ggml.h 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 32
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_ASSERT(x) \
  198. do { \
  199. if (!(x)) { \
  200. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  201. abort(); \
  202. } \
  203. } while (0)
  204. #ifdef __cplusplus
  205. extern "C" {
  206. #endif
  207. #ifdef __ARM_NEON
  208. // we use the built-in 16-bit float type
  209. typedef __fp16 ggml_fp16_t;
  210. #else
  211. typedef uint16_t ggml_fp16_t;
  212. #endif
  213. // convert FP16 <-> FP32
  214. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  215. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  216. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  217. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  218. struct ggml_object;
  219. struct ggml_context;
  220. enum ggml_type {
  221. GGML_TYPE_F32 = 0,
  222. GGML_TYPE_F16 = 1,
  223. GGML_TYPE_Q4_0 = 2,
  224. GGML_TYPE_Q4_1 = 3,
  225. // GGML_TYPE_Q4_2 = 4, support has been removed
  226. // GGML_TYPE_Q4_3 (5) support has been removed
  227. GGML_TYPE_Q5_0 = 6,
  228. GGML_TYPE_Q5_1 = 7,
  229. GGML_TYPE_Q8_0 = 8,
  230. GGML_TYPE_Q8_1 = 9,
  231. // k-quantizations
  232. GGML_TYPE_Q2_K = 10,
  233. GGML_TYPE_Q3_K = 11,
  234. GGML_TYPE_Q4_K = 12,
  235. GGML_TYPE_Q5_K = 13,
  236. GGML_TYPE_Q6_K = 14,
  237. GGML_TYPE_Q8_K = 15,
  238. GGML_TYPE_I8,
  239. GGML_TYPE_I16,
  240. GGML_TYPE_I32,
  241. GGML_TYPE_COUNT,
  242. };
  243. enum ggml_backend {
  244. GGML_BACKEND_CPU = 0,
  245. GGML_BACKEND_CUDA = 1,
  246. GGML_BACKEND_CL = 2,
  247. };
  248. // model file types
  249. enum ggml_ftype {
  250. GGML_FTYPE_UNKNOWN = -1,
  251. GGML_FTYPE_ALL_F32 = 0,
  252. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  253. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  254. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  255. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  256. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  257. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  258. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  259. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  260. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  261. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  262. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  263. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  264. };
  265. // available tensor operations:
  266. enum ggml_op {
  267. GGML_OP_NONE = 0,
  268. GGML_OP_DUP,
  269. GGML_OP_ADD,
  270. GGML_OP_ADD1,
  271. GGML_OP_ACC,
  272. GGML_OP_SUB,
  273. GGML_OP_MUL,
  274. GGML_OP_DIV,
  275. GGML_OP_SQR,
  276. GGML_OP_SQRT,
  277. GGML_OP_LOG,
  278. GGML_OP_SUM,
  279. GGML_OP_SUM_ROWS,
  280. GGML_OP_MEAN,
  281. GGML_OP_REPEAT,
  282. GGML_OP_ABS,
  283. GGML_OP_SGN,
  284. GGML_OP_NEG,
  285. GGML_OP_STEP,
  286. GGML_OP_RELU,
  287. GGML_OP_GELU,
  288. GGML_OP_SILU,
  289. GGML_OP_SILU_BACK,
  290. GGML_OP_NORM, // normalize
  291. GGML_OP_RMS_NORM,
  292. GGML_OP_RMS_NORM_BACK,
  293. GGML_OP_MUL_MAT,
  294. GGML_OP_SCALE,
  295. GGML_OP_SET,
  296. GGML_OP_CPY,
  297. GGML_OP_CONT,
  298. GGML_OP_RESHAPE,
  299. GGML_OP_VIEW,
  300. GGML_OP_PERMUTE,
  301. GGML_OP_TRANSPOSE,
  302. GGML_OP_GET_ROWS,
  303. GGML_OP_GET_ROWS_BACK,
  304. GGML_OP_DIAG,
  305. GGML_OP_DIAG_MASK_INF,
  306. GGML_OP_DIAG_MASK_ZERO,
  307. GGML_OP_SOFT_MAX,
  308. GGML_OP_ROPE,
  309. GGML_OP_ROPE_BACK,
  310. GGML_OP_ALIBI,
  311. GGML_OP_CLAMP,
  312. GGML_OP_CONV_1D_1S,
  313. GGML_OP_CONV_1D_2S,
  314. GGML_OP_FLASH_ATTN,
  315. GGML_OP_FLASH_FF,
  316. GGML_OP_MAP_UNARY,
  317. GGML_OP_MAP_BINARY,
  318. GGML_OP_COUNT,
  319. };
  320. // ggml object
  321. struct ggml_object {
  322. size_t offs;
  323. size_t size;
  324. struct ggml_object * next;
  325. char padding[8];
  326. };
  327. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  328. // n-dimensional tensor
