test-backend-ops.cpp 279 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  153. std::vector<float> tv;
  154. tv.reserve(ggml_nelements(t));
  155. std::vector<uint8_t> buf(ggml_nbytes(t));
  156. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  157. const auto * tt = ggml_get_type_traits(t->type);
  158. size_t bs = ggml_blck_size(t->type);
  159. std::vector<float> vq(ggml_blck_size(t->type));
  160. bool quantized = ggml_is_quantized(t->type);
  161. // access elements by index to avoid gaps in views
  162. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  163. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  164. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  165. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  166. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  167. if (t->type == GGML_TYPE_F16) {
  168. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  169. } else if (t->type == GGML_TYPE_BF16) {
  170. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  171. } else if (t->type == GGML_TYPE_F32) {
  172. tv.push_back(*(float *) &buf[i]);
  173. } else if (t->type == GGML_TYPE_I64) {
  174. tv.push_back((float)*(int64_t *) &buf[i]);
  175. } else if (t->type == GGML_TYPE_I32) {
  176. tv.push_back((float)*(int32_t *) &buf[i]);
  177. } else if (t->type == GGML_TYPE_I16) {
  178. tv.push_back((float)*(int16_t *) &buf[i]);
  179. } else if (t->type == GGML_TYPE_I8) {
  180. tv.push_back((float)*(int8_t *) &buf[i]);
  181. } else if (quantized) {
  182. tt->to_float(&buf[i], vq.data(), bs);
  183. tv.insert(tv.end(), vq.begin(), vq.end());
  184. } else {
  185. GGML_ABORT("fatal error");
  186. }
  187. }
  188. }
  189. }
  190. }
  191. return tv;
  192. }
  193. // normalized mean squared error = mse(a, b) / mse(a, 0)
  194. static double nmse(const float * a, const float * b, size_t n) {
  195. double mse_a_b = 0.0;
  196. double mse_a_0 = 0.0;
  197. for (size_t i = 0; i < n; i++) {
  198. float a_i = a[i];
  199. float b_i = b[i];
  200. mse_a_b += (a_i - b_i) * (a_i - b_i);
  201. mse_a_0 += a_i * a_i;
  202. }
  203. return mse_a_b / mse_a_0;
  204. }
  205. // maximum absolute asymmetry between a and b
  206. // asymmetry: (a - b) / (a + b)
  207. // This is more stable than relative error if one of the values fluctuates towards zero.
  208. // n: number of values to compare.
  209. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  210. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  211. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  212. double sum = 0.0f;
  213. size_t nvalid = 0;
  214. for (size_t i = 0; i < n; i++) {
  215. if (!expected_vals.empty()) {
  216. bool matches_any = false;
  217. for (const float & ev : expected_vals) {
  218. if (fabsf(a[i] - ev) < 1e-3f) {
  219. matches_any = true;
  220. break;
  221. }
  222. }
  223. if (!matches_any) {
  224. continue;
  225. }
  226. }
  227. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  228. sum += fabsf(asymm);
  229. nvalid++;
  230. }
  231. return sum/nvalid;
  232. }
  233. // utils for printing the variables of the test cases
  234. template<typename T>
  235. static std::string var_to_str(const T & x) {
  236. return std::to_string(x);
  237. }
  238. template<typename T, size_t N>
  239. static std::string var_to_str(const T (&x)[N]) {
  240. std::string s = "[";
  241. for (size_t i = 0; i < N; i++) {
  242. if (i > 0) {
  243. s += ",";
  244. }
  245. s += var_to_str(x[i]);
  246. }
  247. s += "]";
  248. return s;
  249. }
  250. template<typename T, size_t N>
  251. static std::string var_to_str(const std::array<T, N> & x) {
  252. std::string s = "[";
  253. for (size_t i = 0; i < N; i++) {
  254. if (i > 0) {
  255. s += ",";
  256. }
  257. s += var_to_str(x[i]);
  258. }
  259. s += "]";
  260. return s;
  261. }
  262. static std::string var_to_str(ggml_type type) {
  263. return ggml_type_name(type);
  264. }
  265. static std::string var_to_str(ggml_prec prec) {
  266. return prec == GGML_PREC_F32 ? "f32" : "def";
  267. }
  268. static std::string var_to_str(ggml_op_pool pool) {
  269. switch (pool) {
  270. case GGML_OP_POOL_AVG: return "avg";
  271. case GGML_OP_POOL_MAX: return "max";
  272. default: return std::to_string(pool);
  273. }
  274. }
  275. static std::string var_to_str(ggml_scale_mode mode) {
  276. switch (mode) {
  277. case GGML_SCALE_MODE_NEAREST: return "nearest";
  278. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  279. default: return std::to_string(mode);
  280. }
  281. }
  282. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  283. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  284. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  285. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  286. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  287. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  288. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  289. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  290. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  291. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  292. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  293. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  294. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  295. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  296. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  297. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  298. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  299. #ifdef GGML_USE_SYCL
  300. static bool inline _isinf(float f) {
  301. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  302. }
  303. #else
  304. static bool inline _isinf(float f) { return std::isinf(f); }
  305. #endif
  306. // accept FLT_MAX as infinity
  307. static bool isinf_or_max(float f) {
  308. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  309. }
  310. static bool ggml_is_view_op(enum ggml_op op) {
  311. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  312. }
  313. enum test_mode {
  314. MODE_TEST,
  315. MODE_PERF,
  316. MODE_GRAD,
  317. MODE_SUPPORT,
  318. };
  319. // Output format support similar to llama-bench
  320. enum output_formats { CONSOLE, SQL, CSV };
  321. static const char * output_format_str(output_formats format) {
  322. switch (format) {
  323. case CONSOLE:
  324. return "console";
  325. case SQL:
  326. return "sql";
  327. case CSV:
  328. return "csv";
  329. default:
  330. GGML_ABORT("invalid output format");
  331. }
  332. }
  333. static bool output_format_from_str(const std::string & s, output_formats & format) {
  334. if (s == "console") {
  335. format = CONSOLE;
  336. } else if (s == "sql") {
  337. format = SQL;
  338. } else if (s == "csv") {
  339. format = CSV;
  340. } else {
  341. return false;
  342. }
  343. return true;
  344. }
  345. // Test result structure for SQL output
  346. struct test_result {
  347. std::string test_time;
  348. std::string build_commit;
  349. std::string backend_name;
  350. std::string op_name;
  351. std::string op_params;
  352. std::string test_mode;
  353. bool supported;
  354. bool passed;
  355. std::string error_message;
  356. double time_us;
  357. double flops;
  358. double bandwidth_gb_s;
  359. size_t memory_kb;
  360. int n_runs;
  361. std::string device_description;
  362. std::string backend_reg_name;
  363. test_result() {
  364. // Initialize with default values
  365. time_us = 0.0;
  366. flops = 0.0;
  367. bandwidth_gb_s = 0.0;
  368. memory_kb = 0;
  369. n_runs = 0;
  370. supported = false;
  371. passed = false;
  372. // Set test time
  373. time_t t = time(NULL);
  374. char buf[32];
  375. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  376. test_time = buf;
  377. // Set build info
  378. build_commit = ggml_commit();
  379. }
  380. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  381. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  382. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  383. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  384. backend_name(backend_name),
  385. op_name(op_name),
  386. op_params(op_params),
  387. test_mode(test_mode),
  388. supported(supported),
  389. passed(passed),
  390. error_message(error_message),
  391. time_us(time_us),
  392. flops(flops),
  393. bandwidth_gb_s(bandwidth_gb_s),
  394. memory_kb(memory_kb),
  395. n_runs(n_runs),
  396. device_description(device_description),
  397. backend_reg_name(backend_reg_name) {
  398. // Set test time
  399. time_t t = time(NULL);
  400. char buf[32];
  401. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  402. test_time = buf;
  403. // Set build info
  404. build_commit = ggml_commit();
  405. }
  406. static const std::vector<std::string> & get_fields() {
  407. static const std::vector<std::string> fields = {
  408. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  409. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  410. "device_description", "backend_reg_name"
  411. };
  412. return fields;
  413. }
  414. enum field_type { STRING, BOOL, INT, FLOAT };
  415. static field_type get_field_type(const std::string & field) {
  416. if (field == "supported" || field == "passed") {
  417. return BOOL;
  418. }
  419. if (field == "memory_kb" || field == "n_runs") {
  420. return INT;
  421. }
  422. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  423. return FLOAT;
  424. }
  425. return STRING;
  426. }
  427. std::vector<std::string> get_values() const {
  428. return { test_time,
  429. build_commit,
  430. backend_name,
  431. op_name,
  432. op_params,
  433. test_mode,
  434. std::to_string(supported),
  435. std::to_string(passed),
  436. error_message,
  437. std::to_string(time_us),
  438. std::to_string(flops),
  439. std::to_string(bandwidth_gb_s),
  440. std::to_string(memory_kb),
  441. std::to_string(n_runs),
  442. device_description,
  443. backend_reg_name };
  444. }
  445. };
  446. // Printer classes for different output formats
  447. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  448. struct test_operation_info {
  449. std::string op_name;
  450. std::string op_params;
  451. std::string backend_name;
  452. test_status_t status = test_status_t::OK;
  453. std::string failure_reason;
  454. // Additional information fields that were previously in separate structs
  455. std::string error_component;
  456. std::string error_details;
  457. // Gradient info
  458. int64_t gradient_index = -1;
  459. std::string gradient_param_name;
  460. float gradient_value = 0.0f;
  461. // MAA error info
  462. double maa_error = 0.0;
  463. double maa_threshold = 0.0;
  464. // Flags for different types of information
  465. bool has_error = false;
  466. bool has_gradient_info = false;
  467. bool has_maa_error = false;
  468. bool is_compare_failure = false;
  469. bool is_large_tensor_skip = false;
  470. test_operation_info() = default;
  471. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  472. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  473. op_name(op_name),
  474. op_params(op_params),
  475. backend_name(backend_name),
  476. status(status),
  477. failure_reason(failure_reason) {}
  478. // Set error information
  479. void set_error(const std::string & component, const std::string & details) {
  480. has_error = true;
  481. error_component = component;
  482. error_details = details;
  483. if (status == test_status_t::OK) {
  484. status = test_status_t::FAIL;
  485. }
  486. }
  487. // Set gradient information
  488. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  489. has_gradient_info = true;
  490. gradient_index = index;
  491. gradient_param_name = param_name;
  492. gradient_value = value;
  493. if (status == test_status_t::OK) {
  494. status = test_status_t::FAIL;
  495. }
  496. }
  497. // Set MAA error information
  498. void set_maa_error(double error, double threshold) {
  499. has_maa_error = true;
  500. maa_error = error;
  501. maa_threshold = threshold;
  502. if (status == test_status_t::OK) {
  503. status = test_status_t::FAIL;
  504. }
  505. }
  506. // Set compare failure
  507. void set_compare_failure() {
  508. is_compare_failure = true;
  509. if (status == test_status_t::OK) {
  510. status = test_status_t::FAIL;
  511. }
  512. }
  513. // Set large tensor skip
  514. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  515. };
  516. struct test_summary_info {
  517. size_t tests_passed;
  518. size_t tests_total;
  519. bool is_backend_summary = false; // true for backend summary, false for test summary
  520. test_summary_info() = default;
  521. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  522. tests_passed(tests_passed),
  523. tests_total(tests_total),
  524. is_backend_summary(is_backend_summary) {}
  525. };
  526. struct testing_start_info {
  527. size_t device_count;
  528. testing_start_info() = default;
  529. testing_start_info(size_t device_count) : device_count(device_count) {}
  530. };
  531. struct backend_init_info {
  532. size_t device_index;
  533. size_t total_devices;
  534. std::string device_name;
  535. bool skipped = false;
  536. std::string skip_reason;
  537. std::string description;
  538. size_t memory_total_mb = 0;
  539. size_t memory_free_mb = 0;
  540. bool has_memory_info = false;
  541. backend_init_info() = default;
  542. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  543. const std::string & skip_reason = "", const std::string & description = "",
  544. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  545. device_index(device_index),
  546. total_devices(total_devices),
  547. device_name(device_name),
  548. skipped(skipped),
  549. skip_reason(skip_reason),
  550. description(description),
  551. memory_total_mb(memory_total_mb),
  552. memory_free_mb(memory_free_mb),
  553. has_memory_info(has_memory_info) {}
  554. };
  555. struct backend_status_info {
  556. std::string backend_name;
  557. test_status_t status;
  558. backend_status_info() = default;
  559. backend_status_info(const std::string & backend_name, test_status_t status) :
  560. backend_name(backend_name),
  561. status(status) {}
  562. };
  563. struct overall_summary_info {
  564. size_t backends_passed;
  565. size_t backends_total;
  566. bool all_passed;
  567. overall_summary_info() = default;
  568. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  569. backends_passed(backends_passed),
  570. backends_total(backends_total),
  571. all_passed(all_passed) {}
  572. };
  573. struct printer {
  574. virtual ~printer() {}
  575. FILE * fout = stdout;
  576. virtual void print_header() {}
  577. virtual void print_test_result(const test_result & result) = 0;
  578. virtual void print_footer() {}
  579. virtual void print_operation(const test_operation_info & info) { (void) info; }
  580. virtual void print_summary(const test_summary_info & info) { (void) info; }
  581. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  582. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  583. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  584. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  585. };
  586. struct console_printer : public printer {
  587. void print_test_result(const test_result & result) override {
  588. if (result.test_mode == "test") {
  589. print_test_console(result);
  590. } else if (result.test_mode == "perf") {
  591. print_perf_console(result);
  592. } else if (result.test_mode == "support") {
  593. print_support_console(result);
  594. }
  595. }
  596. void print_operation(const test_operation_info & info) override {
  597. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  598. fflush(stdout);
  599. // Handle large tensor skip first
  600. if (info.is_large_tensor_skip) {
  601. printf("skipping large tensors for speed \n");
  602. return;
  603. }
  604. // Handle not supported status
  605. if (info.status == test_status_t::NOT_SUPPORTED) {
  606. if (!info.failure_reason.empty()) {
  607. printf("not supported [%s]\n", info.failure_reason.c_str());
  608. } else {
  609. printf("not supported [%s]\n", info.backend_name.c_str());
  610. }
  611. return;
  612. }
  613. // Handle errors and additional information
  614. if (info.has_error) {
  615. if (info.error_component == "allocation") {
  616. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  617. } else if (info.error_component == "backend") {
  618. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  619. } else {
  620. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  621. }
  622. }
  623. // Handle gradient info
  624. if (info.has_gradient_info) {
  625. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  626. info.gradient_param_name.c_str(), info.gradient_value);
  627. }
  628. // Handle MAA error
  629. if (info.has_maa_error) {
  630. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  631. }
  632. // Handle compare failure
  633. if (info.is_compare_failure) {
  634. printf("compare failed ");
  635. }
  636. // Print final status
  637. if (info.status == test_status_t::OK) {
  638. printf("\033[1;32mOK\033[0m\n");
  639. } else {
  640. printf("\033[1;31mFAIL\033[0m\n");
  641. }
  642. }
  643. void print_summary(const test_summary_info & info) override {
  644. if (info.is_backend_summary) {
  645. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  646. } else {
  647. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  648. }
  649. }
  650. void print_backend_status(const backend_status_info & info) override {
  651. printf(" Backend %s: ", info.backend_name.c_str());
  652. if (info.status == test_status_t::OK) {
  653. printf("\033[1;32mOK\033[0m\n");
  654. } else {
  655. printf("\033[1;31mFAIL\033[0m\n");
  656. }
  657. }
  658. void print_testing_start(const testing_start_info & info) override {
  659. printf("Testing %zu devices\n\n", info.device_count);
  660. }
  661. void print_backend_init(const backend_init_info & info) override {
  662. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  663. if (info.skipped) {
  664. printf(" %s\n", info.skip_reason.c_str());
  665. return;
  666. }
  667. if (!info.description.empty()) {
  668. printf(" Device description: %s\n", info.description.c_str());
  669. }
  670. if (info.has_memory_info) {
  671. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  672. }
  673. printf("\n");
  674. }
  675. void print_overall_summary(const overall_summary_info & info) override {
  676. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  677. if (info.all_passed) {
  678. printf("\033[1;32mOK\033[0m\n");
  679. } else {
  680. printf("\033[1;31mFAIL\033[0m\n");
  681. }
  682. }
  683. private:
  684. void print_test_console(const test_result & result) {
  685. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  686. fflush(stdout);
  687. if (!result.supported) {
  688. printf("not supported [%s] ", result.backend_name.c_str());
  689. printf("\n");
  690. return;
  691. }
  692. if (result.passed) {
  693. printf("\033[1;32mOK\033[0m\n");
  694. } else {
  695. printf("\033[1;31mFAIL\033[0m\n");
  696. }
  697. }
  698. void print_perf_console(const test_result & result) {
  699. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  700. fflush(stdout);
  701. if (!result.supported) {
  702. printf("not supported\n");
  703. return;
  704. }
  705. // align while also leaving some margin for variations in parameters
  706. int align = 8;
  707. int last = (len + align - 1) / align * align;
  708. if (last - len < 5) {
  709. last += align;
  710. }
  711. printf("%*s", last - len, "");
  712. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  713. if (result.flops > 0) {
  714. auto format_flops = [](double flops) -> std::string {
  715. char buf[256];
  716. if (flops >= 1e12) {
  717. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  718. } else if (flops >= 1e9) {
  719. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  720. } else if (flops >= 1e6) {
  721. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  722. } else {
  723. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  724. }
  725. return buf;
  726. };
  727. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  728. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  729. format_flops(result.flops).c_str());
  730. } else {
  731. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  732. }
  733. printf("\n");
  734. }
  735. void print_support_console(const test_result & result) {
  736. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  737. fflush(stdout);
  738. if (result.supported) {
  739. printf("\033[1;32mSUPPORTED\033[0m\n");
  740. } else {
  741. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  742. }
  743. }
  744. };
  745. struct sql_printer : public printer {
  746. static std::string get_sql_field_type(const std::string & field) {
  747. switch (test_result::get_field_type(field)) {
  748. case test_result::STRING:
  749. return "TEXT";
  750. case test_result::BOOL:
  751. case test_result::INT:
  752. return "INTEGER";
  753. case test_result::FLOAT:
  754. return "REAL";
  755. default:
  756. GGML_ABORT("invalid field type");
  757. }
  758. }
  759. void print_header() override {
  760. std::vector<std::string> fields = test_result::get_fields();
  761. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  762. for (size_t i = 0; i < fields.size(); i++) {
  763. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  764. i < fields.size() - 1 ? "," : "");
  765. }
  766. fprintf(fout, ");\n\n");
  767. }
  768. void print_test_result(const test_result & result) override {
  769. fprintf(fout, "INSERT INTO test_backend_ops (");
  770. std::vector<std::string> fields = test_result::get_fields();
  771. for (size_t i = 0; i < fields.size(); i++) {
  772. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  773. }
  774. fprintf(fout, ") VALUES (");
  775. std::vector<std::string> values = result.get_values();
  776. for (size_t i = 0; i < values.size(); i++) {
  777. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  778. }
  779. fprintf(fout, ");\n");
  780. }
  781. };
  782. struct csv_printer : public printer {
  783. void print_header() override {
  784. std::vector<std::string> fields = test_result::get_fields();
  785. std::vector<std::string> fields_csv = get_fields_csv();
  786. for (size_t i = 0; i < fields.size(); i++) {
  787. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  788. continue;
  789. }
  790. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  791. }
  792. printf("\n");
  793. }
  794. void print_test_result(const test_result & result) override {
  795. std::vector<std::string> values = result.get_values();
  796. std::vector<std::string> fields = test_result::get_fields();
  797. std::vector<std::string> fields_csv = get_fields_csv();
  798. for (size_t i = 0; i < values.size(); i++) {
  799. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  800. continue;
  801. }
  802. // Escape quotes and wrap in quotes for CSV
  803. std::string escaped_value = values[i];
  804. size_t pos = 0;
  805. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  806. escaped_value.replace(pos, 1, "\"\"");
  807. pos += 2;
  808. }
  809. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  810. }
  811. printf("\n");
  812. }
  813. static std::vector<std::string> get_fields_csv() {
  814. return {
  815. "op_name",
  816. "op_params",
  817. "supported",
  818. "error_message",
  819. "test_mode",
  820. "backend_reg_name",
  821. "backend_name",
  822. };
  823. }
  824. };
  825. static std::unique_ptr<printer> create_printer(output_formats format) {
  826. switch (format) {
  827. case CONSOLE:
  828. return std::make_unique<console_printer>();
  829. case SQL:
  830. return std::make_unique<sql_printer>();
  831. case CSV:
  832. return std::make_unique<csv_printer>();
  833. }
  834. GGML_ABORT("invalid output format");
  835. }
  836. struct test_case {
  837. virtual ~test_case() {}
  838. virtual std::string op_desc(ggml_tensor * t) {
  839. return ggml_op_desc(t);
  840. }
  841. virtual std::string vars() {
  842. return "";
  843. }
  844. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  845. virtual double max_nmse_err() {
  846. return 1e-7;
  847. }
  848. virtual double max_maa_err() {
  849. return 1e-4;
  850. }
  851. virtual float grad_eps() {
  852. return 1e-1f;
  853. }
  854. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  855. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  856. virtual bool grad_precise() {
  857. return false;
  858. }
  859. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  860. virtual int64_t grad_nmax() {
  861. return 10000;
  862. }
  863. // No effect if empty.
