const int nb11 = src1->nb[1];
  7848. const int nb12 = src1->nb[2];
  7849. const int nb13 = src1->nb[3];
  7850. const int nb0 = dst->nb[0];
  7851. const int nb1 = dst->nb[1];
  7852. const int nb2 = dst->nb[2];
  7853. const int nb3 = dst->nb[3];
  7854. const int ith = params->ith;
  7855. const int nth = params->nth;
  7856. assert(ne02 == ne12);
  7857. assert(ne03 == ne13);
  7858. assert(ne2 == ne12);
  7859. assert(ne3 == ne13);
  7860. // we don't support permuted src0 or src1
  7861. assert(nb00 == sizeof(float));
  7862. assert(nb10 == sizeof(float));
  7863. // dst cannot be transposed or permuted
  7864. assert(nb0 == sizeof(float));
  7865. assert(nb0 <= nb1);
  7866. assert(nb1 <= nb2);
  7867. assert(nb2 <= nb3);
  7868. assert(ne0 == ne01);
  7869. assert(ne1 == ne11);
  7870. assert(ne2 == ne02);
  7871. assert(ne3 == ne03);
  7872. // nb01 >= nb00 - src0 is not transposed
  7873. // compute by src0 rows
  7874. #if defined(GGML_USE_CUBLAS)
  7875. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7876. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7877. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7878. }
  7879. return;
  7880. }
  7881. #elif defined(GGML_USE_CLBLAST)
  7882. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7883. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7884. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7885. }
  7886. return;
  7887. }
  7888. #endif
  7889. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7890. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7891. if (params->ith != 0) {
  7892. return;
  7893. }
  7894. if (params->type == GGML_TASK_INIT) {
  7895. return;
  7896. }
  7897. if (params->type == GGML_TASK_FINALIZE) {
  7898. return;
  7899. }
  7900. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7902. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7903. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7904. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7905. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7906. ne11, ne01, ne10,
  7907. 1.0f, y, ne10,
  7908. x, ne00,
  7909. 0.0f, d, ne01);
  7910. }
  7911. }
  7912. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7913. return;
  7914. }
  7915. #endif
  7916. if (params->type == GGML_TASK_INIT) {
  7917. return;
  7918. }
  7919. if (params->type == GGML_TASK_FINALIZE) {
  7920. return;
  7921. }
  7922. // parallelize by src0 rows using ggml_vec_dot_f32
  7923. // total rows in src0
  7924. const int nr = ne01*ne02*ne03;
  7925. // rows per thread
  7926. const int dr = (nr + nth - 1)/nth;
  7927. // row range for this thread
  7928. const int ir0 = dr*ith;
  7929. const int ir1 = MIN(ir0 + dr, nr);
  7930. for (int ir = ir0; ir < ir1; ++ir) {
  7931. // src0 indices
  7932. const int i03 = ir/(ne02*ne01);
  7933. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7934. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7935. for (int64_t ic = 0; ic < ne11; ++ic) {
  7936. // src1 indices
  7937. const int i13 = i03;
  7938. const int i12 = i02;
  7939. const int i11 = ic;
  7940. // dst indices
  7941. const int i0 = i01;
  7942. const int i1 = i11;
  7943. const int i2 = i02;
  7944. const int i3 = i03;
  7945. ggml_vec_dot_f32(ne00,
  7946. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7947. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7948. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7949. }
  7950. }
  7951. //int64_t t1 = ggml_perf_time_us();
  7952. //static int64_t acc = 0;
  7953. //acc += t1 - t0;
  7954. //if (t1 - t0 > 10) {
  7955. // printf("\n");
  7956. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7957. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7958. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7959. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7960. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7961. //}
  7962. }
  7963. static void ggml_compute_forward_mul_mat_f16_f32(
  7964. const struct ggml_compute_params * params,
  7965. const struct ggml_tensor * src0,
  7966. const struct ggml_tensor * src1,
  7967. struct ggml_tensor * dst) {
  7968. int64_t t0 = ggml_perf_time_us();
  7969. UNUSED(t0);
  7970. const int64_t ne00 = src0->ne[0];
  7971. const int64_t ne01 = src0->ne[1];
  7972. const int64_t ne02 = src0->ne[2];
  7973. const int64_t ne03 = src0->ne[3];
  7974. const int64_t ne10 = src1->ne[0];
  7975. const int64_t ne11 = src1->ne[1];
  7976. const int64_t ne12 = src1->ne[2];
  7977. const int64_t ne13 = src1->ne[3];
  7978. const int64_t ne0 = dst->ne[0];
  7979. const int64_t ne1 = dst->ne[1];
  7980. const int64_t ne2 = dst->ne[2];
  7981. const int64_t ne3 = dst->ne[3];
  7982. //const int64_t ne = ne0*ne1*ne2*ne3;
  7983. const int nb00 = src0->nb[0];
  7984. const int nb01 = src0->nb[1];
  7985. const int nb02 = src0->nb[2];
  7986. const int nb03 = src0->nb[3];
  7987. const int nb10 = src1->nb[0];
  7988. const int nb11 = src1->nb[1];
  7989. const int nb12 = src1->nb[2];
  7990. const int nb13 = src1->nb[3];
  7991. const int nb0 = dst->nb[0];
  7992. const int nb1 = dst->nb[1];
  7993. const int nb2 = dst->nb[2];
  7994. const int nb3 = dst->nb[3];
  7995. const int ith = params->ith;
  7996. const int nth = params->nth;
  7997. GGML_ASSERT(ne02 == ne12);
  7998. GGML_ASSERT(ne03 == ne13);
  7999. GGML_ASSERT(ne2 == ne12);
  8000. GGML_ASSERT(ne3 == ne13);
  8001. // TODO: we don't support permuted src0
  8002. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8003. // dst cannot be transposed or permuted
  8004. GGML_ASSERT(nb0 == sizeof(float));
  8005. GGML_ASSERT(nb0 <= nb1);
  8006. GGML_ASSERT(nb1 <= nb2);
  8007. GGML_ASSERT(nb2 <= nb3);
  8008. GGML_ASSERT(ne0 == ne01);
  8009. GGML_ASSERT(ne1 == ne11);
  8010. GGML_ASSERT(ne2 == ne02);
  8011. GGML_ASSERT(ne3 == ne03);
  8012. // nb01 >= nb00 - src0 is not transposed
  8013. // compute by src0 rows
  8014. #if defined(GGML_USE_CUBLAS)
  8015. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8016. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8017. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8018. }
  8019. return;
  8020. }
  8021. #elif defined(GGML_USE_CLBLAST)
  8022. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8023. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8024. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8025. }
  8026. return;
  8027. }
  8028. #endif
  8029. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8030. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8031. GGML_ASSERT(nb10 == sizeof(float));
  8032. if (params->ith != 0) {
  8033. return;
  8034. }
  8035. if (params->type == GGML_TASK_INIT) {
  8036. return;
  8037. }
  8038. if (params->type == GGML_TASK_FINALIZE) {
  8039. return;
  8040. }
  8041. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8042. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8043. float * const wdata = params->wdata;
  8044. {
  8045. size_t id = 0;
  8046. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8047. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8048. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8049. }
  8050. }
  8051. assert(id*sizeof(float) <= params->wsize);
  8052. }
  8053. const float * x = wdata;
  8054. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8055. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8056. // zT = y * xT
  8057. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8058. ne11, ne01, ne10,
  8059. 1.0f, y, ne10,
  8060. x, ne00,
  8061. 0.0f, d, ne01);
  8062. }
  8063. }
  8064. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8065. return;
  8066. }
  8067. #endif
  8068. if (params->type == GGML_TASK_INIT) {
  8069. ggml_fp16_t * const wdata = params->wdata;
  8070. size_t id = 0;
  8071. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8072. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8073. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8074. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8075. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8076. }
  8077. }
  8078. }
  8079. }
  8080. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8081. return;
  8082. }
  8083. if (params->type == GGML_TASK_FINALIZE) {
  8084. return;
  8085. }
  8086. // fp16 -> half the size, so divide by 2
  8087. // TODO: do not support transposed src1
  8088. assert(nb10/2 == sizeof(ggml_fp16_t));
  8089. // parallelize by src0 rows using ggml_vec_dot_f16
  8090. // total rows in src0
  8091. const int nr = ne01*ne02*ne03;
  8092. // rows per thread
  8093. const int dr = (nr + nth - 1)/nth;
  8094. // row range for this thread
  8095. const int ir0 = dr*ith;
  8096. const int ir1 = MIN(ir0 + dr, nr);
  8097. ggml_fp16_t * wdata = params->wdata;
  8098. for (int ir = ir0; ir < ir1; ++ir) {
  8099. // src0 indices
  8100. const int i03 = ir/(ne02*ne01);
  8101. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8102. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8103. const int i13 = i03;
  8104. const int i12 = i02;
  8105. const int i0 = i01;
  8106. const int i2 = i02;
  8107. const int i3 = i03;
  8108. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8109. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8110. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8111. for (int64_t ic = 0; ic < ne11; ++ic) {
  8112. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8113. }
  8114. }
  8115. //int64_t t1 = ggml_time_us();
  8116. //static int64_t acc = 0;
  8117. //acc += t1 - t0;
  8118. //if (t1 - t0 > 10) {
  8119. // printf("\n");
  8120. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8121. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8122. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8123. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8124. //}
  8125. }
  8126. static void ggml_compute_forward_mul_mat_q_f32(
  8127. const struct ggml_compute_params * params,
  8128. const struct ggml_tensor * src0,
  8129. const struct ggml_tensor * src1,
  8130. struct ggml_tensor * dst) {
  8131. int64_t t0 = ggml_perf_time_us();
  8132. UNUSED(t0);
  8133. const int64_t ne00 = src0->ne[0];
  8134. const int64_t ne01 = src0->ne[1];
  8135. const int64_t ne02 = src0->ne[2];
  8136. const int64_t ne03 = src0->ne[3];
  8137. const int64_t ne10 = src1->ne[0];
  8138. const int64_t ne11 = src1->ne[1];
  8139. const int64_t ne12 = src1->ne[2];
  8140. const int64_t ne13 = src1->ne[3];
  8141. const int64_t ne0 = dst->ne[0];
  8142. const int64_t ne1 = dst->ne[1];
  8143. const int64_t ne2 = dst->ne[2];
  8144. const int64_t ne3 = dst->ne[3];
  8145. const int nb00 = src0->nb[0];
  8146. const int nb01 = src0->nb[1];
  8147. const int nb02 = src0->nb[2];
  8148. const int nb03 = src0->nb[3];
  8149. const int nb10 = src1->nb[0];
  8150. const int nb11 = src1->nb[1];
  8151. const int nb12 = src1->nb[2];
  8152. const int nb13 = src1->nb[3];
  8153. const int nb0 = dst->nb[0];
  8154. const int nb1 = dst->nb[1];
  8155. const int nb2 = dst->nb[2];
  8156. const int nb3 = dst->nb[3];
  8157. const int ith = params->ith;
  8158. const int nth = params->nth;
  8159. GGML_ASSERT(ne02 == ne12);
  8160. GGML_ASSERT(ne03 == ne13);
  8161. GGML_ASSERT(ne2 == ne12);
  8162. GGML_ASSERT(ne3 == ne13);
  8163. const enum ggml_type type = src0->type;
  8164. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8165. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8166. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8167. // we don't support permuted src0 or src1
  8168. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8169. GGML_ASSERT(nb10 == sizeof(float));
  8170. // dst cannot be transposed or permuted
  8171. GGML_ASSERT(nb0 == sizeof(float));
  8172. GGML_ASSERT(nb0 <= nb1);
  8173. GGML_ASSERT(nb1 <= nb2);
  8174. GGML_ASSERT(nb2 <= nb3);
  8175. GGML_ASSERT(ne0 == ne01);
  8176. GGML_ASSERT(ne1 == ne11);
  8177. GGML_ASSERT(ne2 == ne02);
  8178. GGML_ASSERT(ne3 == ne03);
  8179. // nb01 >= nb00 - src0 is not transposed
  8180. // compute by src0 rows
  8181. #if defined(GGML_USE_CUBLAS)
  8182. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8183. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8184. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8185. }
  8186. return;
  8187. }
  8188. #elif defined(GGML_USE_CLBLAST)
  8189. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8190. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8191. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8192. }
  8193. return;
  8194. }
  8195. #endif
  8196. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8197. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8198. if (params->ith != 0) {
  8199. return;
  8200. }
  8201. if (params->type == GGML_TASK_INIT) {
  8202. return;
  8203. }
  8204. if (params->type == GGML_TASK_FINALIZE) {
  8205. return;
  8206. }
  8207. float * const wdata = params->wdata;
  8208. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8209. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8210. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8211. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8212. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8213. {
  8214. size_t id = 0;
  8215. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8216. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8217. id += ne00;
  8218. }
  8219. assert(id*sizeof(float) <= params->wsize);
  8220. }
  8221. const float * x = wdata;
  8222. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8223. ne11, ne01, ne10,
  8224. 1.0f, y, ne10,
  8225. x, ne00,
  8226. 0.0f, d, ne01);
  8227. }
  8228. }
  8229. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8230. return;
  8231. }
  8232. #endif
  8233. if (params->type == GGML_TASK_INIT) {
  8234. char * wdata = params->wdata;
  8235. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8236. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8237. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8238. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8239. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8240. wdata += row_size;
  8241. }
  8242. }
  8243. }
  8244. return;
  8245. }
  8246. if (params->type == GGML_TASK_FINALIZE) {
  8247. return;
  8248. }
  8249. // parallelize by src0 rows using ggml_vec_dot_q
  8250. // total rows in src0
  8251. const int nr = ne01*ne02*ne03;
  8252. // rows per thread
  8253. const int dr = (nr + nth - 1)/nth;
  8254. // row range for this thread
  8255. const int ir0 = dr*ith;
  8256. const int ir1 = MIN(ir0 + dr, nr);
  8257. void * wdata = params->wdata;
  8258. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8259. for (int ir = ir0; ir < ir1; ++ir) {
  8260. // src0 indices
  8261. const int i03 = ir/(ne02*ne01);
  8262. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8263. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8264. const int i13 = i03;
  8265. const int i12 = i02;
  8266. const int i0 = i01;
  8267. const int i2 = i02;
  8268. const int i3 = i03;
  8269. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8270. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8271. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8272. assert(ne00 % 32 == 0);
  8273. for (int64_t ic = 0; ic < ne11; ++ic) {
  8274. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8275. }
  8276. }
  8277. //int64_t t1 = ggml_time_us();
  8278. //static int64_t acc = 0;
  8279. //acc += t1 - t0;
  8280. //if (t1 - t0 > 10) {
  8281. // printf("\n");
  8282. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8283. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8284. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8285. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8286. //}
  8287. }
  8288. static void ggml_compute_forward_mul_mat(
  8289. const struct ggml_compute_params * params,
  8290. const struct ggml_tensor * src0,
  8291. const struct ggml_tensor * src1,
  8292. struct ggml_tensor * dst) {
  8293. switch (src0->type) {
  8294. case GGML_TYPE_Q4_0:
  8295. case GGML_TYPE_Q4_1:
  8296. case GGML_TYPE_Q5_0:
  8297. case GGML_TYPE_Q5_1:
  8298. case GGML_TYPE_Q8_0:
  8299. case GGML_TYPE_Q8_1:
  8300. case GGML_TYPE_Q2_K:
  8301. case GGML_TYPE_Q3_K:
  8302. case GGML_TYPE_Q4_K:
  8303. case GGML_TYPE_Q5_K:
  8304. case GGML_TYPE_Q6_K:
  8305. {
  8306. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8307. } break;
  8308. case GGML_TYPE_F16:
  8309. {
  8310. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8311. } break;
  8312. case GGML_TYPE_F32:
  8313. {
  8314. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8315. } break;
  8316. default:
  8317. {
  8318. GGML_ASSERT(false);
  8319. } break;
  8320. }
  8321. }
  8322. // ggml_compute_forward_scale
  8323. static void ggml_compute_forward_scale_f32(
  8324. const struct ggml_compute_params * params,
  8325. const struct ggml_tensor * src0,
  8326. const struct ggml_tensor * src1,
  8327. struct ggml_tensor * dst) {
  8328. GGML_ASSERT(ggml_is_contiguous(src0));
  8329. GGML_ASSERT(ggml_is_contiguous(dst));
  8330. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8331. GGML_ASSERT(ggml_is_scalar(src1));
  8332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8333. return;
  8334. }
  8335. // scale factor
  8336. const float v = *(float *) src1->data;
  8337. const int ith = params->ith;
  8338. const int nth = params->nth;
  8339. const int nc = src0->ne[0];
  8340. const int nr = ggml_nrows(src0);
  8341. // rows per thread
  8342. const int dr = (nr + nth - 1)/nth;
  8343. // row range for this thread
  8344. const int ir0 = dr*ith;
  8345. const int ir1 = MIN(ir0 + dr, nr);
  8346. const size_t nb01 = src0->nb[1];
  8347. const size_t nb1 = dst->nb[1];
  8348. for (int i1 = ir0; i1 < ir1; i1++) {
  8349. if (dst->data != src0->data) {
  8350. // src0 is same shape as dst => same indices
  8351. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8352. }
  8353. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8354. }
  8355. }
  8356. static void ggml_compute_forward_scale(
  8357. const struct ggml_compute_params * params,
  8358. const struct ggml_tensor * src0,
  8359. const struct ggml_tensor * src1,
  8360. struct ggml_tensor * dst) {
  8361. switch (src0->type) {
  8362. case GGML_TYPE_F32:
  8363. {
  8364. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8365. } break;
  8366. default:
  8367. {
  8368. GGML_ASSERT(false);
  8369. } break;
  8370. }
  8371. }
  8372. // ggml_compute_forward_set
  8373. static void ggml_compute_forward_set_f32(
  8374. const struct ggml_compute_params * params,
  8375. const struct ggml_tensor * src0,
  8376. const struct ggml_tensor * src1,
  8377. const struct ggml_tensor * opt0,
  8378. struct ggml_tensor * dst) {
  8379. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8380. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8381. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8382. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8383. // view src0 and dst with these strides and data offset inbytes during set
  8384. // nb0 is implicitely element_size because src0 and dst are contiguous
  8385. size_t nb1 = ((int32_t *) opt0->data)[0];
  8386. size_t nb2 = ((int32_t *) opt0->data)[1];
  8387. size_t nb3 = ((int32_t *) opt0->data)[2];
  8388. size_t offset = ((int32_t *) opt0->data)[3];
  8389. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8390. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8391. // memcpy needs to be synchronized across threads to avoid race conditions.