  329. struct ggml_tensor {
  330. enum ggml_type type;
  331. enum ggml_backend backend;
  332. int n_dims;
  333. int64_t ne[GGML_MAX_DIMS]; // number of elements
  334. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  335. // nb[0] = sizeof(type)
  336. // nb[1] = nb[0] * ne[0] + padding
  337. // nb[i] = nb[i-1] * ne[i-1]
  338. // compute data
  339. enum ggml_op op;
  340. bool is_param;
  341. struct ggml_tensor * grad;
  342. struct ggml_tensor * src0;
  343. struct ggml_tensor * src1;
  344. struct ggml_tensor * opt[GGML_MAX_OPT];
  345. // thread scheduling
  346. int n_tasks;
  347. // performance
  348. int perf_runs;
  349. int64_t perf_cycles;
  350. int64_t perf_time_us;
  351. void * data;
  352. char name[GGML_MAX_NAME];
  353. char padding[16];
  354. };
  355. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  356. // computation graph
  357. struct ggml_cgraph {
  358. int n_nodes;
  359. int n_leafs;
  360. int n_threads;
  361. size_t work_size;
  362. struct ggml_tensor * work;
  363. struct ggml_tensor * nodes[GGML_MAX_NODES];
  364. struct ggml_tensor * grads[GGML_MAX_NODES];
  365. struct ggml_tensor * leafs[GGML_MAX_NODES];
  366. // performance
  367. int perf_runs;
  368. int64_t perf_cycles;
  369. int64_t perf_time_us;
  370. };
  371. // scratch buffer
  372. struct ggml_scratch {
  373. size_t offs;
  374. size_t size;
  375. void * data;
  376. };
  377. struct ggml_init_params {
  378. // memory pool
  379. size_t mem_size; // bytes
  380. void * mem_buffer; // if NULL, memory will be allocated internally
  381. bool no_alloc; // don't allocate memory for the tensor data
  382. };
  383. // misc
  384. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  385. GGML_API int64_t ggml_time_ms(void);
  386. GGML_API int64_t ggml_time_us(void);
  387. GGML_API int64_t ggml_cycles(void);
  388. GGML_API int64_t ggml_cycles_per_ms(void);
  389. GGML_API void ggml_print_object (const struct ggml_object * obj);
  390. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  391. GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
  392. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  393. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  394. GGML_API int ggml_blck_size (enum ggml_type type);
  395. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  396. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  397. GGML_API const char * ggml_type_name(enum ggml_type type);
  398. GGML_API const char * ggml_op_name (enum ggml_op op);
  399. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  400. GGML_API bool ggml_is_quantized(enum ggml_type type);
  401. // TODO: temporary until model loading of ggml examples is refactored
  402. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  403. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  404. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  405. // use this to compute the memory overhead of a tensor
  406. GGML_API size_t ggml_tensor_overhead(void);
  407. // main
  408. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  409. GGML_API void ggml_free(struct ggml_context * ctx);
  410. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  411. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  412. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  413. GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx);
  414. GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx);
  415. GGML_API struct ggml_tensor * ggml_new_tensor(
  416. struct ggml_context * ctx,
  417. enum ggml_type type,
  418. int n_dims,
  419. const int64_t *ne);
  420. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  421. struct ggml_context * ctx,
  422. enum ggml_type type,
  423. int64_t ne0);
  424. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  425. struct ggml_context * ctx,
  426. enum ggml_type type,