  864. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  865. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  866. virtual std::vector<float> grad_expect() {
  867. return {};
  868. }
  869. virtual void initialize_tensors(ggml_context * ctx) {
  870. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  871. init_tensor_uniform(t);
  872. }
  873. }
  874. virtual size_t op_size(ggml_tensor * t) {
  875. size_t size = ggml_nbytes(t);
  876. // add source tensors
  877. for (int i = 0; i < GGML_MAX_SRC; i++) {
  878. if (t->src[i] != NULL) {
  879. size += ggml_nbytes(t->src[i]);
  880. }
  881. }
  882. return size;
  883. }
  884. virtual uint64_t op_flops(ggml_tensor * t) {
  885. GGML_UNUSED(t);
  886. return 0;
  887. }
  888. virtual bool run_whole_graph() { return false; }
  889. ggml_cgraph * gf = nullptr;
  890. ggml_cgraph * gb = nullptr;
  891. static const int sentinel_size = 1024;
  892. test_mode mode;
  893. std::vector<ggml_tensor *> sentinels;
  894. void add_sentinel(ggml_context * ctx) {
  895. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  896. return;
  897. }
  898. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  899. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  900. sentinels.push_back(sentinel);
  901. }
  902. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  903. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  904. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  905. add_sentinel(ctx);
  906. return t;
  907. }
  908. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  909. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  910. add_sentinel(ctx);
  911. return t;
  912. }
  913. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  914. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  915. add_sentinel(ctx);
  916. return t;
  917. }
  918. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  919. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  920. add_sentinel(ctx);
  921. return t;
  922. }
  923. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  924. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  925. add_sentinel(ctx);
  926. return t;
  927. }
  928. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  929. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  930. if (op_names_filter) {
  931. const auto op_name = op_desc(op);
  932. const auto op_full_name = op_name + "(" + vars() + ")";
  933. std::string_view filter(op_names_filter);
  934. while (!filter.empty()) {
  935. auto comma_pos = filter.find_first_of(',');
  936. const auto lparen_pos = filter.find_first_of('(');
  937. if (lparen_pos < comma_pos) {
  938. auto rparen_pos = filter.find_first_of(')');
  939. comma_pos = filter.find_first_of(',', rparen_pos);
  940. const auto op_filter = filter.substr(0, comma_pos);
  941. if (op_filter == op_full_name) {
  942. return true;
  943. }
  944. } else {
  945. const auto op_filter = filter.substr(0, comma_pos);
  946. if (op_filter == op_name) {
  947. return true;
  948. }
  949. }
  950. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  951. }
  952. return false;
  953. } else {
  954. return true;
  955. }
  956. }
  957. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
  958. mode = MODE_TEST;
  959. ggml_init_params params = {
  960. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  961. /* .mem_base = */ NULL,
  962. /* .no_alloc = */ true,
  963. };
  964. ggml_context * ctx = ggml_init(params);
  965. GGML_ASSERT(ctx);
  966. gf = ggml_new_graph(ctx);
  967. // pre-graph sentinel
  968. add_sentinel(ctx);
  969. ggml_tensor * out = build_graph(ctx);
  970. std::string current_op_name = op_desc(out);
  971. if (!matches_filter(out, op_names_filter)) {
  972. //printf(" %s: skipping\n", op_desc(out).c_str());
  973. ggml_free(ctx);
  974. return true;
  975. }
  976. // check if the backends support the ops
  977. bool supported = true;
  978. for (ggml_backend_t backend : {backend1, backend2}) {
  979. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  980. if (!ggml_backend_supports_op(backend, t)) {
  981. supported = false;
  982. break;
  983. }
  984. }
  985. }
  986. if (!supported) {
  987. // Create test result for unsupported operation
  988. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  989. false, false, "not supported");
  990. if (output_printer) {
  991. output_printer->print_test_result(result);
  992. }
  993. ggml_free(ctx);
  994. return true;
  995. }
  996. // post-graph sentinel
  997. add_sentinel(ctx);
  998. // allocate
  999. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1000. if (buf == NULL) {
  1001. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1002. ggml_free(ctx);
  1003. return false;
  1004. }
  1005. // build graph
  1006. ggml_build_forward_expand(gf, out);
  1007. // add sentinels as graph nodes so that they are checked in the callback
  1008. for (ggml_tensor * sentinel : sentinels) {
  1009. ggml_graph_add_node(gf, sentinel);
  1010. }
  1011. // randomize tensors
  1012. initialize_tensors(ctx);
  1013. // compare
  1014. struct callback_userdata {
  1015. bool ok;
  1016. double max_err;
  1017. ggml_backend_t backend1;
  1018. ggml_backend_t backend2;
  1019. };
  1020. callback_userdata ud {
  1021. true,
  1022. max_nmse_err(),
  1023. backend1,
  1024. backend2
  1025. };
  1026. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1027. callback_userdata * ud = (callback_userdata *) user_data;
  1028. const char * bn1 = ggml_backend_name(ud->backend1);
  1029. const char * bn2 = ggml_backend_name(ud->backend2);
  1030. if (t1->op == GGML_OP_NONE) {
  1031. // sentinels must be unchanged
  1032. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1033. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1034. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1035. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1036. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1037. printf("sentinel mismatch: %s ", t1->name);
  1038. ud->ok = false;
  1039. return true;
  1040. }
  1041. }
  1042. std::vector<float> f1 = tensor_to_float(t1);
  1043. std::vector<float> f2 = tensor_to_float(t2);
  1044. for (size_t i = 0; i < f1.size(); i++) {
  1045. // check for nans
  1046. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1047. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1048. ud->ok = false;
  1049. return true;
  1050. }
  1051. // check for infs: both must be inf of the same sign, or both must be finite
  1052. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1053. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1054. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1055. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1056. ud->ok = false;
  1057. return true;
  1058. }
  1059. } else {
  1060. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1061. ud->ok = false;
  1062. return true;
  1063. }
  1064. }
  1065. }
  1066. double err = nmse(f1.data(), f2.data(), f1.size());
  1067. if (err > ud->max_err) {
  1068. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1069. //for (int i = 0; i < (int) f1.size(); i++) {
  1070. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1071. //}
  1072. //printf("\n");
  1073. //exit(1);
  1074. ud->ok = false;
  1075. }
  1076. return true;
  1077. GGML_UNUSED(index);
  1078. };
  1079. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1080. ggml_backend_buffer_free(buf);
  1081. ggml_free(ctx);
  1082. // Create test result
  1083. bool test_passed = ud.ok && cmp_ok;
  1084. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1085. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1086. error_msg);
  1087. if (output_printer) {
  1088. output_printer->print_test_result(result);
  1089. }
  1090. return test_passed;
  1091. }
  1092. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1093. mode = MODE_PERF;
  1094. static const size_t graph_nodes = 8192;
  1095. ggml_init_params params = {
  1096. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1097. /* .mem_base = */ NULL,
  1098. /* .no_alloc = */ true,
  1099. };
  1100. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1101. GGML_ASSERT(ctx);
  1102. ggml_tensor * out = build_graph(ctx.get());
  1103. std::string current_op_name = op_desc(out);
  1104. if (!matches_filter(out, op_names_filter)) {
  1105. //printf(" %s: skipping\n", op_desc(out).c_str());
  1106. return true;
  1107. }
  1108. if (!ggml_backend_supports_op(backend, out)) {
  1109. // Create test result for unsupported performance test
  1110. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1111. "not supported");
  1112. output_printer->print_test_result(result);
  1113. return true;
  1114. }
  1115. // allocate
  1116. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1117. if (buf == NULL) {
  1118. printf("failed to allocate tensors\n");
  1119. return false;
  1120. }
  1121. // randomize tensors
  1122. initialize_tensors(ctx.get());
  1123. // build graph
  1124. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1125. ggml_build_forward_expand(gf, out);
  1126. // warmup run
  1127. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1128. if (status != GGML_STATUS_SUCCESS) {
  1129. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1130. return false;
  1131. }
  1132. // determine number of runs
  1133. int n_runs;
  1134. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1135. if (op_flops(out) > 0) {
  1136. // based on flops
  1137. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1138. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1139. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1140. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1141. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1142. } else {
  1143. // based on memory size
  1144. const size_t GB = 1ULL << 30;
  1145. const size_t target_size_cpu = 8 * GB;
  1146. const size_t target_size_gpu = 32 * GB;
  1147. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1148. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1149. }
  1150. // duplicate the op
  1151. for (int i = 1; i < n_runs; i++) {
  1152. ggml_graph_add_node(gf, out);
  1153. }
  1154. // calculate memory
  1155. size_t mem = n_runs * op_size(out);
  1156. auto tensor_op_size = [](ggml_tensor * t) {
  1157. size_t size = ggml_nbytes(t);
  1158. // add source tensors
  1159. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1160. if (t->src[i] != NULL) {
  1161. size += ggml_nbytes(t->src[i]);
  1162. }
  1163. }
  1164. return size;
  1165. };
  1166. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1167. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1168. continue;
  1169. }
  1170. mem += tensor_op_size(ggml_graph_node(gf, i));
  1171. }
  1172. // run
  1173. int64_t total_time_us = 0;
  1174. int64_t total_mem = 0;
  1175. int total_runs = 0;
  1176. do {
  1177. int64_t start_time = ggml_time_us();
  1178. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1179. if (status != GGML_STATUS_SUCCESS) {
  1180. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1181. return false;
  1182. }
  1183. int64_t end_time = ggml_time_us();
  1184. total_time_us += end_time - start_time;
  1185. total_mem += mem;
  1186. total_runs += n_runs;
  1187. } while (total_time_us < 1000*1000); // run for at least 1 second
  1188. // Create test result
  1189. double avg_time_us = (double) total_time_us / total_runs;
  1190. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1191. double calculated_bandwidth =
  1192. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1193. size_t calculated_memory_kb = op_size(out) / 1024;
  1194. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1195. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1196. if (output_printer) {
  1197. output_printer->print_test_result(result);
  1198. }
  1199. return true;
  1200. }
  1201. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1202. mode = MODE_SUPPORT;
  1203. static const size_t graph_nodes = 8192;
  1204. ggml_init_params params = {
  1205. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1206. /* .mem_base = */ NULL,
  1207. /* .no_alloc = */ true,
  1208. };
  1209. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1210. GGML_ASSERT(ctx);
  1211. ggml_tensor * out = build_graph(ctx.get());
  1212. std::string current_op_name = op_desc(out);
  1213. if (!matches_filter(out, op_names_filter)) {
  1214. return true;
  1215. }
  1216. bool supported = ggml_backend_supports_op(backend, out);
  1217. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1218. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1219. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1220. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1221. output_printer->print_test_result(result);
  1222. return true;
  1223. }
  1224. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1225. mode = MODE_GRAD;
  1226. const std::vector<float> expect = grad_expect();
  1227. ggml_init_params params = {
  1228. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1229. /* .mem_base = */ NULL,
  1230. /* .no_alloc = */ true,
  1231. };
  1232. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1233. GGML_ASSERT(ctx);
  1234. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1235. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1236. ggml_tensor * out = build_graph(ctx.get());
  1237. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1238. return true;
  1239. }
  1240. if (out->type != GGML_TYPE_F32) {
  1241. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1242. test_status_t::NOT_SUPPORTED,
  1243. out->name + std::string("->type != FP32")));
  1244. return true;
  1245. }
  1246. // Print operation info first
  1247. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1248. // check if the backend supports the ops
  1249. bool supported = true;
  1250. bool any_params = false;
  1251. std::string failure_reason;
  1252. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1253. if (!ggml_backend_supports_op(backend, t)) {
  1254. supported = false;
  1255. failure_reason = ggml_backend_name(backend);
  1256. break;
  1257. }
  1258. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1259. any_params = true;
  1260. if (t->type != GGML_TYPE_F32) {
  1261. supported = false;
  1262. failure_reason = std::string(t->name) + "->type != FP32";
  1263. break;
  1264. }
  1265. }
  1266. }
  1267. if (!any_params) {
  1268. supported = false;
  1269. failure_reason = op_desc(out);
  1270. }
  1271. if (!supported) {
  1272. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1273. test_status_t::NOT_SUPPORTED, failure_reason));
  1274. return true;
  1275. }
  1276. int64_t ngrads = 0;
  1277. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1278. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1279. ngrads += ggml_nelements(t);
  1280. }
  1281. }
  1282. if (ngrads > grad_nmax()) {
  1283. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1284. info.set_large_tensor_skip();
  1285. output_printer->print_operation(info);
  1286. return true;
  1287. }
  1288. if (!ggml_is_scalar(out)) {
  1289. out = ggml_sum(ctx.get(), out);
  1290. ggml_set_name(out, "sum_of_out");
  1291. }
  1292. ggml_set_loss(out);
  1293. ggml_build_forward_expand(gf, out);
  1294. ggml_graph_cpy(gf, gb);
  1295. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1296. if (expect.size() != 1 || expect[0] != 0.0f) {
  1297. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1298. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1299. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1300. }
  1301. }
  1302. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1303. if (!ggml_backend_supports_op(backend, t)) {
  1304. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1305. test_status_t::NOT_SUPPORTED,
  1306. ggml_backend_name(backend)));
  1307. supported = false;
  1308. break;
  1309. }
  1310. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1311. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1312. test_status_t::NOT_SUPPORTED,
  1313. std::string(t->name) + "->type != FP32"));
  1314. supported = false;
  1315. break;
  1316. }
  1317. }
  1318. if (!supported) {
  1319. return true;
  1320. }
  1321. // allocate
  1322. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1323. if (buf == NULL) {
  1324. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1325. info.set_error("allocation", "");
  1326. output_printer->print_operation(info);
  1327. return false;
  1328. }
  1329. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1330. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1331. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1332. if (status != GGML_STATUS_SUCCESS) {
  1333. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1334. return false;
  1335. }
  1336. status = ggml_backend_graph_compute(backend, gb);
  1337. if (status != GGML_STATUS_SUCCESS) {
  1338. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1339. return false;
  1340. }
  1341. bool ok = true;
  1342. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1343. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1344. continue;
  1345. }
  1346. const char * bn = ggml_backend_name(backend);
  1347. const int64_t ne = ggml_nelements(t);
  1348. std::vector<float> ga;
  1349. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1350. if (grad) {
  1351. ga = tensor_to_float(grad);
  1352. } else {
  1353. ga.resize(ne); // default value is 0.0f
  1354. }
  1355. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1356. // check for nans
  1357. if (!std::isfinite(ga[i])) {
  1358. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1359. info.set_gradient_info(i, bn, ga[i]);
  1360. output_printer->print_operation(info);
  1361. ok = false;
  1362. break;
  1363. }
  1364. }
  1365. if (!ok) {
  1366. break;
  1367. }
  1368. std::vector<float> gn(ne); // gradient numeric
  1369. GGML_ASSERT(ga.size() == gn.size());
  1370. std::vector<float> x0 = tensor_to_float(t); // original t data
  1371. GGML_ASSERT(ggml_is_scalar(out));
  1372. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1373. const float eps = grad_eps();
  1374. for (int64_t i = 0; i < ne; ++i) {
  1375. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1376. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1377. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1378. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1379. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1380. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1381. status = ggml_backend_graph_compute(backend, gf);
  1382. if (status != GGML_STATUS_SUCCESS) {
  1383. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1384. return false;
  1385. }
  1386. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1387. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1388. status = ggml_backend_graph_compute(backend, gf);
  1389. if (status != GGML_STATUS_SUCCESS) {
  1390. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1391. return false;
  1392. }
  1393. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1394. if (grad_precise()) {
  1395. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1396. status = ggml_backend_graph_compute(backend, gf);
  1397. if (status != GGML_STATUS_SUCCESS) {
  1398. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1399. return false;
  1400. }
  1401. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1402. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1403. status = ggml_backend_graph_compute(backend, gf);
  1404. if (status != GGML_STATUS_SUCCESS) {
  1405. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1406. return false;
  1407. }
  1408. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1409. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1410. } else {
  1411. gn[i] = (fu - fd) / (2.0f*eps);
  1412. }
  1413. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1414. }
  1415. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1416. if (err > max_maa_err()) {
  1417. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1418. info.set_maa_error(err, max_maa_err());
  1419. output_printer->print_operation(info);
  1420. ok = false;
  1421. break;
  1422. }
  1423. if (!ok) {
  1424. break;
  1425. }
  1426. }
  1427. // Create final test result
  1428. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1429. if (!ok) {
  1430. final_info.set_compare_failure();
  1431. }
  1432. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1433. output_printer->print_operation(final_info);
  1434. if (ok) {
  1435. return true;
  1436. }
  1437. return false;
  1438. }
  1439. };
  1440. // ###################################
  1441. // ## Section 2: GGML Op Defintions ##
  1442. // ###################################
  1443. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1444. // GGML_OP_EXAMPLE
  1445. struct test_example : public test_case {
  1446. // Always define these 2 or variants thereof:
  1447. const ggml_type type; // The type of the input tensors.
  1448. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1449. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1450. // Or they may need additional parameters.
  1451. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1452. // In most cases these are just the properties of the struct that you defined above.
  1453. // This is needed for info prints.
  1454. std::string vars() override {
  1455. return VARS_TO_STR2(type, ne);
  1456. }
  1457. // Define a constructor for the struct.
  1458. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1459. // and just use initializer lists.
  1460. test_example(ggml_type type = GGML_TYPE_F32,
  1461. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1462. : type(type), ne(ne) {}
  1463. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1464. ggml_tensor * build_graph(ggml_context * ctx) override {
  1465. // Step 1: create input tensors that don't depend on any other tensors:
  1466. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1467. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1468. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1469. ggml_set_name(b, "b");
  1470. // Step 2: use the op that you want to test in the GGML compute graph.
  1471. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1472. ggml_set_name(out, "out");
  1473. // Step 3: return the output tensor.
  1474. return out;
  1475. }
  1476. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1477. // immediately after you create the tensors.