  8392. // => do it in INIT phase
  8393. memcpy(
  8394. ((char *) dst->data),
  8395. ((char *) src0->data),
  8396. ggml_nbytes(dst));
  8397. }
  8398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8399. return;
  8400. }
  8401. const int ith = params->ith;
  8402. const int nth = params->nth;
  8403. const int nr = ggml_nrows(src1);
  8404. const int nc = src1->ne[0];
  8405. const int64_t ne10 = src1->ne[0];
  8406. const int64_t ne11 = src1->ne[1];
  8407. const int64_t ne12 = src1->ne[2];
  8408. const int64_t ne13 = src1->ne[3];
  8409. const size_t nb10 = src1->nb[0];
  8410. const size_t nb11 = src1->nb[1];
  8411. const size_t nb12 = src1->nb[2];
  8412. const size_t nb13 = src1->nb[3];
  8413. // src0 and dst as viewed during set
  8414. const size_t nb0 = ggml_element_size(src0);
  8415. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8416. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8417. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8418. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8419. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8420. GGML_ASSERT(nb10 == sizeof(float));
  8421. // rows per thread
  8422. const int dr = (nr + nth - 1)/nth;
  8423. // row range for this thread
  8424. const int ir0 = dr*ith;
  8425. const int ir1 = MIN(ir0 + dr, nr);
  8426. for (int ir = ir0; ir < ir1; ++ir) {
  8427. // src0 and dst are viewed with shape of src1 and offset
  8428. // => same indices
  8429. const int i3 = ir/(ne12*ne11);
  8430. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8431. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8432. ggml_vec_cpy_f32(nc,
  8433. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8434. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8435. }
  8436. }
  8437. static void ggml_compute_forward_set(
  8438. const struct ggml_compute_params * params,
  8439. const struct ggml_tensor * src0,
  8440. const struct ggml_tensor * src1,
  8441. const struct ggml_tensor * opt0,
  8442. struct ggml_tensor * dst) {
  8443. switch (src0->type) {
  8444. case GGML_TYPE_F32:
  8445. {
  8446. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8447. } break;
  8448. case GGML_TYPE_F16:
  8449. case GGML_TYPE_Q4_0:
  8450. case GGML_TYPE_Q4_1:
  8451. case GGML_TYPE_Q5_0:
  8452. case GGML_TYPE_Q5_1:
  8453. case GGML_TYPE_Q8_0:
  8454. case GGML_TYPE_Q8_1:
  8455. case GGML_TYPE_Q2_K:
  8456. case GGML_TYPE_Q3_K:
  8457. case GGML_TYPE_Q4_K:
  8458. case GGML_TYPE_Q5_K:
  8459. case GGML_TYPE_Q6_K:
  8460. default:
  8461. {
  8462. GGML_ASSERT(false);
  8463. } break;
  8464. }
  8465. }
  8466. // ggml_compute_forward_cpy
  8467. static void ggml_compute_forward_cpy(
  8468. const struct ggml_compute_params * params,
  8469. const struct ggml_tensor * src0,
  8470. struct ggml_tensor * dst) {
  8471. ggml_compute_forward_dup(params, src0, dst);
  8472. }
  8473. // ggml_compute_forward_cont
  8474. static void ggml_compute_forward_cont(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0,
  8477. struct ggml_tensor * dst) {
  8478. ggml_compute_forward_dup(params, src0, dst);
  8479. }
  8480. // ggml_compute_forward_reshape
  8481. static void ggml_compute_forward_reshape(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0,
  8484. struct ggml_tensor * dst) {
  8485. // NOP
  8486. UNUSED(params);
  8487. UNUSED(src0);
  8488. UNUSED(dst);
  8489. }
  8490. // ggml_compute_forward_view
  8491. static void ggml_compute_forward_view(
  8492. const struct ggml_compute_params * params,
  8493. const struct ggml_tensor * src0) {
  8494. // NOP
  8495. UNUSED(params);
  8496. UNUSED(src0);
  8497. }
  8498. // ggml_compute_forward_permute
  8499. static void ggml_compute_forward_permute(
  8500. const struct ggml_compute_params * params,
  8501. const struct ggml_tensor * src0) {
  8502. // NOP
  8503. UNUSED(params);
  8504. UNUSED(src0);
  8505. }
  8506. // ggml_compute_forward_transpose
  8507. static void ggml_compute_forward_transpose(
  8508. const struct ggml_compute_params * params,
  8509. const struct ggml_tensor * src0) {
  8510. // NOP
  8511. UNUSED(params);
  8512. UNUSED(src0);
  8513. }
  8514. // ggml_compute_forward_get_rows
  8515. static void ggml_compute_forward_get_rows_q(
  8516. const struct ggml_compute_params * params,
  8517. const struct ggml_tensor * src0,
  8518. const struct ggml_tensor * src1,
  8519. struct ggml_tensor * dst) {
  8520. assert(params->ith == 0);
  8521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8522. return;
  8523. }
  8524. const int nc = src0->ne[0];
  8525. const int nr = ggml_nelements(src1);
  8526. const enum ggml_type type = src0->type;
  8527. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8528. assert( dst->ne[0] == nc);
  8529. assert( dst->ne[1] == nr);
  8530. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8531. for (int i = 0; i < nr; ++i) {
  8532. const int r = ((int32_t *) src1->data)[i];
  8533. dequantize_row_q(
  8534. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8535. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8536. }
  8537. }
  8538. static void ggml_compute_forward_get_rows_f16(
  8539. const struct ggml_compute_params * params,
  8540. const struct ggml_tensor * src0,
  8541. const struct ggml_tensor * src1,
  8542. struct ggml_tensor * dst) {
  8543. assert(params->ith == 0);
  8544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8545. return;
  8546. }
  8547. const int nc = src0->ne[0];
  8548. const int nr = ggml_nelements(src1);
  8549. assert( dst->ne[0] == nc);
  8550. assert( dst->ne[1] == nr);
  8551. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8552. for (int i = 0; i < nr; ++i) {
  8553. const int r = ((int32_t *) src1->data)[i];
  8554. for (int j = 0; j < nc; ++j) {
  8555. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8556. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8557. }
  8558. }
  8559. }
  8560. static void ggml_compute_forward_get_rows_f32(
  8561. const struct ggml_compute_params * params,
  8562. const struct ggml_tensor * src0,
  8563. const struct ggml_tensor * src1,
  8564. struct ggml_tensor * dst) {
  8565. assert(params->ith == 0);
  8566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8567. return;
  8568. }
  8569. const int nc = src0->ne[0];
  8570. const int nr = ggml_nelements(src1);
  8571. assert( dst->ne[0] == nc);
  8572. assert( dst->ne[1] == nr);
  8573. assert(src0->nb[0] == sizeof(float));
  8574. for (int i = 0; i < nr; ++i) {
  8575. const int r = ((int32_t *) src1->data)[i];
  8576. ggml_vec_cpy_f32(nc,
  8577. (float *) ((char *) dst->data + i*dst->nb[1]),
  8578. (float *) ((char *) src0->data + r*src0->nb[1]));
  8579. }
  8580. }
  8581. static void ggml_compute_forward_get_rows(
  8582. const struct ggml_compute_params * params,
  8583. const struct ggml_tensor * src0,
  8584. const struct ggml_tensor * src1,
  8585. struct ggml_tensor * dst) {
  8586. switch (src0->type) {
  8587. case GGML_TYPE_Q4_0:
  8588. case GGML_TYPE_Q4_1:
  8589. case GGML_TYPE_Q5_0:
  8590. case GGML_TYPE_Q5_1:
  8591. case GGML_TYPE_Q8_0:
  8592. case GGML_TYPE_Q8_1:
  8593. case GGML_TYPE_Q2_K:
  8594. case GGML_TYPE_Q3_K:
  8595. case GGML_TYPE_Q4_K:
  8596. case GGML_TYPE_Q5_K:
  8597. case GGML_TYPE_Q6_K:
  8598. {
  8599. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8600. } break;
  8601. case GGML_TYPE_F16:
  8602. {
  8603. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8604. } break;
  8605. case GGML_TYPE_F32:
  8606. {
  8607. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8608. } break;
  8609. default:
  8610. {
  8611. GGML_ASSERT(false);
  8612. } break;
  8613. }
  8614. //static bool first = true;
  8615. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8616. //if (first) {
  8617. // first = false;
  8618. //} else {
  8619. // for (int k = 0; k < dst->ne[1]; ++k) {
  8620. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8621. // for (int i = 0; i < 16; ++i) {
  8622. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8623. // }
  8624. // printf("\n");
  8625. // }
  8626. // printf("\n");
  8627. // }
  8628. // printf("\n");
  8629. // exit(0);
  8630. //}
  8631. }
  8632. // ggml_compute_forward_get_rows_back
  8633. static void ggml_compute_forward_get_rows_back_f32_f16(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. const struct ggml_tensor * src1,
  8637. const struct ggml_tensor * opt0,
  8638. struct ggml_tensor * dst) {
  8639. GGML_ASSERT(params->ith == 0);
  8640. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8641. GGML_ASSERT(ggml_is_contiguous(opt0));
  8642. GGML_ASSERT(ggml_is_contiguous(dst));
  8643. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8645. return;
  8646. }
  8647. const int nc = src0->ne[0];
  8648. const int nr = ggml_nelements(src1);
  8649. GGML_ASSERT( dst->ne[0] == nc);
  8650. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8651. for (int i = 0; i < nr; ++i) {
  8652. const int r = ((int32_t *) src1->data)[i];
  8653. for (int j = 0; j < nc; ++j) {
  8654. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8655. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8656. }
  8657. }
  8658. }
  8659. static void ggml_compute_forward_get_rows_back_f32(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * src0,
  8662. const struct ggml_tensor * src1,
  8663. const struct ggml_tensor * opt0,
  8664. struct ggml_tensor * dst) {
  8665. GGML_ASSERT(params->ith == 0);
  8666. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8667. GGML_ASSERT(ggml_is_contiguous(opt0));
  8668. GGML_ASSERT(ggml_is_contiguous(dst));
  8669. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8671. return;
  8672. }
  8673. const int nc = src0->ne[0];
  8674. const int nr = ggml_nelements(src1);
  8675. GGML_ASSERT( dst->ne[0] == nc);
  8676. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8677. for (int i = 0; i < nr; ++i) {
  8678. const int r = ((int32_t *) src1->data)[i];
  8679. ggml_vec_add_f32(nc,
  8680. (float *) ((char *) dst->data + r*dst->nb[1]),
  8681. (float *) ((char *) dst->data + r*dst->nb[1]),
  8682. (float *) ((char *) src0->data + i*src0->nb[1]));
  8683. }
  8684. }
  8685. static void ggml_compute_forward_get_rows_back(
  8686. const struct ggml_compute_params * params,
  8687. const struct ggml_tensor * src0,
  8688. const struct ggml_tensor * src1,
  8689. const struct ggml_tensor * opt0,
  8690. struct ggml_tensor * dst) {
  8691. switch (src0->type) {
  8692. case GGML_TYPE_F16:
  8693. {
  8694. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8695. } break;
  8696. case GGML_TYPE_F32:
  8697. {
  8698. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8699. } break;
  8700. default:
  8701. {
  8702. GGML_ASSERT(false);
  8703. } break;
  8704. }
  8705. //static bool first = true;
  8706. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8707. //if (first) {
  8708. // first = false;
  8709. //} else {
  8710. // for (int k = 0; k < dst->ne[1]; ++k) {
  8711. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8712. // for (int i = 0; i < 16; ++i) {
  8713. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8714. // }
  8715. // printf("\n");
  8716. // }
  8717. // printf("\n");
  8718. // }
  8719. // printf("\n");
  8720. // exit(0);
  8721. //}
  8722. }
  8723. // ggml_compute_forward_diag
  8724. static void ggml_compute_forward_diag_f32(
  8725. const struct ggml_compute_params * params,
  8726. const struct ggml_tensor * src0,
  8727. struct ggml_tensor * dst) {
  8728. GGML_ASSERT(params->ith == 0);
  8729. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8730. return;
  8731. }
  8732. // TODO: handle transposed/permuted matrices
  8733. const int ne00 = src0->ne[0];
  8734. const int ne01 = src0->ne[1];
  8735. const int ne02 = src0->ne[2];
  8736. const int ne03 = src0->ne[3];
  8737. const int ne0 = dst->ne[0];
  8738. const int ne1 = dst->ne[1];
  8739. const int ne2 = dst->ne[2];
  8740. const int ne3 = dst->ne[3];
  8741. GGML_ASSERT(ne00 == ne0);
  8742. GGML_ASSERT(ne00 == ne1);
  8743. GGML_ASSERT(ne01 == 1);
  8744. GGML_ASSERT(ne02 == ne2);
  8745. GGML_ASSERT(ne03 == ne3);
  8746. const int nb00 = src0->nb[0];
  8747. //const int nb01 = src0->nb[1];
  8748. const int nb02 = src0->nb[2];
  8749. const int nb03 = src0->nb[3];
  8750. const int nb0 = dst->nb[0];
  8751. const int nb1 = dst->nb[1];
  8752. const int nb2 = dst->nb[2];
  8753. const int nb3 = dst->nb[3];
  8754. GGML_ASSERT(nb00 == sizeof(float));
  8755. GGML_ASSERT(nb0 == sizeof(float));
  8756. for (int i3 = 0; i3 < ne3; i3++) {
  8757. for (int i2 = 0; i2 < ne2; i2++) {
  8758. for (int i1 = 0; i1 < ne1; i1++) {
  8759. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8760. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8761. for (int i0 = 0; i0 < i1; i0++) {
  8762. d[i0] = 0;
  8763. }
  8764. d[i1] = s[i1];
  8765. for (int i0 = i1+1; i0 < ne0; i0++) {
  8766. d[i0] = 0;
  8767. }
  8768. }
  8769. }
  8770. }
  8771. }
  8772. static void ggml_compute_forward_diag(
  8773. const struct ggml_compute_params * params,
  8774. const struct ggml_tensor * src0,
  8775. struct ggml_tensor * dst) {
  8776. switch (src0->type) {
  8777. case GGML_TYPE_F32:
  8778. {
  8779. ggml_compute_forward_diag_f32(params, src0, dst);
  8780. } break;
  8781. default:
  8782. {
  8783. GGML_ASSERT(false);
  8784. } break;
  8785. }
  8786. }
  8787. // ggml_compute_forward_diag_mask_inf
  8788. static void ggml_compute_forward_diag_mask_f32(
  8789. const struct ggml_compute_params * params,
  8790. const struct ggml_tensor * src0,
  8791. const struct ggml_tensor * src1,
  8792. struct ggml_tensor * dst,
  8793. const float value) {
  8794. assert(src1->type == GGML_TYPE_I32);
  8795. assert(ggml_nelements(src1) == 2);
  8796. const int ith = params->ith;
  8797. const int nth = params->nth;
  8798. const int n_past = ((int32_t *) src1->data)[0];
  8799. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8800. assert(n_past >= 0);
  8801. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8802. // memcpy needs to be synchronized across threads to avoid race conditions.
  8803. // => do it in INIT phase
  8804. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8805. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8806. memcpy(
  8807. ((char *) dst->data),
  8808. ((char *) src0->data),
  8809. ggml_nbytes(dst));
  8810. }
  8811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8812. return;
  8813. }
  8814. // TODO: handle transposed/permuted matrices
  8815. const int n = ggml_nrows(src0);
  8816. const int nc = src0->ne[0];
  8817. const int nr = src0->ne[1];
  8818. const int nz = n/nr;
  8819. assert( dst->nb[0] == sizeof(float));
  8820. assert(src0->nb[0] == sizeof(float));
  8821. for (int k = 0; k < nz; k++) {
  8822. for (int j = ith; j < nr; j += nth) {
  8823. for (int i = n_past; i < nc; i++) {
  8824. if (i > n_past + j) {
  8825. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8826. }
  8827. }
  8828. }
  8829. }
  8830. }
  8831. static void ggml_compute_forward_diag_mask_inf(
  8832. const struct ggml_compute_params * params,
  8833. const struct ggml_tensor * src0,
  8834. const struct ggml_tensor * src1,
  8835. struct ggml_tensor * dst) {
  8836. switch (src0->type) {
  8837. case GGML_TYPE_F32:
  8838. {
  8839. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8840. } break;
  8841. default:
  8842. {
  8843. GGML_ASSERT(false);
  8844. } break;
  8845. }
  8846. }
  8847. static void ggml_compute_forward_diag_mask_zero(
  8848. const struct ggml_compute_params * params,
  8849. const struct ggml_tensor * src0,
  8850. const struct ggml_tensor * src1,
  8851. struct ggml_tensor * dst) {
  8852. switch (src0->type) {
  8853. case GGML_TYPE_F32:
  8854. {
  8855. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8856. } break;
  8857. default:
  8858. {
  8859. GGML_ASSERT(false);
  8860. } break;
  8861. }
  8862. }
  8863. // ggml_compute_forward_soft_max
  8864. static void ggml_compute_forward_soft_max_f32(
  8865. const struct ggml_compute_params * params,
  8866. const struct ggml_tensor * src0,
  8867. struct ggml_tensor * dst) {
  8868. GGML_ASSERT(ggml_is_contiguous(src0));
  8869. GGML_ASSERT(ggml_is_contiguous(dst));
  8870. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8872. return;
  8873. }
  8874. // TODO: handle transposed/permuted matrices
  8875. const int ith = params->ith;
  8876. const int nth = params->nth;
  8877. const int nc = src0->ne[0];
  8878. const int nr = ggml_nrows(src0);
  8879. // rows per thread
  8880. const int dr = (nr + nth - 1)/nth;
  8881. // row range for this thread
  8882. const int ir0 = dr*ith;
  8883. const int ir1 = MIN(ir0 + dr, nr);
  8884. for (int i1 = ir0; i1 < ir1; i1++) {
  8885. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8886. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8887. #ifndef NDEBUG
  8888. for (int i = 0; i < nc; ++i) {
  8889. //printf("p[%d] = %f\n", i, p[i]);
  8890. assert(!isnan(sp[i]));
  8891. }
  8892. #endif
  8893. float max = -INFINITY;
  8894. ggml_vec_max_f32(nc, &max, sp);
  8895. ggml_float sum = 0.0;
  8896. uint16_t scvt;
  8897. for (int i = 0; i < nc; i++) {
  8898. if (sp[i] == -INFINITY) {
  8899. dp[i] = 0.0f;
  8900. } else {
  8901. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8902. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8903. memcpy(&scvt, &s, sizeof(scvt));
  8904. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8905. sum += (ggml_float)val;
  8906. dp[i] = val;
  8907. }
  8908. }
  8909. assert(sum > 0.0);
  8910. sum = 1.0/sum;
  8911. ggml_vec_scale_f32(nc, dp, sum);
  8912. #ifndef NDEBUG
  8913. for (int i = 0; i < nc; ++i) {
  8914. assert(!isnan(dp[i]));
  8915. assert(!isinf(dp[i]));
  8916. }
  8917. #endif
  8918. }
  8919. }
  8920. static void ggml_compute_forward_soft_max(
  8921. const struct ggml_compute_params * params,
  8922. const struct ggml_tensor * src0,
  8923. struct ggml_tensor * dst) {
  8924. switch (src0->type) {
  8925. case GGML_TYPE_F32:
  8926. {
  8927. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8928. } break;
  8929. default:
  8930. {
  8931. GGML_ASSERT(false);
  8932. } break;
  8933. }
  8934. }
  8935. // ggml_compute_forward_alibi
  8936. static void ggml_compute_forward_alibi_f32(
  8937. const struct ggml_compute_params * params,
  8938. const struct ggml_tensor * src0,
  8939. const struct ggml_tensor * src1,
  8940. struct ggml_tensor * dst) {
  8941. assert(params->ith == 0);
  8942. assert(src1->type == GGML_TYPE_I32);
  8943. assert(ggml_nelements(src1) == 3);
  8944. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8945. return;
  8946. }
  8947. const int n_past = ((int32_t *) src1->data)[0];
  8948. const int n_head = ((int32_t *) src1->data)[1];
  8949. const float max_bias = ((float *) src1->data)[2];
  8950. assert(n_past >= 0);
  8951. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8952. const int ne1 = src0->ne[1]; // seq_len_without_past
  8953. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8954. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8955. const int n = ggml_nrows(src0);
  8956. const int ne2_ne3 = n/ne1; // ne2*ne3
  8957. const int nb0 = src0->nb[0];
  8958. const int nb1 = src0->nb[1];
  8959. const int nb2 = src0->nb[2];
  8960. //const int nb3 = src0->nb[3];
  8961. assert(nb0 == sizeof(float));
  8962. assert(ne1 + n_past == ne0); (void) n_past;
  8963. // add alibi to src0 (KQ_scaled)
  8964. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8965. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8966. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8967. for (int i = 0; i < ne0; i++) {
  8968. for (int j = 0; j < ne1; j++) {
  8969. for (int k = 0; k < ne2_ne3; k++) {
  8970. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8971. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8972. // TODO: k*nb2 or k*nb3
  8973. float m_k;
  8974. if (k < n_heads_log2_floor) {
  8975. m_k = powf(m0, k + 1);
  8976. } else {
  8977. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8978. }
  8979. pdst[0] = (i-ne0+1) * m_k + src[0];
  8980. }
  8981. }
  8982. }
  8983. }
  8984. static void ggml_compute_forward_alibi_f16(
  8985. const struct ggml_compute_params * params,
  8986. const struct ggml_tensor * src0,
  8987. const struct ggml_tensor * src1,
  8988. struct ggml_tensor * dst) {
  8989. assert(params->ith == 0);
  8990. assert(src1->type == GGML_TYPE_I32);
  8991. assert(ggml_nelements(src1) == 3);
  8992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8993. return;
  8994. }
  8995. const int n_past = ((int32_t *) src1->data)[0];
  8996. const int n_head = ((int32_t *) src1->data)[1];
  8997. const float max_bias = ((float *) src1->data)[2];
  8998. assert(n_past >= 0);
  8999. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9000. const int ne1 = src0->ne[1]; // seq_len_without_past
  9001. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9002. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9003. const int n = ggml_nrows(src0);
  9004. const int ne2_ne3 = n/ne1; // ne2*ne3
  9005. const int nb0 = src0->nb[0];
  9006. const int nb1 = src0->nb[1];
  9007. const int nb2 = src0->nb[2];
  9008. //const int nb3 = src0->nb[3];
  9009. assert(nb0 == sizeof(ggml_fp16_t));
  9010. assert(ne1 + n_past == ne0); (void) n_past;
  9011. // add alibi to src0 (KQ_scaled)
  9012. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9013. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9014. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9015. for (int i = 0; i < ne0; i++) {
  9016. for (int j = 0; j < ne1; j++) {
  9017. for (int k = 0; k < ne2_ne3; k++) {
  9018. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9019. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9020. // TODO: k*nb2 or k*nb3
  9021. float m_k;
  9022. if (k < n_heads_log2_floor) {
  9023. m_k = powf(m0, k + 1);
  9024. } else {
  9025. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9026. }
  9027. // we return F32
  9028. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9029. }
  9030. }
  9031. }
  9032. }
  9033. static void ggml_compute_forward_alibi(
  9034. const struct ggml_compute_params * params,
  9035. const struct ggml_tensor * src0,
  9036. const struct ggml_tensor * src1,
  9037. struct ggml_tensor * dst) {
  9038. switch (src0->type) {
  9039. case GGML_TYPE_F16:
  9040. {
  9041. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9042. } break;
  9043. case GGML_TYPE_F32:
  9044. {
  9045. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9046. } break;
  9047. case GGML_TYPE_Q4_0:
  9048. case GGML_TYPE_Q4_1:
  9049. case GGML_TYPE_Q5_0:
  9050. case GGML_TYPE_Q5_1:
  9051. case GGML_TYPE_Q8_0:
  9052. case GGML_TYPE_Q8_1:
  9053. case GGML_TYPE_Q2_K:
  9054. case GGML_TYPE_Q3_K:
  9055. case GGML_TYPE_Q4_K:
  9056. case GGML_TYPE_Q5_K:
  9057. case GGML_TYPE_Q6_K:
  9058. case GGML_TYPE_Q8_K:
  9059. case GGML_TYPE_I8:
  9060. case GGML_TYPE_I16:
  9061. case GGML_TYPE_I32:
  9062. case GGML_TYPE_COUNT:
  9063. {
  9064. GGML_ASSERT(false);
  9065. } break;
  9066. }
  9067. }
  9068. // ggml_compute_forward_clamp
  9069. static void ggml_compute_forward_clamp_f32(
  9070. const struct ggml_compute_params * params,
  9071. const struct ggml_tensor * src0,
  9072. const struct ggml_tensor * src1,
  9073. struct ggml_tensor * dst) {
  9074. assert(params->ith == 0);
  9075. assert(src1->type == GGML_TYPE_I32);
  9076. assert(ggml_nelements(src1) == 2);
  9077. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9078. return;
  9079. }
  9080. const int min = ((float *) src1->data)[0];
  9081. const int max = ((float *) src1->data)[1];
  9082. const int ith = params->ith;
  9083. const int nth = params->nth;
  9084. const int n = ggml_nrows(src0);
  9085. const int nc = src0->ne[0];
  9086. const size_t nb00 = src0->nb[0];
  9087. const size_t nb01 = src0->nb[1];
  9088. const size_t nb0 = dst->nb[0];
  9089. const size_t nb1 = dst->nb[1];
  9090. GGML_ASSERT( nb0 == sizeof(float));
  9091. GGML_ASSERT(nb00 == sizeof(float));
  9092. for (int j = ith; j < n; j += nth) {
  9093. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9094. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9095. for (int i = 0; i < nc; i++) {
  9096. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9097. }
  9098. }
  9099. }
  9100. static void ggml_compute_forward_clamp(
  9101. const struct ggml_compute_params * params,
  9102. const struct ggml_tensor * src0,
  9103. const struct ggml_tensor * src1,
  9104. struct ggml_tensor * dst) {
  9105. switch (src0->type) {
  9106. case GGML_TYPE_F32:
  9107. {
  9108. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9109. } break;
  9110. case GGML_TYPE_F16:
  9111. case GGML_TYPE_Q4_0:
  9112. case GGML_TYPE_Q4_1:
  9113. case GGML_TYPE_Q5_0:
  9114. case GGML_TYPE_Q5_1:
  9115. case GGML_TYPE_Q8_0:
  9116. case GGML_TYPE_Q8_1:
  9117. case GGML_TYPE_Q2_K:
  9118. case GGML_TYPE_Q3_K:
  9119. case GGML_TYPE_Q4_K:
  9120. case GGML_TYPE_Q5_K:
  9121. case GGML_TYPE_Q6_K:
  9122. case GGML_TYPE_Q8_K:
  9123. case GGML_TYPE_I8:
  9124. case GGML_TYPE_I16:
  9125. case GGML_TYPE_I32:
  9126. case GGML_TYPE_COUNT:
  9127. {
  9128. GGML_ASSERT(false);
  9129. } break;
  9130. }
  9131. }
  9132. // ggml_compute_forward_rope
  9133. static void ggml_compute_forward_rope_f32(
  9134. const struct ggml_compute_params * params,
  9135. const struct ggml_tensor * src0,
  9136. const struct ggml_tensor * src1,
  9137. struct ggml_tensor * dst) {
  9138. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9139. GGML_ASSERT(ggml_nelements(src1) == 3);
  9140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9141. return;
  9142. }
  9143. const int n_past = ((int32_t *) src1->data)[0];
  9144. const int n_dims = ((int32_t *) src1->data)[1];
  9145. const int mode = ((int32_t *) src1->data)[2];
  9146. assert(n_past >= 0);
  9147. const size_t nb00 = src0->nb[0];
  9148. const size_t nb01 = src0->nb[1];
  9149. const size_t nb02 = src0->nb[2];
  9150. const size_t nb03 = src0->nb[3];
  9151. const int64_t ne0 = dst->ne[0];
  9152. const int64_t ne1 = dst->ne[1];
  9153. const int64_t ne2 = dst->ne[2];
  9154. const int64_t ne3 = dst->ne[3];
  9155. const size_t nb0 = dst->nb[0];
  9156. const size_t nb1 = dst->nb[1];
  9157. const size_t nb2 = dst->nb[2];
  9158. const size_t nb3 = dst->nb[3];
  9159. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9160. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9161. GGML_ASSERT(nb00 == sizeof(float));
  9162. const int ith = params->ith;
  9163. const int nth = params->nth;
  9164. const int nr = ggml_nrows(dst);
  9165. GGML_ASSERT(n_dims <= ne0);
  9166. GGML_ASSERT(n_dims % 2 == 0);
  9167. // rows per thread
  9168. const int dr = (nr + nth - 1)/nth;
  9169. // row range for this thread
  9170. const int ir0 = dr*ith;
  9171. const int ir1 = MIN(ir0 + dr, nr);
  9172. // row index used to determine which thread to use
  9173. int ir = 0;
  9174. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9175. const bool is_neox = mode & 2;
  9176. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9177. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9178. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9179. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9180. if (ir++ < ir0) continue;
  9181. if (ir > ir1) break;
  9182. float theta = (float)p;
  9183. if (!is_neox) {
  9184. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9185. const float cos_theta = cosf(theta);
  9186. const float sin_theta = sinf(theta);
  9187. theta *= theta_scale;
  9188. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9189. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9190. const float x0 = src[0];
  9191. const float x1 = src[1];
  9192. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9193. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9194. }
  9195. } else {
  9196. // TODO: this is probably wrong, but I can't figure it out ..