  427. int64_t ne0,
  428. int64_t ne1);
  429. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  430. struct ggml_context * ctx,
  431. enum ggml_type type,
  432. int64_t ne0,
  433. int64_t ne1,
  434. int64_t ne2);
  435. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  436. struct ggml_context * ctx,
  437. enum ggml_type type,
  438. int64_t ne0,
  439. int64_t ne1,
  440. int64_t ne2,
  441. int64_t ne3);
  442. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  443. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  444. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  445. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  446. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  447. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  448. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  449. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  450. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  451. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  452. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  453. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  454. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  455. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  456. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  457. GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
  458. //
  459. // operations on tensors with backpropagation
  460. //
  461. GGML_API struct ggml_tensor * ggml_dup(
  462. struct ggml_context * ctx,
  463. struct ggml_tensor * a);
  464. GGML_API struct ggml_tensor * ggml_add(
  465. struct ggml_context * ctx,
  466. struct ggml_tensor * a,
  467. struct ggml_tensor * b);
  468. GGML_API struct ggml_tensor * ggml_add_inplace(
  469. struct ggml_context * ctx,
  470. struct ggml_tensor * a,
  471. struct ggml_tensor * b);
  472. GGML_API struct ggml_tensor * ggml_add1(
  473. struct ggml_context * ctx,
  474. struct ggml_tensor * a,
  475. struct ggml_tensor * b);
  476. GGML_API struct ggml_tensor * ggml_acc(
  477. struct ggml_context * ctx,
  478. struct ggml_tensor * a,
  479. struct ggml_tensor * b,
  480. size_t nb1,
  481. size_t nb2,
  482. size_t nb3,
  483. size_t offset);
  484. GGML_API struct ggml_tensor * ggml_acc_inplace(
  485. struct ggml_context * ctx,
  486. struct ggml_tensor * a,
  487. struct ggml_tensor * b,
  488. size_t nb1,
  489. size_t nb2,
  490. size_t nb3,
  491. size_t offset);
  492. GGML_API struct ggml_tensor * ggml_sub(
  493. struct ggml_context * ctx,
  494. struct ggml_tensor * a,
  495. struct ggml_tensor * b);
  496. GGML_API struct ggml_tensor * ggml_mul(
  497. struct ggml_context * ctx,
  498. struct ggml_tensor * a,
  499. struct ggml_tensor * b);
  500. GGML_API struct ggml_tensor * ggml_div(
  501. struct ggml_context * ctx,
  502. struct ggml_tensor * a,
  503. struct ggml_tensor * b);
  504. GGML_API struct ggml_tensor * ggml_sqr(
  505. struct ggml_context * ctx,
  506. struct ggml_tensor * a);
  507. GGML_API struct ggml_tensor * ggml_sqrt(
  508. struct ggml_context * ctx,
  509. struct ggml_tensor * a);
  510. GGML_API struct ggml_tensor * ggml_log(
  511. struct ggml_context * ctx,
  512. struct ggml_tensor * a);
  513. GGML_API struct ggml_tensor * ggml_log_inplace(
  514. struct ggml_context * ctx,
  515. struct ggml_tensor * a);
  516. // return scalar
  517. GGML_API struct ggml_tensor * ggml_sum(
  518. struct ggml_context * ctx,
  519. struct ggml_tensor * a);
  520. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  521. GGML_API struct ggml_tensor * ggml_sum_rows(
  522. struct ggml_context * ctx,
  523. struct ggml_tensor * a);
  524. // mean along rows
  525. GGML_API struct ggml_tensor * ggml_mean(
  526. struct ggml_context * ctx,
  527. struct ggml_tensor * a);
  528. // if a is the same shape as b, and a is not parameter, return a
  529. // otherwise, return a new tensor: repeat(a) to fit in b
