ggml.c 599 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. void * aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_F32] = {
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1347. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1348. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1350. .vec_dot_type = GGML_TYPE_F16,
  1351. },
  1352. [GGML_TYPE_Q4_0] = {
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1361. .from_float = quantize_row_q4_1,
  1362. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1363. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1364. .vec_dot_type = GGML_TYPE_Q8_1,
  1365. },
  1366. [GGML_TYPE_Q5_0] = {
  1367. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1368. .from_float = quantize_row_q5_0,
  1369. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1370. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1371. .vec_dot_type = GGML_TYPE_Q8_0,
  1372. },
  1373. [GGML_TYPE_Q5_1] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .to_float = dequantize_row_q8_0,
  1382. .from_float = quantize_row_q8_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1384. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q8_1] = {
  1388. .from_float = quantize_row_q8_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. #ifdef GGML_USE_K_QUANTS
  1393. [GGML_TYPE_Q2_K] = {
  1394. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1395. .from_float = quantize_row_q2_K,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1397. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1398. .vec_dot_type = GGML_TYPE_Q8_K,
  1399. },
  1400. [GGML_TYPE_Q3_K] = {
  1401. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1402. .from_float = quantize_row_q3_K,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1404. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1405. .vec_dot_type = GGML_TYPE_Q8_K,
  1406. },
  1407. [GGML_TYPE_Q4_K] = {
  1408. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1409. .from_float = quantize_row_q4_K,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1411. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1412. .vec_dot_type = GGML_TYPE_Q8_K,
  1413. },
  1414. [GGML_TYPE_Q5_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1416. .from_float = quantize_row_q5_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1418. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q6_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1423. .from_float = quantize_row_q6_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1425. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q8_K] = {
  1429. .from_float = quantize_row_q8_K,
  1430. }
  1431. #endif
  1432. };
  1433. // For internal test use
  1434. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1435. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1436. return type_traits[i];
  1437. }
  1438. //
  1439. // simd mappings
  1440. //
  1441. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1442. // we then implement the fundamental computation operations below using only these macros
  1443. // adding support for new architectures requires to define the corresponding SIMD macros
  1444. //
  1445. // GGML_F32_STEP / GGML_F16_STEP
  1446. // number of elements to process in a single step
  1447. //
  1448. // GGML_F32_EPR / GGML_F16_EPR
  1449. // number of elements to fit in a single register
  1450. //
  1451. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1452. #define GGML_SIMD
  1453. // F32 NEON
  1454. #define GGML_F32_STEP 16
  1455. #define GGML_F32_EPR 4
  1456. #define GGML_F32x4 float32x4_t
  1457. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1458. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1459. #define GGML_F32x4_LOAD vld1q_f32
  1460. #define GGML_F32x4_STORE vst1q_f32
  1461. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1462. #define GGML_F32x4_ADD vaddq_f32
  1463. #define GGML_F32x4_MUL vmulq_f32
  1464. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1478. } \
  1479. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1480. }
  1481. #define GGML_F32_VEC GGML_F32x4
  1482. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1483. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1484. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1485. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1486. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1487. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1488. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1489. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1490. // F16 NEON
  1491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1492. #define GGML_F16_STEP 32
  1493. #define GGML_F16_EPR 8
  1494. #define GGML_F16x8 float16x8_t
  1495. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1496. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1497. #define GGML_F16x8_LOAD vld1q_f16
  1498. #define GGML_F16x8_STORE vst1q_f16
  1499. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1500. #define GGML_F16x8_ADD vaddq_f16
  1501. #define GGML_F16x8_MUL vmulq_f16
  1502. #define GGML_F16x8_REDUCE(res, x) \
  1503. { \
  1504. int offset = GGML_F16_ARR >> 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1515. } \
  1516. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1517. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1518. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1519. }
  1520. #define GGML_F16_VEC GGML_F16x8
  1521. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1529. #else
  1530. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1531. // and take advantage of the vcvt_ functions to convert to/from FP16
  1532. #define GGML_F16_STEP 16
  1533. #define GGML_F16_EPR 4
  1534. #define GGML_F32Cx4 float32x4_t
  1535. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1536. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1537. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1538. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1539. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1540. #define GGML_F32Cx4_ADD vaddq_f32
  1541. #define GGML_F32Cx4_MUL vmulq_f32
  1542. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1543. #define GGML_F16_VEC GGML_F32Cx4
  1544. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1545. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1546. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1547. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1548. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1549. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1550. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1551. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1552. #endif
  1553. #elif defined(__AVX__)
  1554. #define GGML_SIMD
  1555. // F32 AVX
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 8
  1558. #define GGML_F32x8 __m256
  1559. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1560. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1561. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1562. #define GGML_F32x8_STORE _mm256_storeu_ps
  1563. #if defined(__FMA__)
  1564. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1565. #else
  1566. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1567. #endif
  1568. #define GGML_F32x8_ADD _mm256_add_ps
  1569. #define GGML_F32x8_MUL _mm256_mul_ps
  1570. #define GGML_F32x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F32_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1583. } \
  1584. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1585. _mm256_extractf128_ps(x[0], 1)); \
  1586. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1587. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1588. }
  1589. // TODO: is this optimal ?
  1590. #define GGML_F32_VEC GGML_F32x8
  1591. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1599. // F16 AVX
  1600. #define GGML_F16_STEP 32
  1601. #define GGML_F16_EPR 8
  1602. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1603. #define GGML_F32Cx8 __m256
  1604. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1606. #if defined(__F16C__)
  1607. // the _mm256_cvt intrinsics require F16C
  1608. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1609. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1610. #else
  1611. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1612. float tmp[8];
  1613. for (int i = 0; i < 8; i++) {
  1614. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1615. }
  1616. return _mm256_loadu_ps(tmp);
  1617. }
  1618. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1619. float arr[8];
  1620. _mm256_storeu_ps(arr, y);
  1621. for (int i = 0; i < 8; i++)
  1622. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1623. }
  1624. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1625. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1626. #endif
  1627. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1628. #define GGML_F32Cx8_ADD _mm256_add_ps
  1629. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1630. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1631. #define GGML_F16_VEC GGML_F32Cx8
  1632. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1633. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1634. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1635. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1636. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1637. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1638. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1639. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1640. #elif defined(__POWER9_VECTOR__)
  1641. #define GGML_SIMD
  1642. // F32 POWER9
  1643. #define GGML_F32_STEP 32
  1644. #define GGML_F32_EPR 4
  1645. #define GGML_F32x4 vector float
  1646. #define GGML_F32x4_ZERO 0.0f
  1647. #define GGML_F32x4_SET1 vec_splats
  1648. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1649. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1650. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1651. #define GGML_F32x4_ADD vec_add
  1652. #define GGML_F32x4_MUL vec_mul
  1653. #define GGML_F32x4_REDUCE(res, x) \
  1654. { \
  1655. int offset = GGML_F32_ARR >> 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. offset >>= 1; \
  1664. for (int i = 0; i < offset; ++i) { \
  1665. x[i] = vec_add(x[i], x[offset+i]); \
  1666. } \
  1667. res = vec_extract(x[0], 0) + \
  1668. vec_extract(x[0], 1) + \
  1669. vec_extract(x[0], 2) + \
  1670. vec_extract(x[0], 3); \
  1671. }
  1672. #define GGML_F32_VEC GGML_F32x4
  1673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // F16 POWER9
  1682. #define GGML_F16_STEP GGML_F32_STEP
  1683. #define GGML_F16_EPR GGML_F32_EPR
  1684. #define GGML_F16_VEC GGML_F32x4
  1685. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1687. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1689. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1690. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1691. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1692. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1693. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1694. #define GGML_F16_VEC_STORE(p, r, i) \
  1695. if (i & 0x1) \
  1696. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1697. r[i - GGML_ENDIAN_BYTE(0)]), \
  1698. 0, p - GGML_F16_EPR)
  1699. #elif defined(__wasm_simd128__)
  1700. #define GGML_SIMD
  1701. // F32 WASM
  1702. #define GGML_F32_STEP 16
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 v128_t
  1705. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1706. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1707. #define GGML_F32x4_LOAD wasm_v128_load
  1708. #define GGML_F32x4_STORE wasm_v128_store
  1709. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1710. #define GGML_F32x4_ADD wasm_f32x4_add
  1711. #define GGML_F32x4_MUL wasm_f32x4_mul
  1712. #define GGML_F32x4_REDUCE(res, x) \
  1713. { \
  1714. int offset = GGML_F32_ARR >> 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. offset >>= 1; \
  1723. for (int i = 0; i < offset; ++i) { \
  1724. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1725. } \
  1726. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1727. wasm_f32x4_extract_lane(x[0], 1) + \
  1728. wasm_f32x4_extract_lane(x[0], 2) + \
  1729. wasm_f32x4_extract_lane(x[0], 3); \
  1730. }
  1731. #define GGML_F32_VEC GGML_F32x4
  1732. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1733. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1734. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1735. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1736. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1738. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1739. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1740. // F16 WASM
  1741. #define GGML_F16_STEP 16
  1742. #define GGML_F16_EPR 4
  1743. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1744. float tmp[4];
  1745. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1746. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1747. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1748. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1749. return wasm_v128_load(tmp);
  1750. }
  1751. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1752. float tmp[4];
  1753. wasm_v128_store(tmp, x);
  1754. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1755. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1756. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1757. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1758. }
  1759. #define GGML_F16x4 v128_t
  1760. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1761. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1762. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1763. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1764. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1765. #define GGML_F16x4_ADD wasm_f32x4_add
  1766. #define GGML_F16x4_MUL wasm_f32x4_mul
  1767. #define GGML_F16x4_REDUCE(res, x) \
  1768. { \
  1769. int offset = GGML_F16_ARR >> 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. offset >>= 1; \
  1778. for (int i = 0; i < offset; ++i) { \
  1779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1780. } \
  1781. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1782. wasm_f32x4_extract_lane(x[0], 1) + \
  1783. wasm_f32x4_extract_lane(x[0], 2) + \
  1784. wasm_f32x4_extract_lane(x[0], 3); \
  1785. }
  1786. #define GGML_F16_VEC GGML_F16x4
  1787. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1795. #elif defined(__SSE3__)
  1796. #define GGML_SIMD
  1797. // F32 SSE
  1798. #define GGML_F32_STEP 32
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 __m128
  1801. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1802. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1803. #define GGML_F32x4_LOAD _mm_loadu_ps
  1804. #define GGML_F32x4_STORE _mm_storeu_ps
  1805. #if defined(__FMA__)
  1806. // TODO: Does this work?
  1807. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x4_ADD _mm_add_ps
  1812. #define GGML_F32x4_MUL _mm_mul_ps
  1813. #define GGML_F32x4_REDUCE(res, x) \
  1814. { \
  1815. int offset = GGML_F32_ARR >> 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1826. } \
  1827. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1828. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1829. }
  1830. // TODO: is this optimal ?
  1831. #define GGML_F32_VEC GGML_F32x4
  1832. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1833. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1834. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1835. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1836. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1837. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1838. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1839. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1840. // F16 SSE
  1841. #define GGML_F16_STEP 32
  1842. #define GGML_F16_EPR 4
  1843. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1844. float tmp[4];
  1845. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1846. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1847. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1848. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1849. return _mm_loadu_ps(tmp);
  1850. }
  1851. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1852. float arr[4];
  1853. _mm_storeu_ps(arr, y);
  1854. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1855. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1856. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1857. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1858. }
  1859. #define GGML_F32Cx4 __m128
  1860. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1861. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1862. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1863. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1864. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1865. #define GGML_F32Cx4_ADD _mm_add_ps
  1866. #define GGML_F32Cx4_MUL _mm_mul_ps
  1867. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1868. #define GGML_F16_VEC GGML_F32Cx4
  1869. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1870. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1871. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1873. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1874. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1875. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1876. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1877. #endif
  1878. // GGML_F32_ARR / GGML_F16_ARR
  1879. // number of registers to use per step
  1880. #ifdef GGML_SIMD
  1881. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1882. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1883. #endif
  1884. //
  1885. // fundamental operations
  1886. //
  1887. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1892. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1893. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1894. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1895. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1896. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1898. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1899. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1900. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1901. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1902. #ifdef GGML_SIMD
  1903. float sumf = 0.0f;
  1904. const int np = (n & ~(GGML_F32_STEP - 1));
  1905. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1906. GGML_F32_VEC ax[GGML_F32_ARR];
  1907. GGML_F32_VEC ay[GGML_F32_ARR];
  1908. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1909. for (int j = 0; j < GGML_F32_ARR; j++) {
  1910. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1911. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1912. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1913. }
  1914. }
  1915. // reduce sum0..sum3 to sum0
  1916. GGML_F32_VEC_REDUCE(sumf, sum);
  1917. // leftovers
  1918. for (int i = np; i < n; ++i) {
  1919. sumf += x[i]*y[i];
  1920. }
  1921. #else
  1922. // scalar
  1923. ggml_float sumf = 0.0;
  1924. for (int i = 0; i < n; ++i) {
  1925. sumf += (ggml_float)(x[i]*y[i]);
  1926. }
  1927. #endif
  1928. *s = sumf;
  1929. }
  1930. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1931. ggml_float sumf = 0.0;
  1932. #if defined(GGML_SIMD)
  1933. const int np = (n & ~(GGML_F16_STEP - 1));
  1934. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1935. GGML_F16_VEC ax[GGML_F16_ARR];
  1936. GGML_F16_VEC ay[GGML_F16_ARR];
  1937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1938. for (int j = 0; j < GGML_F16_ARR; j++) {
  1939. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1940. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1941. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1942. }
  1943. }
  1944. // reduce sum0..sum3 to sum0
  1945. GGML_F16_VEC_REDUCE(sumf, sum);
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #else
  1951. for (int i = 0; i < n; ++i) {
  1952. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1953. }
  1954. #endif
  1955. *s = sumf;
  1956. }
  1957. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1958. const int qk = QK8_0;
  1959. const int nb = n / qk;
  1960. assert(n % qk == 0);
  1961. assert(nb % 2 == 0);
  1962. const block_q4_0 * restrict x = vx;
  1963. const block_q8_0 * restrict y = vy;
  1964. #if defined(__ARM_NEON)
  1965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1967. for (int i = 0; i < nb; i += 2) {
  1968. const block_q4_0 * restrict x0 = &x[i + 0];
  1969. const block_q4_0 * restrict x1 = &x[i + 1];
  1970. const block_q8_0 * restrict y0 = &y[i + 0];
  1971. const block_q8_0 * restrict y1 = &y[i + 1];
  1972. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1973. const int8x16_t s8b = vdupq_n_s8(0x8);
  1974. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1975. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1976. // 4-bit -> 8-bit
  1977. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1978. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1979. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1980. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1981. // sub 8
  1982. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1983. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1984. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1985. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. #if defined(__ARM_FEATURE_DOTPROD)
  1992. // dot product into int32x4_t
  1993. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1994. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1995. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1996. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1997. #else
  1998. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1999. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2000. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2001. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2002. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2003. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2004. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2005. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2006. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2007. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2008. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2009. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2011. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2012. #endif
  2013. }
  2014. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2015. #elif defined(__AVX2__)
  2016. // Initialize accumulator with zeros
  2017. __m256 acc = _mm256_setzero_ps();
  2018. // Main loop
  2019. for (int i = 0; i < nb; ++i) {
  2020. /* Compute combined scale for the block */
  2021. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2022. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2023. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2024. const __m256i off = _mm256_set1_epi8( 8 );
  2025. bx = _mm256_sub_epi8( bx, off );
  2026. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2027. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2028. /* Multiply q with scale and accumulate */
  2029. acc = _mm256_fmadd_ps( d, q, acc );
  2030. }
  2031. *s = hsum_float_8(acc);
  2032. #elif defined(__AVX__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. // Main loop
  2036. for (int i = 0; i < nb; ++i) {
  2037. // Compute combined scale for the block
  2038. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2039. const __m128i lowMask = _mm_set1_epi8(0xF);
  2040. const __m128i off = _mm_set1_epi8(8);
  2041. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2042. __m128i bx = _mm_and_si128(lowMask, tmp);
  2043. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2046. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2047. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2048. bx = _mm_sub_epi8(bx, off);
  2049. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2050. // Convert int32_t to float
  2051. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2052. // Apply the scale, and accumulate
  2053. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__SSSE3__)
  2057. // set constants
  2058. const __m128i lowMask = _mm_set1_epi8(0xF);
  2059. const __m128i off = _mm_set1_epi8(8);
  2060. // Initialize accumulator with zeros
  2061. __m128 acc_0 = _mm_setzero_ps();
  2062. __m128 acc_1 = _mm_setzero_ps();
  2063. __m128 acc_2 = _mm_setzero_ps();
  2064. __m128 acc_3 = _mm_setzero_ps();
  2065. // First round without accumulation
  2066. {
  2067. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2068. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2069. // Compute combined scale for the block 0 and 1
  2070. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2071. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2072. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2073. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2074. bx_0 = _mm_sub_epi8(bx_0, off);
  2075. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2076. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2077. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2078. bx_1 = _mm_sub_epi8(bx_1, off);
  2079. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2080. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 2 and 3
  2083. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2084. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2085. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2086. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2087. bx_2 = _mm_sub_epi8(bx_2, off);
  2088. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2089. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2090. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2091. bx_3 = _mm_sub_epi8(bx_3, off);
  2092. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2093. // Convert int32_t to float
  2094. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2095. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2096. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2097. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2098. // Apply the scale
  2099. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2100. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2101. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2102. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2103. }
  2104. // Main loop
  2105. for (int i = 2; i < nb; i+=2) {
  2106. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2107. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2108. // Compute combined scale for the block 0 and 1
  2109. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2110. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2111. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2112. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2113. bx_0 = _mm_sub_epi8(bx_0, off);
  2114. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2115. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2116. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2117. bx_1 = _mm_sub_epi8(bx_1, off);
  2118. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2119. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 2 and 3
  2122. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2123. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2124. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2125. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2126. bx_2 = _mm_sub_epi8(bx_2, off);
  2127. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2128. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2129. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2130. bx_3 = _mm_sub_epi8(bx_3, off);
  2131. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2132. // Convert int32_t to float
  2133. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2134. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2135. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2136. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2137. // Apply the scale
  2138. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2139. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2140. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2141. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2142. // Acummulate
  2143. acc_0 = _mm_add_ps(p0_d, acc_0);
  2144. acc_1 = _mm_add_ps(p1_d, acc_1);
  2145. acc_2 = _mm_add_ps(p2_d, acc_2);
  2146. acc_3 = _mm_add_ps(p3_d, acc_3);
  2147. }
  2148. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2149. #else
  2150. // scalar
  2151. float sumf = 0.0;
  2152. for (int i = 0; i < nb; i++) {
  2153. int sumi = 0;
  2154. for (int j = 0; j < qk/2; ++j) {
  2155. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2156. const int v1 = (x[i].qs[j] >> 4) - 8;
  2157. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2158. }
  2159. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2160. }
  2161. *s = sumf;
  2162. #endif
  2163. }
  2164. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2165. const int qk = QK8_1;
  2166. const int nb = n / qk;
  2167. assert(n % qk == 0);
  2168. assert(nb % 2 == 0);
  2169. const block_q4_1 * restrict x = vx;
  2170. const block_q8_1 * restrict y = vy;
  2171. // TODO: add WASM SIMD
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. float summs = 0;
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_1 * restrict x0 = &x[i + 0];
  2178. const block_q4_1 * restrict x1 = &x[i + 1];
  2179. const block_q8_1 * restrict y0 = &y[i + 0];
  2180. const block_q8_1 * restrict y1 = &y[i + 1];
  2181. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2182. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // load y
  2191. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2192. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2193. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2194. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2195. #if defined(__ARM_FEATURE_DOTPROD)
  2196. // dot product into int32x4_t
  2197. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2198. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2199. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2201. #else
  2202. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2203. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2204. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2205. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2206. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2207. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2208. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2209. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2210. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2211. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2212. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2213. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2214. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2215. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2216. #endif
  2217. }
  2218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2219. #elif defined(__AVX2__) || defined(__AVX__)
  2220. // Initialize accumulator with zeros
  2221. __m256 acc = _mm256_setzero_ps();
  2222. float summs = 0;
  2223. // Main loop
  2224. for (int i = 0; i < nb; ++i) {
  2225. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2226. const float d1 = y[i].d;
  2227. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2228. const __m256 d0v = _mm256_set1_ps( d0 );
  2229. const __m256 d1v = _mm256_set1_ps( d1 );
  2230. // Compute combined scales
  2231. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2232. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2233. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2234. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2235. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2236. // Accumulate d0*d1*x*y
  2237. #if defined(__AVX2__)
  2238. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2239. #else
  2240. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2241. #endif
  2242. }
  2243. *s = hsum_float_8(acc) + summs;
  2244. #else
  2245. // scalar
  2246. float sumf = 0.0;
  2247. for (int i = 0; i < nb; i++) {
  2248. int sumi = 0;
  2249. for (int j = 0; j < qk/2; ++j) {
  2250. const int v0 = (x[i].qs[j] & 0x0F);
  2251. const int v1 = (x[i].qs[j] >> 4);
  2252. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2253. }
  2254. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int qk = QK8_0;
  2261. const int nb = n / qk;
  2262. assert(n % qk == 0);
  2263. assert(nb % 2 == 0);
  2264. assert(qk == QK5_0);
  2265. const block_q5_0 * restrict x = vx;
  2266. const block_q8_0 * restrict y = vy;
  2267. #if defined(__ARM_NEON)
  2268. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2269. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2270. uint32_t qh0;
  2271. uint32_t qh1;
  2272. uint64_t tmp0[4];
  2273. uint64_t tmp1[4];
  2274. for (int i = 0; i < nb; i += 2) {
  2275. const block_q5_0 * restrict x0 = &x[i];
  2276. const block_q5_0 * restrict x1 = &x[i + 1];
  2277. const block_q8_0 * restrict y0 = &y[i];
  2278. const block_q8_0 * restrict y1 = &y[i + 1];
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. // extract the 5th bit via lookup table ((!b) << 4)
  2281. memcpy(&qh0, x0->qh, sizeof(qh0));
  2282. memcpy(&qh1, x1->qh, sizeof(qh1));
  2283. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2284. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2285. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2286. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2287. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2288. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2289. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2290. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2291. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2292. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2293. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2294. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2295. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2296. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2297. // 4-bit -> 8-bit
  2298. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2299. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2300. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2301. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2303. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2304. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2305. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2306. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2307. // load y
  2308. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2309. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2311. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2318. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2319. #else
  2320. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2321. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2322. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2323. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2324. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2325. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2326. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2327. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2328. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2329. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2330. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2331. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__wasm_simd128__)
  2338. v128_t sumv = wasm_f32x4_splat(0.0f);
  2339. uint32_t qh;
  2340. uint64_t tmp[4];
  2341. // TODO: check if unrolling this is better
  2342. for (int i = 0; i < nb; ++i) {
  2343. const block_q5_0 * restrict x0 = &x[i];
  2344. const block_q8_0 * restrict y0 = &y[i];
  2345. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2346. // extract the 5th bit
  2347. memcpy(&qh, x0->qh, sizeof(qh));
  2348. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2349. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2350. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2351. tmp[3] = table_b2b_1[(qh >> 24) ];
  2352. const v128_t qhl = wasm_v128_load(tmp + 0);
  2353. const v128_t qhh = wasm_v128_load(tmp + 2);
  2354. const v128_t v0 = wasm_v128_load(x0->qs);
  2355. // 4-bit -> 8-bit
  2356. const v128_t v0l = wasm_v128_and (v0, m4b);
  2357. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2358. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2359. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2360. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2361. // load y
  2362. const v128_t v1l = wasm_v128_load(y0->qs);
  2363. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2364. // int8x16 -> int16x8
  2365. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2366. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2367. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2368. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2369. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2370. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2371. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2372. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2373. // dot product
  2374. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2375. wasm_i32x4_add(
  2376. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2377. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2378. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2379. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2380. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2381. }
  2382. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2383. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2384. #elif defined(__AVX2__)
  2385. // Initialize accumulator with zeros
  2386. __m256 acc = _mm256_setzero_ps();
  2387. // Main loop
  2388. for (int i = 0; i < nb; i++) {
  2389. /* Compute combined scale for the block */
  2390. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2391. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2392. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2393. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2394. bx = _mm256_or_si256(bx, bxhi);
  2395. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2396. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2397. /* Multiply q with scale and accumulate */
  2398. acc = _mm256_fmadd_ps(d, q, acc);
  2399. }
  2400. *s = hsum_float_8(acc);
  2401. #elif defined(__AVX__)
  2402. // Initialize accumulator with zeros
  2403. __m256 acc = _mm256_setzero_ps();
  2404. __m128i mask = _mm_set1_epi8((char)0xF0);
  2405. // Main loop
  2406. for (int i = 0; i < nb; i++) {
  2407. /* Compute combined scale for the block */
  2408. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2409. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2410. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2411. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2412. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2413. bxhil = _mm_andnot_si128(bxhil, mask);
  2414. bxhih = _mm_andnot_si128(bxhih, mask);
  2415. __m128i bxl = _mm256_castsi256_si128(bx);
  2416. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2417. bxl = _mm_or_si128(bxl, bxhil);
  2418. bxh = _mm_or_si128(bxh, bxhih);
  2419. bx = MM256_SET_M128I(bxh, bxl);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #else
  2427. // scalar
  2428. float sumf = 0.0;
  2429. for (int i = 0; i < nb; i++) {
  2430. uint32_t qh;
  2431. memcpy(&qh, x[i].qh, sizeof(qh));
  2432. int sumi = 0;
  2433. for (int j = 0; j < qk/2; ++j) {
  2434. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2435. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2436. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2437. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2438. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2439. }
  2440. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2441. }
  2442. *s = sumf;
  2443. #endif
  2444. }
  2445. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2446. const int qk = QK8_1;
  2447. const int nb = n / qk;
  2448. assert(n % qk == 0);
  2449. assert(nb % 2 == 0);
  2450. assert(qk == QK5_1);
  2451. const block_q5_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. #if defined(__ARM_NEON)
  2454. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2455. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2456. float summs0 = 0.0f;
  2457. float summs1 = 0.0f;
  2458. uint32_t qh0;
  2459. uint32_t qh1;
  2460. uint64_t tmp0[4];
  2461. uint64_t tmp1[4];
  2462. for (int i = 0; i < nb; i += 2) {
  2463. const block_q5_1 * restrict x0 = &x[i];
  2464. const block_q5_1 * restrict x1 = &x[i + 1];
  2465. const block_q8_1 * restrict y0 = &y[i];
  2466. const block_q8_1 * restrict y1 = &y[i + 1];
  2467. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2468. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2469. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2470. // extract the 5th bit via lookup table ((b) << 4)
  2471. memcpy(&qh0, x0->qh, sizeof(qh0));
  2472. memcpy(&qh1, x1->qh, sizeof(qh1));
  2473. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2474. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2475. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2476. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2477. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2478. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2479. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2480. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2481. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2482. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2483. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2484. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2485. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2486. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2487. // 4-bit -> 8-bit
  2488. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2489. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2490. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2491. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2492. // add high bit
  2493. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2494. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2495. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2496. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2497. // load y
  2498. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2499. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2500. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2501. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2502. #if defined(__ARM_FEATURE_DOTPROD)
  2503. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2506. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2507. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2508. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2509. #else
  2510. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2511. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2512. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2513. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2514. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2515. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2516. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2517. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2518. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2519. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2520. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2521. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2522. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2523. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2524. #endif
  2525. }
  2526. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2527. #elif defined(__wasm_simd128__)
  2528. v128_t sumv = wasm_f32x4_splat(0.0f);
  2529. float summs = 0.0f;
  2530. uint32_t qh;
  2531. uint64_t tmp[4];
  2532. // TODO: check if unrolling this is better
  2533. for (int i = 0; i < nb; ++i) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q8_1 * restrict y0 = &y[i];
  2536. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2537. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2538. // extract the 5th bit
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_0[(qh >> 24) ];
  2544. const v128_t qhl = wasm_v128_load(tmp + 0);
  2545. const v128_t qhh = wasm_v128_load(tmp + 2);
  2546. const v128_t v0 = wasm_v128_load(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const v128_t v0l = wasm_v128_and (v0, m4b);
  2549. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2550. // add high bit
  2551. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2552. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2553. // load y
  2554. const v128_t v1l = wasm_v128_load(y0->qs);
  2555. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2556. // int8x16 -> int16x8
  2557. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2558. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2559. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2560. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2561. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2562. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2563. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2564. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2565. // dot product
  2566. sumv = wasm_f32x4_add(sumv,
  2567. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2568. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2569. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2571. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2572. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2573. }
  2574. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2575. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2576. #elif defined(__AVX2__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. float summs = 0.0f;
  2580. // Main loop
  2581. for (int i = 0; i < nb; i++) {
  2582. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2583. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2584. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2585. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2586. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2587. bx = _mm256_or_si256(bx, bxhi);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #elif defined(__AVX__)
  2595. // Initialize accumulator with zeros
  2596. __m256 acc = _mm256_setzero_ps();
  2597. __m128i mask = _mm_set1_epi8(0x10);
  2598. float summs = 0.0f;
  2599. // Main loop
  2600. for (int i = 0; i < nb; i++) {
  2601. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2602. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2603. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2604. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2605. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2606. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2607. bxhil = _mm_and_si128(bxhil, mask);
  2608. bxhih = _mm_and_si128(bxhih, mask);
  2609. __m128i bxl = _mm256_castsi256_si128(bx);
  2610. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2611. bxl = _mm_or_si128(bxl, bxhil);
  2612. bxh = _mm_or_si128(bxh, bxhih);
  2613. bx = MM256_SET_M128I(bxh, bxl);
  2614. const __m256 dy = _mm256_set1_ps(y[i].d);
  2615. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2617. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2618. }
  2619. *s = hsum_float_8(acc) + summs;
  2620. #else
  2621. // scalar
  2622. float sumf = 0.0;
  2623. for (int i = 0; i < nb; i++) {
  2624. uint32_t qh;
  2625. memcpy(&qh, x[i].qh, sizeof(qh));
  2626. int sumi = 0;
  2627. for (int j = 0; j < qk/2; ++j) {
  2628. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2629. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2630. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2631. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2632. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2633. }
  2634. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2635. }
  2636. *s = sumf;
  2637. #endif
  2638. }
  2639. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2640. const int qk = QK8_0;
  2641. const int nb = n / qk;
  2642. assert(n % qk == 0);
  2643. assert(nb % 2 == 0);
  2644. const block_q8_0 * restrict x = vx;
  2645. const block_q8_0 * restrict y = vy;
  2646. #if defined(__ARM_NEON)
  2647. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2648. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2649. for (int i = 0; i < nb; i += 2) {
  2650. const block_q8_0 * restrict x0 = &x[i + 0];
  2651. const block_q8_0 * restrict x1 = &x[i + 1];
  2652. const block_q8_0 * restrict y0 = &y[i + 0];
  2653. const block_q8_0 * restrict y1 = &y[i + 1];
  2654. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2655. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2656. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2657. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2658. // load y
  2659. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2660. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2661. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2662. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2663. #if defined(__ARM_FEATURE_DOTPROD)
  2664. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2666. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2668. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2669. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2670. #else
  2671. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2672. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2673. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2674. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2675. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2676. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2677. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2678. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2679. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2680. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2681. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2682. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2683. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2684. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2688. #elif defined(__AVX2__) || defined(__AVX__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; ++i) {
  2693. // Compute combined scale for the block
  2694. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2695. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2696. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2697. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2698. // Multiply q with scale and accumulate
  2699. #if defined(__AVX2__)
  2700. acc = _mm256_fmadd_ps( d, q, acc );
  2701. #else
  2702. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2703. #endif
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. int sumi = 0;
  2711. for (int j = 0; j < qk; j++) {
  2712. sumi += x[i].qs[j]*y[i].qs[j];
  2713. }
  2714. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2715. }
  2716. *s = sumf;
  2717. #endif
  2718. }
  2719. // compute GGML_VEC_DOT_UNROLL dot products at once
  2720. // xs - x row stride in bytes
  2721. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2722. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2723. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2724. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2725. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2726. }
  2727. #if defined(GGML_SIMD)
  2728. const int np = (n & ~(GGML_F16_STEP - 1));
  2729. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2730. GGML_F16_VEC ax[GGML_F16_ARR];
  2731. GGML_F16_VEC ay[GGML_F16_ARR];
  2732. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2733. for (int j = 0; j < GGML_F16_ARR; j++) {
  2734. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2735. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2736. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2737. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2738. }
  2739. }
  2740. }
  2741. // reduce sum0..sum3 to sum0
  2742. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2743. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2744. }
  2745. // leftovers
  2746. for (int i = np; i < n; ++i) {
  2747. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2748. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2749. }
  2750. }
  2751. #else
  2752. for (int i = 0; i < n; ++i) {
  2753. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2754. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2755. }
  2756. }
  2757. #endif
  2758. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2759. s[i] = sumf[i];
  2760. }
  2761. }
  2762. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ax[GGML_F32_ARR];
  2767. GGML_F32_VEC ay[GGML_F32_ARR];
  2768. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2769. for (int j = 0; j < GGML_F32_ARR; j++) {
  2770. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2771. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2772. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2773. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2774. }
  2775. }
  2776. // leftovers
  2777. for (int i = np; i < n; ++i) {
  2778. y[i] += x[i]*v;
  2779. }
  2780. #else
  2781. // scalar
  2782. for (int i = 0; i < n; ++i) {
  2783. y[i] += x[i]*v;
  2784. }
  2785. #endif
  2786. }
  2787. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2788. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2789. #if defined(GGML_USE_ACCELERATE)
  2790. vDSP_vsmul(y, 1, &v, y, 1, n);
  2791. #elif defined(GGML_SIMD)
  2792. const int np = (n & ~(GGML_F32_STEP - 1));
  2793. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2794. GGML_F32_VEC ay[GGML_F32_ARR];
  2795. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2796. for (int j = 0; j < GGML_F32_ARR; j++) {
  2797. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2798. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2799. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2800. }
  2801. }
  2802. // leftovers
  2803. for (int i = np; i < n; ++i) {
  2804. y[i] *= v;
  2805. }
  2806. #else
  2807. // scalar
  2808. for (int i = 0; i < n; ++i) {
  2809. y[i] *= v;
  2810. }
  2811. #endif
  2812. }
  2813. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2814. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2815. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2816. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2817. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2818. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2819. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2820. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2821. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2822. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2823. static const float GELU_COEF_A = 0.044715f;
  2824. static const float GELU_QUICK_COEF = -1.702f;
  2825. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2826. inline static float ggml_gelu_f32(float x) {
  2827. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2828. }
  2829. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2830. const uint16_t * i16 = (const uint16_t *) x;
  2831. for (int i = 0; i < n; ++i) {
  2832. y[i] = table_gelu_f16[i16[i]];
  2833. }
  2834. }
  2835. #ifdef GGML_GELU_FP16
  2836. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2837. uint16_t t;
  2838. for (int i = 0; i < n; ++i) {
  2839. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2840. memcpy(&t, &fp16, sizeof(uint16_t));
  2841. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2842. }
  2843. }
  2844. #else
  2845. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2846. for (int i = 0; i < n; ++i) {
  2847. y[i] = ggml_gelu_f32(x[i]);
  2848. }
  2849. }
  2850. #endif
  2851. inline static float ggml_gelu_quick_f32(float x) {
  2852. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2853. }
  2854. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2855. // const uint16_t * i16 = (const uint16_t *) x;
  2856. // for (int i = 0; i < n; ++i) {
  2857. // y[i] = table_gelu_quick_f16[i16[i]];
  2858. // }
  2859. //}
  2860. #ifdef GGML_GELU_QUICK_FP16
  2861. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2862. uint16_t t;
  2863. for (int i = 0; i < n; ++i) {
  2864. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2865. memcpy(&t, &fp16, sizeof(uint16_t));
  2866. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2867. }
  2868. }
  2869. #else
  2870. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2871. for (int i = 0; i < n; ++i) {
  2872. y[i] = ggml_gelu_quick_f32(x[i]);
  2873. }
  2874. }
  2875. #endif
  2876. // Sigmoid Linear Unit (SiLU) function
  2877. inline static float ggml_silu_f32(float x) {
  2878. return x/(1.0f + expf(-x));
  2879. }
  2880. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2881. // const uint16_t * i16 = (const uint16_t *) x;
  2882. // for (int i = 0; i < n; ++i) {
  2883. // y[i] = table_silu_f16[i16[i]];
  2884. // }
  2885. //}
  2886. #ifdef GGML_SILU_FP16
  2887. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2888. uint16_t t;
  2889. for (int i = 0; i < n; ++i) {
  2890. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2891. memcpy(&t, &fp16, sizeof(uint16_t));
  2892. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2893. }
  2894. }
  2895. #else
  2896. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2897. for (int i = 0; i < n; ++i) {
  2898. y[i] = ggml_silu_f32(x[i]);
  2899. }
  2900. }
  2901. #endif
  2902. inline static float ggml_silu_backward_f32(float x, float dy) {
  2903. const float s = 1.0f/(1.0f + expf(-x));
  2904. return dy*s*(1.0f + x*(1.0f - s));
  2905. }
  2906. #ifdef GGML_SILU_FP16
  2907. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2908. for (int i = 0; i < n; ++i) {
  2909. // we did not use x[i] to compute forward silu but its f16 equivalent
  2910. // take derivative at f16 of x[i]:
  2911. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2912. float usedx = GGML_FP16_TO_FP32(fp16);
  2913. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2914. }
  2915. }
  2916. #else
  2917. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2918. for (int i = 0; i < n; ++i) {
  2919. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2920. }
  2921. }
  2922. #endif
  2923. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2924. #ifndef GGML_USE_ACCELERATE
  2925. ggml_float sum = 0.0;
  2926. for (int i = 0; i < n; ++i) {
  2927. sum += (ggml_float)x[i];
  2928. }
  2929. *s = sum;
  2930. #else
  2931. vDSP_sve(x, 1, s, n);
  2932. #endif
  2933. }
  2934. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2935. ggml_float sum = 0.0;
  2936. for (int i = 0; i < n; ++i) {
  2937. sum += (ggml_float)x[i];
  2938. }
  2939. *s = sum;
  2940. }
  2941. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2942. float sum = 0.0f;
  2943. for (int i = 0; i < n; ++i) {
  2944. sum += GGML_FP16_TO_FP32(x[i]);
  2945. }
  2946. *s = sum;
  2947. }
  2948. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2949. #ifndef GGML_USE_ACCELERATE
  2950. float max = -INFINITY;
  2951. for (int i = 0; i < n; ++i) {
  2952. max = MAX(max, x[i]);
  2953. }
  2954. *s = max;
  2955. #else
  2956. vDSP_maxv(x, 1, s, n);
  2957. #endif
  2958. }
  2959. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2960. ggml_vec_norm_f32(n, s, x);
  2961. *s = 1.f/(*s);
  2962. }
  2963. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2964. float max = -INFINITY;
  2965. int idx = 0;
  2966. for (int i = 0; i < n; ++i) {
  2967. max = MAX(max, x[i]);
  2968. if (max == x[i]) { idx = i; }
  2969. }
  2970. *s = idx;
  2971. }
  2972. //
  2973. // data types
  2974. //
  2975. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2976. [GGML_TYPE_F32] = 1,
  2977. [GGML_TYPE_F16] = 1,
  2978. [GGML_TYPE_Q4_0] = QK4_0,
  2979. [GGML_TYPE_Q4_1] = QK4_1,
  2980. [GGML_TYPE_Q5_0] = QK5_0,
  2981. [GGML_TYPE_Q5_1] = QK5_1,
  2982. [GGML_TYPE_Q8_0] = QK8_0,
  2983. [GGML_TYPE_Q8_1] = QK8_1,
  2984. #ifdef GGML_USE_K_QUANTS
  2985. [GGML_TYPE_Q2_K] = QK_K,
  2986. [GGML_TYPE_Q3_K] = QK_K,
  2987. [GGML_TYPE_Q4_K] = QK_K,
  2988. [GGML_TYPE_Q5_K] = QK_K,
  2989. [GGML_TYPE_Q6_K] = QK_K,
  2990. [GGML_TYPE_Q8_K] = QK_K,
  2991. #endif
  2992. [GGML_TYPE_I8] = 1,
  2993. [GGML_TYPE_I16] = 1,
  2994. [GGML_TYPE_I32] = 1,
  2995. };
  2996. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2997. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2998. [GGML_TYPE_F32] = sizeof(float),
  2999. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3000. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3001. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3002. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3003. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3004. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3005. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3006. #ifdef GGML_USE_K_QUANTS
  3007. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3008. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3009. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3010. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3011. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3012. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3013. #endif
  3014. [GGML_TYPE_I8] = sizeof(int8_t),
  3015. [GGML_TYPE_I16] = sizeof(int16_t),
  3016. [GGML_TYPE_I32] = sizeof(int32_t),
  3017. };
  3018. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3019. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3020. [GGML_TYPE_F32] = "f32",
  3021. [GGML_TYPE_F16] = "f16",
  3022. [GGML_TYPE_Q4_0] = "q4_0",
  3023. [GGML_TYPE_Q4_1] = "q4_1",
  3024. [GGML_TYPE_Q5_0] = "q5_0",
  3025. [GGML_TYPE_Q5_1] = "q5_1",
  3026. [GGML_TYPE_Q8_0] = "q8_0",
  3027. [GGML_TYPE_Q8_1] = "q8_1",
  3028. [GGML_TYPE_Q2_K] = "q2_K",
  3029. [GGML_TYPE_Q3_K] = "q3_K",
  3030. [GGML_TYPE_Q4_K] = "q4_K",
  3031. [GGML_TYPE_Q5_K] = "q5_K",
  3032. [GGML_TYPE_Q6_K] = "q6_K",
  3033. [GGML_TYPE_Q8_K] = "q8_K",
  3034. [GGML_TYPE_I8] = "i8",
  3035. [GGML_TYPE_I16] = "i16",
  3036. [GGML_TYPE_I32] = "i32",
  3037. };
  3038. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3039. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3040. [GGML_TYPE_F32] = false,
  3041. [GGML_TYPE_F16] = false,
  3042. [GGML_TYPE_Q4_0] = true,
  3043. [GGML_TYPE_Q4_1] = true,
  3044. [GGML_TYPE_Q5_0] = true,
  3045. [GGML_TYPE_Q5_1] = true,
  3046. [GGML_TYPE_Q8_0] = true,
  3047. [GGML_TYPE_Q8_1] = true,
  3048. [GGML_TYPE_Q2_K] = true,
  3049. [GGML_TYPE_Q3_K] = true,
  3050. [GGML_TYPE_Q4_K] = true,
  3051. [GGML_TYPE_Q5_K] = true,
  3052. [GGML_TYPE_Q6_K] = true,
  3053. [GGML_TYPE_Q8_K] = true,
  3054. [GGML_TYPE_I8] = false,
  3055. [GGML_TYPE_I16] = false,
  3056. [GGML_TYPE_I32] = false,
  3057. };
  3058. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3059. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3060. "NONE",
  3061. "DUP",
  3062. "ADD",
  3063. "ADD1",
  3064. "ACC",
  3065. "SUB",
  3066. "MUL",
  3067. "DIV",
  3068. "SQR",
  3069. "SQRT",
  3070. "LOG",
  3071. "SUM",
  3072. "SUM_ROWS",
  3073. "MEAN",
  3074. "ARGMAX",
  3075. "REPEAT",
  3076. "REPEAT_BACK",
  3077. "SILU_BACK",
  3078. "NORM",
  3079. "RMS_NORM",
  3080. "RMS_NORM_BACK",
  3081. "MUL_MAT",
  3082. "OUT_PROD",
  3083. "SCALE",
  3084. "SET",
  3085. "CPY",
  3086. "CONT",
  3087. "RESHAPE",
  3088. "VIEW",
  3089. "PERMUTE",
  3090. "TRANSPOSE",
  3091. "GET_ROWS",
  3092. "GET_ROWS_BACK",
  3093. "DIAG",
  3094. "DIAG_MASK_INF",
  3095. "DIAG_MASK_ZERO",
  3096. "SOFT_MAX",
  3097. "SOFT_MAX_BACK",
  3098. "ROPE",
  3099. "ROPE_BACK",
  3100. "ALIBI",
  3101. "CLAMP",
  3102. "CONV_1D",
  3103. "CONV_2D",
  3104. "POOL_1D",
  3105. "POOL_2D",
  3106. "FLASH_ATTN",
  3107. "FLASH_FF",
  3108. "FLASH_ATTN_BACK",
  3109. "WIN_PART",
  3110. "WIN_UNPART",
  3111. "UNARY",
  3112. "MAP_UNARY",
  3113. "MAP_BINARY",
  3114. "MAP_CUSTOM1",
  3115. "MAP_CUSTOM2",
  3116. "MAP_CUSTOM3",
  3117. "CROSS_ENTROPY_LOSS",
  3118. "CROSS_ENTROPY_LOSS_BACK",
  3119. };
  3120. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3121. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3122. "none",
  3123. "x",
  3124. "x+y",
  3125. "x+y",
  3126. "view(x,nb,offset)+=y->x",
  3127. "x-y",
  3128. "x*y",
  3129. "x/y",
  3130. "x^2",
  3131. "√x",
  3132. "log(x)",
  3133. "Σx",
  3134. "Σx_k",
  3135. "Σx/n",
  3136. "argmax(x)",
  3137. "repeat(x)",
  3138. "repeat_back(x)",
  3139. "silu_back(x)",
  3140. "norm(x)",
  3141. "rms_norm(x)",
  3142. "rms_norm_back(x)",
  3143. "X*Y",
  3144. "X*Y",
  3145. "x*v",
  3146. "y-\\>view(x)",
  3147. "x-\\>y",
  3148. "cont(x)",
  3149. "reshape(x)",
  3150. "view(x)",
  3151. "permute(x)",
  3152. "transpose(x)",
  3153. "get_rows(x)",
  3154. "get_rows_back(x)",
  3155. "diag(x)",
  3156. "diag_mask_inf(x)",
  3157. "diag_mask_zero(x)",
  3158. "soft_max(x)",
  3159. "soft_max_back(x)",
  3160. "rope(x)",
  3161. "rope_back(x)",
  3162. "alibi(x)",
  3163. "clamp(x)",
  3164. "conv_1d(x)",
  3165. "conv_2d(x)",
  3166. "pool_1d(x)",
  3167. "pool_2d(x)",
  3168. "flash_attn(x)",
  3169. "flash_ff(x)",
  3170. "flash_attn_back(x)",
  3171. "win_part(x)",
  3172. "win_unpart(x)",
  3173. "unary(x)",
  3174. "f(x)",
  3175. "f(x,y)",
  3176. "custom(x)",
  3177. "custom(x,y)",
  3178. "custom(x,y,z)",
  3179. "cross_entropy_loss(x,y)",
  3180. "cross_entropy_loss_back(x,y)",
  3181. };
  3182. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3183. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3184. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3185. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3186. // WARN:
  3187. // Mis-confguration can lead to problem that's hard to reason about:
  3188. // * At best it crash or talks nosense.
  3189. // * At worst it talks slightly difference but hard to perceive.
  3190. //
  3191. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3192. // Take care about compile options (e.g., GGML_USE_xxx).