  9197. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9198. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9199. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9200. const float cos_theta = cosf(theta);
  9201. const float sin_theta = sinf(theta);
  9202. theta *= theta_scale;
  9203. const int64_t i0 = ib*n_dims + ic/2;
  9204. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9205. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9206. const float x0 = src[0];
  9207. const float x1 = src[n_dims/2];
  9208. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9209. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9210. }
  9211. }
  9212. }
  9213. }
  9214. }
  9215. }
  9216. }
  9217. static void ggml_compute_forward_rope_f16(
  9218. const struct ggml_compute_params * params,
  9219. const struct ggml_tensor * src0,
  9220. const struct ggml_tensor * src1,
  9221. struct ggml_tensor * dst) {
  9222. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9223. GGML_ASSERT(ggml_nelements(src1) == 3);
  9224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9225. return;
  9226. }
  9227. const int n_past = ((int32_t *) src1->data)[0];
  9228. const int n_dims = ((int32_t *) src1->data)[1];
  9229. const int mode = ((int32_t *) src1->data)[2];
  9230. assert(n_past >= 0);
  9231. const size_t nb00 = src0->nb[0];
  9232. const size_t nb01 = src0->nb[1];
  9233. const size_t nb02 = src0->nb[2];
  9234. const size_t nb03 = src0->nb[3];
  9235. const int64_t ne0 = dst->ne[0];
  9236. const int64_t ne1 = dst->ne[1];
  9237. const int64_t ne2 = dst->ne[2];
  9238. const int64_t ne3 = dst->ne[3];
  9239. const size_t nb0 = dst->nb[0];
  9240. const size_t nb1 = dst->nb[1];
  9241. const size_t nb2 = dst->nb[2];
  9242. const size_t nb3 = dst->nb[3];
  9243. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9244. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9245. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9246. const int ith = params->ith;
  9247. const int nth = params->nth;
  9248. const int nr = ggml_nrows(dst);
  9249. GGML_ASSERT(n_dims <= ne0);
  9250. GGML_ASSERT(n_dims % 2 == 0);
  9251. // rows per thread
  9252. const int dr = (nr + nth - 1)/nth;
  9253. // row range for this thread
  9254. const int ir0 = dr*ith;
  9255. const int ir1 = MIN(ir0 + dr, nr);
  9256. // row index used to determine which thread to use
  9257. int ir = 0;
  9258. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9259. const bool is_neox = mode & 2;
  9260. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9261. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9262. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9263. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9264. if (ir++ < ir0) continue;
  9265. if (ir > ir1) break;
  9266. float theta = (float)p;
  9267. if (!is_neox) {
  9268. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9269. const float cos_theta = cosf(theta);
  9270. const float sin_theta = sinf(theta);
  9271. theta *= theta_scale;
  9272. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9273. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9274. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9275. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9276. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9277. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9278. }
  9279. } else {
  9280. // TODO: this is probably wrong, but I can't figure it out ..
  9281. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9282. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9283. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9284. const float cos_theta = cosf(theta);
  9285. const float sin_theta = sinf(theta);
  9286. theta *= theta_scale;
  9287. const int64_t i0 = ib*n_dims + ic/2;
  9288. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9289. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9290. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9291. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9292. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9293. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9294. }
  9295. }
  9296. }
  9297. }
  9298. }
  9299. }
  9300. }
  9301. static void ggml_compute_forward_rope(
  9302. const struct ggml_compute_params * params,
  9303. const struct ggml_tensor * src0,
  9304. const struct ggml_tensor * src1,
  9305. struct ggml_tensor * dst) {
  9306. switch (src0->type) {
  9307. case GGML_TYPE_F16:
  9308. {
  9309. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9310. } break;
  9311. case GGML_TYPE_F32:
  9312. {
  9313. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9314. } break;
  9315. default:
  9316. {
  9317. GGML_ASSERT(false);
  9318. } break;
  9319. }
  9320. }
  9321. // ggml_compute_forward_rope_back
  9322. static void ggml_compute_forward_rope_back_f32(
  9323. const struct ggml_compute_params * params,
  9324. const struct ggml_tensor * src0,
  9325. const struct ggml_tensor * src1,
  9326. struct ggml_tensor * dst) {
  9327. assert(src1->type == GGML_TYPE_I32);
  9328. assert(ggml_nelements(src1) == 3);
  9329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9330. return;
  9331. }
  9332. // y = rope(x, src1)
  9333. // dx = rope_back(dy, src1)
  9334. // src0 is dy, src1 contains options
  9335. const int n_past = ((int32_t *) src1->data)[0];
  9336. const int n_dims = ((int32_t *) src1->data)[1];
  9337. const int mode = ((int32_t *) src1->data)[2];
  9338. assert(n_past >= 0);
  9339. const size_t nb00 = src0->nb[0];
  9340. const size_t nb01 = src0->nb[1];
  9341. const size_t nb02 = src0->nb[2];
  9342. const size_t nb03 = src0->nb[3];
  9343. const int64_t ne0 = dst->ne[0];
  9344. const int64_t ne1 = dst->ne[1];
  9345. const int64_t ne2 = dst->ne[2];
  9346. const int64_t ne3 = dst->ne[3];
  9347. const size_t nb0 = dst->nb[0];
  9348. const size_t nb1 = dst->nb[1];
  9349. const size_t nb2 = dst->nb[2];
  9350. const size_t nb3 = dst->nb[3];
  9351. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9352. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9353. assert(nb0 == sizeof(float));
  9354. const int ith = params->ith;
  9355. const int nth = params->nth;
  9356. const int nr = ggml_nrows(dst);
  9357. // rows per thread
  9358. const int dr = (nr + nth - 1)/nth;
  9359. // row range for this thread
  9360. const int ir0 = dr*ith;
  9361. const int ir1 = MIN(ir0 + dr, nr);
  9362. // row index used to determine which thread to use
  9363. int ir = 0;
  9364. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9365. const bool is_neox = mode & 2;
  9366. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9367. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9368. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9369. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9370. if (ir++ < ir0) continue;
  9371. if (ir > ir1) break;
  9372. float theta = (float)p;
  9373. if (!is_neox) {
  9374. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9375. const float cos_theta = cosf(theta);
  9376. const float sin_theta = sinf(theta);
  9377. theta *= theta_scale;
  9378. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9379. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9380. const float dy0 = dy[0];
  9381. const float dy1 = dy[1];
  9382. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9383. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9384. }
  9385. } else {
  9386. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9387. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9388. const float cos_theta = cosf(theta);
  9389. const float sin_theta = sinf(theta);
  9390. theta *= theta_scale;
  9391. const int64_t i0 = ib*n_dims + ic/2;
  9392. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9393. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9394. const float dy0 = dy[0];
  9395. const float dy1 = dy[n_dims/2];
  9396. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9397. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9398. }
  9399. }
  9400. }
  9401. }
  9402. }
  9403. }
  9404. }
  9405. static void ggml_compute_forward_rope_back_f16(
  9406. const struct ggml_compute_params * params,
  9407. const struct ggml_tensor * src0,
  9408. const struct ggml_tensor * src1,
  9409. struct ggml_tensor * dst) {
  9410. assert(src1->type == GGML_TYPE_I32);
  9411. assert(ggml_nelements(src1) == 3);
  9412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9413. return;
  9414. }
  9415. // y = rope(x, src1)
  9416. // dx = rope_back(dy, src1)
  9417. // src0 is dy, src1 contains options
  9418. const int n_past = ((int32_t *) src1->data)[0];
  9419. const int n_dims = ((int32_t *) src1->data)[1];
  9420. const int mode = ((int32_t *) src1->data)[2];
  9421. assert(n_past >= 0);
  9422. const size_t nb00 = src0->nb[0];
  9423. const size_t nb01 = src0->nb[1];
  9424. const size_t nb02 = src0->nb[2];
  9425. const size_t nb03 = src0->nb[3];
  9426. const int64_t ne0 = dst->ne[0];
  9427. const int64_t ne1 = dst->ne[1];
  9428. const int64_t ne2 = dst->ne[2];
  9429. const int64_t ne3 = dst->ne[3];
  9430. const size_t nb0 = dst->nb[0];
  9431. const size_t nb1 = dst->nb[1];
  9432. const size_t nb2 = dst->nb[2];
  9433. const size_t nb3 = dst->nb[3];
  9434. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9435. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9436. assert(nb0 == sizeof(ggml_fp16_t));
  9437. const int ith = params->ith;
  9438. const int nth = params->nth;
  9439. const int nr = ggml_nrows(dst);
  9440. // rows per thread
  9441. const int dr = (nr + nth - 1)/nth;
  9442. // row range for this thread
  9443. const int ir0 = dr*ith;
  9444. const int ir1 = MIN(ir0 + dr, nr);
  9445. // row index used to determine which thread to use
  9446. int ir = 0;
  9447. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9448. const bool is_neox = mode & 2;
  9449. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9450. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9451. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9452. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9453. if (ir++ < ir0) continue;
  9454. if (ir > ir1) break;
  9455. float theta = (float)p;
  9456. if (!is_neox) {
  9457. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9458. const float cos_theta = cosf(theta);
  9459. const float sin_theta = sinf(theta);
  9460. theta *= theta_scale;
  9461. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9462. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9463. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9464. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9465. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9466. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9467. }
  9468. } else {
  9469. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9470. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9471. const float cos_theta = cosf(theta);
  9472. const float sin_theta = sinf(theta);
  9473. theta *= theta_scale;
  9474. const int64_t i0 = ib*n_dims + ic/2;
  9475. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9476. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9477. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9478. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9479. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9480. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9481. }
  9482. }
  9483. }
  9484. }
  9485. }
  9486. }
  9487. }
  9488. static void ggml_compute_forward_rope_back(
  9489. const struct ggml_compute_params * params,
  9490. const struct ggml_tensor * src0,
  9491. const struct ggml_tensor * src1,
  9492. struct ggml_tensor * dst) {
  9493. switch (src0->type) {
  9494. case GGML_TYPE_F16:
  9495. {
  9496. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9497. } break;
  9498. case GGML_TYPE_F32:
  9499. {
  9500. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9501. } break;
  9502. default:
  9503. {
  9504. GGML_ASSERT(false);
  9505. } break;
  9506. }
  9507. }
  9508. // ggml_compute_forward_conv_1d_1s
  9509. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9510. const struct ggml_compute_params * params,
  9511. const struct ggml_tensor * src0,
  9512. const struct ggml_tensor * src1,
  9513. struct ggml_tensor * dst) {
  9514. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9515. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9516. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9517. int64_t t0 = ggml_perf_time_us();
  9518. UNUSED(t0);
  9519. const int64_t ne00 = src0->ne[0];
  9520. const int64_t ne01 = src0->ne[1];
  9521. const int64_t ne02 = src0->ne[2];
  9522. //const int64_t ne03 = src0->ne[3];
  9523. const int64_t ne10 = src1->ne[0];
  9524. const int64_t ne11 = src1->ne[1];
  9525. //const int64_t ne12 = src1->ne[2];
  9526. //const int64_t ne13 = src1->ne[3];
  9527. //const int64_t ne0 = dst->ne[0];
  9528. //const int64_t ne1 = dst->ne[1];
  9529. //const int64_t ne2 = dst->ne[2];
  9530. //const int64_t ne3 = dst->ne[3];
  9531. //const int64_t ne = ne0*ne1*ne2*ne3;
  9532. const int nb00 = src0->nb[0];
  9533. const int nb01 = src0->nb[1];
  9534. const int nb02 = src0->nb[2];
  9535. //const int nb03 = src0->nb[3];
  9536. const int nb10 = src1->nb[0];
  9537. const int nb11 = src1->nb[1];
  9538. //const int nb12 = src1->nb[2];
  9539. //const int nb13 = src1->nb[3];
  9540. //const int nb0 = dst->nb[0];
  9541. const int nb1 = dst->nb[1];
  9542. //const int nb2 = dst->nb[2];
  9543. //const int nb3 = dst->nb[3];
  9544. const int ith = params->ith;
  9545. const int nth = params->nth;
  9546. const int nk = ne00;
  9547. const int nh = nk/2;
  9548. const int ew0 = ggml_up32(ne01);
  9549. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9550. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9551. GGML_ASSERT(nb10 == sizeof(float));
  9552. if (params->type == GGML_TASK_INIT) {
  9553. // TODO: fix this memset (wsize is overestimated)
  9554. memset(params->wdata, 0, params->wsize);
  9555. // prepare kernel data (src0)
  9556. {
  9557. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9559. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9560. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9561. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9562. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9563. dst_data[i00*ew0 + i01] = src[i00];
  9564. }
  9565. }
  9566. }
  9567. }
  9568. // prepare source data (src1)
  9569. {
  9570. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9571. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9572. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9573. ggml_fp16_t * dst_data = wdata;
  9574. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9575. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9576. }
  9577. }
  9578. }
  9579. return;
  9580. }
  9581. if (params->type == GGML_TASK_FINALIZE) {
  9582. return;
  9583. }
  9584. // total rows in dst
  9585. const int nr = ne02;
  9586. // rows per thread
  9587. const int dr = (nr + nth - 1)/nth;
  9588. // row range for this thread
  9589. const int ir0 = dr*ith;
  9590. const int ir1 = MIN(ir0 + dr, nr);
  9591. for (int i1 = ir0; i1 < ir1; i1++) {
  9592. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9593. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9594. dst_data[i0] = 0;
  9595. for (int k = -nh; k <= nh; k++) {
  9596. float v = 0.0f;
  9597. ggml_vec_dot_f16(ew0, &v,
  9598. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9599. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9600. dst_data[i0] += v;
  9601. }
  9602. }
  9603. }
  9604. }
  9605. static void ggml_compute_forward_conv_1d_1s_f32(
  9606. const struct ggml_compute_params * params,
  9607. const struct ggml_tensor * src0,
  9608. const struct ggml_tensor * src1,
  9609. struct ggml_tensor * dst) {
  9610. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9611. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9612. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9613. int64_t t0 = ggml_perf_time_us();
  9614. UNUSED(t0);
  9615. const int64_t ne00 = src0->ne[0];
  9616. const int64_t ne01 = src0->ne[1];
  9617. const int64_t ne02 = src0->ne[2];
  9618. //const int64_t ne03 = src0->ne[3];
  9619. const int64_t ne10 = src1->ne[0];
  9620. const int64_t ne11 = src1->ne[1];
  9621. //const int64_t ne12 = src1->ne[2];
  9622. //const int64_t ne13 = src1->ne[3];
  9623. //const int64_t ne0 = dst->ne[0];
  9624. //const int64_t ne1 = dst->ne[1];
  9625. //const int64_t ne2 = dst->ne[2];
  9626. //const int64_t ne3 = dst->ne[3];
  9627. //const int64_t ne = ne0*ne1*ne2*ne3;
  9628. const int nb00 = src0->nb[0];
  9629. const int nb01 = src0->nb[1];
  9630. const int nb02 = src0->nb[2];
  9631. //const int nb03 = src0->nb[3];
  9632. const int nb10 = src1->nb[0];
  9633. const int nb11 = src1->nb[1];
  9634. //const int nb12 = src1->nb[2];
  9635. //const int nb13 = src1->nb[3];
  9636. //const int nb0 = dst->nb[0];
  9637. const int nb1 = dst->nb[1];
  9638. //const int nb2 = dst->nb[2];
  9639. //const int nb3 = dst->nb[3];
  9640. const int ith = params->ith;
  9641. const int nth = params->nth;
  9642. const int nk = ne00;
  9643. const int nh = nk/2;
  9644. const int ew0 = ggml_up32(ne01);
  9645. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9646. GGML_ASSERT(nb00 == sizeof(float));
  9647. GGML_ASSERT(nb10 == sizeof(float));
  9648. if (params->type == GGML_TASK_INIT) {
  9649. // TODO: fix this memset (wsize is overestimated)
  9650. memset(params->wdata, 0, params->wsize);
  9651. // prepare kernel data (src0)
  9652. {
  9653. float * const wdata = (float *) params->wdata + 0;
  9654. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9656. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9657. float * dst_data = wdata + i02*ew0*ne00;
  9658. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9659. dst_data[i00*ew0 + i01] = src[i00];
  9660. }
  9661. }
  9662. }
  9663. }
  9664. // prepare source data (src1)
  9665. {
  9666. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9667. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9668. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9669. float * dst_data = wdata;
  9670. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9671. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9672. }
  9673. }
  9674. }
  9675. return;
  9676. }
  9677. if (params->type == GGML_TASK_FINALIZE) {
  9678. return;
  9679. }
  9680. // total rows in dst
  9681. const int nr = ne02;
  9682. // rows per thread
  9683. const int dr = (nr + nth - 1)/nth;
  9684. // row range for this thread
  9685. const int ir0 = dr*ith;
  9686. const int ir1 = MIN(ir0 + dr, nr);
  9687. for (int i1 = ir0; i1 < ir1; i1++) {
  9688. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9689. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9690. dst_data[i0] = 0;
  9691. for (int k = -nh; k <= nh; k++) {
  9692. float v = 0.0f;
  9693. ggml_vec_dot_f32(ew0, &v,
  9694. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9695. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9696. dst_data[i0] += v;
  9697. }
  9698. }
  9699. }
  9700. }
  9701. static void ggml_compute_forward_conv_1d_1s(
  9702. const struct ggml_compute_params * params,
  9703. const struct ggml_tensor * src0,
  9704. const struct ggml_tensor * src1,
  9705. struct ggml_tensor * dst) {
  9706. switch (src0->type) {
  9707. case GGML_TYPE_F16:
  9708. {
  9709. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9710. } break;
  9711. case GGML_TYPE_F32:
  9712. {
  9713. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9714. } break;
  9715. default:
  9716. {
  9717. GGML_ASSERT(false);
  9718. } break;
  9719. }
  9720. }
  9721. // ggml_compute_forward_conv_1d_2s
  9722. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9723. const struct ggml_compute_params * params,
  9724. const struct ggml_tensor * src0,
  9725. const struct ggml_tensor * src1,
  9726. struct ggml_tensor * dst) {
  9727. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9728. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9729. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9730. int64_t t0 = ggml_perf_time_us();
  9731. UNUSED(t0);
  9732. const int64_t ne00 = src0->ne[0];
  9733. const int64_t ne01 = src0->ne[1];
  9734. const int64_t ne02 = src0->ne[2];
  9735. //const int64_t ne03 = src0->ne[3];
  9736. const int64_t ne10 = src1->ne[0];
  9737. const int64_t ne11 = src1->ne[1];
  9738. //const int64_t ne12 = src1->ne[2];
  9739. //const int64_t ne13 = src1->ne[3];
  9740. //const int64_t ne0 = dst->ne[0];
  9741. //const int64_t ne1 = dst->ne[1];
  9742. //const int64_t ne2 = dst->ne[2];
  9743. //const int64_t ne3 = dst->ne[3];
  9744. //const int64_t ne = ne0*ne1*ne2*ne3;
  9745. const int nb00 = src0->nb[0];
  9746. const int nb01 = src0->nb[1];
  9747. const int nb02 = src0->nb[2];
  9748. //const int nb03 = src0->nb[3];
  9749. const int nb10 = src1->nb[0];
  9750. const int nb11 = src1->nb[1];
  9751. //const int nb12 = src1->nb[2];
  9752. //const int nb13 = src1->nb[3];
  9753. //const int nb0 = dst->nb[0];
  9754. const int nb1 = dst->nb[1];
  9755. //const int nb2 = dst->nb[2];
  9756. //const int nb3 = dst->nb[3];
  9757. const int ith = params->ith;
  9758. const int nth = params->nth;
  9759. const int nk = ne00;
  9760. const int nh = nk/2;
  9761. const int ew0 = ggml_up32(ne01);
  9762. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9763. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9764. GGML_ASSERT(nb10 == sizeof(float));
  9765. if (params->type == GGML_TASK_INIT) {
  9766. // TODO: fix this memset (wsize is overestimated)
  9767. memset(params->wdata, 0, params->wsize);
  9768. // prepare kernel data (src0)
  9769. {
  9770. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9772. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9773. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9774. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9775. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9776. dst_data[i00*ew0 + i01] = src[i00];
  9777. }
  9778. }
  9779. }
  9780. }
  9781. // prepare source data (src1)
  9782. {
  9783. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9784. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9785. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9786. ggml_fp16_t * dst_data = wdata;
  9787. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9788. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9789. }
  9790. }
  9791. }
  9792. return;
  9793. }
  9794. if (params->type == GGML_TASK_FINALIZE) {
  9795. return;
  9796. }
  9797. // total rows in dst
  9798. const int nr = ne02;
  9799. // rows per thread
  9800. const int dr = (nr + nth - 1)/nth;
  9801. // row range for this thread
  9802. const int ir0 = dr*ith;
  9803. const int ir1 = MIN(ir0 + dr, nr);
  9804. for (int i1 = ir0; i1 < ir1; i1++) {
  9805. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9806. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9807. dst_data[i0/2] = 0;
  9808. for (int k = -nh; k <= nh; k++) {
  9809. float v = 0.0f;
  9810. ggml_vec_dot_f16(ew0, &v,
  9811. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9812. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9813. dst_data[i0/2] += v;
  9814. }
  9815. }
  9816. }
  9817. }
  9818. static void ggml_compute_forward_conv_1d_2s_f32(
  9819. const struct ggml_compute_params * params,
  9820. const struct ggml_tensor * src0,
  9821. const struct ggml_tensor * src1,
  9822. struct ggml_tensor * dst) {
  9823. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9824. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9825. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9826. int64_t t0 = ggml_perf_time_us();
  9827. UNUSED(t0);
  9828. const int64_t ne00 = src0->ne[0];
  9829. const int64_t ne01 = src0->ne[1];
  9830. const int64_t ne02 = src0->ne[2];
  9831. //const int64_t ne03 = src0->ne[3];
  9832. const int64_t ne10 = src1->ne[0];
  9833. const int64_t ne11 = src1->ne[1];
  9834. //const int64_t ne12 = src1->ne[2];
  9835. //const int64_t ne13 = src1->ne[3];
  9836. //const int64_t ne0 = dst->ne[0];
  9837. //const int64_t ne1 = dst->ne[1];
  9838. //const int64_t ne2 = dst->ne[2];
  9839. //const int64_t ne3 = dst->ne[3];
  9840. //const int64_t ne = ne0*ne1*ne2*ne3;
  9841. const int nb00 = src0->nb[0];
  9842. const int nb01 = src0->nb[1];
  9843. const int nb02 = src0->nb[2];
  9844. //const int nb03 = src0->nb[3];
  9845. const int nb10 = src1->nb[0];
  9846. const int nb11 = src1->nb[1];
  9847. //const int nb12 = src1->nb[2];
  9848. //const int nb13 = src1->nb[3];
  9849. //const int nb0 = dst->nb[0];
  9850. const int nb1 = dst->nb[1];
  9851. //const int nb2 = dst->nb[2];
  9852. //const int nb3 = dst->nb[3];
  9853. const int ith = params->ith;
