| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380 |
- #include "llama-kv-cache.h"
- #include "llama-impl.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-model.h"
- #include <algorithm>
- #include <cassert>
- #include <limits>
- #include <map>
- #include <stdexcept>
- llama_kv_cache_unified::llama_kv_cache_unified(const llama_hparams & hparams, callbacks cbs) : hparams(hparams), cbs(std::move(cbs)) {
- }
- bool llama_kv_cache_unified::init(
- const llama_model & model,
- const llama_cparams & cparams,
- ggml_type type_k,
- ggml_type type_v,
- uint32_t kv_size,
- bool offload) {
- const int32_t n_layer = hparams.n_layer;
- has_shift = false;
- recurrent = llama_model_is_recurrent(&model);
- v_trans = !recurrent && !cparams.flash_attn;
- can_shift = !recurrent;
- LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
- __func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
- head = 0;
- size = kv_size;
- used = 0;
- this->type_k = type_k;
- this->type_v = type_v;
- cells.clear();
- cells.resize(kv_size);
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- k_l.reserve(n_layer);
- v_l.reserve(n_layer);
- for (int i = 0; i < n_layer; i++) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
- const char * dev_name = "CPU";
- ggml_backend_buffer_type_t buft;
- if (offload) {
- auto * dev = model.dev_layer(i);
- buft = ggml_backend_dev_buffer_type(dev);
- dev_name = ggml_backend_dev_name(dev);
- } else {
- buft = ggml_backend_cpu_buffer_type();
- }
- LLAMA_LOG_DEBUG("%s: layer %3d: n_embd_k_gqa = %d, n_embd_v_gqa = %d, dev = %s\n", __func__,
- i, n_embd_k_gqa, n_embd_v_gqa, dev_name);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
- return false;
- }
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- k_l.push_back(k);
- v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- bufs.emplace_back(buf);
- }
- return true;
- }
- int32_t llama_kv_cache_unified::get_n_tokens() const {
- int32_t result = 0;
- for (uint32_t i = 0; i < size; i++) {
- result += cells[i].seq_id.size();
- }
- return result;
- }
- int32_t llama_kv_cache_unified::get_used_cells() const {
- return used;
- }
- size_t llama_kv_cache_unified::total_size() const {
- size_t size = 0;
- for (const auto & buf : bufs) {
- size += ggml_backend_buffer_get_size(buf.get());
- }
- return size;
- }
- llama_pos llama_kv_cache_unified::pos_max() const {
- llama_pos pos_max = -1;
- for (const auto & cell : cells) {
- pos_max = std::max(pos_max, cell.pos);
- }
- return pos_max;
- }
- void llama_kv_cache_unified::clear() {
- for (int32_t i = 0; i < (int32_t) size; ++i) {
- cells[i].pos = -1;
- cells[i].seq_id.clear();
- cells[i].src = -1;
- cells[i].tail = -1;
- }
- head = 0;
- used = 0;
- for (auto & buf : bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- uint32_t new_head = size;
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // models like Mamba or RWKV can't have a state partially erased
- if (recurrent) {
- if (seq_id >= (int64_t) size) {
- // could be fatal
- return false;
- }
- if (0 <= seq_id) {
- int32_t & tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- const llama_kv_cell & cell = cells[tail_id];
- // partial intersection is invalid
- if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
- return false;
- }
- // invalidate tails which will be cleared
- if (p0 <= cell.pos && cell.pos < p1) {
- tail_id = -1;
- }
- }
- } else {
- // seq_id is negative, then the range should include everything or nothing
- if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
- return false;
- }
- }
- return true;
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].pos >= p0 && cells[i].pos < p1) {
- if (seq_id < 0) {
- cells[i].seq_id.clear();
- } else if (cells[i].has_seq_id(seq_id)) {
- cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cells[i].is_empty()) {
- // keep count of the number of used cells
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- if (new_head == size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- return true;
- }
- void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- if (recurrent) {
- if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
- llama_kv_cell & tail_src = cells[seq_id_src];
- llama_kv_cell & tail_dst = cells[seq_id_dst];
- if (tail_dst.tail >= 0) {
- // clear destination seq_id if it wasn't empty
- llama_kv_cell & cell_dst = cells[tail_dst.tail];
- cell_dst.seq_id.erase(seq_id_dst);
- tail_dst.tail = -1;
- if (cell_dst.seq_id.empty()) {
- cell_dst.pos = -1;
