llama.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include <stddef.h>
  4. #include <stdint.h>
  5. #include <stdbool.h>
  6. #ifdef LLAMA_SHARED
  7. # if defined(_WIN32) && !defined(__MINGW32__)
  8. # ifdef LLAMA_BUILD
  9. # define LLAMA_API __declspec(dllexport)
  10. # else
  11. # define LLAMA_API __declspec(dllimport)
  12. # endif
  13. # else
  14. # define LLAMA_API __attribute__ ((visibility ("default")))
  15. # endif
  16. #else
  17. # define LLAMA_API
  18. #endif
  19. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  20. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  21. #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
  22. #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
  23. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  24. #define LLAMA_FILE_VERSION 3
  25. #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
  26. #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
  27. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  28. #define LLAMA_SESSION_VERSION 1
  29. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  30. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  31. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  32. #endif
  33. #ifdef __cplusplus
  34. extern "C" {
  35. #endif
  36. //
  37. // C interface
  38. //
  39. // TODO: show sample usage
  40. //
  41. struct llama_context;
  42. typedef int llama_token;
  43. typedef struct llama_token_data {
  44. llama_token id; // token id
  45. float logit; // log-odds of the token
  46. float p; // probability of the token
  47. } llama_token_data;
  48. typedef struct llama_token_data_array {
  49. llama_token_data * data;
  50. size_t size;
  51. bool sorted;
  52. } llama_token_data_array;
  53. typedef void (*llama_progress_callback)(float progress, void *ctx);
  54. struct llama_context_params {
  55. int n_ctx; // text context
  56. int n_gpu_layers; // number of layers to store in VRAM
  57. int seed; // RNG seed, -1 for random
  58. bool f16_kv; // use fp16 for KV cache
  59. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  60. bool vocab_only; // only load the vocabulary, no weights
  61. bool use_mmap; // use mmap if possible
  62. bool use_mlock; // force system to keep model in RAM
  63. bool embedding; // embedding mode only
  64. // called with a progress value between 0 and 1, pass NULL to disable
  65. llama_progress_callback progress_callback;
  66. // context pointer passed to the progress callback
  67. void * progress_callback_user_data;
  68. };
  69. // model file types
  70. enum llama_ftype {
  71. LLAMA_FTYPE_ALL_F32 = 0,
  72. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  73. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  76. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  77. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  78. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
  90. };
  91. LLAMA_API struct llama_context_params llama_context_default_params();
  92. LLAMA_API bool llama_mmap_supported();
  93. LLAMA_API bool llama_mlock_supported();
  94. // TODO: not great API - very likely to change
  95. // Initialize the llama + ggml backend
  96. // Call once at the start of the program
  97. LLAMA_API void llama_init_backend();
  98. LLAMA_API int64_t llama_time_us();
  99. // Various functions for loading a ggml llama model.
  100. // Allocate (almost) all memory needed for the model.
  101. // Return NULL on failure
  102. LLAMA_API struct llama_context * llama_init_from_file(
  103. const char * path_model,
  104. struct llama_context_params params);
  105. // Frees all allocated memory
  106. LLAMA_API void llama_free(struct llama_context * ctx);
  107. // TODO: not great API - very likely to change
  108. // Returns 0 on success
  109. // nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
  110. LLAMA_API int llama_model_quantize(
  111. const char * fname_inp,
  112. const char * fname_out,
  113. enum llama_ftype ftype,
  114. int nthread);
  115. // Apply a LoRA adapter to a loaded model
  116. // path_base_model is the path to a higher quality model to use as a base for
  117. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  118. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  119. // will be applied on top of the previous one
  120. // Returns 0 on success
  121. LLAMA_API int llama_apply_lora_from_file(
  122. struct llama_context * ctx,
  123. const char * path_lora,
  124. const char * path_base_model,
  125. int n_threads);
  126. // Returns the number of tokens in the KV cache
  127. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  128. // Sets the current rng seed.
  129. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
  130. // Returns the maximum size in bytes of the state (rng, logits, embedding
  131. // and kv_cache) - will often be smaller after compacting tokens
  132. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  133. // Copies the state to the specified destination address.
  134. // Destination needs to have allocated enough memory.
  135. // Returns the number of bytes copied
  136. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  137. // Set the state reading from the specified address
  138. // Returns the number of bytes read
  139. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  140. // Save/load session file
  141. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  142. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  143. // Run the llama inference to obtain the logits and probabilities for the next token.
  144. // tokens + n_tokens is the provided batch of new tokens to process
  145. // n_past is the number of tokens to use from previous eval calls
  146. // Returns 0 on success
  147. LLAMA_API int llama_eval(
  148. struct llama_context * ctx,
  149. const llama_token * tokens,
  150. int n_tokens,
  151. int n_past,
  152. int n_threads);
  153. // Export a static computation graph for context of 511 and batch size of 1
  154. // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
  155. // parameters here to keep things simple
  156. // IMPORTANT: do not use for anything else other than debugging and testing!
  157. LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
  158. // Convert the provided text into tokens.
  159. // The tokens pointer must be large enough to hold the resulting tokens.
  160. // Returns the number of tokens on success, no more than n_max_tokens
  161. // Returns a negative number on failure - the number of tokens that would have been returned
  162. // TODO: not sure if correct
  163. LLAMA_API int llama_tokenize(
  164. struct llama_context * ctx,
  165. const char * text,
  166. llama_token * tokens,
  167. int n_max_tokens,
  168. bool add_bos);
  169. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  170. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  171. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  172. // Token logits obtained from the last call to llama_eval()
  173. // The logits for the last token are stored in the last row
  174. // Can be mutated in order to change the probabilities of the next token
  175. // Rows: n_tokens
  176. // Cols: n_vocab
  177. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  178. // Get the embeddings for the input
  179. // shape: [n_embd] (1-dimensional)
  180. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  181. // Token Id -> String. Uses the vocabulary in the provided context
  182. LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
  183. // Special tokens
  184. LLAMA_API llama_token llama_token_bos();
  185. LLAMA_API llama_token llama_token_eos();
  186. LLAMA_API llama_token llama_token_nl();
  187. // Sampling functions
  188. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  189. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  190. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  191. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  192. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  193. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  194. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  195. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  196. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  197. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  198. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  199. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  200. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  201. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  202. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  203. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  204. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  205. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  206. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  207. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  208. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  209. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  210. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  211. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  212. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  213. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  214. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  215. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  216. /// @details Selects the token with the highest probability.
  217. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  218. /// @details Randomly selects a token from the candidates based on their probabilities.
  219. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  220. // Performance information
  221. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  222. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  223. // Print system information
  224. LLAMA_API const char * llama_print_system_info(void);
  225. #ifdef __cplusplus
  226. }
  227. #endif
  228. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  229. #ifdef LLAMA_API_INTERNAL
  230. #include <vector>
  231. #include <string>
  232. struct ggml_tensor;
  233. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  234. #endif
  235. #endif // LLAMA_H