  9854. const int nth = params->nth;
  9855. const int nk = ne00;
  9856. const int nh = nk/2;
  9857. const int ew0 = ggml_up32(ne01);
  9858. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9859. GGML_ASSERT(nb00 == sizeof(float));
  9860. GGML_ASSERT(nb10 == sizeof(float));
  9861. if (params->type == GGML_TASK_INIT) {
  9862. // TODO: fix this memset (wsize is overestimated)
  9863. memset(params->wdata, 0, params->wsize);
  9864. // prepare kernel data (src0)
  9865. {
  9866. float * const wdata = (float *) params->wdata + 0;
  9867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9868. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9869. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9870. float * dst_data = wdata + i02*ew0*ne00;
  9871. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9872. dst_data[i00*ew0 + i01] = src[i00];
  9873. }
  9874. }
  9875. }
  9876. }
  9877. // prepare source data (src1)
  9878. {
  9879. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9880. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9881. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9882. float * dst_data = wdata;
  9883. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9884. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9885. }
  9886. }
  9887. }
  9888. return;
  9889. }
  9890. if (params->type == GGML_TASK_FINALIZE) {
  9891. return;
  9892. }
  9893. // total rows in dst
  9894. const int nr = ne02;
  9895. // rows per thread
  9896. const int dr = (nr + nth - 1)/nth;
  9897. // row range for this thread
  9898. const int ir0 = dr*ith;
  9899. const int ir1 = MIN(ir0 + dr, nr);
  9900. for (int i1 = ir0; i1 < ir1; i1++) {
  9901. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9902. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9903. dst_data[i0/2] = 0;
  9904. for (int k = -nh; k <= nh; k++) {
  9905. float v = 0.0f;
  9906. ggml_vec_dot_f32(ew0, &v,
  9907. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9908. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9909. dst_data[i0/2] += v;
  9910. }
  9911. }
  9912. }
  9913. }
  9914. static void ggml_compute_forward_conv_1d_2s(
  9915. const struct ggml_compute_params * params,
  9916. const struct ggml_tensor * src0,
  9917. const struct ggml_tensor * src1,
  9918. struct ggml_tensor * dst) {
  9919. switch (src0->type) {
  9920. case GGML_TYPE_F16:
  9921. {
  9922. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9923. } break;
  9924. case GGML_TYPE_F32:
  9925. {
  9926. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9927. } break;
  9928. default:
  9929. {
  9930. GGML_ASSERT(false);
  9931. } break;
  9932. }
  9933. }
  9934. // ggml_compute_forward_flash_attn
  9935. static void ggml_compute_forward_flash_attn_f32(
  9936. const struct ggml_compute_params * params,
  9937. const struct ggml_tensor * q,
  9938. const struct ggml_tensor * k,
  9939. const struct ggml_tensor * v,
  9940. const bool masked,
  9941. struct ggml_tensor * dst) {
  9942. int64_t t0 = ggml_perf_time_us();
  9943. UNUSED(t0);
  9944. const int64_t neq0 = q->ne[0];
  9945. const int64_t neq1 = q->ne[1];
  9946. const int64_t neq2 = q->ne[2];
  9947. const int64_t neq3 = q->ne[3];
  9948. const int64_t nek0 = k->ne[0];
  9949. const int64_t nek1 = k->ne[1];
  9950. //const int64_t nek2 = k->ne[2];
  9951. //const int64_t nek3 = k->ne[3];
  9952. //const int64_t nev0 = v->ne[0];
  9953. const int64_t nev1 = v->ne[1];
  9954. //const int64_t nev2 = v->ne[2];
  9955. //const int64_t nev3 = v->ne[3];
  9956. const int64_t ne0 = dst->ne[0];
  9957. const int64_t ne1 = dst->ne[1];
  9958. //const int64_t ne2 = dst->ne[2];
  9959. //const int64_t ne3 = dst->ne[3];
  9960. const int nbk0 = k->nb[0];
  9961. const int nbk1 = k->nb[1];
  9962. const int nbk2 = k->nb[2];
  9963. const int nbk3 = k->nb[3];
  9964. const int nbq0 = q->nb[0];
  9965. const int nbq1 = q->nb[1];
  9966. const int nbq2 = q->nb[2];
  9967. const int nbq3 = q->nb[3];
  9968. const int nbv0 = v->nb[0];
  9969. const int nbv1 = v->nb[1];
  9970. const int nbv2 = v->nb[2];
  9971. const int nbv3 = v->nb[3];
  9972. const int nb0 = dst->nb[0];
  9973. const int nb1 = dst->nb[1];
  9974. const int nb2 = dst->nb[2];
  9975. const int nb3 = dst->nb[3];
  9976. const int ith = params->ith;
  9977. const int nth = params->nth;
  9978. const int64_t D = neq0;
  9979. const int64_t N = neq1;
  9980. const int64_t P = nek1 - N;
  9981. const int64_t M = P + N;
  9982. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9983. GGML_ASSERT(ne0 == D);
  9984. GGML_ASSERT(ne1 == N);
  9985. GGML_ASSERT(P >= 0);
  9986. GGML_ASSERT(nbq0 == sizeof(float));
  9987. GGML_ASSERT(nbk0 == sizeof(float));
  9988. GGML_ASSERT(nbv0 == sizeof(float));
  9989. GGML_ASSERT(neq0 == D);
  9990. GGML_ASSERT(nek0 == D);
  9991. GGML_ASSERT(nev1 == D);
  9992. GGML_ASSERT(neq1 == N);
  9993. GGML_ASSERT(nek1 == N + P);
  9994. GGML_ASSERT(nev1 == D);
  9995. // dst cannot be transposed or permuted
  9996. GGML_ASSERT(nb0 == sizeof(float));
  9997. GGML_ASSERT(nb0 <= nb1);
  9998. GGML_ASSERT(nb1 <= nb2);
  9999. GGML_ASSERT(nb2 <= nb3);
  10000. if (params->type == GGML_TASK_INIT) {
  10001. return;
  10002. }
  10003. if (params->type == GGML_TASK_FINALIZE) {
  10004. return;
  10005. }
  10006. // parallelize by q rows using ggml_vec_dot_f32
  10007. // total rows in q
  10008. const int nr = neq1*neq2*neq3;
  10009. // rows per thread
  10010. const int dr = (nr + nth - 1)/nth;
  10011. // row range for this thread
  10012. const int ir0 = dr*ith;
  10013. const int ir1 = MIN(ir0 + dr, nr);
  10014. const float scale = 1.0f/sqrtf(D);
  10015. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10016. for (int ir = ir0; ir < ir1; ++ir) {
  10017. // q indices
  10018. const int iq3 = ir/(neq2*neq1);
  10019. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10020. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10021. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10022. for (int i = M; i < Mup; ++i) {
  10023. S[i] = -INFINITY;
  10024. }
  10025. for (int64_t ic = 0; ic < nek1; ++ic) {
  10026. // k indices
  10027. const int ik3 = iq3;
  10028. const int ik2 = iq2;
  10029. const int ik1 = ic;
  10030. // S indices
  10031. const int i1 = ik1;
  10032. ggml_vec_dot_f32(neq0,
  10033. S + i1,
  10034. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10035. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10036. }
  10037. // scale
  10038. ggml_vec_scale_f32(nek1, S, scale);
  10039. if (masked) {
  10040. for (int64_t i = P; i < M; i++) {
  10041. if (i > P + iq1) {
  10042. S[i] = -INFINITY;
  10043. }
  10044. }
  10045. }
  10046. // softmax
  10047. {
  10048. float max = -INFINITY;
  10049. ggml_vec_max_f32(M, &max, S);
  10050. ggml_float sum = 0.0;
  10051. {
  10052. #ifdef GGML_SOFT_MAX_ACCELERATE
  10053. max = -max;
  10054. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10055. vvexpf(S, S, &Mup);
  10056. ggml_vec_sum_f32(Mup, &sum, S);
  10057. #else
  10058. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10059. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10060. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10061. float * SS = S + i;
  10062. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10063. if (SS[j] == -INFINITY) {
  10064. SS[j] = 0.0f;
  10065. } else {
  10066. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10067. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10068. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10069. sump[j] += (ggml_float)val;
  10070. SS[j] = val;
  10071. }
  10072. }
  10073. }
  10074. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10075. sum += sump[i];
  10076. }
  10077. #endif
  10078. }
  10079. assert(sum > 0.0);
  10080. sum = 1.0/sum;
  10081. ggml_vec_scale_f32(M, S, sum);
  10082. #ifndef NDEBUG
  10083. for (int i = 0; i < M; ++i) {
  10084. assert(!isnan(S[i]));
  10085. assert(!isinf(S[i]));
  10086. }
  10087. #endif
  10088. }
  10089. for (int64_t ic = 0; ic < nev1; ++ic) {
  10090. // dst indices
  10091. const int i1 = iq1;
  10092. const int i2 = iq2;
  10093. const int i3 = iq3;
  10094. ggml_vec_dot_f32(nek1,
  10095. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10096. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10097. S);
  10098. }
  10099. }
  10100. }
  10101. static void ggml_compute_forward_flash_attn_f16(
  10102. const struct ggml_compute_params * params,
  10103. const struct ggml_tensor * q,
  10104. const struct ggml_tensor * k,
  10105. const struct ggml_tensor * v,
  10106. const bool masked,
  10107. struct ggml_tensor * dst) {
  10108. int64_t t0 = ggml_perf_time_us();
  10109. UNUSED(t0);
  10110. const int64_t neq0 = q->ne[0];
  10111. const int64_t neq1 = q->ne[1];
  10112. const int64_t neq2 = q->ne[2];
  10113. const int64_t neq3 = q->ne[3];
  10114. const int64_t nek0 = k->ne[0];
  10115. const int64_t nek1 = k->ne[1];
  10116. //const int64_t nek2 = k->ne[2];
  10117. //const int64_t nek3 = k->ne[3];
  10118. //const int64_t nev0 = v->ne[0];
  10119. const int64_t nev1 = v->ne[1];
  10120. //const int64_t nev2 = v->ne[2];
  10121. //const int64_t nev3 = v->ne[3];
  10122. const int64_t ne0 = dst->ne[0];
  10123. const int64_t ne1 = dst->ne[1];
  10124. //const int64_t ne2 = dst->ne[2];
  10125. //const int64_t ne3 = dst->ne[3];
  10126. const int nbk0 = k->nb[0];
  10127. const int nbk1 = k->nb[1];
  10128. const int nbk2 = k->nb[2];
  10129. const int nbk3 = k->nb[3];
  10130. const int nbq0 = q->nb[0];
  10131. const int nbq1 = q->nb[1];
  10132. const int nbq2 = q->nb[2];
  10133. const int nbq3 = q->nb[3];
  10134. const int nbv0 = v->nb[0];
  10135. const int nbv1 = v->nb[1];
  10136. const int nbv2 = v->nb[2];
  10137. const int nbv3 = v->nb[3];
  10138. const int nb0 = dst->nb[0];
  10139. const int nb1 = dst->nb[1];
  10140. const int nb2 = dst->nb[2];
  10141. const int nb3 = dst->nb[3];
  10142. const int ith = params->ith;
  10143. const int nth = params->nth;
  10144. const int64_t D = neq0;
  10145. const int64_t N = neq1;
  10146. const int64_t P = nek1 - N;
  10147. const int64_t M = P + N;
  10148. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10149. GGML_ASSERT(ne0 == D);
  10150. GGML_ASSERT(ne1 == N);
  10151. GGML_ASSERT(P >= 0);
  10152. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10153. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10154. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10155. GGML_ASSERT(neq0 == D);
  10156. GGML_ASSERT(nek0 == D);
  10157. GGML_ASSERT(nev1 == D);
  10158. GGML_ASSERT(neq1 == N);
  10159. GGML_ASSERT(nek1 == N + P);
  10160. GGML_ASSERT(nev1 == D);
  10161. // dst cannot be transposed or permuted
  10162. GGML_ASSERT(nb0 == sizeof(float));
  10163. GGML_ASSERT(nb0 <= nb1);
  10164. GGML_ASSERT(nb1 <= nb2);
  10165. GGML_ASSERT(nb2 <= nb3);
  10166. if (params->type == GGML_TASK_INIT) {
  10167. return;
  10168. }
  10169. if (params->type == GGML_TASK_FINALIZE) {
  10170. return;
  10171. }
  10172. // parallelize by q rows using ggml_vec_dot_f32
  10173. // total rows in q
  10174. const int nr = neq1*neq2*neq3;
  10175. // rows per thread
  10176. const int dr = (nr + nth - 1)/nth;
  10177. // row range for this thread
  10178. const int ir0 = dr*ith;
  10179. const int ir1 = MIN(ir0 + dr, nr);
  10180. const float scale = 1.0f/sqrtf(D);
  10181. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10182. for (int ir = ir0; ir < ir1; ++ir) {
  10183. // q indices
  10184. const int iq3 = ir/(neq2*neq1);
  10185. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10186. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10187. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10188. for (int i = M; i < Mup; ++i) {
  10189. S[i] = -INFINITY;
  10190. }
  10191. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10192. for (int64_t ic = 0; ic < nek1; ++ic) {
  10193. // k indices
  10194. const int ik3 = iq3;
  10195. const int ik2 = iq2;
  10196. const int ik1 = ic;
  10197. // S indices
  10198. const int i1 = ik1;
  10199. ggml_vec_dot_f16(neq0,
  10200. S + i1,
  10201. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10202. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10203. }
  10204. } else {
  10205. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10206. // k indices
  10207. const int ik3 = iq3;
  10208. const int ik2 = iq2;
  10209. const int ik1 = ic;
  10210. // S indices
  10211. const int i1 = ik1;
  10212. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10213. S + i1,
  10214. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10215. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10216. }
  10217. }
  10218. // scale
  10219. ggml_vec_scale_f32(nek1, S, scale);
  10220. if (masked) {
  10221. for (int64_t i = P; i < M; i++) {
  10222. if (i > P + iq1) {
  10223. S[i] = -INFINITY;
  10224. }
  10225. }
  10226. }
  10227. // softmax
  10228. {
  10229. float max = -INFINITY;
  10230. ggml_vec_max_f32(M, &max, S);
  10231. ggml_float sum = 0.0;
  10232. {
  10233. #ifdef GGML_SOFT_MAX_ACCELERATE
  10234. max = -max;
  10235. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10236. vvexpf(S, S, &Mup);
  10237. ggml_vec_sum_f32(Mup, &sum, S);
  10238. #else
  10239. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10240. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10241. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10242. float * SS = S + i;
  10243. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10244. if (SS[j] == -INFINITY) {
  10245. SS[j] = 0.0f;
  10246. } else {
  10247. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10248. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10249. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10250. sump[j] += (ggml_float)val;
  10251. SS[j] = val;
  10252. }
  10253. }
  10254. }
  10255. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10256. sum += sump[i];
  10257. }
  10258. #endif
  10259. }
  10260. assert(sum > 0.0);
  10261. sum = 1.0/sum;
  10262. ggml_vec_scale_f32(M, S, sum);
  10263. #ifndef NDEBUG
  10264. for (int i = 0; i < M; ++i) {
  10265. assert(!isnan(S[i]));
  10266. assert(!isinf(S[i]));
  10267. }
  10268. #endif
  10269. }
  10270. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10271. for (int64_t i = 0; i < M; i++) {
  10272. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10273. }
  10274. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10275. for (int64_t ic = 0; ic < nev1; ++ic) {
  10276. // dst indices
  10277. const int i1 = iq1;
  10278. const int i2 = iq2;
  10279. const int i3 = iq3;
  10280. ggml_vec_dot_f16(nek1,
  10281. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10282. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10283. S16);
  10284. }
  10285. } else {
  10286. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10287. // dst indices
  10288. const int i1 = iq1;
  10289. const int i2 = iq2;
  10290. const int i3 = iq3;
  10291. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10292. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10293. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10294. S16);
  10295. }
  10296. }
  10297. }
  10298. }
  10299. static void ggml_compute_forward_flash_attn(
  10300. const struct ggml_compute_params * params,
  10301. const struct ggml_tensor * q,
  10302. const struct ggml_tensor * k,
  10303. const struct ggml_tensor * v,
  10304. const bool masked,
  10305. struct ggml_tensor * dst) {
  10306. switch (q->type) {
  10307. case GGML_TYPE_F16:
  10308. {
  10309. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10310. } break;
  10311. case GGML_TYPE_F32:
  10312. {
  10313. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10314. } break;
  10315. default:
  10316. {
  10317. GGML_ASSERT(false);
  10318. } break;
  10319. }
  10320. }
  10321. // ggml_compute_forward_flash_ff
  10322. static void ggml_compute_forward_flash_ff_f16(
  10323. const struct ggml_compute_params * params,
  10324. const struct ggml_tensor * a, // F16
  10325. const struct ggml_tensor * b0, // F16 fc_w
  10326. const struct ggml_tensor * b1, // F32 fc_b
  10327. const struct ggml_tensor * c0, // F16 proj_w
  10328. const struct ggml_tensor * c1, // F32 proj_b
  10329. struct ggml_tensor * dst) {
  10330. int64_t t0 = ggml_perf_time_us();
  10331. UNUSED(t0);
  10332. const int64_t nea0 = a->ne[0];
  10333. const int64_t nea1 = a->ne[1];
  10334. const int64_t nea2 = a->ne[2];
  10335. const int64_t nea3 = a->ne[3];
  10336. const int64_t neb00 = b0->ne[0];
  10337. const int64_t neb01 = b0->ne[1];
  10338. //const int64_t neb02 = b0->ne[2];
  10339. //const int64_t neb03 = b0->ne[3];
  10340. const int64_t neb10 = b1->ne[0];
  10341. const int64_t neb11 = b1->ne[1];
  10342. //const int64_t neb12 = b1->ne[2];
  10343. //const int64_t neb13 = b1->ne[3];
  10344. const int64_t nec00 = c0->ne[0];
  10345. const int64_t nec01 = c0->ne[1];
  10346. //const int64_t nec02 = c0->ne[2];
  10347. //const int64_t nec03 = c0->ne[3];
  10348. const int64_t nec10 = c1->ne[0];
  10349. const int64_t nec11 = c1->ne[1];
  10350. //const int64_t nec12 = c1->ne[2];
  10351. //const int64_t nec13 = c1->ne[3];
  10352. const int64_t ne0 = dst->ne[0];
  10353. const int64_t ne1 = dst->ne[1];
  10354. const int64_t ne2 = dst->ne[2];
  10355. //const int64_t ne3 = dst->ne[3];
  10356. const int nba0 = a->nb[0];
  10357. const int nba1 = a->nb[1];
  10358. const int nba2 = a->nb[2];
  10359. const int nba3 = a->nb[3];
  10360. const int nbb00 = b0->nb[0];
  10361. const int nbb01 = b0->nb[1];
  10362. const int nbb02 = b0->nb[2];
  10363. const int nbb03 = b0->nb[3];
  10364. const int nbb10 = b1->nb[0];
  10365. //const int nbb11 = b1->nb[1];
  10366. //const int nbb12 = b1->nb[2];
  10367. //const int nbb13 = b1->nb[3];
  10368. const int nbc00 = c0->nb[0];
  10369. const int nbc01 = c0->nb[1];
  10370. const int nbc02 = c0->nb[2];
  10371. const int nbc03 = c0->nb[3];
  10372. const int nbc10 = c1->nb[0];
  10373. //const int nbc11 = c1->nb[1];
  10374. //const int nbc12 = c1->nb[2];
  10375. //const int nbc13 = c1->nb[3];
  10376. const int nb0 = dst->nb[0];
  10377. const int nb1 = dst->nb[1];
  10378. const int nb2 = dst->nb[2];
  10379. const int nb3 = dst->nb[3];
  10380. const int ith = params->ith;
  10381. const int nth = params->nth;
  10382. const int64_t D = nea0;
  10383. //const int64_t N = nea1;
  10384. const int64_t M = neb01;
  10385. GGML_ASSERT(ne0 == nea0);
  10386. GGML_ASSERT(ne1 == nea1);
  10387. GGML_ASSERT(ne2 == nea2);
  10388. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10389. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10390. GGML_ASSERT(nbb10 == sizeof(float));
  10391. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10392. GGML_ASSERT(nbc10 == sizeof(float));
  10393. GGML_ASSERT(neb00 == D);
  10394. GGML_ASSERT(neb01 == M);
  10395. GGML_ASSERT(neb10 == M);
  10396. GGML_ASSERT(neb11 == 1);
  10397. GGML_ASSERT(nec00 == M);
  10398. GGML_ASSERT(nec01 == D);
  10399. GGML_ASSERT(nec10 == D);
  10400. GGML_ASSERT(nec11 == 1);
  10401. // dst cannot be transposed or permuted
  10402. GGML_ASSERT(nb0 == sizeof(float));
  10403. GGML_ASSERT(nb0 <= nb1);
  10404. GGML_ASSERT(nb1 <= nb2);
  10405. GGML_ASSERT(nb2 <= nb3);
  10406. if (params->type == GGML_TASK_INIT) {
  10407. return;
  10408. }
  10409. if (params->type == GGML_TASK_FINALIZE) {
  10410. return;
  10411. }
  10412. // parallelize by a rows using ggml_vec_dot_f32
  10413. // total rows in a
  10414. const int nr = nea1*nea2*nea3;
  10415. // rows per thread
  10416. const int dr = (nr + nth - 1)/nth;
  10417. // row range for this thread
  10418. const int ir0 = dr*ith;
  10419. const int ir1 = MIN(ir0 + dr, nr);
  10420. for (int ir = ir0; ir < ir1; ++ir) {
  10421. // a indices
  10422. const int ia3 = ir/(nea2*nea1);
  10423. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10424. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10425. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10426. for (int64_t ic = 0; ic < neb01; ++ic) {
  10427. // b0 indices
  10428. const int ib03 = ia3;
  10429. const int ib02 = ia2;
  10430. const int ib01 = ic;
  10431. // S indices
  10432. const int i1 = ib01;
  10433. ggml_vec_dot_f16(nea0,
  10434. S + i1,
  10435. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10436. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10437. }
  10438. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10439. //ggml_vec_gelu_f32(neb01, S, S);
  10440. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10441. for (int64_t i = 0; i < M; i++) {
  10442. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10443. }
  10444. ggml_vec_gelu_f16(neb01, S16, S16);
  10445. {
  10446. // dst indices
  10447. const int i1 = ia1;
  10448. const int i2 = ia2;
  10449. const int i3 = ia3;
  10450. for (int64_t ic = 0; ic < nec01; ++ic) {
  10451. ggml_vec_dot_f16(neb01,
  10452. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10453. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10454. S16);
  10455. }
  10456. ggml_vec_add_f32(nec01,
  10457. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10458. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10459. (float *) c1->data);
  10460. }
  10461. }
  10462. }
  10463. static void ggml_compute_forward_flash_ff(
  10464. const struct ggml_compute_params * params,
  10465. const struct ggml_tensor * a,
  10466. const struct ggml_tensor * b0,
  10467. const struct ggml_tensor * b1,
  10468. const struct ggml_tensor * c0,
  10469. const struct ggml_tensor * c1,
  10470. struct ggml_tensor * dst) {
  10471. switch (b0->type) {
  10472. case GGML_TYPE_F16:
  10473. {
  10474. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10475. } break;
  10476. case GGML_TYPE_F32:
  10477. {
  10478. GGML_ASSERT(false); // TODO
  10479. } break;
  10480. default:
  10481. {
  10482. GGML_ASSERT(false);
  10483. } break;
  10484. }
  10485. }
  10486. // ggml_compute_forward_map_unary
  10487. static void ggml_compute_forward_map_unary_f32(
  10488. const struct ggml_compute_params * params,
  10489. const struct ggml_tensor * src0,
  10490. struct ggml_tensor * dst,
  10491. const ggml_unary_op_f32_t fun) {
  10492. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10494. return;
  10495. }
  10496. const int n = ggml_nrows(src0);
  10497. const int nc = src0->ne[0];
  10498. assert( dst->nb[0] == sizeof(float));
  10499. assert(src0->nb[0] == sizeof(float));
  10500. for (int i = 0; i < n; i++) {
  10501. fun(nc,
  10502. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10503. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10504. }
  10505. }
  10506. static void ggml_compute_forward_map_unary(
  10507. const struct ggml_compute_params * params,
  10508. const struct ggml_tensor * src0,
  10509. struct ggml_tensor * dst,
  10510. const ggml_unary_op_f32_t fun) {
  10511. switch (src0->type) {
  10512. case GGML_TYPE_F32:
  10513. {
  10514. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10515. } break;
  10516. default:
  10517. {
  10518. GGML_ASSERT(false);
  10519. } break;
  10520. }
  10521. }
  10522. // ggml_compute_forward_map_binary
  10523. static void ggml_compute_forward_map_binary_f32(
  10524. const struct ggml_compute_params * params,
  10525. const struct ggml_tensor * src0,
  10526. const struct ggml_tensor * src1,
  10527. struct ggml_tensor * dst,
  10528. const ggml_binary_op_f32_t fun) {
  10529. assert(params->ith == 0);
  10530. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10531. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10532. return;
  10533. }
  10534. const int n = ggml_nrows(src0);
  10535. const int nc = src0->ne[0];
  10536. assert( dst->nb[0] == sizeof(float));
  10537. assert(src0->nb[0] == sizeof(float));
  10538. assert(src1->nb[0] == sizeof(float));
  10539. for (int i = 0; i < n; i++) {
  10540. fun(nc,
  10541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10542. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10543. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10544. }
  10545. }
  10546. static void ggml_compute_forward_map_binary(
  10547. const struct ggml_compute_params * params,
  10548. const struct ggml_tensor * src0,
  10549. const struct ggml_tensor * src1,
  10550. struct ggml_tensor * dst,
  10551. const ggml_binary_op_f32_t fun) {
  10552. switch (src0->type) {
  10553. case GGML_TYPE_F32:
  10554. {
  10555. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10556. } break;
  10557. default:
  10558. {
  10559. GGML_ASSERT(false);
  10560. } break;
  10561. }
  10562. }
  10563. /////////////////////////////////
  10564. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10565. GGML_ASSERT(params);
  10566. switch (tensor->op) {
  10567. case GGML_OP_DUP:
  10568. {
  10569. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10570. } break;
  10571. case GGML_OP_ADD:
  10572. {