  3193. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3194. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3195. static void ggml_setup_op_has_task_pass(void) {
  3196. { // INIT
  3197. bool * p = GGML_OP_HAS_INIT;
  3198. p[GGML_OP_ACC ] = true;
  3199. p[GGML_OP_MUL_MAT ] = true;
  3200. p[GGML_OP_OUT_PROD ] = true;
  3201. p[GGML_OP_SET ] = true;
  3202. p[GGML_OP_GET_ROWS_BACK ] = true;
  3203. p[GGML_OP_DIAG_MASK_INF ] = true;
  3204. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3205. p[GGML_OP_CONV_1D ] = true;
  3206. p[GGML_OP_CONV_2D ] = true;
  3207. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. { // FINALIZE
  3211. bool * p = GGML_OP_HAS_FINALIZE;
  3212. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3213. }
  3214. }
  3215. //
  3216. // ggml context
  3217. //
  3218. struct ggml_context {
  3219. size_t mem_size;
  3220. void * mem_buffer;
  3221. bool mem_buffer_owned;
  3222. bool no_alloc;
  3223. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3224. int n_objects;
  3225. struct ggml_object * objects_begin;
  3226. struct ggml_object * objects_end;
  3227. struct ggml_scratch scratch;
  3228. struct ggml_scratch scratch_save;
  3229. };
  3230. struct ggml_context_container {
  3231. bool used;
  3232. struct ggml_context context;
  3233. };
  3234. //
  3235. // NUMA support
  3236. //
  3237. #define GGML_NUMA_MAX_NODES 8
  3238. #define GGML_NUMA_MAX_CPUS 512
  3239. struct ggml_numa_node {
  3240. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3241. uint32_t n_cpus;
  3242. };
  3243. struct ggml_numa_nodes {
  3244. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3245. uint32_t n_nodes;
  3246. uint32_t total_cpus; // hardware threads on system
  3247. };
  3248. //
  3249. // ggml state
  3250. //
  3251. struct ggml_state {
  3252. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3253. struct ggml_numa_nodes numa;
  3254. };
  3255. // global state
  3256. static struct ggml_state g_state;
  3257. static atomic_int g_state_barrier = 0;
  3258. // barrier via spin lock
  3259. inline static void ggml_critical_section_start(void) {
  3260. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3261. while (processing > 0) {
  3262. // wait for other threads to finish
  3263. atomic_fetch_sub(&g_state_barrier, 1);
  3264. sched_yield(); // TODO: reconsider this
  3265. processing = atomic_fetch_add(&g_state_barrier, 1);
  3266. }
  3267. }
  3268. // TODO: make this somehow automatically executed
  3269. // some sort of "sentry" mechanism
  3270. inline static void ggml_critical_section_end(void) {
  3271. atomic_fetch_sub(&g_state_barrier, 1);
  3272. }
  3273. void ggml_numa_init(void) {
  3274. if (g_state.numa.n_nodes > 0) {
  3275. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3276. return;
  3277. }
  3278. #ifdef __linux__
  3279. struct stat st;
  3280. char path[256];
  3281. int rv;
  3282. // enumerate nodes
  3283. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3284. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3285. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3286. if (stat(path, &st) != 0) { break; }
  3287. ++g_state.numa.n_nodes;
  3288. }
  3289. // enumerate CPUs
  3290. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3291. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3292. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3293. if (stat(path, &st) != 0) { break; }
  3294. ++g_state.numa.total_cpus;
  3295. }
  3296. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3297. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3298. g_state.numa.n_nodes = 0;
  3299. return;
  3300. }
  3301. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3302. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3303. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3304. node->n_cpus = 0;
  3305. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3306. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3307. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3308. if (stat(path, &st) == 0) {
  3309. node->cpus[node->n_cpus++] = c;
  3310. GGML_PRINT_DEBUG(" %u", c);
  3311. }
  3312. }
  3313. GGML_PRINT_DEBUG("\n");
  3314. }
  3315. if (ggml_is_numa()) {
  3316. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3317. if (fptr != NULL) {
  3318. char buf[42];
  3319. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3320. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3321. }
  3322. fclose(fptr);
  3323. }
  3324. }
  3325. #else
  3326. // TODO
  3327. #endif
  3328. }
  3329. bool ggml_is_numa(void) {
  3330. return g_state.numa.n_nodes > 1;
  3331. }
  3332. ////////////////////////////////////////////////////////////////////////////////
  3333. void ggml_print_object(const struct ggml_object * obj) {
  3334. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3335. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3336. }
  3337. void ggml_print_objects(const struct ggml_context * ctx) {
  3338. struct ggml_object * obj = ctx->objects_begin;
  3339. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3340. while (obj != NULL) {
  3341. ggml_print_object(obj);
  3342. obj = obj->next;
  3343. }
  3344. GGML_PRINT("%s: --- end ---\n", __func__);
  3345. }
  3346. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3353. }
  3354. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. // this should handle cases where the tensor is not contiguous in memory
  3357. // probaby just:
  3358. //
  3359. // return tensor->ne[3]*tensor->nb[3]
  3360. //
  3361. // is enough, but just in case, adding the second part
  3362. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3363. }
  3364. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3365. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3366. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3367. }
  3368. int ggml_blck_size(enum ggml_type type) {
  3369. return GGML_BLCK_SIZE[type];
  3370. }
  3371. size_t ggml_type_size(enum ggml_type type) {
  3372. return GGML_TYPE_SIZE[type];
  3373. }
  3374. float ggml_type_sizef(enum ggml_type type) {
  3375. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3376. }
  3377. const char * ggml_type_name(enum ggml_type type) {
  3378. return GGML_TYPE_NAME[type];
  3379. }
  3380. const char * ggml_op_name(enum ggml_op op) {
  3381. return GGML_OP_NAME[op];
  3382. }
  3383. const char * ggml_op_symbol(enum ggml_op op) {
  3384. return GGML_OP_SYMBOL[op];
  3385. }
  3386. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3387. return GGML_TYPE_SIZE[tensor->type];
  3388. }
  3389. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3392. }
  3393. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3394. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3395. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3396. }
  3397. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3399. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3400. }
  3401. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3402. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3403. return (t0->ne[0] == t1->ne[0]) &&
  3404. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3405. (t1->ne[3]%t0->ne[3] == 0);
  3406. }
  3407. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return
  3410. (t0->ne[1] == t1->ne[1]) &&
  3411. (t0->ne[2] == t1->ne[2]) &&
  3412. (t0->ne[3] == t1->ne[3]);
  3413. }
  3414. bool ggml_is_quantized(enum ggml_type type) {
  3415. return GGML_IS_QUANTIZED[type];
  3416. }
  3417. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3418. enum ggml_type wtype = GGML_TYPE_COUNT;
  3419. switch (ftype) {
  3420. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3421. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3422. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3423. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3424. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3425. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3426. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3427. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3428. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3430. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3431. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3432. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3433. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3434. }
  3435. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3436. return wtype;
  3437. }
  3438. size_t ggml_tensor_overhead(void) {
  3439. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3440. }
  3441. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3442. return tensor->nb[0] > tensor->nb[1];
  3443. }
  3444. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3445. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3446. return
  3447. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3448. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3449. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3450. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3451. }
  3452. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3453. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3454. return
  3455. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3456. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3457. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3458. }
  3459. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3460. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3461. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3462. }
  3463. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3464. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3465. return
  3466. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3467. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3468. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3469. }
  3470. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3472. return
  3473. (t0->ne[0] == t1->ne[0] ) &&
  3474. (t0->ne[1] == t1->ne[1] ) &&
  3475. (t0->ne[2] == t1->ne[2] ) &&
  3476. (t0->ne[3] == t1->ne[3] );
  3477. }
  3478. // check if t1 can be represented as a repeatition of t0
  3479. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3480. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3481. return
  3482. (t1->ne[0]%t0->ne[0] == 0) &&
  3483. (t1->ne[1]%t0->ne[1] == 0) &&
  3484. (t1->ne[2]%t0->ne[2] == 0) &&
  3485. (t1->ne[3]%t0->ne[3] == 0);
  3486. }
  3487. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3488. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3489. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3490. }
  3491. static inline int ggml_up32(int n) {
  3492. return (n + 31) & ~31;
  3493. }
  3494. //static inline int ggml_up64(int n) {
  3495. // return (n + 63) & ~63;
  3496. //}
  3497. static inline int ggml_up(int n, int m) {
  3498. // assert m is a power of 2
  3499. GGML_ASSERT((m & (m - 1)) == 0);
  3500. return (n + m - 1) & ~(m - 1);
  3501. }
  3502. // assert that pointer is aligned to GGML_MEM_ALIGN
  3503. #define ggml_assert_aligned(ptr) \
  3504. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3505. ////////////////////////////////////////////////////////////////////////////////
  3506. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3507. // make this function thread safe
  3508. ggml_critical_section_start();
  3509. static bool is_first_call = true;
  3510. if (is_first_call) {
  3511. // initialize time system (required on Windows)
  3512. ggml_time_init();
  3513. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3514. {
  3515. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3516. ggml_fp16_t ii;
  3517. for (int i = 0; i < (1 << 16); ++i) {
  3518. uint16_t ui = i;
  3519. memcpy(&ii, &ui, sizeof(ii));
  3520. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3521. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3522. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3523. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3524. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3525. }
  3526. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3527. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3528. }
  3529. // initialize g_state
  3530. {
  3531. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3532. g_state = (struct ggml_state) {
  3533. /*.contexts =*/ { { 0 } },
  3534. /*.numa =*/ {
  3535. .n_nodes = 0,
  3536. .total_cpus = 0,
  3537. },
  3538. };
  3539. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3540. g_state.contexts[i].used = false;
  3541. }
  3542. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3543. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3544. }
  3545. #if defined(GGML_USE_CUBLAS)
  3546. ggml_init_cublas();
  3547. #elif defined(GGML_USE_CLBLAST)
  3548. ggml_cl_init();
  3549. #endif
  3550. ggml_setup_op_has_task_pass();
  3551. is_first_call = false;
  3552. }
  3553. // find non-used context in g_state
  3554. struct ggml_context * ctx = NULL;
  3555. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3556. if (!g_state.contexts[i].used) {
  3557. g_state.contexts[i].used = true;
  3558. ctx = &g_state.contexts[i].context;
  3559. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3560. break;
  3561. }
  3562. }
  3563. if (ctx == NULL) {
  3564. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3565. ggml_critical_section_end();
  3566. return NULL;
  3567. }
  3568. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3569. *ctx = (struct ggml_context) {
  3570. /*.mem_size =*/ mem_size,
  3571. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3572. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3573. /*.no_alloc =*/ params.no_alloc,
  3574. /*.no_alloc_save =*/ params.no_alloc,
  3575. /*.n_objects =*/ 0,
  3576. /*.objects_begin =*/ NULL,
  3577. /*.objects_end =*/ NULL,
  3578. /*.scratch =*/ { 0, 0, NULL, },
  3579. /*.scratch_save =*/ { 0, 0, NULL, },
  3580. };
  3581. GGML_ASSERT(ctx->mem_buffer != NULL);
  3582. ggml_assert_aligned(ctx->mem_buffer);
  3583. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3584. ggml_critical_section_end();
  3585. return ctx;
  3586. }
  3587. void ggml_free(struct ggml_context * ctx) {
  3588. // make this function thread safe
  3589. ggml_critical_section_start();
  3590. bool found = false;
  3591. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3592. if (&g_state.contexts[i].context == ctx) {
  3593. g_state.contexts[i].used = false;
  3594. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3595. __func__, i, ggml_used_mem(ctx));
  3596. if (ctx->mem_buffer_owned) {
  3597. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3598. }
  3599. found = true;
  3600. break;
  3601. }
  3602. }
  3603. if (!found) {
  3604. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3605. }
  3606. ggml_critical_section_end();
  3607. }
  3608. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3609. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3610. }
  3611. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3612. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3613. ctx->scratch = scratch;
  3614. return result;
  3615. }
  3616. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3617. return ctx->no_alloc;
  3618. }
  3619. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3620. ctx->no_alloc = no_alloc;
  3621. }
  3622. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3623. return ctx->mem_buffer;
  3624. }
  3625. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3626. return ctx->mem_size;
  3627. }
  3628. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3629. size_t max_size = 0;
  3630. struct ggml_object * obj = ctx->objects_begin;
  3631. while (obj != NULL) {
  3632. if (obj->type == GGML_OBJECT_TENSOR) {
  3633. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3634. const size_t size = ggml_nbytes(tensor);
  3635. if (max_size < size) {
  3636. max_size = size;
  3637. }
  3638. }
  3639. obj = obj->next;
  3640. }
  3641. return max_size;
  3642. }
  3643. // IMPORTANT:
  3644. // when creating "opt" tensors, always save and load the scratch buffer
  3645. // this is an error prone process, but it is necessary to support inplace
  3646. // operators when using scratch buffers
  3647. // TODO: implement a better way
  3648. static void ggml_scratch_save(struct ggml_context * ctx) {
  3649. // this is needed to allow opt tensors to store their data
  3650. // TODO: again, need to find a better way
  3651. ctx->no_alloc_save = ctx->no_alloc;
  3652. ctx->no_alloc = false;
  3653. ctx->scratch_save = ctx->scratch;
  3654. ctx->scratch.data = NULL;
  3655. }
  3656. static void ggml_scratch_load(struct ggml_context * ctx) {
  3657. ctx->no_alloc = ctx->no_alloc_save;
  3658. ctx->scratch = ctx->scratch_save;
  3659. }
  3660. ////////////////////////////////////////////////////////////////////////////////
  3661. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3662. // always insert objects at the end of the context's memory pool
  3663. struct ggml_object * obj_cur = ctx->objects_end;
  3664. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3665. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3666. const size_t cur_end = cur_offs + cur_size;
  3667. // align to GGML_MEM_ALIGN
  3668. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3669. char * const mem_buffer = ctx->mem_buffer;
  3670. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3671. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3672. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3673. __func__, cur_end + size_needed, ctx->mem_size);
  3674. assert(false);
  3675. return NULL;
  3676. }
  3677. *obj_new = (struct ggml_object) {
  3678. .offs = cur_end + GGML_OBJECT_SIZE,
  3679. .size = size_needed,
  3680. .next = NULL,
  3681. .type = type,
  3682. };
  3683. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3684. if (obj_cur != NULL) {
  3685. obj_cur->next = obj_new;
  3686. } else {
  3687. // this is the first object in this context
  3688. ctx->objects_begin = obj_new;
  3689. }
  3690. ctx->objects_end = obj_new;
  3691. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3692. return obj_new;
  3693. }
  3694. static struct ggml_tensor * ggml_new_tensor_impl(
  3695. struct ggml_context * ctx,
  3696. enum ggml_type type,
  3697. int n_dims,
  3698. const int64_t * ne,
  3699. void * data) {
  3700. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3701. size_t data_size = 0;
  3702. if (data == NULL && !ctx->no_alloc) {
  3703. data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3704. for (int i = 1; i < n_dims; i++) {
  3705. data_size *= ne[i];
  3706. }
  3707. }
  3708. if (ctx->scratch.data != NULL && data == NULL) {
  3709. // allocate tensor data in the scratch buffer
  3710. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3711. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3712. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3713. assert(false);
  3714. return NULL;
  3715. }
  3716. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3717. ctx->scratch.offs += data_size;
  3718. data_size = 0;
  3719. }
  3720. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3721. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3722. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3723. *result = (struct ggml_tensor) {
  3724. /*.type =*/ type,
  3725. /*.backend =*/ GGML_BACKEND_CPU,
  3726. /*.n_dims =*/ n_dims,
  3727. /*.ne =*/ { 1, 1, 1, 1 },
  3728. /*.nb =*/ { 0, 0, 0, 0 },
  3729. /*.op =*/ GGML_OP_NONE,
  3730. /*.op_params =*/ {0},
  3731. /*.is_param =*/ false,
  3732. /*.grad =*/ NULL,
  3733. /*.src =*/ { NULL },
  3734. /*.perf_runs =*/ 0,
  3735. /*.perf_cycles =*/ 0,
  3736. /*.perf_time_us =*/ 0,
  3737. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3738. /*.name =*/ { 0 },
  3739. /*.extra =*/ NULL,
  3740. /*.padding =*/ { 0 },
  3741. };
  3742. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3743. //ggml_assert_aligned(result->data);
  3744. for (int i = 0; i < n_dims; i++) {
  3745. result->ne[i] = ne[i];
  3746. }
  3747. result->nb[0] = GGML_TYPE_SIZE[type];
  3748. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3749. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3750. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3751. }
  3752. ctx->n_objects++;
  3753. return result;
  3754. }
  3755. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3756. assert(params_size <= GGML_MAX_OP_PARAMS);
  3757. memcpy(tensor->op_params, params, params_size);
  3758. }
  3759. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3760. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3761. return ((const int32_t *)(tensor->op_params))[i];
  3762. }
  3763. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3764. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3765. ((int32_t *)(tensor->op_params))[i] = value;
  3766. }
  3767. struct ggml_tensor * ggml_new_tensor(
  3768. struct ggml_context * ctx,
  3769. enum ggml_type type,
  3770. int n_dims,
  3771. const int64_t * ne) {
  3772. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3773. }
  3774. struct ggml_tensor * ggml_new_tensor_1d(
  3775. struct ggml_context * ctx,
  3776. enum ggml_type type,
  3777. int64_t ne0) {
  3778. return ggml_new_tensor(ctx, type, 1, &ne0);
  3779. }
  3780. struct ggml_tensor * ggml_new_tensor_2d(
  3781. struct ggml_context * ctx,
  3782. enum ggml_type type,
  3783. int64_t ne0,
  3784. int64_t ne1) {
  3785. const int64_t ne[2] = { ne0, ne1 };
  3786. return ggml_new_tensor(ctx, type, 2, ne);
  3787. }
  3788. struct ggml_tensor * ggml_new_tensor_3d(
  3789. struct ggml_context * ctx,
  3790. enum ggml_type type,
  3791. int64_t ne0,
  3792. int64_t ne1,
  3793. int64_t ne2) {
  3794. const int64_t ne[3] = { ne0, ne1, ne2 };
  3795. return ggml_new_tensor(ctx, type, 3, ne);
  3796. }
  3797. struct ggml_tensor * ggml_new_tensor_4d(
  3798. struct ggml_context * ctx,
  3799. enum ggml_type type,
  3800. int64_t ne0,
  3801. int64_t ne1,
  3802. int64_t ne2,
  3803. int64_t ne3) {
  3804. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3805. return ggml_new_tensor(ctx, type, 4, ne);
  3806. }
  3807. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3808. ggml_scratch_save(ctx);
  3809. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3810. ggml_scratch_load(ctx);
  3811. ggml_set_i32(result, value);
  3812. return result;
  3813. }
  3814. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3815. ggml_scratch_save(ctx);
  3816. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3817. ggml_scratch_load(ctx);
  3818. ggml_set_f32(result, value);
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3822. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3823. }
  3824. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3825. memset(tensor->data, 0, ggml_nbytes(tensor));
  3826. return tensor;
  3827. }
  3828. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3829. const int n = ggml_nrows(tensor);
  3830. const int nc = tensor->ne[0];
  3831. const size_t n1 = tensor->nb[1];
  3832. char * const data = tensor->data;
  3833. switch (tensor->type) {
  3834. case GGML_TYPE_I8:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(int8_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3839. }
  3840. } break;
  3841. case GGML_TYPE_I16:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(int16_t));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3846. }
  3847. } break;
  3848. case GGML_TYPE_I32:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(int32_t));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. case GGML_TYPE_F16:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3860. }
  3861. } break;
  3862. case GGML_TYPE_F32:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(float));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. default:
  3870. {
  3871. GGML_ASSERT(false);
  3872. } break;
  3873. }
  3874. return tensor;
  3875. }
  3876. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3877. const int n = ggml_nrows(tensor);
  3878. const int nc = tensor->ne[0];
  3879. const size_t n1 = tensor->nb[1];
  3880. char * const data = tensor->data;
  3881. switch (tensor->type) {
  3882. case GGML_TYPE_I8:
  3883. {
  3884. assert(tensor->nb[0] == sizeof(int8_t));
  3885. for (int i = 0; i < n; i++) {
  3886. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3887. }
  3888. } break;
  3889. case GGML_TYPE_I16:
  3890. {
  3891. assert(tensor->nb[0] == sizeof(int16_t));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3894. }
  3895. } break;
  3896. case GGML_TYPE_I32:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(int32_t));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. case GGML_TYPE_F16:
  3904. {
  3905. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3906. for (int i = 0; i < n; i++) {
  3907. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3908. }
  3909. } break;
  3910. case GGML_TYPE_F32:
  3911. {
  3912. assert(tensor->nb[0] == sizeof(float));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3915. }
  3916. } break;
  3917. default:
  3918. {
  3919. GGML_ASSERT(false);
  3920. } break;
  3921. }
  3922. return tensor;
  3923. }
  3924. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3925. switch (tensor->type) {
  3926. case GGML_TYPE_I8:
  3927. {
  3928. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3929. return ((int8_t *)(tensor->data))[i];
  3930. } break;
  3931. case GGML_TYPE_I16:
  3932. {
  3933. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3934. return ((int16_t *)(tensor->data))[i];
  3935. } break;
  3936. case GGML_TYPE_I32:
  3937. {
  3938. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3939. return ((int32_t *)(tensor->data))[i];
  3940. } break;
  3941. case GGML_TYPE_F16:
  3942. {
  3943. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3944. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3945. } break;
  3946. case GGML_TYPE_F32:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3949. return ((float *)(tensor->data))[i];
  3950. } break;
  3951. default:
  3952. {
  3953. GGML_ASSERT(false);
  3954. } break;
  3955. }
  3956. return 0.0f;
  3957. }
  3958. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3959. switch (tensor->type) {
  3960. case GGML_TYPE_I8:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3963. ((int8_t *)(tensor->data))[i] = value;
  3964. } break;
  3965. case GGML_TYPE_I16:
  3966. {
  3967. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3968. ((int16_t *)(tensor->data))[i] = value;
  3969. } break;
  3970. case GGML_TYPE_I32:
  3971. {
  3972. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3973. ((int32_t *)(tensor->data))[i] = value;
  3974. } break;
  3975. case GGML_TYPE_F16:
  3976. {
  3977. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3978. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3979. } break;
  3980. case GGML_TYPE_F32:
  3981. {
  3982. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3983. ((float *)(tensor->data))[i] = value;
  3984. } break;
  3985. default:
  3986. {
  3987. GGML_ASSERT(false);
  3988. } break;
  3989. }
  3990. }
  3991. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3992. switch (tensor->type) {
  3993. case GGML_TYPE_I8:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3996. return ((int8_t *)(tensor->data))[i];
  3997. } break;
  3998. case GGML_TYPE_I16:
  3999. {
  4000. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4001. return ((int16_t *)(tensor->data))[i];
  4002. } break;
  4003. case GGML_TYPE_I32:
  4004. {
  4005. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4006. return ((int32_t *)(tensor->data))[i];
  4007. } break;
  4008. case GGML_TYPE_F16:
  4009. {
  4010. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4011. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4012. } break;
  4013. case GGML_TYPE_F32:
  4014. {
  4015. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4016. return ((float *)(tensor->data))[i];
  4017. } break;
  4018. default:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. return 0.0f;
  4024. }
  4025. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4026. switch (tensor->type) {
  4027. case GGML_TYPE_I8:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4030. ((int8_t *)(tensor->data))[i] = value;
  4031. } break;
  4032. case GGML_TYPE_I16:
  4033. {
  4034. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4035. ((int16_t *)(tensor->data))[i] = value;
  4036. } break;
  4037. case GGML_TYPE_I32:
  4038. {
  4039. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4040. ((int32_t *)(tensor->data))[i] = value;
  4041. } break;
  4042. case GGML_TYPE_F16:
  4043. {
  4044. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4045. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4046. } break;
  4047. case GGML_TYPE_F32:
  4048. {
  4049. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4050. ((float *)(tensor->data))[i] = value;
  4051. } break;
  4052. default:
  4053. {
  4054. GGML_ASSERT(false);
  4055. } break;
  4056. }
  4057. }
  4058. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4059. return tensor->data;
  4060. }
  4061. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4062. assert(tensor->type == GGML_TYPE_F32);
  4063. return (float *)(tensor->data);
  4064. }
  4065. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4066. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4067. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4068. }
  4069. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4070. return tensor->name;
  4071. }
  4072. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4073. strncpy(tensor->name, name, sizeof(tensor->name));
  4074. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4075. return tensor;
  4076. }
  4077. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4078. va_list args;
  4079. va_start(args, fmt);
  4080. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4081. va_end(args);
  4082. return tensor;
  4083. }
  4084. struct ggml_tensor * ggml_view_tensor(
  4085. struct ggml_context * ctx,
  4086. const struct ggml_tensor * src) {
  4087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4088. ggml_format_name(result, "%s (view)", src->name);
  4089. result->nb[0] = src->nb[0];
  4090. result->nb[1] = src->nb[1];
  4091. result->nb[2] = src->nb[2];
  4092. result->nb[3] = src->nb[3];
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4096. struct ggml_object * obj = ctx->objects_begin;
  4097. char * const mem_buffer = ctx->mem_buffer;
  4098. while (obj != NULL) {
  4099. if (obj->type == GGML_OBJECT_TENSOR) {
  4100. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4101. if (strcmp(cur->name, name) == 0) {
  4102. return cur;
  4103. }
  4104. }
  4105. obj = obj->next;
  4106. }
  4107. return NULL;
  4108. }
  4109. ////////////////////////////////////////////////////////////////////////////////
  4110. // ggml_dup
  4111. static struct ggml_tensor * ggml_dup_impl(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. bool inplace) {
  4115. bool is_node = false;
  4116. if (!inplace && (a->grad)) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4120. result->op = GGML_OP_DUP;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_dup(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_dup_impl(ctx, a, false);
  4129. }
  4130. struct ggml_tensor * ggml_dup_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a) {
  4133. return ggml_dup_impl(ctx, a, true);
  4134. }
  4135. // ggml_add
  4136. static struct ggml_tensor * ggml_add_impl(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. bool inplace) {
  4141. // TODO: support less-strict constraint
  4142. // GGML_ASSERT(ggml_can_repeat(b, a));
  4143. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4144. bool is_node = false;
  4145. if (!inplace && (a->grad || b->grad)) {
  4146. // TODO: support backward pass for broadcasting
  4147. GGML_ASSERT(ggml_are_same_shape(a, b));
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. result->op = GGML_OP_ADD;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_add(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_add_impl(ctx, a, b, false);
  4162. }
  4163. struct ggml_tensor * ggml_add_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b) {
  4167. return ggml_add_impl(ctx, a, b, true);
  4168. }
  4169. // ggml_add1
  4170. static struct ggml_tensor * ggml_add1_impl(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. bool inplace) {
  4175. GGML_ASSERT(ggml_is_scalar(b));
  4176. GGML_ASSERT(ggml_is_padded_1d(a));
  4177. bool is_node = false;
  4178. if (a->grad || b->grad) {
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. result->op = GGML_OP_ADD1;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src[0] = a;
  4185. result->src[1] = b;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_add1(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. return ggml_add1_impl(ctx, a, b, false);
  4193. }
  4194. struct ggml_tensor * ggml_add1_inplace(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. struct ggml_tensor * b) {
  4198. return ggml_add1_impl(ctx, a, b, true);
  4199. }
  4200. // ggml_acc
  4201. static struct ggml_tensor * ggml_acc_impl(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b,
  4205. size_t nb1,
  4206. size_t nb2,
  4207. size_t nb3,
  4208. size_t offset,
  4209. bool inplace) {
  4210. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4211. GGML_ASSERT(ggml_is_contiguous(a));
  4212. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4213. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4214. bool is_node = false;
  4215. if (!inplace && (a->grad || b->grad)) {
  4216. is_node = true;
  4217. }
  4218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4219. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4220. ggml_set_op_params(result, params, sizeof(params));
  4221. result->op = GGML_OP_ACC;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src[0] = a;
  4224. result->src[1] = b;
  4225. return result;
  4226. }
  4227. struct ggml_tensor * ggml_acc(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. size_t nb1,
  4232. size_t nb2,
  4233. size_t nb3,
  4234. size_t offset) {
  4235. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4236. }
  4237. struct ggml_tensor * ggml_acc_inplace(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b,
  4241. size_t nb1,
  4242. size_t nb2,
  4243. size_t nb3,
  4244. size_t offset) {
  4245. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4246. }
  4247. // ggml_sub
  4248. static struct ggml_tensor * ggml_sub_impl(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. struct ggml_tensor * b,
  4252. bool inplace) {
  4253. GGML_ASSERT(ggml_are_same_shape(a, b));
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad || b->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_SUB;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. result->src[1] = b;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_sub(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. return ggml_sub_impl(ctx, a, b, false);
  4270. }
  4271. struct ggml_tensor * ggml_sub_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b) {
  4275. return ggml_sub_impl(ctx, a, b, true);
  4276. }
  4277. // ggml_mul
  4278. static struct ggml_tensor * ggml_mul_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b,
  4282. bool inplace) {
  4283. // TODO: support less-strict constraint
  4284. // GGML_ASSERT(ggml_can_repeat(b, a));
  4285. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4286. bool is_node = false;
  4287. if (!inplace && (a->grad || b->grad)) {
  4288. // TODO: support backward pass for broadcasting
  4289. GGML_ASSERT(ggml_are_same_shape(a, b));
  4290. is_node = true;
  4291. }
  4292. if (inplace) {
  4293. GGML_ASSERT(is_node == false);
  4294. }
  4295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. result->op = GGML_OP_MUL;
  4297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4298. result->src[0] = a;
  4299. result->src[1] = b;
  4300. return result;
  4301. }
  4302. struct ggml_tensor * ggml_mul(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * b) {
  4306. return ggml_mul_impl(ctx, a, b, false);
  4307. }
  4308. struct ggml_tensor * ggml_mul_inplace(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b) {
  4312. return ggml_mul_impl(ctx, a, b, true);
  4313. }
  4314. // ggml_div
  4315. static struct ggml_tensor * ggml_div_impl(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b,
  4319. bool inplace) {
  4320. GGML_ASSERT(ggml_are_same_shape(a, b));
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad || b->grad)) {
  4323. is_node = true;
  4324. }
  4325. if (inplace) {
  4326. GGML_ASSERT(is_node == false);
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. result->op = GGML_OP_DIV;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src[0] = a;
  4332. result->src[1] = b;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_div(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b) {
  4339. return ggml_div_impl(ctx, a, b, false);
  4340. }
  4341. struct ggml_tensor * ggml_div_inplace(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. return ggml_div_impl(ctx, a, b, true);
  4346. }
  4347. // ggml_sqr
  4348. static struct ggml_tensor * ggml_sqr_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. result->op = GGML_OP_SQR;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src[0] = a;
  4360. return result;
  4361. }
  4362. struct ggml_tensor * ggml_sqr(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a) {
  4365. return ggml_sqr_impl(ctx, a, false);
  4366. }
  4367. struct ggml_tensor * ggml_sqr_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a) {
  4370. return ggml_sqr_impl(ctx, a, true);
  4371. }
  4372. // ggml_sqrt
  4373. static struct ggml_tensor * ggml_sqrt_impl(
  4374. struct ggml_context * ctx,
  4375. struct ggml_tensor * a,
  4376. bool inplace) {
  4377. bool is_node = false;
  4378. if (!inplace && (a->grad)) {
  4379. is_node = true;
  4380. }
  4381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4382. result->op = GGML_OP_SQRT;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_sqrt(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_sqrt_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_sqrt_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_sqrt_impl(ctx, a, true);
  4396. }
  4397. // ggml_log
  4398. static struct ggml_tensor * ggml_log_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4407. result->op = GGML_OP_LOG;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_log(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_log_impl(ctx, a, false);
  4416. }
  4417. struct ggml_tensor * ggml_log_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_log_impl(ctx, a, true);
  4421. }
  4422. // ggml_sum
  4423. struct ggml_tensor * ggml_sum(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a) {
  4426. bool is_node = false;
  4427. if (a->grad) {
  4428. is_node = true;
  4429. }
  4430. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4431. result->op = GGML_OP_SUM;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. return result;
  4435. }
  4436. // ggml_sum_rows
  4437. struct ggml_tensor * ggml_sum_rows(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. bool is_node = false;
  4441. if (a->grad) {
  4442. is_node = true;
  4443. }
  4444. int64_t ne[4] = {1,1,1,1};
  4445. for (int i=1; i<a->n_dims; ++i) {
  4446. ne[i] = a->ne[i];
  4447. }
  4448. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4449. result->op = GGML_OP_SUM_ROWS;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. return result;
  4453. }
  4454. // ggml_mean
  4455. struct ggml_tensor * ggml_mean(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a) {
  4458. bool is_node = false;
  4459. if (a->grad) {
  4460. GGML_ASSERT(false); // TODO: implement
  4461. is_node = true;
  4462. }
  4463. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4464. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4465. result->op = GGML_OP_MEAN;
  4466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4467. result->src[0] = a;
  4468. return result;
  4469. }
  4470. // ggml_argmax
  4471. struct ggml_tensor * ggml_argmax(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a) {
  4474. GGML_ASSERT(ggml_is_matrix(a));
  4475. bool is_node = false;
  4476. if (a->grad) {
  4477. GGML_ASSERT(false);
  4478. is_node = true;
  4479. }
  4480. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4481. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4482. result->op = GGML_OP_ARGMAX;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src[0] = a;
  4485. return result;
  4486. }
  4487. // ggml_repeat
  4488. struct ggml_tensor * ggml_repeat(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b) {
  4492. GGML_ASSERT(ggml_can_repeat(a, b));
  4493. bool is_node = false;
  4494. if (a->grad) {
  4495. is_node = true;
  4496. }
  4497. if (ggml_are_same_shape(a, b) && !is_node) {
  4498. return a;
  4499. }
  4500. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4501. result->op = GGML_OP_REPEAT;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b;
  4505. return result;
  4506. }
  4507. // ggml_repeat_back
  4508. struct ggml_tensor * ggml_repeat_back(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. GGML_ASSERT(ggml_can_repeat(b, a));
  4513. bool is_node = false;
  4514. if (a->grad) {
  4515. is_node = true;
  4516. }
  4517. if (ggml_are_same_shape(a, b) && !is_node) {
  4518. return a;
  4519. }
  4520. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4521. result->op = GGML_OP_REPEAT_BACK;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src[0] = a;
  4524. result->src[1] = b;
  4525. return result;
  4526. }
  4527. // ggml_abs
  4528. struct ggml_tensor * ggml_abs(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a) {
  4531. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4532. }
  4533. struct ggml_tensor * ggml_abs_inplace(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a) {
  4536. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4537. }
  4538. // ggml_sgn
  4539. struct ggml_tensor * ggml_sgn(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4543. }
  4544. struct ggml_tensor * ggml_sgn_inplace(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4548. }
  4549. // ggml_neg
  4550. struct ggml_tensor * ggml_neg(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a) {
  4553. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4554. }
  4555. struct ggml_tensor * ggml_neg_inplace(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4559. }
  4560. // ggml_step
  4561. struct ggml_tensor * ggml_step(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a) {
  4564. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4565. }
  4566. struct ggml_tensor * ggml_step_inplace(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a) {
  4569. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4570. }
  4571. // ggml_tanh
  4572. struct ggml_tensor * ggml_tanh(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a) {
  4575. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4576. }
  4577. struct ggml_tensor * ggml_tanh_inplace(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4581. }
  4582. // ggml_elu
  4583. struct ggml_tensor * ggml_elu(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4587. }
  4588. struct ggml_tensor * ggml_elu_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4592. }
  4593. // ggml_relu
  4594. struct ggml_tensor * ggml_relu(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a) {
  4597. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4598. }
  4599. struct ggml_tensor * ggml_relu_inplace(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a) {
  4602. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4603. }
  4604. // ggml_gelu
  4605. struct ggml_tensor * ggml_gelu(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4609. }
  4610. struct ggml_tensor * ggml_gelu_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a) {
  4613. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4614. }
  4615. // ggml_gelu_quick
  4616. struct ggml_tensor * ggml_gelu_quick(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4620. }
  4621. struct ggml_tensor * ggml_gelu_quick_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4625. }
  4626. // ggml_silu
  4627. struct ggml_tensor * ggml_silu(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a) {
  4630. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4631. }
  4632. struct ggml_tensor * ggml_silu_inplace(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4636. }
  4637. // ggml_silu_back
  4638. struct ggml_tensor * ggml_silu_back(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * b) {
  4642. bool is_node = false;
  4643. if (a->grad || b->grad) {
  4644. // TODO: implement backward
  4645. is_node = true;
  4646. }
  4647. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4648. result->op = GGML_OP_SILU_BACK;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src[0] = a;
  4651. result->src[1] = b;
  4652. return result;
  4653. }
  4654. // ggml_norm
  4655. static struct ggml_tensor * ggml_norm_impl(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. bool inplace) {
  4659. bool is_node = false;
  4660. if (!inplace && (a->grad)) {
  4661. GGML_ASSERT(false); // TODO: implement backward
  4662. is_node = true;
  4663. }
  4664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4665. // TODO: maybe store epsilon here?
  4666. result->op = GGML_OP_NORM;
  4667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4668. result->src[0] = a;
  4669. return result;
  4670. }
  4671. struct ggml_tensor * ggml_norm(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a) {
  4674. return ggml_norm_impl(ctx, a, false);
  4675. }
  4676. struct ggml_tensor * ggml_norm_inplace(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_norm_impl(ctx, a, true);
  4680. }
  4681. static struct ggml_tensor * ggml_rms_norm_impl(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. float eps,
  4685. bool inplace) {
  4686. bool is_node = false;
  4687. if (!inplace && (a->grad)) {
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. ggml_set_op_params(result, &eps, sizeof(eps));
  4692. result->op = GGML_OP_RMS_NORM;
  4693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4694. result->src[0] = a;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_rms_norm(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. float eps) {
  4701. return ggml_rms_norm_impl(ctx, a, eps, false);
  4702. }
  4703. struct ggml_tensor * ggml_rms_norm_inplace(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. float eps) {
  4707. return ggml_rms_norm_impl(ctx, a, eps, true);
  4708. }
  4709. struct ggml_tensor * ggml_rms_norm_back(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. struct ggml_tensor * b) {
  4713. bool is_node = false;
  4714. if (a->grad) {
  4715. // TODO: implement backward
  4716. is_node = true;
  4717. }
  4718. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4719. result->op = GGML_OP_RMS_NORM_BACK;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. result->src[1] = b;
  4723. return result;
  4724. }
  4725. // ggml_mul_mat
  4726. struct ggml_tensor * ggml_mul_mat(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b) {
  4730. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4731. GGML_ASSERT(!ggml_is_transposed(a));
  4732. bool is_node = false;
  4733. if (a->grad || b->grad) {
  4734. is_node = true;
  4735. }
  4736. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4738. result->op = GGML_OP_MUL_MAT;
  4739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4740. result->src[0] = a;
  4741. result->src[1] = b;
  4742. return result;
  4743. }
  4744. // ggml_out_prod
  4745. struct ggml_tensor * ggml_out_prod(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. struct ggml_tensor * b) {
  4749. GGML_ASSERT(ggml_can_out_prod(a, b));
  4750. GGML_ASSERT(!ggml_is_transposed(a));
  4751. bool is_node = false;
  4752. if (a->grad || b->grad) {
  4753. is_node = true;
  4754. }
  4755. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4756. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4757. result->op = GGML_OP_OUT_PROD;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src[0] = a;
  4760. result->src[1] = b;
  4761. return result;
  4762. }
  4763. // ggml_scale
  4764. static struct ggml_tensor * ggml_scale_impl(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. struct ggml_tensor * b,
  4768. bool inplace) {
  4769. GGML_ASSERT(ggml_is_scalar(b));
  4770. GGML_ASSERT(ggml_is_padded_1d(a));
  4771. bool is_node = false;
  4772. if (a->grad || b->grad) {
  4773. is_node = true;
  4774. }
  4775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4776. result->op = GGML_OP_SCALE;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. result->src[1] = b;
  4780. return result;
  4781. }
  4782. struct ggml_tensor * ggml_scale(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b) {
  4786. return ggml_scale_impl(ctx, a, b, false);
  4787. }
  4788. struct ggml_tensor * ggml_scale_inplace(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b) {
  4792. return ggml_scale_impl(ctx, a, b, true);
  4793. }
  4794. // ggml_set
  4795. static struct ggml_tensor * ggml_set_impl(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b,
  4799. size_t nb1,
  4800. size_t nb2,
  4801. size_t nb3,
  4802. size_t offset,
  4803. bool inplace) {
  4804. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4805. bool is_node = false;
  4806. if (a->grad || b->grad) {
  4807. is_node = true;
  4808. }
  4809. // make a view of the destination
  4810. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4811. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4812. ggml_set_op_params(result, params, sizeof(params));
  4813. result->op = GGML_OP_SET;
  4814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4815. result->src[0] = a;
  4816. result->src[1] = b;
  4817. return result;
  4818. }
  4819. struct ggml_tensor * ggml_set(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b,
  4823. size_t nb1,
  4824. size_t nb2,
  4825. size_t nb3,
  4826. size_t offset) {
  4827. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4828. }
  4829. struct ggml_tensor * ggml_set_inplace(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. struct ggml_tensor * b,
  4833. size_t nb1,
  4834. size_t nb2,
  4835. size_t nb3,
  4836. size_t offset) {
  4837. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4838. }
  4839. struct ggml_tensor * ggml_set_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. struct ggml_tensor * b,
  4843. size_t offset) {
  4844. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4845. }
  4846. struct ggml_tensor * ggml_set_1d_inplace(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. struct ggml_tensor * b,
  4850. size_t offset) {
  4851. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4852. }
  4853. struct ggml_tensor * ggml_set_2d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. size_t nb1,
  4858. size_t offset) {
  4859. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4860. }
  4861. struct ggml_tensor * ggml_set_2d_inplace(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. struct ggml_tensor * b,
  4865. size_t nb1,
  4866. size_t offset) {
  4867. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4868. }
  4869. // ggml_cpy
  4870. static struct ggml_tensor * ggml_cpy_impl(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. bool inplace) {
  4875. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4876. bool is_node = false;
  4877. if (!inplace && (a->grad || b->grad)) {
  4878. is_node = true;
  4879. }
  4880. // make a view of the destination
  4881. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4882. if (strlen(b->name) > 0) {
  4883. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4884. } else {
  4885. ggml_format_name(result, "%s (copy)", a->name);
  4886. }
  4887. result->op = GGML_OP_CPY;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. struct ggml_tensor * ggml_cpy(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b) {
  4897. return ggml_cpy_impl(ctx, a, b, false);
  4898. }
  4899. struct ggml_tensor * ggml_cpy_inplace(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b) {
  4903. return ggml_cpy_impl(ctx, a, b, true);
  4904. }
  4905. // ggml_cont
  4906. static struct ggml_tensor * ggml_cont_impl(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. bool inplace) {
  4910. bool is_node = false;
  4911. if (!inplace && a->grad) {
  4912. is_node = true;
  4913. }
  4914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4915. ggml_format_name(result, "%s (cont)", a->name);
  4916. result->op = GGML_OP_CONT;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src[0] = a;
  4919. return result;
  4920. }
  4921. struct ggml_tensor * ggml_cont(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a) {
  4924. return ggml_cont_impl(ctx, a, false);
  4925. }
  4926. struct ggml_tensor * ggml_cont_inplace(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a) {
  4929. return ggml_cont_impl(ctx, a, true);
  4930. }
  4931. // ggml_reshape
  4932. struct ggml_tensor * ggml_reshape(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b) {
  4936. GGML_ASSERT(ggml_is_contiguous(a));
  4937. GGML_ASSERT(ggml_is_contiguous(b));
  4938. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. is_node = true;
  4942. }
  4943. if (b->grad) {
  4944. // gradient propagation is not supported
  4945. //GGML_ASSERT(false);
  4946. }
  4947. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4948. ggml_format_name(result, "%s (reshaped)", a->name);
  4949. result->op = GGML_OP_RESHAPE;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_reshape_1d(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. int64_t ne0) {
  4958. GGML_ASSERT(ggml_is_contiguous(a));
  4959. GGML_ASSERT(ggml_nelements(a) == ne0);
  4960. bool is_node = false;
  4961. if (a->grad) {
  4962. is_node = true;
  4963. }
  4964. const int64_t ne[1] = { ne0 };
  4965. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4966. ggml_format_name(result, "%s (reshaped)", a->name);
  4967. result->op = GGML_OP_RESHAPE;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. return result;
  4971. }
  4972. struct ggml_tensor * ggml_reshape_2d(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. int64_t ne0,
  4976. int64_t ne1) {
  4977. GGML_ASSERT(ggml_is_contiguous(a));
  4978. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4979. bool is_node = false;
  4980. if (a->grad) {
  4981. is_node = true;
  4982. }
  4983. const int64_t ne[2] = { ne0, ne1 };
  4984. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4985. ggml_format_name(result, "%s (reshaped)", a->name);
  4986. result->op = GGML_OP_RESHAPE;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src[0] = a;
  4989. return result;
  4990. }
  4991. struct ggml_tensor * ggml_reshape_3d(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. int64_t ne0,
  4995. int64_t ne1,
  4996. int64_t ne2) {
  4997. GGML_ASSERT(ggml_is_contiguous(a));
  4998. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4999. bool is_node = false;
  5000. if (a->grad) {
  5001. is_node = true;
  5002. }
  5003. const int64_t ne[3] = { ne0, ne1, ne2 };
  5004. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5005. ggml_format_name(result, "%s (reshaped)", a->name);
  5006. result->op = GGML_OP_RESHAPE;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. return result;
  5010. }
  5011. struct ggml_tensor * ggml_reshape_4d(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int64_t ne0,
  5015. int64_t ne1,
  5016. int64_t ne2,
  5017. int64_t ne3) {
  5018. GGML_ASSERT(ggml_is_contiguous(a));
  5019. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5020. bool is_node = false;
  5021. if (a->grad) {
  5022. is_node = true;
  5023. }
  5024. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5026. ggml_format_name(result, "%s (reshaped)", a->name);
  5027. result->op = GGML_OP_RESHAPE;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src[0] = a;
  5030. return result;
  5031. }
  5032. // ggml_view_1d
  5033. static struct ggml_tensor * ggml_view_tensor_offset(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. int n_dims,
  5037. const int64_t * ne,
  5038. size_t offset) {
  5039. // don't calculate an offset from an unallocated tensor
  5040. void * data = NULL;
  5041. if (a->data != NULL) {
  5042. data = (char *) a->data + offset;
  5043. }
  5044. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5045. ggml_format_name(result, "%s (view)", a->name);
  5046. ggml_set_op_params(result, &offset, sizeof(offset));
  5047. return result;
  5048. }
  5049. struct ggml_tensor * ggml_view_1d(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. int64_t ne0,
  5053. size_t offset) {
  5054. bool is_node = false;
  5055. if (a->grad) {
  5056. is_node = true;
  5057. }
  5058. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5059. result->op = GGML_OP_VIEW;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src[0] = a;
  5062. return result;
  5063. }
  5064. // ggml_view_2d
  5065. struct ggml_tensor * ggml_view_2d(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. int64_t ne0,
  5069. int64_t ne1,
  5070. size_t nb1,
  5071. size_t offset) {
  5072. bool is_node = false;
  5073. if (a->grad) {
  5074. is_node = true;
  5075. }
  5076. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5077. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5078. result->nb[1] = nb1;
  5079. result->nb[2] = result->nb[1]*ne1;
  5080. result->nb[3] = result->nb[2];
  5081. result->op = GGML_OP_VIEW;
  5082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5083. result->src[0] = a;
  5084. return result;
  5085. }
  5086. // ggml_view_3d
  5087. struct ggml_tensor * ggml_view_3d(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. int64_t ne0,
  5091. int64_t ne1,
  5092. int64_t ne2,
  5093. size_t nb1,
  5094. size_t nb2,
  5095. size_t offset) {
  5096. bool is_node = false;
  5097. if (a->grad) {
  5098. is_node = true;
  5099. }
  5100. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5101. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5102. result->nb[1] = nb1;
  5103. result->nb[2] = nb2;
  5104. result->nb[3] = result->nb[2]*ne2;
  5105. result->op = GGML_OP_VIEW;
  5106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5107. result->src[0] = a;
  5108. return result;
  5109. }
  5110. // ggml_view_4d
  5111. struct ggml_tensor * ggml_view_4d(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int64_t ne0,
  5115. int64_t ne1,
  5116. int64_t ne2,
  5117. int64_t ne3,
  5118. size_t nb1,
  5119. size_t nb2,
  5120. size_t nb3,
  5121. size_t offset) {
  5122. bool is_node = false;
  5123. if (a->grad) {
  5124. is_node = true;
  5125. }
  5126. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5127. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5128. result->nb[1] = nb1;
  5129. result->nb[2] = nb2;
  5130. result->nb[3] = nb3;
  5131. result->op = GGML_OP_VIEW;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. return result;
  5135. }
  5136. // ggml_permute
  5137. struct ggml_tensor * ggml_permute(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. int axis0,
  5141. int axis1,
  5142. int axis2,
  5143. int axis3) {
  5144. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5145. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5146. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5147. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5148. GGML_ASSERT(axis0 != axis1);
  5149. GGML_ASSERT(axis0 != axis2);
  5150. GGML_ASSERT(axis0 != axis3);
  5151. GGML_ASSERT(axis1 != axis2);
  5152. GGML_ASSERT(axis1 != axis3);
  5153. GGML_ASSERT(axis2 != axis3);
  5154. bool is_node = false;
  5155. if (a->grad) {
  5156. is_node = true;
  5157. }
  5158. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5159. ggml_format_name(result, "%s (permuted)", a->name);
  5160. int ne[GGML_MAX_DIMS];
  5161. int nb[GGML_MAX_DIMS];
  5162. ne[axis0] = a->ne[0];
  5163. ne[axis1] = a->ne[1];
  5164. ne[axis2] = a->ne[2];
  5165. ne[axis3] = a->ne[3];
  5166. nb[axis0] = a->nb[0];
  5167. nb[axis1] = a->nb[1];
  5168. nb[axis2] = a->nb[2];
  5169. nb[axis3] = a->nb[3];
  5170. result->ne[0] = ne[0];
  5171. result->ne[1] = ne[1];
  5172. result->ne[2] = ne[2];
  5173. result->ne[3] = ne[3];
  5174. result->nb[0] = nb[0];
  5175. result->nb[1] = nb[1];
  5176. result->nb[2] = nb[2];
  5177. result->nb[3] = nb[3];
  5178. result->op = GGML_OP_PERMUTE;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = a;
  5181. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5182. ggml_set_op_params(result, &params, sizeof(params));
  5183. return result;
  5184. }
  5185. // ggml_transpose
  5186. struct ggml_tensor * ggml_transpose(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a) {
  5189. bool is_node = false;
  5190. if (a->grad) {
  5191. is_node = true;
  5192. }
  5193. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5194. ggml_format_name(result, "%s (transposed)", a->name);
  5195. result->ne[0] = a->ne[1];
  5196. result->ne[1] = a->ne[0];
  5197. result->nb[0] = a->nb[1];
  5198. result->nb[1] = a->nb[0];
  5199. result->op = GGML_OP_TRANSPOSE;
  5200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5201. result->src[0] = a;
  5202. return result;
  5203. }
  5204. // ggml_get_rows
  5205. struct ggml_tensor * ggml_get_rows(
  5206. struct ggml_context * ctx,
  5207. struct ggml_tensor * a,
  5208. struct ggml_tensor * b) {
  5209. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5210. bool is_node = false;
  5211. if (a->grad || b->grad) {
  5212. is_node = true;
  5213. }
  5214. // TODO: implement non F32 return
  5215. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5216. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5217. result->op = GGML_OP_GET_ROWS;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. result->src[1] = b;
  5221. return result;
  5222. }
  5223. // ggml_get_rows_back
  5224. struct ggml_tensor * ggml_get_rows_back(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. struct ggml_tensor * c) {
  5229. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5230. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5231. bool is_node = false;
  5232. if (a->grad || b->grad) {
  5233. is_node = true;
  5234. }
  5235. // TODO: implement non F32 return
  5236. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5237. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5238. result->op = GGML_OP_GET_ROWS_BACK;
  5239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5240. result->src[0] = a;
  5241. result->src[1] = b;
  5242. result->src[2] = c;
  5243. return result;
  5244. }
  5245. // ggml_diag
  5246. struct ggml_tensor * ggml_diag(
  5247. struct ggml_context * ctx,
  5248. struct ggml_tensor * a) {
  5249. GGML_ASSERT(a->ne[1] == 1);
  5250. bool is_node = false;
  5251. if (a->grad) {
  5252. is_node = true;
  5253. }
  5254. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5255. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5256. result->op = GGML_OP_DIAG;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src[0] = a;
  5259. return result;
  5260. }
  5261. // ggml_diag_mask_inf
  5262. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. int n_past,
  5266. bool inplace) {
  5267. bool is_node = false;
  5268. if (a->grad) {
  5269. is_node = true;
  5270. }
  5271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5272. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5273. ggml_set_op_params(result, &params, sizeof(params));
  5274. result->op = GGML_OP_DIAG_MASK_INF;
  5275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5276. result->src[0] = a;
  5277. return result;
  5278. }
  5279. struct ggml_tensor * ggml_diag_mask_inf(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. int n_past) {
  5283. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5284. }
  5285. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. int n_past) {
  5289. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5290. }
  5291. // ggml_diag_mask_zero
  5292. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. int n_past,
  5296. bool inplace) {
  5297. bool is_node = false;
  5298. if (a->grad) {
  5299. is_node = true;
  5300. }
  5301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5302. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5303. ggml_set_op_params(result, &params, sizeof(params));
  5304. result->op = GGML_OP_DIAG_MASK_ZERO;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. return result;
  5308. }
  5309. struct ggml_tensor * ggml_diag_mask_zero(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. int n_past) {
  5313. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5314. }
  5315. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. int n_past) {
  5319. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5320. }
  5321. // ggml_soft_max
  5322. static struct ggml_tensor * ggml_soft_max_impl(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. bool inplace) {
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. is_node = true;
  5329. }
  5330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5331. result->op = GGML_OP_SOFT_MAX;
  5332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5333. result->src[0] = a;
  5334. return result;
  5335. }
  5336. struct ggml_tensor * ggml_soft_max(
  5337. struct ggml_context * ctx,
  5338. struct ggml_tensor * a) {
  5339. return ggml_soft_max_impl(ctx, a, false);
  5340. }
  5341. struct ggml_tensor * ggml_soft_max_inplace(
  5342. struct ggml_context * ctx,
  5343. struct ggml_tensor * a) {
  5344. return ggml_soft_max_impl(ctx, a, true);
  5345. }
  5346. // ggml_soft_max_back
  5347. static struct ggml_tensor * ggml_soft_max_back_impl(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * b,
  5351. bool inplace) {
  5352. bool is_node = false;
  5353. if (a->grad || b->grad) {
  5354. is_node = true; // TODO : implement backward pass
  5355. }
  5356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5357. result->op = GGML_OP_SOFT_MAX_BACK;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. result->src[1] = b;
  5361. return result;
  5362. }
  5363. struct ggml_tensor * ggml_soft_max_back(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a,
  5366. struct ggml_tensor * b) {
  5367. return ggml_soft_max_back_impl(ctx, a, b, false);
  5368. }
  5369. struct ggml_tensor * ggml_soft_max_back_inplace(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. struct ggml_tensor * b) {
  5373. return ggml_soft_max_back_impl(ctx, a, b, true);
  5374. }
  5375. // ggml_rope
  5376. static struct ggml_tensor * ggml_rope_impl(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. int n_past,
  5380. int n_dims,
  5381. int mode,
  5382. int n_ctx,
  5383. float freq_base,
  5384. float freq_scale,
  5385. bool inplace) {
  5386. GGML_ASSERT(n_past >= 0);
  5387. bool is_node = false;
  5388. if (a->grad) {
  5389. is_node = true;
  5390. }
  5391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5392. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5393. memcpy(params + 4, &freq_base, sizeof(float));
  5394. memcpy(params + 5, &freq_scale, sizeof(float));
  5395. ggml_set_op_params(result, &params, sizeof(params));
  5396. result->op = GGML_OP_ROPE;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. return result;
  5400. }
  5401. struct ggml_tensor * ggml_rope(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. int n_past,
  5405. int n_dims,
  5406. int mode,
  5407. int n_ctx) {
  5408. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5409. }
  5410. struct ggml_tensor * ggml_rope_inplace(
  5411. struct ggml_context * ctx,
  5412. struct ggml_tensor * a,
  5413. int n_past,
  5414. int n_dims,
  5415. int mode,
  5416. int n_ctx) {
  5417. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5418. }
  5419. struct ggml_tensor * ggml_rope_custom(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. int n_past,
  5423. int n_dims,
  5424. int mode,
  5425. int n_ctx,
  5426. float freq_base,
  5427. float freq_scale) {
  5428. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5429. }
  5430. struct ggml_tensor * ggml_rope_custom_inplace(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. int n_past,
  5434. int n_dims,
  5435. int mode,
  5436. int n_ctx,
  5437. float freq_base,
  5438. float freq_scale) {
  5439. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5440. }
  5441. // ggml_rope_back
  5442. struct ggml_tensor * ggml_rope_back(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. int n_past,
  5446. int n_dims,
  5447. int mode,
  5448. int n_ctx) {
  5449. GGML_ASSERT(n_past >= 0);
  5450. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5451. bool is_node = false;
  5452. if (a->grad) {
  5453. is_node = false; // TODO: implement backward
  5454. }
  5455. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5456. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5457. ggml_set_op_params(result, &params, sizeof(params));
  5458. result->op = GGML_OP_ROPE_BACK;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. return result;
  5462. }
  5463. // ggml_alibi
  5464. struct ggml_tensor * ggml_alibi(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past,
  5468. int n_head,
  5469. float bias_max) {
  5470. GGML_ASSERT(n_past >= 0);
  5471. bool is_node = false;
  5472. if (a->grad) {
  5473. GGML_ASSERT(false); // TODO: implement backward
  5474. is_node = true;
  5475. }
  5476. // TODO: when implement backward, fix this:
  5477. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5478. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5479. int32_t op_params[3] = { n_past, n_head };
  5480. memcpy(op_params + 2, &bias_max, sizeof(float));
  5481. ggml_set_op_params(result, &op_params, sizeof(op_params));
  5482. result->op = GGML_OP_ALIBI;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. return result;
  5486. }
  5487. // ggml_clamp
  5488. struct ggml_tensor * ggml_clamp(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. float min,
  5492. float max) {
  5493. bool is_node = false;
  5494. if (a->grad) {
  5495. GGML_ASSERT(false); // TODO: implement backward
  5496. is_node = true;
  5497. }
  5498. // TODO: when implement backward, fix this:
  5499. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5500. float params[] = { min, max };
  5501. ggml_set_op_params(result, &params, sizeof(params));
  5502. result->op = GGML_OP_CLAMP;
  5503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5504. result->src[0] = a;
  5505. return result;
  5506. }
  5507. // ggml_conv_1d
  5508. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5509. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5510. }
  5511. GGML_API struct ggml_tensor * ggml_conv_1d(
  5512. struct ggml_context * ctx,
  5513. struct ggml_tensor * a,
  5514. struct ggml_tensor * b,
  5515. int s0,
  5516. int p0,
  5517. int d0) {
  5518. GGML_ASSERT(ggml_is_matrix(b));
  5519. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5520. bool is_node = false;
  5521. if (a->grad || b->grad) {
  5522. GGML_ASSERT(false); // TODO: implement backward
  5523. is_node = true;
  5524. }
  5525. const int64_t ne[4] = {
  5526. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5527. a->ne[2], 1, 1,
  5528. };
  5529. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5530. int32_t params[] = { s0, p0, d0 };
  5531. ggml_set_op_params(result, &params, sizeof(params));
  5532. result->op = GGML_OP_CONV_1D;
  5533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5534. result->src[0] = a;
  5535. result->src[1] = b;
  5536. return result;
  5537. }
  5538. // ggml_conv_2d
  5539. struct ggml_tensor * ggml_conv_2d(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. int s0,
  5544. int s1,
  5545. int p0,
  5546. int p1,
  5547. int d0,
  5548. int d1) {
  5549. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5550. bool is_node = false;
  5551. if (a->grad || b->grad) {
  5552. GGML_ASSERT(false); // TODO: implement backward
  5553. is_node = true;
  5554. }
  5555. const int64_t ne[4] = {
  5556. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5557. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5558. a->ne[3], b->ne[3],
  5559. };
  5560. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5561. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5562. ggml_set_op_params(result, &params, sizeof(params));
  5563. result->op = GGML_OP_CONV_2D;
  5564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5565. result->src[0] = a;
  5566. result->src[1] = b;
  5567. return result;
  5568. }
  5569. // ggml_conv_1d_ph
  5570. struct ggml_tensor * ggml_conv_1d_ph(
  5571. struct ggml_context * ctx,
  5572. struct ggml_tensor * a,
  5573. struct ggml_tensor * b,
  5574. int s,
  5575. int d) {
  5576. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5577. }
  5578. // ggml_pool_*
  5579. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5580. return (ins + 2 * p - ks) / s + 1;
  5581. }
  5582. // ggml_pool_1d
  5583. struct ggml_tensor * ggml_pool_1d(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. enum ggml_op_pool op,
  5587. int k0,
  5588. int s0,
  5589. int p0) {
  5590. bool is_node = false;
  5591. if (a->grad) {
  5592. GGML_ASSERT(false); // TODO: implement backward
  5593. is_node = true;
  5594. }
  5595. const int64_t ne[3] = {
  5596. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5597. a->ne[1],
  5598. };
  5599. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5600. int32_t params[] = { op, k0, s0, p0 };
  5601. ggml_set_op_params(result, &params, sizeof(params));
  5602. result->op = GGML_OP_POOL_1D;
  5603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5604. result->src[0] = a;
  5605. return result;
  5606. }
  5607. // ggml_pool_2d
  5608. struct ggml_tensor * ggml_pool_2d(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. enum ggml_op_pool op,
  5612. int k0,
  5613. int k1,
  5614. int s0,
  5615. int s1,
  5616. int p0,
  5617. int p1) {
  5618. bool is_node = false;
  5619. if (a->grad) {
  5620. GGML_ASSERT(false); // TODO: implement backward
  5621. is_node = true;
  5622. }
  5623. const int64_t ne[3] = {
  5624. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5625. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5626. a->ne[2],
  5627. };
  5628. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5629. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5630. ggml_set_op_params(result, &params, sizeof(params));
  5631. result->op = GGML_OP_POOL_2D;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. return result;
  5635. }
  5636. // ggml_flash_attn
  5637. struct ggml_tensor * ggml_flash_attn(
  5638. struct ggml_context * ctx,
  5639. struct ggml_tensor * q,
  5640. struct ggml_tensor * k,
  5641. struct ggml_tensor * v,
  5642. bool masked) {
  5643. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5644. // TODO: check if vT can be multiplied by (k*qT)
  5645. bool is_node = false;
  5646. if (q->grad || k->grad || v->grad) {
  5647. is_node = true;
  5648. }
  5649. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5651. int32_t t = masked ? 1 : 0;
  5652. ggml_set_op_params(result, &t, sizeof(t));
  5653. result->op = GGML_OP_FLASH_ATTN;
  5654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5655. result->src[0] = q;
  5656. result->src[1] = k;
  5657. result->src[2] = v;
  5658. return result;
  5659. }
  5660. // ggml_flash_ff
  5661. struct ggml_tensor * ggml_flash_ff(
  5662. struct ggml_context * ctx,
  5663. struct ggml_tensor * a,
  5664. struct ggml_tensor * b0,
  5665. struct ggml_tensor * b1,
  5666. struct ggml_tensor * c0,
  5667. struct ggml_tensor * c1) {
  5668. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5669. // TODO: more checks
  5670. bool is_node = false;
  5671. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5672. is_node = true;
  5673. }
  5674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5676. result->op = GGML_OP_FLASH_FF;
  5677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5678. result->src[0] = a;
  5679. result->src[1] = b0;
  5680. result->src[2] = b1;
  5681. result->src[3] = c0;
  5682. result->src[4] = c1;
  5683. return result;
  5684. }
  5685. // ggml_flash_attn_back
  5686. struct ggml_tensor * ggml_flash_attn_back(
  5687. struct ggml_context * ctx,
  5688. struct ggml_tensor * q,
  5689. struct ggml_tensor * k,
  5690. struct ggml_tensor * v,
  5691. struct ggml_tensor * d,
  5692. bool masked) {
  5693. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5694. // TODO: check if vT can be multiplied by (k*qT)
  5695. // d shape [D,N,ne2,ne3]
  5696. // q shape [D,N,ne2,ne3]
  5697. // k shape [D,M,ne2,ne3]
  5698. // v shape [M,D,ne2,ne3]
  5699. const int64_t D = q->ne[0];
  5700. const int64_t N = q->ne[1];
  5701. const int64_t M = k->ne[1];
  5702. const int64_t ne2 = q->ne[2];
  5703. const int64_t ne3 = q->ne[3];
  5704. GGML_ASSERT(k->ne[0] == D);
  5705. GGML_ASSERT(v->ne[0] == M);
  5706. GGML_ASSERT(v->ne[1] == D);
  5707. GGML_ASSERT(d->ne[0] == D);
  5708. GGML_ASSERT(d->ne[1] == N);
  5709. GGML_ASSERT(k->ne[2] == ne2);
  5710. GGML_ASSERT(k->ne[3] == ne3);
  5711. GGML_ASSERT(v->ne[2] == ne2);
  5712. GGML_ASSERT(v->ne[3] == ne3);
  5713. GGML_ASSERT(d->ne[2] == ne2);
  5714. GGML_ASSERT(d->ne[3] == ne3);
  5715. bool is_node = false;
  5716. if (q->grad || k->grad || v->grad) {
  5717. // when using this operation (in backwards pass) these grads are set.