  1478. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1479. };
  1480. // GGML_OP_UNARY
  1481. struct test_unary : public test_case {
  1482. const ggml_unary_op op;
  1483. const ggml_type type;
  1484. const std::array<int64_t, 4> ne_a;
  1485. int v; // view (1 : non-contiguous a)
  1486. std::string vars() override {
  1487. return VARS_TO_STR3(type, ne_a, v);
  1488. }
  1489. test_unary(ggml_unary_op op,
  1490. ggml_type type = GGML_TYPE_F32,
  1491. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1492. int v = 0)
  1493. : op(op), type(type), ne_a(ne_a), v(v) {}
  1494. ggml_tensor * build_graph(ggml_context * ctx) override {
  1495. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1496. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1497. ggml_tensor * a;
  1498. if (v & 1) {
  1499. auto ne = ne_a; ne[0] *= 3;
  1500. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1501. if (grad_supported) {
  1502. ggml_set_param(a);
  1503. }
  1504. ggml_set_name(a, "a");
  1505. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1506. ggml_set_name(a, "view_of_a");
  1507. } else {
  1508. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1509. if (grad_supported) {
  1510. ggml_set_param(a);
  1511. }
  1512. ggml_set_name(a, "a");
  1513. }
  1514. ggml_tensor * out = ggml_unary(ctx, a, op);
  1515. ggml_set_name(out, "out");
  1516. return out;
  1517. }
  1518. void initialize_tensors(ggml_context * ctx) override {
  1519. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1520. // test extended range of values to check for NaNs in GELU
  1521. init_tensor_uniform(t, -150.f, 150.f);
  1522. }
  1523. }
  1524. float grad_eps() override {
  1525. return 15.0f;
  1526. }
  1527. std::vector<float> grad_expect() override {
  1528. if (op == GGML_UNARY_OP_ABS) {
  1529. return {-1.0f, 1.0f};
  1530. }
  1531. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1532. return {0.0f};
  1533. }
  1534. if (op == GGML_UNARY_OP_RELU) {
  1535. return {0.0f, 1.0f};
  1536. }
  1537. return {};
  1538. }
  1539. };
  1540. // GGML_OP_GLU
  1541. struct test_glu : public test_case {
  1542. const ggml_glu_op op;
  1543. const ggml_type type;
  1544. const std::array<int64_t, 4> ne_a;
  1545. int v; // view (1 : non-contiguous a)
  1546. bool swapped;
  1547. std::string vars() override {
  1548. return VARS_TO_STR4(type, ne_a, v, swapped);
  1549. }
  1550. test_glu(ggml_glu_op op,
  1551. ggml_type type = GGML_TYPE_F32,
  1552. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1553. int v = 0,
  1554. bool swapped = false)
  1555. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1556. ggml_tensor * build_graph(ggml_context * ctx) override {
  1557. ggml_tensor * a;
  1558. if (v & 1) {
  1559. auto ne = ne_a; ne[0] *= 3;
  1560. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1561. ggml_set_name(a, "a");
  1562. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1563. ggml_set_name(a, "view_of_a");
  1564. } else {
  1565. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1566. ggml_set_name(a, "a");
  1567. }
  1568. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1569. ggml_set_name(out, "out");
  1570. return out;
  1571. }
  1572. void initialize_tensors(ggml_context * ctx) override {
  1573. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1574. // test extended range of values to check for NaNs in GELU
  1575. init_tensor_uniform(t, -150.f, 150.f);
  1576. }
  1577. }
  1578. };
  1579. struct test_glu_split : public test_case {
  1580. const ggml_glu_op op;
  1581. const ggml_type type;
  1582. const std::array<int64_t, 4> ne_a;
  1583. int v; // view (1 : non-contiguous a)
  1584. std::string vars() override {
  1585. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1586. }
  1587. test_glu_split(ggml_glu_op op,
  1588. ggml_type type = GGML_TYPE_F32,
  1589. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1590. int v = 0)
  1591. : op(op), type(type), ne_a(ne_a), v(v) {}
  1592. ggml_tensor * build_graph(ggml_context * ctx) override {
  1593. ggml_tensor * a;
  1594. ggml_tensor * b;
  1595. if (v & 1) {
  1596. auto ne = ne_a; ne[0] *= 3;
  1597. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1598. ggml_set_param(a);
  1599. ggml_set_name(a, "a");
  1600. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1601. ggml_set_name(a, "view_of_a");
  1602. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1603. ggml_set_param(b);
  1604. ggml_set_name(b, "b");
  1605. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1606. ggml_set_name(a, "view_of_b");
  1607. } else {
  1608. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1609. ggml_set_param(a);
  1610. ggml_set_name(a, "a");
  1611. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1612. ggml_set_param(b);
  1613. ggml_set_name(b, "b");
  1614. }
  1615. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1616. ggml_set_name(out, "out");
  1617. return out;
  1618. }
  1619. void initialize_tensors(ggml_context * ctx) override {
  1620. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1621. // test extended range of values to check for NaNs in GELU
  1622. init_tensor_uniform(t, -150.f, 150.f);
  1623. }
  1624. }
  1625. };
  1626. struct test_swiglu_oai : public test_case {
  1627. const ggml_type type;
  1628. const std::array<int64_t, 4> ne_a;
  1629. int v; // view (1 : non-contiguous a)
  1630. float alpha;
  1631. float limit;
  1632. std::string vars() override {
  1633. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1634. }
  1635. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1636. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1637. int v = 0,
  1638. float alpha = 1.702f,
  1639. float limit = 7.0f)
  1640. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1641. ggml_tensor * build_graph(ggml_context * ctx) override {
  1642. ggml_tensor * a;
  1643. ggml_tensor * b;
  1644. if (v & 1) {
  1645. auto ne = ne_a; ne[0] *= 3;
  1646. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1647. ggml_set_param(a);
  1648. ggml_set_name(a, "a");
  1649. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1650. ggml_set_name(a, "view_of_a");
  1651. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1652. ggml_set_param(b);
  1653. ggml_set_name(b, "b");
  1654. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1655. ggml_set_name(a, "view_of_b");
  1656. } else {
  1657. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1658. ggml_set_param(a);
  1659. ggml_set_name(a, "a");
  1660. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1661. ggml_set_param(b);
  1662. ggml_set_name(b, "b");
  1663. }
  1664. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1665. ggml_set_name(out, "out");
  1666. return out;
  1667. }
  1668. void initialize_tensors(ggml_context * ctx) override {
  1669. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1670. // test extended range of values to check for NaNs in GELU
  1671. init_tensor_uniform(t, -150.f, 150.f);
  1672. }
  1673. }
  1674. };
  1675. // GGML_OP_GET_ROWS
  1676. struct test_get_rows : public test_case {
  1677. const ggml_type type;
  1678. const int n; // cols
  1679. const int m; // rows
  1680. const int r; // rows to get
  1681. const int be1; // batch size
  1682. const int be2; // batch size
  1683. const bool v; // view (non-contiguous src1)
  1684. std::string vars() override {
  1685. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1686. }
  1687. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1688. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1689. ggml_tensor * build_graph(ggml_context * ctx) override {
  1690. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1691. ggml_set_name(in, "in");
  1692. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1693. ggml_set_name(rows, "rows");
  1694. if (v) {
  1695. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1696. ggml_set_name(rows, "view_of_rows");
  1697. }
  1698. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1699. if (grad_supported) {
  1700. ggml_set_param(in);
  1701. // rows is a constant input -> no gradients
  1702. }
  1703. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1704. ggml_set_name(out, "out");
  1705. return out;
  1706. }
  1707. void initialize_tensors(ggml_context * ctx) override {
  1708. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1709. if (t->type == GGML_TYPE_I32) {
  1710. if (ggml_is_view_op(t->op)) { continue; }
  1711. // rows
  1712. std::vector<int> data(r*be1*be2);
  1713. for (int i = 0; i < r*be1*be2; i++) {
  1714. data[i] = rand() % m;
  1715. }
  1716. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1717. } else {
  1718. init_tensor_uniform(t);
  1719. }
  1720. }
  1721. }
  1722. };
  1723. // GGML_OP_GET_ROWS_BACK
  1724. struct test_get_rows_back : public test_case {
  1725. const ggml_type type;
  1726. const int n; // cols
  1727. const int m; // rows
  1728. const int r; // rows to get
  1729. const int b; // batch size
  1730. const bool v; // view (non-contiguous src1)
  1731. std::string vars() override {
  1732. return VARS_TO_STR6(type, n, m, r, b, v);
  1733. }
  1734. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1735. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1736. ggml_tensor * build_graph(ggml_context * ctx) override {
  1737. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1738. ggml_set_name(in_forward, "in_forward");
  1739. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1740. ggml_set_name(rows, "rows");
  1741. if (v) {
  1742. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1743. ggml_set_name(rows, "view_of_rows");
  1744. }
  1745. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1746. ggml_set_name(grad, "grad");
  1747. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1748. ggml_set_name(out, "out");
  1749. return out;
  1750. }
  1751. void initialize_tensors(ggml_context * ctx) override {
  1752. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1753. if (t->type == GGML_TYPE_I32) {
  1754. if (ggml_is_view_op(t->op)) { continue; }
  1755. // rows
  1756. std::vector<int> data(r*b);
  1757. for (int i = 0; i < r*b; i++) {
  1758. data[i] = rand() % m;
  1759. }
  1760. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1761. } else {
  1762. init_tensor_uniform(t);
  1763. }
  1764. }
  1765. }
  1766. };
  1767. // GGML_OP_SET_ROWS
  1768. struct test_set_rows : public test_case {
  1769. const ggml_type type;
  1770. const ggml_type type_idx;
  1771. const std::array<int64_t, 4> ne;
  1772. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1773. const int r; // rows to set
  1774. const bool v; // view (non-contiguous src1)
  1775. std::string vars() override {
  1776. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1777. }
  1778. test_set_rows(ggml_type type,
  1779. ggml_type type_idx,
  1780. std::array<int64_t, 4> ne,
  1781. std::array<int, 2> nr23,
  1782. int r, bool v = false)
  1783. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1784. ggml_tensor * build_graph(ggml_context * ctx) override {
  1785. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1786. ggml_set_name(dst, "dst");
  1787. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1788. ggml_set_name(src, "src");
  1789. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1790. ggml_set_name(row_idxs, "row_idxs");
  1791. if (v) {
  1792. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1793. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1794. ggml_set_name(row_idxs, "view_of_rows");
  1795. }
  1796. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1797. ggml_set_name(out, "out");
  1798. return out;
  1799. }
  1800. void initialize_tensors(ggml_context * ctx) override {
  1801. std::random_device rd;
  1802. std::default_random_engine rng(rd());
  1803. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1804. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1805. if (ggml_is_view_op(t->op)) {
  1806. continue;
  1807. }
  1808. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1809. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1810. // generate a shuffled subset of row indices
  1811. std::vector<int64_t> data(ne[1]);
  1812. for (int i = 0; i < ne[1]; i++) {
  1813. data[i] = i;
  1814. }
  1815. std::shuffle(data.begin(), data.end(), rng);
  1816. data.resize(t->ne[0]);
  1817. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1818. if (t->type == GGML_TYPE_I32) {
  1819. // TODO: Make a template or something
  1820. std::vector<int32_t> data_i32(t->ne[0]);
  1821. for (int i = 0; i < t->ne[0]; i++) {
  1822. data_i32[i] = static_cast<int32_t>(data[i]);
  1823. }
  1824. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1825. } else {
  1826. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1827. }
  1828. }
  1829. }
  1830. } else {
  1831. init_tensor_uniform(t);
  1832. }
  1833. }
  1834. }
  1835. double max_nmse_err() override {
  1836. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1837. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1838. // estimate what the max nmse error would be if one quantized value is
  1839. // off by one. The test values are distributed in [-1,1], so it'll be
  1840. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1841. // which is roughly 0.25 times the number of elements.
  1842. double err_estimate = 1.0f/8.0f;
  1843. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1844. err_estimate /= 2.0f;
  1845. }
  1846. if (type == GGML_TYPE_Q8_0) {
  1847. err_estimate /= 8.0f;
  1848. }
  1849. err_estimate *= err_estimate;
  1850. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1851. return err_estimate;
  1852. }
  1853. return 1e-7;
  1854. }
  1855. };
  1856. // GGML_OP_ARGMAX
  1857. struct test_argmax : public test_case {
  1858. const ggml_type type;
  1859. const std::array<int64_t, 4> ne;
  1860. std::string vars() override {
  1861. return VARS_TO_STR2(type, ne);
  1862. }
  1863. test_argmax(ggml_type type = GGML_TYPE_F32,
  1864. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1865. : type(type), ne(ne) {}
  1866. ggml_tensor * build_graph(ggml_context * ctx) override {
  1867. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1868. ggml_set_name(a, "a");
  1869. ggml_tensor * out = ggml_argmax(ctx, a);
  1870. ggml_set_name(out, "out");
  1871. return out;
  1872. }
  1873. void initialize_tensors(ggml_context * ctx) override {
  1874. std::random_device rd;
  1875. std::default_random_engine rng(rd());
  1876. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1877. if (t->type == GGML_TYPE_F32) {
  1878. // initialize with unique values to avoid ties
  1879. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1880. std::vector<float> data(t->ne[0]);
  1881. for (int i = 0; i < t->ne[0]; i++) {
  1882. data[i] = i;
  1883. }
  1884. std::shuffle(data.begin(), data.end(), rng);
  1885. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1886. }
  1887. } else {
  1888. init_tensor_uniform(t);
  1889. }
  1890. }
  1891. }
  1892. double max_nmse_err() override {
  1893. return 0.0;
  1894. }
  1895. };
  1896. // GGML_OP_COUNT_EQUAL
  1897. struct test_count_equal : public test_case {
  1898. const ggml_type type;
  1899. const std::array<int64_t, 4> ne;
  1900. std::string vars() override {
  1901. return VARS_TO_STR2(type, ne);
  1902. }
  1903. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1904. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1905. : type(type), ne(ne) {}
  1906. ggml_tensor * build_graph(ggml_context * ctx) override {
  1907. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1908. ggml_set_name(a, "a");
  1909. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1910. ggml_set_name(a_argmax, "a_argmax");
  1911. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1912. ggml_set_name(b, "b");
  1913. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1914. ggml_set_name(b_argmax, "b_argmax");
  1915. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1916. ggml_set_name(out, "out");
  1917. return out;
  1918. }
  1919. double max_nmse_err() override {
  1920. return 0.0;
  1921. }
  1922. void initialize_tensors(ggml_context * ctx) override {
  1923. std::random_device rd;
  1924. std::default_random_engine rng(rd());
  1925. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1926. if (t->type == GGML_TYPE_F32) {
  1927. // initialize with unique values to avoid ties
  1928. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1929. std::vector<float> data(t->ne[0]);
  1930. for (int i = 0; i < t->ne[0]; i++) {
  1931. data[i] = i;
  1932. }
  1933. std::shuffle(data.begin(), data.end(), rng);
  1934. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1935. }
  1936. } else {
  1937. init_tensor_uniform(t);
  1938. }
  1939. }
  1940. }
  1941. };
  1942. // GGML_OP_REPEAT
  1943. struct test_repeat : public test_case {
  1944. const ggml_type type;
  1945. const std::array<int64_t, 4> ne;
  1946. const std::array<int, 4> nr;
  1947. std::string vars() override {
  1948. return VARS_TO_STR3(type, ne, nr);
  1949. }
  1950. size_t op_size(ggml_tensor * t) override {
  1951. return ggml_nbytes(t) * 2;
  1952. }
  1953. test_repeat(ggml_type type = GGML_TYPE_F32,
  1954. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1955. std::array<int, 4> nr = {2, 2, 2, 2})
  1956. : type(type), ne(ne), nr(nr) {}
  1957. ggml_tensor * build_graph(ggml_context * ctx) override {
  1958. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1959. ggml_set_name(target, "target");
  1960. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1961. ggml_set_param(src);
  1962. ggml_set_name(src, "src");
  1963. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1964. ggml_set_name(out, "out");
  1965. return out;
  1966. }
  1967. };
  1968. // GGML_OP_REPEAT_BACK
  1969. struct test_repeat_back : public test_case {
  1970. const ggml_type type;
  1971. const std::array<int64_t, 4> ne;
  1972. const std::array<int, 4> nr;
  1973. const bool v; // whether src is a noncontiguous view
  1974. std::string vars() override {
  1975. return VARS_TO_STR4(type, ne, nr, v);
  1976. }
  1977. size_t op_size(ggml_tensor * t) override {
  1978. return ggml_nbytes(t) * 2;
  1979. }
  1980. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1981. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1982. std::array<int, 4> nr = {2, 2, 2, 2},
  1983. bool v = false)
  1984. : type(type), ne(ne), nr(nr), v(v) {}
  1985. ggml_tensor * build_graph(ggml_context * ctx) override {
  1986. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1987. ggml_set_name(src, "src");
  1988. if (v) {
  1989. GGML_ASSERT(ne[0] % 2 == 0);
  1990. GGML_ASSERT(ne[1] % 2 == 0);
  1991. GGML_ASSERT(ne[2] % 2 == 0);
  1992. GGML_ASSERT(ne[3] % 2 == 0);
  1993. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1994. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1995. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1996. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1997. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1998. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1999. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2000. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2001. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2002. }
  2003. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2004. ggml_set_name(target, "target");
  2005. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2006. ggml_set_name(out, "out");
  2007. return out;
  2008. }
  2009. };
  2010. // GGML_OP_DUP
  2011. struct test_dup : public test_case {
  2012. const ggml_type type;
  2013. const std::array<int64_t, 4> ne;
  2014. const std::array<int64_t, 4> permute;
  2015. bool _use_permute;
  2016. std::string vars() override {
  2017. std::string v = VARS_TO_STR2(type, ne);
  2018. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2019. return v;
  2020. }
  2021. test_dup(ggml_type type = GGML_TYPE_F32,
  2022. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2023. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2024. : type(type), ne(ne), permute(permute),
  2025. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2026. ggml_tensor * build_graph(ggml_context * ctx) override {
  2027. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2028. ggml_set_param(src);
  2029. ggml_set_name(src, "src");
  2030. if (_use_permute) {
  2031. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2032. ggml_set_name(src, "src_permuted");
  2033. }
  2034. ggml_tensor * out = ggml_dup(ctx, src);
  2035. ggml_set_name(out, "out");
  2036. return out;
  2037. }
  2038. };
  2039. // GGML_OP_SET
  2040. struct test_set : public test_case {
  2041. const ggml_type type_src;
  2042. const ggml_type type_dst;
  2043. const std::array<int64_t, 4> ne;
  2044. const int dim;
  2045. std::string vars() override {
  2046. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2047. }
  2048. size_t op_size(ggml_tensor * t) override {
  2049. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2050. }
  2051. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2052. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2053. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2054. ggml_tensor * build_graph(ggml_context * ctx) override {
  2055. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2056. ggml_set_param(src);
  2057. ggml_set_name(src, "src");
  2058. auto ne_dst = ne;
  2059. for (int i = 0; i < dim; ++i) {
  2060. ne_dst[i] *= 2;
  2061. }
  2062. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2063. ggml_set_param(dst);
  2064. ggml_set_name(dst, "dst");
  2065. size_t offset = 0;
  2066. for (int i = 0; i < dim; ++i) {
  2067. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2068. }
  2069. ggml_tensor * out = ggml_set(ctx, dst, src,
  2070. // The backward pass requires setting a contiguous region:
  2071. src->nb[1], src->nb[2], src->nb[3], offset);
  2072. ggml_set_name(out, "out");
  2073. return out;
  2074. }
  2075. };
  2076. // GGML_OP_CPY
  2077. struct test_cpy : public test_case {
  2078. const ggml_type type_src;
  2079. const ggml_type type_dst;
  2080. const std::array<int64_t, 4> ne;
  2081. const std::array<int64_t, 4> permute_src;
  2082. const std::array<int64_t, 4> permute_dst;
  2083. bool _src_use_permute;
  2084. bool _dst_use_permute;
  2085. std::string vars() override {
  2086. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2087. }
  2088. double max_nmse_err() override {
  2089. if (type_src == type_dst) {
  2090. return 0.0;
  2091. }
  2092. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2093. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2094. // estimate what the max nmse error would be if one quantized value is
  2095. // off by one. The test values are distributed in [-150,150], so it'll be
  2096. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2097. // which is roughly 0.25*150^2 times the number of elements.
  2098. double err_estimate = 1.0f/8.0f * 150.0f;
  2099. if (type_dst == GGML_TYPE_IQ4_NL) {
  2100. // iq4_nl values are a bit more spread out
  2101. err_estimate *= 2.0f;
  2102. }
  2103. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2104. err_estimate /= 2.0f;
  2105. }
  2106. if (type_dst == GGML_TYPE_Q8_0) {
  2107. err_estimate /= 8.0f;
  2108. }
  2109. err_estimate *= err_estimate;
  2110. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2111. return err_estimate;
  2112. }
  2113. return 1e-6;
  2114. }
  2115. size_t op_size(ggml_tensor * t) override {
  2116. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2117. }
  2118. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2119. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2120. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2121. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2122. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2123. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2124. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2125. ggml_tensor * build_graph(ggml_context * ctx) override {
  2126. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2127. ggml_set_param(src);
  2128. ggml_set_name(src, "src");
  2129. if (_src_use_permute) {
  2130. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2131. ggml_set_name(src, "src_permuted");
  2132. }
  2133. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2134. ggml_set_name(dst, "dst");
  2135. if (_dst_use_permute) {
  2136. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2137. ggml_set_name(dst, "dst_permuted");
  2138. }
  2139. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2140. ggml_set_name(out, "out");
  2141. return out;
  2142. }
  2143. void initialize_tensors(ggml_context * ctx) override {
  2144. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2145. // test extended range of values to check if casting between f32 and i32 is consistent
  2146. init_tensor_uniform(t, -150.f, 150.f);
  2147. }
  2148. }
  2149. };
  2150. // GGML_OP_CONT
  2151. struct test_cont : public test_case {
  2152. const ggml_type type;
  2153. const std::array<int64_t, 4> ne;
  2154. std::string vars() override {
  2155. return VARS_TO_STR2(type, ne);
  2156. }
  2157. test_cont(ggml_type type = GGML_TYPE_F32,
  2158. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2159. : type(type), ne(ne) {}
  2160. ggml_tensor * build_graph(ggml_context * ctx) override {
  2161. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2162. ggml_set_param(src);
  2163. ggml_set_name(src, "src");
  2164. src = ggml_transpose(ctx, src);
  2165. ggml_set_name(src, "src_transposed");
  2166. ggml_tensor * out = ggml_cont(ctx, src);
  2167. ggml_set_name(out, "out");
  2168. return out;
  2169. }
  2170. };
  2171. // GGML_OP_ADD
  2172. // GGML_OP_SUB
  2173. // GGML_OP_MUL
  2174. // GGML_OP_DIV
  2175. struct test_bin_bcast : public test_case {
  2176. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2177. op_t op;
  2178. const ggml_type type;
  2179. const std::array<int64_t, 4> ne;
  2180. const std::array<int, 4> nr;
  2181. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2182. bool run_whole_graph() override { return true; }
  2183. std::string vars() override {
  2184. return VARS_TO_STR4(type, ne, nr, nf);
  2185. }
  2186. size_t op_size(ggml_tensor * t) override {
  2187. return ggml_nbytes(t) * 3;
  2188. }
  2189. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2190. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2191. std::array<int, 4> nr = {1, 2, 1, 1},
  2192. int nf = 1)
  2193. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2194. ggml_tensor * build_graph(ggml_context * ctx) override {
  2195. GGML_ASSERT(nf <= 16);
  2196. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2197. ggml_set_name(a, "a");
  2198. ggml_tensor * b[16];
  2199. for (int i = 0; i < nf; ++i) {
  2200. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2201. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2202. }
  2203. // The backward pass supports broadcasting only for GGML_ADD:
  2204. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2205. if (grad_supported) {
  2206. ggml_set_param(a);
  2207. ggml_set_param(b[0]);
  2208. }
  2209. ggml_tensor * out = a;
  2210. for (int i = 0; i < nf; ++i) {
  2211. out = op(ctx, out, b[i]);
  2212. }
  2213. ggml_set_name(out, "out");
  2214. return out;
  2215. }
  2216. void initialize_tensors(ggml_context * ctx) override {
  2217. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2218. if (op == ggml_mul || op == ggml_div) {
  2219. // MUL and DIV have numerical issues around zero:
  2220. init_tensor_uniform(t, 0.9f, 1.1f);
  2221. } else {
  2222. init_tensor_uniform(t);
  2223. }
  2224. }
  2225. }
  2226. float grad_eps() override {
  2227. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2228. }