  10573. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10574. } break;
  10575. case GGML_OP_ADD1:
  10576. {
  10577. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10578. } break;
  10579. case GGML_OP_ACC:
  10580. {
  10581. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10582. } break;
  10583. case GGML_OP_SUB:
  10584. {
  10585. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10586. } break;
  10587. case GGML_OP_MUL:
  10588. {
  10589. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10590. } break;
  10591. case GGML_OP_DIV:
  10592. {
  10593. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10594. } break;
  10595. case GGML_OP_SQR:
  10596. {
  10597. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10598. } break;
  10599. case GGML_OP_SQRT:
  10600. {
  10601. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10602. } break;
  10603. case GGML_OP_LOG:
  10604. {
  10605. ggml_compute_forward_log(params, tensor->src0, tensor);
  10606. } break;
  10607. case GGML_OP_SUM:
  10608. {
  10609. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10610. } break;
  10611. case GGML_OP_SUM_ROWS:
  10612. {
  10613. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10614. } break;
  10615. case GGML_OP_MEAN:
  10616. {
  10617. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10618. } break;
  10619. case GGML_OP_REPEAT:
  10620. {
  10621. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10622. } break;
  10623. case GGML_OP_ABS:
  10624. {
  10625. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10626. } break;
  10627. case GGML_OP_SGN:
  10628. {
  10629. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10630. } break;
  10631. case GGML_OP_NEG:
  10632. {
  10633. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10634. } break;
  10635. case GGML_OP_STEP:
  10636. {
  10637. ggml_compute_forward_step(params, tensor->src0, tensor);
  10638. } break;
  10639. case GGML_OP_RELU:
  10640. {
  10641. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10642. } break;
  10643. case GGML_OP_GELU:
  10644. {
  10645. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10646. } break;
  10647. case GGML_OP_SILU:
  10648. {
  10649. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10650. } break;
  10651. case GGML_OP_SILU_BACK:
  10652. {
  10653. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10654. } break;
  10655. case GGML_OP_NORM:
  10656. {
  10657. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10658. } break;
  10659. case GGML_OP_RMS_NORM:
  10660. {
  10661. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10662. } break;
  10663. case GGML_OP_RMS_NORM_BACK:
  10664. {
  10665. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10666. } break;
  10667. case GGML_OP_MUL_MAT:
  10668. {
  10669. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10670. } break;
  10671. case GGML_OP_SCALE:
  10672. {
  10673. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10674. } break;
  10675. case GGML_OP_SET:
  10676. {
  10677. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10678. } break;
  10679. case GGML_OP_CPY:
  10680. {
  10681. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10682. } break;
  10683. case GGML_OP_CONT:
  10684. {
  10685. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10686. } break;
  10687. case GGML_OP_RESHAPE:
  10688. {
  10689. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10690. } break;
  10691. case GGML_OP_VIEW:
  10692. {
  10693. ggml_compute_forward_view(params, tensor->src0);
  10694. } break;
  10695. case GGML_OP_PERMUTE:
  10696. {
  10697. ggml_compute_forward_permute(params, tensor->src0);
  10698. } break;
  10699. case GGML_OP_TRANSPOSE:
  10700. {
  10701. ggml_compute_forward_transpose(params, tensor->src0);
  10702. } break;
  10703. case GGML_OP_GET_ROWS:
  10704. {
  10705. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10706. } break;
  10707. case GGML_OP_GET_ROWS_BACK:
  10708. {
  10709. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10710. } break;
  10711. case GGML_OP_DIAG:
  10712. {
  10713. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10714. } break;
  10715. case GGML_OP_DIAG_MASK_INF:
  10716. {
  10717. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10718. } break;
  10719. case GGML_OP_DIAG_MASK_ZERO:
  10720. {
  10721. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10722. } break;
  10723. case GGML_OP_SOFT_MAX:
  10724. {
  10725. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10726. } break;
  10727. case GGML_OP_ROPE:
  10728. {
  10729. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10730. } break;
  10731. case GGML_OP_ROPE_BACK:
  10732. {
  10733. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10734. } break;
  10735. case GGML_OP_ALIBI:
  10736. {
  10737. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10738. } break;
  10739. case GGML_OP_CLAMP:
  10740. {
  10741. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10742. } break;
  10743. case GGML_OP_CONV_1D_1S:
  10744. {
  10745. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10746. } break;
  10747. case GGML_OP_CONV_1D_2S:
  10748. {
  10749. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10750. } break;
  10751. case GGML_OP_FLASH_ATTN:
  10752. {
  10753. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10754. GGML_ASSERT(t == 0 || t == 1);
  10755. bool masked = t != 0;
  10756. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10757. } break;
  10758. case GGML_OP_FLASH_FF:
  10759. {
  10760. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10761. } break;
  10762. case GGML_OP_MAP_UNARY:
  10763. {
  10764. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10765. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10766. }
  10767. break;
  10768. case GGML_OP_MAP_BINARY:
  10769. {
  10770. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10771. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10772. }
  10773. break;
  10774. case GGML_OP_NONE:
  10775. {
  10776. // nop
  10777. } break;
  10778. case GGML_OP_COUNT:
  10779. {
  10780. GGML_ASSERT(false);
  10781. } break;
  10782. }
  10783. }
  10784. ////////////////////////////////////////////////////////////////////////////////
  10785. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10786. struct ggml_tensor * src0 = tensor->src0;
  10787. struct ggml_tensor * src1 = tensor->src1;
  10788. switch (tensor->op) {
  10789. case GGML_OP_DUP:
  10790. {
  10791. if (src0->grad) {
  10792. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10793. }
  10794. } break;
  10795. case GGML_OP_ADD:
  10796. {
  10797. if (src0->grad) {
  10798. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10799. }
  10800. if (src1->grad) {
  10801. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10802. }
  10803. } break;
  10804. case GGML_OP_ADD1:
  10805. {
  10806. if (src0->grad) {
  10807. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10808. }
  10809. if (src1->grad) {
  10810. src1->grad = ggml_add_impl(ctx,
  10811. src1->grad,
  10812. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10813. inplace);
  10814. }
  10815. } break;
  10816. case GGML_OP_ACC:
  10817. {
  10818. if (src0->grad) {
  10819. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10820. }
  10821. if (src1->grad) {
  10822. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10823. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10824. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10825. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10826. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10827. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10828. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10829. tensor->grad,
  10830. src1->grad->ne[0],
  10831. src1->grad->ne[1],
  10832. src1->grad->ne[2],
  10833. src1->grad->ne[3],
  10834. nb1, nb2, nb3, offset);
  10835. src1->grad =
  10836. ggml_add_impl(ctx,
  10837. src1->grad,
  10838. ggml_reshape(ctx,
  10839. ggml_cont(ctx, tensor_grad_view),
  10840. src1->grad),
  10841. inplace);
  10842. }
  10843. } break;
  10844. case GGML_OP_SUB:
  10845. {
  10846. if (src0->grad) {
  10847. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10848. }
  10849. if (src1->grad) {
  10850. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10851. }
  10852. } break;
  10853. case GGML_OP_MUL:
  10854. {
  10855. if (src0->grad) {
  10856. src0->grad =
  10857. ggml_add_impl(ctx,
  10858. src0->grad,
  10859. ggml_mul(ctx, src1, tensor->grad),
  10860. inplace);
  10861. }
  10862. if (src1->grad) {
  10863. src1->grad =
  10864. ggml_add_impl(ctx,
  10865. src1->grad,
  10866. ggml_mul(ctx, src0, tensor->grad),
  10867. inplace);
  10868. }
  10869. } break;
  10870. case GGML_OP_DIV:
  10871. {
  10872. if (src0->grad) {
  10873. src0->grad =
  10874. ggml_add_impl(ctx,
  10875. src0->grad,
  10876. ggml_div(ctx, tensor->grad, src1),
  10877. inplace);
  10878. }
  10879. if (src1->grad) {
  10880. src1->grad =
  10881. ggml_sub_impl(ctx,
  10882. src1->grad,
  10883. ggml_mul(ctx,
  10884. tensor->grad,
  10885. ggml_div(ctx, tensor, src1)),
  10886. inplace);
  10887. }
  10888. } break;
  10889. case GGML_OP_SQR:
  10890. {
  10891. if (src0->grad) {
  10892. src0->grad =
  10893. ggml_add_impl(ctx,
  10894. src0->grad,
  10895. ggml_scale(ctx,
  10896. ggml_mul(ctx, src0, tensor->grad),
  10897. ggml_new_f32(ctx, 2.0f)),
  10898. inplace);
  10899. }
  10900. } break;
  10901. case GGML_OP_SQRT:
  10902. {
  10903. if (src0->grad) {
  10904. src0->grad =
  10905. ggml_add_impl(ctx,
  10906. src0->grad,
  10907. ggml_mul(ctx,
  10908. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10909. ggml_div(ctx,
  10910. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10911. tensor)),
  10912. inplace);
  10913. }
  10914. } break;
  10915. case GGML_OP_LOG:
  10916. {
  10917. if (src0->grad) {
  10918. src0->grad =
  10919. ggml_add_impl(ctx,
  10920. src0->grad,
  10921. ggml_div(ctx,
  10922. tensor->grad,
  10923. src0),
  10924. inplace);
  10925. }
  10926. } break;
  10927. case GGML_OP_SUM:
  10928. {
  10929. if (src0->grad) {
  10930. src0->grad =
  10931. ggml_add1_impl(ctx,
  10932. src0->grad,
  10933. tensor->grad,
  10934. inplace);
  10935. }
  10936. } break;
  10937. case GGML_OP_SUM_ROWS:
  10938. {
  10939. if (src0->grad) {
  10940. src0->grad =
  10941. ggml_add_impl(ctx,
  10942. src0->grad,
  10943. ggml_repeat(ctx,
  10944. tensor->grad,
  10945. src0->grad),
  10946. inplace);
  10947. }
  10948. } break;
  10949. case GGML_OP_MEAN:
  10950. {
  10951. GGML_ASSERT(false); // TODO: implement
  10952. } break;
  10953. case GGML_OP_REPEAT:
  10954. {
  10955. // necessary for llama
  10956. if (src0->grad) {
  10957. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10958. const int nc = tensor->ne[0];
  10959. const int nr = tensor->ne[1];
  10960. const int nc0 = src0->ne[0];
  10961. const int nr0 = src0->ne[1];
  10962. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10963. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10964. // tensor->grad [nc,nr,1,1]
  10965. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10966. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10967. // substitute [nc0,nr0,ncr,nrr]
  10968. // reshape [nc0*nr0,ncr*nrr,1,1]
  10969. // transpose [ncr*nrr,nc0*nr0,1,1]
  10970. // sum rows [1,nc0*nr0,1,1]
  10971. // transpose [nc0*nr0,1,1]
  10972. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10973. // add to src0->grad
  10974. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10975. struct ggml_tensor* F00 = tensor->grad;
  10976. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10977. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10978. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10979. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10980. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10981. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10982. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10983. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10984. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10985. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10986. src0->grad =
  10987. ggml_add_impl(ctx,
  10988. src0->grad,
  10989. F10,
  10990. inplace);
  10991. }
  10992. } break;
  10993. case GGML_OP_ABS:
  10994. {
  10995. if (src0->grad) {
  10996. src0->grad =
  10997. ggml_add_impl(ctx,
  10998. src0->grad,
  10999. ggml_mul(ctx,
  11000. ggml_sgn(ctx, src0),
  11001. tensor->grad),
  11002. inplace);
  11003. }
  11004. } break;
  11005. case GGML_OP_SGN:
  11006. {
  11007. if (src0->grad) {
  11008. // noop
  11009. }
  11010. } break;
  11011. case GGML_OP_NEG:
  11012. {
  11013. if (src0->grad) {
  11014. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11015. }
  11016. } break;
  11017. case GGML_OP_STEP:
  11018. {
  11019. if (src0->grad) {
  11020. // noop
  11021. }
  11022. } break;
  11023. case GGML_OP_RELU:
  11024. {
  11025. if (src0->grad) {
  11026. src0->grad = ggml_sub_impl(ctx,
  11027. src0->grad,
  11028. ggml_mul(ctx,
  11029. ggml_step(ctx, src0),
  11030. tensor->grad),
  11031. inplace);
  11032. }
  11033. } break;
  11034. case GGML_OP_GELU:
  11035. {
  11036. GGML_ASSERT(false); // TODO: not implemented
  11037. } break;
  11038. case GGML_OP_ALIBI:
  11039. {
  11040. GGML_ASSERT(false); // TODO: not implemented
  11041. } break;
  11042. case GGML_OP_CLAMP:
  11043. {
  11044. GGML_ASSERT(false); // TODO: not implemented
  11045. } break;
  11046. case GGML_OP_SILU:
  11047. {
  11048. // necessary for llama
  11049. if (src0->grad) {
  11050. src0->grad = ggml_add_impl(ctx,
  11051. src0->grad,
  11052. ggml_silu_back(ctx, src0, tensor->grad),
  11053. inplace);
  11054. }
  11055. } break;
  11056. case GGML_OP_SILU_BACK:
  11057. {
  11058. GGML_ASSERT(false); // TODO: not implemented
  11059. } break;
  11060. case GGML_OP_NORM:
  11061. {
  11062. GGML_ASSERT(false); // TODO: not implemented
  11063. } break;
  11064. case GGML_OP_RMS_NORM:
  11065. {
  11066. // necessary for llama
  11067. if (src0->grad) {
  11068. src0->grad = ggml_add_impl(ctx,
  11069. src0->grad,
  11070. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11071. inplace);
  11072. }
  11073. } break;
  11074. case GGML_OP_RMS_NORM_BACK:
  11075. {
  11076. GGML_ASSERT(false); // TODO: not implemented
  11077. } break;
  11078. case GGML_OP_MUL_MAT:
  11079. {
  11080. // https://cs231n.github.io/optimization-2/#staged
  11081. // # forward pass
  11082. // s0 = np.random.randn(5, 10)
  11083. // s1 = np.random.randn(10, 3)
  11084. // t = s0.dot(s1)
  11085. // # now suppose we had the gradient on t from above in the circuit
  11086. // dt = np.random.randn(*t.shape) # same shape as t
  11087. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11088. // ds1 = t.T.dot(dt)
  11089. // tensor.shape [m,p]
  11090. // src0.shape [n,m]
  11091. // src1.shape [n,p]
  11092. // necessary for llama
  11093. if (src0->grad) {
  11094. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11095. src0->grad =
  11096. ggml_add_impl(ctx,
  11097. src0->grad,
  11098. // ds0 = dt.dot(s1.T)
  11099. // ggml_out_prod(ctx, // [n,m]
  11100. // src1, // [n,p]
  11101. // tensor->grad), // [m,p]
  11102. // for now just using A*B==(B.T*A.T).T
  11103. ggml_cont(ctx, // [n,m]
  11104. ggml_transpose(ctx, // [n,m]
  11105. ggml_mul_mat(ctx, // [m,n]
  11106. ggml_cont(ctx, // [p,m]
  11107. ggml_transpose(ctx, // [p,m]
  11108. tensor->grad)), // [m,p]
  11109. ggml_cont(ctx, // [p,n]
  11110. ggml_transpose(ctx, // [p,n]
  11111. src1))))), // [n,p]
  11112. inplace);
  11113. }
  11114. if (src1->grad) {
  11115. src1->grad =
  11116. ggml_add_impl(ctx,
  11117. src1->grad,
  11118. // ds1 = s0.T.dot(dt):
  11119. ggml_mul_mat(ctx, // [n,p]
  11120. ggml_cont(ctx, // [m,n]
  11121. ggml_transpose(ctx, src0)), // [m,n]
  11122. tensor->grad), // [m,p]
  11123. inplace);
  11124. }
  11125. } break;
  11126. case GGML_OP_SCALE:
  11127. {
  11128. // necessary for llama
  11129. if (src0->grad) {
  11130. src0->grad =
  11131. ggml_add_impl(ctx,
  11132. src0->grad,
  11133. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11134. inplace);
  11135. }
  11136. if (src1->grad) {
  11137. src1->grad =
  11138. ggml_add_impl(ctx,
  11139. src1->grad,
  11140. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11141. inplace);
  11142. }
  11143. } break;
  11144. case GGML_OP_SET:
  11145. {
  11146. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11147. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11148. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11149. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11150. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11151. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11152. struct ggml_tensor * tensor_grad_view = NULL;
  11153. if (src0->grad || src1->grad) {
  11154. GGML_ASSERT(src0->type == tensor->type);
  11155. GGML_ASSERT(tensor->grad->type == tensor->type);
  11156. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11157. tensor_grad_view = ggml_view_4d(ctx,
  11158. tensor->grad,
  11159. src1->grad->ne[0],
  11160. src1->grad->ne[1],
  11161. src1->grad->ne[2],
  11162. src1->grad->ne[3],
  11163. nb1, nb2, nb3, offset);
  11164. }
  11165. if (src0->grad) {
  11166. src0->grad = ggml_add_impl(ctx,
  11167. src0->grad,
  11168. ggml_acc_impl(ctx,
  11169. tensor->grad,
  11170. ggml_neg(ctx, tensor_grad_view),
  11171. nb1, nb2, nb3, offset, false),
  11172. inplace);
  11173. }
  11174. if (src1->grad) {
  11175. src1->grad =
  11176. ggml_add_impl(ctx,
  11177. src1->grad,
  11178. ggml_reshape(ctx,
  11179. ggml_cont(ctx, tensor_grad_view),
  11180. src1->grad),
  11181. inplace);
  11182. }
  11183. } break;
  11184. case GGML_OP_CPY:
  11185. {
  11186. // necessary for llama
  11187. // cpy overwrites value of src1 by src0 and returns view(src1)
  11188. // the overwriting is mathematically equivalent to:
  11189. // tensor = src0 * 1 + src1 * 0
  11190. if (src0->grad) {
  11191. // dsrc0 = dtensor * 1
  11192. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11193. }
  11194. if (src1->grad) {
  11195. // dsrc1 = dtensor * 0 -> noop
  11196. }
  11197. } break;
  11198. case GGML_OP_CONT:
  11199. {
  11200. // same as cpy
  11201. if (src0->grad) {
  11202. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11203. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11204. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11205. }
  11206. } break;
  11207. case GGML_OP_RESHAPE:
  11208. {
  11209. // necessary for llama
  11210. if (src0->grad) {
  11211. src0->grad =
  11212. ggml_add_impl(ctx, src0->grad,
  11213. ggml_reshape(ctx, tensor->grad, src0->grad),
  11214. inplace);
  11215. }
  11216. } break;
  11217. case GGML_OP_VIEW:
  11218. {
  11219. // necessary for llama
  11220. if (src0->grad) {
  11221. size_t offset;
  11222. memcpy(&offset, tensor->padding, sizeof(offset));
  11223. size_t nb1 = tensor->nb[1];
  11224. size_t nb2 = tensor->nb[2];
  11225. size_t nb3 = tensor->nb[3];
  11226. if (src0->type != src0->grad->type) {
  11227. // gradient is typically F32, but src0 could be other type
  11228. size_t ng = ggml_element_size(src0->grad);
  11229. size_t n0 = ggml_element_size(src0);
  11230. GGML_ASSERT(offset % n0 == 0);
  11231. GGML_ASSERT(nb1 % n0 == 0);
  11232. GGML_ASSERT(nb2 % n0 == 0);
  11233. GGML_ASSERT(nb3 % n0 == 0);
  11234. offset = (offset / n0) * ng;
  11235. nb1 = (nb1 / n0) * ng;
  11236. nb2 = (nb2 / n0) * ng;
  11237. nb3 = (nb3 / n0) * ng;
  11238. }
  11239. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11240. }
  11241. } break;
  11242. case GGML_OP_PERMUTE:
  11243. {
  11244. // necessary for llama
  11245. if (src0->grad) {
  11246. int axis0 = tensor->padding[0] & 0x3;
  11247. int axis1 = tensor->padding[1] & 0x3;
  11248. int axis2 = tensor->padding[2] & 0x3;
  11249. int axis3 = tensor->padding[3] & 0x3;
  11250. int axes_backward[4] = {0,0,0,0};
  11251. axes_backward[axis0] = 0;
  11252. axes_backward[axis1] = 1;
  11253. axes_backward[axis2] = 2;
  11254. axes_backward[axis3] = 3;
  11255. src0->grad =
  11256. ggml_add_impl(ctx, src0->grad,
  11257. ggml_permute(ctx,
  11258. tensor->grad,
  11259. axes_backward[0],
  11260. axes_backward[1],
  11261. axes_backward[2],
  11262. axes_backward[3]),
  11263. inplace);
  11264. }
  11265. } break;
  11266. case GGML_OP_TRANSPOSE:
  11267. {
  11268. // necessary for llama
  11269. if (src0->grad) {
  11270. src0->grad =
  11271. ggml_add_impl(ctx, src0->grad,
  11272. ggml_transpose(ctx, tensor->grad),
  11273. inplace);
  11274. }
  11275. } break;
  11276. case GGML_OP_GET_ROWS:
  11277. {
  11278. // necessary for llama (only for tokenizer)
  11279. if (src0->grad) {
  11280. src0->grad =
  11281. ggml_add_impl(ctx, src0->grad,
  11282. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11283. inplace);
  11284. }
  11285. if (src1->grad) {
  11286. // noop
  11287. }
  11288. } break;
  11289. case GGML_OP_GET_ROWS_BACK:
  11290. {
  11291. GGML_ASSERT(false); // TODO: not implemented
  11292. } break;
  11293. case GGML_OP_DIAG:
  11294. {
  11295. GGML_ASSERT(false); // TODO: not implemented
  11296. } break;
  11297. case GGML_OP_DIAG_MASK_INF:
  11298. {
  11299. // necessary for llama
  11300. if (src0->grad) {
  11301. assert(src1->type == GGML_TYPE_I32);
  11302. assert(ggml_nelements(src1) == 2);
  11303. const int n_past = ((int32_t *) src1->data)[0];
  11304. src0->grad =
  11305. ggml_add_impl(ctx, src0->grad,
  11306. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11307. inplace);
  11308. }
  11309. if (src1->grad) {
  11310. // noop
  11311. }
  11312. } break;
  11313. case GGML_OP_DIAG_MASK_ZERO:
  11314. {
  11315. // necessary for llama
  11316. if (src0->grad) {
  11317. assert(src1->type == GGML_TYPE_I32);
  11318. assert(ggml_nelements(src1) == 2);
  11319. const int n_past = ((int32_t *) src1->data)[0];
  11320. src0->grad =
  11321. ggml_add_impl(ctx, src0->grad,
  11322. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11323. inplace);
  11324. }
  11325. if (src1->grad) {
  11326. // noop
  11327. }
  11328. } break;
  11329. case GGML_OP_SOFT_MAX:
  11330. {
  11331. // necessary for llama
  11332. if (src0->grad) {
  11333. // y = softmax(x)
  11334. //
  11335. // Jii = yi - yi*yi
  11336. // Jij = -yi*yj
  11337. // J = diag(y)-y.*y
  11338. // dx = J * dy
  11339. // dxk = sum(Jkj * dyk)
  11340. int64_t ne2[4] = {
  11341. tensor->ne[0],
  11342. 1,
  11343. tensor->ne[1]*tensor->ne[2],
  11344. tensor->ne[3]
  11345. };
  11346. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11347. ggml_reshape_4d(ctx,
  11348. ggml_cont(ctx, tensor),
  11349. ne2[0], ne2[1], ne2[2], ne2[3]));
  11350. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11351. ggml_reshape_4d(ctx,
  11352. ggml_cont(ctx, tensor->grad),
  11353. ne2[0], ne2[1], ne2[2], ne2[3]));
  11354. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11355. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11356. tensor2, // [ne0,1,ne1*ne2,ne3]
  11357. 1, 0, 2, 3));
  11358. src0->grad =
  11359. ggml_add_impl(ctx,
  11360. src0->grad, // [ne0,ne1,ne2,ne3]
  11361. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11362. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11363. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11364. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11365. tensor2), // [ne0,1,ne1*ne2,ne3]
  11366. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11367. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11368. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11369. grad2), // [ne0,1,ne1*ne2,ne3]
  11370. src0->grad),
  11371. inplace);
  11372. }
  11373. } break;
  11374. case GGML_OP_ROPE:
  11375. {
  11376. // necessary for llama
  11377. if (src0->grad) {
  11378. assert(src1->type == GGML_TYPE_I32);
  11379. assert(ggml_nelements(src1) == 3);
  11380. const int n_past = ((int32_t *) src1->data)[0];
  11381. const int n_dims = ((int32_t *) src1->data)[1];
  11382. const int mode = ((int32_t *) src1->data)[2];
  11383. src0->grad = ggml_add_impl(ctx,
  11384. src0->grad,
  11385. ggml_rope_back(ctx,
  11386. tensor->grad,
  11387. n_past,
  11388. n_dims,
  11389. mode),
  11390. inplace);
  11391. }
  11392. if (src1->grad) {
  11393. // noop
  11394. }
  11395. } break;
  11396. case GGML_OP_ROPE_BACK:
  11397. {
  11398. if (src0->grad) {
  11399. assert(src1->type == GGML_TYPE_I32);
  11400. assert(ggml_nelements(src1) == 3);
  11401. const int n_past = ((int32_t *) src1->data)[0];
  11402. const int n_dims = ((int32_t *) src1->data)[1];
  11403. const int mode = ((int32_t *) src1->data)[2];
  11404. src0->grad = ggml_add_impl(ctx,
  11405. src0->grad,
  11406. ggml_rope(ctx,
  11407. tensor->grad,
  11408. n_past,
  11409. n_dims,