  5718. // we don't want to create (big) grad of our result, so is_node is false.
  5719. is_node = false;
  5720. }
  5721. // store gradients of q, k and v as continuous tensors concatenated in result.
  5722. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5723. // gradq->data = result->data
  5724. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5725. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5726. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5727. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5728. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5729. int32_t masked_i = masked ? 1 : 0;
  5730. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5731. result->op = GGML_OP_FLASH_ATTN_BACK;
  5732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5733. result->src[0] = q;
  5734. result->src[1] = k;
  5735. result->src[2] = v;
  5736. result->src[3] = d;
  5737. return result;
  5738. }
  5739. // ggml_win_part
  5740. struct ggml_tensor * ggml_win_part(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. int w) {
  5744. GGML_ASSERT(a->ne[3] == 1);
  5745. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5746. bool is_node = false;
  5747. if (a->grad) {
  5748. GGML_ASSERT(false); // TODO: implement backward
  5749. is_node = true;
  5750. }
  5751. // padding
  5752. const int px = (w - a->ne[1]%w)%w;
  5753. const int py = (w - a->ne[2]%w)%w;
  5754. const int npx = (px + a->ne[1])/w;
  5755. const int npy = (py + a->ne[2])/w;
  5756. const int np = npx*npy;
  5757. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5758. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5759. int32_t params[] = { npx, npy, w };
  5760. ggml_set_op_params(result, &params, sizeof(params));
  5761. result->op = GGML_OP_WIN_PART;
  5762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5763. result->src[0] = a;
  5764. return result;
  5765. }
  5766. // ggml_win_unpart
  5767. struct ggml_tensor * ggml_win_unpart(
  5768. struct ggml_context * ctx,
  5769. struct ggml_tensor * a,
  5770. int w0,
  5771. int h0,
  5772. int w) {
  5773. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5774. bool is_node = false;
  5775. if (a->grad) {
  5776. GGML_ASSERT(false); // TODO: implement backward
  5777. is_node = true;
  5778. }
  5779. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5780. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5781. int32_t params[] = { w };
  5782. ggml_set_op_params(result, &params, sizeof(params));
  5783. result->op = GGML_OP_WIN_UNPART;
  5784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5785. result->src[0] = a;
  5786. return result;
  5787. }
  5788. // gmml_unary
  5789. static struct ggml_tensor * ggml_unary_impl(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * a,
  5792. enum ggml_unary_op op,
  5793. bool inplace) {
  5794. bool is_node = false;
  5795. if (!inplace && (a->grad)) {
  5796. is_node = true;
  5797. }
  5798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5799. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5800. result->op = GGML_OP_UNARY;
  5801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5802. result->src[0] = a;
  5803. return result;
  5804. }
  5805. struct ggml_tensor * ggml_unary(
  5806. struct ggml_context * ctx,
  5807. struct ggml_tensor * a,
  5808. enum ggml_unary_op op) {
  5809. return ggml_unary_impl(ctx, a, op, false);
  5810. }
  5811. struct ggml_tensor * ggml_unary_inplace(
  5812. struct ggml_context * ctx,
  5813. struct ggml_tensor * a,
  5814. enum ggml_unary_op op) {
  5815. return ggml_unary_impl(ctx, a, op, true);
  5816. }
  5817. // ggml_map_unary
  5818. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5819. struct ggml_context * ctx,
  5820. struct ggml_tensor * a,
  5821. const ggml_unary_op_f32_t fun,
  5822. bool inplace) {
  5823. bool is_node = false;
  5824. if (!inplace && a->grad) {
  5825. is_node = true;
  5826. }
  5827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5828. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5829. result->op = GGML_OP_MAP_UNARY;
  5830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5831. result->src[0] = a;
  5832. return result;
  5833. }
  5834. struct ggml_tensor * ggml_map_unary_f32(
  5835. struct ggml_context * ctx,
  5836. struct ggml_tensor * a,
  5837. const ggml_unary_op_f32_t fun) {
  5838. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5839. }
  5840. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5841. struct ggml_context * ctx,
  5842. struct ggml_tensor * a,
  5843. const ggml_unary_op_f32_t fun) {
  5844. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5845. }
  5846. // ggml_map_binary
  5847. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5848. struct ggml_context * ctx,
  5849. struct ggml_tensor * a,
  5850. struct ggml_tensor * b,
  5851. const ggml_binary_op_f32_t fun,
  5852. bool inplace) {
  5853. GGML_ASSERT(ggml_are_same_shape(a, b));
  5854. bool is_node = false;
  5855. if (!inplace && (a->grad || b->grad)) {
  5856. is_node = true;
  5857. }
  5858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5859. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5860. result->op = GGML_OP_MAP_BINARY;
  5861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5862. result->src[0] = a;
  5863. result->src[1] = b;
  5864. return result;
  5865. }
  5866. struct ggml_tensor * ggml_map_binary_f32(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. struct ggml_tensor * b,
  5870. const ggml_binary_op_f32_t fun) {
  5871. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5872. }
  5873. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. struct ggml_tensor * b,
  5877. const ggml_binary_op_f32_t fun) {
  5878. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5879. }
  5880. // ggml_map_custom1_f32
  5881. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5882. struct ggml_context * ctx,
  5883. struct ggml_tensor * a,
  5884. const ggml_custom1_op_f32_t fun,
  5885. bool inplace) {
  5886. bool is_node = false;
  5887. if (!inplace && a->grad) {
  5888. is_node = true;
  5889. }
  5890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5891. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5892. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5894. result->src[0] = a;
  5895. return result;
  5896. }
  5897. struct ggml_tensor * ggml_map_custom1_f32(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * a,
  5900. const ggml_custom1_op_f32_t fun) {
  5901. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5902. }
  5903. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * a,
  5906. const ggml_custom1_op_f32_t fun) {
  5907. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5908. }
  5909. // ggml_map_custom2_f32
  5910. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5911. struct ggml_context * ctx,
  5912. struct ggml_tensor * a,
  5913. struct ggml_tensor * b,
  5914. const ggml_custom2_op_f32_t fun,
  5915. bool inplace) {
  5916. bool is_node = false;
  5917. if (!inplace && (a->grad || b->grad)) {
  5918. is_node = true;
  5919. }
  5920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5921. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5922. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5924. result->src[0] = a;
  5925. result->src[1] = b;
  5926. return result;
  5927. }
  5928. struct ggml_tensor * ggml_map_custom2_f32(
  5929. struct ggml_context * ctx,
  5930. struct ggml_tensor * a,
  5931. struct ggml_tensor * b,
  5932. const ggml_custom2_op_f32_t fun) {
  5933. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5934. }
  5935. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. struct ggml_tensor * b,
  5939. const ggml_custom2_op_f32_t fun) {
  5940. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5941. }
  5942. // ggml_map_custom3_f32
  5943. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5944. struct ggml_context * ctx,
  5945. struct ggml_tensor * a,
  5946. struct ggml_tensor * b,
  5947. struct ggml_tensor * c,
  5948. const ggml_custom3_op_f32_t fun,
  5949. bool inplace) {
  5950. bool is_node = false;
  5951. if (!inplace && (a->grad || b->grad || c->grad)) {
  5952. is_node = true;
  5953. }
  5954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5955. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5956. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. result->src[1] = b;
  5960. result->src[2] = c;
  5961. return result;
  5962. }
  5963. struct ggml_tensor * ggml_map_custom3_f32(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. struct ggml_tensor * b,
  5967. struct ggml_tensor * c,
  5968. const ggml_custom3_op_f32_t fun) {
  5969. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5970. }
  5971. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5972. struct ggml_context * ctx,
  5973. struct ggml_tensor * a,
  5974. struct ggml_tensor * b,
  5975. struct ggml_tensor * c,
  5976. const ggml_custom3_op_f32_t fun) {
  5977. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5978. }
  5979. // ggml_map_custom1
  5980. struct ggml_map_custom1_op_params {
  5981. ggml_custom1_op_t fun;
  5982. int n_tasks;
  5983. void * userdata;
  5984. };
  5985. static struct ggml_tensor * ggml_map_custom1_impl(
  5986. struct ggml_context * ctx,
  5987. struct ggml_tensor * a,
  5988. const ggml_custom1_op_t fun,
  5989. int n_tasks,
  5990. void * userdata,
  5991. bool inplace) {
  5992. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5993. bool is_node = false;
  5994. if (!inplace && a->grad) {
  5995. is_node = true;
  5996. }
  5997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5998. struct ggml_map_custom1_op_params params = {
  5999. /*.fun =*/ fun,
  6000. /*.n_tasks =*/ n_tasks,
  6001. /*.userdata =*/ userdata
  6002. };
  6003. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6004. result->op = GGML_OP_MAP_CUSTOM1;
  6005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6006. result->src[0] = a;
  6007. return result;
  6008. }
  6009. struct ggml_tensor * ggml_map_custom1(
  6010. struct ggml_context * ctx,
  6011. struct ggml_tensor * a,
  6012. const ggml_custom1_op_t fun,
  6013. int n_tasks,
  6014. void * userdata) {
  6015. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6016. }
  6017. struct ggml_tensor * ggml_map_custom1_inplace(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * a,
  6020. const ggml_custom1_op_t fun,
  6021. int n_tasks,
  6022. void * userdata) {
  6023. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6024. }
  6025. // ggml_map_custom2
  6026. struct ggml_map_custom2_op_params {
  6027. ggml_custom2_op_t fun;
  6028. int n_tasks;
  6029. void * userdata;
  6030. };
  6031. static struct ggml_tensor * ggml_map_custom2_impl(
  6032. struct ggml_context * ctx,
  6033. struct ggml_tensor * a,
  6034. struct ggml_tensor * b,
  6035. const ggml_custom2_op_t fun,
  6036. int n_tasks,
  6037. void * userdata,
  6038. bool inplace) {
  6039. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6040. bool is_node = false;
  6041. if (!inplace && (a->grad || b->grad)) {
  6042. is_node = true;
  6043. }
  6044. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6045. struct ggml_map_custom2_op_params params = {
  6046. /*.fun =*/ fun,
  6047. /*.n_tasks =*/ n_tasks,
  6048. /*.userdata =*/ userdata
  6049. };
  6050. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6051. result->op = GGML_OP_MAP_CUSTOM2;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. result->src[1] = b;
  6055. return result;
  6056. }
  6057. struct ggml_tensor * ggml_map_custom2(
  6058. struct ggml_context * ctx,
  6059. struct ggml_tensor * a,
  6060. struct ggml_tensor * b,
  6061. const ggml_custom2_op_t fun,
  6062. int n_tasks,
  6063. void * userdata) {
  6064. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6065. }
  6066. struct ggml_tensor * ggml_map_custom2_inplace(
  6067. struct ggml_context * ctx,
  6068. struct ggml_tensor * a,
  6069. struct ggml_tensor * b,
  6070. const ggml_custom2_op_t fun,
  6071. int n_tasks,
  6072. void * userdata) {
  6073. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6074. }
  6075. // ggml_map_custom3
  6076. struct ggml_map_custom3_op_params {
  6077. ggml_custom3_op_t fun;
  6078. int n_tasks;
  6079. void * userdata;
  6080. };
  6081. static struct ggml_tensor * ggml_map_custom3_impl(
  6082. struct ggml_context * ctx,
  6083. struct ggml_tensor * a,
  6084. struct ggml_tensor * b,
  6085. struct ggml_tensor * c,
  6086. const ggml_custom3_op_t fun,
  6087. int n_tasks,
  6088. void * userdata,
  6089. bool inplace) {
  6090. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6091. bool is_node = false;
  6092. if (!inplace && (a->grad || b->grad || c->grad)) {
  6093. is_node = true;
  6094. }
  6095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6096. struct ggml_map_custom3_op_params params = {
  6097. /*.fun =*/ fun,
  6098. /*.n_tasks =*/ n_tasks,
  6099. /*.userdata =*/ userdata
  6100. };
  6101. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6102. result->op = GGML_OP_MAP_CUSTOM3;
  6103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6104. result->src[0] = a;
  6105. result->src[1] = b;
  6106. result->src[2] = c;
  6107. return result;
  6108. }
  6109. struct ggml_tensor * ggml_map_custom3(
  6110. struct ggml_context * ctx,
  6111. struct ggml_tensor * a,
  6112. struct ggml_tensor * b,
  6113. struct ggml_tensor * c,
  6114. const ggml_custom3_op_t fun,
  6115. int n_tasks,
  6116. void * userdata) {
  6117. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6118. }
  6119. struct ggml_tensor * ggml_map_custom3_inplace(
  6120. struct ggml_context * ctx,
  6121. struct ggml_tensor * a,
  6122. struct ggml_tensor * b,
  6123. struct ggml_tensor * c,
  6124. const ggml_custom3_op_t fun,
  6125. int n_tasks,
  6126. void * userdata) {
  6127. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6128. }
  6129. // ggml_cross_entropy_loss
  6130. struct ggml_tensor * ggml_cross_entropy_loss(
  6131. struct ggml_context * ctx,
  6132. struct ggml_tensor * a,
  6133. struct ggml_tensor * b) {
  6134. GGML_ASSERT(ggml_are_same_shape(a, b));
  6135. bool is_node = false;
  6136. if (a->grad || b->grad) {
  6137. is_node = true;
  6138. }
  6139. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6140. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6142. result->src[0] = a;
  6143. result->src[1] = b;
  6144. return result;
  6145. }
  6146. // ggml_cross_entropy_loss_back
  6147. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6148. struct ggml_context * ctx,
  6149. struct ggml_tensor * a,
  6150. struct ggml_tensor * b,
  6151. struct ggml_tensor * c) {
  6152. GGML_ASSERT(ggml_are_same_shape(a, b));
  6153. GGML_ASSERT(ggml_is_scalar(c));
  6154. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6155. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6156. result->grad = NULL;
  6157. result->src[0] = a;
  6158. result->src[1] = b;
  6159. result->src[2] = c;
  6160. return result;
  6161. }
  6162. ////////////////////////////////////////////////////////////////////////////////
  6163. void ggml_set_param(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * tensor) {
  6166. tensor->is_param = true;
  6167. GGML_ASSERT(tensor->grad == NULL);
  6168. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6169. }
  6170. // ggml_compute_forward_dup
  6171. static void ggml_compute_forward_dup_same_cont(
  6172. const struct ggml_compute_params * params,
  6173. const struct ggml_tensor * src0,
  6174. struct ggml_tensor * dst) {
  6175. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6176. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6177. GGML_ASSERT(src0->type == dst->type);
  6178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6179. return;
  6180. }
  6181. const size_t nb00 = src0->nb[0];
  6182. const size_t nb0 = dst->nb[0];
  6183. const int ith = params->ith; // thread index
  6184. const int nth = params->nth; // number of threads
  6185. // parallelize by elements
  6186. const int ne = ggml_nelements(dst);
  6187. const int dr = (ne + nth - 1) / nth;
  6188. const int ie0 = dr * ith;
  6189. const int ie1 = MIN(ie0 + dr, ne);
  6190. if (ie0 < ie1) {
  6191. memcpy(
  6192. ((char *) dst->data + ie0*nb0),
  6193. ((char *) src0->data + ie0*nb00),
  6194. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6195. }
  6196. }
  6197. static void ggml_compute_forward_dup_f16(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. struct ggml_tensor * dst) {
  6201. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6203. return;
  6204. }
  6205. GGML_TENSOR_UNARY_OP_LOCALS;
  6206. const int ith = params->ith; // thread index
  6207. const int nth = params->nth; // number of threads
  6208. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6209. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6210. return;
  6211. }
  6212. // parallelize by rows
  6213. const int nr = ne01;
  6214. // number of rows per thread
  6215. const int dr = (nr + nth - 1) / nth;
  6216. // row range for this thread
  6217. const int ir0 = dr * ith;
  6218. const int ir1 = MIN(ir0 + dr, nr);
  6219. if (src0->type == dst->type &&
  6220. ne00 == ne0 &&
  6221. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6222. // copy by rows
  6223. const size_t rs = ne00*nb00;
  6224. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6225. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6226. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6227. memcpy(
  6228. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6229. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6230. rs);
  6231. }
  6232. }
  6233. }
  6234. return;
  6235. }
  6236. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6237. if (ggml_is_contiguous(dst)) {
  6238. if (nb00 == sizeof(ggml_fp16_t)) {
  6239. if (dst->type == GGML_TYPE_F16) {
  6240. size_t id = 0;
  6241. const size_t rs = ne00 * nb00;
  6242. char * dst_ptr = (char *) dst->data;
  6243. for (int i03 = 0; i03 < ne03; i03++) {
  6244. for (int i02 = 0; i02 < ne02; i02++) {
  6245. id += rs * ir0;
  6246. for (int i01 = ir0; i01 < ir1; i01++) {
  6247. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6248. memcpy(dst_ptr + id, src0_ptr, rs);
  6249. id += rs;
  6250. }
  6251. id += rs * (ne01 - ir1);
  6252. }
  6253. }
  6254. } else if (dst->type == GGML_TYPE_F32) {
  6255. size_t id = 0;
  6256. float * dst_ptr = (float *) dst->data;
  6257. for (int i03 = 0; i03 < ne03; i03++) {
  6258. for (int i02 = 0; i02 < ne02; i02++) {
  6259. id += ne00 * ir0;
  6260. for (int i01 = ir0; i01 < ir1; i01++) {
  6261. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6262. for (int i00 = 0; i00 < ne00; i00++) {
  6263. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6264. id++;
  6265. }
  6266. }
  6267. id += ne00 * (ne01 - ir1);
  6268. }
  6269. }
  6270. } else if (type_traits[dst->type].from_float) {
  6271. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6272. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6273. size_t id = 0;
  6274. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6275. char * dst_ptr = (char *) dst->data;
  6276. for (int i03 = 0; i03 < ne03; i03++) {
  6277. for (int i02 = 0; i02 < ne02; i02++) {
  6278. id += rs * ir0;
  6279. for (int i01 = ir0; i01 < ir1; i01++) {
  6280. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6281. for (int i00 = 0; i00 < ne00; i00++) {
  6282. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6283. }
  6284. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6285. id += rs;
  6286. }
  6287. id += rs * (ne01 - ir1);
  6288. }
  6289. }
  6290. } else {
  6291. GGML_ASSERT(false); // TODO: implement
  6292. }
  6293. } else {
  6294. //printf("%s: this is not optimal - fix me\n", __func__);
  6295. if (dst->type == GGML_TYPE_F32) {
  6296. size_t id = 0;
  6297. float * dst_ptr = (float *) dst->data;
  6298. for (int i03 = 0; i03 < ne03; i03++) {
  6299. for (int i02 = 0; i02 < ne02; i02++) {
  6300. id += ne00 * ir0;
  6301. for (int i01 = ir0; i01 < ir1; i01++) {
  6302. for (int i00 = 0; i00 < ne00; i00++) {
  6303. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6304. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6305. id++;
  6306. }
  6307. }
  6308. id += ne00 * (ne01 - ir1);
  6309. }
  6310. }
  6311. } else if (dst->type == GGML_TYPE_F16) {
  6312. size_t id = 0;
  6313. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6314. for (int i03 = 0; i03 < ne03; i03++) {
  6315. for (int i02 = 0; i02 < ne02; i02++) {
  6316. id += ne00 * ir0;
  6317. for (int i01 = ir0; i01 < ir1; i01++) {
  6318. for (int i00 = 0; i00 < ne00; i00++) {
  6319. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6320. dst_ptr[id] = *src0_ptr;
  6321. id++;
  6322. }
  6323. }
  6324. id += ne00 * (ne01 - ir1);
  6325. }
  6326. }
  6327. } else {
  6328. GGML_ASSERT(false); // TODO: implement
  6329. }
  6330. }
  6331. return;
  6332. }
  6333. // dst counters
  6334. int64_t i10 = 0;
  6335. int64_t i11 = 0;
  6336. int64_t i12 = 0;
  6337. int64_t i13 = 0;
  6338. if (dst->type == GGML_TYPE_F16) {
  6339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6341. i10 += ne00 * ir0;
  6342. while (i10 >= ne0) {
  6343. i10 -= ne0;
  6344. if (++i11 == ne1) {
  6345. i11 = 0;
  6346. if (++i12 == ne2) {
  6347. i12 = 0;
  6348. if (++i13 == ne3) {
  6349. i13 = 0;
  6350. }
  6351. }
  6352. }
  6353. }
  6354. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6355. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6356. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6357. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6358. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6359. if (++i10 == ne00) {
  6360. i10 = 0;
  6361. if (++i11 == ne01) {
  6362. i11 = 0;
  6363. if (++i12 == ne02) {
  6364. i12 = 0;
  6365. if (++i13 == ne03) {
  6366. i13 = 0;
  6367. }
  6368. }
  6369. }
  6370. }
  6371. }
  6372. }
  6373. i10 += ne00 * (ne01 - ir1);
  6374. while (i10 >= ne0) {
  6375. i10 -= ne0;
  6376. if (++i11 == ne1) {
  6377. i11 = 0;
  6378. if (++i12 == ne2) {
  6379. i12 = 0;
  6380. if (++i13 == ne3) {
  6381. i13 = 0;
  6382. }
  6383. }
  6384. }
  6385. }
  6386. }
  6387. }
  6388. } else if (dst->type == GGML_TYPE_F32) {
  6389. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6391. i10 += ne00 * ir0;
  6392. while (i10 >= ne0) {
  6393. i10 -= ne0;
  6394. if (++i11 == ne1) {
  6395. i11 = 0;
  6396. if (++i12 == ne2) {
  6397. i12 = 0;
  6398. if (++i13 == ne3) {
  6399. i13 = 0;
  6400. }
  6401. }
  6402. }
  6403. }
  6404. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6405. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6406. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6407. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6408. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6409. if (++i10 == ne0) {
  6410. i10 = 0;
  6411. if (++i11 == ne1) {
  6412. i11 = 0;
  6413. if (++i12 == ne2) {
  6414. i12 = 0;
  6415. if (++i13 == ne3) {
  6416. i13 = 0;
  6417. }
  6418. }
  6419. }
  6420. }
  6421. }
  6422. }
  6423. i10 += ne00 * (ne01 - ir1);
  6424. while (i10 >= ne0) {
  6425. i10 -= ne0;
  6426. if (++i11 == ne1) {
  6427. i11 = 0;
  6428. if (++i12 == ne2) {
  6429. i12 = 0;
  6430. if (++i13 == ne3) {
  6431. i13 = 0;
  6432. }
  6433. }
  6434. }
  6435. }
  6436. }
  6437. }
  6438. } else {
  6439. GGML_ASSERT(false); // TODO: implement
  6440. }
  6441. }
  6442. static void ggml_compute_forward_dup_f32(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0,
  6445. struct ggml_tensor * dst) {
  6446. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6448. return;
  6449. }
  6450. GGML_TENSOR_UNARY_OP_LOCALS;
  6451. const int ith = params->ith; // thread index
  6452. const int nth = params->nth; // number of threads
  6453. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6454. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6455. return;
  6456. }
  6457. // parallelize by rows
  6458. const int nr = ne01;
  6459. // number of rows per thread
  6460. const int dr = (nr + nth - 1) / nth;
  6461. // row range for this thread
  6462. const int ir0 = dr * ith;
  6463. const int ir1 = MIN(ir0 + dr, nr);
  6464. if (src0->type == dst->type &&
  6465. ne00 == ne0 &&
  6466. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6467. // copy by rows
  6468. const size_t rs = ne00*nb00;
  6469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6471. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6472. memcpy(
  6473. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6474. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6475. rs);
  6476. }
  6477. }
  6478. }
  6479. return;
  6480. }
  6481. if (ggml_is_contiguous(dst)) {
  6482. // TODO: simplify
  6483. if (nb00 == sizeof(float)) {
  6484. if (dst->type == GGML_TYPE_F32) {
  6485. size_t id = 0;
  6486. const size_t rs = ne00 * nb00;
  6487. char * dst_ptr = (char *) dst->data;
  6488. for (int i03 = 0; i03 < ne03; i03++) {
  6489. for (int i02 = 0; i02 < ne02; i02++) {
  6490. id += rs * ir0;
  6491. for (int i01 = ir0; i01 < ir1; i01++) {
  6492. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6493. memcpy(dst_ptr + id, src0_ptr, rs);
  6494. id += rs;
  6495. }
  6496. id += rs * (ne01 - ir1);
  6497. }
  6498. }
  6499. } else if (type_traits[dst->type].from_float) {
  6500. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6501. size_t id = 0;
  6502. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6503. char * dst_ptr = (char *) dst->data;
  6504. for (int i03 = 0; i03 < ne03; i03++) {
  6505. for (int i02 = 0; i02 < ne02; i02++) {
  6506. id += rs * ir0;
  6507. for (int i01 = ir0; i01 < ir1; i01++) {
  6508. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6509. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6510. id += rs;
  6511. }
  6512. id += rs * (ne01 - ir1);
  6513. }
  6514. }
  6515. } else {
  6516. GGML_ASSERT(false); // TODO: implement
  6517. }
  6518. } else {
  6519. //printf("%s: this is not optimal - fix me\n", __func__);
  6520. if (dst->type == GGML_TYPE_F32) {
  6521. size_t id = 0;
  6522. float * dst_ptr = (float *) dst->data;
  6523. for (int i03 = 0; i03 < ne03; i03++) {
  6524. for (int i02 = 0; i02 < ne02; i02++) {
  6525. id += ne00 * ir0;
  6526. for (int i01 = ir0; i01 < ir1; i01++) {
  6527. for (int i00 = 0; i00 < ne00; i00++) {
  6528. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6529. dst_ptr[id] = *src0_ptr;
  6530. id++;
  6531. }
  6532. }
  6533. id += ne00 * (ne01 - ir1);
  6534. }
  6535. }
  6536. } else if (dst->type == GGML_TYPE_F16) {
  6537. size_t id = 0;
  6538. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6539. for (int i03 = 0; i03 < ne03; i03++) {
  6540. for (int i02 = 0; i02 < ne02; i02++) {
  6541. id += ne00 * ir0;
  6542. for (int i01 = ir0; i01 < ir1; i01++) {
  6543. for (int i00 = 0; i00 < ne00; i00++) {
  6544. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6545. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6546. id++;
  6547. }
  6548. }
  6549. id += ne00 * (ne01 - ir1);
  6550. }
  6551. }
  6552. } else {
  6553. GGML_ASSERT(false); // TODO: implement
  6554. }
  6555. }
  6556. return;
  6557. }
  6558. // dst counters
  6559. int64_t i10 = 0;
  6560. int64_t i11 = 0;
  6561. int64_t i12 = 0;
  6562. int64_t i13 = 0;
  6563. if (dst->type == GGML_TYPE_F32) {
  6564. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6565. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6566. i10 += ne00 * ir0;
  6567. while (i10 >= ne0) {
  6568. i10 -= ne0;
  6569. if (++i11 == ne1) {
  6570. i11 = 0;
  6571. if (++i12 == ne2) {
  6572. i12 = 0;
  6573. if (++i13 == ne3) {
  6574. i13 = 0;
  6575. }
  6576. }
  6577. }
  6578. }
  6579. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6580. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6581. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6582. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6583. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6584. if (++i10 == ne0) {
  6585. i10 = 0;
  6586. if (++i11 == ne1) {
  6587. i11 = 0;
  6588. if (++i12 == ne2) {
  6589. i12 = 0;
  6590. if (++i13 == ne3) {
  6591. i13 = 0;
  6592. }
  6593. }
  6594. }
  6595. }
  6596. }
  6597. }
  6598. i10 += ne00 * (ne01 - ir1);
  6599. while (i10 >= ne0) {
  6600. i10 -= ne0;
  6601. if (++i11 == ne1) {
  6602. i11 = 0;
  6603. if (++i12 == ne2) {
  6604. i12 = 0;
  6605. if (++i13 == ne3) {
  6606. i13 = 0;
  6607. }
  6608. }
  6609. }
  6610. }
  6611. }
  6612. }
  6613. } else if (dst->type == GGML_TYPE_F16) {
  6614. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6616. i10 += ne00 * ir0;
  6617. while (i10 >= ne0) {
  6618. i10 -= ne0;
  6619. if (++i11 == ne1) {
  6620. i11 = 0;
  6621. if (++i12 == ne2) {
  6622. i12 = 0;
  6623. if (++i13 == ne3) {
  6624. i13 = 0;
  6625. }
  6626. }
  6627. }
  6628. }
  6629. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6630. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6631. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6632. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6633. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6634. if (++i10 == ne0) {
  6635. i10 = 0;
  6636. if (++i11 == ne1) {
  6637. i11 = 0;
  6638. if (++i12 == ne2) {
  6639. i12 = 0;
  6640. if (++i13 == ne3) {
  6641. i13 = 0;
  6642. }
  6643. }
  6644. }
  6645. }
  6646. }
  6647. }
  6648. i10 += ne00 * (ne01 - ir1);
  6649. while (i10 >= ne0) {
  6650. i10 -= ne0;
  6651. if (++i11 == ne1) {
  6652. i11 = 0;
  6653. if (++i12 == ne2) {
  6654. i12 = 0;
  6655. if (++i13 == ne3) {
  6656. i13 = 0;
  6657. }
  6658. }
  6659. }
  6660. }
  6661. }
  6662. }
  6663. } else {
  6664. GGML_ASSERT(false); // TODO: implement
  6665. }
  6666. }
  6667. static void ggml_compute_forward_dup(
  6668. const struct ggml_compute_params * params,
  6669. const struct ggml_tensor * src0,
  6670. struct ggml_tensor * dst) {
  6671. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6672. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6673. return;
  6674. }
  6675. switch (src0->type) {
  6676. case GGML_TYPE_F16:
  6677. {
  6678. ggml_compute_forward_dup_f16(params, src0, dst);
  6679. } break;
  6680. case GGML_TYPE_F32:
  6681. {
  6682. ggml_compute_forward_dup_f32(params, src0, dst);
  6683. } break;
  6684. default:
  6685. {
  6686. GGML_ASSERT(false);
  6687. } break;
  6688. }
  6689. }
  6690. // ggml_compute_forward_add
  6691. static void ggml_compute_forward_add_f32(
  6692. const struct ggml_compute_params * params,
  6693. const struct ggml_tensor * src0,
  6694. const struct ggml_tensor * src1,
  6695. struct ggml_tensor * dst) {
  6696. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6697. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6698. return;
  6699. }
  6700. const int ith = params->ith;
  6701. const int nth = params->nth;
  6702. const int nr = ggml_nrows(src0);
  6703. GGML_TENSOR_BINARY_OP_LOCALS;
  6704. GGML_ASSERT( nb0 == sizeof(float));
  6705. GGML_ASSERT(nb00 == sizeof(float));
  6706. // rows per thread
  6707. const int dr = (nr + nth - 1)/nth;
  6708. // row range for this thread
  6709. const int ir0 = dr*ith;
  6710. const int ir1 = MIN(ir0 + dr, nr);
  6711. if (nb10 == sizeof(float)) {
  6712. for (int ir = ir0; ir < ir1; ++ir) {
  6713. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6714. const int64_t i03 = ir/(ne02*ne01);
  6715. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6716. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6717. const int64_t i13 = i03 % ne13;
  6718. const int64_t i12 = i02 % ne12;
  6719. const int64_t i11 = i01 % ne11;
  6720. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6721. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6722. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6723. #ifdef GGML_USE_ACCELERATE
  6724. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6725. #else
  6726. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6727. #endif
  6728. // }
  6729. // }
  6730. }
  6731. } else {
  6732. // src1 is not contiguous
  6733. for (int ir = ir0; ir < ir1; ++ir) {
  6734. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6735. const int64_t i03 = ir/(ne02*ne01);
  6736. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6737. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6738. const int64_t i13 = i03 % ne13;
  6739. const int64_t i12 = i02 % ne12;
  6740. const int64_t i11 = i01 % ne11;
  6741. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6742. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6743. for (int i0 = 0; i0 < ne0; i0++) {
  6744. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6745. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6746. }
  6747. }
  6748. }
  6749. }
  6750. static void ggml_compute_forward_add_f16_f32(
  6751. const struct ggml_compute_params * params,
  6752. const struct ggml_tensor * src0,
  6753. const struct ggml_tensor * src1,
  6754. struct ggml_tensor * dst) {
  6755. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6757. return;
  6758. }
  6759. const int ith = params->ith;
  6760. const int nth = params->nth;
  6761. const int nr = ggml_nrows(src0);
  6762. GGML_TENSOR_BINARY_OP_LOCALS;
  6763. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6764. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6765. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6766. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6767. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6768. // rows per thread
  6769. const int dr = (nr + nth - 1)/nth;
  6770. // row range for this thread
  6771. const int ir0 = dr*ith;
  6772. const int ir1 = MIN(ir0 + dr, nr);
  6773. if (nb10 == sizeof(float)) {
  6774. for (int ir = ir0; ir < ir1; ++ir) {
  6775. // src0, src1 and dst are same shape => same indices
  6776. const int i3 = ir/(ne2*ne1);
  6777. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6778. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6779. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6780. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6781. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6782. for (int i = 0; i < ne0; i++) {
  6783. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6784. }
  6785. }
  6786. }
  6787. else {
  6788. // src1 is not contiguous
  6789. GGML_ASSERT(false);
  6790. }
  6791. }
  6792. static void ggml_compute_forward_add_f16_f16(
  6793. const struct ggml_compute_params * params,
  6794. const struct ggml_tensor * src0,
  6795. const struct ggml_tensor * src1,
  6796. struct ggml_tensor * dst) {
  6797. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6799. return;
  6800. }
  6801. const int ith = params->ith;
  6802. const int nth = params->nth;
  6803. const int nr = ggml_nrows(src0);
  6804. GGML_TENSOR_BINARY_OP_LOCALS;
  6805. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6806. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6807. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6808. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6809. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6810. // rows per thread
  6811. const int dr = (nr + nth - 1)/nth;
  6812. // row range for this thread
  6813. const int ir0 = dr*ith;
  6814. const int ir1 = MIN(ir0 + dr, nr);
  6815. if (nb10 == sizeof(ggml_fp16_t)) {
  6816. for (int ir = ir0; ir < ir1; ++ir) {
  6817. // src0, src1 and dst are same shape => same indices
  6818. const int i3 = ir/(ne2*ne1);
  6819. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6820. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6821. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6822. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6823. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6824. for (int i = 0; i < ne0; i++) {
  6825. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6826. }
  6827. }
  6828. }
  6829. else {
  6830. // src1 is not contiguous
  6831. GGML_ASSERT(false);
  6832. }
  6833. }
  6834. static void ggml_compute_forward_add_q_f32(
  6835. const struct ggml_compute_params * params,
  6836. const struct ggml_tensor * src0,
  6837. const struct ggml_tensor * src1,
  6838. struct ggml_tensor * dst) {
  6839. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6841. return;
  6842. }
  6843. const int nr = ggml_nrows(src0);
  6844. GGML_TENSOR_BINARY_OP_LOCALS;
  6845. const int ith = params->ith;
  6846. const int nth = params->nth;
  6847. const enum ggml_type type = src0->type;
  6848. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6849. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6850. // we don't support permuted src0 or src1
  6851. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6852. GGML_ASSERT(nb10 == sizeof(float));
  6853. // dst cannot be transposed or permuted
  6854. GGML_ASSERT(nb0 <= nb1);
  6855. GGML_ASSERT(nb1 <= nb2);
  6856. GGML_ASSERT(nb2 <= nb3);
  6857. GGML_ASSERT(ggml_is_quantized(src0->type));
  6858. GGML_ASSERT(dst->type == src0->type);
  6859. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6860. // rows per thread
  6861. const int dr = (nr + nth - 1)/nth;
  6862. // row range for this thread
  6863. const int ir0 = dr*ith;
  6864. const int ir1 = MIN(ir0 + dr, nr);
  6865. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6866. for (int ir = ir0; ir < ir1; ++ir) {
  6867. // src0 indices
  6868. const int i03 = ir/(ne02*ne01);
  6869. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6870. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6871. // src1 and dst are same shape as src0 => same indices
  6872. const int i13 = i03;
  6873. const int i12 = i02;
  6874. const int i11 = i01;
  6875. const int i3 = i03;
  6876. const int i2 = i02;
  6877. const int i1 = i01;
  6878. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6879. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6880. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6881. assert(ne00 % 32 == 0);
  6882. // unquantize row from src0 to temp buffer
  6883. dequantize_row_q(src0_row, wdata, ne00);
  6884. // add src1
  6885. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6886. // quantize row to dst
  6887. quantize_row_q(wdata, dst_row, ne00);
  6888. }
  6889. }
  6890. static void ggml_compute_forward_add(
  6891. const struct ggml_compute_params * params,
  6892. const struct ggml_tensor * src0,
  6893. const struct ggml_tensor * src1,
  6894. struct ggml_tensor * dst) {
  6895. switch (src0->type) {
  6896. case GGML_TYPE_F32:
  6897. {
  6898. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6899. } break;
  6900. case GGML_TYPE_F16:
  6901. {
  6902. if (src1->type == GGML_TYPE_F16) {
  6903. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6904. }
  6905. else if (src1->type == GGML_TYPE_F32) {
  6906. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6907. }
  6908. else {
  6909. GGML_ASSERT(false);
  6910. }
  6911. } break;
  6912. case GGML_TYPE_Q4_0:
  6913. case GGML_TYPE_Q4_1:
  6914. case GGML_TYPE_Q5_0:
  6915. case GGML_TYPE_Q5_1:
  6916. case GGML_TYPE_Q8_0:
  6917. case GGML_TYPE_Q2_K:
  6918. case GGML_TYPE_Q3_K:
  6919. case GGML_TYPE_Q4_K:
  6920. case GGML_TYPE_Q5_K:
  6921. case GGML_TYPE_Q6_K:
  6922. {
  6923. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6924. } break;
  6925. default:
  6926. {
  6927. GGML_ASSERT(false);
  6928. } break;
  6929. }
  6930. }
  6931. // ggml_compute_forward_add1
  6932. static void ggml_compute_forward_add1_f32(
  6933. const struct ggml_compute_params * params,
  6934. const struct ggml_tensor * src0,
  6935. const struct ggml_tensor * src1,
  6936. struct ggml_tensor * dst) {
  6937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6938. GGML_ASSERT(ggml_is_scalar(src1));
  6939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6940. return;
  6941. }
  6942. const int ith = params->ith;
  6943. const int nth = params->nth;
  6944. const int nr = ggml_nrows(src0);
  6945. GGML_TENSOR_UNARY_OP_LOCALS;
  6946. GGML_ASSERT( nb0 == sizeof(float));
  6947. GGML_ASSERT(nb00 == sizeof(float));
  6948. // rows per thread
  6949. const int dr = (nr + nth - 1)/nth;
  6950. // row range for this thread
  6951. const int ir0 = dr*ith;
  6952. const int ir1 = MIN(ir0 + dr, nr);
  6953. for (int ir = ir0; ir < ir1; ++ir) {
  6954. // src0 and dst are same shape => same indices
  6955. const int i3 = ir/(ne2*ne1);
  6956. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6957. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6958. #ifdef GGML_USE_ACCELERATE
  6959. UNUSED(ggml_vec_add1_f32);
  6960. vDSP_vadd(
  6961. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6962. (float *) ((char *) src1->data), 0,
  6963. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6964. ne0);
  6965. #else
  6966. ggml_vec_add1_f32(ne0,
  6967. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6968. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6969. *(float *) src1->data);
  6970. #endif
  6971. }
  6972. }
  6973. static void ggml_compute_forward_add1_f16_f32(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. const struct ggml_tensor * src1,
  6977. struct ggml_tensor * dst) {
  6978. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6979. GGML_ASSERT(ggml_is_scalar(src1));
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. // scalar to add
  6984. const float v = *(float *) src1->data;
  6985. const int ith = params->ith;
  6986. const int nth = params->nth;
  6987. const int nr = ggml_nrows(src0);
  6988. GGML_TENSOR_UNARY_OP_LOCALS;
  6989. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6990. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6991. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6992. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6993. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6994. // rows per thread
  6995. const int dr = (nr + nth - 1)/nth;
  6996. // row range for this thread
  6997. const int ir0 = dr*ith;
  6998. const int ir1 = MIN(ir0 + dr, nr);
  6999. for (int ir = ir0; ir < ir1; ++ir) {
  7000. // src0 and dst are same shape => same indices
  7001. const int i3 = ir/(ne2*ne1);
  7002. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7003. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7004. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7005. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7006. for (int i = 0; i < ne0; i++) {
  7007. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7008. }
  7009. }
  7010. }
  7011. static void ggml_compute_forward_add1_f16_f16(
  7012. const struct ggml_compute_params * params,
  7013. const struct ggml_tensor * src0,
  7014. const struct ggml_tensor * src1,
  7015. struct ggml_tensor * dst) {
  7016. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7017. GGML_ASSERT(ggml_is_scalar(src1));
  7018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7019. return;
  7020. }
  7021. // scalar to add
  7022. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7023. const int ith = params->ith;
  7024. const int nth = params->nth;
  7025. const int nr = ggml_nrows(src0);
  7026. GGML_TENSOR_UNARY_OP_LOCALS;
  7027. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7028. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7029. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7030. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7031. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7032. // rows per thread
  7033. const int dr = (nr + nth - 1)/nth;
  7034. // row range for this thread
  7035. const int ir0 = dr*ith;
  7036. const int ir1 = MIN(ir0 + dr, nr);
  7037. for (int ir = ir0; ir < ir1; ++ir) {
  7038. // src0 and dst are same shape => same indices
  7039. const int i3 = ir/(ne2*ne1);
  7040. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7041. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7042. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7043. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7044. for (int i = 0; i < ne0; i++) {
  7045. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7046. }
  7047. }
  7048. }
  7049. static void ggml_compute_forward_add1_q_f32(
  7050. const struct ggml_compute_params * params,
  7051. const struct ggml_tensor * src0,
  7052. const struct ggml_tensor * src1,
  7053. struct ggml_tensor * dst) {
  7054. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7055. GGML_ASSERT(ggml_is_scalar(src1));
  7056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7057. return;
  7058. }
  7059. // scalar to add
  7060. const float v = *(float *) src1->data;
  7061. const int ith = params->ith;
  7062. const int nth = params->nth;
  7063. const int nr = ggml_nrows(src0);
  7064. GGML_TENSOR_UNARY_OP_LOCALS;
  7065. const enum ggml_type type = src0->type;
  7066. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7067. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7068. // we don't support permuted src0
  7069. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7070. // dst cannot be transposed or permuted
  7071. GGML_ASSERT(nb0 <= nb1);
  7072. GGML_ASSERT(nb1 <= nb2);
  7073. GGML_ASSERT(nb2 <= nb3);
  7074. GGML_ASSERT(ggml_is_quantized(src0->type));
  7075. GGML_ASSERT(dst->type == src0->type);
  7076. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7077. // rows per thread
  7078. const int dr = (nr + nth - 1)/nth;
  7079. // row range for this thread
  7080. const int ir0 = dr*ith;
  7081. const int ir1 = MIN(ir0 + dr, nr);
  7082. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7083. for (int ir = ir0; ir < ir1; ++ir) {
  7084. // src0 and dst are same shape => same indices
  7085. const int i3 = ir/(ne2*ne1);
  7086. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7087. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7088. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7089. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7090. assert(ne0 % 32 == 0);
  7091. // unquantize row from src0 to temp buffer
  7092. dequantize_row_q(src0_row, wdata, ne0);
  7093. // add src1
  7094. ggml_vec_acc1_f32(ne0, wdata, v);
  7095. // quantize row to dst
  7096. quantize_row_q(wdata, dst_row, ne0);
  7097. }
  7098. }
  7099. static void ggml_compute_forward_add1(
  7100. const struct ggml_compute_params * params,
  7101. const struct ggml_tensor * src0,
  7102. const struct ggml_tensor * src1,
  7103. struct ggml_tensor * dst) {
  7104. switch (src0->type) {
  7105. case GGML_TYPE_F32:
  7106. {
  7107. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7108. } break;
  7109. case GGML_TYPE_F16:
  7110. {
  7111. if (src1->type == GGML_TYPE_F16) {
  7112. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7113. }
  7114. else if (src1->type == GGML_TYPE_F32) {
  7115. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7116. }
  7117. else {
  7118. GGML_ASSERT(false);
  7119. }
  7120. } break;
  7121. case GGML_TYPE_Q4_0:
  7122. case GGML_TYPE_Q4_1:
  7123. case GGML_TYPE_Q5_0:
  7124. case GGML_TYPE_Q5_1:
  7125. case GGML_TYPE_Q8_0:
  7126. case GGML_TYPE_Q8_1:
  7127. case GGML_TYPE_Q2_K:
  7128. case GGML_TYPE_Q3_K:
  7129. case GGML_TYPE_Q4_K:
  7130. case GGML_TYPE_Q5_K:
  7131. case GGML_TYPE_Q6_K:
  7132. {
  7133. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7134. } break;
  7135. default:
  7136. {
  7137. GGML_ASSERT(false);
  7138. } break;
  7139. }
  7140. }
  7141. // ggml_compute_forward_acc
  7142. static void ggml_compute_forward_acc_f32(
  7143. const struct ggml_compute_params * params,
  7144. const struct ggml_tensor * src0,
  7145. const struct ggml_tensor * src1,
  7146. struct ggml_tensor * dst) {
  7147. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7148. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7149. // view src0 and dst with these strides and data offset inbytes during acc
  7150. // nb0 is implicitely element_size because src0 and dst are contiguous
  7151. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7152. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7153. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7154. size_t offset = ((int32_t *) dst->op_params)[3];
  7155. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7156. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7157. // memcpy needs to be synchronized across threads to avoid race conditions.