  530. GGML_API struct ggml_tensor * ggml_repeat(
  531. struct ggml_context * ctx,
  532. struct ggml_tensor * a,
  533. struct ggml_tensor * b);
  534. GGML_API struct ggml_tensor * ggml_abs(
  535. struct ggml_context * ctx,
  536. struct ggml_tensor * a);
  537. GGML_API struct ggml_tensor * ggml_sgn(
  538. struct ggml_context * ctx,
  539. struct ggml_tensor * a);
  540. GGML_API struct ggml_tensor * ggml_neg(
  541. struct ggml_context * ctx,
  542. struct ggml_tensor * a);
  543. GGML_API struct ggml_tensor * ggml_step(
  544. struct ggml_context * ctx,
  545. struct ggml_tensor * a);
  546. GGML_API struct ggml_tensor * ggml_relu(
  547. struct ggml_context * ctx,
  548. struct ggml_tensor * a);
  549. // TODO: double-check this computation is correct
  550. GGML_API struct ggml_tensor * ggml_gelu(
  551. struct ggml_context * ctx,
  552. struct ggml_tensor * a);
  553. GGML_API struct ggml_tensor * ggml_silu(
  554. struct ggml_context * ctx,
  555. struct ggml_tensor * a);
  556. // a - x
  557. // b - dy
  558. GGML_API struct ggml_tensor * ggml_silu_back(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a,
  561. struct ggml_tensor * b);
  562. // normalize along rows
  563. // TODO: eps is hardcoded to 1e-5 for now
  564. GGML_API struct ggml_tensor * ggml_norm(
  565. struct ggml_context * ctx,
  566. struct ggml_tensor * a);
  567. GGML_API struct ggml_tensor * ggml_rms_norm(
  568. struct ggml_context * ctx,
  569. struct ggml_tensor * a);
  570. // a - x
  571. // b - dy
  572. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  573. struct ggml_context * ctx,
  574. struct ggml_tensor * a,
  575. struct ggml_tensor * b);
  576. // A: m rows, n columns
  577. // B: p rows, n columns (i.e. we transpose it internally)
  578. // result is m columns, p rows
  579. GGML_API struct ggml_tensor * ggml_mul_mat(
  580. struct ggml_context * ctx,
  581. struct ggml_tensor * a,
  582. struct ggml_tensor * b);
  583. //
  584. // operations on tensors without backpropagation
  585. //
  586. GGML_API struct ggml_tensor * ggml_scale(
  587. struct ggml_context * ctx,
  588. struct ggml_tensor * a,
  589. struct ggml_tensor * b);
  590. // in-place, returns view(a)
  591. GGML_API struct ggml_tensor * ggml_scale_inplace(
  592. struct ggml_context * ctx,
  593. struct ggml_tensor * a,
  594. struct ggml_tensor * b);
  595. // b -> view(a,offset,nb1,nb2,3), return modified a
  596. GGML_API struct ggml_tensor * ggml_set(
  597. struct ggml_context * ctx,
  598. struct ggml_tensor * a,
  599. struct ggml_tensor * b,
  600. size_t nb1,
  601. size_t nb2,
  602. size_t nb3,
  603. size_t offset);
  604. // b -> view(a,offset,nb1,nb2,3), return view(a)
  605. GGML_API struct ggml_tensor * ggml_set_inplace(
  606. struct ggml_context * ctx,
  607. struct ggml_tensor * a,
  608. struct ggml_tensor * b,
  609. size_t nb1,
  610. size_t nb2,
  611. size_t nb3,
  612. size_t offset);
  613. GGML_API struct ggml_tensor * ggml_set_1d(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a,
  616. struct ggml_tensor * b,
  617. size_t offset);
  618. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  619. struct ggml_context * ctx,
  620. struct ggml_tensor * a,
  621. struct ggml_tensor * b,
  622. size_t offset);
  623. // b -> view(a,offset,nb1,nb2,3), return modified a
  624. GGML_API struct ggml_tensor * ggml_set_2d(
  625. struct ggml_context * ctx,
  626. struct ggml_tensor * a,
  627. struct ggml_tensor * b,
  628. size_t nb1,
  629. size_t offset);
  630. // b -> view(a,offset,nb1,nb2,3), return view(a)
  631. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  632. struct ggml_context * ctx,
  633. struct ggml_tensor * a,
  634. struct ggml_tensor * b,
  635. size_t nb1,
  636. size_t offset);
  637. // a -> b, return view(b)
  638. GGML_API struct ggml_tensor * ggml_cpy(
  639. struct ggml_context * ctx,
  640. struct ggml_tensor * a,