  11410. mode),
  11411. inplace);
  11412. }
  11413. if (src1->grad) {
  11414. // noop
  11415. }
  11416. } break;
  11417. case GGML_OP_CONV_1D_1S:
  11418. {
  11419. GGML_ASSERT(false); // TODO: not implemented
  11420. } break;
  11421. case GGML_OP_CONV_1D_2S:
  11422. {
  11423. GGML_ASSERT(false); // TODO: not implemented
  11424. } break;
  11425. case GGML_OP_FLASH_ATTN:
  11426. {
  11427. GGML_ASSERT(false); // not supported
  11428. } break;
  11429. case GGML_OP_FLASH_FF:
  11430. {
  11431. GGML_ASSERT(false); // not supported
  11432. } break;
  11433. case GGML_OP_MAP_UNARY:
  11434. case GGML_OP_MAP_BINARY:
  11435. {
  11436. GGML_ASSERT(false); // not supported
  11437. } break;
  11438. case GGML_OP_NONE:
  11439. {
  11440. // nop
  11441. } break;
  11442. case GGML_OP_COUNT:
  11443. {
  11444. GGML_ASSERT(false);
  11445. } break;
  11446. }
  11447. }
  11448. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11449. if (node->grad == NULL) {
  11450. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11451. // it can also happen during forward pass, if the user performs computations with constants
  11452. if (node->op != GGML_OP_NONE) {
  11453. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11454. }
  11455. }
  11456. // check if already visited
  11457. for (int i = 0; i < cgraph->n_nodes; i++) {
  11458. if (cgraph->nodes[i] == node) {
  11459. return;
  11460. }
  11461. }
  11462. for (int i = 0; i < cgraph->n_leafs; i++) {
  11463. if (cgraph->leafs[i] == node) {
  11464. return;
  11465. }
  11466. }
  11467. if (node->src0) {
  11468. ggml_visit_parents(cgraph, node->src0);
  11469. }
  11470. if (node->src1) {
  11471. ggml_visit_parents(cgraph, node->src1);
  11472. }
  11473. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11474. if (node->opt[i]) {
  11475. ggml_visit_parents(cgraph, node->opt[i]);
  11476. }
  11477. }
  11478. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11479. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11480. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11481. if (strlen(node->name) == 0) {
  11482. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11483. }
  11484. cgraph->leafs[cgraph->n_leafs] = node;
  11485. cgraph->n_leafs++;
  11486. } else {
  11487. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11488. if (strlen(node->name) == 0) {
  11489. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11490. }
  11491. cgraph->nodes[cgraph->n_nodes] = node;
  11492. cgraph->grads[cgraph->n_nodes] = node->grad;
  11493. cgraph->n_nodes++;
  11494. }
  11495. }
  11496. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11497. if (!expand) {
  11498. cgraph->n_nodes = 0;
  11499. cgraph->n_leafs = 0;
  11500. }
  11501. const int n0 = cgraph->n_nodes;
  11502. UNUSED(n0);
  11503. ggml_visit_parents(cgraph, tensor);
  11504. const int n_new = cgraph->n_nodes - n0;
  11505. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11506. if (n_new > 0) {
  11507. // the last added node should always be starting point
  11508. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11509. }
  11510. }
  11511. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11512. ggml_build_forward_impl(cgraph, tensor, true);
  11513. }
  11514. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11515. struct ggml_cgraph result = {
  11516. /*.n_nodes =*/ 0,
  11517. /*.n_leafs =*/ 0,
  11518. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11519. /*.work_size =*/ 0,
  11520. /*.work =*/ NULL,
  11521. /*.nodes =*/ { NULL },
  11522. /*.grads =*/ { NULL },
  11523. /*.leafs =*/ { NULL },
  11524. /*.perf_runs =*/ 0,
  11525. /*.perf_cycles =*/ 0,
  11526. /*.perf_time_us =*/ 0,
  11527. };
  11528. ggml_build_forward_impl(&result, tensor, false);
  11529. return result;
  11530. }
  11531. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11532. struct ggml_cgraph result = *gf;
  11533. GGML_ASSERT(gf->n_nodes > 0);
  11534. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11535. if (keep) {
  11536. for (int i = 0; i < gf->n_nodes; i++) {
  11537. struct ggml_tensor * node = gf->nodes[i];
  11538. if (node->grad) {
  11539. node->grad = ggml_dup_tensor(ctx, node);
  11540. gf->grads[i] = node->grad;
  11541. }
  11542. }
  11543. }
  11544. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11545. struct ggml_tensor * node = gf->nodes[i];
  11546. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11547. if (node->grad) {
  11548. ggml_compute_backward(ctx, node, keep);
  11549. }
  11550. }
  11551. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11552. struct ggml_tensor * node = gf->nodes[i];
  11553. if (node->is_param) {
  11554. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11555. ggml_build_forward_impl(&result, node->grad, true);
  11556. }
  11557. }
  11558. return result;
  11559. }
  11560. //
  11561. // thread data
  11562. //
  11563. // synchronization is done via busy loops
  11564. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11565. //
  11566. #ifdef __APPLE__
  11567. //#include <os/lock.h>
  11568. //
  11569. //typedef os_unfair_lock ggml_lock_t;
  11570. //
  11571. //#define ggml_lock_init(x) UNUSED(x)
  11572. //#define ggml_lock_destroy(x) UNUSED(x)
  11573. //#define ggml_lock_lock os_unfair_lock_lock
  11574. //#define ggml_lock_unlock os_unfair_lock_unlock
  11575. //
  11576. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11577. typedef int ggml_lock_t;
  11578. #define ggml_lock_init(x) UNUSED(x)
  11579. #define ggml_lock_destroy(x) UNUSED(x)
  11580. #define ggml_lock_lock(x) UNUSED(x)
  11581. #define ggml_lock_unlock(x) UNUSED(x)
  11582. #define GGML_LOCK_INITIALIZER 0
  11583. typedef pthread_t ggml_thread_t;
  11584. #define ggml_thread_create pthread_create
  11585. #define ggml_thread_join pthread_join
  11586. #else
  11587. //typedef pthread_spinlock_t ggml_lock_t;
  11588. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11589. //#define ggml_lock_destroy pthread_spin_destroy
  11590. //#define ggml_lock_lock pthread_spin_lock
  11591. //#define ggml_lock_unlock pthread_spin_unlock
  11592. typedef int ggml_lock_t;
  11593. #define ggml_lock_init(x) UNUSED(x)
  11594. #define ggml_lock_destroy(x) UNUSED(x)
  11595. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11596. #define ggml_lock_lock(x) _mm_pause()
  11597. #else
  11598. #define ggml_lock_lock(x) UNUSED(x)
  11599. #endif
  11600. #define ggml_lock_unlock(x) UNUSED(x)
  11601. #define GGML_LOCK_INITIALIZER 0
  11602. typedef pthread_t ggml_thread_t;
  11603. #define ggml_thread_create pthread_create
  11604. #define ggml_thread_join pthread_join
  11605. #endif
  11606. struct ggml_compute_state_shared {
  11607. ggml_lock_t spin;
  11608. int n_threads;
  11609. // synchronization primitives
  11610. atomic_int n_ready;
  11611. atomic_bool has_work;
  11612. atomic_bool stop; // stop all threads
  11613. };
  11614. struct ggml_compute_state {
  11615. ggml_thread_t thrd;
  11616. struct ggml_compute_params params;
  11617. struct ggml_tensor * node;
  11618. struct ggml_compute_state_shared * shared;
  11619. };
  11620. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11621. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11622. const int n_threads = state->shared->n_threads;
  11623. while (true) {
  11624. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11625. atomic_store(&state->shared->has_work, false);
  11626. } else {
  11627. while (atomic_load(&state->shared->has_work)) {
  11628. if (atomic_load(&state->shared->stop)) {
  11629. return 0;
  11630. }
  11631. ggml_lock_lock (&state->shared->spin);
  11632. ggml_lock_unlock(&state->shared->spin);
  11633. }
  11634. }
  11635. atomic_fetch_sub(&state->shared->n_ready, 1);
  11636. // wait for work
  11637. while (!atomic_load(&state->shared->has_work)) {
  11638. if (atomic_load(&state->shared->stop)) {
  11639. return 0;
  11640. }
  11641. ggml_lock_lock (&state->shared->spin);
  11642. ggml_lock_unlock(&state->shared->spin);
  11643. }
  11644. // check if we should stop
  11645. if (atomic_load(&state->shared->stop)) {
  11646. break;
  11647. }
  11648. if (state->node) {
  11649. if (state->params.ith < state->params.nth) {
  11650. ggml_compute_forward(&state->params, state->node);
  11651. }
  11652. state->node = NULL;
  11653. } else {
  11654. break;
  11655. }
  11656. }
  11657. return 0;
  11658. }
  11659. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11660. const int n_threads = cgraph->n_threads;
  11661. struct ggml_compute_state_shared state_shared = {
  11662. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11663. /*.n_threads =*/ n_threads,
  11664. /*.n_ready =*/ 0,
  11665. /*.has_work =*/ false,
  11666. /*.stop =*/ false,
  11667. };
  11668. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11669. // create thread pool
  11670. if (n_threads > 1) {
  11671. ggml_lock_init(&state_shared.spin);
  11672. atomic_store(&state_shared.has_work, true);
  11673. for (int j = 0; j < n_threads - 1; j++) {
  11674. workers[j] = (struct ggml_compute_state) {
  11675. .thrd = 0,
  11676. .params = {
  11677. .type = GGML_TASK_COMPUTE,
  11678. .ith = j + 1,
  11679. .nth = n_threads,
  11680. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11681. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11682. },
  11683. .node = NULL,
  11684. .shared = &state_shared,
  11685. };
  11686. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11687. GGML_ASSERT(rc == 0);
  11688. UNUSED(rc);
  11689. }
  11690. }
  11691. // initialize tasks + work buffer
  11692. {
  11693. size_t work_size = 0;
  11694. // thread scheduling for the different operations
  11695. for (int i = 0; i < cgraph->n_nodes; i++) {
  11696. struct ggml_tensor * node = cgraph->nodes[i];
  11697. switch (node->op) {
  11698. case GGML_OP_CPY:
  11699. case GGML_OP_DUP:
  11700. {
  11701. node->n_tasks = n_threads;
  11702. size_t cur = 0;
  11703. if (ggml_is_quantized(node->type)) {
  11704. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11705. }
  11706. work_size = MAX(work_size, cur);
  11707. } break;
  11708. case GGML_OP_ADD:
  11709. case GGML_OP_ADD1:
  11710. {
  11711. node->n_tasks = n_threads;
  11712. size_t cur = 0;
  11713. if (ggml_is_quantized(node->src0->type)) {
  11714. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11715. }
  11716. work_size = MAX(work_size, cur);
  11717. } break;
  11718. case GGML_OP_ACC:
  11719. {
  11720. node->n_tasks = n_threads;
  11721. size_t cur = 0;
  11722. if (ggml_is_quantized(node->src0->type)) {
  11723. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11724. }
  11725. work_size = MAX(work_size, cur);
  11726. } break;
  11727. case GGML_OP_SUB:
  11728. case GGML_OP_DIV:
  11729. case GGML_OP_SQR:
  11730. case GGML_OP_SQRT:
  11731. case GGML_OP_LOG:
  11732. case GGML_OP_SUM:
  11733. case GGML_OP_SUM_ROWS:
  11734. case GGML_OP_MEAN:
  11735. case GGML_OP_REPEAT:
  11736. case GGML_OP_ABS:
  11737. case GGML_OP_SGN:
  11738. case GGML_OP_NEG:
  11739. case GGML_OP_STEP:
  11740. case GGML_OP_RELU:
  11741. {
  11742. node->n_tasks = 1;
  11743. } break;
  11744. case GGML_OP_MUL:
  11745. case GGML_OP_GELU:
  11746. case GGML_OP_SILU:
  11747. case GGML_OP_SILU_BACK:
  11748. case GGML_OP_NORM:
  11749. case GGML_OP_RMS_NORM:
  11750. case GGML_OP_RMS_NORM_BACK:
  11751. {
  11752. node->n_tasks = n_threads;
  11753. } break;
  11754. case GGML_OP_MUL_MAT:
  11755. {
  11756. node->n_tasks = n_threads;
  11757. // TODO: use different scheduling for different matrix sizes
  11758. //const int nr0 = ggml_nrows(node->src0);
  11759. //const int nr1 = ggml_nrows(node->src1);
  11760. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11761. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11762. size_t cur = 0;
  11763. #if defined(GGML_USE_CUBLAS)
  11764. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11765. node->n_tasks = 1; // TODO: this actually is doing nothing
  11766. // the threads are still spinning
  11767. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11768. }
  11769. else
  11770. #elif defined(GGML_USE_CLBLAST)
  11771. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11772. node->n_tasks = 1; // TODO: this actually is doing nothing
  11773. // the threads are still spinning
  11774. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11775. }
  11776. else
  11777. #endif
  11778. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11779. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11780. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11781. node->n_tasks = 1; // TODO: this actually is doing nothing
  11782. // the threads are still spinning
  11783. // here we need memory just for single 2D matrix from src0
  11784. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11785. } else {
  11786. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11787. }
  11788. #else
  11789. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11790. #endif
  11791. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11792. cur = 0;
  11793. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11794. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11795. node->n_tasks = 1;
  11796. }
  11797. #endif
  11798. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11799. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11800. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11801. node->n_tasks = 1;
  11802. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11803. } else
  11804. #endif
  11805. {
  11806. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11807. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11808. }
  11809. } else {
  11810. GGML_ASSERT(false);
  11811. }
  11812. work_size = MAX(work_size, cur);
  11813. } break;
  11814. case GGML_OP_SCALE:
  11815. {
  11816. node->n_tasks = n_threads;
  11817. } break;
  11818. case GGML_OP_SET:
  11819. case GGML_OP_CONT:
  11820. case GGML_OP_RESHAPE:
  11821. case GGML_OP_VIEW:
  11822. case GGML_OP_PERMUTE:
  11823. case GGML_OP_TRANSPOSE:
  11824. case GGML_OP_GET_ROWS:
  11825. case GGML_OP_GET_ROWS_BACK:
  11826. case GGML_OP_DIAG:
  11827. case GGML_OP_DIAG_MASK_ZERO:
  11828. {
  11829. node->n_tasks = 1;
  11830. } break;
  11831. case GGML_OP_DIAG_MASK_INF:
  11832. case GGML_OP_SOFT_MAX:
  11833. case GGML_OP_ROPE:
  11834. case GGML_OP_ROPE_BACK:
  11835. {
  11836. node->n_tasks = n_threads;
  11837. } break;
  11838. case GGML_OP_ALIBI:
  11839. {
  11840. node->n_tasks = 1; //TODO
  11841. } break;
  11842. case GGML_OP_CLAMP:
  11843. {
  11844. node->n_tasks = 1; //TODO
  11845. } break;
  11846. case GGML_OP_CONV_1D_1S:
  11847. case GGML_OP_CONV_1D_2S:
  11848. {
  11849. node->n_tasks = n_threads;
  11850. GGML_ASSERT(node->src0->ne[3] == 1);
  11851. GGML_ASSERT(node->src1->ne[2] == 1);
  11852. GGML_ASSERT(node->src1->ne[3] == 1);
  11853. size_t cur = 0;
  11854. const int nk = node->src0->ne[0];
  11855. if (node->src0->type == GGML_TYPE_F16 &&
  11856. node->src1->type == GGML_TYPE_F32) {
  11857. cur = sizeof(ggml_fp16_t)*(
  11858. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11859. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11860. );
  11861. } else if (node->src0->type == GGML_TYPE_F32 &&
  11862. node->src1->type == GGML_TYPE_F32) {
  11863. cur = sizeof(float)*(
  11864. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11865. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11866. );
  11867. } else {
  11868. GGML_ASSERT(false);
  11869. }
  11870. work_size = MAX(work_size, cur);
  11871. } break;
  11872. case GGML_OP_FLASH_ATTN:
  11873. {
  11874. node->n_tasks = n_threads;
  11875. size_t cur = 0;
  11876. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11877. if (node->src1->type == GGML_TYPE_F32) {
  11878. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11879. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11880. }
  11881. if (node->src1->type == GGML_TYPE_F16) {
  11882. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11883. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11884. }
  11885. work_size = MAX(work_size, cur);
  11886. } break;
  11887. case GGML_OP_FLASH_FF:
  11888. {
  11889. node->n_tasks = n_threads;
  11890. size_t cur = 0;
  11891. if (node->src1->type == GGML_TYPE_F32) {
  11892. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11893. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11894. }
  11895. if (node->src1->type == GGML_TYPE_F16) {
  11896. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11897. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11898. }
  11899. work_size = MAX(work_size, cur);
  11900. } break;
  11901. case GGML_OP_MAP_UNARY:
  11902. case GGML_OP_MAP_BINARY:
  11903. {
  11904. node->n_tasks = 1;
  11905. } break;
  11906. case GGML_OP_NONE:
  11907. {
  11908. node->n_tasks = 1;
  11909. } break;
  11910. case GGML_OP_COUNT:
  11911. {
  11912. GGML_ASSERT(false);
  11913. } break;
  11914. }
  11915. }
  11916. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11917. GGML_ASSERT(false); // TODO: better handling
  11918. }
  11919. if (work_size > 0 && cgraph->work == NULL) {
  11920. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11921. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11922. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11923. }
  11924. }
  11925. const int64_t perf_start_cycles = ggml_perf_cycles();
  11926. const int64_t perf_start_time_us = ggml_perf_time_us();
  11927. for (int i = 0; i < cgraph->n_nodes; i++) {
  11928. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11929. struct ggml_tensor * node = cgraph->nodes[i];
  11930. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11931. //if (node->grad == NULL && node->perf_runs > 0) {
  11932. // continue;
  11933. //}
  11934. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11935. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11936. // INIT
  11937. struct ggml_compute_params params = {
  11938. /*.type =*/ GGML_TASK_INIT,
  11939. /*.ith =*/ 0,
  11940. /*.nth =*/ node->n_tasks,
  11941. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11942. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11943. };
  11944. ggml_compute_forward(&params, node);
  11945. // COMPUTE
  11946. if (node->n_tasks > 1) {
  11947. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11948. atomic_store(&state_shared.has_work, false);
  11949. }
  11950. while (atomic_load(&state_shared.has_work)) {
  11951. ggml_lock_lock (&state_shared.spin);
  11952. ggml_lock_unlock(&state_shared.spin);
  11953. }
  11954. // launch thread pool
  11955. for (int j = 0; j < n_threads - 1; j++) {
  11956. workers[j].params = (struct ggml_compute_params) {
  11957. .type = GGML_TASK_COMPUTE,
  11958. .ith = j + 1,
  11959. .nth = node->n_tasks,
  11960. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11961. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11962. };
  11963. workers[j].node = node;
  11964. }
  11965. atomic_fetch_sub(&state_shared.n_ready, 1);
  11966. while (atomic_load(&state_shared.n_ready) > 0) {
  11967. ggml_lock_lock (&state_shared.spin);
  11968. ggml_lock_unlock(&state_shared.spin);
  11969. }
  11970. atomic_store(&state_shared.has_work, true);
  11971. }
  11972. params.type = GGML_TASK_COMPUTE;
  11973. ggml_compute_forward(&params, node);
  11974. // wait for thread pool
  11975. if (node->n_tasks > 1) {
  11976. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11977. atomic_store(&state_shared.has_work, false);
  11978. }
  11979. while (atomic_load(&state_shared.has_work)) {
  11980. ggml_lock_lock (&state_shared.spin);
  11981. ggml_lock_unlock(&state_shared.spin);
  11982. }
  11983. atomic_fetch_sub(&state_shared.n_ready, 1);
  11984. while (atomic_load(&state_shared.n_ready) != 0) {
  11985. ggml_lock_lock (&state_shared.spin);
  11986. ggml_lock_unlock(&state_shared.spin);
  11987. }
  11988. }
  11989. // FINALIZE
  11990. if (node->n_tasks > 1) {
  11991. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11992. atomic_store(&state_shared.has_work, false);
  11993. }
  11994. while (atomic_load(&state_shared.has_work)) {
  11995. ggml_lock_lock (&state_shared.spin);
  11996. ggml_lock_unlock(&state_shared.spin);
  11997. }
  11998. // launch thread pool
  11999. for (int j = 0; j < n_threads - 1; j++) {
  12000. workers[j].params = (struct ggml_compute_params) {
  12001. .type = GGML_TASK_FINALIZE,
  12002. .ith = j + 1,
  12003. .nth = node->n_tasks,
  12004. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12005. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12006. };
  12007. workers[j].node = node;
  12008. }
  12009. atomic_fetch_sub(&state_shared.n_ready, 1);
  12010. while (atomic_load(&state_shared.n_ready) > 0) {
  12011. ggml_lock_lock (&state_shared.spin);
  12012. ggml_lock_unlock(&state_shared.spin);
  12013. }
  12014. atomic_store(&state_shared.has_work, true);
  12015. }
  12016. params.type = GGML_TASK_FINALIZE;
  12017. ggml_compute_forward(&params, node);
  12018. // wait for thread pool
  12019. if (node->n_tasks > 1) {
  12020. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12021. atomic_store(&state_shared.has_work, false);
  12022. }
  12023. while (atomic_load(&state_shared.has_work)) {
  12024. ggml_lock_lock (&state_shared.spin);
  12025. ggml_lock_unlock(&state_shared.spin);
  12026. }
  12027. atomic_fetch_sub(&state_shared.n_ready, 1);
  12028. while (atomic_load(&state_shared.n_ready) != 0) {
  12029. ggml_lock_lock (&state_shared.spin);
  12030. ggml_lock_unlock(&state_shared.spin);
  12031. }
  12032. }
  12033. // performance stats (node)
  12034. {
  12035. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12036. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12037. node->perf_runs++;
  12038. node->perf_cycles += perf_cycles_cur;
  12039. node->perf_time_us += perf_time_us_cur;
  12040. }
  12041. }
  12042. // join thread pool
  12043. if (n_threads > 1) {
  12044. atomic_store(&state_shared.stop, true);
  12045. atomic_store(&state_shared.has_work, true);
  12046. for (int j = 0; j < n_threads - 1; j++) {
  12047. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12048. GGML_ASSERT(rc == 0);
  12049. UNUSED(rc);
  12050. }
  12051. ggml_lock_destroy(&state_shared.spin);
  12052. }
  12053. // performance stats (graph)
  12054. {
  12055. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12056. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12057. cgraph->perf_runs++;
  12058. cgraph->perf_cycles += perf_cycles_cur;
  12059. cgraph->perf_time_us += perf_time_us_cur;
  12060. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12061. __func__, cgraph->perf_runs,
  12062. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12063. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12064. (double) perf_time_us_cur / 1000.0,
  12065. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12066. }
  12067. }
  12068. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12069. for (int i = 0; i < cgraph->n_nodes; i++) {
  12070. struct ggml_tensor * grad = cgraph->grads[i];
  12071. if (grad) {
  12072. ggml_set_zero(grad);
  12073. }
  12074. }
  12075. }
  12076. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12077. for (int i = 0; i < cgraph->n_leafs; i++) {
  12078. struct ggml_tensor * leaf = cgraph->leafs[i];
  12079. if (strcmp(leaf->name, name) == 0) {
  12080. return leaf;
  12081. }
  12082. }
  12083. for (int i = 0; i < cgraph->n_nodes; i++) {
  12084. struct ggml_tensor * node = cgraph->nodes[i];
  12085. if (strcmp(node->name, name) == 0) {
  12086. return node;
  12087. }
  12088. }
  12089. return NULL;
  12090. }
  12091. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12092. const int64_t * ne = tensor->ne;
  12093. const size_t * nb = tensor->nb;
  12094. fprintf(fout, "%-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %16p %32s\n",
  12095. ggml_type_name(tensor->type),
  12096. ggml_op_name (tensor->op),
  12097. tensor->n_dims,
  12098. ne[0], ne[1], ne[2], ne[3],
  12099. nb[0], nb[1], nb[2], nb[3],
  12100. tensor->data,
  12101. tensor->name);
  12102. }
  12103. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12104. const int64_t * ne = tensor->ne;
  12105. const size_t * nb = tensor->nb;
  12106. fprintf(fout, "%-6s %-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12107. arg,
  12108. ggml_type_name(tensor->type),
  12109. ggml_op_name (tensor->op),
  12110. tensor->n_dims,
  12111. ne[0], ne[1], ne[2], ne[3],
  12112. nb[0], nb[1], nb[2], nb[3],
  12113. tensor->n_tasks,
  12114. tensor->data,
  12115. tensor->name);
  12116. }
  12117. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12118. //assert(cgraph->work == NULL);
  12119. //assert(cgraph->work_size == 0);
  12120. uint64_t size_eval = 0;
  12121. // compute size of intermediate results
  12122. // TODO: does not take into account scratch buffers !!!!