  7158. // => do it in INIT phase
  7159. memcpy(
  7160. ((char *) dst->data),
  7161. ((char *) src0->data),
  7162. ggml_nbytes(dst));
  7163. }
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. const int ith = params->ith;
  7168. const int nth = params->nth;
  7169. const int nr = ggml_nrows(src1);
  7170. const int nc = src1->ne[0];
  7171. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7172. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7173. // src0 and dst as viewed during acc
  7174. const size_t nb0 = ggml_element_size(src0);
  7175. const size_t nb00 = nb0;
  7176. const size_t nb01 = nb1;
  7177. const size_t nb02 = nb2;
  7178. const size_t nb03 = nb3;
  7179. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7180. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7181. GGML_ASSERT(nb10 == sizeof(float));
  7182. // rows per thread
  7183. const int dr = (nr + nth - 1)/nth;
  7184. // row range for this thread
  7185. const int ir0 = dr*ith;
  7186. const int ir1 = MIN(ir0 + dr, nr);
  7187. for (int ir = ir0; ir < ir1; ++ir) {
  7188. // src0 and dst are viewed with shape of src1 and offset
  7189. // => same indices
  7190. const int i3 = ir/(ne12*ne11);
  7191. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7192. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7193. #ifdef GGML_USE_ACCELERATE
  7194. vDSP_vadd(
  7195. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7196. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7197. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7198. #else
  7199. ggml_vec_add_f32(nc,
  7200. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7201. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7202. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7203. #endif
  7204. }
  7205. }
  7206. static void ggml_compute_forward_acc(
  7207. const struct ggml_compute_params * params,
  7208. const struct ggml_tensor * src0,
  7209. const struct ggml_tensor * src1,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7215. } break;
  7216. case GGML_TYPE_F16:
  7217. case GGML_TYPE_Q4_0:
  7218. case GGML_TYPE_Q4_1:
  7219. case GGML_TYPE_Q5_0:
  7220. case GGML_TYPE_Q5_1:
  7221. case GGML_TYPE_Q8_0:
  7222. case GGML_TYPE_Q8_1:
  7223. case GGML_TYPE_Q2_K:
  7224. case GGML_TYPE_Q3_K:
  7225. case GGML_TYPE_Q4_K:
  7226. case GGML_TYPE_Q5_K:
  7227. case GGML_TYPE_Q6_K:
  7228. default:
  7229. {
  7230. GGML_ASSERT(false);
  7231. } break;
  7232. }
  7233. }
  7234. // ggml_compute_forward_sub
  7235. static void ggml_compute_forward_sub_f32(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. const struct ggml_tensor * src1,
  7239. struct ggml_tensor * dst) {
  7240. assert(params->ith == 0);
  7241. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7243. return;
  7244. }
  7245. const int nr = ggml_nrows(src0);
  7246. GGML_TENSOR_BINARY_OP_LOCALS;
  7247. GGML_ASSERT( nb0 == sizeof(float));
  7248. GGML_ASSERT(nb00 == sizeof(float));
  7249. if (nb10 == sizeof(float)) {
  7250. for (int ir = 0; ir < nr; ++ir) {
  7251. // src0, src1 and dst are same shape => same indices
  7252. const int i3 = ir/(ne2*ne1);
  7253. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7254. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7255. #ifdef GGML_USE_ACCELERATE
  7256. vDSP_vsub(
  7257. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7258. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7259. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7260. ne0);
  7261. #else
  7262. ggml_vec_sub_f32(ne0,
  7263. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7264. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7265. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7266. #endif
  7267. // }
  7268. // }
  7269. }
  7270. } else {
  7271. // src1 is not contiguous
  7272. for (int ir = 0; ir < nr; ++ir) {
  7273. // src0, src1 and dst are same shape => same indices
  7274. const int i3 = ir/(ne2*ne1);
  7275. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7276. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7277. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7278. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7279. for (int i0 = 0; i0 < ne0; i0++) {
  7280. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7281. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7282. }
  7283. }
  7284. }
  7285. }
  7286. static void ggml_compute_forward_sub(
  7287. const struct ggml_compute_params * params,
  7288. const struct ggml_tensor * src0,
  7289. const struct ggml_tensor * src1,
  7290. struct ggml_tensor * dst) {
  7291. switch (src0->type) {
  7292. case GGML_TYPE_F32:
  7293. {
  7294. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7295. } break;
  7296. default:
  7297. {
  7298. GGML_ASSERT(false);
  7299. } break;
  7300. }
  7301. }
  7302. // ggml_compute_forward_mul
  7303. static void ggml_compute_forward_mul_f32(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. const struct ggml_tensor * src1,
  7307. struct ggml_tensor * dst) {
  7308. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7309. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7310. return;
  7311. }
  7312. const int ith = params->ith;
  7313. const int nth = params->nth;
  7314. #ifdef GGML_USE_CLBLAST
  7315. if (src1->backend == GGML_BACKEND_GPU) {
  7316. if (ith == 0) {
  7317. ggml_cl_mul(src0, src1, dst);
  7318. }
  7319. return;
  7320. }
  7321. #endif
  7322. const int64_t nr = ggml_nrows(src0);
  7323. GGML_TENSOR_BINARY_OP_LOCALS;
  7324. GGML_ASSERT( nb0 == sizeof(float));
  7325. GGML_ASSERT(nb00 == sizeof(float));
  7326. GGML_ASSERT(ne00 == ne10);
  7327. if (nb10 == sizeof(float)) {
  7328. for (int64_t ir = ith; ir < nr; ir += nth) {
  7329. // src0 and dst are same shape => same indices
  7330. const int64_t i03 = ir/(ne02*ne01);
  7331. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7332. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7333. const int64_t i13 = i03 % ne13;
  7334. const int64_t i12 = i02 % ne12;
  7335. const int64_t i11 = i01 % ne11;
  7336. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7337. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7338. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7339. #ifdef GGML_USE_ACCELERATE
  7340. UNUSED(ggml_vec_mul_f32);
  7341. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7342. #else
  7343. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7344. #endif
  7345. // }
  7346. // }
  7347. }
  7348. } else {
  7349. // src1 is not contiguous
  7350. for (int64_t ir = ith; ir < nr; ir += nth) {
  7351. // src0 and dst are same shape => same indices
  7352. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7353. const int64_t i03 = ir/(ne02*ne01);
  7354. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7355. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7356. const int64_t i13 = i03 % ne13;
  7357. const int64_t i12 = i02 % ne12;
  7358. const int64_t i11 = i01 % ne11;
  7359. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7360. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7361. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7362. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7363. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7364. }
  7365. }
  7366. }
  7367. }
  7368. static void ggml_compute_forward_mul(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. switch (src0->type) {
  7374. case GGML_TYPE_F32:
  7375. {
  7376. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7377. } break;
  7378. default:
  7379. {
  7380. GGML_ASSERT(false);
  7381. } break;
  7382. }
  7383. }
  7384. // ggml_compute_forward_div
  7385. static void ggml_compute_forward_div_f32(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. const struct ggml_tensor * src1,
  7389. struct ggml_tensor * dst) {
  7390. assert(params->ith == 0);
  7391. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7393. return;
  7394. }
  7395. const int nr = ggml_nrows(src0);
  7396. GGML_TENSOR_BINARY_OP_LOCALS;
  7397. GGML_ASSERT( nb0 == sizeof(float));
  7398. GGML_ASSERT(nb00 == sizeof(float));
  7399. if (nb10 == sizeof(float)) {
  7400. for (int ir = 0; ir < nr; ++ir) {
  7401. // src0, src1 and dst are same shape => same indices
  7402. const int i3 = ir/(ne2*ne1);
  7403. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7404. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7405. #ifdef GGML_USE_ACCELERATE
  7406. vDSP_vdiv(
  7407. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7408. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7409. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7410. ne0);
  7411. #else
  7412. ggml_vec_div_f32(ne0,
  7413. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7414. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7415. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7416. #endif
  7417. // }
  7418. // }
  7419. }
  7420. } else {
  7421. // src1 is not contiguous
  7422. for (int ir = 0; ir < nr; ++ir) {
  7423. // src0, src1 and dst are same shape => same indices
  7424. const int i3 = ir/(ne2*ne1);
  7425. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7426. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7427. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7428. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7429. for (int i0 = 0; i0 < ne0; i0++) {
  7430. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7431. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7432. }
  7433. }
  7434. }
  7435. }
  7436. static void ggml_compute_forward_div(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. const struct ggml_tensor * src1,
  7440. struct ggml_tensor * dst) {
  7441. switch (src0->type) {
  7442. case GGML_TYPE_F32:
  7443. {
  7444. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7445. } break;
  7446. default:
  7447. {
  7448. GGML_ASSERT(false);
  7449. } break;
  7450. }
  7451. }
  7452. // ggml_compute_forward_sqr
  7453. static void ggml_compute_forward_sqr_f32(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. struct ggml_tensor * dst) {
  7457. assert(params->ith == 0);
  7458. assert(ggml_are_same_shape(src0, dst));
  7459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7460. return;
  7461. }
  7462. const int n = ggml_nrows(src0);
  7463. const int nc = src0->ne[0];
  7464. assert( dst->nb[0] == sizeof(float));
  7465. assert(src0->nb[0] == sizeof(float));
  7466. for (int i = 0; i < n; i++) {
  7467. ggml_vec_sqr_f32(nc,
  7468. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7469. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7470. }
  7471. }
  7472. static void ggml_compute_forward_sqr(
  7473. const struct ggml_compute_params * params,
  7474. const struct ggml_tensor * src0,
  7475. struct ggml_tensor * dst) {
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F32:
  7478. {
  7479. ggml_compute_forward_sqr_f32(params, src0, dst);
  7480. } break;
  7481. default:
  7482. {
  7483. GGML_ASSERT(false);
  7484. } break;
  7485. }
  7486. }
  7487. // ggml_compute_forward_sqrt
  7488. static void ggml_compute_forward_sqrt_f32(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. struct ggml_tensor * dst) {
  7492. assert(params->ith == 0);
  7493. assert(ggml_are_same_shape(src0, dst));
  7494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7495. return;
  7496. }
  7497. const int n = ggml_nrows(src0);
  7498. const int nc = src0->ne[0];
  7499. assert( dst->nb[0] == sizeof(float));
  7500. assert(src0->nb[0] == sizeof(float));
  7501. for (int i = 0; i < n; i++) {
  7502. ggml_vec_sqrt_f32(nc,
  7503. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7504. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7505. }
  7506. }
  7507. static void ggml_compute_forward_sqrt(
  7508. const struct ggml_compute_params * params,
  7509. const struct ggml_tensor * src0,
  7510. struct ggml_tensor * dst) {
  7511. switch (src0->type) {
  7512. case GGML_TYPE_F32:
  7513. {
  7514. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7515. } break;
  7516. default:
  7517. {
  7518. GGML_ASSERT(false);
  7519. } break;
  7520. }
  7521. }
  7522. // ggml_compute_forward_log
  7523. static void ggml_compute_forward_log_f32(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. GGML_ASSERT(params->ith == 0);
  7528. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7530. return;
  7531. }
  7532. const int n = ggml_nrows(src0);
  7533. const int nc = src0->ne[0];
  7534. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7535. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7536. for (int i = 0; i < n; i++) {
  7537. ggml_vec_log_f32(nc,
  7538. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7539. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7540. }
  7541. }
  7542. static void ggml_compute_forward_log(
  7543. const struct ggml_compute_params * params,
  7544. const struct ggml_tensor * src0,
  7545. struct ggml_tensor * dst) {
  7546. switch (src0->type) {
  7547. case GGML_TYPE_F32:
  7548. {
  7549. ggml_compute_forward_log_f32(params, src0, dst);
  7550. } break;
  7551. default:
  7552. {
  7553. GGML_ASSERT(false);
  7554. } break;
  7555. }
  7556. }
  7557. // ggml_compute_forward_sum
  7558. static void ggml_compute_forward_sum_f32(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. struct ggml_tensor * dst) {
  7562. assert(params->ith == 0);
  7563. assert(ggml_is_scalar(dst));
  7564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7565. return;
  7566. }
  7567. assert(ggml_is_scalar(dst));
  7568. assert(src0->nb[0] == sizeof(float));
  7569. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7570. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7571. ggml_float sum = 0;
  7572. ggml_float row_sum = 0;
  7573. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7574. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7575. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7576. ggml_vec_sum_f32_ggf(ne00,
  7577. &row_sum,
  7578. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7579. sum += row_sum;
  7580. }
  7581. }
  7582. }
  7583. ((float *) dst->data)[0] = sum;
  7584. }
  7585. static void ggml_compute_forward_sum_f16(
  7586. const struct ggml_compute_params * params,
  7587. const struct ggml_tensor * src0,
  7588. struct ggml_tensor * dst) {
  7589. assert(params->ith == 0);
  7590. assert(ggml_is_scalar(dst));
  7591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7592. return;
  7593. }
  7594. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7595. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7596. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7597. float sum = 0;
  7598. float row_sum = 0;
  7599. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7600. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7601. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7602. ggml_vec_sum_f16_ggf(ne00,
  7603. &row_sum,
  7604. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7605. sum += row_sum;
  7606. }
  7607. }
  7608. }
  7609. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7610. }
  7611. static void ggml_compute_forward_sum(
  7612. const struct ggml_compute_params * params,
  7613. const struct ggml_tensor * src0,
  7614. struct ggml_tensor * dst) {
  7615. switch (src0->type) {
  7616. case GGML_TYPE_F32:
  7617. {
  7618. ggml_compute_forward_sum_f32(params, src0, dst);
  7619. } break;
  7620. case GGML_TYPE_F16:
  7621. {
  7622. ggml_compute_forward_sum_f16(params, src0, dst);
  7623. } break;
  7624. default:
  7625. {
  7626. GGML_ASSERT(false);
  7627. } break;
  7628. }
  7629. }
  7630. // ggml_compute_forward_sum_rows
  7631. static void ggml_compute_forward_sum_rows_f32(
  7632. const struct ggml_compute_params * params,
  7633. const struct ggml_tensor * src0,
  7634. struct ggml_tensor * dst) {
  7635. GGML_ASSERT(params->ith == 0);
  7636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7637. return;
  7638. }
  7639. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7640. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7641. GGML_TENSOR_UNARY_OP_LOCALS;
  7642. GGML_ASSERT(ne0 == 1);
  7643. GGML_ASSERT(ne1 == ne01);
  7644. GGML_ASSERT(ne2 == ne02);
  7645. GGML_ASSERT(ne3 == ne03);
  7646. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7647. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7648. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7649. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7650. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7651. float row_sum = 0;
  7652. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7653. dst_row[0] = row_sum;
  7654. }
  7655. }
  7656. }
  7657. }
  7658. static void ggml_compute_forward_sum_rows(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. struct ggml_tensor * dst) {
  7662. switch (src0->type) {
  7663. case GGML_TYPE_F32:
  7664. {
  7665. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7666. } break;
  7667. default:
  7668. {
  7669. GGML_ASSERT(false);
  7670. } break;
  7671. }
  7672. }
  7673. // ggml_compute_forward_mean
  7674. static void ggml_compute_forward_mean_f32(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. assert(params->ith == 0);
  7679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7680. return;
  7681. }
  7682. assert(src0->nb[0] == sizeof(float));
  7683. GGML_TENSOR_UNARY_OP_LOCALS;
  7684. assert(ne0 == 1);
  7685. assert(ne1 == ne01);
  7686. assert(ne2 == ne02);
  7687. assert(ne3 == ne03);
  7688. UNUSED(ne0);
  7689. UNUSED(ne1);
  7690. UNUSED(ne2);
  7691. UNUSED(ne3);
  7692. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7693. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7694. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7695. ggml_vec_sum_f32(ne00,
  7696. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7697. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7698. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7699. }
  7700. }
  7701. }
  7702. }
  7703. static void ggml_compute_forward_mean(
  7704. const struct ggml_compute_params * params,
  7705. const struct ggml_tensor * src0,
  7706. struct ggml_tensor * dst) {
  7707. switch (src0->type) {
  7708. case GGML_TYPE_F32:
  7709. {
  7710. ggml_compute_forward_mean_f32(params, src0, dst);
  7711. } break;
  7712. default:
  7713. {
  7714. GGML_ASSERT(false);
  7715. } break;
  7716. }
  7717. }
  7718. // ggml_compute_forward_argmax
  7719. static void ggml_compute_forward_argmax_f32(
  7720. const struct ggml_compute_params * params,
  7721. const struct ggml_tensor * src0,
  7722. struct ggml_tensor * dst) {
  7723. assert(params->ith == 0);
  7724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7725. return;
  7726. }
  7727. assert(src0->nb[0] == sizeof(float));
  7728. assert(dst->nb[0] == sizeof(float));
  7729. const int64_t ne00 = src0->ne[0];
  7730. const int64_t ne01 = src0->ne[1];
  7731. const size_t nb01 = src0->nb[1];
  7732. const size_t nb0 = dst->nb[0];
  7733. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7734. float * src = (float *) ((char *) src0->data + i1*nb01);
  7735. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7736. int v = 0;
  7737. ggml_vec_argmax_f32(ne00, &v, src);
  7738. dst_[0] = v;
  7739. }
  7740. }
  7741. static void ggml_compute_forward_argmax(
  7742. const struct ggml_compute_params * params,
  7743. const struct ggml_tensor * src0,
  7744. struct ggml_tensor * dst) {
  7745. switch (src0->type) {
  7746. case GGML_TYPE_F32:
  7747. {
  7748. ggml_compute_forward_argmax_f32(params, src0, dst);
  7749. } break;
  7750. default:
  7751. {
  7752. GGML_ASSERT(false);
  7753. } break;
  7754. }
  7755. }
  7756. // ggml_compute_forward_repeat
  7757. static void ggml_compute_forward_repeat_f32(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. struct ggml_tensor * dst) {
  7761. GGML_ASSERT(params->ith == 0);
  7762. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7764. return;
  7765. }
  7766. GGML_TENSOR_UNARY_OP_LOCALS;
  7767. // guaranteed to be an integer due to the check in ggml_can_repeat
  7768. const int nr0 = (int)(ne0/ne00);
  7769. const int nr1 = (int)(ne1/ne01);
  7770. const int nr2 = (int)(ne2/ne02);
  7771. const int nr3 = (int)(ne3/ne03);
  7772. // TODO: support for transposed / permuted tensors
  7773. GGML_ASSERT(nb0 == sizeof(float));
  7774. GGML_ASSERT(nb00 == sizeof(float));
  7775. // TODO: maybe this is not optimal?
  7776. for (int i3 = 0; i3 < nr3; i3++) {
  7777. for (int k3 = 0; k3 < ne03; k3++) {
  7778. for (int i2 = 0; i2 < nr2; i2++) {
  7779. for (int k2 = 0; k2 < ne02; k2++) {
  7780. for (int i1 = 0; i1 < nr1; i1++) {
  7781. for (int k1 = 0; k1 < ne01; k1++) {
  7782. for (int i0 = 0; i0 < nr0; i0++) {
  7783. ggml_vec_cpy_f32(ne00,
  7784. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7785. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7786. }
  7787. }
  7788. }
  7789. }
  7790. }
  7791. }
  7792. }
  7793. }
  7794. static void ggml_compute_forward_repeat(
  7795. const struct ggml_compute_params * params,
  7796. const struct ggml_tensor * src0,
  7797. struct ggml_tensor * dst) {
  7798. switch (src0->type) {
  7799. case GGML_TYPE_F32:
  7800. {
  7801. ggml_compute_forward_repeat_f32(params, src0, dst);
  7802. } break;
  7803. default:
  7804. {
  7805. GGML_ASSERT(false);
  7806. } break;
  7807. }
  7808. }
  7809. // ggml_compute_forward_repeat_back
  7810. static void ggml_compute_forward_repeat_back_f32(
  7811. const struct ggml_compute_params * params,
  7812. const struct ggml_tensor * src0,
  7813. struct ggml_tensor * dst) {
  7814. GGML_ASSERT(params->ith == 0);
  7815. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7817. return;
  7818. }
  7819. GGML_TENSOR_UNARY_OP_LOCALS;
  7820. // guaranteed to be an integer due to the check in ggml_can_repeat
  7821. const int nr0 = (int)(ne00/ne0);
  7822. const int nr1 = (int)(ne01/ne1);
  7823. const int nr2 = (int)(ne02/ne2);
  7824. const int nr3 = (int)(ne03/ne3);
  7825. // TODO: support for transposed / permuted tensors
  7826. GGML_ASSERT(nb0 == sizeof(float));
  7827. GGML_ASSERT(nb00 == sizeof(float));
  7828. if (ggml_is_contiguous(dst)) {
  7829. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7830. } else {
  7831. for (int k3 = 0; k3 < ne3; k3++) {
  7832. for (int k2 = 0; k2 < ne2; k2++) {
  7833. for (int k1 = 0; k1 < ne1; k1++) {
  7834. ggml_vec_set_f32(ne0,
  7835. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7836. 0);
  7837. }
  7838. }
  7839. }
  7840. }
  7841. // TODO: maybe this is not optimal?
  7842. for (int i3 = 0; i3 < nr3; i3++) {
  7843. for (int k3 = 0; k3 < ne3; k3++) {
  7844. for (int i2 = 0; i2 < nr2; i2++) {
  7845. for (int k2 = 0; k2 < ne2; k2++) {
  7846. for (int i1 = 0; i1 < nr1; i1++) {
  7847. for (int k1 = 0; k1 < ne1; k1++) {
  7848. for (int i0 = 0; i0 < nr0; i0++) {
  7849. ggml_vec_acc_f32(ne0,
  7850. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7851. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7852. }
  7853. }
  7854. }
  7855. }
  7856. }
  7857. }
  7858. }
  7859. }
  7860. static void ggml_compute_forward_repeat_back(
  7861. const struct ggml_compute_params * params,
  7862. const struct ggml_tensor * src0,
  7863. struct ggml_tensor * dst) {
  7864. switch (src0->type) {
  7865. case GGML_TYPE_F32:
  7866. {
  7867. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7868. } break;
  7869. default:
  7870. {
  7871. GGML_ASSERT(false);
  7872. } break;
  7873. }
  7874. }
  7875. // ggml_compute_forward_abs
  7876. static void ggml_compute_forward_abs_f32(
  7877. const struct ggml_compute_params * params,
  7878. const struct ggml_tensor * src0,
  7879. struct ggml_tensor * dst) {
  7880. assert(params->ith == 0);
  7881. assert(ggml_are_same_shape(src0, dst));
  7882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7883. return;
  7884. }
  7885. const int n = ggml_nrows(src0);
  7886. const int nc = src0->ne[0];
  7887. assert(dst->nb[0] == sizeof(float));
  7888. assert(src0->nb[0] == sizeof(float));
  7889. for (int i = 0; i < n; i++) {
  7890. ggml_vec_abs_f32(nc,
  7891. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7892. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7893. }
  7894. }
  7895. static void ggml_compute_forward_abs(
  7896. const struct ggml_compute_params * params,
  7897. const struct ggml_tensor * src0,
  7898. struct ggml_tensor * dst) {
  7899. switch (src0->type) {
  7900. case GGML_TYPE_F32:
  7901. {
  7902. ggml_compute_forward_abs_f32(params, src0, dst);
  7903. } break;
  7904. default:
  7905. {
  7906. GGML_ASSERT(false);
  7907. } break;
  7908. }
  7909. }
  7910. // ggml_compute_forward_sgn
  7911. static void ggml_compute_forward_sgn_f32(
  7912. const struct ggml_compute_params * params,
  7913. const struct ggml_tensor * src0,
  7914. struct ggml_tensor * dst) {
  7915. assert(params->ith == 0);
  7916. assert(ggml_are_same_shape(src0, dst));
  7917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7918. return;
  7919. }
  7920. const int n = ggml_nrows(src0);
  7921. const int nc = src0->ne[0];
  7922. assert(dst->nb[0] == sizeof(float));
  7923. assert(src0->nb[0] == sizeof(float));
  7924. for (int i = 0; i < n; i++) {
  7925. ggml_vec_sgn_f32(nc,
  7926. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7927. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7928. }
  7929. }
  7930. static void ggml_compute_forward_sgn(
  7931. const struct ggml_compute_params * params,
  7932. const struct ggml_tensor * src0,
  7933. struct ggml_tensor * dst) {
  7934. switch (src0->type) {
  7935. case GGML_TYPE_F32:
  7936. {
  7937. ggml_compute_forward_sgn_f32(params, src0, dst);
  7938. } break;
  7939. default:
  7940. {
  7941. GGML_ASSERT(false);
  7942. } break;
  7943. }
  7944. }
  7945. // ggml_compute_forward_neg
  7946. static void ggml_compute_forward_neg_f32(
  7947. const struct ggml_compute_params * params,
  7948. const struct ggml_tensor * src0,
  7949. struct ggml_tensor * dst) {
  7950. assert(params->ith == 0);
  7951. assert(ggml_are_same_shape(src0, dst));
  7952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7953. return;
  7954. }
  7955. const int n = ggml_nrows(src0);
  7956. const int nc = src0->ne[0];
  7957. assert(dst->nb[0] == sizeof(float));
  7958. assert(src0->nb[0] == sizeof(float));
  7959. for (int i = 0; i < n; i++) {
  7960. ggml_vec_neg_f32(nc,
  7961. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7962. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7963. }
  7964. }
  7965. static void ggml_compute_forward_neg(
  7966. const struct ggml_compute_params * params,
  7967. const struct ggml_tensor * src0,
  7968. struct ggml_tensor * dst) {
  7969. switch (src0->type) {
  7970. case GGML_TYPE_F32:
  7971. {
  7972. ggml_compute_forward_neg_f32(params, src0, dst);
  7973. } break;
  7974. default:
  7975. {
  7976. GGML_ASSERT(false);
  7977. } break;
  7978. }
  7979. }
  7980. // ggml_compute_forward_step
  7981. static void ggml_compute_forward_step_f32(
  7982. const struct ggml_compute_params * params,
  7983. const struct ggml_tensor * src0,
  7984. struct ggml_tensor * dst) {
  7985. assert(params->ith == 0);
  7986. assert(ggml_are_same_shape(src0, dst));
  7987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7988. return;
  7989. }
  7990. const int n = ggml_nrows(src0);
  7991. const int nc = src0->ne[0];
  7992. assert(dst->nb[0] == sizeof(float));
  7993. assert(src0->nb[0] == sizeof(float));
  7994. for (int i = 0; i < n; i++) {
  7995. ggml_vec_step_f32(nc,
  7996. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7997. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7998. }
  7999. }
  8000. static void ggml_compute_forward_step(
  8001. const struct ggml_compute_params * params,
  8002. const struct ggml_tensor * src0,
  8003. struct ggml_tensor * dst) {
  8004. switch (src0->type) {
  8005. case GGML_TYPE_F32:
  8006. {
  8007. ggml_compute_forward_step_f32(params, src0, dst);
  8008. } break;
  8009. default:
  8010. {
  8011. GGML_ASSERT(false);
  8012. } break;
  8013. }
  8014. }
  8015. // ggml_compute_forward_tanh
  8016. static void ggml_compute_forward_tanh_f32(
  8017. const struct ggml_compute_params * params,
  8018. const struct ggml_tensor * src0,
  8019. struct ggml_tensor * dst) {
  8020. assert(params->ith == 0);
  8021. assert(ggml_are_same_shape(src0, dst));
  8022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8023. return;
  8024. }
  8025. const int n = ggml_nrows(src0);
  8026. const int nc = src0->ne[0];
  8027. assert(dst->nb[0] == sizeof(float));
  8028. assert(src0->nb[0] == sizeof(float));
  8029. for (int i = 0; i < n; i++) {
  8030. ggml_vec_tanh_f32(nc,
  8031. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8032. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8033. }
  8034. }
  8035. static void ggml_compute_forward_tanh(
  8036. const struct ggml_compute_params * params,
  8037. const struct ggml_tensor * src0,
  8038. struct ggml_tensor * dst) {
  8039. switch (src0->type) {
  8040. case GGML_TYPE_F32:
  8041. {
  8042. ggml_compute_forward_tanh_f32(params, src0, dst);
  8043. } break;
  8044. default:
  8045. {
  8046. GGML_ASSERT(false);
  8047. } break;
  8048. }
  8049. }
  8050. // ggml_compute_forward_elu
  8051. static void ggml_compute_forward_elu_f32(
  8052. const struct ggml_compute_params * params,
  8053. const struct ggml_tensor * src0,
  8054. struct ggml_tensor * dst) {
  8055. assert(params->ith == 0);
  8056. assert(ggml_are_same_shape(src0, dst));
  8057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8058. return;
  8059. }
  8060. const int n = ggml_nrows(src0);
  8061. const int nc = src0->ne[0];
  8062. assert(dst->nb[0] == sizeof(float));
  8063. assert(src0->nb[0] == sizeof(float));
  8064. for (int i = 0; i < n; i++) {
  8065. ggml_vec_elu_f32(nc,
  8066. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8067. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8068. }
  8069. }
  8070. static void ggml_compute_forward_elu(
  8071. const struct ggml_compute_params * params,
  8072. const struct ggml_tensor * src0,
  8073. struct ggml_tensor * dst) {
  8074. switch (src0->type) {
  8075. case GGML_TYPE_F32:
  8076. {
  8077. ggml_compute_forward_elu_f32(params, src0, dst);
  8078. } break;
  8079. default:
  8080. {
  8081. GGML_ASSERT(false);
  8082. } break;
  8083. }
  8084. }
  8085. // ggml_compute_forward_relu
  8086. static void ggml_compute_forward_relu_f32(
  8087. const struct ggml_compute_params * params,
  8088. const struct ggml_tensor * src0,
  8089. struct ggml_tensor * dst) {
  8090. assert(params->ith == 0);
  8091. assert(ggml_are_same_shape(src0, dst));
  8092. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8093. return;
  8094. }
  8095. const int n = ggml_nrows(src0);
  8096. const int nc = src0->ne[0];
  8097. assert(dst->nb[0] == sizeof(float));
  8098. assert(src0->nb[0] == sizeof(float));
  8099. for (int i = 0; i < n; i++) {
  8100. ggml_vec_relu_f32(nc,
  8101. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8102. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8103. }
  8104. }
  8105. static void ggml_compute_forward_relu(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * src0,
  8108. struct ggml_tensor * dst) {
  8109. switch (src0->type) {
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_relu_f32(params, src0, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_gelu
  8121. static void ggml_compute_forward_gelu_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. struct ggml_tensor * dst) {
  8125. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8126. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8127. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8129. return;
  8130. }
  8131. const int ith = params->ith;
  8132. const int nth = params->nth;
  8133. const int nc = src0->ne[0];
  8134. const int nr = ggml_nrows(src0);
  8135. // rows per thread
  8136. const int dr = (nr + nth - 1)/nth;
  8137. // row range for this thread
  8138. const int ir0 = dr*ith;
  8139. const int ir1 = MIN(ir0 + dr, nr);
  8140. for (int i1 = ir0; i1 < ir1; i1++) {
  8141. ggml_vec_gelu_f32(nc,
  8142. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8143. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8144. #ifndef NDEBUG
  8145. for (int k = 0; k < nc; k++) {
  8146. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8147. UNUSED(x);
  8148. assert(!isnan(x));
  8149. assert(!isinf(x));
  8150. }
  8151. #endif
  8152. }
  8153. }
  8154. static void ggml_compute_forward_gelu(
  8155. const struct ggml_compute_params * params,
  8156. const struct ggml_tensor * src0,
  8157. struct ggml_tensor * dst) {
  8158. switch (src0->type) {
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_gelu_f32(params, src0, dst);
  8162. } break;
  8163. default:
  8164. {
  8165. GGML_ASSERT(false);
  8166. } break;
  8167. }
  8168. }
  8169. // ggml_compute_forward_gelu_quick
  8170. static void ggml_compute_forward_gelu_quick_f32(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. struct ggml_tensor * dst) {
  8174. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8175. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8176. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8178. return;
  8179. }
  8180. const int ith = params->ith;
  8181. const int nth = params->nth;
  8182. const int nc = src0->ne[0];
  8183. const int nr = ggml_nrows(src0);
  8184. // rows per thread
  8185. const int dr = (nr + nth - 1)/nth;
  8186. // row range for this thread
  8187. const int ir0 = dr*ith;
  8188. const int ir1 = MIN(ir0 + dr, nr);
  8189. for (int i1 = ir0; i1 < ir1; i1++) {
  8190. ggml_vec_gelu_quick_f32(nc,
  8191. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8192. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8193. #ifndef NDEBUG
  8194. for (int k = 0; k < nc; k++) {
  8195. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8196. UNUSED(x);
  8197. assert(!isnan(x));
  8198. assert(!isinf(x));
  8199. }
  8200. #endif
  8201. }
  8202. }
  8203. static void ggml_compute_forward_gelu_quick(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. struct ggml_tensor * dst) {
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_silu
  8219. static void ggml_compute_forward_silu_f32(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. struct ggml_tensor * dst) {
  8223. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8224. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8227. return;
  8228. }
  8229. const int ith = params->ith;
  8230. const int nth = params->nth;
  8231. const int nc = src0->ne[0];
  8232. const int nr = ggml_nrows(src0);
  8233. // rows per thread
  8234. const int dr = (nr + nth - 1)/nth;
  8235. // row range for this thread
  8236. const int ir0 = dr*ith;
  8237. const int ir1 = MIN(ir0 + dr, nr);
  8238. for (int i1 = ir0; i1 < ir1; i1++) {
  8239. ggml_vec_silu_f32(nc,
  8240. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8241. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8242. #ifndef NDEBUG
  8243. for (int k = 0; k < nc; k++) {
  8244. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8245. UNUSED(x);
  8246. assert(!isnan(x));
  8247. assert(!isinf(x));
  8248. }
  8249. #endif
  8250. }
  8251. }
  8252. static void ggml_compute_forward_silu(
  8253. const struct ggml_compute_params * params,
  8254. const struct ggml_tensor * src0,
  8255. struct ggml_tensor * dst) {
  8256. switch (src0->type) {
  8257. case GGML_TYPE_F32:
  8258. {
  8259. ggml_compute_forward_silu_f32(params, src0, dst);
  8260. } break;
  8261. default:
  8262. {
  8263. GGML_ASSERT(false);
  8264. } break;
  8265. }
  8266. }
  8267. // ggml_compute_forward_silu_back
  8268. static void ggml_compute_forward_silu_back_f32(
  8269. const struct ggml_compute_params * params,
  8270. const struct ggml_tensor * src0,
  8271. const struct ggml_tensor * grad,
  8272. struct ggml_tensor * dst) {
  8273. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8274. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8275. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8277. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8279. return;
  8280. }
  8281. const int ith = params->ith;
  8282. const int nth = params->nth;
  8283. const int nc = src0->ne[0];
  8284. const int nr = ggml_nrows(src0);
  8285. // rows per thread
  8286. const int dr = (nr + nth - 1)/nth;
  8287. // row range for this thread
  8288. const int ir0 = dr*ith;
  8289. const int ir1 = MIN(ir0 + dr, nr);
  8290. for (int i1 = ir0; i1 < ir1; i1++) {
  8291. ggml_vec_silu_backward_f32(nc,
  8292. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8293. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8294. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8295. #ifndef NDEBUG
  8296. for (int k = 0; k < nc; k++) {
  8297. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8298. UNUSED(x);
  8299. assert(!isnan(x));
  8300. assert(!isinf(x));
  8301. }
  8302. #endif
  8303. }
  8304. }
  8305. static void ggml_compute_forward_silu_back(
  8306. const struct ggml_compute_params * params,
  8307. const struct ggml_tensor * src0,
  8308. const struct ggml_tensor * grad,
  8309. struct ggml_tensor * dst) {
  8310. switch (src0->type) {
  8311. case GGML_TYPE_F32:
  8312. {
  8313. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8314. } break;
  8315. default:
  8316. {
  8317. GGML_ASSERT(false);
  8318. } break;
  8319. }
  8320. }
  8321. // ggml_compute_forward_norm
  8322. static void ggml_compute_forward_norm_f32(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. struct ggml_tensor * dst) {
  8326. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8328. return;
  8329. }
  8330. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8331. const int ith = params->ith;
  8332. const int nth = params->nth;
  8333. GGML_TENSOR_UNARY_OP_LOCALS;
  8334. const float eps = 1e-5f; // TODO: make this a parameter
  8335. // TODO: optimize
  8336. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8337. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8338. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8339. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8340. ggml_float sum = 0.0;
  8341. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8342. sum += (ggml_float)x[i00];
  8343. }
  8344. float mean = sum/ne00;
  8345. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8346. ggml_float sum2 = 0.0;
  8347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8348. float v = x[i00] - mean;
  8349. y[i00] = v;
  8350. sum2 += (ggml_float)(v*v);
  8351. }
  8352. float variance = sum2/ne00;
  8353. const float scale = 1.0f/sqrtf(variance + eps);
  8354. ggml_vec_scale_f32(ne00, y, scale);
  8355. }
  8356. }
  8357. }
  8358. }
  8359. static void ggml_compute_forward_norm(
  8360. const struct ggml_compute_params * params,
  8361. const struct ggml_tensor * src0,
  8362. struct ggml_tensor * dst) {
  8363. switch (src0->type) {
  8364. case GGML_TYPE_F32:
  8365. {
  8366. ggml_compute_forward_norm_f32(params, src0, dst);
  8367. } break;
  8368. default:
  8369. {
  8370. GGML_ASSERT(false);
  8371. } break;
  8372. }
  8373. }
  8374. static void ggml_compute_forward_rms_norm_f32(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. struct ggml_tensor * dst) {
  8378. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8380. return;
  8381. }
  8382. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8383. const int ith = params->ith;
  8384. const int nth = params->nth;
  8385. GGML_TENSOR_UNARY_OP_LOCALS;
  8386. float eps;
  8387. memcpy(&eps, dst->op_params, sizeof(float));
  8388. // TODO: optimize
  8389. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8391. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8392. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8393. ggml_float sum = 0.0;
  8394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8395. sum += (ggml_float)(x[i00] * x[i00]);
  8396. }
  8397. const float mean = sum/ne00;
  8398. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8399. memcpy(y, x, ne00 * sizeof(float));
  8400. // for (int i00 = 0; i00 < ne00; i00++) {
  8401. // y[i00] = x[i00];
  8402. // }
  8403. const float scale = 1.0f/sqrtf(mean + eps);
  8404. ggml_vec_scale_f32(ne00, y, scale);
  8405. }
  8406. }
  8407. }
  8408. }
  8409. static void ggml_compute_forward_rms_norm(
  8410. const struct ggml_compute_params * params,
  8411. const struct ggml_tensor * src0,
  8412. struct ggml_tensor * dst) {
  8413. switch (src0->type) {
  8414. case GGML_TYPE_F32:
  8415. {
  8416. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8417. } break;
  8418. default:
  8419. {
  8420. GGML_ASSERT(false);
  8421. } break;
  8422. }
  8423. }
  8424. static void ggml_compute_forward_rms_norm_back_f32(
  8425. const struct ggml_compute_params * params,
  8426. const struct ggml_tensor * src0,
  8427. const struct ggml_tensor * src1,
  8428. struct ggml_tensor * dst) {
  8429. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8430. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8431. return;
  8432. }
  8433. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8434. const int ith = params->ith;
  8435. const int nth = params->nth;
  8436. GGML_TENSOR_BINARY_OP_LOCALS;
  8437. const float eps = 1e-6f; // TODO: make this a parameter
  8438. // TODO: optimize
  8439. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8440. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8441. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8442. // src1 is same shape as src0 => same indices
  8443. const int64_t i11 = i01;
  8444. const int64_t i12 = i02;
  8445. const int64_t i13 = i03;
  8446. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8447. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8448. ggml_float sum_xx = 0.0;
  8449. ggml_float sum_xdz = 0.0;
  8450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8451. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8452. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8453. }
  8454. //const float mean = (float)(sum_xx)/ne00;
  8455. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8456. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8457. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8458. // we could cache rms from forward pass to improve performance.
  8459. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8460. //const float rms = sqrtf(mean_eps);
  8461. const float rrms = 1.0f / sqrtf(mean_eps);
  8462. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8463. {
  8464. // z = rms_norm(x)
  8465. //
  8466. // rms_norm(src0) =
  8467. // scale(
  8468. // src0,
  8469. // div(
  8470. // 1,
  8471. // sqrt(
  8472. // add(
  8473. // scale(
  8474. // sum(
  8475. // sqr(
  8476. // src0)),
  8477. // (1.0/N)),
  8478. // eps))));
  8479. // postorder:
  8480. // ## op args grad
  8481. // 00 param src0 grad[#00]
  8482. // 01 const 1
  8483. // 02 sqr (#00) grad[#02]
  8484. // 03 sum (#02) grad[#03]
  8485. // 04 const 1/N
  8486. // 05 scale (#03, #04) grad[#05]
  8487. // 06 const eps
  8488. // 07 add (#05, #06) grad[#07]
  8489. // 08 sqrt (#07) grad[#08]
  8490. // 09 div (#01,#08) grad[#09]
  8491. // 10 scale (#00,#09) grad[#10]
  8492. //
  8493. // backward pass, given grad[#10]
  8494. // #10: scale
  8495. // grad[#00] += scale(grad[#10],#09)
  8496. // grad[#09] += sum(mul(grad[#10],#00))
  8497. // #09: div
  8498. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8499. // #08: sqrt
  8500. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8501. // #07: add
  8502. // grad[#05] += grad[#07]
  8503. // #05: scale
  8504. // grad[#03] += scale(grad[#05],#04)
  8505. // #03: sum
  8506. // grad[#02] += repeat(grad[#03], #02)
  8507. // #02:
  8508. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8509. //
  8510. // substitute and simplify:
  8511. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8512. // grad[#02] = repeat(grad[#03], #02)
  8513. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8514. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8515. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8516. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8517. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8518. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8519. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8520. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8521. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8522. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8523. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8524. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8525. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8526. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8527. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8528. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8529. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8532. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8533. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8534. // a = b*c + d*e
  8535. // a = b*c*f/f + d*e*f/f
  8536. // a = (b*c*f + d*e*f)*(1/f)
  8537. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8538. // a = (b + d*e/c)*c
  8539. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8540. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8541. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8542. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8543. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8544. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8545. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8546. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8547. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8548. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8549. }
  8550. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8551. // post-order:
  8552. // dx := x
  8553. // dx := scale(dx,-mean_xdz/mean_eps)
  8554. // dx := add(dx, dz)
  8555. // dx := scale(dx, rrms)
  8556. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8557. ggml_vec_cpy_f32 (ne00, dx, x);
  8558. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8559. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8560. ggml_vec_acc_f32 (ne00, dx, dz);
  8561. ggml_vec_scale_f32(ne00, dx, rrms);
  8562. }
  8563. }
  8564. }
  8565. }
  8566. static void ggml_compute_forward_rms_norm_back(
  8567. const struct ggml_compute_params * params,
  8568. const struct ggml_tensor * src0,
  8569. const struct ggml_tensor * src1,
  8570. struct ggml_tensor * dst) {
  8571. switch (src0->type) {
  8572. case GGML_TYPE_F32:
  8573. {
  8574. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8575. } break;
  8576. default:
  8577. {
  8578. GGML_ASSERT(false);
  8579. } break;
  8580. }
  8581. }
  8582. // ggml_compute_forward_mul_mat
  8583. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8584. // helper function to determine if it is better to use BLAS or not
  8585. // for large matrices, BLAS is faster
  8586. static bool ggml_compute_forward_mul_mat_use_blas(
  8587. const struct ggml_tensor * src0,
  8588. const struct ggml_tensor * src1,
  8589. struct ggml_tensor * dst) {
  8590. //const int64_t ne00 = src0->ne[0];
  8591. //const int64_t ne01 = src0->ne[1];
  8592. const int64_t ne10 = src1->ne[0];
  8593. const int64_t ne0 = dst->ne[0];
  8594. const int64_t ne1 = dst->ne[1];
  8595. // TODO: find the optimal values for these
  8596. if (ggml_is_contiguous(src0) &&
  8597. ggml_is_contiguous(src1) &&
  8598. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8599. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8600. return true;
  8601. }
  8602. return false;
  8603. }
  8604. #endif
  8605. static void ggml_compute_forward_mul_mat(
  8606. const struct ggml_compute_params * params,
  8607. const struct ggml_tensor * src0,
  8608. const struct ggml_tensor * src1,
  8609. struct ggml_tensor * dst) {
  8610. int64_t t0 = ggml_perf_time_us();
  8611. UNUSED(t0);
  8612. GGML_TENSOR_BINARY_OP_LOCALS;
  8613. const int ith = params->ith;
  8614. const int nth = params->nth;
  8615. const enum ggml_type type = src0->type;
  8616. const bool src1_cont = ggml_is_contiguous(src1);
  8617. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8618. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8619. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8620. GGML_ASSERT(ne0 == ne01);
  8621. GGML_ASSERT(ne1 == ne11);
  8622. GGML_ASSERT(ne2 == ne12);
  8623. GGML_ASSERT(ne3 == ne13);
  8624. // we don't support permuted src0 or src1
  8625. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8626. GGML_ASSERT(nb10 == sizeof(float));
  8627. // dst cannot be transposed or permuted
  8628. GGML_ASSERT(nb0 == sizeof(float));
  8629. GGML_ASSERT(nb0 <= nb1);
  8630. GGML_ASSERT(nb1 <= nb2);
  8631. GGML_ASSERT(nb2 <= nb3);
  8632. // nb01 >= nb00 - src0 is not transposed
  8633. // compute by src0 rows
  8634. #if defined(GGML_USE_CLBLAST)
  8635. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8636. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8637. // ref: https://github.com/ggerganov/ggml/pull/224
  8638. GGML_ASSERT(ne02 == ne12);
  8639. GGML_ASSERT(ne03 == ne13);
  8640. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8641. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8642. }
  8643. return;
  8644. }
  8645. #endif
  8646. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8647. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8648. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8649. // ref: https://github.com/ggerganov/ggml/pull/224
  8650. GGML_ASSERT(ne02 == ne12);
  8651. GGML_ASSERT(ne03 == ne13);
  8652. if (params->ith != 0) {
  8653. return;
  8654. }
  8655. if (params->type == GGML_TASK_INIT) {
  8656. return;
  8657. }
  8658. if (params->type == GGML_TASK_FINALIZE) {
  8659. return;
  8660. }
  8661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8663. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8664. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8665. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8666. if (type != GGML_TYPE_F32) {
  8667. float * const wdata = params->wdata;
  8668. ggml_to_float_t const to_float = type_traits[type].to_float;
  8669. size_t id = 0;
  8670. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8671. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8672. id += ne00;
  8673. }
  8674. assert(id*sizeof(float) <= params->wsize);
  8675. x = wdata;
  8676. }
  8677. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8678. ne11, ne01, ne10,
  8679. 1.0f, y, ne10,
  8680. x, ne00,
  8681. 0.0f, d, ne01);
  8682. }
  8683. }
  8684. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8685. return;
  8686. }
  8687. #endif
  8688. if (params->type == GGML_TASK_INIT) {
  8689. if (src1->type != vec_dot_type) {
  8690. char * wdata = params->wdata;
  8691. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8692. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8693. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8694. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8695. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8696. wdata += row_size;
  8697. }
  8698. }
  8699. }
  8700. }
  8701. return;
  8702. }
  8703. if (params->type == GGML_TASK_FINALIZE) {
  8704. return;
  8705. }
  8706. // parallelize by src0 rows
  8707. const int64_t dr = (ne01 + nth - 1)/nth;
  8708. const int64_t ir10 = dr*ith;
  8709. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8710. // src1 rows
  8711. const int64_t nr1 = ne11*ne12*ne13;
  8712. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8713. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8714. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8715. const int64_t i13 = (ir1/(ne12*ne11));
  8716. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8717. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8718. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8719. const int64_t i03 = (ir0/(ne02));
  8720. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8721. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8722. // GG: this is likely the correct way to broadcast, though need some more thought
  8723. // therefore leaving the comments to remind us for now
  8724. const int64_t i02 = (i12 / (ne12 / ne02));
  8725. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8726. // const int64_t i02 = (ir0 - i03*ne02);
  8727. const int64_t i1 = i11;
  8728. const int64_t i2 = i12;
  8729. const int64_t i3 = i13;
  8730. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8731. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8732. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8733. // the original src1 data pointer, so we should index using the indices directly
  8734. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8735. const char * src1_col = (const char *) wdata +
  8736. (src1_cont || src1->type != vec_dot_type
  8737. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8738. : (i11*nb11 + i12*nb12 + i13*nb13));
  8739. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8740. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8741. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8742. }
  8743. }
  8744. //int64_t t1 = ggml_time_us();
  8745. //static int64_t acc = 0;
  8746. //acc += t1 - t0;
  8747. //if (t1 - t0 > 10) {
  8748. // printf("\n");
  8749. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8750. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8751. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8752. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8753. //}
  8754. }
  8755. // ggml_compute_forward_out_prod
  8756. static void ggml_compute_forward_out_prod_f32(
  8757. const struct ggml_compute_params * params,
  8758. const struct ggml_tensor * src0,
  8759. const struct ggml_tensor * src1,
  8760. struct ggml_tensor * dst) {
  8761. int64_t t0 = ggml_perf_time_us();
  8762. UNUSED(t0);
  8763. GGML_TENSOR_BINARY_OP_LOCALS;
  8764. const int ith = params->ith;
  8765. const int nth = params->nth;
  8766. GGML_ASSERT(ne02 == ne12);
  8767. GGML_ASSERT(ne03 == ne13);
  8768. GGML_ASSERT(ne2 == ne12);
  8769. GGML_ASSERT(ne3 == ne13);
  8770. // we don't support permuted src0 or src1
  8771. GGML_ASSERT(nb00 == sizeof(float));
  8772. // dst cannot be transposed or permuted
  8773. GGML_ASSERT(nb0 == sizeof(float));
  8774. // GGML_ASSERT(nb0 <= nb1);
  8775. // GGML_ASSERT(nb1 <= nb2);
  8776. // GGML_ASSERT(nb2 <= nb3);
  8777. GGML_ASSERT(ne0 == ne00);
  8778. GGML_ASSERT(ne1 == ne10);
  8779. GGML_ASSERT(ne2 == ne02);
  8780. GGML_ASSERT(ne3 == ne03);
  8781. // nb01 >= nb00 - src0 is not transposed
  8782. // compute by src0 rows
  8783. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8784. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8785. if (params->type == GGML_TASK_INIT) {
  8786. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8787. return;
  8788. }
  8789. if (params->type == GGML_TASK_FINALIZE) {
  8790. return;
  8791. }
  8792. // parallelize by last three dimensions
  8793. // total rows in dst
  8794. const int64_t nr = ne1*ne2*ne3;
  8795. // rows per thread
  8796. const int64_t dr = (nr + nth - 1)/nth;
  8797. // row range for this thread
  8798. const int64_t ir0 = dr*ith;
  8799. const int64_t ir1 = MIN(ir0 + dr, nr);
  8800. // dst[:,:,:,:] = 0
  8801. // for i2,i3:
  8802. // for i1:
  8803. // for i01:
  8804. // for i0:
  8805. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8806. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8807. // dst indices
  8808. const int64_t i3 = ir/(ne2*ne1);
  8809. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8810. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8811. const int64_t i02 = i2;
  8812. const int64_t i03 = i3;
  8813. //const int64_t i10 = i1;
  8814. const int64_t i12 = i2;
  8815. const int64_t i13 = i3;
  8816. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8817. const int64_t i11 = i01;
  8818. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8819. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8820. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8821. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8822. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8823. // d[i0] += s0[i0] * s1[i1];
  8824. // }
  8825. }
  8826. }
  8827. //int64_t t1 = ggml_perf_time_us();
  8828. //static int64_t acc = 0;
  8829. //acc += t1 - t0;
  8830. //if (t1 - t0 > 10) {
  8831. // printf("\n");
  8832. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8833. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8834. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8835. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8836. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8837. //}
  8838. }
  8839. static void ggml_compute_forward_out_prod(
  8840. const struct ggml_compute_params * params,
  8841. const struct ggml_tensor * src0,
  8842. const struct ggml_tensor * src1,
  8843. struct ggml_tensor * dst) {
  8844. switch (src0->type) {
  8845. case GGML_TYPE_Q4_0:
  8846. case GGML_TYPE_Q4_1:
  8847. case GGML_TYPE_Q5_0:
  8848. case GGML_TYPE_Q5_1:
  8849. case GGML_TYPE_Q8_0:
  8850. case GGML_TYPE_Q8_1:
  8851. {
  8852. GGML_ASSERT(false); // todo
  8853. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8854. } break;
  8855. case GGML_TYPE_F16:
  8856. {
  8857. GGML_ASSERT(false); // todo
  8858. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8859. } break;
  8860. case GGML_TYPE_F32:
  8861. {
  8862. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8863. } break;
  8864. default:
  8865. {
  8866. GGML_ASSERT(false);
  8867. } break;
  8868. }
  8869. }
  8870. // ggml_compute_forward_scale
  8871. static void ggml_compute_forward_scale_f32(
  8872. const struct ggml_compute_params * params,
  8873. const struct ggml_tensor * src0,
  8874. const struct ggml_tensor * src1,
  8875. struct ggml_tensor * dst) {
  8876. GGML_ASSERT(ggml_is_contiguous(src0));
  8877. GGML_ASSERT(ggml_is_contiguous(dst));
  8878. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8879. GGML_ASSERT(ggml_is_scalar(src1));
  8880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8881. return;
  8882. }
  8883. // scale factor
  8884. const float v = *(float *) src1->data;
  8885. const int ith = params->ith;
  8886. const int nth = params->nth;
  8887. const int nc = src0->ne[0];
  8888. const int nr = ggml_nrows(src0);
  8889. // rows per thread
  8890. const int dr = (nr + nth - 1)/nth;
  8891. // row range for this thread
  8892. const int ir0 = dr*ith;
  8893. const int ir1 = MIN(ir0 + dr, nr);
  8894. const size_t nb01 = src0->nb[1];
  8895. const size_t nb1 = dst->nb[1];
  8896. for (int i1 = ir0; i1 < ir1; i1++) {
  8897. if (dst->data != src0->data) {
  8898. // src0 is same shape as dst => same indices
  8899. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8900. }
  8901. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8902. }
  8903. }
  8904. static void ggml_compute_forward_scale(
  8905. const struct ggml_compute_params * params,
  8906. const struct ggml_tensor * src0,
  8907. const struct ggml_tensor * src1,
  8908. struct ggml_tensor * dst) {
  8909. switch (src0->type) {
  8910. case GGML_TYPE_F32:
  8911. {
  8912. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8913. } break;
  8914. default:
  8915. {
  8916. GGML_ASSERT(false);
  8917. } break;
  8918. }
  8919. }
  8920. // ggml_compute_forward_set
  8921. static void ggml_compute_forward_set_f32(
  8922. const struct ggml_compute_params * params,
  8923. const struct ggml_tensor * src0,
  8924. const struct ggml_tensor * src1,
  8925. struct ggml_tensor * dst) {
  8926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8927. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8928. // view src0 and dst with these strides and data offset inbytes during set
  8929. // nb0 is implicitely element_size because src0 and dst are contiguous
  8930. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8931. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8932. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8933. size_t offset = ((int32_t *) dst->op_params)[3];
  8934. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8935. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8936. // memcpy needs to be synchronized across threads to avoid race conditions.