  641. struct ggml_tensor * b);
  642. // make contiguous
  643. GGML_API struct ggml_tensor * ggml_cont(
  644. struct ggml_context * ctx,
  645. struct ggml_tensor * a);
  646. // return view(a), b specifies the new shape
  647. // TODO: when we start computing gradient, make a copy instead of view
  648. GGML_API struct ggml_tensor * ggml_reshape(
  649. struct ggml_context * ctx,
  650. struct ggml_tensor * a,
  651. struct ggml_tensor * b);
  652. // return view(a)
  653. // TODO: when we start computing gradient, make a copy instead of view
  654. GGML_API struct ggml_tensor * ggml_reshape_1d(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a,
  657. int64_t ne0);
  658. GGML_API struct ggml_tensor * ggml_reshape_2d(
  659. struct ggml_context * ctx,
  660. struct ggml_tensor * a,
  661. int64_t ne0,
  662. int64_t ne1);
  663. // return view(a)
  664. // TODO: when we start computing gradient, make a copy instead of view
  665. GGML_API struct ggml_tensor * ggml_reshape_3d(
  666. struct ggml_context * ctx,
  667. struct ggml_tensor * a,
  668. int64_t ne0,
  669. int64_t ne1,
  670. int64_t ne2);
  671. GGML_API struct ggml_tensor * ggml_reshape_4d(
  672. struct ggml_context * ctx,
  673. struct ggml_tensor * a,
  674. int64_t ne0,
  675. int64_t ne1,
  676. int64_t ne2,
  677. int64_t ne3);
  678. // offset in bytes
  679. GGML_API struct ggml_tensor * ggml_view_1d(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a,
  682. int64_t ne0,
  683. size_t offset);
  684. GGML_API struct ggml_tensor * ggml_view_2d(
  685. struct ggml_context * ctx,
  686. struct ggml_tensor * a,
  687. int64_t ne0,
  688. int64_t ne1,
  689. size_t nb1, // row stride in bytes
  690. size_t offset);
  691. GGML_API struct ggml_tensor * ggml_view_3d(
  692. struct ggml_context * ctx,
  693. struct ggml_tensor * a,
  694. int64_t ne0,
  695. int64_t ne1,
  696. int64_t ne2,
  697. size_t nb1, // row stride in bytes
  698. size_t nb2, // slice stride in bytes
  699. size_t offset);
  700. GGML_API struct ggml_tensor * ggml_view_4d(
  701. struct ggml_context * ctx,
  702. struct ggml_tensor * a,
  703. int64_t ne0,
  704. int64_t ne1,
  705. int64_t ne2,
  706. int64_t ne3,
  707. size_t nb1, // row stride in bytes
  708. size_t nb2, // slice stride in bytes
  709. size_t nb3,
  710. size_t offset);
  711. GGML_API struct ggml_tensor * ggml_permute(
  712. struct ggml_context * ctx,
  713. struct ggml_tensor * a,
  714. int axis0,
  715. int axis1,
  716. int axis2,
  717. int axis3);
  718. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  719. GGML_API struct ggml_tensor * ggml_transpose(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a);
  722. GGML_API struct ggml_tensor * ggml_get_rows(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. struct ggml_tensor * b);
  726. GGML_API struct ggml_tensor * ggml_get_rows_back(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a,
  729. struct ggml_tensor * b,
  730. struct ggml_tensor * c);
  731. GGML_API struct ggml_tensor * ggml_diag(
  732. struct ggml_context * ctx,
  733. struct ggml_tensor * a);
  734. // set elements above the diagonal to -INF
  735. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. int n_past);
  739. // in-place, returns view(a)
  740. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a,
  743. int n_past);
  744. // set elements above the diagonal to 0
  745. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a,
  748. int n_past);
  749. // in-place, returns view(a)
  750. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a,
  753. int n_past);
  754. GGML_API struct ggml_tensor * ggml_soft_max(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a);
  757. // in-place, returns view(a)
  758. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. // rotary position embedding
  762. // if mode & 1 == 1, skip n_past elements
  763. // if mode & 2 == 1, GPT-NeoX style