  12123. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12124. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12125. }
  12126. // print
  12127. {
  12128. FILE * fout = stdout;
  12129. fprintf(fout, "\n");
  12130. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12131. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12132. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12133. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12134. fprintf(fout, "%-16s %8llu\n", "eval", size_eval);
  12135. // header
  12136. fprintf(fout, "\n");
  12137. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12138. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12139. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12140. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12141. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12142. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12143. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12144. }
  12145. // header
  12146. fprintf(fout, "\n");
  12147. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12148. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12149. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12150. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12151. if (cgraph->nodes[i]->src0) {
  12152. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12153. }
  12154. if (cgraph->nodes[i]->src1) {
  12155. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12156. }
  12157. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12158. if (cgraph->nodes[i]->opt[j]) {
  12159. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12160. }
  12161. }
  12162. fprintf(fout, "\n");
  12163. }
  12164. fprintf(fout, "\n");
  12165. }
  12166. // write binary data
  12167. {
  12168. FILE * fout = fopen(fname, "wb");
  12169. if (!fout) {
  12170. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12171. return;
  12172. }
  12173. // header
  12174. {
  12175. const uint32_t magic = GGML_FILE_MAGIC;
  12176. const uint32_t version = GGML_FILE_VERSION;
  12177. const uint32_t n_leafs = cgraph->n_leafs;
  12178. const uint32_t nodes = cgraph->n_nodes;
  12179. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12180. fwrite(&version, sizeof(uint32_t), 1, fout);
  12181. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12182. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12183. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12184. }
  12185. // leafs
  12186. {
  12187. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12188. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12189. const uint32_t type = tensor->type;
  12190. const uint32_t op = tensor->op;
  12191. const uint32_t n_dims = tensor->n_dims;
  12192. fwrite(&type, sizeof(uint32_t), 1, fout);
  12193. fwrite(&op, sizeof(uint32_t), 1, fout);
  12194. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12195. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12196. const uint64_t ne = tensor->ne[j];
  12197. const uint64_t nb = tensor->nb[j];
  12198. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12199. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12200. }
  12201. // store the pointer address
  12202. {
  12203. const uint64_t ptr = (uint64_t) tensor->data;
  12204. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12205. }
  12206. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12207. // dump the data
  12208. // TODO: pad this to 32 byte boundary
  12209. {
  12210. const size_t size = ggml_nbytes(tensor);
  12211. fwrite(tensor->data, sizeof(char), size, fout);
  12212. }
  12213. }
  12214. }
  12215. // nodes
  12216. {
  12217. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12218. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12219. const uint32_t type = tensor->type;
  12220. const uint32_t op = tensor->op;
  12221. const uint32_t n_dims = tensor->n_dims;
  12222. fwrite(&type, sizeof(uint32_t), 1, fout);
  12223. fwrite(&op, sizeof(uint32_t), 1, fout);
  12224. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12225. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12226. const uint64_t ne = tensor->ne[j];
  12227. const uint64_t nb = tensor->nb[j];
  12228. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12229. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12230. }
  12231. // store the pointer address
  12232. {
  12233. const uint64_t ptr = (uint64_t) tensor->data;
  12234. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12235. }
  12236. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12237. // output the op arguments
  12238. {
  12239. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12240. args[0] = tensor->src0;
  12241. args[1] = tensor->src1;
  12242. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12243. args[2 + j] = tensor->opt[j];
  12244. }
  12245. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12246. if (args[j]) {
  12247. int32_t idx = -1;
  12248. // check if leaf
  12249. {
  12250. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12251. if (args[j] == cgraph->leafs[k]) {
  12252. idx = k;
  12253. break;
  12254. }
  12255. }
  12256. }
  12257. // check if node
  12258. if (idx == -1) {
  12259. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12260. if (args[j] == cgraph->nodes[k]) {
  12261. idx = GGML_MAX_NODES + k;
  12262. break;
  12263. }
  12264. }
  12265. }
  12266. if (idx == -1) {
  12267. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12268. return;
  12269. }
  12270. fwrite(&idx, sizeof(int32_t), 1, fout);
  12271. } else {
  12272. const int32_t nul = -1;
  12273. fwrite(&nul, sizeof(int32_t), 1, fout);
  12274. }
  12275. }
  12276. }
  12277. }
  12278. }
  12279. fclose(fout);
  12280. }
  12281. }
  12282. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12283. assert(*ctx_data == NULL);
  12284. assert(*ctx_eval == NULL);
  12285. struct ggml_cgraph result = { 0 };
  12286. struct ggml_tensor * data = NULL;
  12287. // read file into data
  12288. {
  12289. FILE * fin = fopen(fname, "rb");
  12290. if (!fin) {
  12291. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12292. return result;
  12293. }
  12294. size_t fsize = 0;
  12295. fseek(fin, 0, SEEK_END);
  12296. fsize = ftell(fin);
  12297. fseek(fin, 0, SEEK_SET);
  12298. // create the data context
  12299. {
  12300. const size_t overhead = 1*ggml_tensor_overhead();
  12301. struct ggml_init_params params = {
  12302. .mem_size = fsize + overhead,
  12303. .mem_buffer = NULL,
  12304. .no_alloc = false,
  12305. };
  12306. *ctx_data = ggml_init(params);
  12307. if (!*ctx_data) {
  12308. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12309. return result;
  12310. }
  12311. }
  12312. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12313. fread(data->data, sizeof(char), fsize, fin);
  12314. fclose(fin);
  12315. }
  12316. // populate result
  12317. {
  12318. char * ptr = (char *) data->data;
  12319. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12320. if (magic != GGML_FILE_MAGIC) {
  12321. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12322. return result;
  12323. }
  12324. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12325. if (version != GGML_FILE_VERSION) {
  12326. fprintf(stderr, "%s: invalid version number\n", __func__);
  12327. return result;
  12328. }
  12329. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12330. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12331. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12332. result.n_leafs = n_leafs;
  12333. result.n_nodes = n_nodes;
  12334. // create the data context
  12335. {
  12336. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12337. struct ggml_init_params params = {
  12338. .mem_size = size_eval + overhead,
  12339. .mem_buffer = NULL,
  12340. .no_alloc = true,
  12341. };
  12342. *ctx_eval = ggml_init(params);
  12343. if (!*ctx_eval) {
  12344. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12345. return result;
  12346. }
  12347. }
  12348. // leafs
  12349. {
  12350. uint32_t type;
  12351. uint32_t op;
  12352. uint32_t n_dims;
  12353. for (uint32_t i = 0; i < n_leafs; ++i) {
  12354. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12355. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12356. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12357. int64_t ne[GGML_MAX_DIMS];
  12358. size_t nb[GGML_MAX_DIMS];
  12359. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12360. uint64_t ne_cur;
  12361. uint64_t nb_cur;
  12362. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12363. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12364. ne[j] = ne_cur;
  12365. nb[j] = nb_cur;
  12366. }
  12367. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12368. tensor->op = (enum ggml_op) op;
  12369. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12370. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12371. tensor->data = (void *) ptr;
  12372. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12373. tensor->nb[j] = nb[j];
  12374. }
  12375. result.leafs[i] = tensor;
  12376. ptr += ggml_nbytes(tensor);
  12377. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12378. }
  12379. }
  12380. ggml_set_no_alloc(*ctx_eval, false);
  12381. // nodes
  12382. {
  12383. uint32_t type;
  12384. uint32_t op;
  12385. uint32_t n_dims;
  12386. for (uint32_t i = 0; i < n_nodes; ++i) {
  12387. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12388. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12389. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12390. enum ggml_op eop = (enum ggml_op) op;
  12391. int64_t ne[GGML_MAX_DIMS];
  12392. size_t nb[GGML_MAX_DIMS];
  12393. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12394. uint64_t ne_cur;
  12395. uint64_t nb_cur;
  12396. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12397. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12398. ne[j] = ne_cur;
  12399. nb[j] = nb_cur;
  12400. }
  12401. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12402. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12403. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12404. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12405. // parse args
  12406. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12407. const int32_t arg_idx = ptr_arg_idx[j];
  12408. if (arg_idx == -1) {
  12409. continue;
  12410. }
  12411. if (arg_idx < GGML_MAX_NODES) {
  12412. args[j] = result.leafs[arg_idx];
  12413. } else {
  12414. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12415. }
  12416. }
  12417. // create the tensor
  12418. // "view" operations are handled differently
  12419. // TODO: handle inplace ops - currently a copy is always made
  12420. struct ggml_tensor * tensor = NULL;
  12421. switch (eop) {
  12422. // TODO: implement other view ops
  12423. case GGML_OP_RESHAPE:
  12424. {
  12425. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12426. } break;
  12427. case GGML_OP_VIEW:
  12428. {
  12429. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12430. uint64_t offs;
  12431. memcpy(&offs, args[2]->data, sizeof(offs));
  12432. tensor->data = ((char *) tensor->data) + offs;
  12433. } break;
  12434. case GGML_OP_TRANSPOSE:
  12435. {
  12436. tensor = ggml_transpose(*ctx_eval, args[0]);
  12437. } break;
  12438. case GGML_OP_PERMUTE:
  12439. {
  12440. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12441. } break;
  12442. default:
  12443. {
  12444. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12445. tensor->op = eop;
  12446. } break;
  12447. }
  12448. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12449. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12450. tensor->nb[j] = nb[j];
  12451. }
  12452. tensor->src0 = args[0];
  12453. tensor->src1 = args[1];
  12454. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12455. tensor->opt[j] = args[2 + j];
  12456. }
  12457. result.nodes[i] = tensor;
  12458. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12459. }
  12460. }
  12461. }
  12462. return result;
  12463. }
  12464. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12465. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12466. GGML_PRINT("=== GRAPH ===\n");
  12467. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12468. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12469. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12470. for (int i = 0; i < cgraph->n_nodes; i++) {
  12471. struct ggml_tensor * node = cgraph->nodes[i];
  12472. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12473. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12474. i,
  12475. node->ne[0], node->ne[1], node->ne[2],
  12476. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12477. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12478. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12479. (double) node->perf_time_us / 1000.0,
  12480. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12481. }
  12482. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12483. for (int i = 0; i < cgraph->n_leafs; i++) {
  12484. struct ggml_tensor * node = cgraph->leafs[i];
  12485. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12486. i,
  12487. node->ne[0], node->ne[1],
  12488. GGML_OP_NAME[node->op]);
  12489. }
  12490. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12491. if (perf_total_per_op_us[i] == 0) {
  12492. continue;
  12493. }
  12494. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12495. }
  12496. GGML_PRINT("========================================\n");
  12497. }
  12498. // check if node is part of the graph
  12499. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12500. if (cgraph == NULL) {
  12501. return true;
  12502. }
  12503. for (int i = 0; i < cgraph->n_nodes; i++) {
  12504. if (cgraph->nodes[i] == node) {
  12505. return true;
  12506. }
  12507. }
  12508. return false;
  12509. }
  12510. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12511. for (int i = 0; i < cgraph->n_nodes; i++) {
  12512. struct ggml_tensor * parent = cgraph->nodes[i];
  12513. if (parent->grad == node) {
  12514. return parent;
  12515. }
  12516. }
  12517. return NULL;
  12518. }
  12519. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12520. char color[16];
  12521. FILE * fp = fopen(filename, "w");
  12522. GGML_ASSERT(fp);
  12523. fprintf(fp, "digraph G {\n");
  12524. fprintf(fp, " newrank = true;\n");
  12525. fprintf(fp, " rankdir = LR;\n");
  12526. for (int i = 0; i < gb->n_nodes; i++) {
  12527. struct ggml_tensor * node = gb->nodes[i];
  12528. if (ggml_graph_get_parent(gb, node) != NULL) {
  12529. continue;
  12530. }
  12531. if (node->is_param) {
  12532. snprintf(color, sizeof(color), "yellow");
  12533. } else if (node->grad) {
  12534. if (ggml_graph_find(gf, node)) {
  12535. snprintf(color, sizeof(color), "green");
  12536. } else {
  12537. snprintf(color, sizeof(color), "lightblue");
  12538. }
  12539. } else {
  12540. snprintf(color, sizeof(color), "white");
  12541. }
  12542. fprintf(fp, " \"%p\" [ "
  12543. "style = filled; fillcolor = %s; shape = record; "
  12544. "label=\"",
  12545. (void *) node, color);
  12546. if (strlen(node->name) > 0) {
  12547. fprintf(fp, "%s |", node->name);
  12548. }
  12549. if (node->n_dims == 2) {
  12550. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12551. } else {
  12552. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12553. }
  12554. if (node->grad) {
  12555. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12556. } else {
  12557. fprintf(fp, "\"; ]\n");
  12558. }
  12559. }
  12560. for (int i = 0; i < gb->n_leafs; i++) {
  12561. struct ggml_tensor * node = gb->leafs[i];
  12562. snprintf(color, sizeof(color), "pink");
  12563. fprintf(fp, " \"%p\" [ "
  12564. "style = filled; fillcolor = %s; shape = record; "
  12565. "label=\"<x>",
  12566. (void *) node, color);
  12567. if (strlen(node->name) > 0) {
  12568. fprintf(fp, "%s | ", node->name);
  12569. }
  12570. if (ggml_nelements(node) == 1) {
  12571. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12572. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12573. }
  12574. else {
  12575. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12576. }
  12577. }
  12578. else {
  12579. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12580. }
  12581. fprintf(fp, "\"; ]\n");
  12582. }
  12583. for (int i = 0; i < gb->n_nodes; i++) {
  12584. struct ggml_tensor * node = gb->nodes[i];
  12585. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12586. if (node->src0) {
  12587. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12588. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12589. parent0 ? (void *) parent0 : (void *) node->src0,
  12590. parent0 ? "g" : "x",
  12591. parent ? (void *) parent : (void *) node,
  12592. parent ? "g" : "x",
  12593. parent ? "empty" : "vee",
  12594. parent ? "dashed" : "solid");
  12595. }
  12596. if (node->src1) {
  12597. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12598. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12599. parent1 ? (void *) parent1 : (void *) node->src1,
  12600. parent1 ? "g" : "x",
  12601. parent ? (void *) parent : (void *) node,
  12602. parent ? "g" : "x",
  12603. parent ? "empty" : "vee",
  12604. parent ? "dashed" : "solid");
  12605. }
  12606. }
  12607. for (int i = 0; i < gb->n_leafs; i++) {
  12608. struct ggml_tensor * node = gb->leafs[i];
  12609. if (node->src0) {
  12610. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12611. (void *) node->src0, "x",
  12612. (void *) node, "x");
  12613. }
  12614. if (node->src1) {
  12615. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12616. (void *) node->src1, "x",
  12617. (void *) node, "x");
  12618. }
  12619. }
  12620. fprintf(fp, "}\n");
  12621. fclose(fp);
  12622. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12623. }
  12624. ////////////////////////////////////////////////////////////////////////////////
  12625. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12626. int i = 0;
  12627. for (int p = 0; p < np; ++p) {
  12628. const int64_t ne = ggml_nelements(ps[p]) ;
  12629. // TODO: add function to set tensor from array
  12630. for (int64_t j = 0; j < ne; ++j) {
  12631. ggml_set_f32_1d(ps[p], j, x[i++]);
  12632. }
  12633. }
  12634. }
  12635. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12636. int i = 0;
  12637. for (int p = 0; p < np; ++p) {
  12638. const int64_t ne = ggml_nelements(ps[p]) ;
  12639. // TODO: add function to get all elements at once
  12640. for (int64_t j = 0; j < ne; ++j) {
  12641. x[i++] = ggml_get_f32_1d(ps[p], j);
  12642. }
  12643. }
  12644. }
  12645. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12646. int i = 0;
  12647. for (int p = 0; p < np; ++p) {
  12648. const int64_t ne = ggml_nelements(ps[p]) ;
  12649. // TODO: add function to get all elements at once
  12650. for (int64_t j = 0; j < ne; ++j) {
  12651. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12652. }
  12653. }
  12654. }
  12655. //
  12656. // ADAM
  12657. //
  12658. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12659. //
  12660. static enum ggml_opt_result ggml_opt_adam(
  12661. struct ggml_context * ctx,
  12662. struct ggml_opt_params params,
  12663. struct ggml_tensor * f,
  12664. struct ggml_cgraph * gf,
  12665. struct ggml_cgraph * gb) {
  12666. GGML_ASSERT(ggml_is_scalar(f));
  12667. gf->n_threads = params.n_threads;
  12668. gb->n_threads = params.n_threads;
  12669. // these will store the parameters we want to optimize
  12670. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12671. int np = 0;
  12672. int nx = 0;
  12673. for (int i = 0; i < gf->n_nodes; ++i) {
  12674. if (gf->nodes[i]->is_param) {
  12675. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12676. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12677. ps[np++] = gf->nodes[i];
  12678. nx += ggml_nelements(gf->nodes[i]);
  12679. }
  12680. }
  12681. // constants
  12682. const float alpha = params.adam.alpha;
  12683. const float beta1 = params.adam.beta1;
  12684. const float beta2 = params.adam.beta2;
  12685. const float eps = params.adam.eps;
  12686. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12687. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12688. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12689. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12690. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12691. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12692. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12693. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12694. // initialize
  12695. ggml_vec_set_f32(nx, m, 0.0f);
  12696. ggml_vec_set_f32(nx, v, 0.0f);
  12697. // update view
  12698. ggml_opt_get_params(np, ps, x);
  12699. // compute the function value
  12700. ggml_graph_reset (gf);
  12701. ggml_set_f32 (f->grad, 1.0f);
  12702. ggml_graph_compute(ctx, gb);
  12703. float fx_prev = ggml_get_f32_1d(f, 0);
  12704. if (pf) {
  12705. pf[0] = fx_prev;
  12706. }
  12707. int n_no_improvement = 0;
  12708. float fx_best = fx_prev;
  12709. // run the optimizer
  12710. for (int t = 0; t < params.adam.n_iter; ++t) {
  12711. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12712. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12713. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12714. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12715. for (int i = 0; i < np; ++i) {
  12716. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12717. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12718. }
  12719. const int64_t t_start_wall = ggml_time_us();
  12720. const int64_t t_start_cpu = ggml_cycles();
  12721. UNUSED(t_start_wall);
  12722. UNUSED(t_start_cpu);
  12723. {
  12724. // update the gradient
  12725. ggml_opt_get_grad(np, ps, g1);
  12726. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12727. ggml_vec_scale_f32(nx, m, beta1);
  12728. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12729. // g2 = g1^2
  12730. ggml_vec_sqr_f32 (nx, g2, g1);
  12731. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12732. ggml_vec_scale_f32(nx, v, beta2);
  12733. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12734. // m^hat = m_t / (1 - beta1^t)
  12735. // v^hat = v_t / (1 - beta2^t)
  12736. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12737. ggml_vec_cpy_f32 (nx, mh, m);
  12738. ggml_vec_cpy_f32 (nx, vh, v);