  8937. // => do it in INIT phase
  8938. memcpy(
  8939. ((char *) dst->data),
  8940. ((char *) src0->data),
  8941. ggml_nbytes(dst));
  8942. }
  8943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8944. return;
  8945. }
  8946. const int ith = params->ith;
  8947. const int nth = params->nth;
  8948. const int nr = ggml_nrows(src1);
  8949. const int nc = src1->ne[0];
  8950. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8951. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8952. // src0 and dst as viewed during set
  8953. const size_t nb0 = ggml_element_size(src0);
  8954. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8955. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8956. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8957. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8958. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8959. GGML_ASSERT(nb10 == sizeof(float));
  8960. // rows per thread
  8961. const int dr = (nr + nth - 1)/nth;
  8962. // row range for this thread
  8963. const int ir0 = dr*ith;
  8964. const int ir1 = MIN(ir0 + dr, nr);
  8965. for (int ir = ir0; ir < ir1; ++ir) {
  8966. // src0 and dst are viewed with shape of src1 and offset
  8967. // => same indices
  8968. const int i3 = ir/(ne12*ne11);
  8969. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8970. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8971. ggml_vec_cpy_f32(nc,
  8972. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8973. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8974. }
  8975. }
  8976. static void ggml_compute_forward_set(
  8977. const struct ggml_compute_params * params,
  8978. const struct ggml_tensor * src0,
  8979. const struct ggml_tensor * src1,
  8980. struct ggml_tensor * dst) {
  8981. switch (src0->type) {
  8982. case GGML_TYPE_F32:
  8983. {
  8984. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8985. } break;
  8986. case GGML_TYPE_F16:
  8987. case GGML_TYPE_Q4_0:
  8988. case GGML_TYPE_Q4_1:
  8989. case GGML_TYPE_Q5_0:
  8990. case GGML_TYPE_Q5_1:
  8991. case GGML_TYPE_Q8_0:
  8992. case GGML_TYPE_Q8_1:
  8993. case GGML_TYPE_Q2_K:
  8994. case GGML_TYPE_Q3_K:
  8995. case GGML_TYPE_Q4_K:
  8996. case GGML_TYPE_Q5_K:
  8997. case GGML_TYPE_Q6_K:
  8998. default:
  8999. {
  9000. GGML_ASSERT(false);
  9001. } break;
  9002. }
  9003. }
  9004. // ggml_compute_forward_cpy
  9005. static void ggml_compute_forward_cpy(
  9006. const struct ggml_compute_params * params,
  9007. const struct ggml_tensor * src0,
  9008. struct ggml_tensor * dst) {
  9009. ggml_compute_forward_dup(params, src0, dst);
  9010. }
  9011. // ggml_compute_forward_cont
  9012. static void ggml_compute_forward_cont(
  9013. const struct ggml_compute_params * params,
  9014. const struct ggml_tensor * src0,
  9015. struct ggml_tensor * dst) {
  9016. ggml_compute_forward_dup(params, src0, dst);
  9017. }
  9018. // ggml_compute_forward_reshape
  9019. static void ggml_compute_forward_reshape(
  9020. const struct ggml_compute_params * params,
  9021. const struct ggml_tensor * src0,
  9022. struct ggml_tensor * dst) {
  9023. // NOP
  9024. UNUSED(params);
  9025. UNUSED(src0);
  9026. UNUSED(dst);
  9027. }
  9028. // ggml_compute_forward_view
  9029. static void ggml_compute_forward_view(
  9030. const struct ggml_compute_params * params,
  9031. const struct ggml_tensor * src0) {
  9032. // NOP
  9033. UNUSED(params);
  9034. UNUSED(src0);
  9035. }
  9036. // ggml_compute_forward_permute
  9037. static void ggml_compute_forward_permute(
  9038. const struct ggml_compute_params * params,
  9039. const struct ggml_tensor * src0) {
  9040. // NOP
  9041. UNUSED(params);
  9042. UNUSED(src0);
  9043. }
  9044. // ggml_compute_forward_transpose
  9045. static void ggml_compute_forward_transpose(
  9046. const struct ggml_compute_params * params,
  9047. const struct ggml_tensor * src0) {
  9048. // NOP
  9049. UNUSED(params);
  9050. UNUSED(src0);
  9051. }
  9052. // ggml_compute_forward_get_rows
  9053. static void ggml_compute_forward_get_rows_q(
  9054. const struct ggml_compute_params * params,
  9055. const struct ggml_tensor * src0,
  9056. const struct ggml_tensor * src1,
  9057. struct ggml_tensor * dst) {
  9058. assert(params->ith == 0);
  9059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9060. return;
  9061. }
  9062. const int nc = src0->ne[0];
  9063. const int nr = ggml_nelements(src1);
  9064. const enum ggml_type type = src0->type;
  9065. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9066. assert( dst->ne[0] == nc);
  9067. assert( dst->ne[1] == nr);
  9068. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9069. for (int i = 0; i < nr; ++i) {
  9070. const int r = ((int32_t *) src1->data)[i];
  9071. dequantize_row_q(
  9072. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9073. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9074. }
  9075. }
  9076. static void ggml_compute_forward_get_rows_f16(
  9077. const struct ggml_compute_params * params,
  9078. const struct ggml_tensor * src0,
  9079. const struct ggml_tensor * src1,
  9080. struct ggml_tensor * dst) {
  9081. assert(params->ith == 0);
  9082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9083. return;
  9084. }
  9085. const int nc = src0->ne[0];
  9086. const int nr = ggml_nelements(src1);
  9087. assert( dst->ne[0] == nc);
  9088. assert( dst->ne[1] == nr);
  9089. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9090. for (int i = 0; i < nr; ++i) {
  9091. const int r = ((int32_t *) src1->data)[i];
  9092. for (int j = 0; j < nc; ++j) {
  9093. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9094. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9095. }
  9096. }
  9097. }
  9098. static void ggml_compute_forward_get_rows_f32(
  9099. const struct ggml_compute_params * params,
  9100. const struct ggml_tensor * src0,
  9101. const struct ggml_tensor * src1,
  9102. struct ggml_tensor * dst) {
  9103. assert(params->ith == 0);
  9104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9105. return;
  9106. }
  9107. const int nc = src0->ne[0];
  9108. const int nr = ggml_nelements(src1);
  9109. assert( dst->ne[0] == nc);
  9110. assert( dst->ne[1] == nr);
  9111. assert(src0->nb[0] == sizeof(float));
  9112. for (int i = 0; i < nr; ++i) {
  9113. const int r = ((int32_t *) src1->data)[i];
  9114. ggml_vec_cpy_f32(nc,
  9115. (float *) ((char *) dst->data + i*dst->nb[1]),
  9116. (float *) ((char *) src0->data + r*src0->nb[1]));
  9117. }
  9118. }
  9119. static void ggml_compute_forward_get_rows(
  9120. const struct ggml_compute_params * params,
  9121. const struct ggml_tensor * src0,
  9122. const struct ggml_tensor * src1,
  9123. struct ggml_tensor * dst) {
  9124. switch (src0->type) {
  9125. case GGML_TYPE_Q4_0:
  9126. case GGML_TYPE_Q4_1:
  9127. case GGML_TYPE_Q5_0:
  9128. case GGML_TYPE_Q5_1:
  9129. case GGML_TYPE_Q8_0:
  9130. case GGML_TYPE_Q8_1:
  9131. case GGML_TYPE_Q2_K:
  9132. case GGML_TYPE_Q3_K:
  9133. case GGML_TYPE_Q4_K:
  9134. case GGML_TYPE_Q5_K:
  9135. case GGML_TYPE_Q6_K:
  9136. {
  9137. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9138. } break;
  9139. case GGML_TYPE_F16:
  9140. {
  9141. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9142. } break;
  9143. case GGML_TYPE_F32:
  9144. {
  9145. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9146. } break;
  9147. default:
  9148. {
  9149. GGML_ASSERT(false);
  9150. } break;
  9151. }
  9152. //static bool first = true;
  9153. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9154. //if (first) {
  9155. // first = false;
  9156. //} else {
  9157. // for (int k = 0; k < dst->ne[1]; ++k) {
  9158. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9159. // for (int i = 0; i < 16; ++i) {
  9160. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9161. // }
  9162. // printf("\n");
  9163. // }
  9164. // printf("\n");
  9165. // }
  9166. // printf("\n");
  9167. // exit(0);
  9168. //}
  9169. }
  9170. // ggml_compute_forward_get_rows_back
  9171. static void ggml_compute_forward_get_rows_back_f32_f16(
  9172. const struct ggml_compute_params * params,
  9173. const struct ggml_tensor * src0,
  9174. const struct ggml_tensor * src1,
  9175. const struct ggml_tensor * opt0,
  9176. struct ggml_tensor * dst) {
  9177. GGML_ASSERT(params->ith == 0);
  9178. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9179. GGML_ASSERT(ggml_is_contiguous(opt0));
  9180. GGML_ASSERT(ggml_is_contiguous(dst));
  9181. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9183. return;
  9184. }
  9185. const int nc = src0->ne[0];
  9186. const int nr = ggml_nelements(src1);
  9187. GGML_ASSERT( dst->ne[0] == nc);
  9188. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9189. for (int i = 0; i < nr; ++i) {
  9190. const int r = ((int32_t *) src1->data)[i];
  9191. for (int j = 0; j < nc; ++j) {
  9192. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9193. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9194. }
  9195. }
  9196. }
  9197. static void ggml_compute_forward_get_rows_back_f32(
  9198. const struct ggml_compute_params * params,
  9199. const struct ggml_tensor * src0,
  9200. const struct ggml_tensor * src1,
  9201. const struct ggml_tensor * opt0,
  9202. struct ggml_tensor * dst) {
  9203. GGML_ASSERT(params->ith == 0);
  9204. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9205. GGML_ASSERT(ggml_is_contiguous(opt0));
  9206. GGML_ASSERT(ggml_is_contiguous(dst));
  9207. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9208. if (params->type == GGML_TASK_INIT) {
  9209. memset(dst->data, 0, ggml_nbytes(dst));
  9210. }
  9211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9212. return;
  9213. }
  9214. const int nc = src0->ne[0];
  9215. const int nr = ggml_nelements(src1);
  9216. GGML_ASSERT( dst->ne[0] == nc);
  9217. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9218. for (int i = 0; i < nr; ++i) {
  9219. const int r = ((int32_t *) src1->data)[i];
  9220. ggml_vec_add_f32(nc,
  9221. (float *) ((char *) dst->data + r*dst->nb[1]),
  9222. (float *) ((char *) dst->data + r*dst->nb[1]),
  9223. (float *) ((char *) src0->data + i*src0->nb[1]));
  9224. }
  9225. }
  9226. static void ggml_compute_forward_get_rows_back(
  9227. const struct ggml_compute_params * params,
  9228. const struct ggml_tensor * src0,
  9229. const struct ggml_tensor * src1,
  9230. const struct ggml_tensor * opt0,
  9231. struct ggml_tensor * dst) {
  9232. switch (src0->type) {
  9233. case GGML_TYPE_F16:
  9234. {
  9235. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9236. } break;
  9237. case GGML_TYPE_F32:
  9238. {
  9239. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9240. } break;
  9241. default:
  9242. {
  9243. GGML_ASSERT(false);
  9244. } break;
  9245. }
  9246. //static bool first = true;
  9247. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9248. //if (first) {
  9249. // first = false;
  9250. //} else {
  9251. // for (int k = 0; k < dst->ne[1]; ++k) {
  9252. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9253. // for (int i = 0; i < 16; ++i) {
  9254. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9255. // }
  9256. // printf("\n");
  9257. // }
  9258. // printf("\n");
  9259. // }
  9260. // printf("\n");
  9261. // exit(0);
  9262. //}
  9263. }
  9264. // ggml_compute_forward_diag
  9265. static void ggml_compute_forward_diag_f32(
  9266. const struct ggml_compute_params * params,
  9267. const struct ggml_tensor * src0,
  9268. struct ggml_tensor * dst) {
  9269. GGML_ASSERT(params->ith == 0);
  9270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9271. return;
  9272. }
  9273. // TODO: handle transposed/permuted matrices
  9274. GGML_TENSOR_UNARY_OP_LOCALS;
  9275. GGML_ASSERT(ne00 == ne0);
  9276. GGML_ASSERT(ne00 == ne1);
  9277. GGML_ASSERT(ne01 == 1);
  9278. GGML_ASSERT(ne02 == ne2);
  9279. GGML_ASSERT(ne03 == ne3);
  9280. GGML_ASSERT(nb00 == sizeof(float));
  9281. GGML_ASSERT(nb0 == sizeof(float));
  9282. for (int i3 = 0; i3 < ne3; i3++) {
  9283. for (int i2 = 0; i2 < ne2; i2++) {
  9284. for (int i1 = 0; i1 < ne1; i1++) {
  9285. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9286. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9287. for (int i0 = 0; i0 < i1; i0++) {
  9288. d[i0] = 0;
  9289. }
  9290. d[i1] = s[i1];
  9291. for (int i0 = i1+1; i0 < ne0; i0++) {
  9292. d[i0] = 0;
  9293. }
  9294. }
  9295. }
  9296. }
  9297. }
  9298. static void ggml_compute_forward_diag(
  9299. const struct ggml_compute_params * params,
  9300. const struct ggml_tensor * src0,
  9301. struct ggml_tensor * dst) {
  9302. switch (src0->type) {
  9303. case GGML_TYPE_F32:
  9304. {
  9305. ggml_compute_forward_diag_f32(params, src0, dst);
  9306. } break;
  9307. default:
  9308. {
  9309. GGML_ASSERT(false);
  9310. } break;
  9311. }
  9312. }
  9313. // ggml_compute_forward_diag_mask_inf
  9314. static void ggml_compute_forward_diag_mask_f32(
  9315. const struct ggml_compute_params * params,
  9316. const struct ggml_tensor * src0,
  9317. struct ggml_tensor * dst,
  9318. const float value) {
  9319. const int ith = params->ith;
  9320. const int nth = params->nth;
  9321. const int n_past = ((int32_t *) dst->op_params)[0];
  9322. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9323. GGML_ASSERT(n_past >= 0);
  9324. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9325. // memcpy needs to be synchronized across threads to avoid race conditions.
  9326. // => do it in INIT phase
  9327. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9328. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9329. memcpy(
  9330. ((char *) dst->data),
  9331. ((char *) src0->data),
  9332. ggml_nbytes(dst));
  9333. }
  9334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9335. return;
  9336. }
  9337. // TODO: handle transposed/permuted matrices
  9338. const int n = ggml_nrows(src0);
  9339. const int nc = src0->ne[0];
  9340. const int nr = src0->ne[1];
  9341. const int nz = n/nr;
  9342. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9343. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9344. for (int k = 0; k < nz; k++) {
  9345. for (int j = ith; j < nr; j += nth) {
  9346. for (int i = n_past; i < nc; i++) {
  9347. if (i > n_past + j) {
  9348. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9349. }
  9350. }
  9351. }
  9352. }
  9353. }
  9354. static void ggml_compute_forward_diag_mask_inf(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * src0,
  9357. struct ggml_tensor * dst) {
  9358. switch (src0->type) {
  9359. case GGML_TYPE_F32:
  9360. {
  9361. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9362. } break;
  9363. default:
  9364. {
  9365. GGML_ASSERT(false);
  9366. } break;
  9367. }
  9368. }
  9369. static void ggml_compute_forward_diag_mask_zero(
  9370. const struct ggml_compute_params * params,
  9371. const struct ggml_tensor * src0,
  9372. struct ggml_tensor * dst) {
  9373. switch (src0->type) {
  9374. case GGML_TYPE_F32:
  9375. {
  9376. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9377. } break;
  9378. default:
  9379. {
  9380. GGML_ASSERT(false);
  9381. } break;
  9382. }
  9383. }
  9384. // ggml_compute_forward_soft_max
  9385. static void ggml_compute_forward_soft_max_f32(
  9386. const struct ggml_compute_params * params,
  9387. const struct ggml_tensor * src0,
  9388. struct ggml_tensor * dst) {
  9389. GGML_ASSERT(ggml_is_contiguous(src0));
  9390. GGML_ASSERT(ggml_is_contiguous(dst));
  9391. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9393. return;
  9394. }
  9395. // TODO: handle transposed/permuted matrices
  9396. const int ith = params->ith;
  9397. const int nth = params->nth;
  9398. const int nc = src0->ne[0];
  9399. const int nr = ggml_nrows(src0);
  9400. // rows per thread
  9401. const int dr = (nr + nth - 1)/nth;
  9402. // row range for this thread
  9403. const int ir0 = dr*ith;
  9404. const int ir1 = MIN(ir0 + dr, nr);
  9405. for (int i1 = ir0; i1 < ir1; i1++) {
  9406. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9407. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9408. #ifndef NDEBUG
  9409. for (int i = 0; i < nc; ++i) {
  9410. //printf("p[%d] = %f\n", i, p[i]);
  9411. assert(!isnan(sp[i]));
  9412. }
  9413. #endif
  9414. float max = -INFINITY;
  9415. ggml_vec_max_f32(nc, &max, sp);
  9416. ggml_float sum = 0.0;
  9417. uint16_t scvt;
  9418. for (int i = 0; i < nc; i++) {
  9419. if (sp[i] == -INFINITY) {
  9420. dp[i] = 0.0f;
  9421. } else {
  9422. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9423. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9424. memcpy(&scvt, &s, sizeof(scvt));
  9425. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9426. sum += (ggml_float)val;
  9427. dp[i] = val;
  9428. }
  9429. }
  9430. assert(sum > 0.0);
  9431. sum = 1.0/sum;
  9432. ggml_vec_scale_f32(nc, dp, sum);
  9433. #ifndef NDEBUG
  9434. for (int i = 0; i < nc; ++i) {
  9435. assert(!isnan(dp[i]));
  9436. assert(!isinf(dp[i]));
  9437. }
  9438. #endif
  9439. }
  9440. }
  9441. static void ggml_compute_forward_soft_max(
  9442. const struct ggml_compute_params * params,
  9443. const struct ggml_tensor * src0,
  9444. struct ggml_tensor * dst) {
  9445. switch (src0->type) {
  9446. case GGML_TYPE_F32:
  9447. {
  9448. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9449. } break;
  9450. default:
  9451. {
  9452. GGML_ASSERT(false);
  9453. } break;
  9454. }
  9455. }
  9456. // ggml_compute_forward_soft_max_back
  9457. static void ggml_compute_forward_soft_max_back_f32(
  9458. const struct ggml_compute_params * params,
  9459. const struct ggml_tensor * src0,
  9460. const struct ggml_tensor * src1,
  9461. struct ggml_tensor * dst) {
  9462. GGML_ASSERT(ggml_is_contiguous(src0));
  9463. GGML_ASSERT(ggml_is_contiguous(src1));
  9464. GGML_ASSERT(ggml_is_contiguous(dst));
  9465. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9466. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9468. return;
  9469. }
  9470. // TODO: handle transposed/permuted matrices
  9471. const int ith = params->ith;
  9472. const int nth = params->nth;
  9473. const int nc = src0->ne[0];
  9474. const int nr = ggml_nrows(src0);
  9475. // rows per thread
  9476. const int dr = (nr + nth - 1)/nth;
  9477. // row range for this thread
  9478. const int ir0 = dr*ith;
  9479. const int ir1 = MIN(ir0 + dr, nr);
  9480. for (int i1 = ir0; i1 < ir1; i1++) {
  9481. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9482. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9483. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9484. #ifndef NDEBUG
  9485. for (int i = 0; i < nc; ++i) {
  9486. //printf("p[%d] = %f\n", i, p[i]);
  9487. assert(!isnan(dy[i]));
  9488. assert(!isnan(y[i]));
  9489. }
  9490. #endif
  9491. // Jii = yi - yi*yi
  9492. // Jij = -yi*yj
  9493. // J = diag(y)-y.T*y
  9494. // dx = J * dy
  9495. // dxk = sum_i(Jki * dyi)
  9496. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9497. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9498. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9499. // dxk = -yk * dot(y, dy) + yk*dyk
  9500. // dxk = yk * (- dot(y, dy) + dyk)
  9501. // dxk = yk * (dyk - dot(y, dy))
  9502. //
  9503. // post-order:
  9504. // dot_y_dy := dot(y, dy)
  9505. // dx := dy
  9506. // dx := dx - dot_y_dy
  9507. // dx := dx * y
  9508. // linear runtime, no additional memory
  9509. float dot_y_dy = 0;
  9510. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9511. ggml_vec_cpy_f32 (nc, dx, dy);
  9512. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9513. ggml_vec_mul_f32 (nc, dx, dx, y);
  9514. #ifndef NDEBUG
  9515. for (int i = 0; i < nc; ++i) {
  9516. assert(!isnan(dx[i]));
  9517. assert(!isinf(dx[i]));
  9518. }
  9519. #endif
  9520. }
  9521. }
  9522. static void ggml_compute_forward_soft_max_back(
  9523. const struct ggml_compute_params * params,
  9524. const struct ggml_tensor * src0,
  9525. const struct ggml_tensor * src1,
  9526. struct ggml_tensor * dst) {
  9527. switch (src0->type) {
  9528. case GGML_TYPE_F32:
  9529. {
  9530. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9531. } break;
  9532. default:
  9533. {
  9534. GGML_ASSERT(false);
  9535. } break;
  9536. }
  9537. }
  9538. // ggml_compute_forward_alibi
  9539. static void ggml_compute_forward_alibi_f32(
  9540. const struct ggml_compute_params * params,
  9541. const struct ggml_tensor * src0,
  9542. struct ggml_tensor * dst) {
  9543. assert(params->ith == 0);
  9544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9545. return;
  9546. }
  9547. const int n_past = ((int32_t *) dst->op_params)[0];
  9548. const int n_head = ((int32_t *) dst->op_params)[1];
  9549. float max_bias;
  9550. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9551. assert(n_past >= 0);
  9552. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9553. const int ne1 = src0->ne[1]; // seq_len_without_past
  9554. const int ne2 = src0->ne[2]; // n_head -> this is k
  9555. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9556. const int n = ggml_nrows(src0);
  9557. const int ne2_ne3 = n/ne1; // ne2*ne3
  9558. const int nb0 = src0->nb[0];
  9559. const int nb1 = src0->nb[1];
  9560. const int nb2 = src0->nb[2];
  9561. //const int nb3 = src0->nb[3];
  9562. GGML_ASSERT(nb0 == sizeof(float));
  9563. GGML_ASSERT(ne1 + n_past == ne0);
  9564. GGML_ASSERT(n_head == ne2);
  9565. // add alibi to src0 (KQ_scaled)
  9566. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9567. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9568. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9569. for (int i = 0; i < ne0; i++) {
  9570. for (int j = 0; j < ne1; j++) {
  9571. for (int k = 0; k < ne2_ne3; k++) {
  9572. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9573. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9574. // TODO: k*nb2 or k*nb3
  9575. float m_k;
  9576. if (k < n_heads_log2_floor) {
  9577. m_k = powf(m0, k + 1);
  9578. } else {
  9579. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9580. }
  9581. pdst[0] = i * m_k + src[0];
  9582. }
  9583. }
  9584. }
  9585. }
  9586. static void ggml_compute_forward_alibi_f16(
  9587. const struct ggml_compute_params * params,
  9588. const struct ggml_tensor * src0,
  9589. struct ggml_tensor * dst) {
  9590. assert(params->ith == 0);
  9591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9592. return;
  9593. }
  9594. const int n_past = ((int32_t *) dst->op_params)[0];
  9595. const int n_head = ((int32_t *) dst->op_params)[1];
  9596. float max_bias;
  9597. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9598. assert(n_past >= 0);
  9599. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9600. const int ne1 = src0->ne[1]; // seq_len_without_past
  9601. const int ne2 = src0->ne[2]; // n_head -> this is k
  9602. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9603. const int n = ggml_nrows(src0);
  9604. const int ne2_ne3 = n/ne1; // ne2*ne3
  9605. const int nb0 = src0->nb[0];
  9606. const int nb1 = src0->nb[1];
  9607. const int nb2 = src0->nb[2];
  9608. //const int nb3 = src0->nb[3];
  9609. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9610. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9611. GGML_ASSERT(n_head == ne2);
  9612. // add alibi to src0 (KQ_scaled)
  9613. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9614. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9615. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9616. for (int i = 0; i < ne0; i++) {
  9617. for (int j = 0; j < ne1; j++) {
  9618. for (int k = 0; k < ne2_ne3; k++) {
  9619. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9620. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9621. // TODO: k*nb2 or k*nb3
  9622. float m_k;
  9623. if (k < n_heads_log2_floor) {
  9624. m_k = powf(m0, k + 1);
  9625. } else {
  9626. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9627. }
  9628. // we return F32
  9629. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9630. }
  9631. }
  9632. }
  9633. }
  9634. static void ggml_compute_forward_alibi(
  9635. const struct ggml_compute_params * params,
  9636. const struct ggml_tensor * src0,
  9637. struct ggml_tensor * dst) {
  9638. switch (src0->type) {
  9639. case GGML_TYPE_F16:
  9640. {
  9641. ggml_compute_forward_alibi_f16(params, src0, dst);
  9642. } break;
  9643. case GGML_TYPE_F32:
  9644. {
  9645. ggml_compute_forward_alibi_f32(params, src0, dst);
  9646. } break;
  9647. case GGML_TYPE_Q4_0:
  9648. case GGML_TYPE_Q4_1:
  9649. case GGML_TYPE_Q5_0:
  9650. case GGML_TYPE_Q5_1:
  9651. case GGML_TYPE_Q8_0:
  9652. case GGML_TYPE_Q8_1:
  9653. case GGML_TYPE_Q2_K:
  9654. case GGML_TYPE_Q3_K:
  9655. case GGML_TYPE_Q4_K:
  9656. case GGML_TYPE_Q5_K:
  9657. case GGML_TYPE_Q6_K:
  9658. case GGML_TYPE_Q8_K:
  9659. case GGML_TYPE_I8:
  9660. case GGML_TYPE_I16:
  9661. case GGML_TYPE_I32:
  9662. case GGML_TYPE_COUNT:
  9663. {
  9664. GGML_ASSERT(false);
  9665. } break;
  9666. }
  9667. }
  9668. // ggml_compute_forward_clamp
  9669. static void ggml_compute_forward_clamp_f32(
  9670. const struct ggml_compute_params * params,
  9671. const struct ggml_tensor * src0,
  9672. struct ggml_tensor * dst) {
  9673. assert(params->ith == 0);
  9674. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9675. return;
  9676. }
  9677. float min;
  9678. float max;
  9679. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9680. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9681. const int ith = params->ith;
  9682. const int nth = params->nth;
  9683. const int n = ggml_nrows(src0);
  9684. const int nc = src0->ne[0];
  9685. const size_t nb00 = src0->nb[0];
  9686. const size_t nb01 = src0->nb[1];
  9687. const size_t nb0 = dst->nb[0];
  9688. const size_t nb1 = dst->nb[1];
  9689. GGML_ASSERT( nb0 == sizeof(float));
  9690. GGML_ASSERT(nb00 == sizeof(float));
  9691. for (int j = ith; j < n; j += nth) {
  9692. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9693. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9694. for (int i = 0; i < nc; i++) {
  9695. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9696. }
  9697. }
  9698. }
  9699. static void ggml_compute_forward_clamp(
  9700. const struct ggml_compute_params * params,
  9701. const struct ggml_tensor * src0,
  9702. struct ggml_tensor * dst) {
  9703. switch (src0->type) {
  9704. case GGML_TYPE_F32:
  9705. {
  9706. ggml_compute_forward_clamp_f32(params, src0, dst);
  9707. } break;
  9708. case GGML_TYPE_F16:
  9709. case GGML_TYPE_Q4_0:
  9710. case GGML_TYPE_Q4_1:
  9711. case GGML_TYPE_Q5_0:
  9712. case GGML_TYPE_Q5_1:
  9713. case GGML_TYPE_Q8_0:
  9714. case GGML_TYPE_Q8_1:
  9715. case GGML_TYPE_Q2_K:
  9716. case GGML_TYPE_Q3_K:
  9717. case GGML_TYPE_Q4_K:
  9718. case GGML_TYPE_Q5_K:
  9719. case GGML_TYPE_Q6_K:
  9720. case GGML_TYPE_Q8_K:
  9721. case GGML_TYPE_I8:
  9722. case GGML_TYPE_I16:
  9723. case GGML_TYPE_I32:
  9724. case GGML_TYPE_COUNT:
  9725. {
  9726. GGML_ASSERT(false);
  9727. } break;
  9728. }
  9729. }
  9730. // ggml_compute_forward_rope
  9731. static void ggml_compute_forward_rope_f32(
  9732. const struct ggml_compute_params * params,
  9733. const struct ggml_tensor * src0,
  9734. struct ggml_tensor * dst) {
  9735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9736. return;
  9737. }
  9738. float freq_base;
  9739. float freq_scale;
  9740. const int n_past = ((int32_t *) dst->op_params)[0];
  9741. const int n_dims = ((int32_t *) dst->op_params)[1];
  9742. const int mode = ((int32_t *) dst->op_params)[2];
  9743. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9744. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9745. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9746. assert(n_past >= 0);
  9747. GGML_TENSOR_UNARY_OP_LOCALS;
  9748. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9749. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9750. GGML_ASSERT(nb00 == sizeof(float));
  9751. const int ith = params->ith;
  9752. const int nth = params->nth;
  9753. const int nr = ggml_nrows(dst);
  9754. GGML_ASSERT(n_dims <= ne0);
  9755. GGML_ASSERT(n_dims % 2 == 0);
  9756. // rows per thread
  9757. const int dr = (nr + nth - 1)/nth;
  9758. // row range for this thread
  9759. const int ir0 = dr*ith;
  9760. const int ir1 = MIN(ir0 + dr, nr);
  9761. // row index used to determine which thread to use
  9762. int ir = 0;
  9763. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9764. const bool is_neox = mode & 2;
  9765. const bool is_glm = mode & 4;
  9766. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9767. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9768. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9769. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9770. if (ir++ < ir0) continue;
  9771. if (ir > ir1) break;
  9772. float theta = freq_scale * (float)p;
  9773. if (is_glm) {
  9774. theta = MIN(p, n_ctx - 2);
  9775. float block_theta = MAX(p - (n_ctx - 2), 0);
  9776. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9777. const float cos_theta = cosf(theta);
  9778. const float sin_theta = sinf(theta);
  9779. const float cos_block_theta = cosf(block_theta);
  9780. const float sin_block_theta = sinf(block_theta);
  9781. theta *= theta_scale;
  9782. block_theta *= theta_scale;
  9783. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9784. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9785. const float x0 = src[0];
  9786. const float x1 = src[n_dims/2];
  9787. const float x2 = src[n_dims];
  9788. const float x3 = src[n_dims/2*3];
  9789. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9790. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9791. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9792. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9793. }
  9794. } else if (!is_neox) {
  9795. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9796. const float cos_theta = cosf(theta);
  9797. const float sin_theta = sinf(theta);
  9798. theta *= theta_scale;
  9799. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9800. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9801. const float x0 = src[0];
  9802. const float x1 = src[1];
  9803. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9804. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9805. }
  9806. } else {
  9807. // TODO: this is probably wrong, but I can't figure it out ..
  9808. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9809. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9810. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9811. const float cos_theta = cosf(theta);
  9812. const float sin_theta = sinf(theta);
  9813. theta *= theta_scale;
  9814. const int64_t i0 = ib*n_dims + ic/2;
  9815. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9816. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9817. const float x0 = src[0];
  9818. const float x1 = src[n_dims/2];
  9819. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9820. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9821. }
  9822. }
  9823. }
  9824. }
  9825. }
  9826. }
  9827. }
  9828. static void ggml_compute_forward_rope_f16(
  9829. const struct ggml_compute_params * params,
  9830. const struct ggml_tensor * src0,
  9831. struct ggml_tensor * dst) {
  9832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9833. return;
  9834. }
  9835. float freq_base;
  9836. float freq_scale;
  9837. const int n_past = ((int32_t *) dst->op_params)[0];
  9838. const int n_dims = ((int32_t *) dst->op_params)[1];
  9839. const int mode = ((int32_t *) dst->op_params)[2];
  9840. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9841. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9842. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9843. assert(n_past >= 0);
  9844. GGML_TENSOR_UNARY_OP_LOCALS;
  9845. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9846. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9847. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9848. const int ith = params->ith;
  9849. const int nth = params->nth;
  9850. const int nr = ggml_nrows(dst);
  9851. GGML_ASSERT(n_dims <= ne0);
  9852. GGML_ASSERT(n_dims % 2 == 0);
  9853. // rows per thread
  9854. const int dr = (nr + nth - 1)/nth;
  9855. // row range for this thread
  9856. const int ir0 = dr*ith;
  9857. const int ir1 = MIN(ir0 + dr, nr);
  9858. // row index used to determine which thread to use
  9859. int ir = 0;
  9860. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9861. const bool is_neox = mode & 2;
  9862. const bool is_glm = mode & 4;
  9863. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9864. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9865. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9866. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9867. if (ir++ < ir0) continue;
  9868. if (ir > ir1) break;
  9869. float theta = freq_scale * (float)p;
  9870. if (is_glm) {
  9871. theta = MIN(p, n_ctx - 2);
  9872. float block_theta = MAX(p - (n_ctx - 2), 0);
  9873. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9874. const float cos_theta = cosf(theta);
  9875. const float sin_theta = sinf(theta);
  9876. const float cos_block_theta = cosf(block_theta);
  9877. const float sin_block_theta = sinf(block_theta);
  9878. theta *= theta_scale;
  9879. block_theta *= theta_scale;
  9880. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9881. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9882. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9883. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9884. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9885. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9886. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9887. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9888. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9889. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9890. }
  9891. } if (!is_neox) {
  9892. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9893. const float cos_theta = cosf(theta);
  9894. const float sin_theta = sinf(theta);
  9895. theta *= theta_scale;
  9896. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9897. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9898. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9899. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9900. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9901. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9902. }
  9903. } else {
  9904. // TODO: this is probably wrong, but I can't figure it out ..
  9905. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9906. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9907. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9908. const float cos_theta = cosf(theta);
  9909. const float sin_theta = sinf(theta);
  9910. theta *= theta_scale;
  9911. const int64_t i0 = ib*n_dims + ic/2;
  9912. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9913. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9914. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9915. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9916. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9917. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9918. }
  9919. }
  9920. }
  9921. }
  9922. }
  9923. }
  9924. }
  9925. static void ggml_compute_forward_rope(
  9926. const struct ggml_compute_params * params,
  9927. const struct ggml_tensor * src0,
  9928. struct ggml_tensor * dst) {
  9929. switch (src0->type) {
  9930. case GGML_TYPE_F16:
  9931. {
  9932. ggml_compute_forward_rope_f16(params, src0, dst);
  9933. } break;
  9934. case GGML_TYPE_F32:
  9935. {
  9936. ggml_compute_forward_rope_f32(params, src0, dst);
  9937. } break;
  9938. default:
  9939. {
  9940. GGML_ASSERT(false);
  9941. } break;
  9942. }
  9943. }
  9944. // ggml_compute_forward_rope_back
  9945. static void ggml_compute_forward_rope_back_f32(
  9946. const struct ggml_compute_params * params,
  9947. const struct ggml_tensor * src0,
  9948. struct ggml_tensor * dst) {
  9949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9950. return;
  9951. }
  9952. // y = rope(x, src1)
  9953. // dx = rope_back(dy, src1)
  9954. // src0 is dy, src1 contains options
  9955. const int n_past = ((int32_t *) dst->op_params)[0];
  9956. const int n_dims = ((int32_t *) dst->op_params)[1];
  9957. const int mode = ((int32_t *) dst->op_params)[2];
  9958. assert(n_past >= 0);
  9959. GGML_TENSOR_UNARY_OP_LOCALS;
  9960. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9961. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9962. assert(nb0 == sizeof(float));
  9963. const int ith = params->ith;
  9964. const int nth = params->nth;
  9965. const int nr = ggml_nrows(dst);
  9966. // rows per thread
  9967. const int dr = (nr + nth - 1)/nth;
  9968. // row range for this thread
  9969. const int ir0 = dr*ith;
  9970. const int ir1 = MIN(ir0 + dr, nr);
  9971. // row index used to determine which thread to use
  9972. int ir = 0;
  9973. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9974. const bool is_neox = mode & 2;
  9975. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9976. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9977. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9978. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9979. if (ir++ < ir0) continue;
  9980. if (ir > ir1) break;
  9981. float theta = (float)p;
  9982. if (!is_neox) {
  9983. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9984. const float cos_theta = cosf(theta);
  9985. const float sin_theta = sinf(theta);
  9986. theta *= theta_scale;
  9987. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9988. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9989. const float dy0 = dy[0];
  9990. const float dy1 = dy[1];
  9991. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9992. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9993. }
  9994. } else {
  9995. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9996. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9997. const float cos_theta = cosf(theta);
  9998. const float sin_theta = sinf(theta);
  9999. theta *= theta_scale;
  10000. const int64_t i0 = ib*n_dims + ic/2;
  10001. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10002. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10003. const float dy0 = dy[0];
  10004. const float dy1 = dy[n_dims/2];
  10005. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10006. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10007. }
  10008. }
  10009. }
  10010. }
  10011. }
  10012. }
  10013. }
  10014. static void ggml_compute_forward_rope_back_f16(
  10015. const struct ggml_compute_params * params,
  10016. const struct ggml_tensor * src0,
  10017. struct ggml_tensor * dst) {
  10018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10019. return;
  10020. }
  10021. // y = rope(x, src1)
  10022. // dx = rope_back(dy, src1)
  10023. // src0 is dy, src1 contains options
  10024. const int n_past = ((int32_t *) dst->op_params)[0];
  10025. const int n_dims = ((int32_t *) dst->op_params)[1];
  10026. const int mode = ((int32_t *) dst->op_params)[2];
  10027. assert(n_past >= 0);
  10028. GGML_TENSOR_UNARY_OP_LOCALS;
  10029. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10030. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10031. assert(nb0 == sizeof(ggml_fp16_t));
  10032. const int ith = params->ith;
  10033. const int nth = params->nth;
  10034. const int nr = ggml_nrows(dst);
  10035. // rows per thread
  10036. const int dr = (nr + nth - 1)/nth;
  10037. // row range for this thread
  10038. const int ir0 = dr*ith;
  10039. const int ir1 = MIN(ir0 + dr, nr);
  10040. // row index used to determine which thread to use
  10041. int ir = 0;
  10042. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10043. const bool is_neox = mode & 2;
  10044. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10045. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10046. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10047. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10048. if (ir++ < ir0) continue;
  10049. if (ir > ir1) break;
  10050. float theta = (float)p;
  10051. if (!is_neox) {
  10052. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10053. const float cos_theta = cosf(theta);
  10054. const float sin_theta = sinf(theta);
  10055. theta *= theta_scale;
  10056. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10057. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10058. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10059. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10060. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10061. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10062. }
  10063. } else {
  10064. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10065. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10066. const float cos_theta = cosf(theta);
  10067. const float sin_theta = sinf(theta);
  10068. theta *= theta_scale;
  10069. const int64_t i0 = ib*n_dims + ic/2;
  10070. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10071. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10072. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10073. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10074. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10075. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10076. }
  10077. }
  10078. }
  10079. }
  10080. }
  10081. }
  10082. }
  10083. static void ggml_compute_forward_rope_back(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * src0,
  10086. struct ggml_tensor * dst) {
  10087. switch (src0->type) {
  10088. case GGML_TYPE_F16:
  10089. {
  10090. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10091. } break;
  10092. case GGML_TYPE_F32:
  10093. {
  10094. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10095. } break;
  10096. default:
  10097. {
  10098. GGML_ASSERT(false);
  10099. } break;
  10100. }
  10101. }
  10102. // ggml_compute_forward_conv_1d
  10103. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10104. const struct ggml_compute_params * params,
  10105. const struct ggml_tensor * src0,
  10106. const struct ggml_tensor * src1,
  10107. struct ggml_tensor * dst) {
  10108. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10110. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10111. int64_t t0 = ggml_perf_time_us();
  10112. UNUSED(t0);
  10113. GGML_TENSOR_BINARY_OP_LOCALS;
  10114. const int ith = params->ith;
  10115. const int nth = params->nth;
  10116. const int nk = ne00;
  10117. const int nh = nk/2;
  10118. const int ew0 = ggml_up32(ne01);
  10119. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10120. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10121. GGML_ASSERT(nb10 == sizeof(float));
  10122. if (params->type == GGML_TASK_INIT) {
  10123. // TODO: fix this memset (wsize is overestimated)
  10124. memset(params->wdata, 0, params->wsize);
  10125. // prepare kernel data (src0)
  10126. {
  10127. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10128. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10129. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10130. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10131. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10132. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10133. dst_data[i00*ew0 + i01] = src[i00];
  10134. }
  10135. }
  10136. }
  10137. }
  10138. // prepare source data (src1)
  10139. {
  10140. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10141. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10142. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10143. ggml_fp16_t * dst_data = wdata;
  10144. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10145. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10146. }
  10147. }
  10148. }
  10149. return;
  10150. }
  10151. if (params->type == GGML_TASK_FINALIZE) {
  10152. return;
  10153. }
  10154. // total rows in dst
  10155. const int nr = ne02;
  10156. // rows per thread
  10157. const int dr = (nr + nth - 1)/nth;
  10158. // row range for this thread
  10159. const int ir0 = dr*ith;
  10160. const int ir1 = MIN(ir0 + dr, nr);
  10161. for (int i1 = ir0; i1 < ir1; i1++) {
  10162. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10163. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10164. dst_data[i0] = 0;
  10165. for (int k = -nh; k <= nh; k++) {
  10166. float v = 0.0f;
  10167. ggml_vec_dot_f16(ew0, &v,
  10168. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10169. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10170. dst_data[i0] += v;
  10171. }
  10172. }
  10173. }
  10174. }
  10175. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10176. const struct ggml_compute_params * params,
  10177. const struct ggml_tensor * src0,
  10178. const struct ggml_tensor * src1,
  10179. struct ggml_tensor * dst) {
  10180. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10181. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10182. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10183. int64_t t0 = ggml_perf_time_us();
  10184. UNUSED(t0);
  10185. GGML_TENSOR_BINARY_OP_LOCALS;
  10186. const int ith = params->ith;
  10187. const int nth = params->nth;
  10188. const int nk = ne00;
  10189. const int nh = nk/2;
  10190. const int ew0 = ggml_up32(ne01);
  10191. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10192. GGML_ASSERT(nb00 == sizeof(float));
  10193. GGML_ASSERT(nb10 == sizeof(float));
  10194. if (params->type == GGML_TASK_INIT) {
  10195. // TODO: fix this memset (wsize is overestimated)
  10196. memset(params->wdata, 0, params->wsize);
  10197. // prepare kernel data (src0)
  10198. {
  10199. float * const wdata = (float *) params->wdata + 0;
  10200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10201. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10202. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10203. float * dst_data = wdata + i02*ew0*ne00;
  10204. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10205. dst_data[i00*ew0 + i01] = src[i00];
  10206. }
  10207. }
  10208. }
  10209. }
  10210. // prepare source data (src1)
  10211. {
  10212. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10213. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10214. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10215. float * dst_data = wdata;
  10216. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10217. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10218. }
  10219. }
  10220. }
  10221. return;
  10222. }
  10223. if (params->type == GGML_TASK_FINALIZE) {
  10224. return;
  10225. }
  10226. // total rows in dst
  10227. const int nr = ne02;
  10228. // rows per thread
  10229. const int dr = (nr + nth - 1)/nth;
  10230. // row range for this thread
  10231. const int ir0 = dr*ith;
  10232. const int ir1 = MIN(ir0 + dr, nr);
  10233. for (int i1 = ir0; i1 < ir1; i1++) {
  10234. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10235. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10236. dst_data[i0] = 0;
  10237. for (int k = -nh; k <= nh; k++) {
  10238. float v = 0.0f;
  10239. ggml_vec_dot_f32(ew0, &v,
  10240. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10241. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10242. dst_data[i0] += v;
  10243. }
  10244. }
  10245. }
  10246. }
  10247. static void ggml_compute_forward_conv_1d_s1_ph(
  10248. const struct ggml_compute_params * params,
  10249. const struct ggml_tensor * src0,
  10250. const struct ggml_tensor * src1,
  10251. struct ggml_tensor * dst) {
  10252. switch (src0->type) {
  10253. case GGML_TYPE_F16:
  10254. {
  10255. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10256. } break;
  10257. case GGML_TYPE_F32:
  10258. {
  10259. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10260. } break;
  10261. default:
  10262. {
  10263. GGML_ASSERT(false);
  10264. } break;
  10265. }
  10266. }
  10267. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10268. const struct ggml_compute_params * params,
  10269. const struct ggml_tensor * src0,
  10270. const struct ggml_tensor * src1,
  10271. struct ggml_tensor * dst) {
  10272. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10273. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10274. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10275. int64_t t0 = ggml_perf_time_us();
  10276. UNUSED(t0);
  10277. GGML_TENSOR_BINARY_OP_LOCALS;
  10278. const int ith = params->ith;
  10279. const int nth = params->nth;
  10280. const int nk = ne00;
  10281. const int nh = nk/2;
  10282. const int ew0 = ggml_up32(ne01);
  10283. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10284. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10285. GGML_ASSERT(nb10 == sizeof(float));
  10286. if (params->type == GGML_TASK_INIT) {
  10287. // TODO: fix this memset (wsize is overestimated)
  10288. memset(params->wdata, 0, params->wsize);
  10289. // prepare kernel data (src0)
  10290. {
  10291. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10293. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10294. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10295. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10296. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10297. dst_data[i00*ew0 + i01] = src[i00];
  10298. }
  10299. }
  10300. }
  10301. }
  10302. // prepare source data (src1)
  10303. {
  10304. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10305. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10306. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10307. ggml_fp16_t * dst_data = wdata;
  10308. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10309. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10310. }
  10311. }
  10312. }
  10313. return;
  10314. }
  10315. if (params->type == GGML_TASK_FINALIZE) {
  10316. return;
  10317. }
  10318. // total rows in dst
  10319. const int nr = ne02;
  10320. // rows per thread
  10321. const int dr = (nr + nth - 1)/nth;
  10322. // row range for this thread
  10323. const int ir0 = dr*ith;
  10324. const int ir1 = MIN(ir0 + dr, nr);
  10325. for (int i1 = ir0; i1 < ir1; i1++) {
  10326. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10327. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10328. dst_data[i0/2] = 0;
  10329. for (int k = -nh; k <= nh; k++) {
  10330. float v = 0.0f;
  10331. ggml_vec_dot_f16(ew0, &v,
  10332. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10333. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10334. dst_data[i0/2] += v;
  10335. }
  10336. }
  10337. }
  10338. }
  10339. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10340. const struct ggml_compute_params * params,
  10341. const struct ggml_tensor * src0,
  10342. const struct ggml_tensor * src1,
  10343. struct ggml_tensor * dst) {
  10344. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10345. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10346. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10347. int64_t t0 = ggml_perf_time_us();
  10348. UNUSED(t0);
  10349. GGML_TENSOR_BINARY_OP_LOCALS;
  10350. const int ith = params->ith;
  10351. const int nth = params->nth;
  10352. const int nk = ne00;
  10353. const int nh = nk/2;
  10354. const int ew0 = ggml_up32(ne01);
  10355. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10356. GGML_ASSERT(nb00 == sizeof(float));
  10357. GGML_ASSERT(nb10 == sizeof(float));
  10358. if (params->type == GGML_TASK_INIT) {
  10359. // TODO: fix this memset (wsize is overestimated)
  10360. memset(params->wdata, 0, params->wsize);
  10361. // prepare kernel data (src0)
  10362. {
  10363. float * const wdata = (float *) params->wdata + 0;
  10364. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10365. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10366. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10367. float * dst_data = wdata + i02*ew0*ne00;
  10368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10369. dst_data[i00*ew0 + i01] = src[i00];
  10370. }
  10371. }
  10372. }
  10373. }
  10374. // prepare source data (src1)
  10375. {
  10376. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10377. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10378. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10379. float * dst_data = wdata;
  10380. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10381. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10382. }
  10383. }
  10384. }
  10385. return;
  10386. }
  10387. if (params->type == GGML_TASK_FINALIZE) {
  10388. return;
  10389. }
  10390. // total rows in dst
  10391. const int nr = ne02;
  10392. // rows per thread
  10393. const int dr = (nr + nth - 1)/nth;
  10394. // row range for this thread
  10395. const int ir0 = dr*ith;
  10396. const int ir1 = MIN(ir0 + dr, nr);
  10397. for (int i1 = ir0; i1 < ir1; i1++) {
  10398. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10399. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10400. dst_data[i0/2] = 0;
  10401. for (int k = -nh; k <= nh; k++) {
  10402. float v = 0.0f;
  10403. ggml_vec_dot_f32(ew0, &v,
  10404. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10405. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10406. dst_data[i0/2] += v;
  10407. }
  10408. }
  10409. }
  10410. }
  10411. static void ggml_compute_forward_conv_1d_s2_ph(
  10412. const struct ggml_compute_params * params,
  10413. const struct ggml_tensor * src0,
  10414. const struct ggml_tensor * src1,
  10415. struct ggml_tensor * dst) {
  10416. switch (src0->type) {
  10417. case GGML_TYPE_F16:
  10418. {
  10419. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10420. } break;
  10421. case GGML_TYPE_F32:
  10422. {
  10423. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10424. } break;
  10425. default:
  10426. {
  10427. GGML_ASSERT(false);
  10428. } break;
  10429. }
  10430. }
  10431. // ggml_compute_forward_conv_1d
  10432. static void ggml_compute_forward_conv_1d(
  10433. const struct ggml_compute_params * params,
  10434. const struct ggml_tensor * src0,
  10435. const struct ggml_tensor * src1,
  10436. struct ggml_tensor * dst) {
  10437. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10438. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10439. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10440. GGML_ASSERT(d0 == 1); // dilation not supported
  10441. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10442. if (s0 == 1) {
  10443. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10444. } else if (s0 == 2) {
  10445. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10446. } else {
  10447. GGML_ASSERT(false); // only stride 1 and 2 supported
  10448. };
  10449. }
  10450. // ggml_compute_forward_conv_2d
  10451. static void ggml_compute_forward_conv_2d_f16_f32(
  10452. const struct ggml_compute_params * params,
  10453. const struct ggml_tensor * src0,
  10454. const struct ggml_tensor * src1,
  10455. struct ggml_tensor * dst) {
  10456. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10457. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10458. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10459. int64_t t0 = ggml_perf_time_us();
  10460. UNUSED(t0);
  10461. GGML_TENSOR_BINARY_OP_LOCALS;
  10462. const int ith = params->ith;
  10463. const int nth = params->nth;
  10464. const int nk0 = ne00;
  10465. const int nk1 = ne01;
  10466. // size of the convolution row - the kernel size unrolled across all channels
  10467. const int ew0 = nk0*nk1*ne02;
  10468. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10469. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10470. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10471. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10472. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10473. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10474. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10475. GGML_ASSERT(nb10 == sizeof(float));
  10476. if (params->type == GGML_TASK_INIT) {
  10477. memset(params->wdata, 0, params->wsize);
  10478. // prepare source data (src1)
  10479. {
  10480. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10481. for (int i12 = 0; i12 < ne12; i12++) {
  10482. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10483. ggml_fp16_t * dst_data = wdata;
  10484. for (int i1 = 0; i1 < ne1; i1++) {
  10485. for (int i0 = 0; i0 < ne0; i0++) {
  10486. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10487. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10488. const int idx0 = i0*s0 + ik0*d0 - p0;
  10489. const int idx1 = i1*s1 + ik1*d1 - p1;