  764. // TODO: avoid creating a new tensor every time
  765. GGML_API struct ggml_tensor * ggml_rope(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a,
  768. int n_past,
  769. int n_dims,
  770. int mode);
  771. // in-place, returns view(a)
  772. GGML_API struct ggml_tensor * ggml_rope_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a,
  775. int n_past,
  776. int n_dims,
  777. int mode);
  778. // rotary position embedding backward, i.e compute dx from dy
  779. // a - dy
  780. GGML_API struct ggml_tensor * ggml_rope_back(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a,
  783. int n_past,
  784. int n_dims,
  785. int mode);
  786. // alibi position embedding
  787. // in-place, returns view(a)
  788. struct ggml_tensor * ggml_alibi(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a,
  791. int n_past,
  792. int n_head,
  793. float bias_max);
  794. // clamp
  795. // in-place, returns view(a)
  796. struct ggml_tensor * ggml_clamp(
  797. struct ggml_context * ctx,
  798. struct ggml_tensor * a,
  799. float min,
  800. float max);
  801. // padding = 1
  802. // TODO: we don't support extra parameters for now
  803. // that's why we are hard-coding the stride, padding, and dilation
  804. // not great ..
  805. GGML_API struct ggml_tensor * ggml_conv_1d_1s(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. struct ggml_tensor * b);
  809. GGML_API struct ggml_tensor * ggml_conv_1d_2s(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. struct ggml_tensor * b);
  813. GGML_API struct ggml_tensor * ggml_flash_attn(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * q,
  816. struct ggml_tensor * k,
  817. struct ggml_tensor * v,
  818. bool masked);
  819. GGML_API struct ggml_tensor * ggml_flash_ff(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a,
  822. struct ggml_tensor * b0,
  823. struct ggml_tensor * b1,
  824. struct ggml_tensor * c0,
  825. struct ggml_tensor * c1);
  826. // Mapping operations
  827. typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
  828. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  829. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a,
  832. ggml_unary_op_f32_t fun);
  833. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a,
  836. struct ggml_tensor * b,
  837. ggml_binary_op_f32_t fun);
  838. //
  839. // automatic differentiation
  840. //
  841. GGML_API void ggml_set_param(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * tensor);
  844. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  845. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  846. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  847. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  848. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  849. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  850. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  851. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  852. // print info and performance information for the graph
  853. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  854. // dump the graph into a file using the dot format
  855. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  856. //
  857. // optimization
  858. //
  859. // optimization methods
  860. enum ggml_opt_type {
  861. GGML_OPT_ADAM,
  862. GGML_OPT_LBFGS,
  863. };
  864. // linesearch methods
  865. enum ggml_linesearch {
  866. GGML_LINESEARCH_DEFAULT = 1,
  867. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  868. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  869. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  870. };
  871. // optimization return values
  872. enum ggml_opt_result {
  873. GGML_OPT_OK = 0,
  874. GGML_OPT_DID_NOT_CONVERGE,
  875. GGML_OPT_NO_CONTEXT,
  876. GGML_OPT_INVALID_WOLFE,
  877. GGML_OPT_FAIL,
  878. GGML_LINESEARCH_FAIL = -128,
  879. GGML_LINESEARCH_MINIMUM_STEP,