  2229. bool grad_precise() override {
  2230. return op == ggml_div;
  2231. }
  2232. double max_maa_err() override {
  2233. return op == ggml_add ? 1e-4 : 1e-3;
  2234. }
  2235. };
  2236. // GGML_OP_ADD_ID
  2237. struct test_add_id : public test_case {
  2238. const ggml_type type_a;
  2239. const ggml_type type_b;
  2240. const int64_t n_embd;
  2241. const int64_t n_experts;
  2242. const int64_t n_experts_used;
  2243. const int64_t n_token;
  2244. std::string vars() override {
  2245. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2246. }
  2247. size_t op_size(ggml_tensor * t) override {
  2248. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2249. }
  2250. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2251. ggml_type type_b = GGML_TYPE_F32,
  2252. int64_t n_embd = 128,
  2253. int64_t n_experts = 16,
  2254. int64_t n_experts_used = 8,
  2255. int64_t n_token = 10)
  2256. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2257. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2258. ggml_tensor * build_graph(ggml_context * ctx) override {
  2259. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2260. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2261. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2262. if (n_experts_used != n_experts) {
  2263. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2264. ggml_set_name(ids, "view_of_ids");
  2265. }
  2266. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2267. ggml_set_name(out, "out");
  2268. return out;
  2269. }
  2270. void initialize_tensors(ggml_context * ctx) override {
  2271. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2272. if (t->type == GGML_TYPE_I32) {
  2273. if (ggml_is_view_op(t->op)) { continue; }
  2274. std::random_device rd;
  2275. std::default_random_engine rng(rd());
  2276. // ids
  2277. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2278. std::vector<int32_t> data(t->ne[0]);
  2279. for (int i = 0; i < t->ne[0]; i++) {
  2280. data[i] = i % n_experts;
  2281. }
  2282. std::shuffle(data.begin(), data.end(), rng);
  2283. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2284. }
  2285. } else {
  2286. init_tensor_uniform(t);
  2287. }
  2288. }
  2289. }
  2290. };
  2291. // GGML_OP_ADD1
  2292. struct test_add1 : public test_case {
  2293. const ggml_type type;
  2294. const std::array<int64_t, 4> ne;
  2295. std::string vars() override {
  2296. return VARS_TO_STR2(type, ne);
  2297. }
  2298. test_add1(ggml_type type = GGML_TYPE_F32,
  2299. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2300. : type(type), ne(ne) {}
  2301. ggml_tensor * build_graph(ggml_context * ctx) override {
  2302. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2303. ggml_set_param(a);
  2304. ggml_set_name(a, "a");
  2305. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2306. // ggml_set_param(b); // TODO: implement
  2307. ggml_set_name(b, "b");
  2308. ggml_tensor * out = ggml_add1(ctx, a, b);
  2309. ggml_set_name(out, "out");
  2310. return out;
  2311. }
  2312. float grad_eps() override {
  2313. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2314. }
  2315. };
  2316. // GGML_OP_SCALE
  2317. struct test_scale : public test_case {
  2318. const ggml_type type;
  2319. const std::array<int64_t, 4> ne;
  2320. float scale;
  2321. float bias;
  2322. bool inplace;
  2323. std::string vars() override {
  2324. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2325. }
  2326. test_scale(ggml_type type = GGML_TYPE_F32,
  2327. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2328. float scale = 2.0f,
  2329. float bias = 0.0f,
  2330. bool inplace = false)
  2331. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2332. ggml_tensor * build_graph(ggml_context * ctx) override {
  2333. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2334. ggml_set_param(a);
  2335. ggml_set_name(a, "a");
  2336. ggml_tensor * out;
  2337. if (inplace) {
  2338. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2339. } else {
  2340. out = ggml_scale_bias(ctx, a, scale, bias);
  2341. }
  2342. ggml_set_name(out, "out");
  2343. return out;
  2344. }
  2345. };
  2346. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2347. struct test_softcap : public test_case {
  2348. const ggml_type type;
  2349. const std::array<int64_t, 4> ne;
  2350. float softcap;
  2351. std::string op_desc(ggml_tensor * t) override {
  2352. GGML_UNUSED(t);
  2353. return "SOFTCAP";
  2354. }
  2355. bool run_whole_graph() override { return true; }
  2356. std::string vars() override {
  2357. return VARS_TO_STR3(type, ne, softcap);
  2358. }
  2359. test_softcap(ggml_type type = GGML_TYPE_F32,
  2360. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2361. float softcap = 30.0f)
  2362. : type(type), ne(ne), softcap(softcap) {}
  2363. ggml_tensor * build_graph(ggml_context * ctx) override {
  2364. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2365. ggml_set_param(a);
  2366. ggml_set_name(a, "a");
  2367. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2368. ggml_set_name(out, "out");
  2369. return out;
  2370. }
  2371. };
  2372. // GGML_OP_SILU_BACK
  2373. struct test_silu_back : public test_case {
  2374. const ggml_type type;
  2375. const std::array<int64_t, 4> ne;
  2376. float eps;
  2377. std::string vars() override {
  2378. return VARS_TO_STR3(type, ne, eps);
  2379. }
  2380. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2381. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2382. float eps = 1e-6f)
  2383. : type(type), ne(ne), eps(eps) {}
  2384. ggml_tensor * build_graph(ggml_context * ctx) override {
  2385. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2386. ggml_set_name(a, "a");
  2387. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2388. ggml_set_name(grad, "grad");
  2389. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2390. ggml_set_name(out, "out");
  2391. return out;
  2392. }
  2393. bool grad_precise() override {
  2394. return true;
  2395. }
  2396. };
  2397. // GGML_OP_NORM
  2398. struct test_norm : public test_case {
  2399. const ggml_type type;
  2400. const std::array<int64_t, 4> ne;
  2401. const bool v; // whether a is a non-contiguous view
  2402. const float eps;
  2403. std::string vars() override {
  2404. return VARS_TO_STR4(type, ne, v, eps);
  2405. }
  2406. test_norm(ggml_type type = GGML_TYPE_F32,
  2407. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2408. bool v = false,
  2409. float eps = 1e-6f)
  2410. : type(type), ne(ne), v(v), eps(eps) {}
  2411. ggml_tensor * build_graph(ggml_context * ctx) override {
  2412. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2413. ggml_set_name(a, "a");
  2414. if (v) {
  2415. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2416. ggml_set_name(a, "view of a");
  2417. }
  2418. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2419. ggml_set_name(out, "out");
  2420. return out;
  2421. }
  2422. };
  2423. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2424. struct test_norm_mul_add : public test_case {
  2425. const ggml_type type;
  2426. const std::array<int64_t, 4> ne;
  2427. float eps;
  2428. const bool broadcast;
  2429. std::string op_desc(ggml_tensor * t) override {
  2430. GGML_UNUSED(t);
  2431. return "NORM_MUL_ADD";
  2432. }
  2433. bool run_whole_graph() override { return true; }
  2434. std::string vars() override {
  2435. return VARS_TO_STR4(type, ne, eps, broadcast);
  2436. }
  2437. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2438. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2439. float eps = 1e-5f,
  2440. bool broadcast = false)
  2441. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2442. ggml_tensor * build_graph(ggml_context * ctx) override {
  2443. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2444. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2445. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2446. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2447. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2448. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2449. // Use a, w and b early to avoid OP_NONE in graph
  2450. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2451. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2452. ggml_tensor * m = ggml_mul(ctx, n, w);
  2453. ggml_tensor * out = ggml_add(ctx, m, b);
  2454. ggml_set_name(out, "out");
  2455. return out;
  2456. }
  2457. };
  2458. // GGML_OP_RMS_NORM
  2459. struct test_rms_norm : public test_case {
  2460. const ggml_type type;
  2461. const std::array<int64_t, 4> ne;
  2462. const bool v; // whether a is a non-contiguous view
  2463. const float eps;
  2464. const bool inplace; // whether to do the operation inplace
  2465. std::string vars() override {
  2466. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2467. }
  2468. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2469. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2470. bool v = false,
  2471. float eps = 1e-6f,
  2472. bool inplace = false)
  2473. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2474. ggml_tensor * build_graph(ggml_context * ctx) override {
  2475. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2476. ggml_set_param(a);
  2477. ggml_set_name(a, "a");
  2478. if (v) {
  2479. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2480. ggml_set_name(a, "view of a");
  2481. }
  2482. ggml_tensor * out;
  2483. if (inplace) {
  2484. out = ggml_rms_norm_inplace(ctx, a, eps);
  2485. } else {
  2486. out = ggml_rms_norm(ctx, a, eps);
  2487. }
  2488. ggml_set_name(out, "out");
  2489. return out;
  2490. }
  2491. void initialize_tensors(ggml_context * ctx) override {
  2492. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2493. init_tensor_uniform(t, -10.f, 10.f);
  2494. }
  2495. }
  2496. float grad_eps() override {
  2497. return 1.0f;
  2498. }
  2499. bool grad_precise() override {
  2500. return true;
  2501. }
  2502. };
  2503. // GGML_OP_RMS_NORM_BACK
  2504. struct test_rms_norm_back : public test_case {
  2505. const ggml_type type;
  2506. const std::array<int64_t, 4> ne;
  2507. const float eps;
  2508. std::string vars() override {
  2509. return VARS_TO_STR3(type, ne, eps);
  2510. }
  2511. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2512. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2513. float eps = 1e-6f)
  2514. : type(type), ne(ne), eps(eps) {}
  2515. ggml_tensor * build_graph(ggml_context * ctx) override {
  2516. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2517. ggml_set_name(a, "a");
  2518. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2519. ggml_set_name(b, "b");
  2520. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2521. ggml_set_name(out, "out");
  2522. return out;
  2523. }
  2524. void initialize_tensors(ggml_context * ctx) override {
  2525. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2526. init_tensor_uniform(t, -10.f, 10.f);
  2527. }
  2528. }
  2529. };
  2530. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2531. struct test_rms_norm_mul_add : public test_case {
  2532. const ggml_type type;
  2533. const std::array<int64_t, 4> ne;
  2534. const float eps;
  2535. const bool broadcast;
  2536. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2537. std::string op_desc(ggml_tensor * t) override {
  2538. GGML_UNUSED(t);
  2539. return "RMS_NORM_MUL_ADD";
  2540. }
  2541. bool run_whole_graph() override { return true; }
  2542. std::string vars() override {
  2543. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2544. }
  2545. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2546. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2547. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2548. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2549. ggml_tensor * build_graph(ggml_context * ctx) override {
  2550. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2552. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2553. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2554. ggml_set_param(a);
  2555. ggml_set_name(a, "a");
  2556. ggml_set_param(b);
  2557. ggml_set_name(b, "b");
  2558. ggml_set_param(c);
  2559. ggml_set_name(c, "c");
  2560. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2561. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2562. if (multi_add) {
  2563. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2564. }
  2565. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2566. ggml_set_name(out, "out");
  2567. return out;
  2568. }
  2569. void initialize_tensors(ggml_context * ctx) override {
  2570. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2571. init_tensor_uniform(t, -10.f, 10.f);
  2572. }
  2573. }
  2574. float grad_eps() override {
  2575. return 1.0f;
  2576. }
  2577. bool grad_precise() override {
  2578. return true;
  2579. }
  2580. };
  2581. // GGML_OP_SSM_CONV
  2582. struct test_ssm_conv : public test_case {
  2583. const ggml_type type;
  2584. const std::array<int64_t, 4> ne_a;
  2585. const std::array<int64_t, 4> ne_b;
  2586. std::string vars() override {
  2587. return VARS_TO_STR3(type, ne_a, ne_b);
  2588. }
  2589. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2590. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2591. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2592. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2593. ggml_tensor * build_graph(ggml_context * ctx) override {
  2594. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2595. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2596. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2597. return out;
  2598. }
  2599. };
  2600. // GGML_OP_SSM_SCAN
  2601. struct test_ssm_scan : public test_case {
  2602. const ggml_type type;
  2603. const int64_t d_state;
  2604. const int64_t head_dim;
  2605. const int64_t n_head;
  2606. const int64_t n_group;
  2607. const int64_t n_seq_tokens;
  2608. const int64_t n_seqs;
  2609. std::string vars() override {
  2610. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2611. }
  2612. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2613. int64_t d_state = 32,
  2614. int64_t head_dim = 1, // non-zero for Mamba-2
  2615. int64_t n_head = 32,
  2616. int64_t n_group = 1,
  2617. int64_t n_seq_tokens = 32,
  2618. int64_t n_seqs = 32)
  2619. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2620. ggml_tensor * build_graph(ggml_context * ctx) override {
  2621. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2622. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2623. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2624. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2625. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2626. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2627. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2628. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2629. return out;
  2630. }
  2631. // similar to test_mul_mat_id
  2632. void initialize_tensors(ggml_context * ctx) override {
  2633. std::random_device rd;
  2634. std::default_random_engine rng(rd());
  2635. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2636. if (t->type == GGML_TYPE_I32) {
  2637. if (ggml_is_view_op(t->op)) { continue; }
  2638. // ids
  2639. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2640. std::vector<int32_t> data(t->ne[0]);
  2641. for (int i = 0; i < t->ne[0]; i++) {
  2642. data[i] = i;
  2643. }
  2644. std::shuffle(data.begin(), data.end(), rng);
  2645. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2646. }
  2647. } else {
  2648. init_tensor_uniform(t);
  2649. }
  2650. }
  2651. }
  2652. };
  2653. // GGML_OP_RWKV_WKV6
  2654. struct test_rwkv_wkv6 : public test_case {
  2655. const ggml_type type;
  2656. const int64_t head_count;
  2657. const int64_t head_size;
  2658. const int64_t n_seq_tokens;
  2659. const int64_t n_seqs;
  2660. std::string vars() override {
  2661. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2662. }
  2663. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2664. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2665. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2666. ggml_tensor * build_graph(ggml_context * ctx) override {
  2667. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2668. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2669. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2670. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2671. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2672. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2673. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2674. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2675. return out;
  2676. }
  2677. };
  2678. // GGML_OP_GATED_LINEAR_ATTN
  2679. struct test_gla : public test_case {
  2680. const ggml_type type;
  2681. const int64_t head_count;
  2682. const int64_t head_size;
  2683. const int64_t n_seq_tokens;
  2684. const int64_t n_seqs;
  2685. std::string vars() override {
  2686. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2687. }
  2688. test_gla(ggml_type type = GGML_TYPE_F32,
  2689. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2690. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2691. ggml_tensor * build_graph(ggml_context * ctx) override {
  2692. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2693. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2694. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2695. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2696. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2697. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2698. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2699. return out;
  2700. }
  2701. };
  2702. // GGML_OP_RWKV_WKV7
  2703. struct test_rwkv_wkv7 : public test_case {
  2704. const ggml_type type;
  2705. const int64_t head_count;
  2706. const int64_t head_size;
  2707. const int64_t n_seq_tokens;
  2708. const int64_t n_seqs;
  2709. std::string vars() override {
  2710. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2711. }
  2712. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2713. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2714. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2715. ggml_tensor * build_graph(ggml_context * ctx) override {
  2716. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2717. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2718. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2719. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2720. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2721. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2722. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2723. // Outputs may become NaN with long seqlen without these normalization
  2724. a = ggml_l2_norm(ctx, a, 1e-7F);
  2725. b = ggml_l2_norm(ctx, b, 1e-7F);
  2726. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2727. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2728. return out;
  2729. }
  2730. };
  2731. // GGML_OP_MUL_MAT
  2732. struct test_mul_mat : public test_case {
  2733. const ggml_type type_a;
  2734. const ggml_type type_b;
  2735. const int64_t m;
  2736. const int64_t n;
  2737. const int64_t k;
  2738. const std::array<int64_t, 2> bs; // dims 3 and 4
  2739. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2740. const std::array<int64_t, 4> per; // permutation of dimensions
  2741. const bool v; // whether a and b are non-contiguous views
  2742. const uint32_t o; // number of outputs
  2743. std::string vars() override {
  2744. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
  2745. }
  2746. double max_nmse_err() override {
  2747. return 5e-4;
  2748. }
  2749. int64_t grad_nmax() override {
  2750. return 20000;
  2751. }
  2752. uint64_t op_flops(ggml_tensor * t) override {
  2753. GGML_UNUSED(t);
  2754. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2755. }
  2756. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2757. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2758. std::array<int64_t, 2> bs = {10, 10},
  2759. std::array<int64_t, 2> nr = {2, 2},
  2760. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2761. bool v = false, uint32_t o = 1)
  2762. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
  2763. ggml_tensor * build_graph(ggml_context * ctx) override {
  2764. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2765. ggml_tensor * a;
  2766. ggml_tensor * b;
  2767. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2768. if (npermuted > 0) {
  2769. GGML_ASSERT(npermuted == 2);
  2770. GGML_ASSERT(!v); // not handled
  2771. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2772. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2773. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2774. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2775. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2776. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2777. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2778. if (!ggml_is_quantized(type_a)) {
  2779. if (bs[1] == 1 && nr[1] == 1) {
  2780. ggml_set_param(a);
  2781. }
  2782. ggml_set_param(b);
  2783. }
  2784. ggml_set_name(a, "a");
  2785. ggml_set_name(b, "b");
  2786. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2787. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2788. ggml_set_name(a, "a_permuted");
  2789. ggml_set_name(b, "b_permuted");
  2790. } else {
  2791. if (v) {
  2792. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2793. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2794. if (!ggml_is_quantized(type_a)) {
  2795. if (bs[1] == 1 && nr[1] == 1) {
  2796. ggml_set_param(a);
  2797. }
  2798. ggml_set_param(b);
  2799. }
  2800. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2801. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2802. } else {
  2803. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2804. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2805. if (!ggml_is_quantized(type_a)) {
  2806. if (bs[1] == 1 && nr[1] == 1) {
  2807. ggml_set_param(a);
  2808. }
  2809. ggml_set_param(b);
  2810. }
  2811. }
  2812. ggml_set_name(a, "a");
  2813. ggml_set_name(b, "b");
  2814. }
  2815. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2816. ggml_set_name(out, "out");
  2817. for (uint32_t i = 1; i < o; ++i) {
  2818. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2819. ggml_set_name(out2, "out2");
  2820. out = ggml_add(ctx, out, out2);
  2821. }
  2822. return out;
  2823. }
  2824. bool run_whole_graph() override { return o > 1; }
  2825. std::string op_desc(ggml_tensor * t) override {
  2826. GGML_UNUSED(t);
  2827. return ggml_op_name(GGML_OP_MUL_MAT);
  2828. }
  2829. };
  2830. // GGML_OP_MUL_MAT_ID
  2831. struct test_mul_mat_id : public test_case {
  2832. const ggml_type type_a;
  2833. const ggml_type type_b;
  2834. const int n_mats;
  2835. const int n_used;
  2836. const bool b; // broadcast b matrix
  2837. const int64_t m;
  2838. const int64_t n;
  2839. const int64_t k;
  2840. const uint32_t o; // number of outputs
  2841. std::string vars() override {
  2842. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2843. }
  2844. double max_nmse_err() override {
  2845. return 5e-4;
  2846. }
  2847. uint64_t op_flops(ggml_tensor * t) override {
  2848. GGML_UNUSED(t);
  2849. return 2 * m * k * n * n_used;
  2850. }
  2851. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2852. int n_mats = 8, int n_used = 2, bool b = false,
  2853. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2854. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2855. m(m), n(n), k(k), o(o) {
  2856. GGML_ASSERT(n_used <= n_mats);
  2857. }
  2858. ggml_tensor * build_graph(ggml_context * ctx) override {
  2859. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2860. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2861. ggml_set_name(as, "as");
  2862. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2863. ggml_set_name(ids, "ids");
  2864. if (n_used != n_mats) {
  2865. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2866. ggml_set_name(ids, "view_of_ids");
  2867. }
  2868. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2869. ggml_set_name(b, "b");
  2870. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2871. ggml_set_name(out, "out");
  2872. for (uint32_t i = 1; i < o; ++i) {
  2873. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2874. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2875. ggml_set_name(out2, "out2");
  2876. out = ggml_add(ctx, out, out2);
  2877. }
  2878. return out;
  2879. }
  2880. void initialize_tensors(ggml_context * ctx) override {
  2881. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2882. if (t->type == GGML_TYPE_I32) {
  2883. if (ggml_is_view_op(t->op)) { continue; }
  2884. std::random_device rd;
  2885. std::default_random_engine rng(rd());
  2886. // ids
  2887. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2888. std::vector<int32_t> data(t->ne[0]);
  2889. for (int i = 0; i < t->ne[0]; i++) {
  2890. data[i] = i % n_mats;
  2891. }
  2892. std::shuffle(data.begin(), data.end(), rng);
  2893. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2894. }
  2895. } else {
  2896. init_tensor_uniform(t);
  2897. }
  2898. }
  2899. }
  2900. bool run_whole_graph() override { return o > 1; }
  2901. std::string op_desc(ggml_tensor * t) override {
  2902. GGML_UNUSED(t);
  2903. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2904. }
  2905. };
  2906. // GGML_OP_OUT_PROD
  2907. struct test_out_prod : public test_case {
  2908. const ggml_type type_a;
  2909. const ggml_type type_b;
  2910. const int64_t m;
  2911. const int64_t n;
  2912. const int64_t k;
  2913. const std::array<int64_t, 2> bs; // dims 3 and 4
  2914. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2915. const bool trans_b;
  2916. std::string vars() override {
  2917. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2918. }
  2919. double max_nmse_err() override {
  2920. return 5e-4;
  2921. }
  2922. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2923. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2924. std::array<int64_t, 2> bs = {10, 10},
  2925. std::array<int64_t, 2> nr = {2, 2},
  2926. bool trans_b = false)
  2927. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2928. ggml_tensor * build_graph(ggml_context * ctx) override {
  2929. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2930. ggml_set_name(a, "a");
  2931. ggml_tensor * b;
  2932. if (trans_b) {
  2933. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2934. b = ggml_transpose(ctx, b);
  2935. } else {
  2936. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2937. }
  2938. ggml_set_name(b, "b");
  2939. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2940. ggml_set_name(out, "out");
  2941. return out;
  2942. }
  2943. };
  2944. // GGML_OP_SQR
  2945. struct test_sqr : public test_case {
  2946. const ggml_type type;
  2947. const std::array<int64_t, 4> ne;
  2948. std::string vars() override {
  2949. return VARS_TO_STR2(type, ne);
  2950. }
  2951. test_sqr(ggml_type type = GGML_TYPE_F32,
  2952. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2953. : type(type), ne(ne) {}
  2954. ggml_tensor * build_graph(ggml_context * ctx) override {
  2955. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2956. ggml_set_param(a);
  2957. ggml_set_name(a, "a");
  2958. ggml_tensor * out = ggml_sqr(ctx, a);
  2959. ggml_set_name(out, "out");
  2960. return out;
  2961. }
  2962. float grad_eps() override {
  2963. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2964. }
  2965. };
  2966. // GGML_OP_SQRT
  2967. struct test_sqrt : public test_case {
  2968. const ggml_type type;