- cell_dst.delta = -1;
- cell_dst.src = -1;
- used -= 1;
- }
- }
- if (tail_src.tail >= 0) {
- llama_kv_cell & cell_src = cells[tail_src.tail];
- cell_src.seq_id.insert(seq_id_dst);
- tail_dst.tail = tail_src.tail;
- }
- }
- return;
- }
- // otherwise, this is the KV of a Transformer-like model
- head = 0;
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id_src) && cells[i].pos >= p0 && cells[i].pos < p1) {
- cells[i].seq_id.insert(seq_id_dst);
- }
- }
- }
- void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
- uint32_t new_head = size;
- for (uint32_t i = 0; i < size; ++i) {
- if (recurrent && (llama_seq_id) i != seq_id) {
- cells[i].tail = -1;
- }
- if (!cells[i].has_seq_id(seq_id)) {
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- cells[i].seq_id.clear();
- if (new_head == size){
- new_head = i;
- }
- } else {
- cells[i].seq_id.clear();
- cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- }
- void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
- if (delta == 0) {
- return;
- }
- uint32_t new_head = size;
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the
- if (p0 == p1) {
- return;
- }
- if (recurrent) {
- // for Mamba-like or RWKV models, only the pos needs to be shifted
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- llama_kv_cell & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos += delta;
- }
- }
- }
- return;
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
- has_shift = true;
- cells[i].pos += delta;
- cells[i].delta += delta;
- if (cells[i].pos < 0) {
- if (!cells[i].is_empty()) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].seq_id.clear();
- if (new_head == size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- head = new_head != size ? new_head : 0;
- }
- void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) {
- return;
- }
- if (recurrent) {
- // for Mamba-like or RWKV models, only the pos needs to be changed
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- llama_kv_cell & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos /= d;
- }
- }
- }
- return;
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
- has_shift = true;
- {
- llama_pos p_old = cells[i].pos;
- cells[i].pos /= d;
- cells[i].delta += cells[i].pos - p_old;
- }
- }
- }
- }
- llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
- llama_pos result = 0;
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id)) {
- result = std::max(result, cells[i].pos);
- }
- }
- return result;
- }
- void llama_kv_cache_unified::defrag() {
- if (!recurrent) {
- do_defrag = true;
- }
- }
- void llama_kv_cache_unified::restore() {
- if (pending.ranges.empty()) {
- return;
- }
- // TODO: tmp - move to llama_kv_cache_recurrent
- if (recurrent) {
- seq_rm(-1, -1, -1);
- return;
- }
- uint32_t new_head = size;
- for (auto & range : pending.ranges) {
- for (uint32_t i = range.c0; i < range.c1; ++i) {
- cells[i].seq_id.clear();
- // keep count of the number of used cells
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- }
- new_head = std::min(new_head, range.c0);
- }
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- }
- void llama_kv_cache_unified::commit() {
- // TODO: tmp - move to llama_kv_cache_recurrent
- if (recurrent) {
- return;
- }
- if (pending.ranges.empty()) {
- LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
- __func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
- return;
- }
- pending.ranges.clear();
- }
- bool llama_kv_cache_unified::get_can_shift() const {
- return can_shift;
- }
- bool llama_kv_cache_unified::find_slot(
- const llama_ubatch & ubatch) {
- const uint32_t n_tokens = ubatch.n_tokens;
- const uint32_t n_seqs = ubatch.n_seqs;
- const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (head > used + 2*ubatch.n_tokens) {
- head = 0;
- }
- if (recurrent) {
- // For recurrent state architectures (like Mamba or RWKV),
- // each cache cell can store the state for a whole sequence.
- // A slot should be always be contiguous.
- // can only process batches with an equal number of new tokens in each sequence
- GGML_ASSERT(ubatch.equal_seqs);
- int32_t min = size - 1;
- int32_t max = 0;
- // everything should fit if all seq_ids are smaller than the max
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t n_seq_id = ubatch.n_seq_id[s];
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[s][j];
- if (seq_id < 0 || (uint32_t) seq_id >= size) {
- // too big seq_id
- // TODO: would it be possible to resize the cache instead?
- LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
- return false;
- }
- if (j > 0) {
- llama_kv_cell & seq = cells[seq_id];
- if (seq.tail >= 0) {
- llama_kv_cell & cell = cells[seq.tail];
- // clear cells from seq_ids that become shared
- // (should not normally happen, but let's handle it anyway)
- cell.seq_id.erase(seq_id);
- seq.tail = -1;
- if (cell.seq_id.empty()) {
- cell.pos = -1;
- cell.src = -1;
- used -= 1;
- }
- }
- }
- }
- }
- #ifndef NDEBUG
- {
- std::vector<int32_t> tails_verif;
- tails_verif.assign(size, -1);
- for (uint32_t i = 0; i < size; ++i) {
- llama_kv_cell & cell = cells[i];
- for (llama_seq_id seq_id : cell.seq_id) {
- if (tails_verif[seq_id] != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
- }
- tails_verif[seq_id] = i;
- }
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (tails_verif[i] != cells[i].tail) {
- LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
- }
- }
- }
- #endif
- // find next empty cell
- uint32_t next_empty_cell = head;
- for (uint32_t i = 0; i < size; ++i) {
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- llama_kv_cell & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- // find usable cell range
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch.seq_id[s][0];
- llama_kv_cell & seq_meta = cells[seq_id];
- bool has_cell = false;
- if (seq_meta.tail >= 0) {
- llama_kv_cell & cell = cells[seq_meta.tail];
- GGML_ASSERT(cell.has_seq_id(seq_id));
- // does this seq_id "own" the cell?
- if (cell.seq_id.size() == 1) { has_cell = true; }
- }
- if (!has_cell) {
- llama_kv_cell & empty_cell = cells[next_empty_cell];
- GGML_ASSERT(empty_cell.is_empty());
- // copy old tail into the empty cell
- if (seq_meta.tail >= 0) {
- llama_kv_cell & orig_cell = cells[seq_meta.tail];
- empty_cell.pos = orig_cell.pos;
- empty_cell.src = orig_cell.src;
- orig_cell.seq_id.erase(seq_id);
- empty_cell.seq_id.insert(seq_id); // will be overwritten
- }
- seq_meta.tail = next_empty_cell;
- // find next empty cell
- if (s + 1 < n_seqs) {
- next_empty_cell += 1;
- for (uint32_t i = 0; i < size; ++i) {
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- llama_kv_cell & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- }
- }
- if (min > seq_meta.tail) { min = seq_meta.tail; }
- if (max < seq_meta.tail) { max = seq_meta.tail; }
- }
- // gather and re-order
- for (uint32_t s = 0; s < n_seqs; ++s) {
- int32_t dst_id = s + min;
- int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
- if (dst_id != src_id) {
- llama_kv_cell & dst_cell = cells[dst_id];
- llama_kv_cell & src_cell = cells[src_id];
- std::swap(dst_cell.pos, src_cell.pos);
- std::swap(dst_cell.src, src_cell.src);
- std::swap(dst_cell.seq_id, src_cell.seq_id);
- // swap tails (assuming they NEVER overlap)
- for (const llama_seq_id seq_id : src_cell.seq_id) {
- cells[seq_id].tail = src_id;
- }
- for (const llama_seq_id seq_id : dst_cell.seq_id) {
- cells[seq_id].tail = dst_id;
- }
- }
- }
- // update the pos of the used seqs
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
- int32_t cell_id = s + min;
- llama_kv_cell & cell = cells[cell_id];
- if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
- // What should happen when the pos backtracks or skips a value?
- // Clearing the state mid-batch would require special-casing which isn't done.
- LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
- __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
- }
- cell.pos = last_pos;
- cell.seq_id.clear();
- for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[s][j];
- cell.seq_id.insert(seq_id);
- cells[seq_id].tail = cell_id;
- }
- }
- // allow getting the range of used cells, from head to head + n
- head = min;
- n = max - min + 1;
- used = std::count_if(cells.begin(), cells.end(),
- [](const llama_kv_cell& cell){ return !cell.is_empty(); });
- // sanity check
- return n >= n_seqs;
- }
- // otherwise, one cell per token.