  880. GGML_LINESEARCH_MAXIMUM_STEP,
  881. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  882. GGML_LINESEARCH_INVALID_PARAMETERS,
  883. };
  884. // optimization parameters
  885. //
  886. // see ggml.c (ggml_opt_default_params) for default values
  887. //
  888. struct ggml_opt_params {
  889. enum ggml_opt_type type;
  890. int n_threads;
  891. // delta-based convergence test
  892. //
  893. // if past == 0 - disabled
  894. // if past > 0:
  895. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  896. //
  897. int past;
  898. float delta;
  899. // maximum number of iterations without improvement
  900. //
  901. // if 0 - disabled
  902. // if > 0:
  903. // assume convergence if no cost improvement in this number of iterations
  904. //
  905. int max_no_improvement;
  906. bool print_forward_graph;
  907. bool print_backward_graph;
  908. // ADAM parameters
  909. struct {
  910. int n_iter;
  911. float alpha; // learning rate
  912. float beta1;
  913. float beta2;
  914. float eps; // epsilon for numerical stability
  915. float eps_f; // epsilon for convergence test
  916. float eps_g; // epsilon for convergence test
  917. } adam;
  918. // LBFGS parameters
  919. struct {
  920. int m; // number of corrections to approximate the inv. Hessian
  921. int n_iter;
  922. int max_linesearch;
  923. float eps; // convergence tolerance
  924. float ftol; // line search tolerance
  925. float wolfe;
  926. float min_step;
  927. float max_step;
  928. enum ggml_linesearch linesearch;
  929. } lbfgs;
  930. };
  931. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  932. // optimize the function defined by the tensor f
  933. GGML_API enum ggml_opt_result ggml_opt(
  934. struct ggml_context * ctx,
  935. struct ggml_opt_params params,
  936. struct ggml_tensor * f);
  937. //
  938. // quantization
  939. //
  940. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  941. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  942. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  943. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  944. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  945. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  946. //
  947. // system info
  948. //
  949. GGML_API int ggml_cpu_has_avx (void);
  950. GGML_API int ggml_cpu_has_avx2 (void);
  951. GGML_API int ggml_cpu_has_avx512 (void);
  952. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  953. GGML_API int ggml_cpu_has_avx512_vnni(void);
  954. GGML_API int ggml_cpu_has_fma (void);
  955. GGML_API int ggml_cpu_has_neon (void);
  956. GGML_API int ggml_cpu_has_arm_fma (void);
  957. GGML_API int ggml_cpu_has_f16c (void);
  958. GGML_API int ggml_cpu_has_fp16_va (void);
  959. GGML_API int ggml_cpu_has_wasm_simd (void);
  960. GGML_API int ggml_cpu_has_blas (void);
  961. GGML_API int ggml_cpu_has_cublas (void);
  962. GGML_API int ggml_cpu_has_clblast (void);
  963. GGML_API int ggml_cpu_has_gpublas (void);
  964. GGML_API int ggml_cpu_has_sse3 (void);
  965. GGML_API int ggml_cpu_has_vsx (void);
  966. //
  967. // Internal types and functions exposed for tests and benchmarks
  968. //
  969. #ifdef __cplusplus
  970. // restrict not standard in C++
  971. #define GGML_RESTRICT
  972. #else
  973. #define GGML_RESTRICT restrict
  974. #endif
  975. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  976. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  977. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  978. typedef struct {
  979. dequantize_row_q_t dequantize_row_q;
  980. quantize_row_q_t quantize_row_q;
  981. quantize_row_q_t quantize_row_q_reference;
  982. quantize_row_q_t quantize_row_q_dot;
  983. vec_dot_q_t vec_dot_q;
  984. enum ggml_type vec_dot_type;
  985. } quantize_fns_t;
  986. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  987. #ifdef __cplusplus
  988. }
  989. #endif