  2969. const std::array<int64_t, 4> ne;
  2970. std::string vars() override {
  2971. return VARS_TO_STR2(type, ne);
  2972. }
  2973. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2974. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2975. : type(type), ne(ne) {}
  2976. ggml_tensor * build_graph(ggml_context * ctx) override {
  2977. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2978. ggml_set_param(a);
  2979. ggml_set_name(a, "a");
  2980. ggml_tensor * out = ggml_sqrt(ctx, a);
  2981. ggml_set_name(out, "out");
  2982. return out;
  2983. }
  2984. void initialize_tensors(ggml_context * ctx) override {
  2985. // fill with positive values
  2986. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2987. init_tensor_uniform(t, 50.0f, 100.0f);
  2988. }
  2989. }
  2990. float grad_eps() override {
  2991. return 20.0f;
  2992. }
  2993. bool grad_precise() override {
  2994. return true;
  2995. }
  2996. };
  2997. // GGML_OP_LOG
  2998. struct test_log : public test_case {
  2999. const ggml_type type;
  3000. const std::array<int64_t, 4> ne;
  3001. std::string vars() override {
  3002. return VARS_TO_STR2(type, ne);
  3003. }
  3004. test_log(ggml_type type = GGML_TYPE_F32,
  3005. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3006. : type(type), ne(ne) {}
  3007. ggml_tensor * build_graph(ggml_context * ctx) override {
  3008. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3009. ggml_set_param(a);
  3010. ggml_set_name(a, "a");
  3011. ggml_tensor * out = ggml_log(ctx, a);
  3012. ggml_set_name(out, "out");
  3013. return out;
  3014. }
  3015. void initialize_tensors(ggml_context * ctx) override {
  3016. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3017. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3018. init_tensor_uniform(t, 0.9f, 1.1f);
  3019. }
  3020. }
  3021. bool grad_precise() override {
  3022. return true;
  3023. }
  3024. };
  3025. // GGML_OP_SIN
  3026. struct test_sin : public test_case {
  3027. const ggml_type type;
  3028. const std::array<int64_t, 4> ne;
  3029. std::string vars() override {
  3030. return VARS_TO_STR2(type, ne);
  3031. }
  3032. test_sin(ggml_type type = GGML_TYPE_F32,
  3033. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3034. : type(type), ne(ne) {}
  3035. ggml_tensor * build_graph(ggml_context * ctx) override {
  3036. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3037. ggml_set_param(a);
  3038. ggml_set_name(a, "a");
  3039. ggml_tensor * out = ggml_sin(ctx, a);
  3040. ggml_set_name(out, "out");
  3041. return out;
  3042. }
  3043. void initialize_tensors(ggml_context * ctx) override {
  3044. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3045. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3046. }
  3047. }
  3048. double max_maa_err() override {
  3049. return 1e-3;
  3050. }
  3051. float grad_eps() override {
  3052. return 0.2f;
  3053. }
  3054. bool grad_precise() override {
  3055. return true;
  3056. }
  3057. };
  3058. // GGML_OP_COS
  3059. struct test_cos : public test_case {
  3060. const ggml_type type;
  3061. const std::array<int64_t, 4> ne;
  3062. std::string vars() override {
  3063. return VARS_TO_STR2(type, ne);
  3064. }
  3065. test_cos(ggml_type type = GGML_TYPE_F32,
  3066. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3067. : type(type), ne(ne) {}
  3068. ggml_tensor * build_graph(ggml_context * ctx) override {
  3069. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3070. ggml_set_param(a);
  3071. ggml_set_name(a, "a");
  3072. ggml_tensor * out = ggml_cos(ctx, a);
  3073. ggml_set_name(out, "out");
  3074. return out;
  3075. }
  3076. void initialize_tensors(ggml_context * ctx) override {
  3077. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3078. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3079. }
  3080. }
  3081. double max_maa_err() override {
  3082. return 1e-3;
  3083. }
  3084. float grad_eps() override {
  3085. return 0.2f;
  3086. }
  3087. bool grad_precise() override {
  3088. return true;
  3089. }
  3090. };
  3091. // GGML_OP_CLAMP
  3092. struct test_clamp : public test_case {
  3093. const ggml_type type;
  3094. const std::array<int64_t, 4> ne;
  3095. float min;
  3096. float max;
  3097. std::string vars() override {
  3098. return VARS_TO_STR4(type, ne, min, max);
  3099. }
  3100. test_clamp(ggml_type type = GGML_TYPE_F32,
  3101. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3102. float min = -0.5f, float max = 0.5f)
  3103. : type(type), ne(ne), min(min), max(max) {}
  3104. ggml_tensor * build_graph(ggml_context * ctx) override {
  3105. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3106. ggml_set_name(a, "a");
  3107. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3108. ggml_set_name(out, "out");
  3109. return out;
  3110. }
  3111. float grad_eps() override {
  3112. return 1e-2f;
  3113. }
  3114. std::vector<float> grad_expect() override {
  3115. return {0.0f, 1.0f};
  3116. }
  3117. };
  3118. // GGML_OP_DIAG_MASK_INF
  3119. struct test_diag_mask_inf : public test_case {
  3120. const ggml_type type;
  3121. const std::array<int64_t, 4> ne;
  3122. const int n_past;
  3123. std::string vars() override {
  3124. return VARS_TO_STR3(type, ne, n_past);
  3125. }
  3126. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3127. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3128. int n_past = 5)
  3129. : type(type), ne(ne), n_past(n_past) {}
  3130. ggml_tensor * build_graph(ggml_context * ctx) override {
  3131. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3132. ggml_set_param(a);
  3133. ggml_set_name(a, "a");
  3134. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3135. ggml_set_name(out, "out");
  3136. return out;
  3137. }
  3138. };
  3139. // GGML_OP_SOFT_MAX
  3140. struct test_soft_max : public test_case {
  3141. const ggml_type type;
  3142. const std::array<int64_t, 4> ne;
  3143. const bool mask;
  3144. const bool sinks;
  3145. const ggml_type m_prec;
  3146. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3147. const float scale;
  3148. const float max_bias;
  3149. const bool inplace;
  3150. std::string vars() override {
  3151. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3152. }
  3153. // the 1024 test with bias occasionally fails:
  3154. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3155. virtual double max_nmse_err() override {
  3156. return 1e-6;
  3157. }
  3158. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3159. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3160. bool mask = false,
  3161. bool sinks = false,
  3162. ggml_type m_prec = GGML_TYPE_F32,
  3163. std::array<int64_t, 2> nr23 = {1, 1},
  3164. float scale = 1.0f,
  3165. float max_bias = 0.0f,
  3166. bool inplace = false)
  3167. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3168. ggml_tensor * build_graph(ggml_context * ctx) override {
  3169. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3170. ggml_set_param(a);
  3171. ggml_set_name(a, "a");
  3172. ggml_tensor * mask = nullptr;
  3173. if (this->mask) {
  3174. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3175. ggml_set_name(mask, "mask");
  3176. }
  3177. ggml_tensor * sinks = nullptr;
  3178. if (this->sinks) {
  3179. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3180. ggml_set_name(sinks, "sinks");
  3181. }
  3182. ggml_tensor * out;
  3183. if (inplace) {
  3184. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3185. } else {
  3186. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3187. }
  3188. ggml_soft_max_add_sinks(out, sinks);
  3189. ggml_set_name(out, "out");
  3190. return out;
  3191. }
  3192. bool grad_precise() override {
  3193. return true;
  3194. }
  3195. };
  3196. // GGML_OP_SOFT_MAX_BACK
  3197. struct test_soft_max_back : public test_case {
  3198. const ggml_type type;
  3199. const std::array<int64_t, 4> ne;
  3200. const float scale;
  3201. const float max_bias;
  3202. std::string vars() override {
  3203. return VARS_TO_STR4(type, ne, scale, max_bias);
  3204. }
  3205. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3206. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3207. float scale = 1.0f,
  3208. float max_bias = 0.0f)
  3209. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3210. ggml_tensor * build_graph(ggml_context * ctx) override {
  3211. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3212. ggml_set_name(a, "a");
  3213. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3214. ggml_set_name(a, "a");
  3215. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3216. ggml_set_name(out, "out");
  3217. return out;
  3218. }
  3219. };
  3220. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3221. struct test_rope : public test_case {
  3222. const ggml_type type;
  3223. const std::array<int64_t, 4> ne_a;
  3224. int n_dims;
  3225. int mode;
  3226. int n_ctx; // used to generate positions
  3227. float fs; // freq_scale
  3228. float ef; // ext_factor
  3229. float af; // attn_factor
  3230. bool ff;
  3231. int v; // view (1 : non-contiguous a)
  3232. bool forward;
  3233. bool inplace;
  3234. std::string vars() override {
  3235. // forward can be inferred from the op, does not need to be printed
  3236. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3237. }
  3238. test_rope(ggml_type type = GGML_TYPE_F32,
  3239. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3240. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3241. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3242. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3243. ggml_tensor * build_graph(ggml_context * ctx) override {
  3244. ggml_tensor * a;
  3245. if (v & 1) {
  3246. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3247. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3248. if (forward) {
  3249. ggml_set_param(a);
  3250. }
  3251. ggml_set_name(a, "a");
  3252. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3253. ggml_set_name(a, "view_of_a");
  3254. } else {
  3255. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3256. if (forward) {
  3257. ggml_set_param(a);
  3258. }
  3259. ggml_set_name(a, "a");
  3260. }
  3261. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3262. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3263. ggml_tensor * pos;
  3264. if (is_mrope || is_vision) {
  3265. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3266. } else {
  3267. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3268. }
  3269. ggml_set_name(pos, "pos");
  3270. ggml_tensor * freq = nullptr;
  3271. if (ff) {
  3272. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3273. ggml_set_name(freq, "freq");
  3274. }
  3275. ggml_tensor * out;
  3276. if (is_mrope) {
  3277. if (is_vision) {
  3278. GGML_ASSERT(n_dims/4 > 0);
  3279. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3280. if (forward) {
  3281. if (inplace) {
  3282. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3283. } else {
  3284. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3285. }
  3286. } else {
  3287. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3288. }
  3289. } else {
  3290. GGML_ASSERT(n_dims/3 > 0);
  3291. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3292. if (forward) {
  3293. if (inplace) {
  3294. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3295. } else {
  3296. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3297. }
  3298. } else {
  3299. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3300. }
  3301. }
  3302. } else {
  3303. if (forward) {
  3304. if (inplace) {
  3305. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3306. } else {
  3307. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3308. }
  3309. } else {
  3310. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3311. }
  3312. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3313. }
  3314. ggml_set_name(out, "out");
  3315. return out;
  3316. }
  3317. void initialize_tensors(ggml_context * ctx) override {
  3318. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3319. if (t->type == GGML_TYPE_I32) {
  3320. // pos
  3321. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3322. std::vector<int> data(num_pos_ids);
  3323. for (int i = 0; i < num_pos_ids; i++) {
  3324. data[i] = rand() % n_ctx;
  3325. }
  3326. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3327. } else {
  3328. if (t->ne[0] == n_dims/2) {
  3329. // frequency factors in the range [0.9f, 1.1f]
  3330. init_tensor_uniform(t, 0.9f, 1.1f);
  3331. } else {
  3332. init_tensor_uniform(t);
  3333. }
  3334. }
  3335. }
  3336. }
  3337. double max_maa_err() override {
  3338. return 1e-3;
  3339. }
  3340. bool grad_precise() override {
  3341. return true;
  3342. }
  3343. };
  3344. // GGML_OP_POOL2D
  3345. struct test_pool2d : public test_case {
  3346. enum ggml_op_pool pool_type;
  3347. const ggml_type type_input;
  3348. const std::array<int64_t, 4> ne_input;
  3349. // kernel size
  3350. const int k0;
  3351. const int k1;
  3352. // stride
  3353. const int s0;
  3354. const int s1;
  3355. // padding
  3356. const int p0;
  3357. const int p1;
  3358. std::string vars() override {
  3359. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3360. }
  3361. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3362. ggml_type type_input = GGML_TYPE_F32,
  3363. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3364. int k0 = 3, int k1 = 3,
  3365. int s0 = 1, int s1 = 1,
  3366. int p0 = 1, int p1 = 1)
  3367. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3368. ggml_tensor * build_graph(ggml_context * ctx) override {
  3369. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3370. ggml_set_param(input);
  3371. ggml_set_name(input, "input");
  3372. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3373. ggml_set_name(out, "out");
  3374. return out;
  3375. }
  3376. };
  3377. // GGML_OP_CONV_TRANSPOSE_1D
  3378. struct test_conv_transpose_1d : public test_case {
  3379. const std::array<int64_t, 4> ne_input;
  3380. const std::array<int64_t, 4> ne_kernel;
  3381. const int s0; // stride
  3382. const int p0; // padding
  3383. const int d0; // dilation
  3384. std::string vars() override {
  3385. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3386. }
  3387. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3388. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3389. int s0 = 1, int p0 = 0, int d0 = 1)
  3390. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3391. ggml_tensor * build_graph(ggml_context * ctx) override {
  3392. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3393. ggml_set_name(input, "input");
  3394. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3395. ggml_set_name(kernel, "kernel");
  3396. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3397. ggml_set_name(out, "out");
  3398. return out;
  3399. }
  3400. };
  3401. // GGML_OP_CONV_TRANSPOSE_2D
  3402. struct test_conv_transpose_2d : public test_case {
  3403. const std::array<int64_t, 4> ne_input;
  3404. const std::array<int64_t, 4> ne_kernel;
  3405. const int stride;
  3406. std::string vars() override {
  3407. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3408. }
  3409. double max_nmse_err() override {
  3410. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3411. }
  3412. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3413. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3414. int stride = 1)
  3415. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3416. ggml_tensor * build_graph(ggml_context * ctx) override {
  3417. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3418. ggml_set_name(input, "input");
  3419. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3420. ggml_set_name(kernel, "kernel");
  3421. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3422. ggml_set_name(out, "out");
  3423. return out;
  3424. }
  3425. };
  3426. // GGML_OP_IM2COL
  3427. struct test_im2col : public test_case {
  3428. const ggml_type type_input;
  3429. const ggml_type type_kernel;
  3430. const ggml_type dst_type;
  3431. const std::array<int64_t, 4> ne_input;
  3432. const std::array<int64_t, 4> ne_kernel;
  3433. // stride
  3434. const int s0;
  3435. const int s1;
  3436. // padding
  3437. const int p0;
  3438. const int p1;
  3439. // dilation
  3440. const int d0;
  3441. const int d1;
  3442. // mode
  3443. const bool is_2D;
  3444. std::string vars() override {
  3445. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3446. }
  3447. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3448. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3449. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3450. int s0 = 1, int s1 = 1,
  3451. int p0 = 1, int p1 = 1,
  3452. int d0 = 1, int d1 = 1,
  3453. bool is_2D = true)
  3454. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3455. ggml_tensor * build_graph(ggml_context * ctx) override {
  3456. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3457. ggml_set_param(input);
  3458. ggml_set_name(input, "input");
  3459. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3460. ggml_set_name(kernel, "kernel");
  3461. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3462. ggml_set_name(out, "out");
  3463. return out;
  3464. }
  3465. };
  3466. // GGML_OP_IM2COL_3D
  3467. struct test_im2col_3d : public test_case {
  3468. const ggml_type type_input;
  3469. const ggml_type type_kernel;
  3470. const ggml_type dst_type;
  3471. const std::array<int64_t, 4> ne_input;
  3472. const std::array<int64_t, 4> ne_kernel;
  3473. // stride
  3474. const int s0;
  3475. const int s1;
  3476. const int s2;
  3477. // padding
  3478. const int p0;
  3479. const int p1;
  3480. const int p2;
  3481. // dilation
  3482. const int d0;
  3483. const int d1;
  3484. const int d2;
  3485. const int64_t IC;
  3486. const bool v;
  3487. std::string vars() override {
  3488. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3489. }
  3490. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3491. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3492. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3493. int64_t IC = 3,
  3494. int s0 = 1, int s1 = 1, int s2 = 1,
  3495. int p0 = 1, int p1 = 1, int p2 = 1,
  3496. int d0 = 1, int d1 = 1, int d2 = 1,
  3497. bool v = false)
  3498. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3499. ggml_tensor * build_graph(ggml_context * ctx) override {
  3500. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3501. ggml_set_param(input);
  3502. ggml_set_name(input, "input");
  3503. if (v) {
  3504. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3505. ggml_set_name(input, "view_of_input");
  3506. }
  3507. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3508. ggml_set_name(kernel, "kernel");
  3509. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3510. ggml_set_name(out, "out");
  3511. return out;
  3512. }
  3513. };
  3514. // CONV_2D
  3515. struct test_conv_2d : public test_case {
  3516. const std::array<int64_t, 4> ne_input;
  3517. const std::array<int64_t, 4> ne_kernel;
  3518. const ggml_type type_kernel;
  3519. const int stride0;
  3520. const int stride1;
  3521. const int padding0;
  3522. const int padding1;
  3523. const int dilation0;
  3524. const int dilation1;
  3525. // Whether the inputs are contiguous in the channel dim or the width dim
  3526. const bool cwhn;
  3527. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3528. // uses ggml_conv_2d:
  3529. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3530. // CONV_2D graph will be built, while
  3531. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3532. // IM2COL -> MUL_MM graph will be built.
  3533. std::string vars() override {
  3534. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3535. }
  3536. double max_nmse_err() override {
  3537. return 5e-4;
  3538. }
  3539. uint64_t op_flops(ggml_tensor * t) override {
  3540. GGML_UNUSED(t);
  3541. // Just counting matmul costs:
  3542. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3543. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3544. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3545. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3546. };
  3547. int64_t W = ne_input[0];
  3548. int64_t H = ne_input[1];
  3549. int64_t KW = ne_kernel[0];
  3550. int64_t KH = ne_kernel[1];
  3551. int64_t Cin = ne_kernel[2];
  3552. int64_t Cout = ne_kernel[3];
  3553. int64_t N = ne_input[3];
  3554. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3555. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3556. int64_t K = Cout;
  3557. int64_t CRS = Cin * KH * KW;
  3558. int64_t NPQ = N * OH * OW;
  3559. return K * NPQ * (2 * CRS - 1);
  3560. }
  3561. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3562. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3563. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3564. ne_input(ne_input),
  3565. ne_kernel(ne_kernel),
  3566. type_kernel(type_kernel),
  3567. stride0(stride0),
  3568. stride1(stride1),
  3569. padding0(padding0),
  3570. padding1(padding1),
  3571. dilation0(dilation0),
  3572. dilation1(dilation1),
  3573. cwhn(cwhn) {}
  3574. ggml_tensor * build_graph(ggml_context * ctx) override {
  3575. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3576. ggml_set_name(input, "input");
  3577. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3578. ggml_set_name(kernel, "kernel");
  3579. if (cwhn) {
  3580. // change memory layout to channel-most-contiguous (CWHN),
  3581. // then permute it back so NE matches the original input
  3582. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3583. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3584. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3585. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3586. }
  3587. ggml_tensor * out =
  3588. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3589. ggml_set_name(out, "out");
  3590. return out;
  3591. }
  3592. };
  3593. // GGML_OP_CONV_2D_DW
  3594. struct test_conv_2d_dw : public test_case {
  3595. const std::array<int64_t, 4> ne_input;
  3596. const std::array<int64_t, 4> ne_kernel;
  3597. const int stride;
  3598. const int padding;
  3599. const int dilation;
  3600. const bool cwhn;
  3601. std::string vars() override {
  3602. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3603. }
  3604. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3605. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3606. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3607. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3608. ggml_tensor * build_graph(ggml_context * ctx) override {
  3609. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3610. ggml_set_name(input, "input");
  3611. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3612. ggml_set_name(kernel, "kernel");
  3613. if (cwhn) {
  3614. // change memory layout to channel-most-contiguous (CWHN),
  3615. // then permute it back so NE matches the original input
  3616. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3617. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3618. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3619. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3620. }
  3621. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3622. ctx, kernel, input,
  3623. stride, stride, padding, padding, dilation, dilation);
  3624. ggml_set_name(out, "out");
  3625. return out;
  3626. }
  3627. };
  3628. // GGML_OP_CONV_3D
  3629. struct test_conv_3d : public test_case {
  3630. // Logical 5D dimensions
  3631. const int64_t N, IC, ID, IH, IW;
  3632. const int64_t OC, KD, KH, KW;
  3633. // Conv params
  3634. const int s0, s1, s2;
  3635. const int p0, p1, p2;
  3636. const int d0, d1, d2;
  3637. // Types
  3638. const ggml_type type_kernel;
  3639. std::string op_desc(ggml_tensor * t) override {
  3640. GGML_UNUSED(t);
  3641. return "CONV_3D";
  3642. }
  3643. std::string vars() override {
  3644. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3645. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3646. }
  3647. double max_nmse_err() override {
  3648. return 5e-4;
  3649. }
  3650. uint64_t op_flops(ggml_tensor * t) override {
  3651. GGML_UNUSED(t);
  3652. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3653. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3654. };
  3655. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3656. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3657. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3658. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3659. }
  3660. test_conv_3d(
  3661. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3662. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3663. int s0, int s1, int s2,
  3664. int p0, int p1, int p2,
  3665. int d0, int d1, int d2,
  3666. ggml_type type_kernel
  3667. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3668. OC(OC), KD(KD), KH(KH), KW(KW),
  3669. s0(s0), s1(s1), s2(s2),
  3670. p0(p0), p1(p1), p2(p2),
  3671. d0(d0), d1(d1), d2(d2),
  3672. type_kernel(type_kernel) {}
  3673. ggml_tensor * build_graph(ggml_context * ctx) override {
  3674. // GGML input tensor is packed as [W, H, D, C*N]
  3675. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3676. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3677. ggml_set_name(input, "input");
  3678. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3679. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3680. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3681. ggml_set_name(kernel, "kernel");
  3682. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3683. ggml_set_name(out, "out");
  3684. return out;
  3685. }
  3686. };
  3687. // GGML_OP_CONCAT
  3688. struct test_concat : public test_case {
  3689. const ggml_type type;
  3690. const std::array<int64_t, 4> ne_a;
  3691. const int64_t ne_b_d;
  3692. const int dim;
  3693. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3694. std::string vars() override {
  3695. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3696. }
  3697. test_concat(ggml_type type = GGML_TYPE_F32,
  3698. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3699. int64_t ne_b_d = 5,
  3700. int dim = 2, int v = 0)
  3701. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3702. ggml_tensor * build_graph(ggml_context * ctx) override {
  3703. auto ne_b = ne_a;
  3704. ne_b[dim] = ne_b_d;
  3705. ggml_tensor * a;
  3706. if (v & 1) {
  3707. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3708. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3709. ggml_set_name(a, "a");
  3710. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3711. ggml_set_name(a, "view_of_a");
  3712. } else {
  3713. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3714. ggml_set_name(a, "a");
  3715. }
  3716. ggml_tensor * b;
  3717. if (v & 2) {
  3718. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3719. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3720. ggml_set_name(b, "b");
  3721. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3722. ggml_set_name(b, "view_of_b");
  3723. } else {
  3724. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3725. ggml_set_name(b, "b");
  3726. }
  3727. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3728. ggml_set_name(out, "out");
  3729. return out;
  3730. }
  3731. };
  3732. // GGML_OP_ARGSORT
  3733. struct test_argsort : public test_case {
  3734. const ggml_type type;
  3735. const std::array<int64_t, 4> ne;
  3736. ggml_sort_order order;
  3737. std::string vars() override {
  3738. return VARS_TO_STR3(type, ne, order);
  3739. }
  3740. test_argsort(ggml_type type = GGML_TYPE_F32,
  3741. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3742. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3743. : type(type), ne(ne), order(order) {}