- if (n_tokens > size) {
- LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %d\n", __func__, n_tokens, size);
- return false;
- }
- uint32_t n_tested = 0;
- while (true) {
- if (head + n_tokens > size) {
- n_tested += size - head;
- head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (cells[head + i].pos >= 0) {
- found = false;
- head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= size) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return false;
- }
- }
- for (uint32_t s = 0; s < n_seqs; s++) {
- for (uint32_t i = 0; i < n_seq_tokens; ++i) {
- uint32_t k = s*n_seq_tokens + i;
- cells[head + k].pos = ubatch.pos[k];
- for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
- cells[head + k].seq_id.insert(ubatch.seq_id[s][j]);
- }
- }
- }
- used += n_tokens;
- pending.ranges.push_back({head, head + n_tokens});
- return true;
- }
- uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) const {
- // the FA kernels require padding to avoid extra runtime boundary checks
- return cparams.flash_attn ? 256u : 32u;
- }
- uint32_t llama_kv_cache_unified::cell_max() const {
- for (uint32_t i = size; i > 0; --i) {
- const llama_kv_cell & cell = cells[i - 1];
- if (cell.pos >= 0 && !cell.is_empty()) {
- return i;
- }
- }
- return 0;
- }
- size_t llama_kv_cache_unified::size_k_bytes() const {
- size_t size_k_bytes = 0;
- for (const auto & k : k_l) {
- size_k_bytes += ggml_nbytes(k);
- }
- return size_k_bytes;
- }
- size_t llama_kv_cache_unified::size_v_bytes() const {
- size_t size_v_bytes = 0;
- for (const auto & v : v_l) {
- size_v_bytes += ggml_nbytes(v);
- }
- return size_v_bytes;
- }
- bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_kv = cell_max();
- const uint32_t n_used = used;
- assert(n_used <= n_kv);
- //const int64_t t_start = ggml_time_us();
- // number of cells moved
- uint32_t n_moves = 0;
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
- // determine which KV cells to move where
- //
- // cell i moves to ids[i]
- //
- // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
- //
- auto & ids = defrag_info.ids;
- ids.clear();
- ids.resize(n_kv, n_kv);
- for (uint32_t i0 = 0; i0 < n_used; ++i0) {
- const auto & cell0 = cells[i0];
- if (!cell0.is_empty()) {
- ids[i0] = i0;
- continue;
- }
- // found a hole - fill it with data from the end of the cache
- uint32_t nh = 1;
- // determine the size of the hole
- while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
- nh++;
- }
- uint32_t nf = 0;
- uint32_t is = n_kv - 1;
- // starting from the end, find nh non-empty cells
- for (; is > i0; --is) {
- const auto & cell1 = cells[is];
- if (cell1.is_empty() || ids[is] != n_kv) {
- continue;
- }
- // non-empty cell which is not yet moved
- nf++;
- if (nf == nh) {
- break;
- }
- }
- // this can only happen if `n_used` is not accurate, which would be a bug
- GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
- nf = 0;
- uint32_t i1 = is;
- // are we moving a continuous block of memory?
- bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
- // go back and move the nf cells to the hole
- for (; i1 < n_kv; ++i1) {
- auto & cell1 = cells[i1];
- if (cell1.is_empty() || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
- cont = false;
- continue;
- }
- // this cell goes to (i0 + nf)
- ids[i1] = i0 + nf;
- // move the cell meta data
- cells[i0 + nf] = cell1;
- // clear the old cell and move the head there
- cell1 = llama_kv_cell();
- head = n_used;
- if (!cont) {
- n_moves++;
- cont = true;
- }
- nf++;
- if (nf == nh) {
- break;
- }
- }
- if (stop || n_moves == max_moves) {
- break;
- }
- //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
- i0 += nh - 1;
- }
- if (n_moves == 0) {
- return false;
- }
- LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
- LLAMA_LOG_DEBUG("expected gf nodes: %u\n", 6*n_moves*n_layer);
- return true;
- }
- void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id (or all, when -1)
- uint32_t cell_range_begin = size;
- for (uint32_t i = 0; i < size; ++i) {
- const auto & cell = cells[i];
- if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
- ++cell_count;
- if (cell_range_begin == size) {
- cell_range_begin = i;
- }
- } else {
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = size;
- }
- }
- }
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, size);
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- io.write(&cell_count, sizeof(cell_count));
- state_write_meta(io, cell_ranges, seq_id);
- state_write_data(io, cell_ranges);
- }
- void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
- uint32_t cell_count;
- io.read_to(&cell_count, sizeof(cell_count));
- bool res = true;
- res = res && state_read_meta(io, cell_count, seq_id);
- res = res && state_read_data(io, cell_count);
- if (!res) {
- if (seq_id == -1) {
- clear();
- } else {
- seq_rm(seq_id, -1, -1);
- }
- throw std::runtime_error("failed to restore kv cache");
- }
- }
- void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- const auto & cell = cells[i];
- const llama_pos pos = cell.pos;
- const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
- io.write(&pos, sizeof(pos));
- io.write(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id) {
- for (auto seq_id : cell.seq_id) {
- io.write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- }
- void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
- const uint32_t v_trans = this->v_trans ? 1 : 0;
- const uint32_t n_layer = hparams.n_layer;
- io.write(&v_trans, sizeof(v_trans));
- io.write(&n_layer, sizeof(n_layer));
- std::vector<uint8_t> tmp_buf;
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Write key type
- const int32_t k_type_i = (int32_t)k_l[il]->type;
- io.write(&k_type_i, sizeof(k_type_i));
- // Write row size of key
- const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- io.write(&k_size_row, sizeof(k_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * k_size_row;
- io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
- }
- }
- if (!v_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write row size of value
- const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
- io.write(&v_size_row, sizeof(v_size_row));
- // Read each range of cells of v_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * v_size_row;
- io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
- }
- }
- } else {
- // When v is transposed, we also need the element size and get the element ranges from each row
- const uint32_t kv_size = size;
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write element size
- const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
- io.write(&v_size_el, sizeof(v_size_el));
- // Write GQA embedding size
- io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
- const size_t buf_size = range_size * v_size_el;
- io.write_tensor(v_l[il], src_offset, buf_size);
- }
- }
- }
- }
- }
- bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
- if (dest_seq_id != -1) {
- // single sequence
- seq_rm(dest_seq_id, -1, -1);
- llama_sbatch sbatch;
- llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
- batch.n_tokens = cell_count;
- batch.n_seq_tokens = cell_count;
- batch.n_seqs = 1;
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id != 0) {
- LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
- return false;
- }
- batch.pos[i] = pos;
- }
- batch.n_seq_id[0] = 1;
- batch.seq_id[0] = &dest_seq_id;
- if (!find_slot(batch)) {
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return false;
- }
- commit();
- // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(head + cell_count <= size);
- GGML_ASSERT(cells[head].pos == batch.pos[0]);
- GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
- GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
- GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
- } else {
- // whole KV cache restore
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
- return false;
- }
- clear();
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_kv_cell & cell = cells[i];
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- cell.pos = pos;
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- // TODO: llama_kv_cache_unified should have a notion of max sequences
- //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
- if (seq_id < 0) {