  10490. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10491. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10492. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10493. }
  10494. }
  10495. }
  10496. }
  10497. }
  10498. }
  10499. }
  10500. return;
  10501. }
  10502. if (params->type == GGML_TASK_FINALIZE) {
  10503. return;
  10504. }
  10505. // total patches in dst
  10506. const int np = ne2;
  10507. // patches per thread
  10508. const int dp = (np + nth - 1)/nth;
  10509. // patch range for this thread
  10510. const int ip0 = dp*ith;
  10511. const int ip1 = MIN(ip0 + dp, np);
  10512. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10513. for (int i3 = 0; i3 < ne3; i3++) {
  10514. for (int i2 = ip0; i2 < ip1; i2++) {
  10515. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10516. for (int i1 = 0; i1 < ne1; ++i1) {
  10517. for (int i0 = 0; i0 < ne0; ++i0) {
  10518. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10519. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10520. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10521. }
  10522. }
  10523. }
  10524. }
  10525. }
  10526. static void ggml_compute_forward_conv_2d(
  10527. const struct ggml_compute_params * params,
  10528. const struct ggml_tensor * src0,
  10529. const struct ggml_tensor * src1,
  10530. struct ggml_tensor * dst) {
  10531. switch (src0->type) {
  10532. case GGML_TYPE_F16:
  10533. {
  10534. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10535. } break;
  10536. case GGML_TYPE_F32:
  10537. {
  10538. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10539. GGML_ASSERT(false);
  10540. } break;
  10541. default:
  10542. {
  10543. GGML_ASSERT(false);
  10544. } break;
  10545. }
  10546. }
  10547. // ggml_compute_forward_pool_1d_sk_p0
  10548. static void ggml_compute_forward_pool_1d_sk_p0(
  10549. const struct ggml_compute_params * params,
  10550. const enum ggml_op_pool op,
  10551. const struct ggml_tensor * src,
  10552. const int k,
  10553. struct ggml_tensor * dst) {
  10554. assert(src->type == GGML_TYPE_F32);
  10555. assert(params->ith == 0);
  10556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10557. return;
  10558. }
  10559. const char * cdata = (const char *)src->data;
  10560. const char * const data_end = cdata + ggml_nbytes(src);
  10561. float * drow = (float *)dst->data;
  10562. const int64_t rs = dst->ne[0];
  10563. while (cdata < data_end) {
  10564. const float * const srow = (const float *)cdata;
  10565. int j = 0;
  10566. for (int64_t i = 0; i < rs; ++i) {
  10567. switch (op) {
  10568. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10569. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10570. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10571. }
  10572. for (int ki = 0; ki < k; ++ki) {
  10573. switch (op) {
  10574. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10575. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10576. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10577. }
  10578. ++j;
  10579. }
  10580. switch (op) {
  10581. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10582. case GGML_OP_POOL_MAX: break;
  10583. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10584. }
  10585. }
  10586. cdata += src->nb[1];
  10587. drow += rs;
  10588. }
  10589. }
  10590. // ggml_compute_forward_pool_1d
  10591. static void ggml_compute_forward_pool_1d(
  10592. const struct ggml_compute_params * params,
  10593. const struct ggml_tensor * src0,
  10594. struct ggml_tensor * dst) {
  10595. const int32_t * opts = (const int32_t *)dst->op_params;
  10596. enum ggml_op_pool op = opts[0];
  10597. const int k0 = opts[1];
  10598. const int s0 = opts[2];
  10599. const int p0 = opts[3];
  10600. GGML_ASSERT(p0 == 0); // padding not supported
  10601. GGML_ASSERT(k0 == s0); // only s = k supported
  10602. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10603. }
  10604. // ggml_compute_forward_pool_2d_sk_p0
  10605. static void ggml_compute_forward_pool_2d_sk_p0(
  10606. const struct ggml_compute_params * params,
  10607. const enum ggml_op_pool op,
  10608. const struct ggml_tensor * src,
  10609. const int k0,
  10610. const int k1,
  10611. struct ggml_tensor * dst) {
  10612. assert(src->type == GGML_TYPE_F32);
  10613. assert(params->ith == 0);
  10614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10615. return;
  10616. }
  10617. const char * cdata = (const char*)src->data;
  10618. const char * const data_end = cdata + ggml_nbytes(src);
  10619. const int64_t px = dst->ne[0];
  10620. const int64_t py = dst->ne[1];
  10621. const int64_t pa = px * py;
  10622. float * dplane = (float *)dst->data;
  10623. const int ka = k0 * k1;
  10624. while (cdata < data_end) {
  10625. for (int oy = 0; oy < py; ++oy) {
  10626. float * const drow = dplane + oy * px;
  10627. for (int ox = 0; ox < px; ++ox) {
  10628. float * const out = drow + ox;
  10629. switch (op) {
  10630. case GGML_OP_POOL_AVG: *out = 0; break;
  10631. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10632. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10633. }
  10634. const int ix = ox * k0;
  10635. const int iy = oy * k1;
  10636. for (int ky = 0; ky < k1; ++ky) {
  10637. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10638. for (int kx = 0; kx < k0; ++kx) {
  10639. int j = ix + kx;
  10640. switch (op) {
  10641. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10642. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10643. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10644. }
  10645. }
  10646. }
  10647. switch (op) {
  10648. case GGML_OP_POOL_AVG: *out /= ka; break;
  10649. case GGML_OP_POOL_MAX: break;
  10650. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10651. }
  10652. }
  10653. }
  10654. cdata += src->nb[2];
  10655. dplane += pa;
  10656. }
  10657. }
  10658. // ggml_compute_forward_pool_2d
  10659. static void ggml_compute_forward_pool_2d(
  10660. const struct ggml_compute_params * params,
  10661. const struct ggml_tensor * src0,
  10662. struct ggml_tensor * dst) {
  10663. const int32_t * opts = (const int32_t *)dst->op_params;
  10664. enum ggml_op_pool op = opts[0];
  10665. const int k0 = opts[1];
  10666. const int k1 = opts[2];
  10667. const int s0 = opts[3];
  10668. const int s1 = opts[4];
  10669. const int p0 = opts[5];
  10670. const int p1 = opts[6];
  10671. GGML_ASSERT(p0 == 0);
  10672. GGML_ASSERT(p1 == 0); // padding not supported
  10673. GGML_ASSERT(k0 == s0);
  10674. GGML_ASSERT(k1 == s1); // only s = k supported
  10675. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10676. }
  10677. // ggml_compute_forward_flash_attn
  10678. static void ggml_compute_forward_flash_attn_f32(
  10679. const struct ggml_compute_params * params,
  10680. const struct ggml_tensor * q,
  10681. const struct ggml_tensor * k,
  10682. const struct ggml_tensor * v,
  10683. const bool masked,
  10684. struct ggml_tensor * dst) {
  10685. int64_t t0 = ggml_perf_time_us();
  10686. UNUSED(t0);
  10687. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10688. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10689. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10690. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10691. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10692. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10693. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10694. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10695. const int ith = params->ith;
  10696. const int nth = params->nth;
  10697. const int64_t D = neq0;
  10698. const int64_t N = neq1;
  10699. const int64_t P = nek1 - N;
  10700. const int64_t M = P + N;
  10701. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10702. GGML_ASSERT(ne0 == D);
  10703. GGML_ASSERT(ne1 == N);
  10704. GGML_ASSERT(P >= 0);
  10705. GGML_ASSERT(nbq0 == sizeof(float));
  10706. GGML_ASSERT(nbk0 == sizeof(float));
  10707. GGML_ASSERT(nbv0 == sizeof(float));
  10708. GGML_ASSERT(neq0 == D);
  10709. GGML_ASSERT(nek0 == D);
  10710. GGML_ASSERT(nev1 == D);
  10711. GGML_ASSERT(neq1 == N);
  10712. GGML_ASSERT(nek1 == N + P);
  10713. GGML_ASSERT(nev1 == D);
  10714. // dst cannot be transposed or permuted
  10715. GGML_ASSERT(nb0 == sizeof(float));
  10716. GGML_ASSERT(nb0 <= nb1);
  10717. GGML_ASSERT(nb1 <= nb2);
  10718. GGML_ASSERT(nb2 <= nb3);
  10719. if (params->type == GGML_TASK_INIT) {
  10720. return;
  10721. }
  10722. if (params->type == GGML_TASK_FINALIZE) {
  10723. return;
  10724. }
  10725. // parallelize by q rows using ggml_vec_dot_f32
  10726. // total rows in q
  10727. const int nr = neq1*neq2*neq3;
  10728. // rows per thread
  10729. const int dr = (nr + nth - 1)/nth;
  10730. // row range for this thread
  10731. const int ir0 = dr*ith;
  10732. const int ir1 = MIN(ir0 + dr, nr);
  10733. const float scale = 1.0f/sqrtf(D);
  10734. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10735. for (int ir = ir0; ir < ir1; ++ir) {
  10736. // q indices
  10737. const int iq3 = ir/(neq2*neq1);
  10738. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10739. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10740. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10741. for (int i = M; i < Mup; ++i) {
  10742. S[i] = -INFINITY;
  10743. }
  10744. for (int64_t ic = 0; ic < nek1; ++ic) {
  10745. // k indices
  10746. const int ik3 = iq3;
  10747. const int ik2 = iq2;
  10748. const int ik1 = ic;
  10749. // S indices
  10750. const int i1 = ik1;
  10751. ggml_vec_dot_f32(neq0,
  10752. S + i1,
  10753. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10754. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10755. }
  10756. // scale
  10757. ggml_vec_scale_f32(nek1, S, scale);
  10758. if (masked) {
  10759. for (int64_t i = P; i < M; i++) {
  10760. if (i > P + iq1) {
  10761. S[i] = -INFINITY;
  10762. }
  10763. }
  10764. }
  10765. // softmax
  10766. {
  10767. float max = -INFINITY;
  10768. ggml_vec_max_f32(M, &max, S);
  10769. ggml_float sum = 0.0;
  10770. {
  10771. #ifdef GGML_SOFT_MAX_ACCELERATE
  10772. max = -max;
  10773. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10774. vvexpf(S, S, &Mup);
  10775. ggml_vec_sum_f32(Mup, &sum, S);
  10776. #else
  10777. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10778. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10779. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10780. float * SS = S + i;
  10781. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10782. if (SS[j] == -INFINITY) {
  10783. SS[j] = 0.0f;
  10784. } else {
  10785. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10786. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10787. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10788. sump[j] += (ggml_float)val;
  10789. SS[j] = val;
  10790. }
  10791. }
  10792. }
  10793. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10794. sum += sump[i];
  10795. }
  10796. #endif
  10797. }
  10798. assert(sum > 0.0);
  10799. sum = 1.0/sum;
  10800. ggml_vec_scale_f32(M, S, sum);
  10801. #ifndef NDEBUG
  10802. for (int i = 0; i < M; ++i) {
  10803. assert(!isnan(S[i]));
  10804. assert(!isinf(S[i]));
  10805. }
  10806. #endif
  10807. }
  10808. for (int64_t ic = 0; ic < nev1; ++ic) {
  10809. // dst indices
  10810. const int i1 = iq1;
  10811. const int i2 = iq2;
  10812. const int i3 = iq3;
  10813. ggml_vec_dot_f32(nek1,
  10814. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10815. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10816. S);
  10817. }
  10818. }
  10819. }
  10820. static void ggml_compute_forward_flash_attn_f16(
  10821. const struct ggml_compute_params * params,
  10822. const struct ggml_tensor * q,
  10823. const struct ggml_tensor * k,
  10824. const struct ggml_tensor * v,
  10825. const bool masked,
  10826. struct ggml_tensor * dst) {
  10827. int64_t t0 = ggml_perf_time_us();
  10828. UNUSED(t0);
  10829. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10830. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10831. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10832. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10833. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10834. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10835. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10836. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10837. const int ith = params->ith;
  10838. const int nth = params->nth;
  10839. const int64_t D = neq0;
  10840. const int64_t N = neq1;
  10841. const int64_t P = nek1 - N;
  10842. const int64_t M = P + N;
  10843. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10844. GGML_ASSERT(ne0 == D);
  10845. GGML_ASSERT(ne1 == N);
  10846. GGML_ASSERT(P >= 0);
  10847. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10848. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10849. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10850. GGML_ASSERT(neq0 == D);
  10851. GGML_ASSERT(nek0 == D);
  10852. GGML_ASSERT(nev1 == D);
  10853. GGML_ASSERT(neq1 == N);
  10854. GGML_ASSERT(nek1 == N + P);
  10855. GGML_ASSERT(nev1 == D);
  10856. // dst cannot be transposed or permuted
  10857. GGML_ASSERT(nb0 == sizeof(float));
  10858. GGML_ASSERT(nb0 <= nb1);
  10859. GGML_ASSERT(nb1 <= nb2);
  10860. GGML_ASSERT(nb2 <= nb3);
  10861. if (params->type == GGML_TASK_INIT) {
  10862. return;
  10863. }
  10864. if (params->type == GGML_TASK_FINALIZE) {
  10865. return;
  10866. }
  10867. // parallelize by q rows using ggml_vec_dot_f32
  10868. // total rows in q
  10869. const int nr = neq1*neq2*neq3;
  10870. // rows per thread
  10871. const int dr = (nr + nth - 1)/nth;
  10872. // row range for this thread
  10873. const int ir0 = dr*ith;
  10874. const int ir1 = MIN(ir0 + dr, nr);
  10875. const float scale = 1.0f/sqrtf(D);
  10876. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10877. for (int ir = ir0; ir < ir1; ++ir) {
  10878. // q indices
  10879. const int iq3 = ir/(neq2*neq1);
  10880. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10881. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10882. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10883. for (int i = M; i < Mup; ++i) {
  10884. S[i] = -INFINITY;
  10885. }
  10886. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10887. for (int64_t ic = 0; ic < nek1; ++ic) {
  10888. // k indices
  10889. const int ik3 = iq3;
  10890. const int ik2 = iq2;
  10891. const int ik1 = ic;
  10892. // S indices
  10893. const int i1 = ik1;
  10894. ggml_vec_dot_f16(neq0,
  10895. S + i1,
  10896. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10897. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10898. }
  10899. } else {
  10900. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10901. // k indices
  10902. const int ik3 = iq3;
  10903. const int ik2 = iq2;
  10904. const int ik1 = ic;
  10905. // S indices
  10906. const int i1 = ik1;
  10907. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10908. S + i1,
  10909. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10910. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10911. }
  10912. }
  10913. // scale
  10914. ggml_vec_scale_f32(nek1, S, scale);
  10915. if (masked) {
  10916. for (int64_t i = P; i < M; i++) {
  10917. if (i > P + iq1) {
  10918. S[i] = -INFINITY;
  10919. }
  10920. }
  10921. }
  10922. // softmax
  10923. {
  10924. float max = -INFINITY;
  10925. ggml_vec_max_f32(M, &max, S);
  10926. ggml_float sum = 0.0;
  10927. {
  10928. #ifdef GGML_SOFT_MAX_ACCELERATE
  10929. max = -max;
  10930. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10931. vvexpf(S, S, &Mup);
  10932. ggml_vec_sum_f32(Mup, &sum, S);
  10933. #else
  10934. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10935. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10936. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10937. float * SS = S + i;
  10938. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10939. if (SS[j] == -INFINITY) {
  10940. SS[j] = 0.0f;
  10941. } else {
  10942. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10943. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10944. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10945. sump[j] += (ggml_float)val;
  10946. SS[j] = val;
  10947. }
  10948. }
  10949. }
  10950. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10951. sum += sump[i];
  10952. }
  10953. #endif
  10954. }
  10955. assert(sum > 0.0);
  10956. sum = 1.0/sum;
  10957. ggml_vec_scale_f32(M, S, sum);
  10958. #ifndef NDEBUG
  10959. for (int i = 0; i < M; ++i) {
  10960. assert(!isnan(S[i]));
  10961. assert(!isinf(S[i]));
  10962. }
  10963. #endif
  10964. }
  10965. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10966. for (int64_t i = 0; i < M; i++) {
  10967. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10968. }
  10969. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10970. for (int64_t ic = 0; ic < nev1; ++ic) {
  10971. // dst indices
  10972. const int i1 = iq1;
  10973. const int i2 = iq2;
  10974. const int i3 = iq3;
  10975. ggml_vec_dot_f16(nek1,
  10976. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10977. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10978. S16);
  10979. }
  10980. } else {
  10981. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10982. // dst indices
  10983. const int i1 = iq1;
  10984. const int i2 = iq2;
  10985. const int i3 = iq3;
  10986. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10987. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10988. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10989. S16);
  10990. }
  10991. }
  10992. }
  10993. }
  10994. static void ggml_compute_forward_flash_attn(
  10995. const struct ggml_compute_params * params,
  10996. const struct ggml_tensor * q,
  10997. const struct ggml_tensor * k,
  10998. const struct ggml_tensor * v,
  10999. const bool masked,
  11000. struct ggml_tensor * dst) {
  11001. switch (q->type) {
  11002. case GGML_TYPE_F16:
  11003. {
  11004. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11005. } break;
  11006. case GGML_TYPE_F32:
  11007. {
  11008. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11009. } break;
  11010. default:
  11011. {
  11012. GGML_ASSERT(false);
  11013. } break;
  11014. }
  11015. }
  11016. // ggml_compute_forward_flash_ff
  11017. static void ggml_compute_forward_flash_ff_f16(
  11018. const struct ggml_compute_params * params,
  11019. const struct ggml_tensor * a, // F16
  11020. const struct ggml_tensor * b0, // F16 fc_w
  11021. const struct ggml_tensor * b1, // F32 fc_b
  11022. const struct ggml_tensor * c0, // F16 proj_w
  11023. const struct ggml_tensor * c1, // F32 proj_b
  11024. struct ggml_tensor * dst) {
  11025. int64_t t0 = ggml_perf_time_us();
  11026. UNUSED(t0);
  11027. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11028. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11029. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11030. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11031. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11032. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11033. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11034. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11035. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11036. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11037. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11038. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11039. const int ith = params->ith;
  11040. const int nth = params->nth;
  11041. const int64_t D = nea0;
  11042. //const int64_t N = nea1;
  11043. const int64_t M = neb01;
  11044. GGML_ASSERT(ne0 == nea0);
  11045. GGML_ASSERT(ne1 == nea1);
  11046. GGML_ASSERT(ne2 == nea2);
  11047. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11048. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11049. GGML_ASSERT(nbb10 == sizeof(float));
  11050. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11051. GGML_ASSERT(nbc10 == sizeof(float));
  11052. GGML_ASSERT(neb00 == D);
  11053. GGML_ASSERT(neb01 == M);
  11054. GGML_ASSERT(neb10 == M);
  11055. GGML_ASSERT(neb11 == 1);
  11056. GGML_ASSERT(nec00 == M);
  11057. GGML_ASSERT(nec01 == D);
  11058. GGML_ASSERT(nec10 == D);
  11059. GGML_ASSERT(nec11 == 1);
  11060. // dst cannot be transposed or permuted
  11061. GGML_ASSERT(nb0 == sizeof(float));
  11062. GGML_ASSERT(nb0 <= nb1);
  11063. GGML_ASSERT(nb1 <= nb2);
  11064. GGML_ASSERT(nb2 <= nb3);
  11065. if (params->type == GGML_TASK_INIT) {
  11066. return;
  11067. }
  11068. if (params->type == GGML_TASK_FINALIZE) {
  11069. return;
  11070. }
  11071. // parallelize by a rows using ggml_vec_dot_f32
  11072. // total rows in a
  11073. const int nr = nea1*nea2*nea3;
  11074. // rows per thread
  11075. const int dr = (nr + nth - 1)/nth;
  11076. // row range for this thread
  11077. const int ir0 = dr*ith;
  11078. const int ir1 = MIN(ir0 + dr, nr);
  11079. for (int ir = ir0; ir < ir1; ++ir) {
  11080. // a indices
  11081. const int ia3 = ir/(nea2*nea1);
  11082. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11083. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11084. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11085. for (int64_t ic = 0; ic < neb01; ++ic) {
  11086. // b0 indices
  11087. const int ib03 = ia3;
  11088. const int ib02 = ia2;
  11089. const int ib01 = ic;
  11090. // S indices
  11091. const int i1 = ib01;
  11092. ggml_vec_dot_f16(nea0,
  11093. S + i1,
  11094. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11095. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11096. }
  11097. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11098. //ggml_vec_gelu_f32(neb01, S, S);
  11099. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11100. for (int64_t i = 0; i < M; i++) {
  11101. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11102. }
  11103. ggml_vec_gelu_f16(neb01, S16, S16);
  11104. {
  11105. // dst indices
  11106. const int i1 = ia1;
  11107. const int i2 = ia2;
  11108. const int i3 = ia3;
  11109. for (int64_t ic = 0; ic < nec01; ++ic) {
  11110. ggml_vec_dot_f16(neb01,
  11111. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11112. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11113. S16);
  11114. }
  11115. ggml_vec_add_f32(nec01,
  11116. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11117. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11118. (float *) c1->data);
  11119. }
  11120. }
  11121. }
  11122. static void ggml_compute_forward_flash_ff(
  11123. const struct ggml_compute_params * params,
  11124. const struct ggml_tensor * a,
  11125. const struct ggml_tensor * b0,
  11126. const struct ggml_tensor * b1,
  11127. const struct ggml_tensor * c0,
  11128. const struct ggml_tensor * c1,
  11129. struct ggml_tensor * dst) {
  11130. switch (b0->type) {
  11131. case GGML_TYPE_F16:
  11132. {
  11133. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11134. } break;
  11135. case GGML_TYPE_F32:
  11136. {
  11137. GGML_ASSERT(false); // TODO
  11138. } break;
  11139. default:
  11140. {
  11141. GGML_ASSERT(false);
  11142. } break;
  11143. }
  11144. }
  11145. // ggml_compute_forward_flash_attn_back
  11146. static void ggml_compute_forward_flash_attn_back_f32(
  11147. const struct ggml_compute_params * params,
  11148. const struct ggml_tensor * q,
  11149. const struct ggml_tensor * k,
  11150. const struct ggml_tensor * v,
  11151. const struct ggml_tensor * d,
  11152. const bool masked,
  11153. struct ggml_tensor * dst) {
  11154. int64_t t0 = ggml_perf_time_us();
  11155. UNUSED(t0);
  11156. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11157. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11158. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11159. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11160. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11161. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11162. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11163. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11164. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11165. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11166. const int ith = params->ith;
  11167. const int nth = params->nth;
  11168. const int64_t D = neq0;
  11169. const int64_t N = neq1;
  11170. const int64_t P = nek1 - N;
  11171. const int64_t M = P + N;
  11172. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11173. const int mxDM = MAX(D, Mup);
  11174. // GGML_ASSERT(ne0 == D);
  11175. // GGML_ASSERT(ne1 == N);
  11176. GGML_ASSERT(P >= 0);
  11177. GGML_ASSERT(nbq0 == sizeof(float));
  11178. GGML_ASSERT(nbk0 == sizeof(float));
  11179. GGML_ASSERT(nbv0 == sizeof(float));
  11180. GGML_ASSERT(neq0 == D);
  11181. GGML_ASSERT(nek0 == D);
  11182. GGML_ASSERT(nev1 == D);
  11183. GGML_ASSERT(ned0 == D);
  11184. GGML_ASSERT(neq1 == N);
  11185. GGML_ASSERT(nek1 == N + P);
  11186. GGML_ASSERT(nev1 == D);
  11187. GGML_ASSERT(ned1 == N);
  11188. // dst cannot be transposed or permuted
  11189. GGML_ASSERT(nb0 == sizeof(float));
  11190. GGML_ASSERT(nb0 <= nb1);
  11191. GGML_ASSERT(nb1 <= nb2);
  11192. GGML_ASSERT(nb2 <= nb3);
  11193. if (params->type == GGML_TASK_INIT) {
  11194. if (ith == 0) {
  11195. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11196. }
  11197. return;
  11198. }
  11199. if (params->type == GGML_TASK_FINALIZE) {
  11200. return;
  11201. }
  11202. // parallelize by q rows using ggml_vec_dot_f32
  11203. // total rows in q
  11204. const int nr = neq2*neq3;
  11205. // rows per thread
  11206. const int dr = (nr + nth - 1)/nth;
  11207. // row range for this thread
  11208. const int ir0 = dr*ith;
  11209. const int ir1 = MIN(ir0 + dr, nr);
  11210. const float scale = 1.0f/sqrtf(D);
  11211. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11212. for (int ir = ir0; ir < ir1; ++ir) {
  11213. // q indices
  11214. const int iq3 = ir/(neq2);
  11215. const int iq2 = ir - iq3*neq2;
  11216. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11217. // not sure about CACHE_LINE_SIZE_F32..
  11218. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11219. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11220. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11221. for (int i = M; i < Mup; ++i) {
  11222. S[i] = -INFINITY;
  11223. }
  11224. for (int64_t ic = 0; ic < nek1; ++ic) {
  11225. // k indices
  11226. const int ik3 = iq3;
  11227. const int ik2 = iq2;
  11228. const int ik1 = ic;
  11229. // S indices
  11230. const int i1 = ik1;
  11231. ggml_vec_dot_f32(neq0,
  11232. S + i1,
  11233. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11234. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11235. }
  11236. // scale
  11237. ggml_vec_scale_f32(nek1, S, scale);
  11238. if (masked) {
  11239. for (int64_t i = P; i < M; i++) {
  11240. if (i > P + iq1) {
  11241. S[i] = -INFINITY;
  11242. }
  11243. }
  11244. }
  11245. // softmax
  11246. {
  11247. float max = -INFINITY;
  11248. ggml_vec_max_f32(M, &max, S);
  11249. ggml_float sum = 0.0;
  11250. {
  11251. #ifdef GGML_SOFT_MAX_ACCELERATE
  11252. max = -max;
  11253. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11254. vvexpf(SM, SM, &Mup);
  11255. ggml_vec_sum_f32(Mup, &sum, SM);
  11256. #else
  11257. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11258. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11259. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11260. float * SR = S + i;
  11261. float * SW = SM + i;
  11262. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11263. if (SR[j] == -INFINITY) {
  11264. SW[j] = 0.0f;
  11265. } else {
  11266. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11267. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11268. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11269. sump[j] += (ggml_float)val;
  11270. SW[j] = val;
  11271. }
  11272. }
  11273. }
  11274. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11275. sum += sump[i];
  11276. }
  11277. #endif
  11278. }
  11279. assert(sum > 0.0);
  11280. sum = 1.0/sum;
  11281. ggml_vec_scale_f32(M, SM, sum);
  11282. }
  11283. // step-by-step explanation
  11284. {
  11285. // forward-process shape grads from backward process
  11286. // parallel_for iq2,iq3:
  11287. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11288. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11289. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11290. // for iq1:
  11291. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11292. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11293. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11294. // S0 = -Inf [D,1,1,1]
  11295. // ~S1[i] = dot(kcur[:D,i], qcur)
  11296. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11297. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11298. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11299. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11300. // ~S5[i] = dot(vcur[:,i], S4)
  11301. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11302. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11303. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11304. // dst backward-/ grad[dst] = d
  11305. //
  11306. // output gradients with their dependencies:
  11307. //
  11308. // grad[kcur] = grad[S1].T @ qcur
  11309. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11310. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11311. // grad[S4] = grad[S5] @ vcur
  11312. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11313. // grad[qcur] = grad[S1] @ kcur
  11314. // grad[vcur] = grad[S5].T @ S4
  11315. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11316. //
  11317. // in post-order:
  11318. //
  11319. // S1 = qcur @ kcur.T
  11320. // S2 = S1 * scale
  11321. // S3 = diag_mask_inf(S2, P)
  11322. // S4 = softmax(S3)
  11323. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11324. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11325. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11326. // grad[qcur] = grad[S1] @ kcur
  11327. // grad[kcur] = grad[S1].T @ qcur
  11328. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11329. //
  11330. // using less variables (SM=S4):
  11331. //
  11332. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11333. // SM = softmax(S)
  11334. // S = d[:D,iq1,iq2,iq3] @ vcur
  11335. // dot_SM_gradSM = dot(SM, S)
  11336. // S = SM * (S - dot(SM, S))
  11337. // S = diag_mask_zero(S, P) * scale
  11338. //
  11339. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11340. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11341. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11342. }
  11343. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11344. // S = d[:D,iq1,iq2,iq3] @ vcur
  11345. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11346. ggml_vec_set_f32(M, S, 0);
  11347. for (int64_t ic = 0; ic < D; ++ic) {
  11348. // dst indices
  11349. const int i1 = iq1;
  11350. const int i2 = iq2;
  11351. const int i3 = iq3;
  11352. ggml_vec_mad_f32(M,
  11353. S,
  11354. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11355. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11356. }
  11357. // S = SM * (S - dot(SM, S))
  11358. float dot_SM_gradSM = 0;
  11359. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11360. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11361. ggml_vec_mul_f32 (M, S, S, SM);
  11362. // S = diag_mask_zero(S, P) * scale
  11363. if (masked) {
  11364. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11365. // S[i] = 0;
  11366. // }
  11367. for (int64_t i = P; i < M; i++) {
  11368. if (i > P + iq1) {
  11369. S[i] = 0;
  11370. }
  11371. }
  11372. }
  11373. ggml_vec_scale_f32(M, S, scale);
  11374. void * grad_q = (char *) dst->data;
  11375. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11376. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11377. const size_t nbgq1 = nb0*neq0;
  11378. const size_t nbgq2 = nb0*neq0*neq1;
  11379. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11380. const size_t nbgk1 = nb0*nek0;
  11381. const size_t nbgk2 = nb0*nek0*nek1;
  11382. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11383. const size_t nbgv1 = nb0*nev0;
  11384. const size_t nbgv2 = nb0*nev0*nev1;
  11385. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11386. // S shape [M,1]
  11387. // SM shape [M,1]
  11388. // kcur shape [D,M]
  11389. // qcur shape [D,1]
  11390. // vcur shape [M,D]
  11391. //
  11392. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11393. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11394. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11395. //
  11396. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11397. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11398. for (int64_t ic = 0; ic < M; ++ic) {
  11399. // dst indices
  11400. const int i1 = iq1;
  11401. const int i2 = iq2;
  11402. const int i3 = iq3;
  11403. ggml_vec_mad_f32(D,
  11404. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11405. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11406. S[ic]);
  11407. }
  11408. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11409. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11410. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11411. for (int64_t ic = 0; ic < M; ++ic) {
  11412. // dst indices
  11413. const int i1 = iq1;
  11414. const int i2 = iq2;
  11415. const int i3 = iq3;
  11416. // ggml_vec_set_f32(D,
  11417. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11418. // 0);
  11419. ggml_vec_mad_f32(D,
  11420. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11421. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11422. S[ic]);
  11423. }
  11424. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11425. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11426. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11427. for (int64_t ic = 0; ic < D; ++ic) {
  11428. // dst indices
  11429. const int i1 = iq1;
  11430. const int i2 = iq2;
  11431. const int i3 = iq3;
  11432. // ggml_vec_set_f32(M,
  11433. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11434. // 0);
  11435. ggml_vec_mad_f32(M,
  11436. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11437. SM,
  11438. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11439. }
  11440. }
  11441. }
  11442. }
  11443. static void ggml_compute_forward_flash_attn_back(
  11444. const struct ggml_compute_params * params,
  11445. const struct ggml_tensor * q,
  11446. const struct ggml_tensor * k,
  11447. const struct ggml_tensor * v,
  11448. const struct ggml_tensor * d,
  11449. const bool masked,
  11450. struct ggml_tensor * dst) {
  11451. switch (q->type) {
  11452. case GGML_TYPE_F32:
  11453. {
  11454. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11455. } break;
  11456. default:
  11457. {
  11458. GGML_ASSERT(false);
  11459. } break;
  11460. }
  11461. }
  11462. // ggml_compute_forward_win_part
  11463. static void ggml_compute_forward_win_part_f32(
  11464. const struct ggml_compute_params * params,
  11465. const struct ggml_tensor * src0,
  11466. struct ggml_tensor * dst) {
  11467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11468. return;
  11469. }
  11470. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11471. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11472. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11473. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11474. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11475. assert(ne00 == ne0);
  11476. assert(ne3 == nep0*nep1);
  11477. // TODO: optimize / multi-thread
  11478. for (int py = 0; py < nep1; ++py) {
  11479. for (int px = 0; px < nep0; ++px) {
  11480. const int64_t i3 = py*nep0 + px;
  11481. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11482. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11483. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11484. const int64_t i02 = py*w + i2;
  11485. const int64_t i01 = px*w + i1;
  11486. const int64_t i00 = i0;
  11487. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11488. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11489. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11490. ((float *) dst->data)[i] = 0.0f;
  11491. } else {
  11492. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11493. }
  11494. }
  11495. }
  11496. }
  11497. }
  11498. }
  11499. }
  11500. static void ggml_compute_forward_win_part(
  11501. const struct ggml_compute_params * params,
  11502. const struct ggml_tensor * src0,
  11503. struct ggml_tensor * dst) {
  11504. switch (src0->type) {
  11505. case GGML_TYPE_F32:
  11506. {
  11507. ggml_compute_forward_win_part_f32(params, src0, dst);
  11508. } break;
  11509. default:
  11510. {
  11511. GGML_ASSERT(false);
  11512. } break;
  11513. }
  11514. }
  11515. // ggml_compute_forward_win_unpart
  11516. static void ggml_compute_forward_win_unpart_f32(
  11517. const struct ggml_compute_params * params,
  11518. const struct ggml_tensor * src0,
  11519. struct ggml_tensor * dst) {
  11520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11521. return;
  11522. }
  11523. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11524. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11525. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11526. // padding
  11527. const int px = (w - ne1%w)%w;
  11528. //const int py = (w - ne2%w)%w;
  11529. const int npx = (px + ne1)/w;
  11530. //const int npy = (py + ne2)/w;
  11531. assert(ne0 == ne00);
  11532. // TODO: optimize / multi-thread
  11533. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11534. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11535. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11536. const int ip2 = i2/w;
  11537. const int ip1 = i1/w;
  11538. const int64_t i02 = i2%w;
  11539. const int64_t i01 = i1%w;
  11540. const int64_t i00 = i0;
  11541. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11542. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11543. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11544. }
  11545. }
  11546. }
  11547. }
  11548. static void ggml_compute_forward_win_unpart(
  11549. const struct ggml_compute_params * params,
  11550. const struct ggml_tensor * src0,
  11551. struct ggml_tensor * dst) {
  11552. switch (src0->type) {
  11553. case GGML_TYPE_F32:
  11554. {
  11555. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11556. } break;
  11557. default:
  11558. {
  11559. GGML_ASSERT(false);
  11560. } break;
  11561. }
  11562. }
  11563. //gmml_compute_forward_unary
  11564. static void ggml_compute_forward_unary(
  11565. const struct ggml_compute_params * params,
  11566. const struct ggml_tensor * src0,
  11567. struct ggml_tensor * dst) {
  11568. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11569. switch (op) {
  11570. case GGML_UNARY_OP_ABS:
  11571. {
  11572. ggml_compute_forward_abs(params, src0, dst);
  11573. } break;
  11574. case GGML_UNARY_OP_SGN:
  11575. {
  11576. ggml_compute_forward_sgn(params, src0, dst);
  11577. } break;
  11578. case GGML_UNARY_OP_NEG:
  11579. {
  11580. ggml_compute_forward_neg(params, src0, dst);
  11581. } break;
  11582. case GGML_UNARY_OP_STEP:
  11583. {
  11584. ggml_compute_forward_step(params, src0, dst);
  11585. } break;
  11586. case GGML_UNARY_OP_TANH:
  11587. {
  11588. ggml_compute_forward_tanh(params, src0, dst);
  11589. } break;
  11590. case GGML_UNARY_OP_ELU:
  11591. {
  11592. ggml_compute_forward_elu(params, src0, dst);
  11593. } break;
  11594. case GGML_UNARY_OP_RELU:
  11595. {
  11596. ggml_compute_forward_relu(params, src0, dst);
  11597. } break;
  11598. case GGML_UNARY_OP_GELU:
  11599. {
  11600. ggml_compute_forward_gelu(params, src0, dst);
  11601. } break;
  11602. case GGML_UNARY_OP_GELU_QUICK:
  11603. {
  11604. ggml_compute_forward_gelu_quick(params, src0, dst);
  11605. } break;
  11606. case GGML_UNARY_OP_SILU:
  11607. {
  11608. ggml_compute_forward_silu(params, src0, dst);
  11609. } break;
  11610. default:
  11611. {
  11612. GGML_ASSERT(false);
  11613. } break;
  11614. }
  11615. }
  11616. // ggml_compute_forward_map_unary
  11617. static void ggml_compute_forward_map_unary_f32(
  11618. const struct ggml_compute_params * params,
  11619. const struct ggml_tensor * src0,
  11620. struct ggml_tensor * dst,
  11621. const ggml_unary_op_f32_t fun) {
  11622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11624. return;
  11625. }
  11626. const int n = ggml_nrows(src0);
  11627. const int nc = src0->ne[0];
  11628. assert( dst->nb[0] == sizeof(float));
  11629. assert(src0->nb[0] == sizeof(float));
  11630. for (int i = 0; i < n; i++) {
  11631. fun(nc,
  11632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11634. }
  11635. }
  11636. static void ggml_compute_forward_map_unary(
  11637. const struct ggml_compute_params * params,
  11638. const struct ggml_tensor * src0,
  11639. struct ggml_tensor * dst,
  11640. const ggml_unary_op_f32_t fun) {
  11641. switch (src0->type) {
  11642. case GGML_TYPE_F32:
  11643. {
  11644. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11645. } break;
  11646. default:
  11647. {
  11648. GGML_ASSERT(false);
  11649. } break;
  11650. }
  11651. }
  11652. // ggml_compute_forward_map_binary
  11653. static void ggml_compute_forward_map_binary_f32(
  11654. const struct ggml_compute_params * params,
  11655. const struct ggml_tensor * src0,
  11656. const struct ggml_tensor * src1,
  11657. struct ggml_tensor * dst,
  11658. const ggml_binary_op_f32_t fun) {
  11659. assert(params->ith == 0);
  11660. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11662. return;
  11663. }
  11664. const int n = ggml_nrows(src0);
  11665. const int nc = src0->ne[0];
  11666. assert( dst->nb[0] == sizeof(float));
  11667. assert(src0->nb[0] == sizeof(float));
  11668. assert(src1->nb[0] == sizeof(float));
  11669. for (int i = 0; i < n; i++) {
  11670. fun(nc,
  11671. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11672. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11673. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11674. }
  11675. }
  11676. static void ggml_compute_forward_map_binary(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * src0,
  11679. const struct ggml_tensor * src1,
  11680. struct ggml_tensor * dst,
  11681. const ggml_binary_op_f32_t fun) {
  11682. switch (src0->type) {
  11683. case GGML_TYPE_F32:
  11684. {
  11685. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11686. } break;
  11687. default:
  11688. {
  11689. GGML_ASSERT(false);
  11690. } break;
  11691. }
  11692. }
  11693. // ggml_compute_forward_map_custom1
  11694. static void ggml_compute_forward_map_custom1_f32(
  11695. const struct ggml_compute_params * params,
  11696. const struct ggml_tensor * a,
  11697. struct ggml_tensor * dst,
  11698. const ggml_custom1_op_f32_t fun) {
  11699. assert(params->ith == 0);
  11700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11701. return;
  11702. }
  11703. fun(dst, a);
  11704. }
  11705. // ggml_compute_forward_map_custom2
  11706. static void ggml_compute_forward_map_custom2_f32(
  11707. const struct ggml_compute_params * params,
  11708. const struct ggml_tensor * a,
  11709. const struct ggml_tensor * b,
  11710. struct ggml_tensor * dst,
  11711. const ggml_custom2_op_f32_t fun) {
  11712. assert(params->ith == 0);
  11713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11714. return;
  11715. }
  11716. fun(dst, a, b);
  11717. }
  11718. // ggml_compute_forward_map_custom3
  11719. static void ggml_compute_forward_map_custom3_f32(
  11720. const struct ggml_compute_params * params,
  11721. const struct ggml_tensor * a,
  11722. const struct ggml_tensor * b,
  11723. const struct ggml_tensor * c,
  11724. struct ggml_tensor * dst,
  11725. const ggml_custom3_op_f32_t fun) {
  11726. assert(params->ith == 0);
  11727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11728. return;
  11729. }
  11730. fun(dst, a, b, c);
  11731. }
  11732. // ggml_compute_forward_map_custom1
  11733. static void ggml_compute_forward_map_custom1(
  11734. const struct ggml_compute_params * params,
  11735. const struct ggml_tensor * a,
  11736. struct ggml_tensor * dst) {
  11737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11738. return;
  11739. }
  11740. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11741. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11742. }
  11743. // ggml_compute_forward_map_custom2
  11744. static void ggml_compute_forward_map_custom2(
  11745. const struct ggml_compute_params * params,
  11746. const struct ggml_tensor * a,
  11747. const struct ggml_tensor * b,
  11748. struct ggml_tensor * dst) {
  11749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11750. return;
  11751. }
  11752. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11753. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11754. }
  11755. // ggml_compute_forward_map_custom3
  11756. static void ggml_compute_forward_map_custom3(
  11757. const struct ggml_compute_params * params,
  11758. const struct ggml_tensor * a,
  11759. const struct ggml_tensor * b,
  11760. const struct ggml_tensor * c,
  11761. struct ggml_tensor * dst) {
  11762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11763. return;
  11764. }
  11765. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11766. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11767. }
  11768. // ggml_compute_forward_cross_entropy_loss
  11769. static void ggml_compute_forward_cross_entropy_loss_f32(
  11770. const struct ggml_compute_params * params,
  11771. const struct ggml_tensor * src0,
  11772. const struct ggml_tensor * src1,
  11773. struct ggml_tensor * dst) {
  11774. GGML_ASSERT(ggml_is_contiguous(src0));
  11775. GGML_ASSERT(ggml_is_contiguous(src1));
  11776. GGML_ASSERT(ggml_is_scalar(dst));
  11777. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11778. const int ith = params->ith;
  11779. const int nth = params->nth;
  11780. float * sums = (float *) params->wdata;
  11781. // TODO: handle transposed/permuted matrices
  11782. const int nc = src0->ne[0];
  11783. const int nr = ggml_nrows(src0);
  11784. if (params->type == GGML_TASK_INIT) {
  11785. if (ith == 0) {
  11786. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11787. }
  11788. return;
  11789. }
  11790. if (params->type == GGML_TASK_FINALIZE) {
  11791. if (ith == 0) {
  11792. float * dp = (float *) dst->data;
  11793. ggml_vec_sum_f32(nth, dp, sums);
  11794. dp[0] *= -1.0f;
  11795. }
  11796. return;
  11797. }
  11798. const double eps = 1e-9;
  11799. // rows per thread
  11800. const int dr = (nr + nth - 1)/nth;
  11801. // row range for this thread
  11802. const int ir0 = dr*ith;
  11803. const int ir1 = MIN(ir0 + dr, nr);
  11804. for (int i1 = ir0; i1 < ir1; i1++) {
  11805. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11806. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11807. float * st = (float *) params->wdata + nth + ith*nc;
  11808. #ifndef NDEBUG
  11809. for (int i = 0; i < nc; ++i) {
  11810. //printf("p[%d] = %f\n", i, p[i]);
  11811. assert(!isnan(s0[i]));
  11812. assert(!isnan(s1[i]));
  11813. }
  11814. #endif
  11815. // soft_max
  11816. ggml_float sum = 0.0;
  11817. {
  11818. float max = -INFINITY;
  11819. ggml_vec_max_f32(nc, &max, s0);
  11820. uint16_t scvt;
  11821. for (int i = 0; i < nc; i++) {
  11822. if (s0[i] == -INFINITY) {
  11823. st[i] = 0.0f;
  11824. } else {
  11825. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11826. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11827. memcpy(&scvt, &s, sizeof(scvt));
  11828. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11829. sum += (ggml_float)val;
  11830. st[i] = val;
  11831. }
  11832. }
  11833. assert(sum > 0.0);
  11834. // sum = 1.0/sum;
  11835. }
  11836. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11837. sum = (1.0 - eps) / sum;
  11838. ggml_vec_scale_f32(nc, st, sum);
  11839. ggml_vec_add1_f32(nc, st, st, eps);
  11840. ggml_vec_log_f32(nc, st, st);
  11841. ggml_vec_mul_f32(nc, st, st, s1);
  11842. ggml_vec_sum_f32(nc, sums + ith, st);
  11843. #ifndef NDEBUG
  11844. for (int i = 0; i < nc; ++i) {
  11845. assert(!isnan(st[i]));
  11846. assert(!isinf(st[i]));
  11847. }
  11848. #endif
  11849. }
  11850. }
  11851. static void ggml_compute_forward_cross_entropy_loss(
  11852. const struct ggml_compute_params * params,
  11853. const struct ggml_tensor * src0,
  11854. const struct ggml_tensor * src1,
  11855. struct ggml_tensor * dst) {
  11856. switch (src0->type) {
  11857. case GGML_TYPE_F32:
  11858. {
  11859. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11860. } break;
  11861. default:
  11862. {
  11863. GGML_ASSERT(false);
  11864. } break;
  11865. }
  11866. }
  11867. // ggml_compute_forward_cross_entropy_loss_back
  11868. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11869. const struct ggml_compute_params * params,
  11870. const struct ggml_tensor * src0,
  11871. const struct ggml_tensor * src1,
  11872. const struct ggml_tensor * opt0,
  11873. struct ggml_tensor * dst) {
  11874. GGML_ASSERT(ggml_is_contiguous(dst));
  11875. GGML_ASSERT(ggml_is_contiguous(src0));
  11876. GGML_ASSERT(ggml_is_contiguous(src1));
  11877. GGML_ASSERT(ggml_is_contiguous(opt0));
  11878. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11879. const int64_t ith = params->ith;
  11880. const int64_t nth = params->nth;
  11881. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11882. return;
  11883. }
  11884. const float eps = 1e-9f;
  11885. // TODO: handle transposed/permuted matrices
  11886. const int64_t nc = src0->ne[0];
  11887. const int64_t nr = ggml_nrows(src0);
  11888. // rows per thread
  11889. const int64_t dr = (nr + nth - 1)/nth;
  11890. // row range for this thread
  11891. const int64_t ir0 = dr*ith;
  11892. const int64_t ir1 = MIN(ir0 + dr, nr);
  11893. float * d = (float *) opt0->data;
  11894. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11895. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11896. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11897. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11898. float * sm = (float *) params->wdata + ith*nc;
  11899. #ifndef NDEBUG
  11900. for (int i = 0; i < nc; ++i) {
  11901. //printf("p[%d] = %f\n", i, p[i]);
  11902. assert(!isnan(s0[i]));
  11903. assert(!isnan(s1[i]));
  11904. }
  11905. #endif
  11906. // step by step explanation:
  11907. {
  11908. //float * sums = (float *) params->wdata;
  11909. // forward pass with annotated gradients from backward pass
  11910. // (built by going in reverse operation order, adding to gradients of current operation args)
  11911. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11912. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11913. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11914. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11915. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11916. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11917. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11918. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11919. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11920. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11921. // postorder:
  11922. // grad[st1] := softmax(s0)
  11923. // grad[st1] := grad[st1]*(1.0 - eps)
  11924. // grad[st1] := grad[st1] + eps
  11925. // grad[st1] := s1 / grad[st1]
  11926. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11927. // src0 gradients by going through softmax_back
  11928. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11929. // from softmax_back:
  11930. // dxk = yk * (dyk - dot(y, dy))
  11931. // dot_y_dy := dot(y, dy)
  11932. // dx := dy
  11933. // dx := dx - dot_y_dy
  11934. // dx := dx * y
  11935. // postorder:
  11936. // dot_st1_dst1 := dot(st1, grad[st1])
  11937. // grad[s0] := grad[st1]
  11938. // grad[s0] := grad[s0] - dot_st1_dst1
  11939. // grad[s0] := grad[s0] * st1
  11940. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11941. // sm := softmax(s0)
  11942. // grad[s0] := sm*(1.0 - eps)
  11943. // grad[s0] := grad[s0] + eps
  11944. // grad[s0] := s1 / grad[s0]
  11945. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11946. // dot_st1_dst1 := dot(sm, grad[s0])
  11947. // grad[s0] := grad[s0] - dot_st1_dst1
  11948. // grad[s0] := grad[s0] * sm
  11949. }
  11950. // soft_max
  11951. ggml_float sum = 0.0;
  11952. {
  11953. float max = -INFINITY;
  11954. ggml_vec_max_f32(nc, &max, s0);
  11955. uint16_t scvt;
  11956. for (int i = 0; i < nc; i++) {
  11957. if (s0[i] == -INFINITY) {
  11958. sm[i] = 0.0f;
  11959. } else {
  11960. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11961. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11962. memcpy(&scvt, &s, sizeof(scvt));
  11963. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11964. sum += (ggml_float)val;
  11965. sm[i] = val;
  11966. }
  11967. }
  11968. assert(sum > 0.0);
  11969. sum = 1.0/sum;
  11970. }
  11971. float dot_st1_dst1 = 0;
  11972. ggml_vec_scale_f32(nc, sm, sum);
  11973. ggml_vec_cpy_f32 (nc, ds0, sm);
  11974. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11975. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11976. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11977. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11978. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11979. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11980. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11981. #ifndef NDEBUG
  11982. for (int i = 0; i < nc; ++i) {
  11983. assert(!isnan(sm[i]));
  11984. assert(!isinf(sm[i]));
  11985. assert(!isnan(ds0[i]));
  11986. assert(!isinf(ds0[i]));
  11987. }
  11988. #endif
  11989. }
  11990. }
  11991. static void ggml_compute_forward_cross_entropy_loss_back(
  11992. const struct ggml_compute_params * params,
  11993. const struct ggml_tensor * src0,
  11994. const struct ggml_tensor * src1,
  11995. const struct ggml_tensor * opt0,
  11996. struct ggml_tensor * dst) {
  11997. switch (src0->type) {
  11998. case GGML_TYPE_F32:
  11999. {
  12000. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12001. } break;
  12002. default:
  12003. {
  12004. GGML_ASSERT(false);
  12005. } break;
  12006. }
  12007. }
  12008. /////////////////////////////////
  12009. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12010. GGML_ASSERT(params);
  12011. #ifdef GGML_USE_CUBLAS
  12012. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12013. if (skip_cpu) {
  12014. return;
  12015. }
  12016. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12017. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12018. #endif // GGML_USE_CUBLAS
  12019. switch (tensor->op) {
  12020. case GGML_OP_DUP:
  12021. {
  12022. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12023. } break;
  12024. case GGML_OP_ADD:
  12025. {
  12026. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12027. } break;
  12028. case GGML_OP_ADD1:
  12029. {
  12030. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12031. } break;
  12032. case GGML_OP_ACC:
  12033. {
  12034. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12035. } break;
  12036. case GGML_OP_SUB:
  12037. {
  12038. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12039. } break;
  12040. case GGML_OP_MUL:
  12041. {
  12042. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12043. } break;
  12044. case GGML_OP_DIV:
  12045. {
  12046. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12047. } break;
  12048. case GGML_OP_SQR:
  12049. {
  12050. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12051. } break;
  12052. case GGML_OP_SQRT:
  12053. {
  12054. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12055. } break;
  12056. case GGML_OP_LOG:
  12057. {
  12058. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12059. } break;
  12060. case GGML_OP_SUM:
  12061. {
  12062. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12063. } break;
  12064. case GGML_OP_SUM_ROWS:
  12065. {
  12066. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12067. } break;
  12068. case GGML_OP_MEAN:
  12069. {
  12070. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12071. } break;
  12072. case GGML_OP_ARGMAX:
  12073. {
  12074. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12075. } break;
  12076. case GGML_OP_REPEAT:
  12077. {
  12078. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12079. } break;
  12080. case GGML_OP_REPEAT_BACK:
  12081. {
  12082. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12083. } break;
  12084. case GGML_OP_SILU_BACK:
  12085. {
  12086. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12087. } break;
  12088. case GGML_OP_NORM:
  12089. {
  12090. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12091. } break;
  12092. case GGML_OP_RMS_NORM:
  12093. {
  12094. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_RMS_NORM_BACK:
  12097. {
  12098. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12099. } break;
  12100. case GGML_OP_MUL_MAT:
  12101. {
  12102. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12103. } break;
  12104. case GGML_OP_OUT_PROD:
  12105. {
  12106. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12107. } break;
  12108. case GGML_OP_SCALE:
  12109. {
  12110. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12111. } break;
  12112. case GGML_OP_SET:
  12113. {
  12114. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12115. } break;
  12116. case GGML_OP_CPY:
  12117. {
  12118. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12119. } break;
  12120. case GGML_OP_CONT:
  12121. {
  12122. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12123. } break;
  12124. case GGML_OP_RESHAPE:
  12125. {
  12126. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12127. } break;
  12128. case GGML_OP_VIEW:
  12129. {
  12130. ggml_compute_forward_view(params, tensor->src[0]);
  12131. } break;
  12132. case GGML_OP_PERMUTE:
  12133. {
  12134. ggml_compute_forward_permute(params, tensor->src[0]);
  12135. } break;
  12136. case GGML_OP_TRANSPOSE:
  12137. {
  12138. ggml_compute_forward_transpose(params, tensor->src[0]);
  12139. } break;
  12140. case GGML_OP_GET_ROWS:
  12141. {
  12142. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12143. } break;
  12144. case GGML_OP_GET_ROWS_BACK:
  12145. {
  12146. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12147. } break;
  12148. case GGML_OP_DIAG:
  12149. {
  12150. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12151. } break;
  12152. case GGML_OP_DIAG_MASK_INF:
  12153. {
  12154. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12155. } break;
  12156. case GGML_OP_DIAG_MASK_ZERO:
  12157. {
  12158. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12159. } break;
  12160. case GGML_OP_SOFT_MAX:
  12161. {
  12162. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12163. } break;
  12164. case GGML_OP_SOFT_MAX_BACK:
  12165. {
  12166. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12167. } break;
  12168. case GGML_OP_ROPE:
  12169. {
  12170. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12171. } break;
  12172. case GGML_OP_ROPE_BACK:
  12173. {
  12174. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12175. } break;
  12176. case GGML_OP_ALIBI:
  12177. {
  12178. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12179. } break;
  12180. case GGML_OP_CLAMP:
  12181. {
  12182. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12183. } break;
  12184. case GGML_OP_CONV_1D:
  12185. {
  12186. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12187. } break;
  12188. case GGML_OP_CONV_2D:
  12189. {
  12190. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12191. } break;
  12192. case GGML_OP_POOL_1D:
  12193. {
  12194. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12195. } break;
  12196. case GGML_OP_POOL_2D:
  12197. {
  12198. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12199. } break;
  12200. case GGML_OP_FLASH_ATTN:
  12201. {
  12202. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12203. GGML_ASSERT(t == 0 || t == 1);
  12204. const bool masked = t != 0;
  12205. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12206. } break;
  12207. case GGML_OP_FLASH_FF:
  12208. {
  12209. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12210. } break;
  12211. case GGML_OP_FLASH_ATTN_BACK:
  12212. {
  12213. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12214. GGML_ASSERT(t == 0 || t == 1);
  12215. bool masked = t != 0;
  12216. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12217. } break;
  12218. case GGML_OP_WIN_PART:
  12219. {
  12220. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12221. } break;
  12222. case GGML_OP_WIN_UNPART:
  12223. {
  12224. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12225. } break;
  12226. case GGML_OP_UNARY:
  12227. {
  12228. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12229. } break;
  12230. case GGML_OP_MAP_UNARY:
  12231. {
  12232. ggml_unary_op_f32_t fun;
  12233. memcpy(&fun, tensor->op_params, sizeof(fun));
  12234. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12235. }
  12236. break;
  12237. case GGML_OP_MAP_BINARY:
  12238. {
  12239. ggml_binary_op_f32_t fun;
  12240. memcpy(&fun, tensor->op_params, sizeof(fun));
  12241. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12242. }
  12243. break;
  12244. case GGML_OP_MAP_CUSTOM1_F32:
  12245. {
  12246. ggml_custom1_op_f32_t fun;
  12247. memcpy(&fun, tensor->op_params, sizeof(fun));
  12248. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12249. }
  12250. break;
  12251. case GGML_OP_MAP_CUSTOM2_F32:
  12252. {
  12253. ggml_custom2_op_f32_t fun;
  12254. memcpy(&fun, tensor->op_params, sizeof(fun));
  12255. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12256. }
  12257. break;
  12258. case GGML_OP_MAP_CUSTOM3_F32:
  12259. {
  12260. ggml_custom3_op_f32_t fun;
  12261. memcpy(&fun, tensor->op_params, sizeof(fun));
  12262. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12263. }
  12264. break;
  12265. case GGML_OP_MAP_CUSTOM1:
  12266. {
  12267. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12268. }
  12269. break;
  12270. case GGML_OP_MAP_CUSTOM2:
  12271. {
  12272. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12273. }
  12274. break;
  12275. case GGML_OP_MAP_CUSTOM3:
  12276. {
  12277. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12278. }
  12279. break;
  12280. case GGML_OP_CROSS_ENTROPY_LOSS:
  12281. {
  12282. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12283. }
  12284. break;
  12285. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12286. {
  12287. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12288. }
  12289. break;
  12290. case GGML_OP_NONE:
  12291. {
  12292. // nop
  12293. } break;
  12294. case GGML_OP_COUNT:
  12295. {
  12296. GGML_ASSERT(false);
  12297. } break;
  12298. }
  12299. }
  12300. ////////////////////////////////////////////////////////////////////////////////
  12301. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12302. struct ggml_tensor * src0 = tensor->src[0];
  12303. struct ggml_tensor * src1 = tensor->src[1];
  12304. switch (tensor->op) {
  12305. case GGML_OP_DUP:
  12306. {
  12307. if (src0->grad) {
  12308. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12309. }
  12310. } break;
  12311. case GGML_OP_ADD:
  12312. {
  12313. if (src0->grad) {
  12314. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12315. }
  12316. if (src1->grad) {
  12317. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12318. }
  12319. } break;
  12320. case GGML_OP_ADD1:
  12321. {
  12322. if (src0->grad) {
  12323. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12324. }
  12325. if (src1->grad) {
  12326. src1->grad = ggml_add_impl(ctx,
  12327. src1->grad,
  12328. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12329. inplace);
  12330. }
  12331. } break;
  12332. case GGML_OP_ACC:
  12333. {
  12334. if (src0->grad) {
  12335. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12336. }
  12337. if (src1->grad) {
  12338. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12339. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12340. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12341. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12342. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12343. tensor->grad,
  12344. src1->grad->ne[0],
  12345. src1->grad->ne[1],
  12346. src1->grad->ne[2],
  12347. src1->grad->ne[3],
  12348. nb1, nb2, nb3, offset);
  12349. src1->grad =
  12350. ggml_add_impl(ctx,
  12351. src1->grad,
  12352. ggml_reshape(ctx,
  12353. ggml_cont(ctx, tensor_grad_view),
  12354. src1->grad),
  12355. inplace);
  12356. }
  12357. } break;
  12358. case GGML_OP_SUB:
  12359. {
  12360. if (src0->grad) {
  12361. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12362. }
  12363. if (src1->grad) {
  12364. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12365. }
  12366. } break;
  12367. case GGML_OP_MUL:
  12368. {
  12369. if (src0->grad) {
  12370. src0->grad =
  12371. ggml_add_impl(ctx,
  12372. src0->grad,
  12373. ggml_mul(ctx, src1, tensor->grad),
  12374. inplace);
  12375. }
  12376. if (src1->grad) {
  12377. src1->grad =
  12378. ggml_add_impl(ctx,
  12379. src1->grad,
  12380. ggml_mul(ctx, src0, tensor->grad),
  12381. inplace);
  12382. }
  12383. } break;
  12384. case GGML_OP_DIV:
  12385. {
  12386. if (src0->grad) {
  12387. src0->grad =
  12388. ggml_add_impl(ctx,
  12389. src0->grad,
  12390. ggml_div(ctx, tensor->grad, src1),
  12391. inplace);
  12392. }
  12393. if (src1->grad) {
  12394. src1->grad =
  12395. ggml_sub_impl(ctx,
  12396. src1->grad,
  12397. ggml_mul(ctx,
  12398. tensor->grad,
  12399. ggml_div(ctx, tensor, src1)),
  12400. inplace);
  12401. }
  12402. } break;
  12403. case GGML_OP_SQR:
  12404. {
  12405. if (src0->grad) {
  12406. src0->grad =
  12407. ggml_add_impl(ctx,
  12408. src0->grad,
  12409. ggml_scale(ctx,
  12410. ggml_mul(ctx, src0, tensor->grad),
  12411. ggml_new_f32(ctx, 2.0f)),
  12412. inplace);
  12413. }
  12414. } break;
  12415. case GGML_OP_SQRT:
  12416. {
  12417. if (src0->grad) {
  12418. src0->grad =
  12419. ggml_add_impl(ctx,
  12420. src0->grad,
  12421. ggml_scale(ctx,
  12422. ggml_div(ctx,
  12423. tensor->grad,
  12424. tensor),
  12425. ggml_new_f32(ctx, 0.5f)),
  12426. inplace);
  12427. }
  12428. } break;
  12429. case GGML_OP_LOG:
  12430. {
  12431. if (src0->grad) {
  12432. src0->grad =
  12433. ggml_add_impl(ctx,
  12434. src0->grad,
  12435. ggml_div(ctx,
  12436. tensor->grad,
  12437. src0),
  12438. inplace);
  12439. }
  12440. } break;
  12441. case GGML_OP_SUM:
  12442. {
  12443. if (src0->grad) {
  12444. src0->grad =
  12445. ggml_add1_impl(ctx,
  12446. src0->grad,
  12447. tensor->grad,
  12448. inplace);
  12449. }
  12450. } break;
  12451. case GGML_OP_SUM_ROWS:
  12452. {
  12453. if (src0->grad) {
  12454. src0->grad =
  12455. ggml_add_impl(ctx,
  12456. src0->grad,
  12457. ggml_repeat(ctx,
  12458. tensor->grad,
  12459. src0->grad),
  12460. inplace);
  12461. }
  12462. } break;
  12463. case GGML_OP_MEAN:
  12464. case GGML_OP_ARGMAX:
  12465. {
  12466. GGML_ASSERT(false); // TODO: implement
  12467. } break;
  12468. case GGML_OP_REPEAT:
  12469. {
  12470. // necessary for llama
  12471. if (src0->grad) {
  12472. src0->grad = ggml_add_impl(ctx,
  12473. src0->grad,
  12474. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12475. inplace);
  12476. }
  12477. } break;
  12478. case GGML_OP_REPEAT_BACK:
  12479. {
  12480. if (src0->grad) {
  12481. // TODO: test this
  12482. src0->grad = ggml_add_impl(ctx,
  12483. src0->grad,
  12484. ggml_repeat(ctx, tensor->grad, src0->grad),
  12485. inplace);
  12486. }
  12487. } break;
  12488. case GGML_OP_SILU_BACK:
  12489. {
  12490. GGML_ASSERT(false); // TODO: not implemented
  12491. } break;
  12492. case GGML_OP_NORM:
  12493. {
  12494. GGML_ASSERT(false); // TODO: not implemented
  12495. } break;
  12496. case GGML_OP_RMS_NORM:
  12497. {
  12498. // necessary for llama
  12499. if (src0->grad) {
  12500. src0->grad = ggml_add_impl(ctx,
  12501. src0->grad,
  12502. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12503. inplace);
  12504. }
  12505. } break;
  12506. case GGML_OP_RMS_NORM_BACK:
  12507. {
  12508. GGML_ASSERT(false); // TODO: not implemented
  12509. } break;
  12510. case GGML_OP_MUL_MAT:
  12511. {
  12512. // https://cs231n.github.io/optimization-2/#staged
  12513. // # forward pass
  12514. // s0 = np.random.randn(5, 10)
  12515. // s1 = np.random.randn(10, 3)
  12516. // t = s0.dot(s1)
  12517. // # now suppose we had the gradient on t from above in the circuit
  12518. // dt = np.random.randn(*t.shape) # same shape as t
  12519. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12520. // ds1 = t.T.dot(dt)
  12521. // tensor.shape [m,p]
  12522. // src0.shape [n,m]
  12523. // src1.shape [n,p]
  12524. // necessary for llama
  12525. if (src0->grad) {
  12526. src0->grad =
  12527. ggml_add_impl(ctx,
  12528. src0->grad,
  12529. ggml_out_prod(ctx, // [n,m]
  12530. src1, // [n,p]
  12531. tensor->grad), // [m,p]
  12532. inplace);
  12533. }
  12534. if (src1->grad) {
  12535. src1->grad =
  12536. ggml_add_impl(ctx,
  12537. src1->grad,
  12538. // ggml_mul_mat(ctx, // [n,p]
  12539. // ggml_cont(ctx, // [m,n]
  12540. // ggml_transpose(ctx, src0)), // [m,n]
  12541. // tensor->grad), // [m,p]
  12542. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12543. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12544. // // and then use ggml_out_prod
  12545. ggml_out_prod(ctx, // [n,p]
  12546. src0, // [n,m]
  12547. ggml_transpose(ctx, // [p,m]
  12548. tensor->grad)), // [m,p]
  12549. inplace);
  12550. }
  12551. } break;
  12552. case GGML_OP_OUT_PROD:
  12553. {
  12554. GGML_ASSERT(false); // TODO: not implemented
  12555. } break;
  12556. case GGML_OP_SCALE:
  12557. {
  12558. // necessary for llama
  12559. if (src0->grad) {
  12560. src0->grad =
  12561. ggml_add_impl(ctx,
  12562. src0->grad,
  12563. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12564. inplace);
  12565. }
  12566. if (src1->grad) {
  12567. src1->grad =
  12568. ggml_add_impl(ctx,
  12569. src1->grad,
  12570. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12571. inplace);
  12572. }
  12573. } break;
  12574. case GGML_OP_SET:
  12575. {
  12576. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12577. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12578. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12579. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12580. struct ggml_tensor * tensor_grad_view = NULL;
  12581. if (src0->grad || src1->grad) {
  12582. GGML_ASSERT(src0->type == tensor->type);
  12583. GGML_ASSERT(tensor->grad->type == tensor->type);
  12584. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12585. tensor_grad_view = ggml_view_4d(ctx,
  12586. tensor->grad,
  12587. src1->grad->ne[0],
  12588. src1->grad->ne[1],
  12589. src1->grad->ne[2],
  12590. src1->grad->ne[3],
  12591. nb1, nb2, nb3, offset);
  12592. }
  12593. if (src0->grad) {
  12594. src0->grad = ggml_add_impl(ctx,
  12595. src0->grad,
  12596. ggml_acc_impl(ctx,
  12597. tensor->grad,
  12598. ggml_neg(ctx, tensor_grad_view),
  12599. nb1, nb2, nb3, offset, false),
  12600. inplace);
  12601. }
  12602. if (src1->grad) {
  12603. src1->grad =
  12604. ggml_add_impl(ctx,
  12605. src1->grad,
  12606. ggml_reshape(ctx,
  12607. ggml_cont(ctx, tensor_grad_view),
  12608. src1->grad),
  12609. inplace);
  12610. }
  12611. } break;
  12612. case GGML_OP_CPY:
  12613. {
  12614. // necessary for llama
  12615. // cpy overwrites value of src1 by src0 and returns view(src1)
  12616. // the overwriting is mathematically equivalent to:
  12617. // tensor = src0 * 1 + src1 * 0
  12618. if (src0->grad) {
  12619. // dsrc0 = dtensor * 1
  12620. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12621. }
  12622. if (src1->grad) {
  12623. // dsrc1 = dtensor * 0 -> noop
  12624. }
  12625. } break;
  12626. case GGML_OP_CONT:
  12627. {
  12628. // same as cpy
  12629. if (src0->grad) {
  12630. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12631. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12632. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12633. }
  12634. } break;
  12635. case GGML_OP_RESHAPE:
  12636. {
  12637. // necessary for llama
  12638. if (src0->grad) {
  12639. src0->grad =
  12640. ggml_add_impl(ctx, src0->grad,
  12641. ggml_reshape(ctx, tensor->grad, src0->grad),
  12642. inplace);
  12643. }
  12644. } break;
  12645. case GGML_OP_VIEW:
  12646. {
  12647. // necessary for llama
  12648. if (src0->grad) {
  12649. size_t offset;
  12650. memcpy(&offset, tensor->op_params, sizeof(offset));
  12651. size_t nb1 = tensor->nb[1];
  12652. size_t nb2 = tensor->nb[2];
  12653. size_t nb3 = tensor->nb[3];
  12654. if (src0->type != src0->grad->type) {
  12655. // gradient is typically F32, but src0 could be other type
  12656. size_t ng = ggml_element_size(src0->grad);
  12657. size_t n0 = ggml_element_size(src0);
  12658. GGML_ASSERT(offset % n0 == 0);
  12659. GGML_ASSERT(nb1 % n0 == 0);
  12660. GGML_ASSERT(nb2 % n0 == 0);
  12661. GGML_ASSERT(nb3 % n0 == 0);
  12662. offset = (offset / n0) * ng;
  12663. nb1 = (nb1 / n0) * ng;
  12664. nb2 = (nb2 / n0) * ng;
  12665. nb3 = (nb3 / n0) * ng;
  12666. }
  12667. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12668. }
  12669. } break;
  12670. case GGML_OP_PERMUTE:
  12671. {
  12672. // necessary for llama
  12673. if (src0->grad) {
  12674. int32_t * axes = (int32_t *) tensor->op_params;
  12675. int axis0 = axes[0] & 0x3;
  12676. int axis1 = axes[1] & 0x3;
  12677. int axis2 = axes[2] & 0x3;
  12678. int axis3 = axes[3] & 0x3;
  12679. int axes_backward[4] = {0,0,0,0};
  12680. axes_backward[axis0] = 0;
  12681. axes_backward[axis1] = 1;
  12682. axes_backward[axis2] = 2;
  12683. axes_backward[axis3] = 3;
  12684. src0->grad =
  12685. ggml_add_impl(ctx, src0->grad,
  12686. ggml_permute(ctx,
  12687. tensor->grad,
  12688. axes_backward[0],
  12689. axes_backward[1],
  12690. axes_backward[2],
  12691. axes_backward[3]),
  12692. inplace);
  12693. }
  12694. } break;
  12695. case GGML_OP_TRANSPOSE:
  12696. {
  12697. // necessary for llama
  12698. if (src0->grad) {
  12699. src0->grad =
  12700. ggml_add_impl(ctx, src0->grad,
  12701. ggml_transpose(ctx, tensor->grad),
  12702. inplace);
  12703. }
  12704. } break;
  12705. case GGML_OP_GET_ROWS:
  12706. {
  12707. // necessary for llama (only for tokenizer)
  12708. if (src0->grad) {
  12709. src0->grad =
  12710. ggml_add_impl(ctx, src0->grad,
  12711. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12712. inplace);
  12713. }
  12714. if (src1->grad) {
  12715. // noop
  12716. }
  12717. } break;
  12718. case GGML_OP_GET_ROWS_BACK:
  12719. {
  12720. GGML_ASSERT(false); // TODO: not implemented
  12721. } break;
  12722. case GGML_OP_DIAG:
  12723. {
  12724. GGML_ASSERT(false); // TODO: not implemented
  12725. } break;
  12726. case GGML_OP_DIAG_MASK_INF:
  12727. {
  12728. // necessary for llama
  12729. if (src0->grad) {
  12730. const int n_past = ((int32_t *) tensor->op_params)[0];
  12731. src0->grad =
  12732. ggml_add_impl(ctx, src0->grad,
  12733. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12734. inplace);
  12735. }
  12736. } break;
  12737. case GGML_OP_DIAG_MASK_ZERO:
  12738. {
  12739. // necessary for llama
  12740. if (src0->grad) {
  12741. const int n_past = ((int32_t *) tensor->op_params)[0];
  12742. src0->grad =
  12743. ggml_add_impl(ctx, src0->grad,
  12744. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12745. inplace);
  12746. }
  12747. } break;
  12748. case GGML_OP_SOFT_MAX:
  12749. {
  12750. // necessary for llama
  12751. if (src0->grad) {
  12752. src0->grad =
  12753. ggml_add_impl(ctx, src0->grad,
  12754. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12755. inplace);
  12756. }
  12757. } break;
  12758. case GGML_OP_SOFT_MAX_BACK:
  12759. {
  12760. GGML_ASSERT(false); // TODO: not implemented
  12761. } break;
  12762. case GGML_OP_ROPE:
  12763. {
  12764. // necessary for llama
  12765. if (src0->grad) {
  12766. const int n_past = ((int32_t *) tensor->op_params)[0];
  12767. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12768. const int mode = ((int32_t *) tensor->op_params)[2];
  12769. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12770. src0->grad = ggml_add_impl(ctx,
  12771. src0->grad,
  12772. ggml_rope_back(ctx,
  12773. tensor->grad,
  12774. n_past,
  12775. n_dims,
  12776. mode,
  12777. n_ctx),
  12778. inplace);
  12779. }
  12780. } break;
  12781. case GGML_OP_ROPE_BACK:
  12782. {
  12783. if (src0->grad) {
  12784. const int n_past = ((int32_t *) tensor->op_params)[0];
  12785. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12786. const int mode = ((int32_t *) tensor->op_params)[2];
  12787. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12788. src0->grad = ggml_add_impl(ctx,
  12789. src0->grad,
  12790. ggml_rope(ctx,
  12791. tensor->grad,
  12792. n_past,
  12793. n_dims,
  12794. mode,
  12795. n_ctx),
  12796. inplace);
  12797. }
  12798. } break;
  12799. case GGML_OP_ALIBI:
  12800. {
  12801. GGML_ASSERT(false); // TODO: not implemented
  12802. } break;
  12803. case GGML_OP_CLAMP:
  12804. {
  12805. GGML_ASSERT(false); // TODO: not implemented
  12806. } break;
  12807. case GGML_OP_CONV_1D:
  12808. {
  12809. GGML_ASSERT(false); // TODO: not implemented
  12810. } break;
  12811. case GGML_OP_CONV_2D:
  12812. {
  12813. GGML_ASSERT(false); // TODO: not implemented
  12814. } break;
  12815. case GGML_OP_POOL_1D:
  12816. {
  12817. GGML_ASSERT(false); // TODO: not implemented
  12818. } break;
  12819. case GGML_OP_POOL_2D:
  12820. {
  12821. GGML_ASSERT(false); // TODO: not implemented
  12822. } break;
  12823. case GGML_OP_FLASH_ATTN:
  12824. {
  12825. struct ggml_tensor * flash_grad = NULL;
  12826. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12827. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12828. GGML_ASSERT(t == 0 || t == 1);
  12829. bool masked = t != 0;
  12830. flash_grad =
  12831. ggml_flash_attn_back(ctx,
  12832. src0,
  12833. src1,
  12834. tensor->src[2],
  12835. tensor->grad,
  12836. masked);
  12837. }
  12838. if (src0->grad) {
  12839. struct ggml_tensor * grad_q = NULL;
  12840. const size_t nb0 = flash_grad->nb[0];
  12841. const size_t offset = 0;
  12842. switch(src0->n_dims) {
  12843. case 2:
  12844. {
  12845. grad_q = ggml_view_2d(ctx,
  12846. flash_grad,
  12847. src0->ne[0],
  12848. src0->ne[1],
  12849. nb0*src0->ne[0],
  12850. offset);
  12851. } break;
  12852. case 3:
  12853. {
  12854. grad_q = ggml_view_3d(ctx,
  12855. flash_grad,
  12856. src0->ne[0],
  12857. src0->ne[1],
  12858. src0->ne[2],
  12859. nb0*src0->ne[0],
  12860. nb0*src0->ne[0]*src0->ne[1],
  12861. offset);
  12862. } break;
  12863. case 4:
  12864. {
  12865. grad_q = ggml_view_4d(ctx,
  12866. flash_grad,
  12867. src0->ne[0],
  12868. src0->ne[1],
  12869. src0->ne[2],
  12870. src0->ne[3],
  12871. nb0*src0->ne[0],
  12872. nb0*src0->ne[0]*src0->ne[1],
  12873. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12874. offset);
  12875. } break;
  12876. }
  12877. src0->grad = ggml_add_impl(ctx,
  12878. src0->grad,
  12879. grad_q,
  12880. inplace);
  12881. }
  12882. if (src1->grad) {
  12883. struct ggml_tensor * grad_k = NULL;
  12884. const size_t nb0 = flash_grad->nb[0];
  12885. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12886. switch(src1->n_dims) {
  12887. case 2:
  12888. {
  12889. grad_k = ggml_view_2d(ctx,
  12890. flash_grad,
  12891. src1->ne[0],
  12892. src1->ne[1],
  12893. nb0*src1->ne[0],
  12894. offset);
  12895. } break;
  12896. case 3:
  12897. {
  12898. grad_k = ggml_view_3d(ctx,
  12899. flash_grad,
  12900. src1->ne[0],
  12901. src1->ne[1],
  12902. src1->ne[2],
  12903. nb0*src1->ne[0],
  12904. nb0*src1->ne[0]*src1->ne[1],
  12905. offset);
  12906. } break;
  12907. case 4:
  12908. {
  12909. grad_k = ggml_view_4d(ctx,
  12910. flash_grad,
  12911. src1->ne[0],
  12912. src1->ne[1],
  12913. src1->ne[2],
  12914. src1->ne[3],
  12915. nb0*src1->ne[0],
  12916. nb0*src1->ne[0]*src1->ne[1],
  12917. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12918. offset);
  12919. } break;
  12920. }
  12921. src1->grad = ggml_add_impl(ctx,
  12922. src1->grad,
  12923. grad_k,
  12924. inplace);
  12925. }
  12926. struct ggml_tensor * opt0 = tensor->src[2];
  12927. if (opt0->grad) {
  12928. struct ggml_tensor * grad_v = NULL;
  12929. const size_t nb0 = flash_grad->nb[0];
  12930. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12931. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12932. switch(opt0->n_dims) {
  12933. case 2:
  12934. {
  12935. grad_v = ggml_view_2d(ctx,
  12936. flash_grad,
  12937. opt0->ne[0],
  12938. opt0->ne[1],
  12939. nb0*opt0->ne[0],
  12940. offset);
  12941. } break;
  12942. case 3:
  12943. {
  12944. grad_v = ggml_view_3d(ctx,
  12945. flash_grad,
  12946. opt0->ne[0],
  12947. opt0->ne[1],
  12948. opt0->ne[2],
  12949. nb0*opt0->ne[0],
  12950. nb0*opt0->ne[0]*opt0->ne[1],
  12951. offset);
  12952. } break;
  12953. case 4:
  12954. {
  12955. grad_v = ggml_view_4d(ctx,
  12956. flash_grad,
  12957. opt0->ne[0],
  12958. opt0->ne[1],
  12959. opt0->ne[2],
  12960. opt0->ne[3],
  12961. nb0*opt0->ne[0],
  12962. nb0*opt0->ne[0]*opt0->ne[1],
  12963. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12964. offset);
  12965. } break;
  12966. }
  12967. opt0->grad = ggml_add_impl(ctx,
  12968. opt0->grad,
  12969. grad_v,
  12970. inplace);
  12971. }
  12972. } break;
  12973. case GGML_OP_FLASH_FF:
  12974. {
  12975. GGML_ASSERT(false); // not supported
  12976. } break;
  12977. case GGML_OP_FLASH_ATTN_BACK:
  12978. {
  12979. GGML_ASSERT(false); // not supported
  12980. } break;
  12981. case GGML_OP_WIN_PART:
  12982. case GGML_OP_WIN_UNPART:
  12983. case GGML_OP_UNARY:
  12984. {
  12985. switch (ggml_get_unary_op(tensor)) {
  12986. case GGML_UNARY_OP_ABS:
  12987. {
  12988. if (src0->grad) {
  12989. src0->grad =
  12990. ggml_add_impl(ctx,
  12991. src0->grad,
  12992. ggml_mul(ctx,
  12993. ggml_sgn(ctx, src0),
  12994. tensor->grad),
  12995. inplace);
  12996. }
  12997. } break;
  12998. case GGML_UNARY_OP_SGN:
  12999. {
  13000. if (src0->grad) {
  13001. // noop
  13002. }
  13003. } break;
  13004. case GGML_UNARY_OP_NEG:
  13005. {
  13006. if (src0->grad) {
  13007. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13008. }
  13009. } break;
  13010. case GGML_UNARY_OP_STEP:
  13011. {
  13012. if (src0->grad) {
  13013. // noop
  13014. }
  13015. } break;
  13016. case GGML_UNARY_OP_TANH:
  13017. {
  13018. GGML_ASSERT(false); // TODO: not implemented
  13019. } break;
  13020. case GGML_UNARY_OP_ELU:
  13021. {
  13022. GGML_ASSERT(false); // TODO: not implemented
  13023. } break;
  13024. case GGML_UNARY_OP_RELU:
  13025. {
  13026. if (src0->grad) {
  13027. src0->grad = ggml_add_impl(ctx,
  13028. src0->grad,
  13029. ggml_mul(ctx,
  13030. ggml_step(ctx, src0),
  13031. tensor->grad),
  13032. inplace);
  13033. }
  13034. } break;
  13035. case GGML_UNARY_OP_GELU:
  13036. {
  13037. GGML_ASSERT(false); // TODO: not implemented
  13038. } break;
  13039. case GGML_UNARY_OP_GELU_QUICK:
  13040. {
  13041. GGML_ASSERT(false); // TODO: not implemented
  13042. } break;
  13043. case GGML_UNARY_OP_SILU:
  13044. {
  13045. // necessary for llama
  13046. if (src0->grad) {
  13047. src0->grad = ggml_add_impl(ctx,
  13048. src0->grad,
  13049. ggml_silu_back(ctx, src0, tensor->grad),
  13050. inplace);
  13051. }
  13052. } break;
  13053. default:
  13054. GGML_ASSERT(false);
  13055. }
  13056. } break;
  13057. case GGML_OP_MAP_UNARY:
  13058. case GGML_OP_MAP_BINARY:
  13059. case GGML_OP_MAP_CUSTOM1_F32:
  13060. case GGML_OP_MAP_CUSTOM2_F32:
  13061. case GGML_OP_MAP_CUSTOM3_F32:
  13062. case GGML_OP_MAP_CUSTOM1:
  13063. case GGML_OP_MAP_CUSTOM2:
  13064. case GGML_OP_MAP_CUSTOM3:
  13065. {
  13066. GGML_ASSERT(false); // not supported
  13067. } break;
  13068. case GGML_OP_CROSS_ENTROPY_LOSS:
  13069. {
  13070. if (src0->grad) {
  13071. src0->grad = ggml_add_impl(ctx,
  13072. src0->grad,
  13073. ggml_cross_entropy_loss_back(ctx,
  13074. src0,
  13075. src1,
  13076. tensor->grad),
  13077. inplace);
  13078. }
  13079. } break;
  13080. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13081. {
  13082. GGML_ASSERT(false); // not supported
  13083. } break;
  13084. case GGML_OP_NONE:
  13085. {
  13086. // nop
  13087. } break;
  13088. case GGML_OP_COUNT:
  13089. {
  13090. GGML_ASSERT(false);
  13091. } break;
  13092. }
  13093. }
  13094. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13095. static size_t hash(void * p) {
  13096. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13097. }
  13098. static bool hash_insert(void * hash_table[], void * p) {
  13099. size_t h = hash(p);
  13100. // linear probing
  13101. size_t i = h;
  13102. while (hash_table[i] != NULL && hash_table[i] != p) {
  13103. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13104. if (i == h) {
  13105. // hash table is full
  13106. GGML_ASSERT(false);
  13107. }
  13108. }
  13109. if (hash_table[i] == p) {
  13110. return true;
  13111. }
  13112. // insert
  13113. hash_table[i] = p;
  13114. return false;
  13115. }
  13116. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13117. if (node->grad == NULL) {
  13118. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13119. // it can also happen during forward pass, if the user performs computations with constants
  13120. if (node->op != GGML_OP_NONE) {
  13121. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13122. }
  13123. }
  13124. // check if already visited
  13125. if (hash_insert(cgraph->visited_hash_table, node)) {
  13126. return;
  13127. }
  13128. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13129. if (node->src[i]) {
  13130. ggml_visit_parents(cgraph, node->src[i]);
  13131. }
  13132. }
  13133. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13134. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13135. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13136. if (strlen(node->name) == 0) {
  13137. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13138. }
  13139. cgraph->leafs[cgraph->n_leafs] = node;
  13140. cgraph->n_leafs++;
  13141. } else {
  13142. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13143. if (strlen(node->name) == 0) {
  13144. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13145. }
  13146. cgraph->nodes[cgraph->n_nodes] = node;
  13147. cgraph->grads[cgraph->n_nodes] = node->grad;
  13148. cgraph->n_nodes++;
  13149. }
  13150. }
  13151. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13152. if (!expand) {
  13153. cgraph->n_nodes = 0;
  13154. cgraph->n_leafs = 0;
  13155. }
  13156. const int n0 = cgraph->n_nodes;
  13157. UNUSED(n0);
  13158. ggml_visit_parents(cgraph, tensor);
  13159. const int n_new = cgraph->n_nodes - n0;
  13160. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13161. if (n_new > 0) {
  13162. // the last added node should always be starting point
  13163. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13164. }
  13165. }
  13166. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13167. ggml_build_forward_impl(cgraph, tensor, true);
  13168. }
  13169. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13170. struct ggml_cgraph result = {
  13171. /*.n_nodes =*/ 0,
  13172. /*.n_leafs =*/ 0,
  13173. /*.nodes =*/ { NULL },
  13174. /*.grads =*/ { NULL },
  13175. /*.leafs =*/ { NULL },
  13176. /*.hash_table =*/ { NULL },
  13177. /*.perf_runs =*/ 0,
  13178. /*.perf_cycles =*/ 0,
  13179. /*.perf_time_us =*/ 0,
  13180. };
  13181. ggml_build_forward_impl(&result, tensor, false);
  13182. return result;
  13183. }
  13184. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13185. struct ggml_cgraph result = *gf;
  13186. GGML_ASSERT(gf->n_nodes > 0);
  13187. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13188. if (keep) {
  13189. for (int i = 0; i < gf->n_nodes; i++) {
  13190. struct ggml_tensor * node = gf->nodes[i];
  13191. if (node->grad) {
  13192. node->grad = ggml_dup_tensor(ctx, node);
  13193. gf->grads[i] = node->grad;
  13194. }
  13195. }
  13196. }
  13197. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13198. struct ggml_tensor * node = gf->nodes[i];
  13199. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13200. if (node->grad) {
  13201. ggml_compute_backward(ctx, node, keep);
  13202. }
  13203. }
  13204. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13205. struct ggml_tensor * node = gf->nodes[i];
  13206. if (node->is_param) {
  13207. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13208. ggml_build_forward_expand(&result, node->grad);
  13209. }
  13210. }
  13211. return result;
  13212. }
  13213. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13214. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13215. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13216. *cgraph = (struct ggml_cgraph) {
  13217. /*.n_nodes =*/ 0,
  13218. /*.n_leafs =*/ 0,
  13219. /*.nodes =*/ { NULL },
  13220. /*.grads =*/ { NULL },
  13221. /*.leafs =*/ { NULL },
  13222. /*.hash_table =*/ { NULL },
  13223. /*.perf_runs =*/ 0,
  13224. /*.perf_cycles =*/ 0,
  13225. /*.perf_time_us =*/ 0,
  13226. };
  13227. return cgraph;
  13228. }
  13229. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13230. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13231. ggml_build_forward_impl(cgraph, tensor, false);
  13232. return cgraph;
  13233. }
  13234. size_t ggml_graph_overhead(void) {
  13235. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13236. }
  13237. //
  13238. // thread data
  13239. //
  13240. // synchronization is done via busy loops
  13241. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13242. //
  13243. #ifdef __APPLE__
  13244. //#include <os/lock.h>
  13245. //
  13246. //typedef os_unfair_lock ggml_lock_t;
  13247. //
  13248. //#define ggml_lock_init(x) UNUSED(x)
  13249. //#define ggml_lock_destroy(x) UNUSED(x)
  13250. //#define ggml_lock_lock os_unfair_lock_lock
  13251. //#define ggml_lock_unlock os_unfair_lock_unlock
  13252. //
  13253. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13254. typedef int ggml_lock_t;
  13255. #define ggml_lock_init(x) UNUSED(x)
  13256. #define ggml_lock_destroy(x) UNUSED(x)
  13257. #define ggml_lock_lock(x) UNUSED(x)
  13258. #define ggml_lock_unlock(x) UNUSED(x)
  13259. #define GGML_LOCK_INITIALIZER 0
  13260. typedef pthread_t ggml_thread_t;
  13261. #define ggml_thread_create pthread_create
  13262. #define ggml_thread_join pthread_join
  13263. #else
  13264. //typedef pthread_spinlock_t ggml_lock_t;
  13265. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13266. //#define ggml_lock_destroy pthread_spin_destroy
  13267. //#define ggml_lock_lock pthread_spin_lock
  13268. //#define ggml_lock_unlock pthread_spin_unlock
  13269. typedef int ggml_lock_t;
  13270. #define ggml_lock_init(x) UNUSED(x)
  13271. #define ggml_lock_destroy(x) UNUSED(x)
  13272. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13273. #define ggml_lock_lock(x) _mm_pause()
  13274. #else
  13275. #define ggml_lock_lock(x) UNUSED(x)
  13276. #endif
  13277. #define ggml_lock_unlock(x) UNUSED(x)
  13278. #define GGML_LOCK_INITIALIZER 0
  13279. typedef pthread_t ggml_thread_t;
  13280. #define ggml_thread_create pthread_create
  13281. #define ggml_thread_join pthread_join
  13282. #endif
  13283. // Android's libc implementation "bionic" does not support setting affinity
  13284. #if defined(__linux__) && !defined(__BIONIC__)
  13285. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13286. if (!ggml_is_numa()) {
  13287. return;
  13288. }
  13289. // run thread on node_num thread_n / (threads per node)
  13290. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13291. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13292. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13293. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13294. CPU_ZERO_S(setsize, cpus);
  13295. for (size_t i = 0; i < node->n_cpus; ++i) {
  13296. CPU_SET_S(node->cpus[i], setsize, cpus);
  13297. }
  13298. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13299. if (rv) {
  13300. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13301. strerror(rv));
  13302. }
  13303. CPU_FREE(cpus);
  13304. }
  13305. static void clear_numa_thread_affinity(void) {
  13306. if (!ggml_is_numa()) {
  13307. return;
  13308. }
  13309. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13310. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13311. CPU_ZERO_S(setsize, cpus);
  13312. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13313. CPU_SET_S(i, setsize, cpus);
  13314. }
  13315. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13316. if (rv) {
  13317. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13318. strerror(rv));
  13319. }
  13320. CPU_FREE(cpus);
  13321. }
  13322. #else
  13323. // TODO: Windows etc.
  13324. // (the linux implementation may also work on BSD, someone should test)
  13325. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13326. static void clear_numa_thread_affinity(void) {}
  13327. #endif
  13328. struct ggml_compute_state_shared {
  13329. const struct ggml_cgraph * cgraph;
  13330. const struct ggml_cplan * cplan;
  13331. int64_t perf_node_start_cycles;
  13332. int64_t perf_node_start_time_us;
  13333. const int n_threads;
  13334. // synchronization primitives
  13335. atomic_int n_active; // num active threads
  13336. atomic_int node_n; // active graph node
  13337. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13338. void * abort_callback_data;
  13339. };
  13340. struct ggml_compute_state {
  13341. ggml_thread_t thrd;
  13342. int ith;
  13343. struct ggml_compute_state_shared * shared;
  13344. };
  13345. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13346. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13347. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13348. node->perf_runs++;
  13349. node->perf_cycles += cycles_cur;
  13350. node->perf_time_us += time_us_cur;
  13351. }
  13352. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13353. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13354. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13355. const struct ggml_cplan * cplan = state->shared->cplan;
  13356. const int * n_tasks_arr = cplan->n_tasks;
  13357. const int n_threads = state->shared->n_threads;
  13358. set_numa_thread_affinity(state->ith, n_threads);
  13359. int node_n = -1;
  13360. while (true) {
  13361. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13362. state->shared->node_n += 1;
  13363. return (thread_ret_t) GGML_EXIT_ABORTED;
  13364. }
  13365. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13366. // all other threads are finished and spinning
  13367. // do finalize and init here so we don't have synchronize again
  13368. struct ggml_compute_params params = {
  13369. /*.type =*/ GGML_TASK_FINALIZE,
  13370. /*.ith =*/ 0,
  13371. /*.nth =*/ 0,
  13372. /*.wsize =*/ cplan->work_size,
  13373. /*.wdata =*/ cplan->work_data,
  13374. };
  13375. if (node_n != -1) {
  13376. /* FINALIZE */
  13377. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13378. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13379. params.nth = n_tasks_arr[node_n];
  13380. ggml_compute_forward(&params, node);
  13381. }
  13382. ggml_graph_compute_perf_stats_node(node, state->shared);
  13383. }
  13384. // distribute new work or execute it direct if 1T
  13385. while (++node_n < cgraph->n_nodes) {
  13386. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13387. struct ggml_tensor * node = cgraph->nodes[node_n];
  13388. const int n_tasks = n_tasks_arr[node_n];
  13389. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13390. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13391. params.nth = n_tasks;
  13392. /* INIT */
  13393. if (GGML_OP_HAS_INIT[node->op]) {
  13394. params.type = GGML_TASK_INIT;
  13395. ggml_compute_forward(&params, node);
  13396. }
  13397. if (n_tasks == 1) {
  13398. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13399. // they do something more efficient than spinning (?)
  13400. params.type = GGML_TASK_COMPUTE;
  13401. ggml_compute_forward(&params, node);
  13402. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13403. params.type = GGML_TASK_FINALIZE;
  13404. ggml_compute_forward(&params, node);
  13405. }
  13406. ggml_graph_compute_perf_stats_node(node, state->shared);
  13407. } else {
  13408. break;
  13409. }
  13410. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13411. break;
  13412. }
  13413. }
  13414. atomic_store(&state->shared->n_active, n_threads);
  13415. atomic_store(&state->shared->node_n, node_n);
  13416. } else {
  13417. // wait for other threads to finish
  13418. const int last = node_n;
  13419. do {
  13420. //sched_yield();
  13421. node_n = atomic_load(&state->shared->node_n);
  13422. } while (node_n == last);
  13423. }
  13424. // check if we should stop
  13425. if (node_n >= cgraph->n_nodes) break;
  13426. /* COMPUTE */
  13427. struct ggml_tensor * node = cgraph->nodes[node_n];
  13428. const int n_tasks = n_tasks_arr[node_n];
  13429. struct ggml_compute_params params = {
  13430. /*.type =*/ GGML_TASK_COMPUTE,
  13431. /*.ith =*/ state->ith,
  13432. /*.nth =*/ n_tasks,
  13433. /*.wsize =*/ cplan->work_size,
  13434. /*.wdata =*/ cplan->work_data,
  13435. };
  13436. if (state->ith < n_tasks) {
  13437. ggml_compute_forward(&params, node);
  13438. }
  13439. }
  13440. return GGML_EXIT_SUCCESS;
  13441. }
  13442. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13443. if (n_threads <= 0) {
  13444. n_threads = GGML_DEFAULT_N_THREADS;
  13445. }
  13446. size_t work_size = 0;
  13447. struct ggml_cplan cplan;
  13448. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13449. // thread scheduling for the different operations + work buffer size estimation
  13450. for (int i = 0; i < cgraph->n_nodes; i++) {
  13451. int n_tasks = 1;
  13452. struct ggml_tensor * node = cgraph->nodes[i];
  13453. switch (node->op) {
  13454. case GGML_OP_CPY:
  13455. case GGML_OP_DUP:
  13456. {
  13457. n_tasks = n_threads;
  13458. size_t cur = 0;
  13459. if (ggml_is_quantized(node->type)) {
  13460. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13461. }
  13462. work_size = MAX(work_size, cur);
  13463. } break;
  13464. case GGML_OP_ADD:
  13465. case GGML_OP_ADD1:
  13466. {
  13467. n_tasks = n_threads;
  13468. size_t cur = 0;
  13469. if (ggml_is_quantized(node->src[0]->type)) {
  13470. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13471. }
  13472. work_size = MAX(work_size, cur);
  13473. } break;
  13474. case GGML_OP_ACC:
  13475. {
  13476. n_tasks = n_threads;
  13477. size_t cur = 0;
  13478. if (ggml_is_quantized(node->src[0]->type)) {
  13479. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13480. }
  13481. work_size = MAX(work_size, cur);
  13482. } break;
  13483. case GGML_OP_SUB:
  13484. case GGML_OP_DIV:
  13485. case GGML_OP_SQR:
  13486. case GGML_OP_SQRT:
  13487. case GGML_OP_LOG:
  13488. case GGML_OP_SUM:
  13489. case GGML_OP_SUM_ROWS:
  13490. case GGML_OP_MEAN:
  13491. case GGML_OP_ARGMAX:
  13492. case GGML_OP_REPEAT:
  13493. case GGML_OP_REPEAT_BACK:
  13494. {
  13495. n_tasks = 1;
  13496. } break;
  13497. case GGML_OP_UNARY:
  13498. {
  13499. switch (ggml_get_unary_op(node)) {
  13500. case GGML_UNARY_OP_ABS:
  13501. case GGML_UNARY_OP_SGN:
  13502. case GGML_UNARY_OP_NEG:
  13503. case GGML_UNARY_OP_STEP:
  13504. case GGML_UNARY_OP_TANH:
  13505. case GGML_UNARY_OP_ELU:
  13506. case GGML_UNARY_OP_RELU:
  13507. {
  13508. n_tasks = 1;
  13509. } break;
  13510. case GGML_UNARY_OP_GELU:
  13511. case GGML_UNARY_OP_GELU_QUICK:
  13512. case GGML_UNARY_OP_SILU:
  13513. {
  13514. n_tasks = n_threads;
  13515. } break;
  13516. }
  13517. } break;
  13518. case GGML_OP_SILU_BACK:
  13519. case GGML_OP_MUL:
  13520. case GGML_OP_NORM:
  13521. case GGML_OP_RMS_NORM:
  13522. case GGML_OP_RMS_NORM_BACK:
  13523. {
  13524. n_tasks = n_threads;
  13525. } break;
  13526. case GGML_OP_MUL_MAT:
  13527. case GGML_OP_OUT_PROD:
  13528. {
  13529. n_tasks = n_threads;
  13530. // TODO: use different scheduling for different matrix sizes
  13531. //const int nr0 = ggml_nrows(node->src[0]);
  13532. //const int nr1 = ggml_nrows(node->src[1]);
  13533. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13534. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13535. size_t cur = 0;
  13536. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13537. #if defined(GGML_USE_CUBLAS)
  13538. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13539. n_tasks = 1; // TODO: this actually is doing nothing
  13540. // the threads are still spinning
  13541. } else
  13542. #elif defined(GGML_USE_CLBLAST)
  13543. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13544. n_tasks = 1; // TODO: this actually is doing nothing
  13545. // the threads are still spinning
  13546. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13547. } else
  13548. #endif
  13549. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13550. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13551. n_tasks = 1; // TODO: this actually is doing nothing
  13552. // the threads are still spinning
  13553. if (node->src[0]->type != GGML_TYPE_F32) {
  13554. // here we need memory just for single 2D matrix from src0
  13555. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13556. }
  13557. } else
  13558. #endif
  13559. if (node->src[1]->type != vec_dot_type) {
  13560. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13561. } else {
  13562. cur = 0;
  13563. }
  13564. work_size = MAX(work_size, cur);
  13565. } break;
  13566. case GGML_OP_SCALE:
  13567. {
  13568. n_tasks = 1;
  13569. } break;
  13570. case GGML_OP_SET:
  13571. case GGML_OP_CONT:
  13572. case GGML_OP_RESHAPE:
  13573. case GGML_OP_VIEW:
  13574. case GGML_OP_PERMUTE:
  13575. case GGML_OP_TRANSPOSE:
  13576. case GGML_OP_GET_ROWS:
  13577. case GGML_OP_GET_ROWS_BACK:
  13578. case GGML_OP_DIAG:
  13579. {
  13580. n_tasks = 1;
  13581. } break;
  13582. case GGML_OP_DIAG_MASK_ZERO:
  13583. case GGML_OP_DIAG_MASK_INF:
  13584. case GGML_OP_SOFT_MAX:
  13585. case GGML_OP_SOFT_MAX_BACK:
  13586. case GGML_OP_ROPE:
  13587. case GGML_OP_ROPE_BACK:
  13588. {
  13589. n_tasks = n_threads;
  13590. } break;
  13591. case GGML_OP_ALIBI:
  13592. {
  13593. n_tasks = 1; //TODO
  13594. } break;
  13595. case GGML_OP_CLAMP:
  13596. {
  13597. n_tasks = 1; //TODO
  13598. } break;
  13599. case GGML_OP_CONV_1D:
  13600. {
  13601. n_tasks = n_threads;
  13602. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13603. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13604. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13605. size_t cur = 0;
  13606. const int nk = node->src[0]->ne[0];
  13607. if (node->src[0]->type == GGML_TYPE_F16 &&
  13608. node->src[1]->type == GGML_TYPE_F32) {
  13609. cur = sizeof(ggml_fp16_t)*(
  13610. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13611. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13612. );
  13613. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13614. node->src[1]->type == GGML_TYPE_F32) {
  13615. cur = sizeof(float)*(
  13616. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13617. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13618. );
  13619. } else {
  13620. GGML_ASSERT(false);
  13621. }
  13622. work_size = MAX(work_size, cur);
  13623. } break;
  13624. case GGML_OP_CONV_2D:
  13625. {
  13626. n_tasks = n_threads;
  13627. const int64_t ne00 = node->src[0]->ne[0]; // W
  13628. const int64_t ne01 = node->src[0]->ne[1]; // H
  13629. const int64_t ne02 = node->src[0]->ne[2]; // C
  13630. const int64_t ne03 = node->src[0]->ne[3]; // N
  13631. const int64_t ne10 = node->src[1]->ne[0]; // W
  13632. const int64_t ne11 = node->src[1]->ne[1]; // H
  13633. const int64_t ne12 = node->src[1]->ne[2]; // C
  13634. const int64_t ne0 = node->ne[0];
  13635. const int64_t ne1 = node->ne[1];
  13636. const int64_t ne2 = node->ne[2];
  13637. const int64_t nk = ne00*ne01;
  13638. const int64_t ew0 = nk * ne02;
  13639. UNUSED(ne03);
  13640. UNUSED(ne2);
  13641. size_t cur = 0;
  13642. if (node->src[0]->type == GGML_TYPE_F16 &&
  13643. node->src[1]->type == GGML_TYPE_F32) {
  13644. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13645. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13646. node->src[1]->type == GGML_TYPE_F32) {
  13647. cur = sizeof(float)* (ne10*ne11*ne12);
  13648. } else {
  13649. GGML_ASSERT(false);
  13650. }
  13651. work_size = MAX(work_size, cur);
  13652. } break;
  13653. case GGML_OP_POOL_1D:
  13654. case GGML_OP_POOL_2D:
  13655. {
  13656. n_tasks = 1;
  13657. } break;
  13658. case GGML_OP_FLASH_ATTN:
  13659. {
  13660. n_tasks = n_threads;
  13661. size_t cur = 0;
  13662. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13663. if (node->src[1]->type == GGML_TYPE_F32) {
  13664. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13665. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13666. }
  13667. if (node->src[1]->type == GGML_TYPE_F16) {
  13668. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13669. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13670. }
  13671. work_size = MAX(work_size, cur);
  13672. } break;
  13673. case GGML_OP_FLASH_FF:
  13674. {
  13675. n_tasks = n_threads;
  13676. size_t cur = 0;
  13677. if (node->src[1]->type == GGML_TYPE_F32) {
  13678. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13679. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13680. }
  13681. if (node->src[1]->type == GGML_TYPE_F16) {
  13682. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13683. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13684. }
  13685. work_size = MAX(work_size, cur);
  13686. } break;
  13687. case GGML_OP_FLASH_ATTN_BACK:
  13688. {
  13689. n_tasks = n_threads;
  13690. size_t cur = 0;
  13691. const int64_t D = node->src[0]->ne[0];
  13692. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13693. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13694. if (node->src[1]->type == GGML_TYPE_F32) {
  13695. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13696. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13697. }
  13698. if (node->src[1]->type == GGML_TYPE_F16) {
  13699. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13700. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13701. }
  13702. work_size = MAX(work_size, cur);
  13703. } break;
  13704. case GGML_OP_WIN_PART:
  13705. case GGML_OP_WIN_UNPART:
  13706. case GGML_OP_MAP_UNARY:
  13707. case GGML_OP_MAP_BINARY:
  13708. case GGML_OP_MAP_CUSTOM1_F32:
  13709. case GGML_OP_MAP_CUSTOM2_F32:
  13710. case GGML_OP_MAP_CUSTOM3_F32:
  13711. {
  13712. n_tasks = 1;
  13713. } break;
  13714. case GGML_OP_MAP_CUSTOM1:
  13715. {
  13716. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13717. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13718. n_tasks = n_threads;
  13719. } else {
  13720. n_tasks = MIN(p->n_tasks, n_threads);
  13721. }
  13722. } break;
  13723. case GGML_OP_MAP_CUSTOM2:
  13724. {
  13725. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13726. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13727. n_tasks = n_threads;
  13728. } else {
  13729. n_tasks = MIN(p->n_tasks, n_threads);
  13730. }
  13731. } break;
  13732. case GGML_OP_MAP_CUSTOM3:
  13733. {
  13734. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13735. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13736. n_tasks = n_threads;
  13737. } else {
  13738. n_tasks = MIN(p->n_tasks, n_threads);
  13739. }
  13740. } break;
  13741. case GGML_OP_CROSS_ENTROPY_LOSS:
  13742. {
  13743. n_tasks = n_threads;
  13744. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13745. work_size = MAX(work_size, cur);
  13746. } break;
  13747. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13748. {
  13749. n_tasks = n_threads;
  13750. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13751. work_size = MAX(work_size, cur);
  13752. } break;
  13753. case GGML_OP_NONE:
  13754. {
  13755. n_tasks = 1;
  13756. } break;
  13757. case GGML_OP_COUNT:
  13758. {
  13759. GGML_ASSERT(false);
  13760. } break;
  13761. }
  13762. cplan.n_tasks[i] = n_tasks;
  13763. }
  13764. if (work_size > 0) {
  13765. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13766. }
  13767. cplan.n_threads = n_threads;
  13768. cplan.work_size = work_size;
  13769. cplan.work_data = NULL;
  13770. return cplan;
  13771. }
  13772. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13773. {
  13774. GGML_ASSERT(cplan);
  13775. GGML_ASSERT(cplan->n_threads > 0);
  13776. if (cplan->work_size > 0) {
  13777. GGML_ASSERT(cplan->work_data);
  13778. }
  13779. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13780. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13781. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13782. }
  13783. }
  13784. }
  13785. const int n_threads = cplan->n_threads;
  13786. struct ggml_compute_state_shared state_shared = {
  13787. /*.cgraph =*/ cgraph,
  13788. /*.cgraph_plan =*/ cplan,
  13789. /*.perf_node_start_cycles =*/ 0,
  13790. /*.perf_node_start_time_us =*/ 0,
  13791. /*.n_threads =*/ n_threads,
  13792. /*.n_active =*/ n_threads,
  13793. /*.node_n =*/ -1,
  13794. /*.abort_callback =*/ NULL,
  13795. /*.abort_callback_data =*/ NULL,
  13796. };
  13797. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13798. // create thread pool
  13799. if (n_threads > 1) {
  13800. for (int j = 1; j < n_threads; ++j) {
  13801. workers[j] = (struct ggml_compute_state) {
  13802. .thrd = 0,
  13803. .ith = j,
  13804. .shared = &state_shared,
  13805. };
  13806. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13807. GGML_ASSERT(rc == 0);
  13808. }
  13809. }
  13810. workers[0].ith = 0;
  13811. workers[0].shared = &state_shared;
  13812. const int64_t perf_start_cycles = ggml_perf_cycles();
  13813. const int64_t perf_start_time_us = ggml_perf_time_us();
  13814. // this is a work thread too
  13815. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13816. // don't leave affinity set on the main thread
  13817. clear_numa_thread_affinity();
  13818. // join or kill thread pool
  13819. if (n_threads > 1) {
  13820. for (int j = 1; j < n_threads; j++) {
  13821. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13822. GGML_ASSERT(rc == 0);
  13823. }
  13824. }
  13825. // performance stats (graph)
  13826. {
  13827. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13828. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13829. cgraph->perf_runs++;
  13830. cgraph->perf_cycles += perf_cycles_cur;
  13831. cgraph->perf_time_us += perf_time_us_cur;
  13832. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13833. __func__, cgraph->perf_runs,
  13834. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13835. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13836. (double) perf_time_us_cur / 1000.0,
  13837. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13838. }
  13839. return compute_status;
  13840. }
  13841. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13842. for (int i = 0; i < cgraph->n_nodes; i++) {
  13843. struct ggml_tensor * grad = cgraph->grads[i];
  13844. if (grad) {
  13845. ggml_set_zero(grad);
  13846. }
  13847. }
  13848. }
  13849. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13850. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13851. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13852. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13853. ggml_graph_compute(cgraph, &cplan);
  13854. }
  13855. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13856. for (int i = 0; i < cgraph->n_leafs; i++) {
  13857. struct ggml_tensor * leaf = cgraph->leafs[i];
  13858. if (strcmp(leaf->name, name) == 0) {
  13859. return leaf;
  13860. }
  13861. }
  13862. for (int i = 0; i < cgraph->n_nodes; i++) {
  13863. struct ggml_tensor * node = cgraph->nodes[i];
  13864. if (strcmp(node->name, name) == 0) {
  13865. return node;
  13866. }
  13867. }
  13868. return NULL;
  13869. }
  13870. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13871. const int64_t * ne = tensor->ne;
  13872. const size_t * nb = tensor->nb;
  13873. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13874. ggml_type_name(tensor->type),
  13875. ggml_op_name (tensor->op),
  13876. tensor->n_dims,
  13877. ne[0], ne[1], ne[2], ne[3],
  13878. nb[0], nb[1], nb[2], nb[3],
  13879. tensor->data,
  13880. tensor->name);
  13881. }
  13882. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13883. const int64_t * ne = tensor->ne;
  13884. const size_t * nb = tensor->nb;
  13885. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13886. arg,
  13887. ggml_type_name(tensor->type),
  13888. ggml_op_name (tensor->op),
  13889. tensor->n_dims,
  13890. ne[0], ne[1], ne[2], ne[3],
  13891. nb[0], nb[1], nb[2], nb[3],
  13892. tensor->data,
  13893. tensor->name);
  13894. }
  13895. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13896. uint64_t size_eval = 0;
  13897. // compute size of intermediate results
  13898. // TODO: does not take into account scratch buffers !!!!