  3744. ggml_tensor * build_graph(ggml_context * ctx) override {
  3745. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3746. ggml_set_name(a, "a");
  3747. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3748. ggml_set_name(out, "out");
  3749. return out;
  3750. }
  3751. void initialize_tensors(ggml_context * ctx) override {
  3752. std::random_device rd;
  3753. std::default_random_engine rng(rd());
  3754. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3755. if (t->type == GGML_TYPE_I32) {
  3756. // indices
  3757. std::vector<int> data(ggml_nelements(t));
  3758. for (int i = 0; i < ggml_nelements(t); i++) {
  3759. data[i] = rand();
  3760. }
  3761. std::shuffle(data.begin(), data.end(), rng);
  3762. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3763. } else if (t->type == GGML_TYPE_F32) {
  3764. // initialize with unique values to avoid ties
  3765. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3766. std::vector<float> data(t->ne[0]);
  3767. for (int i = 0; i < t->ne[0]; i++) {
  3768. data[i] = i;
  3769. }
  3770. std::shuffle(data.begin(), data.end(), rng);
  3771. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3772. }
  3773. } else {
  3774. GGML_ABORT("fatal error");
  3775. }
  3776. }
  3777. }
  3778. };
  3779. struct test_topk_moe: public test_case {
  3780. const std::array<int64_t, 4> ne;
  3781. const int n_expert_used;
  3782. const bool with_norm;
  3783. test_topk_moe(std::array<int64_t, 4> ne = {10, 5, 1, 1}, int n_expert_used = 1, bool with_norm = false)
  3784. : ne(ne), n_expert_used(n_expert_used), with_norm(with_norm) {
  3785. GGML_ASSERT(n_expert_used <= ne[0]);
  3786. }
  3787. std::string vars() override {
  3788. return VARS_TO_STR3(ne, n_expert_used, with_norm);
  3789. }
  3790. std::string op_desc(ggml_tensor * t) override {
  3791. GGML_UNUSED(t);
  3792. return "TOPK_MOE";
  3793. }
  3794. bool run_whole_graph() override { return true; }
  3795. ggml_tensor * build_graph(ggml_context * ctx) override {
  3796. const int n_expert = ne[0];
  3797. const int n_tokens = ne[1];
  3798. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  3799. ggml_tensor * probs = ggml_soft_max(ctx, logits);
  3800. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  3801. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  3802. if (with_norm) {
  3803. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3804. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  3805. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  3806. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3807. }
  3808. ggml_set_name(out, "out");
  3809. return out;
  3810. }
  3811. };
  3812. // GGML_OP_SUM
  3813. struct test_sum : public test_case {
  3814. const ggml_type type;
  3815. const std::array<int64_t, 4> ne;
  3816. const std::array<int64_t, 4> permute;
  3817. bool _use_permute;
  3818. std::string vars() override {
  3819. std::string v = VARS_TO_STR2(type, ne);
  3820. if (_use_permute) v += "," + VAR_TO_STR(permute);
  3821. return v;
  3822. }
  3823. test_sum(ggml_type type = GGML_TYPE_F32,
  3824. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3825. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  3826. : type(type), ne(ne), permute(permute),
  3827. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  3828. ggml_tensor * build_graph(ggml_context * ctx) override {
  3829. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3830. ggml_set_param(a);
  3831. ggml_set_name(a, "a");
  3832. if (_use_permute) {
  3833. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  3834. ggml_set_name(a, "a_permuted");
  3835. }
  3836. ggml_tensor * out = ggml_sum(ctx, a);
  3837. ggml_set_name(out, "out");
  3838. return out;
  3839. }
  3840. float grad_eps() override {
  3841. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3842. }
  3843. };
  3844. // GGML_OP_SUM_ROWS
  3845. struct test_sum_rows : public test_case {
  3846. const ggml_type type;
  3847. const std::array<int64_t, 4> ne;
  3848. const bool permute;
  3849. const bool slice;
  3850. std::string vars() override {
  3851. return VARS_TO_STR4(type, ne, permute, slice);
  3852. }
  3853. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3854. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3855. bool permute = false, bool slice = false)
  3856. : type(type), ne(ne), permute(permute), slice(slice) {}
  3857. ggml_tensor * build_graph(ggml_context * ctx) override {
  3858. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3859. ggml_set_param(a);
  3860. ggml_set_name(a, "a");
  3861. if (slice) {
  3862. a = ggml_view_4d(ctx, a,
  3863. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  3864. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  3865. }
  3866. if (permute) {
  3867. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  3868. }
  3869. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3870. ggml_set_name(out, "out");
  3871. return out;
  3872. }
  3873. };
  3874. // GGML_OP_MEAN
  3875. struct test_mean : public test_case {
  3876. const ggml_type type;
  3877. const std::array<int64_t, 4> ne;
  3878. std::string vars() override {
  3879. return VARS_TO_STR2(type, ne);
  3880. }
  3881. test_mean(ggml_type type = GGML_TYPE_F32,
  3882. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3883. : type(type), ne(ne) {}
  3884. ggml_tensor * build_graph(ggml_context * ctx) override {
  3885. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3886. ggml_set_param(a);
  3887. ggml_set_name(a, "a");
  3888. ggml_tensor * out = ggml_mean(ctx, a);
  3889. ggml_set_name(out, "out");
  3890. return out;
  3891. }
  3892. float grad_eps() override {
  3893. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3894. }
  3895. };
  3896. // GGML_OP_UPSCALE
  3897. struct test_upscale : public test_case {
  3898. const ggml_type type;
  3899. const std::array<int64_t, 4> ne;
  3900. const int32_t scale_factor;
  3901. const bool transpose;
  3902. const ggml_scale_mode mode;
  3903. std::string vars() override {
  3904. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3905. }
  3906. test_upscale(ggml_type type = GGML_TYPE_F32,
  3907. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3908. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3909. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3910. ggml_tensor * build_graph(ggml_context * ctx) override {
  3911. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3912. ggml_set_name(a, "a");
  3913. if (transpose) {
  3914. a = ggml_transpose(ctx, a);
  3915. ggml_set_name(a, "a_transposed");
  3916. }
  3917. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3918. ggml_set_name(out, "out");
  3919. return out;
  3920. }
  3921. };
  3922. // GGML_OP_UPSCALE (via ggml_interpolate)
  3923. struct test_interpolate : public test_case {
  3924. const ggml_type type;
  3925. const std::array<int64_t, 4> ne;
  3926. const std::array<int64_t, 4> ne_tgt;
  3927. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3928. std::string vars() override {
  3929. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3930. }
  3931. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3932. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3933. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3934. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3935. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3936. ggml_tensor * build_graph(ggml_context * ctx) override {
  3937. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3938. ggml_set_name(a, "a");
  3939. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3940. ggml_set_name(out, "out");
  3941. return out;
  3942. }
  3943. };
  3944. // GGML_OP_GROUP_NORM
  3945. struct test_group_norm : public test_case {
  3946. const ggml_type type;
  3947. const std::array<int64_t, 4> ne;
  3948. const int32_t num_groups;
  3949. const float eps;
  3950. std::string vars() override {
  3951. return VARS_TO_STR4(type, ne, num_groups, eps);
  3952. }
  3953. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3954. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3955. int32_t num_groups = 32,
  3956. float eps = 1e-6f)
  3957. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3958. ggml_tensor * build_graph(ggml_context * ctx) override {
  3959. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3960. ggml_set_name(a, "a");
  3961. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3962. ggml_set_name(out, "out");
  3963. return out;
  3964. }
  3965. };
  3966. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  3967. struct test_group_norm_mul_add : public test_case {
  3968. const ggml_type type;
  3969. const std::array<int64_t, 4> ne;
  3970. int num_groups;
  3971. float eps;
  3972. std::string op_desc(ggml_tensor * t) override {
  3973. GGML_UNUSED(t);
  3974. return "GROUP_NORM_MUL_ADD";
  3975. }
  3976. bool run_whole_graph() override { return true; }
  3977. std::string vars() override {
  3978. return VARS_TO_STR4(type, ne, num_groups, eps);
  3979. }
  3980. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  3981. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  3982. int num_groups = 4,
  3983. float eps = 1e-5f)
  3984. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3985. ggml_tensor * build_graph(ggml_context * ctx) override {
  3986. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3987. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  3988. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3989. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  3990. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  3991. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  3992. ggml_tensor * m = ggml_mul(ctx, n, w);
  3993. ggml_tensor * out = ggml_add(ctx, m, b);
  3994. ggml_set_name(out, "out");
  3995. return out;
  3996. }
  3997. };
  3998. // GGML_OP_L2_NORM
  3999. struct test_l2_norm : public test_case {
  4000. const ggml_type type;
  4001. const std::array<int64_t, 4> ne;
  4002. const float eps;
  4003. std::string vars() override {
  4004. return VARS_TO_STR2(type, ne);
  4005. }
  4006. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4007. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4008. float eps = 1e-12f)
  4009. : type(type), ne(ne), eps(eps) {}
  4010. ggml_tensor * build_graph(ggml_context * ctx) override {
  4011. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4012. ggml_set_name(a, "a");
  4013. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4014. ggml_set_name(out, "out");
  4015. return out;
  4016. }
  4017. };
  4018. // GGML_OP_ACC
  4019. struct test_acc : public test_case {
  4020. const ggml_type type;
  4021. const std::array<int64_t, 4> ne_a;
  4022. const std::array<int64_t, 4> ne_b;
  4023. std::string vars() override {
  4024. return VARS_TO_STR3(type, ne_a, ne_b);
  4025. }
  4026. test_acc(ggml_type type = GGML_TYPE_F32,
  4027. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4028. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4029. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4030. ggml_tensor * build_graph(ggml_context * ctx) override {
  4031. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4032. ggml_set_param(a);
  4033. ggml_set_name(a, "a");
  4034. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4035. ggml_set_param(b);
  4036. ggml_set_name(b, "b");
  4037. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4038. ggml_set_name(out, "out");
  4039. return out;
  4040. }
  4041. };
  4042. // GGML_OP_PAD
  4043. struct test_pad : public test_case {
  4044. const ggml_type type;
  4045. const std::array<int64_t, 4> ne_a;
  4046. const int pad_0;
  4047. const int pad_1;
  4048. std::string vars() override {
  4049. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4050. }
  4051. test_pad(ggml_type type = GGML_TYPE_F32,
  4052. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4053. int pad_0 = 1, int pad_1 = 1)
  4054. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4055. ggml_tensor * build_graph(ggml_context * ctx) override {
  4056. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4057. ggml_set_name(a, "a");
  4058. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4059. ggml_set_name(out, "out");
  4060. return out;
  4061. }
  4062. };
  4063. struct test_pad_ext : public test_case {
  4064. const ggml_type type;
  4065. const std::array<int64_t, 4> ne_a;
  4066. const int lp0;
  4067. const int rp0;
  4068. const int lp1;
  4069. const int rp1;
  4070. const int lp2;
  4071. const int rp2;
  4072. const int lp3;
  4073. const int rp3;
  4074. const bool v;
  4075. std::string vars() override {
  4076. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4077. }
  4078. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4079. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4080. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4081. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4082. bool v = false)
  4083. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4084. ggml_tensor * build_graph(ggml_context * ctx) override {
  4085. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4086. ggml_set_name(a, "a");
  4087. if (v) {
  4088. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4089. ggml_set_name(a, "view of a");
  4090. }
  4091. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4092. ggml_set_name(out, "out");
  4093. return out;
  4094. }
  4095. };
  4096. // GGML_OP_PAD_REFLECT_1D
  4097. struct test_pad_reflect_1d : public test_case {
  4098. const ggml_type type;
  4099. const std::array<int64_t, 4> ne_a;
  4100. const int pad_0;
  4101. const int pad_1;
  4102. std::string vars() override {
  4103. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4104. }
  4105. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4106. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4107. int pad_0 = 10, int pad_1 = 9)
  4108. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4109. ggml_tensor * build_graph(ggml_context * ctx) override {
  4110. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4111. ggml_set_name(a, "a");
  4112. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4113. ggml_set_name(out, "out");
  4114. return out;
  4115. }
  4116. };
  4117. // GGML_OP_ROLL
  4118. struct test_roll : public test_case {
  4119. const int shift0;
  4120. const int shift1;
  4121. const int shift3;
  4122. const int shift4;
  4123. std::string vars() override {
  4124. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4125. }
  4126. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4127. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4128. ggml_tensor * build_graph(ggml_context * ctx) override {
  4129. int64_t ne[4] = {10, 5, 4, 3};
  4130. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4131. ggml_set_name(a, "a");
  4132. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4133. ggml_set_name(out, "out");
  4134. return out;
  4135. }
  4136. };
  4137. // GGML_OP_ARANGE
  4138. struct test_arange : public test_case {
  4139. const ggml_type type;
  4140. const float start;
  4141. const float stop;
  4142. const float step;
  4143. std::string vars() override {
  4144. return VARS_TO_STR4(type, start, stop, step);
  4145. }
  4146. test_arange(ggml_type type = GGML_TYPE_F32,
  4147. float start = 0.f, float stop = 10.f, float step = 1.f)
  4148. : type(type), start(start), stop(stop), step(step) {}
  4149. ggml_tensor * build_graph(ggml_context * ctx) override {
  4150. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4151. ggml_set_name(out, "out");
  4152. return out;
  4153. }
  4154. };
  4155. // GGML_OP_TIMESTEP_EMBEDDING
  4156. struct test_timestep_embedding : public test_case {
  4157. const ggml_type type;
  4158. const std::array<int64_t, 4> ne_a;
  4159. const int dim;
  4160. const int max_period;
  4161. std::string vars() override {
  4162. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4163. }
  4164. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4165. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4166. int dim = 320, int max_period=10000)
  4167. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4168. ggml_tensor * build_graph(ggml_context * ctx) override {
  4169. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4170. ggml_set_name(a, "a");
  4171. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4172. ggml_set_name(out, "out");
  4173. return out;
  4174. }
  4175. };
  4176. // GGML_OP_LEAKY_RELU
  4177. struct test_leaky_relu : public test_case {
  4178. const ggml_type type;
  4179. const std::array<int64_t, 4> ne_a;
  4180. const float negative_slope;
  4181. std::string vars() override {
  4182. return VARS_TO_STR3(type, ne_a, negative_slope);
  4183. }
  4184. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4185. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4186. float negative_slope = 0.1f)
  4187. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4188. ggml_tensor * build_graph(ggml_context * ctx) override {
  4189. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4190. ggml_set_name(a, "a");
  4191. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4192. ggml_set_name(out, "out");
  4193. return out;
  4194. }
  4195. };
  4196. // GGML_OP_FLASH_ATTN_EXT
  4197. struct test_flash_attn_ext : public test_case {
  4198. const int64_t hsk; // K head size
  4199. const int64_t hsv; // V head size
  4200. const int64_t nh; // num heads
  4201. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4202. const int64_t kv; // kv size
  4203. const int64_t nb; // batch size
  4204. const bool mask; // use mask
  4205. const bool sinks; // use sinks
  4206. const float max_bias; // ALiBi
  4207. const float logit_softcap; // Gemma 2
  4208. const ggml_prec prec;
  4209. const ggml_type type_KV;
  4210. std::array<int32_t, 4> permute;
  4211. std::string vars() override {
  4212. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4213. }
  4214. double max_nmse_err() override {
  4215. return 5e-4;
  4216. }
  4217. uint64_t op_flops(ggml_tensor * t) override {
  4218. GGML_UNUSED(t);
  4219. // Just counting matmul costs:
  4220. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4221. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4222. }
  4223. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4224. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4225. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4226. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4227. ggml_tensor * build_graph(ggml_context * ctx) override {
  4228. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4229. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4230. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4231. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4232. int64_t ne_perm[4];
  4233. for (int i = 0; i < 4; ++i) {
  4234. ne_perm[permute[i]] = ne[i];
  4235. }
  4236. ggml_tensor * t;
  4237. if (is_view) {
  4238. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4239. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4240. } else {
  4241. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4242. }
  4243. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4244. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4245. }
  4246. return t;
  4247. };
  4248. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4249. ggml_set_name(q, "q");
  4250. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4251. ggml_set_name(k, "k");
  4252. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4253. ggml_set_name(v, "v");
  4254. ggml_tensor * m = nullptr;
  4255. if (mask) {
  4256. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4257. ggml_set_name(m, "m");
  4258. }
  4259. ggml_tensor * s = nullptr;
  4260. if (sinks) {
  4261. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4262. ggml_set_name(s, "s");
  4263. }
  4264. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4265. ggml_flash_attn_ext_add_sinks(out, s);
  4266. ggml_flash_attn_ext_set_prec (out, prec);
  4267. ggml_set_name(out, "out");
  4268. return out;
  4269. }
  4270. void initialize_tensors(ggml_context * ctx) override {
  4271. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4272. if (strcmp(t->name, "s") == 0) {
  4273. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4274. init_tensor_uniform(t, -10.0f, 10.0f);
  4275. } else if (strcmp(t->name, "m") == 0) {
  4276. init_tensor_kq_mask(t);
  4277. } else {
  4278. init_tensor_uniform(t);
  4279. }
  4280. }
  4281. }
  4282. bool grad_precise() override {
  4283. return true;
  4284. }
  4285. };
  4286. // GGML_OP_CROSS_ENTROPY_LOSS
  4287. struct test_cross_entropy_loss : public test_case {
  4288. const ggml_type type;
  4289. const std::array<int64_t, 4> ne;
  4290. std::string vars() override {
  4291. return VARS_TO_STR2(type, ne);
  4292. }
  4293. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4294. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4295. : type(type), ne(ne) {}
  4296. ggml_tensor * build_graph(ggml_context * ctx) override {
  4297. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4298. ggml_set_param(logits);
  4299. ggml_set_name(logits, "logits");
  4300. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4301. // The labels are assumed to be constant -> no gradients.
  4302. ggml_set_name(labels, "labels");
  4303. // Ensure labels add up to 1:
  4304. labels = ggml_soft_max(ctx, labels);
  4305. ggml_set_name(labels, "labels_normalized");
  4306. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4307. ggml_set_name(out, "out");
  4308. return out;
  4309. }
  4310. void initialize_tensors(ggml_context * ctx) override {
  4311. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4312. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4313. init_tensor_uniform(t, -100.0f, 100.0f);
  4314. }
  4315. }
  4316. float grad_eps() override {
  4317. return 1.0f;
  4318. }
  4319. bool grad_precise() override {
  4320. return true;
  4321. }
  4322. };
  4323. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4324. struct test_cross_entropy_loss_back : public test_case {
  4325. const ggml_type type;
  4326. const std::array<int64_t, 4> ne;
  4327. std::string vars() override {
  4328. return VARS_TO_STR2(type, ne);
  4329. }
  4330. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4331. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4332. : type(type), ne(ne) {}
  4333. ggml_tensor * build_graph(ggml_context * ctx) override {
  4334. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4335. ggml_set_name(grad, "grad");
  4336. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4337. ggml_set_name(logits, "logits");
  4338. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4339. ggml_set_name(labels, "labels");
  4340. // Ensure labels add up to 1:
  4341. labels = ggml_soft_max(ctx, labels);
  4342. ggml_set_name(labels, "labels_normalized");
  4343. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4344. ggml_set_name(out, "out");
  4345. return out;
  4346. }
  4347. };
  4348. // GGML_OP_OPT_STEP_ADAMW
  4349. struct test_opt_step_adamw : public test_case {
  4350. const ggml_type type;
  4351. const std::array<int64_t, 4> ne;
  4352. std::string vars() override {
  4353. return VARS_TO_STR2(type, ne);
  4354. }
  4355. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4356. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4357. : type(type), ne(ne) {}
  4358. ggml_tensor * build_graph(ggml_context * ctx) override {
  4359. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4360. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4361. ggml_set_name(a, "a");
  4362. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4363. ggml_set_name(grad, "grad");
  4364. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4365. ggml_set_name(grad_m, "grad_m");
  4366. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4367. ggml_set_name(grad_v, "grad_v");
  4368. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4369. ggml_set_name(adamw_params, "adamw_params");
  4370. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4371. ggml_set_name(out, "out");
  4372. return out;
  4373. }
  4374. void initialize_tensors(ggml_context * ctx) override {
  4375. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4376. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4377. }
  4378. }
  4379. bool grad_precise() override {
  4380. return true;
  4381. }
  4382. };
  4383. struct test_opt_step_sgd : public test_case {
  4384. const ggml_type type;
  4385. const std::array<int64_t, 4> ne;
  4386. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4387. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4388. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4389. : type(type), ne(ne) {}
  4390. ggml_tensor * build_graph(ggml_context * ctx) override {
  4391. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4392. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4393. ggml_set_name(a, "a");
  4394. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4395. ggml_set_name(grad, "grad");
  4396. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4397. ggml_set_name(sgd_params, "sgd_params");
  4398. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4399. ggml_set_name(out, "out");
  4400. return out;
  4401. }
  4402. void initialize_tensors(ggml_context * ctx) override {
  4403. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4404. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4405. }
  4406. }
  4407. bool grad_precise() override {
  4408. return true;
  4409. }
  4410. };
  4411. enum llm_norm_type {
  4412. LLM_NORM,
  4413. LLM_NORM_RMS,
  4414. };
  4415. struct llama_hparams {
  4416. uint32_t n_vocab;
  4417. uint32_t n_embd;
  4418. uint32_t n_head;
  4419. uint32_t n_head_kv;
  4420. static constexpr uint32_t n_layer = 1;
  4421. uint32_t n_rot;
  4422. uint32_t n_embd_head; // dimension of values (d_v)
  4423. uint32_t n_ff;
  4424. float f_norm_eps;
  4425. float f_norm_rms_eps;
  4426. // cparams
  4427. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4428. static constexpr uint32_t n_ctx_orig = n_ctx;
  4429. // batch
  4430. int32_t n_tokens;
  4431. // llm_build_context
  4432. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4433. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4434. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4435. return n_embd_head * n_head_kv;
  4436. }
  4437. };
  4438. // LLM base class
  4439. struct test_llm : public test_case {
  4440. llama_hparams hp;
  4441. protected:
  4442. test_llm(llama_hparams hp)
  4443. : hp(std::move(hp)) {
  4444. }
  4445. public:
  4446. struct ggml_tensor * llm_build_norm(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * cur,
  4449. struct ggml_tensor * mw,
  4450. struct ggml_tensor * mb,
  4451. llm_norm_type type) {
  4452. switch (type) {
  4453. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4454. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4455. }
  4456. cur = ggml_mul(ctx, cur, mw);
  4457. if (mb) {
  4458. cur = ggml_add(ctx, cur, mb);
  4459. }
  4460. return cur;
  4461. }
  4462. void llm_build_kv_store(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * k_l,
  4465. struct ggml_tensor * v_l,
  4466. struct ggml_tensor * k_cur,
  4467. struct ggml_tensor * v_cur) {
  4468. // compute the transposed [n_tokens, n_embd] V matrix
  4469. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4470. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4471. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4472. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4473. ( hp.n_ctx)*ggml_element_size(v_l),
  4474. (hp.kv_head)*ggml_element_size(v_l));
  4475. // important: storing RoPE-ed version of K in the KV cache!