- //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
- LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
- return false;
- }
- cell.seq_id.insert(seq_id);
- if (recurrent) {
- int32_t & tail = cells[seq_id].tail;
- if (tail != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
- return false;
- }
- tail = i;
- }
- }
- }
- head = 0;
- used = cell_count;
- }
- if (recurrent) {
- for (uint32_t i = 0; i < cell_count; ++i) {
- uint32_t cell_id = head + i;
- // make sure the recurrent states will keep their restored state
- cells[cell_id].src = cell_id;
- }
- }
- return true;
- }
- bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
- uint32_t v_trans;
- uint32_t n_layer;
- io.read_to(&v_trans, sizeof(v_trans));
- io.read_to(&n_layer, sizeof(n_layer));
- if (n_layer != hparams.n_layer) {
- LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
- return false;
- }
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
- return false;
- }
- if (v_trans != (bool) v_trans) {
- LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
- return false;
- }
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Read type of key
- int32_t k_type_i_ref;
- io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
- const int32_t k_type_i = (int32_t) k_l[il]->type;
- if (k_type_i != k_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
- return false;
- }
- // Read row size of key
- uint64_t k_size_row_ref;
- io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- if (k_size_row != k_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
- }
- }
- if (!v_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read row size of value
- uint64_t v_size_row_ref;
- io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
- const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
- if (v_size_row != v_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read element size of value
- uint32_t v_size_el_ref;
- io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
- if (v_size_el != v_size_el_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
- return false;
- }
- // Read GQA embedding size
- uint32_t n_embd_v_gqa_ref;
- io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
- LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
- return false;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- const size_t dst_offset = (head + j * size) * v_size_el;
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
- }
- }
- }
- }
- return true;
- }
- //
- // kv cache view
- //
- llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max) {
- llama_kv_cache_view result = {
- /*.n_cells = */ 0,
- /*.n_seq_max = */ n_seq_max,
- /*.token_count = */ 0,
- /*.used_cells = */ kv.get_used_cells(),
- /*.max_contiguous = */ 0,
- /*.max_contiguous_idx = */ -1,
- /*.cells = */ nullptr,
- /*.cells_sequences = */ nullptr,
- };
- return result;
- }
- void llama_kv_cache_view_free(llama_kv_cache_view * view) {
- if (view->cells != nullptr) {
- free(view->cells);
- view->cells = nullptr;
- }
- if (view->cells_sequences != nullptr) {
- free(view->cells_sequences);
- view->cells_sequences = nullptr;
- }
- }
- void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv) {
- // TODO: rework this in the future, for now quick hack
- const llama_kv_cache_unified * kvu = dynamic_cast<const llama_kv_cache_unified *>(kv);
- if (kvu == nullptr) {
- LLAMA_LOG_ERROR("%s: the kv_cache_view currently works only with llama_kv_cache_unified\n", __func__);
- return;
- }
- if (uint32_t(view->n_cells) < kvu->size || view->cells == nullptr) {
- view->n_cells = int32_t(kvu->size);
- void * p = realloc(view->cells, sizeof(llama_kv_cache_view_cell) * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
- view->cells = (llama_kv_cache_view_cell *)p;
- p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
- view->cells_sequences = (llama_seq_id *)p;
- }
- const std::vector<llama_kv_cell> & kv_cells = kvu->cells;
- llama_kv_cache_view_cell * c_curr = view->cells;
- llama_seq_id * cs_curr = view->cells_sequences;
- int32_t used_cells = 0;
- int32_t token_count = 0;
- int32_t curr_contig_idx = -1;
- uint32_t max_contig = 0;
- int32_t max_contig_idx = -1;
- for (int32_t i = 0; i < int32_t(kvu->size); i++, c_curr++, cs_curr += view->n_seq_max) {
- const size_t curr_size = kv_cells[i].seq_id.size();
- token_count += curr_size;
- c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
- if (curr_size > 0) {
- if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
- max_contig = i - curr_contig_idx;
- max_contig_idx = curr_contig_idx;
- }
- curr_contig_idx = -1;
- } else if (curr_contig_idx < 0) {
- curr_contig_idx = i;
- }
- int seq_idx = 0;
- for (const llama_seq_id it : kv_cells[i].seq_id) {
- if (seq_idx >= view->n_seq_max) {
- break;
- }
- cs_curr[seq_idx] = it;
- seq_idx++;
- }
- if (seq_idx != 0) {
- used_cells++;
- }
- for (; seq_idx < view->n_seq_max; seq_idx++) {
- cs_curr[seq_idx] = -1;
- }
- }
- if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
- max_contig_idx = curr_contig_idx;
- max_contig = kv_cells.size() - curr_contig_idx;
- }
- view->max_contiguous = max_contig;
- view->max_contiguous_idx = max_contig_idx;
- view->token_count = token_count;
- view->used_cells = used_cells;
- if (uint32_t(used_cells) != kvu->used) {
- LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
- __func__, kvu->used, used_cells);
- }
- }
|