  13899. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13900. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13901. }
  13902. // print
  13903. {
  13904. FILE * fout = stdout;
  13905. fprintf(fout, "\n");
  13906. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13907. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13908. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13909. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13910. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13911. // header
  13912. fprintf(fout, "\n");
  13913. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13914. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13915. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13916. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13917. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13918. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13919. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13920. }
  13921. // header
  13922. fprintf(fout, "\n");
  13923. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13924. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13925. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13926. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13927. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13928. if (cgraph->nodes[i]->src[j]) {
  13929. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13930. }
  13931. }
  13932. fprintf(fout, "\n");
  13933. }
  13934. fprintf(fout, "\n");
  13935. }
  13936. // write binary data
  13937. {
  13938. FILE * fout = fopen(fname, "wb");
  13939. if (!fout) {
  13940. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13941. return;
  13942. }
  13943. // header
  13944. {
  13945. const uint32_t magic = GGML_FILE_MAGIC;
  13946. const uint32_t version = GGML_FILE_VERSION;
  13947. const uint32_t n_leafs = cgraph->n_leafs;
  13948. const uint32_t nodes = cgraph->n_nodes;
  13949. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13950. fwrite(&version, sizeof(uint32_t), 1, fout);
  13951. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13952. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13953. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13954. }
  13955. // leafs
  13956. {
  13957. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13958. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13959. const uint32_t type = tensor->type;
  13960. const uint32_t op = tensor->op;
  13961. const uint32_t n_dims = tensor->n_dims;
  13962. fwrite(&type, sizeof(uint32_t), 1, fout);
  13963. fwrite(&op, sizeof(uint32_t), 1, fout);
  13964. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13965. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13966. const uint64_t ne = tensor->ne[j];
  13967. const uint64_t nb = tensor->nb[j];
  13968. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13969. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13970. }
  13971. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13972. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13973. // dump the data
  13974. // TODO: pad this to 32 byte boundary
  13975. {
  13976. const size_t size = ggml_nbytes(tensor);
  13977. fwrite(tensor->data, sizeof(char), size, fout);
  13978. }
  13979. }
  13980. }
  13981. // nodes
  13982. {
  13983. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13984. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13985. const uint32_t type = tensor->type;
  13986. const uint32_t op = tensor->op;
  13987. const uint32_t n_dims = tensor->n_dims;
  13988. fwrite(&type, sizeof(uint32_t), 1, fout);
  13989. fwrite(&op, sizeof(uint32_t), 1, fout);
  13990. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13991. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13992. const uint64_t ne = tensor->ne[j];
  13993. const uint64_t nb = tensor->nb[j];
  13994. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13995. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13996. }
  13997. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13998. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13999. // output the op arguments
  14000. {
  14001. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14002. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14003. args[j] = tensor->src[j];
  14004. }
  14005. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14006. if (args[j]) {
  14007. int32_t idx = -1;
  14008. // check if leaf
  14009. {
  14010. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14011. if (args[j] == cgraph->leafs[k]) {
  14012. idx = k;
  14013. break;
  14014. }
  14015. }
  14016. }
  14017. // check if node
  14018. if (idx == -1) {
  14019. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14020. if (args[j] == cgraph->nodes[k]) {
  14021. idx = GGML_MAX_NODES + k;
  14022. break;
  14023. }
  14024. }
  14025. }
  14026. if (idx == -1) {
  14027. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14028. return;
  14029. }
  14030. fwrite(&idx, sizeof(int32_t), 1, fout);
  14031. } else {
  14032. const int32_t nul = -1;
  14033. fwrite(&nul, sizeof(int32_t), 1, fout);
  14034. }
  14035. }
  14036. }
  14037. }
  14038. }
  14039. fclose(fout);
  14040. }
  14041. }
  14042. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14043. assert(*ctx_data == NULL);
  14044. assert(*ctx_eval == NULL);
  14045. struct ggml_cgraph result = { 0 };
  14046. struct ggml_tensor * data = NULL;
  14047. // read file into data
  14048. {
  14049. FILE * fin = fopen(fname, "rb");
  14050. if (!fin) {
  14051. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14052. return result;
  14053. }
  14054. size_t fsize = 0;
  14055. fseek(fin, 0, SEEK_END);
  14056. fsize = ftell(fin);
  14057. fseek(fin, 0, SEEK_SET);
  14058. // create the data context
  14059. {
  14060. const size_t overhead = 1*ggml_tensor_overhead();
  14061. struct ggml_init_params params = {
  14062. .mem_size = fsize + overhead,
  14063. .mem_buffer = NULL,
  14064. .no_alloc = false,
  14065. };
  14066. *ctx_data = ggml_init(params);
  14067. if (!*ctx_data) {
  14068. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14069. fclose(fin);
  14070. return result;
  14071. }
  14072. }
  14073. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14074. {
  14075. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14076. if (ret != fsize) {
  14077. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14078. fclose(fin);
  14079. return result;
  14080. }
  14081. }
  14082. fclose(fin);
  14083. }
  14084. // populate result
  14085. {
  14086. char * ptr = (char *) data->data;
  14087. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14088. if (magic != GGML_FILE_MAGIC) {
  14089. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14090. return result;
  14091. }
  14092. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14093. if (version != GGML_FILE_VERSION) {
  14094. fprintf(stderr, "%s: invalid version number\n", __func__);
  14095. return result;
  14096. }
  14097. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14098. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14099. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14100. result.n_leafs = n_leafs;
  14101. result.n_nodes = n_nodes;
  14102. // create the data context
  14103. {
  14104. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14105. struct ggml_init_params params = {
  14106. .mem_size = size_eval + overhead,
  14107. .mem_buffer = NULL,
  14108. .no_alloc = true,
  14109. };
  14110. *ctx_eval = ggml_init(params);
  14111. if (!*ctx_eval) {
  14112. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14113. return result;
  14114. }
  14115. }
  14116. // leafs
  14117. {
  14118. uint32_t type;
  14119. uint32_t op;
  14120. uint32_t n_dims;
  14121. for (uint32_t i = 0; i < n_leafs; ++i) {
  14122. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14123. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14124. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14125. int64_t ne[GGML_MAX_DIMS];
  14126. size_t nb[GGML_MAX_DIMS];
  14127. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14128. uint64_t ne_cur;
  14129. uint64_t nb_cur;
  14130. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14131. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14132. ne[j] = ne_cur;
  14133. nb[j] = nb_cur;
  14134. }
  14135. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14136. tensor->op = (enum ggml_op) op;
  14137. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14138. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14139. tensor->data = (void *) ptr;
  14140. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14141. tensor->nb[j] = nb[j];
  14142. }
  14143. result.leafs[i] = tensor;
  14144. ptr += ggml_nbytes(tensor);
  14145. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14146. }
  14147. }
  14148. ggml_set_no_alloc(*ctx_eval, false);
  14149. // nodes
  14150. {
  14151. uint32_t type;
  14152. uint32_t op;
  14153. uint32_t n_dims;
  14154. for (uint32_t i = 0; i < n_nodes; ++i) {
  14155. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14156. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14157. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14158. enum ggml_op eop = (enum ggml_op) op;
  14159. int64_t ne[GGML_MAX_DIMS];
  14160. size_t nb[GGML_MAX_DIMS];
  14161. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14162. uint64_t ne_cur;
  14163. uint64_t nb_cur;
  14164. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14165. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14166. ne[j] = ne_cur;
  14167. nb[j] = nb_cur;
  14168. }
  14169. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14170. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14171. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14172. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14173. // parse args
  14174. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14175. const int32_t arg_idx = ptr_arg_idx[j];
  14176. if (arg_idx == -1) {
  14177. continue;
  14178. }
  14179. if (arg_idx < GGML_MAX_NODES) {
  14180. args[j] = result.leafs[arg_idx];
  14181. } else {
  14182. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14183. }
  14184. }
  14185. // create the tensor
  14186. // "view" operations are handled differently
  14187. // TODO: handle inplace ops - currently a copy is always made
  14188. struct ggml_tensor * tensor = NULL;
  14189. switch (eop) {
  14190. // TODO: implement other view ops
  14191. case GGML_OP_RESHAPE:
  14192. {
  14193. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14194. } break;
  14195. case GGML_OP_VIEW:
  14196. {
  14197. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14198. size_t offs;
  14199. memcpy(&offs, ptr_op_params, sizeof(offs));
  14200. tensor->data = ((char *) tensor->data) + offs;
  14201. } break;
  14202. case GGML_OP_TRANSPOSE:
  14203. {
  14204. tensor = ggml_transpose(*ctx_eval, args[0]);
  14205. } break;
  14206. case GGML_OP_PERMUTE:
  14207. {
  14208. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14209. } break;
  14210. default:
  14211. {
  14212. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14213. tensor->op = eop;
  14214. } break;
  14215. }
  14216. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14217. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14218. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14219. tensor->nb[j] = nb[j];
  14220. }
  14221. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14222. tensor->src[j] = args[j];
  14223. }
  14224. result.nodes[i] = tensor;
  14225. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14226. }
  14227. }
  14228. }
  14229. return result;
  14230. }
  14231. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14232. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14233. GGML_PRINT("=== GRAPH ===\n");
  14234. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14235. for (int i = 0; i < cgraph->n_nodes; i++) {
  14236. struct ggml_tensor * node = cgraph->nodes[i];
  14237. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14238. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14239. i,
  14240. node->ne[0], node->ne[1], node->ne[2],
  14241. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14242. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14243. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14244. (double) node->perf_time_us / 1000.0,
  14245. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14246. }
  14247. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14248. for (int i = 0; i < cgraph->n_leafs; i++) {
  14249. struct ggml_tensor * node = cgraph->leafs[i];
  14250. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14251. i,
  14252. node->ne[0], node->ne[1],
  14253. ggml_op_name(node->op));
  14254. }
  14255. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14256. if (perf_total_per_op_us[i] == 0) {
  14257. continue;
  14258. }
  14259. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14260. }
  14261. GGML_PRINT("========================================\n");
  14262. }
  14263. // check if node is part of the graph
  14264. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14265. if (cgraph == NULL) {
  14266. return true;
  14267. }
  14268. for (int i = 0; i < cgraph->n_nodes; i++) {
  14269. if (cgraph->nodes[i] == node) {
  14270. return true;
  14271. }
  14272. }
  14273. return false;
  14274. }
  14275. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14276. for (int i = 0; i < cgraph->n_nodes; i++) {
  14277. struct ggml_tensor * parent = cgraph->nodes[i];
  14278. if (parent->grad == node) {
  14279. return parent;
  14280. }
  14281. }
  14282. return NULL;
  14283. }
  14284. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14285. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14286. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14287. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14288. gparent0 ? (void *) gparent0 : (void *) parent,
  14289. gparent0 ? "g" : "x",
  14290. gparent ? (void *) gparent : (void *) node,
  14291. gparent ? "g" : "x",
  14292. gparent ? "empty" : "vee",
  14293. gparent ? "dashed" : "solid",
  14294. label);
  14295. }
  14296. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14297. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14298. (void *) parent, "x",
  14299. (void *) node, "x",
  14300. label);
  14301. }
  14302. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14303. char color[16];
  14304. FILE * fp = fopen(filename, "w");
  14305. GGML_ASSERT(fp);
  14306. fprintf(fp, "digraph G {\n");
  14307. fprintf(fp, " newrank = true;\n");
  14308. fprintf(fp, " rankdir = LR;\n");
  14309. for (int i = 0; i < gb->n_nodes; i++) {
  14310. struct ggml_tensor * node = gb->nodes[i];
  14311. if (ggml_graph_get_parent(gb, node) != NULL) {
  14312. continue;
  14313. }
  14314. if (node->is_param) {
  14315. snprintf(color, sizeof(color), "yellow");
  14316. } else if (node->grad) {
  14317. if (ggml_graph_find(gf, node)) {
  14318. snprintf(color, sizeof(color), "green");
  14319. } else {
  14320. snprintf(color, sizeof(color), "lightblue");
  14321. }
  14322. } else {
  14323. snprintf(color, sizeof(color), "white");
  14324. }
  14325. fprintf(fp, " \"%p\" [ "
  14326. "style = filled; fillcolor = %s; shape = record; "
  14327. "label=\"",
  14328. (void *) node, color);
  14329. if (strlen(node->name) > 0) {
  14330. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14331. } else {
  14332. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14333. }
  14334. if (node->n_dims == 2) {
  14335. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14336. } else {
  14337. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14338. }
  14339. if (node->grad) {
  14340. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14341. } else {
  14342. fprintf(fp, "\"; ]\n");
  14343. }
  14344. }
  14345. for (int i = 0; i < gb->n_leafs; i++) {
  14346. struct ggml_tensor * node = gb->leafs[i];
  14347. snprintf(color, sizeof(color), "pink");
  14348. fprintf(fp, " \"%p\" [ "
  14349. "style = filled; fillcolor = %s; shape = record; "
  14350. "label=\"<x>",
  14351. (void *) node, color);
  14352. if (strlen(node->name) > 0) {
  14353. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14354. } else {
  14355. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14356. }
  14357. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14358. if (ggml_nelements(node) < 5) {
  14359. fprintf(fp, " | (");
  14360. for (int j = 0; j < ggml_nelements(node); j++) {
  14361. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14362. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14363. }
  14364. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14365. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14366. }
  14367. else {
  14368. fprintf(fp, "#");
  14369. }
  14370. if (j < ggml_nelements(node) - 1) {
  14371. fprintf(fp, ", ");
  14372. }
  14373. }
  14374. fprintf(fp, ")");
  14375. }
  14376. fprintf(fp, "\"; ]\n");
  14377. }
  14378. for (int i = 0; i < gb->n_nodes; i++) {
  14379. struct ggml_tensor * node = gb->nodes[i];
  14380. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14381. if (node->src[j]) {
  14382. char label[16];
  14383. snprintf(label, sizeof(label), "src %d", j);
  14384. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14385. }
  14386. }
  14387. }
  14388. for (int i = 0; i < gb->n_leafs; i++) {
  14389. struct ggml_tensor * node = gb->leafs[i];
  14390. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14391. if (node->src[j]) {
  14392. char label[16];
  14393. snprintf(label, sizeof(label), "src %d", j);
  14394. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14395. }
  14396. }
  14397. }
  14398. fprintf(fp, "}\n");
  14399. fclose(fp);
  14400. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14401. }
  14402. ////////////////////////////////////////////////////////////////////////////////
  14403. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14404. int i = 0;
  14405. for (int p = 0; p < np; ++p) {
  14406. const int64_t ne = ggml_nelements(ps[p]) ;
  14407. // TODO: add function to set tensor from array
  14408. for (int64_t j = 0; j < ne; ++j) {
  14409. ggml_set_f32_1d(ps[p], j, x[i++]);
  14410. }
  14411. }
  14412. }
  14413. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14414. int i = 0;
  14415. for (int p = 0; p < np; ++p) {
  14416. const int64_t ne = ggml_nelements(ps[p]) ;
  14417. // TODO: add function to get all elements at once
  14418. for (int64_t j = 0; j < ne; ++j) {
  14419. x[i++] = ggml_get_f32_1d(ps[p], j);
  14420. }
  14421. }
  14422. }
  14423. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14424. int i = 0;
  14425. for (int p = 0; p < np; ++p) {
  14426. const int64_t ne = ggml_nelements(ps[p]) ;
  14427. // TODO: add function to get all elements at once
  14428. for (int64_t j = 0; j < ne; ++j) {
  14429. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14430. }
  14431. }
  14432. }
  14433. //
  14434. // ADAM
  14435. //
  14436. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14437. //
  14438. static enum ggml_opt_result ggml_opt_adam(
  14439. struct ggml_context * ctx,
  14440. struct ggml_opt_context * opt,
  14441. struct ggml_opt_params params,
  14442. struct ggml_tensor * f,
  14443. struct ggml_cgraph * gf,
  14444. struct ggml_cgraph * gb) {
  14445. GGML_ASSERT(ggml_is_scalar(f));
  14446. // these will store the parameters we want to optimize
  14447. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14448. int np = 0;
  14449. int nx = 0;
  14450. for (int i = 0; i < gf->n_nodes; ++i) {
  14451. if (gf->nodes[i]->is_param) {
  14452. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14453. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14454. ps[np++] = gf->nodes[i];
  14455. nx += ggml_nelements(gf->nodes[i]);
  14456. }
  14457. }
  14458. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14459. int iter = opt->iter;
  14460. ggml_opt_init(opt->ctx, opt, params, nx);
  14461. opt->iter = iter;
  14462. }
  14463. // constants
  14464. const float sched = params.adam.sched;
  14465. const float decay = params.adam.decay * sched;
  14466. const float alpha = params.adam.alpha * sched;
  14467. const float beta1 = params.adam.beta1;
  14468. const float beta2 = params.adam.beta2;
  14469. const float eps = params.adam.eps;
  14470. float * x = opt->adam.x->data; // view of the parameters
  14471. float * g1 = opt->adam.g1->data; // gradient
  14472. float * g2 = opt->adam.g2->data; // gradient squared
  14473. float * m = opt->adam.m->data; // first moment
  14474. float * v = opt->adam.v->data; // second moment
  14475. float * mh = opt->adam.mh->data; // first moment hat
  14476. float * vh = opt->adam.vh->data; // second moment hat
  14477. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14478. // update view
  14479. ggml_opt_get_params(np, ps, x);
  14480. // compute the function value
  14481. ggml_graph_reset (gf);
  14482. ggml_set_f32 (f->grad, 1.0f);
  14483. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14484. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14485. opt->adam.fx_best = opt->adam.fx_prev;
  14486. if (pf) {
  14487. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14488. }
  14489. // initialize
  14490. if (opt->just_initialized) {
  14491. opt->adam.n_no_improvement = 0;
  14492. opt->just_initialized = false;
  14493. }
  14494. float * fx_best = &opt->adam.fx_best;
  14495. float * fx_prev = &opt->adam.fx_prev;
  14496. int * n_no_improvement = &opt->adam.n_no_improvement;
  14497. int iter0 = opt->iter;
  14498. // run the optimizer
  14499. for (int t = 0; t < params.adam.n_iter; ++t) {
  14500. opt->iter = iter0 + t + 1;
  14501. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14502. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14503. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14504. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14505. for (int i = 0; i < np; ++i) {
  14506. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14507. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14508. }
  14509. const int64_t t_start_wall = ggml_time_us();
  14510. const int64_t t_start_cpu = ggml_cycles();
  14511. UNUSED(t_start_wall);
  14512. UNUSED(t_start_cpu);
  14513. {
  14514. // update the gradient
  14515. ggml_opt_get_grad(np, ps, g1);
  14516. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14517. ggml_vec_scale_f32(nx, m, beta1);
  14518. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14519. // g2 = g1^2
  14520. ggml_vec_sqr_f32 (nx, g2, g1);
  14521. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14522. ggml_vec_scale_f32(nx, v, beta2);
  14523. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14524. // m^hat = m_t / (1 - beta1^t)
  14525. // v^hat = v_t / (1 - beta2^t)
  14526. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14527. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14528. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14529. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14530. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14531. ggml_vec_cpy_f32 (nx, mh, m);
  14532. ggml_vec_cpy_f32 (nx, vh, v);
  14533. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14534. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14535. ggml_vec_sqrt_f32 (nx, vh, vh);
  14536. ggml_vec_acc1_f32 (nx, vh, eps);
  14537. ggml_vec_div_f32 (nx, mh, mh, vh);
  14538. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14539. ggml_vec_sub_f32 (nx, x, x, mh);
  14540. // update the parameters
  14541. ggml_opt_set_params(np, ps, x);
  14542. }
  14543. ggml_graph_reset (gf);
  14544. ggml_set_f32 (f->grad, 1.0f);
  14545. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14546. const float fx = ggml_get_f32_1d(f, 0);
  14547. // check convergence
  14548. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14549. GGML_PRINT_DEBUG("converged\n");
  14550. return GGML_OPT_OK;
  14551. }
  14552. // delta-based convergence test
  14553. if (pf != NULL) {
  14554. // need at least params.past iterations to start checking for convergence
  14555. if (params.past <= iter0 + t) {
  14556. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14557. if (fabsf(rate) < params.delta) {
  14558. return GGML_OPT_OK;
  14559. }
  14560. }
  14561. pf[(iter0 + t)%params.past] = fx;
  14562. }
  14563. // check for improvement
  14564. if (params.max_no_improvement > 0) {
  14565. if (fx_best[0] > fx) {
  14566. fx_best[0] = fx;
  14567. n_no_improvement[0] = 0;
  14568. } else {
  14569. ++n_no_improvement[0];
  14570. if (n_no_improvement[0] >= params.max_no_improvement) {
  14571. return GGML_OPT_OK;
  14572. }
  14573. }
  14574. }
  14575. fx_prev[0] = fx;
  14576. {
  14577. const int64_t t_end_cpu = ggml_cycles();
  14578. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14579. UNUSED(t_end_cpu);
  14580. const int64_t t_end_wall = ggml_time_us();
  14581. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14582. UNUSED(t_end_wall);
  14583. }
  14584. }
  14585. return GGML_OPT_DID_NOT_CONVERGE;
  14586. }
  14587. //
  14588. // L-BFGS
  14589. //
  14590. // the L-BFGS implementation below is based on the following implementation:
  14591. //
  14592. // https://github.com/chokkan/liblbfgs
  14593. //
  14594. struct ggml_lbfgs_iteration_data {
  14595. float alpha;
  14596. float ys;
  14597. float * s;
  14598. float * y;
  14599. };
  14600. static enum ggml_opt_result linesearch_backtracking(
  14601. struct ggml_context * ctx,
  14602. const struct ggml_opt_params * params,
  14603. int nx,
  14604. float * x,
  14605. float * fx,
  14606. float * g,
  14607. float * d,
  14608. float * step,
  14609. const float * xp,
  14610. struct ggml_tensor * f,
  14611. struct ggml_cgraph * gf,
  14612. struct ggml_cgraph * gb,
  14613. const int np,
  14614. struct ggml_tensor * ps[]) {
  14615. int count = 0;
  14616. float width = 0.0f;
  14617. float dg = 0.0f;
  14618. float finit = 0.0f;
  14619. float dginit = 0.0f;
  14620. float dgtest = 0.0f;
  14621. const float dec = 0.5f;
  14622. const float inc = 2.1f;
  14623. if (*step <= 0.f) {
  14624. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14625. }
  14626. // compute the initial gradient in the search direction
  14627. ggml_vec_dot_f32(nx, &dginit, g, d);
  14628. // make sure that d points to a descent direction
  14629. if (0 < dginit) {
  14630. return GGML_LINESEARCH_FAIL;
  14631. }
  14632. // initialize local variables
  14633. finit = *fx;
  14634. dgtest = params->lbfgs.ftol*dginit;
  14635. while (true) {
  14636. ggml_vec_cpy_f32(nx, x, xp);
  14637. ggml_vec_mad_f32(nx, x, d, *step);
  14638. // evaluate the function and gradient values
  14639. {
  14640. ggml_opt_set_params(np, ps, x);
  14641. ggml_graph_reset (gf);
  14642. ggml_set_f32 (f->grad, 1.0f);
  14643. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14644. ggml_opt_get_grad(np, ps, g);
  14645. *fx = ggml_get_f32_1d(f, 0);
  14646. }
  14647. ++count;
  14648. if (*fx > finit + (*step)*dgtest) {
  14649. width = dec;
  14650. } else {
  14651. // Armijo condition is satisfied
  14652. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14653. return count;
  14654. }
  14655. ggml_vec_dot_f32(nx, &dg, g, d);
  14656. // check the Wolfe condition
  14657. if (dg < params->lbfgs.wolfe * dginit) {
  14658. width = inc;
  14659. } else {
  14660. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14661. // regular Wolfe conditions
  14662. return count;
  14663. }
  14664. if(dg > -params->lbfgs.wolfe*dginit) {
  14665. width = dec;
  14666. } else {
  14667. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14668. return count;
  14669. }
  14670. return count;
  14671. }
  14672. }
  14673. if (*step < params->lbfgs.min_step) {
  14674. return GGML_LINESEARCH_MINIMUM_STEP;
  14675. }
  14676. if (*step > params->lbfgs.max_step) {
  14677. return GGML_LINESEARCH_MAXIMUM_STEP;
  14678. }
  14679. if (params->lbfgs.max_linesearch <= count) {
  14680. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14681. }
  14682. (*step) *= width;
  14683. }
  14684. return GGML_LINESEARCH_FAIL;
  14685. }
  14686. static enum ggml_opt_result ggml_opt_lbfgs(
  14687. struct ggml_context * ctx,
  14688. struct ggml_opt_context * opt,
  14689. struct ggml_opt_params params,
  14690. struct ggml_tensor * f,
  14691. struct ggml_cgraph * gf,
  14692. struct ggml_cgraph * gb) {
  14693. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14694. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14695. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14696. return GGML_OPT_INVALID_WOLFE;
  14697. }
  14698. }
  14699. const int m = params.lbfgs.m;
  14700. // these will store the parameters we want to optimize
  14701. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14702. int np = 0;
  14703. int nx = 0;
  14704. for (int i = 0; i < gf->n_nodes; ++i) {
  14705. if (gf->nodes[i]->is_param) {
  14706. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14707. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14708. ps[np++] = gf->nodes[i];
  14709. nx += ggml_nelements(gf->nodes[i]);
  14710. }
  14711. }
  14712. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14713. int iter = opt->iter;
  14714. ggml_opt_init(ctx, opt, params, nx);
  14715. opt->iter = iter;
  14716. }
  14717. float * x = opt->lbfgs.x->data; // current parameters
  14718. float * xp = opt->lbfgs.xp->data; // previous parameters
  14719. float * g = opt->lbfgs.g->data; // current gradient
  14720. float * gp = opt->lbfgs.gp->data; // previous gradient
  14721. float * d = opt->lbfgs.d->data; // search direction
  14722. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14723. float fx = 0.0f; // cost function value
  14724. float xnorm = 0.0f; // ||x||
  14725. float gnorm = 0.0f; // ||g||
  14726. // initialize x from the graph nodes
  14727. ggml_opt_get_params(np, ps, x);
  14728. // the L-BFGS memory
  14729. float * lm_alpha = opt->lbfgs.lmal->data;
  14730. float * lm_ys = opt->lbfgs.lmys->data;
  14731. float * lm_s = opt->lbfgs.lms->data;
  14732. float * lm_y = opt->lbfgs.lmy->data;
  14733. // evaluate the function value and its gradient
  14734. {
  14735. ggml_opt_set_params(np, ps, x);
  14736. ggml_graph_reset (gf);
  14737. ggml_set_f32 (f->grad, 1.0f);
  14738. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14739. ggml_opt_get_grad(np, ps, g);
  14740. fx = ggml_get_f32_1d(f, 0);
  14741. }
  14742. // search direction = -gradient
  14743. ggml_vec_neg_f32(nx, d, g);
  14744. // ||x||, ||g||
  14745. ggml_vec_norm_f32(nx, &xnorm, x);
  14746. ggml_vec_norm_f32(nx, &gnorm, g);
  14747. if (xnorm < 1.0f) {
  14748. xnorm = 1.0f;
  14749. }
  14750. // already optimized
  14751. if (gnorm/xnorm <= params.lbfgs.eps) {
  14752. return GGML_OPT_OK;
  14753. }
  14754. if (opt->just_initialized) {
  14755. if (pf) {
  14756. pf[0] = fx;
  14757. }
  14758. opt->lbfgs.fx_best = fx;
  14759. // initial step
  14760. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14761. opt->lbfgs.j = 0;
  14762. opt->lbfgs.k = 1;
  14763. opt->lbfgs.end = 0;
  14764. opt->lbfgs.n_no_improvement = 0;
  14765. opt->just_initialized = false;
  14766. }
  14767. float * fx_best = &opt->lbfgs.fx_best;
  14768. float * step = &opt->lbfgs.step;
  14769. int * j = &opt->lbfgs.j;
  14770. int * k = &opt->lbfgs.k;
  14771. int * end = &opt->lbfgs.end;
  14772. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14773. int ls = 0;
  14774. int bound = 0;
  14775. float ys = 0.0f;
  14776. float yy = 0.0f;
  14777. float beta = 0.0f;
  14778. int it = 0;
  14779. while (true) {
  14780. // store the current position and gradient vectors
  14781. ggml_vec_cpy_f32(nx, xp, x);
  14782. ggml_vec_cpy_f32(nx, gp, g);
  14783. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14784. if (ls < 0) {
  14785. // linesearch failed - go back to the previous point and return
  14786. ggml_vec_cpy_f32(nx, x, xp);
  14787. ggml_vec_cpy_f32(nx, g, gp);
  14788. return ls;
  14789. }
  14790. ggml_vec_norm_f32(nx, &xnorm, x);
  14791. ggml_vec_norm_f32(nx, &gnorm, g);
  14792. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14793. if (xnorm < 1.0f) {
  14794. xnorm = 1.0f;
  14795. }
  14796. if (gnorm/xnorm <= params.lbfgs.eps) {
  14797. // converged
  14798. return GGML_OPT_OK;
  14799. }
  14800. // delta-based convergence test
  14801. if (pf != NULL) {
  14802. // need at least params.past iterations to start checking for convergence
  14803. if (params.past <= k[0]) {
  14804. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14805. if (fabsf(rate) < params.delta) {
  14806. return GGML_OPT_OK;
  14807. }
  14808. }
  14809. pf[k[0]%params.past] = fx;
  14810. }
  14811. // check for improvement
  14812. if (params.max_no_improvement > 0) {
  14813. if (fx < fx_best[0]) {
  14814. fx_best[0] = fx;
  14815. n_no_improvement[0] = 0;
  14816. } else {
  14817. n_no_improvement[0]++;
  14818. if (n_no_improvement[0] >= params.max_no_improvement) {
  14819. return GGML_OPT_OK;
  14820. }
  14821. }
  14822. }
  14823. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14824. // reached the maximum number of iterations
  14825. return GGML_OPT_DID_NOT_CONVERGE;
  14826. }
  14827. // update vectors s and y:
  14828. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14829. // y_{k+1} = g_{k+1} - g_{k}.
  14830. //
  14831. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14832. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14833. // compute scalars ys and yy:
  14834. // ys = y^t \cdot s -> 1 / \rho.
  14835. // yy = y^t \cdot y.
  14836. //
  14837. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14838. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14839. lm_ys[end[0]] = ys;
  14840. // find new search direction
  14841. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14842. bound = (m <= k[0]) ? m : k[0];
  14843. k[0]++;
  14844. it++;
  14845. end[0] = (end[0] + 1)%m;
  14846. // initialize search direction with -g
  14847. ggml_vec_neg_f32(nx, d, g);
  14848. j[0] = end[0];
  14849. for (int i = 0; i < bound; ++i) {
  14850. j[0] = (j[0] + m - 1) % m;
  14851. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14852. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14853. lm_alpha[j[0]] /= lm_ys[j[0]];
  14854. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14855. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14856. }
  14857. ggml_vec_scale_f32(nx, d, ys/yy);
  14858. for (int i = 0; i < bound; ++i) {
  14859. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14860. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14861. beta /= lm_ys[j[0]];
  14862. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14863. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14864. j[0] = (j[0] + 1)%m;
  14865. }
  14866. step[0] = 1.0;
  14867. }
  14868. return GGML_OPT_DID_NOT_CONVERGE;
  14869. }
  14870. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14871. struct ggml_opt_params result;
  14872. switch (type) {
  14873. case GGML_OPT_ADAM:
  14874. {
  14875. result = (struct ggml_opt_params) {
  14876. .type = GGML_OPT_ADAM,
  14877. .n_threads = 1,
  14878. .past = 0,
  14879. .delta = 1e-5f,
  14880. .max_no_improvement = 100,
  14881. .print_forward_graph = true,
  14882. .print_backward_graph = true,
  14883. .adam = {
  14884. .n_iter = 10000,
  14885. .sched = 1.000f,
  14886. .decay = 0.001f,
  14887. .alpha = 0.001f,
  14888. .beta1 = 0.9f,
  14889. .beta2 = 0.999f,
  14890. .eps = 1e-8f,
  14891. .eps_f = 1e-5f,
  14892. .eps_g = 1e-3f,
  14893. },
  14894. };
  14895. } break;
  14896. case GGML_OPT_LBFGS:
  14897. {
  14898. result = (struct ggml_opt_params) {
  14899. .type = GGML_OPT_LBFGS,
  14900. .n_threads = 1,
  14901. .past = 0,
  14902. .delta = 1e-5f,
  14903. .max_no_improvement = 0,
  14904. .print_forward_graph = true,
  14905. .print_backward_graph = true,
  14906. .lbfgs = {
  14907. .m = 6,
  14908. .n_iter = 100,
  14909. .max_linesearch = 20,
  14910. .eps = 1e-5f,
  14911. .ftol = 1e-4f,
  14912. .wolfe = 0.9f,
  14913. .min_step = 1e-20f,
  14914. .max_step = 1e+20f,
  14915. .linesearch = GGML_LINESEARCH_DEFAULT,
  14916. },
  14917. };
  14918. } break;
  14919. }
  14920. return result;
  14921. }
  14922. GGML_API void ggml_opt_init(
  14923. struct ggml_context * ctx,
  14924. struct ggml_opt_context * opt,
  14925. struct ggml_opt_params params,
  14926. int64_t nx) {
  14927. opt->ctx = ctx;
  14928. opt->params = params;
  14929. opt->iter = 0;
  14930. opt->nx = nx;
  14931. opt->just_initialized = true;
  14932. switch (opt->params.type) {
  14933. case GGML_OPT_ADAM:
  14934. {
  14935. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14936. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14937. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14938. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14939. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14940. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14941. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->adam.pf = params.past > 0
  14943. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14944. : NULL;
  14945. ggml_set_zero(opt->adam.x);
  14946. ggml_set_zero(opt->adam.g1);
  14947. ggml_set_zero(opt->adam.g2);
  14948. ggml_set_zero(opt->adam.m);
  14949. ggml_set_zero(opt->adam.v);
  14950. ggml_set_zero(opt->adam.mh);
  14951. ggml_set_zero(opt->adam.vh);
  14952. if (opt->adam.pf) {
  14953. ggml_set_zero(opt->adam.pf);
  14954. }
  14955. } break;
  14956. case GGML_OPT_LBFGS:
  14957. {
  14958. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14959. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14960. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14961. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14962. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14963. opt->lbfgs.pf = params.past > 0
  14964. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14965. : NULL;
  14966. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14967. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14968. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14969. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14970. ggml_set_zero(opt->lbfgs.x);
  14971. ggml_set_zero(opt->lbfgs.xp);
  14972. ggml_set_zero(opt->lbfgs.g);
  14973. ggml_set_zero(opt->lbfgs.gp);
  14974. ggml_set_zero(opt->lbfgs.d);
  14975. if (opt->lbfgs.pf) {
  14976. ggml_set_zero(opt->lbfgs.pf);
  14977. }
  14978. ggml_set_zero(opt->lbfgs.lmal);
  14979. ggml_set_zero(opt->lbfgs.lmys);
  14980. ggml_set_zero(opt->lbfgs.lms);
  14981. ggml_set_zero(opt->lbfgs.lmy);
  14982. } break;
  14983. }
  14984. }
  14985. enum ggml_opt_result ggml_opt(
  14986. struct ggml_context * ctx,
  14987. struct ggml_opt_params params,
  14988. struct ggml_tensor * f) {
  14989. bool free_ctx = false;
  14990. if (ctx == NULL) {
  14991. struct ggml_init_params params_ctx = {
  14992. .mem_size = 16*1024*1024,
  14993. .mem_buffer = NULL,
  14994. .no_alloc = false,
  14995. };
  14996. ctx = ggml_init(params_ctx);
  14997. if (ctx == NULL) {
  14998. return GGML_OPT_NO_CONTEXT;
  14999. }
  15000. free_ctx = true;
  15001. }
  15002. enum ggml_opt_result result = GGML_OPT_OK;
  15003. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15004. ggml_opt_init(ctx, opt, params, 0);
  15005. result = ggml_opt_resume(ctx, opt, f);
  15006. if (free_ctx) {
  15007. ggml_free(ctx);
  15008. }
  15009. return result;
  15010. }
  15011. enum ggml_opt_result ggml_opt_resume(
  15012. struct ggml_context * ctx,
  15013. struct ggml_opt_context * opt,
  15014. struct ggml_tensor * f) {
  15015. // build forward + backward compute graphs
  15016. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15017. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15018. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15019. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15020. *gf = ggml_build_forward (f);
  15021. *gb = ggml_build_backward(ctx, gf, true);
  15022. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15023. }
  15024. enum ggml_opt_result ggml_opt_resume_g(
  15025. struct ggml_context * ctx,
  15026. struct ggml_opt_context * opt,
  15027. struct ggml_tensor * f,
  15028. struct ggml_cgraph * gf,
  15029. struct ggml_cgraph * gb) {
  15030. // build forward + backward compute graphs
  15031. enum ggml_opt_result result = GGML_OPT_OK;
  15032. switch (opt->params.type) {
  15033. case GGML_OPT_ADAM:
  15034. {
  15035. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15036. } break;
  15037. case GGML_OPT_LBFGS:
  15038. {
  15039. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15040. } break;
  15041. }
  15042. if (opt->params.print_forward_graph) {
  15043. ggml_graph_print (gf);
  15044. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15045. }
  15046. if (opt->params.print_backward_graph) {
  15047. ggml_graph_print (gb);
  15048. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15049. }
  15050. return result;
  15051. }
  15052. ////////////////////////////////////////////////////////////////////////////////
  15053. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15054. assert(k % QK4_0 == 0);
  15055. const int nb = k / QK4_0;
  15056. for (int b = 0; b < n; b += k) {
  15057. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15058. quantize_row_q4_0_reference(src + b, y, k);
  15059. for (int i = 0; i < nb; i++) {
  15060. for (int j = 0; j < QK4_0; j += 2) {
  15061. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15062. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15063. hist[vi0]++;
  15064. hist[vi1]++;
  15065. }
  15066. }
  15067. }
  15068. return (n/QK4_0*sizeof(block_q4_0));
  15069. }
  15070. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15071. assert(k % QK4_1 == 0);
  15072. const int nb = k / QK4_1;
  15073. for (int b = 0; b < n; b += k) {
  15074. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15075. quantize_row_q4_1_reference(src + b, y, k);
  15076. for (int i = 0; i < nb; i++) {
  15077. for (int j = 0; j < QK4_1; j += 2) {
  15078. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15079. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15080. hist[vi0]++;
  15081. hist[vi1]++;
  15082. }
  15083. }
  15084. }
  15085. return (n/QK4_1*sizeof(block_q4_1));
  15086. }
  15087. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15088. assert(k % QK5_0 == 0);
  15089. const int nb = k / QK5_0;
  15090. for (int b = 0; b < n; b += k) {
  15091. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15092. quantize_row_q5_0_reference(src + b, y, k);
  15093. for (int i = 0; i < nb; i++) {
  15094. uint32_t qh;
  15095. memcpy(&qh, &y[i].qh, sizeof(qh));
  15096. for (int j = 0; j < QK5_0; j += 2) {
  15097. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15098. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15099. // cast to 16 bins
  15100. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15101. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15102. hist[vi0]++;
  15103. hist[vi1]++;
  15104. }
  15105. }
  15106. }
  15107. return (n/QK5_0*sizeof(block_q5_0));
  15108. }
  15109. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15110. assert(k % QK5_1 == 0);
  15111. const int nb = k / QK5_1;
  15112. for (int b = 0; b < n; b += k) {
  15113. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15114. quantize_row_q5_1_reference(src + b, y, k);
  15115. for (int i = 0; i < nb; i++) {
  15116. uint32_t qh;
  15117. memcpy(&qh, &y[i].qh, sizeof(qh));
  15118. for (int j = 0; j < QK5_1; j += 2) {
  15119. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15120. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15121. // cast to 16 bins
  15122. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15123. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15124. hist[vi0]++;
  15125. hist[vi1]++;
  15126. }
  15127. }
  15128. }
  15129. return (n/QK5_1*sizeof(block_q5_1));
  15130. }
  15131. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15132. assert(k % QK8_0 == 0);
  15133. const int nb = k / QK8_0;
  15134. for (int b = 0; b < n; b += k) {
  15135. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15136. quantize_row_q8_0_reference(src + b, y, k);
  15137. for (int i = 0; i < nb; i++) {
  15138. for (int j = 0; j < QK8_0; ++j) {
  15139. const int8_t vi = y[i].qs[j];
  15140. hist[vi/16 + 8]++;
  15141. }
  15142. }
  15143. }
  15144. return (n/QK8_0*sizeof(block_q8_0));
  15145. }
  15146. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15147. size_t result = 0;
  15148. switch (type) {
  15149. case GGML_TYPE_Q4_0:
  15150. {
  15151. GGML_ASSERT(start % QK4_0 == 0);
  15152. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15153. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15154. } break;
  15155. case GGML_TYPE_Q4_1:
  15156. {
  15157. GGML_ASSERT(start % QK4_1 == 0);
  15158. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15159. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15160. } break;
  15161. case GGML_TYPE_Q5_0:
  15162. {
  15163. GGML_ASSERT(start % QK5_0 == 0);
  15164. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15165. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15166. } break;
  15167. case GGML_TYPE_Q5_1:
  15168. {
  15169. GGML_ASSERT(start % QK5_1 == 0);
  15170. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15171. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15172. } break;
  15173. case GGML_TYPE_Q8_0:
  15174. {
  15175. GGML_ASSERT(start % QK8_0 == 0);
  15176. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15177. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15178. } break;
  15179. #ifdef GGML_USE_K_QUANTS
  15180. case GGML_TYPE_Q2_K:
  15181. {
  15182. GGML_ASSERT(start % QK_K == 0);
  15183. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15184. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15185. } break;
  15186. case GGML_TYPE_Q3_K:
  15187. {
  15188. GGML_ASSERT(start % QK_K == 0);
  15189. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15190. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15191. } break;
  15192. case GGML_TYPE_Q4_K:
  15193. {
  15194. GGML_ASSERT(start % QK_K == 0);
  15195. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15196. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15197. } break;
  15198. case GGML_TYPE_Q5_K:
  15199. {
  15200. GGML_ASSERT(start % QK_K == 0);
  15201. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15202. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15203. } break;
  15204. case GGML_TYPE_Q6_K:
  15205. {
  15206. GGML_ASSERT(start % QK_K == 0);
  15207. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15208. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15209. } break;
  15210. #endif
  15211. case GGML_TYPE_F16:
  15212. {
  15213. int elemsize = sizeof(ggml_fp16_t);
  15214. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15215. result = n * elemsize;
  15216. } break;
  15217. case GGML_TYPE_F32:
  15218. {
  15219. int elemsize = sizeof(float);
  15220. result = n * elemsize;
  15221. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15222. } break;
  15223. default:
  15224. assert(false);
  15225. }
  15226. return result;
  15227. }
  15228. ////////////////////////////////////////////////////////////////////////////////
  15229. int ggml_cpu_has_avx(void) {
  15230. #if defined(__AVX__)
  15231. return 1;
  15232. #else
  15233. return 0;
  15234. #endif
  15235. }
  15236. int ggml_cpu_has_avx2(void) {
  15237. #if defined(__AVX2__)
  15238. return 1;
  15239. #else
  15240. return 0;
  15241. #endif
  15242. }
  15243. int ggml_cpu_has_avx512(void) {
  15244. #if defined(__AVX512F__)
  15245. return 1;
  15246. #else
  15247. return 0;
  15248. #endif
  15249. }
  15250. int ggml_cpu_has_avx512_vbmi(void) {
  15251. #if defined(__AVX512VBMI__)
  15252. return 1;
  15253. #else
  15254. return 0;
  15255. #endif
  15256. }
  15257. int ggml_cpu_has_avx512_vnni(void) {
  15258. #if defined(__AVX512VNNI__)
  15259. return 1;
  15260. #else
  15261. return 0;
  15262. #endif
  15263. }
  15264. int ggml_cpu_has_fma(void) {
  15265. #if defined(__FMA__)
  15266. return 1;
  15267. #else
  15268. return 0;
  15269. #endif
  15270. }
  15271. int ggml_cpu_has_neon(void) {
  15272. #if defined(__ARM_NEON)
  15273. return 1;
  15274. #else
  15275. return 0;
  15276. #endif
  15277. }
  15278. int ggml_cpu_has_arm_fma(void) {
  15279. #if defined(__ARM_FEATURE_FMA)
  15280. return 1;
  15281. #else
  15282. return 0;
  15283. #endif
  15284. }
  15285. int ggml_cpu_has_f16c(void) {
  15286. #if defined(__F16C__)
  15287. return 1;
  15288. #else
  15289. return 0;
  15290. #endif
  15291. }
  15292. int ggml_cpu_has_fp16_va(void) {
  15293. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15294. return 1;
  15295. #else
  15296. return 0;
  15297. #endif
  15298. }
  15299. int ggml_cpu_has_wasm_simd(void) {
  15300. #if defined(__wasm_simd128__)
  15301. return 1;
  15302. #else
  15303. return 0;
  15304. #endif
  15305. }
  15306. int ggml_cpu_has_blas(void) {
  15307. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15308. return 1;
  15309. #else
  15310. return 0;
  15311. #endif
  15312. }
  15313. int ggml_cpu_has_cublas(void) {
  15314. #if defined(GGML_USE_CUBLAS)
  15315. return 1;
  15316. #else
  15317. return 0;
  15318. #endif
  15319. }
  15320. int ggml_cpu_has_clblast(void) {
  15321. #if defined(GGML_USE_CLBLAST)
  15322. return 1;
  15323. #else
  15324. return 0;
  15325. #endif
  15326. }
  15327. int ggml_cpu_has_gpublas(void) {
  15328. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15329. }
  15330. int ggml_cpu_has_sse3(void) {
  15331. #if defined(__SSE3__)
  15332. return 1;
  15333. #else
  15334. return 0;
  15335. #endif
  15336. }
  15337. int ggml_cpu_has_vsx(void) {
  15338. #if defined(__POWER9_VECTOR__)
  15339. return 1;
  15340. #else
  15341. return 0;
  15342. #endif
  15343. }
  15344. ////////////////////////////////////////////////////////////////////////////////