  4476. ggml_cpy(ctx, k_cur, k_cache_view);
  4477. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4478. }
  4479. struct ggml_tensor * llm_build_kqv(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * k_l,
  4482. struct ggml_tensor * v_l,
  4483. struct ggml_tensor * q_cur,
  4484. struct ggml_tensor * kq_mask,
  4485. float kq_scale) {
  4486. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4487. struct ggml_tensor * k =
  4488. ggml_view_3d(ctx, k_l,
  4489. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4490. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4491. ggml_row_size(k_l->type, hp.n_embd_head),
  4492. 0);
  4493. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4494. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4495. // split cached v into n_head heads
  4496. struct ggml_tensor * v =
  4497. ggml_view_3d(ctx, v_l,
  4498. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4499. ggml_element_size(v_l)*hp.n_ctx,
  4500. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4501. 0);
  4502. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4503. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4504. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4505. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4506. cur = ggml_mul_mat(ctx, wo, cur);
  4507. return cur;
  4508. }
  4509. void initialize_tensors(ggml_context * ctx) override {
  4510. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4511. if (t->type == GGML_TYPE_I32) {
  4512. // pos
  4513. std::vector<int> data(hp.n_tokens);
  4514. for (int i = 0; i < hp.n_tokens; i++) {
  4515. data[i] = rand() % hp.n_ctx;
  4516. }
  4517. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4518. } else {
  4519. init_tensor_uniform(t);
  4520. }
  4521. }
  4522. }
  4523. };
  4524. // Llama
  4525. struct test_llama : public test_llm {
  4526. static constexpr float freq_base = 10000.0f;
  4527. static constexpr float freq_scale = 1.0f;
  4528. static constexpr float ext_factor = 0.0f;
  4529. static constexpr float attn_factor = 1.0f;
  4530. static constexpr float beta_fast = 32.0f;
  4531. static constexpr float beta_slow = 1.0f;
  4532. bool fused;
  4533. std::string op_desc(ggml_tensor * t) override {
  4534. GGML_UNUSED(t);
  4535. return "LLAMA";
  4536. }
  4537. std::string vars() override {
  4538. auto n_tokens = hp.n_tokens;
  4539. return VARS_TO_STR1(n_tokens);
  4540. }
  4541. double max_nmse_err() override {
  4542. return 2e-3;
  4543. }
  4544. bool run_whole_graph() override { return fused; }
  4545. test_llama(int n_tokens = 1, bool fused = false)
  4546. : test_llm({
  4547. /*n_vocab =*/ 32000,
  4548. /*n_embd =*/ 3200,
  4549. /*n_head =*/ 32,
  4550. /*n_head_kv =*/ 32,
  4551. /*n_rot =*/ 100,
  4552. /*n_embd_head =*/ 100,
  4553. /*n_ff =*/ 8640,
  4554. /*f_norm_eps =*/ 0.f,
  4555. /*f_norm_rms_eps =*/ 1e-5f,
  4556. /*n_tokens =*/ n_tokens,
  4557. })
  4558. , fused(fused)
  4559. {
  4560. }
  4561. ggml_tensor * build_graph(ggml_context * ctx) override {
  4562. struct ggml_tensor * cur;
  4563. struct ggml_tensor * inpL;
  4564. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4565. // inp_pos - contains the positions
  4566. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4567. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4568. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4569. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4570. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4571. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4572. struct ggml_tensor * inpSA = inpL;
  4573. // norm
  4574. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4575. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4576. // self-attention
  4577. {
  4578. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4579. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4580. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4581. // compute Q and K and RoPE them
  4582. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4583. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4584. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4585. Qcur = ggml_rope_ext(
  4586. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4587. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4588. ext_factor, attn_factor, beta_fast, beta_slow
  4589. );
  4590. Kcur = ggml_rope_ext(
  4591. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4592. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4593. ext_factor, attn_factor, beta_fast, beta_slow
  4594. );
  4595. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4596. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4597. }
  4598. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4599. // feed-forward network
  4600. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4601. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4602. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4603. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4604. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4605. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4606. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4607. cur = ggml_silu(ctx, cur);
  4608. cur = ggml_mul(ctx, cur, tmp);
  4609. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4610. cur = ggml_add(ctx, cur, ffn_inp);
  4611. // input for next layer
  4612. inpL = cur;
  4613. }
  4614. cur = inpL;
  4615. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4616. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4617. // lm_head
  4618. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4619. cur = ggml_mul_mat(ctx, output, cur);
  4620. return cur;
  4621. }
  4622. };
  4623. // Falcon
  4624. struct test_falcon : public test_llm {
  4625. static constexpr float freq_base = 10000.0f;
  4626. static constexpr float freq_scale = 1.0f;
  4627. static constexpr float ext_factor = 0.0f;
  4628. static constexpr float attn_factor = 1.0f;
  4629. static constexpr float beta_fast = 32.0f;
  4630. static constexpr float beta_slow = 1.0f;
  4631. std::string op_desc(ggml_tensor * t) override {
  4632. GGML_UNUSED(t);
  4633. return "FALCON";
  4634. }
  4635. std::string vars() override {
  4636. auto n_tokens = hp.n_tokens;
  4637. return VARS_TO_STR1(n_tokens);
  4638. }
  4639. double max_nmse_err() override {
  4640. return 2e-3;
  4641. }
  4642. test_falcon(int n_tokens = 1)
  4643. : test_llm({
  4644. /*n_vocab =*/ 32000,
  4645. /*n_embd =*/ 3200,
  4646. /*n_head =*/ 50,
  4647. /*n_head_kv =*/ 1,
  4648. /*n_rot =*/ 64,
  4649. /*n_embd_head =*/ 64,
  4650. /*n_ff =*/ 8640,
  4651. /*f_norm_eps =*/ 1e-5f,
  4652. /*f_norm_rms_eps =*/ 0.f,
  4653. /*n_tokens =*/ n_tokens,
  4654. }) {
  4655. }
  4656. ggml_tensor * build_graph(ggml_context * ctx) override {
  4657. struct ggml_tensor * cur;
  4658. struct ggml_tensor * inpL;
  4659. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4660. // inp_pos - contains the positions
  4661. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4662. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4663. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4664. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4665. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4666. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4667. // norm
  4668. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4669. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4670. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4671. // self-attention
  4672. {
  4673. cur = attn_norm;
  4674. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4675. cur = ggml_mul_mat(ctx, wqkv, cur);
  4676. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4677. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4678. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4679. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4680. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4681. // using mode = 2 for neox mode
  4682. Qcur = ggml_rope_ext(
  4683. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4684. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4685. );
  4686. Kcur = ggml_rope_ext(
  4687. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4688. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4689. );
  4690. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4691. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4692. }
  4693. struct ggml_tensor * ffn_inp = cur;
  4694. // feed forward
  4695. {
  4696. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4697. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4698. cur = attn_norm;
  4699. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4700. cur = ggml_gelu(ctx, cur);
  4701. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4702. }
  4703. cur = ggml_add(ctx, cur, ffn_inp);
  4704. cur = ggml_add(ctx, cur, inpL);
  4705. // input for next layer
  4706. inpL = cur;
  4707. }
  4708. cur = inpL;
  4709. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4710. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4711. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4712. // lm_head
  4713. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4714. cur = ggml_mul_mat(ctx, output, cur);
  4715. return cur;
  4716. }
  4717. };
  4718. // ###########################################
  4719. // ## Section 3: GGML Op Test Instantiation ##
  4720. // ###########################################
  4721. static const ggml_type all_types[] = {
  4722. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4723. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4724. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4725. GGML_TYPE_Q8_0,
  4726. GGML_TYPE_MXFP4,
  4727. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4728. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4729. GGML_TYPE_Q6_K,
  4730. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4731. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4732. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4733. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4734. };
  4735. static const ggml_type base_types[] = {
  4736. GGML_TYPE_F32, GGML_TYPE_F16,
  4737. GGML_TYPE_Q8_0, // for I8MM tests
  4738. GGML_TYPE_Q4_0,
  4739. GGML_TYPE_Q4_1, // for I8MM tests
  4740. GGML_TYPE_Q4_K,
  4741. GGML_TYPE_MXFP4, // TODO: or "other"
  4742. GGML_TYPE_IQ2_XXS
  4743. };
  4744. static const ggml_type other_types[] = {
  4745. GGML_TYPE_Q4_1,
  4746. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4747. GGML_TYPE_Q8_0,
  4748. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4749. GGML_TYPE_Q5_K,
  4750. GGML_TYPE_Q6_K,
  4751. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4752. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4753. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4754. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4755. GGML_TYPE_BF16,
  4756. };
  4757. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4758. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4759. std::vector<std::unique_ptr<test_case>> test_cases;
  4760. std::default_random_engine rng(0);
  4761. // unary ops
  4762. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4763. for (int v : {0, 1}) {
  4764. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  4765. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  4766. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  4767. }
  4768. }
  4769. }
  4770. // glu ops
  4771. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4772. for (int v : {0, 1}) {
  4773. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  4774. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  4775. // SWIGLU_OAI is handled separately
  4776. continue;
  4777. }
  4778. for (bool swapped : {false, true}) {
  4779. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  4780. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  4781. }
  4782. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  4783. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  4784. }
  4785. }
  4786. }
  4787. for (int v : {0, 1}) {
  4788. for (float alpha : {.5f, 1.702f}) {
  4789. for (float limit : {2.0f, 7.0f}) {
  4790. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  4791. }
  4792. }
  4793. }
  4794. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  4795. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  4796. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  4797. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  4798. }
  4799. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  4800. for (ggml_type type : all_types) {
  4801. for (int b : {1, 7}) {
  4802. for (bool v : {false, true}) {
  4803. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  4804. }
  4805. }
  4806. }
  4807. for (int b : {1, 7}) {
  4808. for (bool v : {false, true}) {
  4809. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  4810. }
  4811. }
  4812. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4813. for (ggml_type type : all_types) {
  4814. for (bool v : {false, true}) {
  4815. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  4816. }
  4817. }
  4818. for (bool v : {false, true}) {
  4819. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  4820. }
  4821. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4822. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4823. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  4824. for (ggml_type type : all_types) {
  4825. for (int b : {1, 7}) {
  4826. for (bool v : {false, true}) {
  4827. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  4828. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  4829. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  4830. if (ggml_blck_size(type) == 1) {
  4831. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  4832. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  4833. }
  4834. }
  4835. }
  4836. }
  4837. for (ggml_type type_input : {GGML_TYPE_F32}) {
  4838. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  4839. for (int k0 : {1, 3}) {
  4840. for (int k1 : {1, 3}) {
  4841. for (int s0 : {1, 2}) {
  4842. for (int s1 : {1, 2}) {
  4843. for (int p0 : {0, 1}) {
  4844. for (int p1 : {0, 1}) {
  4845. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  4846. }
  4847. }
  4848. }
  4849. }
  4850. }
  4851. }
  4852. }
  4853. }
  4854. #if 0
  4855. // >4GB im2col destination. Too slow to run by default.
  4856. // Test cases taken from Wan2.1 T2V 1.3B.
  4857. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  4858. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  4859. #endif
  4860. // im2col 1D
  4861. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4862. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4863. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4864. for (int s0 : {1, 3}) {
  4865. for (int p0 : {0, 3}) {
  4866. for (int d0 : {1, 3}) {
  4867. test_cases.emplace_back(new test_im2col(
  4868. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  4869. s0, 0, p0, 0, d0, 0, false));
  4870. }
  4871. }
  4872. }
  4873. // im2col 2D
  4874. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4875. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4876. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4877. for (int s0 : {1, 3}) {
  4878. for (int s1 : {1, 3}) {
  4879. for (int p0 : {0, 3}) {
  4880. for (int p1 : {0, 3}) {
  4881. for (int d0 : {1, 3}) {
  4882. for (int d1 : {1, 3}) {
  4883. test_cases.emplace_back(new test_im2col(
  4884. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  4885. s0, s1, p0, p1, d0, d1, true));
  4886. }
  4887. }
  4888. }
  4889. }
  4890. }
  4891. }
  4892. // extra tests for im2col 2D
  4893. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4894. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4895. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4896. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4897. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4898. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4899. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4900. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4901. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  4902. // im2col 3D
  4903. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4904. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4905. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4906. for (int s0 : {1, 3}) {
  4907. for (int s1 : {1, 3}) {
  4908. for (int s2 : {1, 3}) {
  4909. for (int p0 : {0, 3}) {
  4910. for (int p1 : {0, 3}) {
  4911. for (int p2 : {0, 3}) {
  4912. for (int d0 : {1, 3}) {
  4913. for (int d1 : {1, 3}) {
  4914. for (int d2 : {1, 3}) {
  4915. for (int IC : {1, 3}) {
  4916. for (bool v : {false, true}) {
  4917. test_cases.emplace_back(new test_im2col_3d(
  4918. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  4919. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  4920. }
  4921. }
  4922. }
  4923. }
  4924. }
  4925. }
  4926. }
  4927. }
  4928. }
  4929. }
  4930. }
  4931. // Conv_2D test cases
  4932. #ifdef DETAILED_TESTS
  4933. // Probably we do not have enough time to execute these in the pipeline.
  4934. uint32_t iwh_idx = 0;
  4935. uint32_t kwh_idx = 1;
  4936. uint32_t Cout_idx = 2;
  4937. uint32_t Cin_idx = 3;
  4938. uint32_t B_idx = 4;
  4939. std::vector<std::array<int, 5>> cases = {
  4940. //{IWH, KWH, Cout, Cin, B}
  4941. // K=CRS=NPQ=4096 conv_2d matmul performance
  4942. {19, 4, 4096, 256, 16},
  4943. // K=128, CRS=128, NPQ=4096
  4944. { 19, 4, 128, 8, 16},
  4945. // K=130, CRS=128, NPQ=4096
  4946. { 19, 4, 130, 8, 16},
  4947. // Edge case: K x CRS is small
  4948. { 19, 2, 4, 4, 16},
  4949. // A ConvNet's first layer
  4950. { 224, 3, 8, 3, 1 },
  4951. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4952. { 224, 2, 8, 1, 1 },
  4953. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4954. { 224, 2, 8, 1, 8 },
  4955. // A middle layer of a ConvNet
  4956. { 58, 3, 64, 32, 1 },
  4957. // A middle layer of a ConvNet, several images in the batch
  4958. { 58, 3, 64, 32, 8 },
  4959. // A deep layer of a ConvNet, several images in the batch
  4960. { 16, 3, 256, 128, 8 }
  4961. };
  4962. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4963. for (auto act_case : cases) {
  4964. test_cases.emplace_back(new test_conv_2d(
  4965. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4966. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4967. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4968. }
  4969. }
  4970. #endif
  4971. // CONV_2D:
  4972. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4973. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4974. };
  4975. //uint32_t s0 = 3;
  4976. uint32_t s1 = 5;
  4977. uint32_t p0 = 5;
  4978. //uint32_t p1 = 2;
  4979. uint32_t d0 = 2;
  4980. uint32_t d1 = 4;
  4981. for (uint32_t s0 : { 1, 3 }) {
  4982. for (uint32_t p1 : { 2, 5 }) {
  4983. for (uint32_t Cin : { 1, 25 }) {
  4984. for (uint32_t Cout : { 1, 12 }) {
  4985. for (uint32_t KH : { 1, 2, 3, 11 }) {
  4986. for (uint32_t KW : { 1, 2, 3, 11 }) {
  4987. for (uint32_t H : { 1, 133 }) {
  4988. for (uint32_t W : { 1, 141 }) {
  4989. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  4990. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  4991. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4992. test_cases.emplace_back(new test_conv_2d(
  4993. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  4994. }
  4995. }
  4996. }
  4997. }
  4998. }
  4999. }
  5000. }
  5001. }
  5002. }
  5003. }
  5004. // sycl backend will limit task global_range < MAX_INT
  5005. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5006. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5007. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5008. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5009. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5010. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5011. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5012. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5013. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5014. // CONV_3D
  5015. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5016. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5017. };
  5018. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5019. for (int N : {1, 2}) {
  5020. for (int IC : {1, 3}) {
  5021. for (int OC : {1, 4}) {
  5022. for (int s0 : {1, 2}) {
  5023. for (int p1 : {0, 1}) {
  5024. for (int d2 : {1, 2}) {
  5025. int64_t IW = 20, IH = 22, ID = 18;
  5026. int64_t KW = 3, KH = 3, KD = 3;
  5027. int s1 = s0, s2 = s0;
  5028. int p0 = p1, p2 = p1;
  5029. int d0 = d2, d1 = d2;
  5030. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5031. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5032. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5033. continue;
  5034. }
  5035. test_cases.emplace_back(new test_conv_3d(
  5036. N, IC, ID, IH, IW,
  5037. OC, KD, KH, KW,
  5038. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5039. kernel_type));
  5040. // Asymmetric kernel and params
  5041. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5042. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5043. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5044. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5045. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5046. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5047. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5048. continue;
  5049. }
  5050. test_cases.emplace_back(new test_conv_3d(
  5051. N, IC, ID, IH, IW,
  5052. OC, asym_KD, asym_KH, asym_KW,
  5053. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5054. kernel_type));
  5055. }
  5056. }
  5057. }
  5058. }
  5059. }
  5060. }
  5061. // Case with kernel size 1
  5062. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5063. }
  5064. for(uint32_t Cout : {1, 9}){
  5065. for(uint32_t Cin : {1, 7}){
  5066. for(uint32_t K : {1, 3, 1337}){
  5067. for(uint32_t L : {1, 2, 13}){
  5068. for(uint32_t s0: {1, 2, 3}){
  5069. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5070. }
  5071. }
  5072. }
  5073. }
  5074. }
  5075. test_cases.emplace_back(new test_conv_transpose_1d());
  5076. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5077. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5078. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5079. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5080. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5081. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5082. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5083. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5084. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5085. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5086. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5087. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5088. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5089. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5090. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5091. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5092. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5093. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5094. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5095. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5096. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5097. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5098. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5099. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5100. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5101. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5102. }
  5103. for (bool view : {false, true}) {
  5104. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5105. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5106. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5107. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5108. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5109. }
  5110. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5111. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5112. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5113. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5114. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5115. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5116. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5117. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5118. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5119. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5120. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5121. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5122. }
  5123. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5124. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5125. }
  5126. // same-type copy
  5127. for (ggml_type type : all_types) {
  5128. const auto nk = ggml_blck_size(type);
  5129. for (int k = 1; k < 4; ++k) {
  5130. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5131. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5132. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5133. }
  5134. }
  5135. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5136. for (ggml_type type_dst : all_types) {
  5137. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5138. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5139. }
  5140. }
  5141. for (ggml_type type_src : all_types) {
  5142. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5143. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5144. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5145. }
  5146. }
  5147. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5148. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5149. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5150. }
  5151. }
  5152. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5153. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5154. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5155. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5156. test_cases.emplace_back(new test_cont());
  5157. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5158. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5159. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5160. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5161. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5162. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5163. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5164. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5165. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5166. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5167. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5168. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5169. }
  5170. };
  5171. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5172. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5173. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5174. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5175. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5176. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5177. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5178. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5179. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5180. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5181. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5182. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5183. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5184. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5185. // test case for k_bin_bcast_unravel in CUDA backend
  5186. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5187. // stable diffusion
  5188. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5189. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5190. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5191. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5192. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5193. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5194. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5195. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5196. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5197. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5198. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5199. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5200. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5201. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5202. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5203. }
  5204. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5205. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5206. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5207. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5208. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5209. // fusion
  5210. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5211. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5212. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5213. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5214. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5215. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5216. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5217. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5218. test_cases.emplace_back(new test_add1());
  5219. test_cases.emplace_back(new test_scale());
  5220. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5221. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5222. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5223. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5224. test_cases.emplace_back(new test_silu_back());
  5225. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5226. for (bool v : {false, true}) {
  5227. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5228. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5229. }
  5230. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5231. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5232. }
  5233. // in-place tests
  5234. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5235. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5236. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5237. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5238. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5239. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5240. }
  5241. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5242. for (bool multi_add : {false, true}) {
  5243. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5244. }
  5245. }
  5246. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5247. for (int64_t d_conv : {3, 4}) {
  5248. for (int64_t d_inner: {1024, 1536, 2048}) {
  5249. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5250. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5251. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5252. }
  5253. }
  5254. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5255. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5256. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5257. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5258. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5259. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5260. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5261. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5262. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5263. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5264. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5265. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5266. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5267. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5268. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5269. #if 0
  5270. // > 4GB A matrix. Too slow to be enabled by default.