  12739. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12740. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12741. ggml_vec_sqrt_f32 (nx, vh, vh);
  12742. ggml_vec_acc1_f32 (nx, vh, eps);
  12743. ggml_vec_div_f32 (nx, mh, mh, vh);
  12744. ggml_vec_sub_f32 (nx, x, x, mh);
  12745. // update the parameters
  12746. ggml_opt_set_params(np, ps, x);
  12747. }
  12748. ggml_graph_reset (gf);
  12749. ggml_set_f32 (f->grad, 1.0f);
  12750. ggml_graph_compute(ctx, gb);
  12751. const float fx = ggml_get_f32_1d(f, 0);
  12752. // check convergence
  12753. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12754. GGML_PRINT_DEBUG("converged\n");
  12755. return GGML_OPT_OK;
  12756. }
  12757. // delta-based convergence test
  12758. if (pf != NULL) {
  12759. // need at least params.past iterations to start checking for convergence
  12760. if (params.past <= t) {
  12761. const float rate = (pf[t%params.past] - fx)/fx;
  12762. if (fabsf(rate) < params.delta) {
  12763. return GGML_OPT_OK;
  12764. }
  12765. }
  12766. pf[t%params.past] = fx;
  12767. }
  12768. // check for improvement
  12769. if (params.max_no_improvement > 0) {
  12770. if (fx_best > fx) {
  12771. fx_best = fx;
  12772. n_no_improvement = 0;
  12773. } else {
  12774. ++n_no_improvement;
  12775. if (n_no_improvement >= params.max_no_improvement) {
  12776. return GGML_OPT_OK;
  12777. }
  12778. }
  12779. }
  12780. fx_prev = fx;
  12781. {
  12782. const int64_t t_end_cpu = ggml_cycles();
  12783. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12784. UNUSED(t_end_cpu);
  12785. const int64_t t_end_wall = ggml_time_us();
  12786. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12787. UNUSED(t_end_wall);
  12788. }
  12789. }
  12790. return GGML_OPT_DID_NOT_CONVERGE;
  12791. }
  12792. //
  12793. // L-BFGS
  12794. //
  12795. // the L-BFGS implementation below is based on the following implementation:
  12796. //
  12797. // https://github.com/chokkan/liblbfgs
  12798. //
  12799. struct ggml_lbfgs_iteration_data {
  12800. float alpha;
  12801. float ys;
  12802. float * s;
  12803. float * y;
  12804. };
  12805. static enum ggml_opt_result linesearch_backtracking(
  12806. struct ggml_context * ctx,
  12807. const struct ggml_opt_params * params,
  12808. int nx,
  12809. float * x,
  12810. float * fx,
  12811. float * g,
  12812. float * d,
  12813. float * step,
  12814. const float * xp,
  12815. struct ggml_tensor * f,
  12816. struct ggml_cgraph * gf,
  12817. struct ggml_cgraph * gb,
  12818. const int np,
  12819. struct ggml_tensor * ps[]) {
  12820. int count = 0;
  12821. float width = 0.0f;
  12822. float dg = 0.0f;
  12823. float finit = 0.0f;
  12824. float dginit = 0.0f;
  12825. float dgtest = 0.0f;
  12826. const float dec = 0.5f;
  12827. const float inc = 2.1f;
  12828. if (*step <= 0.f) {
  12829. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12830. }
  12831. // compute the initial gradient in the search direction
  12832. ggml_vec_dot_f32(nx, &dginit, g, d);
  12833. // make sure that d points to a descent direction
  12834. if (0 < dginit) {
  12835. return GGML_LINESEARCH_FAIL;
  12836. }
  12837. // initialize local variables
  12838. finit = *fx;
  12839. dgtest = params->lbfgs.ftol*dginit;
  12840. while (true) {
  12841. ggml_vec_cpy_f32(nx, x, xp);
  12842. ggml_vec_mad_f32(nx, x, d, *step);
  12843. // evaluate the function and gradient values
  12844. {
  12845. ggml_opt_set_params(np, ps, x);
  12846. ggml_graph_reset (gf);
  12847. ggml_set_f32 (f->grad, 1.0f);
  12848. ggml_graph_compute(ctx, gb);
  12849. ggml_opt_get_grad(np, ps, g);
  12850. *fx = ggml_get_f32_1d(f, 0);
  12851. }
  12852. ++count;
  12853. if (*fx > finit + (*step)*dgtest) {
  12854. width = dec;
  12855. } else {
  12856. // Armijo condition is satisfied
  12857. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12858. return count;
  12859. }
  12860. ggml_vec_dot_f32(nx, &dg, g, d);
  12861. // check the Wolfe condition
  12862. if (dg < params->lbfgs.wolfe * dginit) {
  12863. width = inc;
  12864. } else {
  12865. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12866. // regular Wolfe conditions
  12867. return count;
  12868. }
  12869. if(dg > -params->lbfgs.wolfe*dginit) {
  12870. width = dec;
  12871. } else {
  12872. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12873. return count;
  12874. }
  12875. return count;
  12876. }
  12877. }
  12878. if (*step < params->lbfgs.min_step) {
  12879. return GGML_LINESEARCH_MINIMUM_STEP;
  12880. }
  12881. if (*step > params->lbfgs.max_step) {
  12882. return GGML_LINESEARCH_MAXIMUM_STEP;
  12883. }
  12884. if (params->lbfgs.max_linesearch <= count) {
  12885. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12886. }
  12887. (*step) *= width;
  12888. }
  12889. return GGML_LINESEARCH_FAIL;
  12890. }
  12891. static enum ggml_opt_result ggml_opt_lbfgs(
  12892. struct ggml_context * ctx,
  12893. struct ggml_opt_params params,
  12894. struct ggml_tensor * f,
  12895. struct ggml_cgraph * gf,
  12896. struct ggml_cgraph * gb) {
  12897. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12898. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12899. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12900. return GGML_OPT_INVALID_WOLFE;
  12901. }
  12902. }
  12903. gf->n_threads = params.n_threads;
  12904. gb->n_threads = params.n_threads;
  12905. const int m = params.lbfgs.m;
  12906. // these will store the parameters we want to optimize
  12907. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12908. int np = 0;
  12909. int nx = 0;
  12910. for (int i = 0; i < gf->n_nodes; ++i) {
  12911. if (gf->nodes[i]->is_param) {
  12912. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12913. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12914. ps[np++] = gf->nodes[i];
  12915. nx += ggml_nelements(gf->nodes[i]);
  12916. }
  12917. }
  12918. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12919. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12920. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12921. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12922. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12923. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12924. float fx = 0.0f; // cost function value
  12925. float xnorm = 0.0f; // ||x||
  12926. float gnorm = 0.0f; // ||g||
  12927. float step = 0.0f;
  12928. // initialize x from the graph nodes
  12929. ggml_opt_get_params(np, ps, x);
  12930. // the L-BFGS memory
  12931. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12932. for (int i = 0; i < m; ++i) {
  12933. lm[i].alpha = 0.0f;
  12934. lm[i].ys = 0.0f;
  12935. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12936. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12937. }
  12938. // evaluate the function value and its gradient
  12939. {
  12940. ggml_opt_set_params(np, ps, x);
  12941. ggml_graph_reset (gf);
  12942. ggml_set_f32 (f->grad, 1.0f);
  12943. ggml_graph_compute(ctx, gb);
  12944. ggml_opt_get_grad(np, ps, g);
  12945. fx = ggml_get_f32_1d(f, 0);
  12946. }
  12947. if (pf) {
  12948. pf[0] = fx;
  12949. }
  12950. float fx_best = fx;
  12951. // search direction = -gradient
  12952. ggml_vec_neg_f32(nx, d, g);
  12953. // ||x||, ||g||
  12954. ggml_vec_norm_f32(nx, &xnorm, x);
  12955. ggml_vec_norm_f32(nx, &gnorm, g);
  12956. if (xnorm < 1.0f) {
  12957. xnorm = 1.0f;
  12958. }
  12959. // already optimized
  12960. if (gnorm/xnorm <= params.lbfgs.eps) {
  12961. return GGML_OPT_OK;
  12962. }
  12963. // initial step
  12964. ggml_vec_norm_inv_f32(nx, &step, d);
  12965. int j = 0;
  12966. int k = 1;
  12967. int ls = 0;
  12968. int end = 0;
  12969. int bound = 0;
  12970. int n_no_improvement = 0;
  12971. float ys = 0.0f;
  12972. float yy = 0.0f;
  12973. float beta = 0.0f;
  12974. while (true) {
  12975. // store the current position and gradient vectors
  12976. ggml_vec_cpy_f32(nx, xp, x);
  12977. ggml_vec_cpy_f32(nx, gp, g);
  12978. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12979. if (ls < 0) {
  12980. // linesearch failed - go back to the previous point and return
  12981. ggml_vec_cpy_f32(nx, x, xp);
  12982. ggml_vec_cpy_f32(nx, g, gp);
  12983. return ls;
  12984. }
  12985. ggml_vec_norm_f32(nx, &xnorm, x);
  12986. ggml_vec_norm_f32(nx, &gnorm, g);
  12987. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12988. if (xnorm < 1.0f) {
  12989. xnorm = 1.0f;
  12990. }
  12991. if (gnorm/xnorm <= params.lbfgs.eps) {
  12992. // converged
  12993. return GGML_OPT_OK;
  12994. }
  12995. // delta-based convergence test
  12996. if (pf != NULL) {
  12997. // need at least params.past iterations to start checking for convergence
  12998. if (params.past <= k) {
  12999. const float rate = (pf[k%params.past] - fx)/fx;
  13000. if (fabsf(rate) < params.delta) {
  13001. return GGML_OPT_OK;
  13002. }
  13003. }
  13004. pf[k%params.past] = fx;
  13005. }
  13006. // check for improvement
  13007. if (params.max_no_improvement > 0) {
  13008. if (fx < fx_best) {
  13009. fx_best = fx;
  13010. n_no_improvement = 0;
  13011. } else {
  13012. n_no_improvement++;
  13013. if (n_no_improvement >= params.max_no_improvement) {
  13014. return GGML_OPT_OK;
  13015. }
  13016. }
  13017. }
  13018. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13019. // reached the maximum number of iterations
  13020. return GGML_OPT_DID_NOT_CONVERGE;
  13021. }
  13022. // update vectors s and y:
  13023. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13024. // y_{k+1} = g_{k+1} - g_{k}.
  13025. //
  13026. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13027. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13028. // compute scalars ys and yy:
  13029. // ys = y^t \cdot s -> 1 / \rho.
  13030. // yy = y^t \cdot y.
  13031. //
  13032. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13033. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13034. lm[end].ys = ys;
  13035. // find new search direction
  13036. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13037. bound = (m <= k) ? m : k;
  13038. k++;
  13039. end = (end + 1)%m;
  13040. // initialize search direction with -g
  13041. ggml_vec_neg_f32(nx, d, g);
  13042. j = end;
  13043. for (int i = 0; i < bound; ++i) {
  13044. j = (j + m - 1) % m;
  13045. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13046. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13047. lm[j].alpha /= lm[j].ys;
  13048. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13049. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13050. }
  13051. ggml_vec_scale_f32(nx, d, ys/yy);
  13052. for (int i = 0; i < bound; ++i) {
  13053. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13054. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13055. beta /= lm[j].ys;
  13056. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13057. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13058. j = (j + 1)%m;
  13059. }
  13060. step = 1.0;
  13061. }
  13062. return GGML_OPT_DID_NOT_CONVERGE;
  13063. }
  13064. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13065. struct ggml_opt_params result;
  13066. switch (type) {
  13067. case GGML_OPT_ADAM:
  13068. {
  13069. result = (struct ggml_opt_params) {
  13070. .type = GGML_OPT_ADAM,
  13071. .n_threads = 1,
  13072. .past = 0,
  13073. .delta = 1e-5f,
  13074. .max_no_improvement = 100,
  13075. .print_forward_graph = true,
  13076. .print_backward_graph = true,
  13077. .adam = {
  13078. .n_iter = 10000,
  13079. .alpha = 0.001f,
  13080. .beta1 = 0.9f,
  13081. .beta2 = 0.999f,
  13082. .eps = 1e-8f,
  13083. .eps_f = 1e-5f,
  13084. .eps_g = 1e-3f,
  13085. },
  13086. };
  13087. } break;
  13088. case GGML_OPT_LBFGS:
  13089. {
  13090. result = (struct ggml_opt_params) {
  13091. .type = GGML_OPT_LBFGS,
  13092. .n_threads = 1,
  13093. .past = 0,
  13094. .delta = 1e-5f,
  13095. .max_no_improvement = 0,
  13096. .print_forward_graph = true,
  13097. .print_backward_graph = true,
  13098. .lbfgs = {
  13099. .m = 6,
  13100. .n_iter = 100,
  13101. .max_linesearch = 20,
  13102. .eps = 1e-5f,
  13103. .ftol = 1e-4f,
  13104. .wolfe = 0.9f,
  13105. .min_step = 1e-20f,
  13106. .max_step = 1e+20f,
  13107. .linesearch = GGML_LINESEARCH_DEFAULT,
  13108. },
  13109. };
  13110. } break;
  13111. }
  13112. return result;
  13113. }
  13114. enum ggml_opt_result ggml_opt(
  13115. struct ggml_context * ctx,
  13116. struct ggml_opt_params params,
  13117. struct ggml_tensor * f) {
  13118. bool free_ctx = false;
  13119. if (ctx == NULL) {
  13120. struct ggml_init_params params_ctx = {
  13121. .mem_size = 16*1024*1024,
  13122. .mem_buffer = NULL,
  13123. .no_alloc = false,
  13124. };
  13125. ctx = ggml_init(params_ctx);
  13126. if (ctx == NULL) {
  13127. return GGML_OPT_NO_CONTEXT;
  13128. }
  13129. free_ctx = true;
  13130. }
  13131. enum ggml_opt_result result = GGML_OPT_OK;
  13132. // build forward + backward compute graphs
  13133. struct ggml_cgraph gf = ggml_build_forward (f);
  13134. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13135. switch (params.type) {
  13136. case GGML_OPT_ADAM:
  13137. {
  13138. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13139. } break;
  13140. case GGML_OPT_LBFGS:
  13141. {
  13142. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13143. } break;
  13144. }
  13145. if (params.print_forward_graph) {
  13146. ggml_graph_print (&gf);
  13147. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13148. }
  13149. if (params.print_backward_graph) {
  13150. ggml_graph_print (&gb);
  13151. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13152. }
  13153. if (free_ctx) {
  13154. ggml_free(ctx);
  13155. }
  13156. return result;
  13157. }
  13158. ////////////////////////////////////////////////////////////////////////////////
  13159. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13160. assert(k % QK4_0 == 0);
  13161. const int nb = k / QK4_0;
  13162. for (int b = 0; b < n; b += k) {
  13163. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13164. quantize_row_q4_0_reference(src + b, y, k);
  13165. for (int i = 0; i < nb; i++) {
  13166. for (int j = 0; j < QK4_0; j += 2) {
  13167. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13168. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13169. hist[vi0]++;
  13170. hist[vi1]++;
  13171. }
  13172. }
  13173. }
  13174. return (n/QK4_0*sizeof(block_q4_0));
  13175. }
  13176. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13177. assert(k % QK4_1 == 0);
  13178. const int nb = k / QK4_1;
  13179. for (int b = 0; b < n; b += k) {
  13180. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13181. quantize_row_q4_1_reference(src + b, y, k);
  13182. for (int i = 0; i < nb; i++) {
  13183. for (int j = 0; j < QK4_1; j += 2) {
  13184. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13185. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13186. hist[vi0]++;
  13187. hist[vi1]++;
  13188. }
  13189. }
  13190. }
  13191. return (n/QK4_1*sizeof(block_q4_1));
  13192. }
  13193. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13194. assert(k % QK5_0 == 0);
  13195. const int nb = k / QK5_0;
  13196. for (int b = 0; b < n; b += k) {
  13197. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13198. quantize_row_q5_0_reference(src + b, y, k);
  13199. for (int i = 0; i < nb; i++) {
  13200. uint32_t qh;
  13201. memcpy(&qh, &y[i].qh, sizeof(qh));
  13202. for (int j = 0; j < QK5_0; j += 2) {
  13203. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13204. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13205. // cast to 16 bins
  13206. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13207. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13208. hist[vi0]++;
  13209. hist[vi1]++;
  13210. }
  13211. }
  13212. }
  13213. return (n/QK5_0*sizeof(block_q5_0));
  13214. }
  13215. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13216. assert(k % QK5_1 == 0);
  13217. const int nb = k / QK5_1;
  13218. for (int b = 0; b < n; b += k) {
  13219. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13220. quantize_row_q5_1_reference(src + b, y, k);
  13221. for (int i = 0; i < nb; i++) {
  13222. uint32_t qh;
  13223. memcpy(&qh, &y[i].qh, sizeof(qh));
  13224. for (int j = 0; j < QK5_1; j += 2) {
  13225. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13226. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13227. // cast to 16 bins
  13228. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13229. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13230. hist[vi0]++;
  13231. hist[vi1]++;
  13232. }
  13233. }
  13234. }
  13235. return (n/QK5_1*sizeof(block_q5_1));
  13236. }
  13237. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13238. assert(k % QK8_0 == 0);
  13239. const int nb = k / QK8_0;
  13240. for (int b = 0; b < n; b += k) {
  13241. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13242. quantize_row_q8_0_reference(src + b, y, k);
  13243. for (int i = 0; i < nb; i++) {
  13244. for (int j = 0; j < QK8_0; ++j) {
  13245. const int8_t vi = y[i].qs[j];
  13246. hist[vi/16 + 8]++;
  13247. }
  13248. }
  13249. }
  13250. return (n/QK8_0*sizeof(block_q8_0));
  13251. }
  13252. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13253. size_t result = 0;
  13254. switch (type) {
  13255. case GGML_TYPE_Q4_0:
  13256. {
  13257. GGML_ASSERT(start % QK4_0 == 0);
  13258. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13259. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13260. } break;
  13261. case GGML_TYPE_Q4_1:
  13262. {
  13263. GGML_ASSERT(start % QK4_1 == 0);
  13264. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13265. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13266. } break;
  13267. case GGML_TYPE_Q5_0:
  13268. {
  13269. GGML_ASSERT(start % QK5_0 == 0);
  13270. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13271. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13272. } break;
  13273. case GGML_TYPE_Q5_1:
  13274. {
  13275. GGML_ASSERT(start % QK5_1 == 0);
  13276. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13277. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13278. } break;
  13279. case GGML_TYPE_Q8_0:
  13280. {
  13281. GGML_ASSERT(start % QK8_0 == 0);
  13282. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13283. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13284. } break;
  13285. case GGML_TYPE_Q2_K:
  13286. {
  13287. GGML_ASSERT(start % QK_K == 0);
  13288. block_q2_k * block = (block_q2_k*)dst + start / QK_K;
  13289. result = ggml_quantize_q2_k(src + start, block, n, n, hist);
  13290. } break;
  13291. case GGML_TYPE_Q3_K:
  13292. {
  13293. GGML_ASSERT(start % QK_K == 0);
  13294. block_q3_k * block = (block_q3_k*)dst + start / QK_K;
  13295. result = ggml_quantize_q3_k(src + start, block, n, n, hist);
  13296. } break;
  13297. case GGML_TYPE_Q4_K:
  13298. {
  13299. GGML_ASSERT(start % QK_K == 0);
  13300. block_q4_k * block = (block_q4_k*)dst + start / QK_K;
  13301. result = ggml_quantize_q4_k(src + start, block, n, n, hist);
  13302. } break;
  13303. case GGML_TYPE_Q5_K:
  13304. {
  13305. GGML_ASSERT(start % QK_K == 0);
  13306. block_q5_k * block = (block_q5_k*)dst + start / QK_K;
  13307. result = ggml_quantize_q5_k(src + start, block, n, n, hist);
  13308. } break;
  13309. case GGML_TYPE_Q6_K:
  13310. {
  13311. GGML_ASSERT(start % QK_K == 0);
  13312. block_q6_k * block = (block_q6_k*)dst + start / QK_K;
  13313. result = ggml_quantize_q6_k(src + start, block, n, n, hist);
  13314. } break;
  13315. default:
  13316. assert(false);
  13317. }
  13318. return result;
  13319. }
  13320. ////////////////////////////////////////////////////////////////////////////////
  13321. int ggml_cpu_has_avx(void) {
  13322. #if defined(__AVX__)
  13323. return 1;
  13324. #else
  13325. return 0;
  13326. #endif
  13327. }
  13328. int ggml_cpu_has_avx2(void) {
  13329. #if defined(__AVX2__)
  13330. return 1;
  13331. #else
  13332. return 0;
  13333. #endif
  13334. }
  13335. int ggml_cpu_has_avx512(void) {
  13336. #if defined(__AVX512F__)
  13337. return 1;
  13338. #else
  13339. return 0;
  13340. #endif
  13341. }
  13342. int ggml_cpu_has_avx512_vbmi(void) {
  13343. #if defined(__AVX512VBMI__)
  13344. return 1;
  13345. #else
  13346. return 0;
  13347. #endif
  13348. }
  13349. int ggml_cpu_has_avx512_vnni(void) {
  13350. #if defined(__AVX512VNNI__)
  13351. return 1;
  13352. #else
  13353. return 0;
  13354. #endif
  13355. }
  13356. int ggml_cpu_has_fma(void) {
  13357. #if defined(__FMA__)
  13358. return 1;
  13359. #else
  13360. return 0;
  13361. #endif
  13362. }
  13363. int ggml_cpu_has_neon(void) {
  13364. #if defined(__ARM_NEON)
  13365. return 1;
  13366. #else
  13367. return 0;
  13368. #endif
  13369. }
  13370. int ggml_cpu_has_arm_fma(void) {
  13371. #if defined(__ARM_FEATURE_FMA)
  13372. return 1;
  13373. #else
  13374. return 0;
  13375. #endif
  13376. }
  13377. int ggml_cpu_has_f16c(void) {
  13378. #if defined(__F16C__)
  13379. return 1;
  13380. #else
  13381. return 0;
  13382. #endif
  13383. }
  13384. int ggml_cpu_has_fp16_va(void) {
  13385. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13386. return 1;
  13387. #else
  13388. return 0;
  13389. #endif
  13390. }
  13391. int ggml_cpu_has_wasm_simd(void) {
  13392. #if defined(__wasm_simd128__)
  13393. return 1;
  13394. #else
  13395. return 0;
  13396. #endif
  13397. }
  13398. int ggml_cpu_has_blas(void) {
  13399. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13400. return 1;
  13401. #else
  13402. return 0;
  13403. #endif
  13404. }
  13405. int ggml_cpu_has_cublas(void) {
  13406. #if defined(GGML_USE_CUBLAS)
  13407. return 1;
  13408. #else
  13409. return 0;
  13410. #endif
  13411. }
  13412. int ggml_cpu_has_clblast(void) {
  13413. #if defined(GGML_USE_CLBLAST)
  13414. return 1;
  13415. #else
  13416. return 0;
  13417. #endif
  13418. }
  13419. int ggml_cpu_has_gpublas(void) {
  13420. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13421. }
  13422. int ggml_cpu_has_sse3(void) {
  13423. #if defined(__SSE3__)
  13424. return 1;
  13425. #else
  13426. return 0;
  13427. #endif
  13428. }
  13429. int ggml_cpu_has_vsx(void) {
  13430. #if defined(__POWER9_VECTOR__)
  13431. return 1;
  13432. #else
  13433. return 0;
  13434. #endif
  13435. }
  13436. ////////////////////////////////////////////////////////////////////////////////