  5271. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5272. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5273. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5274. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5275. #endif
  5276. for (ggml_type type_a : all_types) {
  5277. for (int i = 1; i < 10; ++i) {
  5278. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5279. }
  5280. }
  5281. #if 0
  5282. {
  5283. // Test paths in OpenCL
  5284. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5285. std::vector<int> ks = {896, 1536, 4096};
  5286. for (auto n : ns) {
  5287. for (auto k : ks) {
  5288. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5289. }
  5290. }
  5291. }
  5292. #endif
  5293. #if 1
  5294. for (ggml_type type_a : base_types) {
  5295. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5296. std::vector<int> ks = { 256 };
  5297. if (ggml_blck_size(type_a) == 1) {
  5298. ks.push_back(4);
  5299. }
  5300. for (auto k : ks) {
  5301. // test cases without permutation
  5302. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5303. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5304. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5305. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5306. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5307. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5308. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5309. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5310. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5311. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5312. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5313. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5314. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5315. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5316. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5317. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5318. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5319. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5320. // test cases with permutation
  5321. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5322. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5323. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5324. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5325. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5326. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5327. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5328. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5329. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5330. }
  5331. // test cases with large ne00/ne10 to cover stream-k fixup
  5332. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5333. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5334. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5335. }
  5336. }
  5337. for (ggml_type type_a : other_types) {
  5338. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5339. if (ggml_blck_size(type_a) != 256) {
  5340. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5341. }
  5342. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5343. }
  5344. }
  5345. #else
  5346. // m = a rows
  5347. // n = b rows
  5348. // k = cols
  5349. std::uniform_int_distribution<> dist_m(1, 128);
  5350. std::uniform_int_distribution<> dist_n(16, 128);
  5351. std::uniform_int_distribution<> dist_k(1, 16);
  5352. for (int i = 0; i < 1000; i++) {
  5353. for (ggml_type type_a : all_types) {
  5354. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5355. int m = dist_m(rng);
  5356. int n = dist_n(rng);
  5357. int k = dist_k(rng) * ggml_blck_size(type_a);
  5358. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5359. }
  5360. }
  5361. }
  5362. #endif
  5363. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5364. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5365. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5366. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5367. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5368. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5369. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5370. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5371. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
  5372. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5373. #if 0
  5374. // test the mat-mat path for Metal
  5375. for (int k = 1; k < 512; ++k) {
  5376. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5377. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5378. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5379. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5380. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5381. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5382. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5383. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5384. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5385. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5386. }
  5387. #endif
  5388. for (auto bs2 : {1,3}) {
  5389. for (auto bs : {1,2,4,8}) {
  5390. for (auto nr : {1,4}) {
  5391. for (uint32_t m = 0; m < 2; ++m) {
  5392. for (uint32_t k = 0; k < 2; ++k) {
  5393. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5394. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5395. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  5396. }
  5397. }
  5398. }
  5399. }
  5400. }
  5401. }
  5402. // sycl backend will limit task global_range < MAX_INT
  5403. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5404. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5405. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5406. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5407. // test large experts*tokens
  5408. for (bool b : {false, true}) {
  5409. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5410. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5411. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5412. }
  5413. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5414. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5415. for (ggml_type type_a : base_types) {
  5416. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5417. for (int n_mats : {4, 8}) {
  5418. for (int n_used : {1, 2, 4}) {
  5419. for (bool b : {false, true}) {
  5420. for (int n : {1, 4, 5, 17, 32, 129}) {
  5421. int m = 512;
  5422. int k = 256;
  5423. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5424. }
  5425. }
  5426. }
  5427. }
  5428. }
  5429. }
  5430. for (ggml_type type_a : other_types) {
  5431. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5432. for (int n_mats : {4}) {
  5433. for (int n_used : {2}) {
  5434. for (bool b : {false}) {
  5435. for (int n : {1, 32}) {
  5436. int m = 512;
  5437. int k = 256;
  5438. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5439. }
  5440. }
  5441. }
  5442. }
  5443. }
  5444. }
  5445. for (ggml_type type_a : base_types) {
  5446. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5447. for (int n : {1, 16}) {
  5448. for (int k : {1, 16}) {
  5449. for (int bs2 : {1, 3}) {
  5450. for (int bs3 : {1, 3}) {
  5451. for (int nr2 : {1, 2}) {
  5452. for (int nr3 : {1, 2}) {
  5453. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. }
  5461. }
  5462. // add_id
  5463. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5464. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5465. for (int n_mats : {4, 8}) {
  5466. for (int n_used : {1, 2, 4}) {
  5467. for (int n_embd : {32, 129}) {
  5468. for (int n_token : {1, 32, 129}) {
  5469. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5470. }
  5471. }
  5472. }
  5473. }
  5474. }
  5475. }
  5476. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5477. test_cases.emplace_back(new test_sqr (type));
  5478. test_cases.emplace_back(new test_sqrt (type));
  5479. test_cases.emplace_back(new test_log (type));
  5480. test_cases.emplace_back(new test_sin (type));
  5481. test_cases.emplace_back(new test_cos (type));
  5482. test_cases.emplace_back(new test_clamp (type));
  5483. test_cases.emplace_back(new test_leaky_relu(type));
  5484. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5485. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5486. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5487. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5488. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5489. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5490. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5491. }
  5492. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5493. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5494. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5495. #if 0
  5496. std::uniform_int_distribution<> dist_ne1(1, 50);
  5497. int exponent = 1;
  5498. while (exponent < (1 << 17)) {
  5499. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5500. for (int n = 0; n < 10; ++n) {
  5501. int64_t ne0 = dist_ne0(rng);
  5502. int64_t ne1 = dist_ne1(rng);
  5503. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5504. }
  5505. exponent <<= 1;
  5506. }
  5507. #endif
  5508. for (bool mask : {false, true}) {
  5509. for (bool sinks : {false, true}) {
  5510. for (float max_bias : {0.0f, 8.0f}) {
  5511. if (!mask && max_bias > 0.0f) continue;
  5512. for (float scale : {1.0f, 0.1f}) {
  5513. for (int64_t ne0 : {16, 1024}) {
  5514. for (int64_t ne1 : {16, 1024}) {
  5515. if (mask) {
  5516. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5517. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5518. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5519. if (ne0 <= 32 && ne1 <= 32) {
  5520. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5521. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5522. }
  5523. }
  5524. } else {
  5525. /* The precision of mask here doesn't matter as boolean mask is false */
  5526. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5527. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5528. }
  5529. }
  5530. }
  5531. }
  5532. }
  5533. // inplace tests
  5534. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  5535. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  5536. }
  5537. }
  5538. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5539. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5540. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5541. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5542. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5543. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5544. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5545. for (float max_bias : {0.0f, 8.0f}) {
  5546. for (float scale : {1.0f, 0.1f}) {
  5547. for (int64_t ne0 : {16, 1024}) {
  5548. for (int64_t ne1 : {16, 1024}) {
  5549. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5550. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5551. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5552. }
  5553. }
  5554. }
  5555. }
  5556. for (bool fw : {true, false}) { // fw == forward
  5557. bool all = true;
  5558. for (float fs : { 1.0f, 1.4245f }) {
  5559. for (float ef : { 0.0f, 0.7465f }) {
  5560. for (float af : { 1.0f, 1.4245f }) {
  5561. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5562. for (bool ff : {false, true}) { // freq_factors
  5563. for (float v : { 0, 1 }) {
  5564. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5565. if (all) {
  5566. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5567. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5568. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5569. }
  5570. if (all) {
  5571. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5572. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5573. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5574. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5575. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5576. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5577. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5578. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5579. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5580. }
  5581. if (all) {
  5582. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5583. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5584. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5585. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5586. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5587. }
  5588. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5589. }
  5590. }
  5591. all = false;
  5592. }
  5593. }
  5594. }
  5595. }
  5596. }
  5597. // single inplace test per type/mode/ff
  5598. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5599. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_VISION}) {
  5600. for (bool ff : {false, true}) {
  5601. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  5602. }
  5603. }
  5604. }
  5605. for (int v : { 0, 1, 2, 3 }) {
  5606. for (int dim : { 0, 1, 2, 3, }) {
  5607. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5608. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5609. }
  5610. }
  5611. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5612. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5613. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5614. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5615. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5616. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // bailingmoe2 (group selection)
  5617. }
  5618. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5619. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5620. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5621. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5622. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5623. }
  5624. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5625. test_cases.emplace_back(new test_sum());
  5626. test_cases.emplace_back(new test_sum_rows());
  5627. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  5628. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  5629. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  5630. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5631. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5632. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5633. test_cases.emplace_back(new test_mean());
  5634. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5635. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5636. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5637. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5638. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5639. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5640. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  5641. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5642. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5643. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5644. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  5645. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5646. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  5647. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5648. test_cases.emplace_back(new test_acc());
  5649. test_cases.emplace_back(new test_pad());
  5650. test_cases.emplace_back(new test_pad_ext());
  5651. test_cases.emplace_back(new test_pad_reflect_1d());
  5652. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  5653. test_cases.emplace_back(new test_roll());
  5654. test_cases.emplace_back(new test_arange());
  5655. test_cases.emplace_back(new test_timestep_embedding());
  5656. test_cases.emplace_back(new test_leaky_relu());
  5657. for (bool v : {false, true}) {
  5658. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  5659. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  5660. }
  5661. for (int hsk : { 40, 64, 80, 96, 128, 192, 256, 576 }) {
  5662. for (int hsv : { 40, 64, 80, 96, 128, 192, 256, 512 }) {
  5663. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  5664. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  5665. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  5666. for (bool mask : { true, false } ) {
  5667. for (bool sinks : { true, false } ) {
  5668. for (float max_bias : { 0.0f, 8.0f }) {
  5669. if (!mask && max_bias > 0.0f) continue;
  5670. for (float logit_softcap : {0.0f, 10.0f}) {
  5671. if (hsk != 128 && logit_softcap != 0.0f) continue;
  5672. for (int nh : { 4, }) {
  5673. for (int nr3 : { 1, 3, }) {
  5674. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  5675. for (int nr2 : { 1, 4, 16 }) {
  5676. if (nr2 == 16 && hsk != 128) continue;
  5677. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  5678. for (int kv : { 113, 512, 1024, }) {
  5679. if (nr2 != 1 && kv != 512) continue;
  5680. for (int nb : { 1, 3, 32, 35, }) {
  5681. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  5682. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  5683. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  5684. test_cases.emplace_back(new test_flash_attn_ext(
  5685. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  5686. // run fewer test cases permuted
  5687. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  5688. test_cases.emplace_back(new test_flash_attn_ext(
  5689. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  5690. }
  5691. }
  5692. }
  5693. }
  5694. }
  5695. }
  5696. }
  5697. }
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. }
  5704. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  5705. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  5706. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  5707. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  5708. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  5709. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  5710. for (bool with_norm : {false, true}) {
  5711. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  5712. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  5713. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  5714. }
  5715. #if 0
  5716. // these tests are disabled to save execution time, sbut they can be handy for debugging
  5717. test_cases.emplace_back(new test_llama(2, true));
  5718. test_cases.emplace_back(new test_llama(1));
  5719. test_cases.emplace_back(new test_llama(2));
  5720. test_cases.emplace_back(new test_falcon(1));
  5721. test_cases.emplace_back(new test_falcon(2));
  5722. #endif
  5723. return test_cases;
  5724. }
  5725. // Test cases for performance evaluation: should be representative of real-world use cases
  5726. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  5727. std::vector<std::unique_ptr<test_case>> test_cases;
  5728. // Conv2d: K=CRS=NPQ=4096 matmul performance
  5729. uint32_t iwh_idx = 0;
  5730. uint32_t kwh_idx = 1;
  5731. uint32_t Cout_idx = 2;
  5732. uint32_t Cin_idx = 3;
  5733. uint32_t B_idx = 4;
  5734. std::vector<std::array<int, 5>> cases = {
  5735. //{IWH, KWH, Cout, Cin, B}
  5736. // K=CRS=NPQ=4096 conv2d matmul performance
  5737. {19, 4, 4096, 256, 16},
  5738. // K=128, CRS=128, NPQ=4096
  5739. { 19, 4, 128, 8, 16},
  5740. // K=130, CRS=128, NPQ=4096
  5741. { 19, 4, 130, 8, 16},
  5742. // Edge case: K x CRS is small
  5743. { 19, 2, 4, 4, 16},
  5744. // A ConvNet's first layer
  5745. { 224, 3, 8, 3, 1 },
  5746. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5747. { 224, 2, 8, 1, 1 },
  5748. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5749. { 224, 2, 8, 1, 8 },
  5750. // A middle layer of a ConvNet
  5751. { 58, 3, 64, 32, 1 },
  5752. // A middle layer of a ConvNet, several images in the batch
  5753. { 58, 3, 64, 32, 8 },
  5754. // A deep layer of a ConvNet, several images in the batch
  5755. { 16, 3, 512, 128, 8 },
  5756. };
  5757. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5758. for (auto act_case : cases) {
  5759. // Direct CONV_2D
  5760. test_cases.emplace_back(new test_conv_2d(
  5761. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5762. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5763. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5764. }
  5765. }
  5766. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  5767. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  5768. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  5769. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  5770. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  5771. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  5772. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  5773. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5774. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5775. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5776. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5777. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5778. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5779. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5780. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5781. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  5782. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5783. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  5784. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  5785. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  5786. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  5787. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  5788. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  5789. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  5790. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  5791. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  5792. for (ggml_type type_a : all_types) {
  5793. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5794. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  5795. }
  5796. }
  5797. }
  5798. // qwen3-30b-a3b
  5799. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  5800. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  5801. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5802. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  5803. }
  5804. }
  5805. }
  5806. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  5807. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  5808. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5809. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  5810. }
  5811. }
  5812. }
  5813. // gpt-oss-20b
  5814. for (int bs : {1, 4, 8, 512}) {
  5815. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  5816. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5817. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  5818. }
  5819. }
  5820. }
  5821. for (int K : {3, 5}) {
  5822. for (int IC : {256, 2560}) {
  5823. for (int IW_IH : {32, 64, 256}) {
  5824. if (IC == 2560 && IW_IH == 256) {
  5825. // too big
  5826. continue;
  5827. }
  5828. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  5829. }
  5830. }
  5831. }
  5832. for (int kv : { 4096, 8192, 16384, }) {
  5833. for (int hs : { 64, 128, }) {
  5834. for (int nr : { 1, 4, }) {
  5835. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  5836. }
  5837. }
  5838. }
  5839. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  5840. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  5841. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  5842. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  5843. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5844. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  5845. for (int n_token : {1, 512}) {
  5846. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  5847. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  5848. }
  5849. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  5850. { 8192, 1, 1, 1 },
  5851. { 8192, 8192, 1, 1 },
  5852. { 128, 8192, 1, 1 },
  5853. };
  5854. for (auto it: reduce_rows_cases){
  5855. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  5856. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  5857. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  5858. }
  5859. return test_cases;
  5860. }
  5861. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  5862. printer * output_printer) {
  5863. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  5864. if (params_filter == nullptr) {
  5865. return;
  5866. }
  5867. std::regex params_filter_regex(params_filter);
  5868. for (auto it = test_cases.begin(); it != test_cases.end();) {
  5869. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  5870. it = test_cases.erase(it);
  5871. continue;
  5872. }
  5873. it++;
  5874. }
  5875. };
  5876. if (mode == MODE_TEST) {
  5877. auto test_cases = make_test_cases_eval();
  5878. filter_test_cases(test_cases, params_filter);
  5879. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  5880. if (backend_cpu == NULL) {
  5881. test_operation_info info("", "", "CPU");
  5882. info.set_error("backend", "Failed to initialize CPU backend");
  5883. output_printer->print_operation(info);
  5884. return false;
  5885. }
  5886. size_t n_ok = 0;
  5887. for (auto & test : test_cases) {
  5888. if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
  5889. n_ok++;
  5890. }
  5891. }
  5892. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5893. ggml_backend_free(backend_cpu);
  5894. return n_ok == test_cases.size();
  5895. }
  5896. if (mode == MODE_GRAD) {
  5897. auto test_cases = make_test_cases_eval();
  5898. filter_test_cases(test_cases, params_filter);
  5899. size_t n_ok = 0;
  5900. for (auto & test : test_cases) {
  5901. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  5902. n_ok++;
  5903. }
  5904. }
  5905. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5906. return n_ok == test_cases.size();
  5907. }
  5908. if (mode == MODE_PERF) {
  5909. auto test_cases = make_test_cases_perf();
  5910. filter_test_cases(test_cases, params_filter);
  5911. for (auto & test : test_cases) {
  5912. test->eval_perf(backend, op_names_filter, output_printer);
  5913. }
  5914. return true;
  5915. }
  5916. if (mode == MODE_SUPPORT) {
  5917. auto test_cases = make_test_cases_eval();
  5918. filter_test_cases(test_cases, params_filter);
  5919. for (auto & test : test_cases) {
  5920. test->eval_support(backend, op_names_filter, output_printer);
  5921. }
  5922. return true;
  5923. }
  5924. GGML_ABORT("fatal error");
  5925. }
  5926. static void list_all_ops() {
  5927. printf("GGML operations:\n");
  5928. std::set<std::string> all_ops;
  5929. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5930. all_ops.insert(ggml_op_name((enum ggml_op)i));
  5931. }
  5932. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5933. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5934. }
  5935. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5936. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5937. }
  5938. for (const auto & op : all_ops) {
  5939. printf(" %s\n", op.c_str());
  5940. }
  5941. printf("\nTotal: %zu operations\n", all_ops.size());
  5942. }
  5943. static void show_test_coverage() {
  5944. std::set<std::string> all_ops;
  5945. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5946. auto op = (enum ggml_op)i;
  5947. if (op == GGML_OP_VIEW ||
  5948. op == GGML_OP_RESHAPE ||
  5949. op == GGML_OP_PERMUTE ||
  5950. op == GGML_OP_TRANSPOSE ||
  5951. op == GGML_OP_CONT ||
  5952. op == GGML_OP_GLU ||
  5953. op == GGML_OP_UNARY) {
  5954. continue;
  5955. }
  5956. all_ops.insert(ggml_op_name(op));
  5957. }
  5958. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5959. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5960. }
  5961. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5962. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5963. }
  5964. auto test_cases = make_test_cases_eval();
  5965. std::set<std::string> tested_ops;
  5966. ggml_init_params params = {
  5967. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  5968. /* .mem_base = */ NULL,
  5969. /* .no_alloc = */ true,
  5970. };
  5971. for (auto & test_case : test_cases) {
  5972. ggml_context * ctx = ggml_init(params);
  5973. if (ctx) {
  5974. test_case->mode = MODE_TEST;
  5975. ggml_tensor * out = test_case->build_graph(ctx);
  5976. if (out && out->op != GGML_OP_NONE) {
  5977. if (out->op == GGML_OP_UNARY) {
  5978. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  5979. } else if (out->op == GGML_OP_GLU) {
  5980. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  5981. } else {
  5982. tested_ops.insert(ggml_op_name(out->op));
  5983. }
  5984. }
  5985. ggml_free(ctx);
  5986. }
  5987. }
  5988. std::set<std::string> covered_ops;
  5989. std::set<std::string> uncovered_ops;
  5990. for (const auto & op : all_ops) {
  5991. if (tested_ops.count(op) > 0) {
  5992. covered_ops.insert(op);
  5993. } else {
  5994. uncovered_ops.insert(op);
  5995. }
  5996. }
  5997. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  5998. for (const auto & op : covered_ops) {
  5999. printf(" ✓ %s\n", op.c_str());
  6000. }
  6001. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6002. for (const auto & op : uncovered_ops) {
  6003. printf(" ✗ %s\n", op.c_str());
  6004. }
  6005. printf("\nCoverage Summary:\n");
  6006. printf(" Total operations: %zu\n", all_ops.size());
  6007. printf(" Tested operations: %zu\n", covered_ops.size());
  6008. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6009. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6010. }
  6011. static void usage(char ** argv) {
  6012. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6013. printf(" valid modes:\n");
  6014. printf(" - test (default, compare with CPU backend for correctness)\n");
  6015. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6016. printf(" - perf (performance evaluation)\n");
  6017. printf(" - support (probe backend operation support)\n");
  6018. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6019. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6020. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6021. printf(" --list-ops lists all available GGML operations\n");
  6022. printf(" --show-coverage shows test coverage\n");
  6023. }
  6024. int main(int argc, char ** argv) {
  6025. test_mode mode = MODE_TEST;
  6026. output_formats output_format = CONSOLE;
  6027. const char * op_names_filter = nullptr;
  6028. const char * backend_filter = nullptr;
  6029. const char * params_filter = nullptr;
  6030. for (int i = 1; i < argc; i++) {
  6031. if (strcmp(argv[i], "test") == 0) {
  6032. mode = MODE_TEST;
  6033. } else if (strcmp(argv[i], "perf") == 0) {
  6034. mode = MODE_PERF;
  6035. } else if (strcmp(argv[i], "grad") == 0) {
  6036. mode = MODE_GRAD;
  6037. } else if (strcmp(argv[i], "support") == 0) {
  6038. mode = MODE_SUPPORT;
  6039. } else if (strcmp(argv[i], "-o") == 0) {
  6040. if (i + 1 < argc) {
  6041. op_names_filter = argv[++i];
  6042. } else {
  6043. usage(argv);
  6044. return 1;
  6045. }
  6046. } else if (strcmp(argv[i], "-b") == 0) {
  6047. if (i + 1 < argc) {
  6048. backend_filter = argv[++i];
  6049. } else {
  6050. usage(argv);
  6051. return 1;
  6052. }
  6053. } else if (strcmp(argv[i], "-p") == 0) {
  6054. if (i + 1 < argc) {
  6055. params_filter = argv[++i];
  6056. } else {
  6057. usage(argv);
  6058. return 1;
  6059. }
  6060. } else if (strcmp(argv[i], "--output") == 0) {
  6061. if (i + 1 < argc) {
  6062. if (!output_format_from_str(argv[++i], output_format)) {
  6063. usage(argv);
  6064. return 1;
  6065. }
  6066. } else {
  6067. usage(argv);
  6068. return 1;
  6069. }
  6070. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6071. list_all_ops();
  6072. return 0;
  6073. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6074. show_test_coverage();
  6075. return 0;
  6076. } else {
  6077. usage(argv);
  6078. return 1;
  6079. }
  6080. }
  6081. // load and enumerate backends
  6082. ggml_backend_load_all();
  6083. // Create printer for output format
  6084. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6085. if (output_printer) {
  6086. output_printer->print_header();
  6087. }
  6088. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6089. size_t n_ok = 0;
  6090. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6091. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6092. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6093. output_printer->print_backend_init(
  6094. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6095. n_ok++;
  6096. continue;
  6097. }
  6098. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6099. output_printer->print_backend_init(backend_init_info(
  6100. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6101. n_ok++;
  6102. continue;
  6103. }
  6104. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6105. GGML_ASSERT(backend != NULL);
  6106. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6107. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6108. if (ggml_backend_set_n_threads_fn) {
  6109. // TODO: better value for n_threads
  6110. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6111. }
  6112. size_t free, total; // NOLINT
  6113. ggml_backend_dev_memory(dev, &free, &total);
  6114. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6115. false, "", ggml_backend_dev_description(dev),
  6116. total / 1024 / 1024, free / 1024 / 1024, true));
  6117. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6118. if (ok) {
  6119. n_ok++;
  6120. }
  6121. output_printer->print_backend_status(
  6122. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6123. ggml_backend_free(backend);
  6124. }
  6125. ggml_quantize_free();
  6126. if (output_printer) {
  6127. output_printer->print_footer();
  6128. }
  6129. output_printer->print_overall_summary(
  6130. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6131. if (n_ok != ggml_backend_dev_count()) {
  6132. return 1;
  6133. }
  6134. return 0;
  6135. }