llama.cpp 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstdint>
  5. #include <cstdio>
  6. #endif
  7. #include "llama_util.h"
  8. #include "llama.h"
  9. #include "ggml.h"
  10. #include <array>
  11. #include <ctime>
  12. #include <cinttypes>
  13. #include <fstream>
  14. #include <random>
  15. #include <map>
  16. #include <unordered_map>
  17. #include <queue>
  18. #include <cassert>
  19. #include <cstring>
  20. #include <climits>
  21. #include <memory>
  22. #include <algorithm>
  23. #include <initializer_list>
  24. #include <thread>
  25. #include <atomic>
  26. #include <mutex>
  27. #include <sstream>
  28. #define LLAMA_USE_SCRATCH
  29. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  30. // available llama models
  31. enum e_model {
  32. MODEL_UNKNOWN,
  33. MODEL_7B,
  34. MODEL_13B,
  35. MODEL_30B,
  36. MODEL_65B,
  37. };
  38. static const size_t MB = 1024*1024;
  39. // computed for n_ctx == 2048
  40. // TODO: dynamically determine these sizes
  41. // needs modifications in ggml
  42. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  43. {
  44. static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
  45. { MODEL_7B, 512ull * MB },
  46. { MODEL_13B, 512ull * MB },
  47. { MODEL_30B, 512ull * MB },
  48. { MODEL_65B, 512ull * MB },
  49. };
  50. return _MEM_REQ_SCRATCH0;
  51. }
  52. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  53. {
  54. static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
  55. { MODEL_7B, 512ull * MB },
  56. { MODEL_13B, 512ull * MB },
  57. { MODEL_30B, 512ull * MB },
  58. { MODEL_65B, 512ull * MB },
  59. };
  60. return _MEM_REQ_SCRATCH1;
  61. }
  62. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  63. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  64. {
  65. static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
  66. { MODEL_7B, 1026ull * MB },
  67. { MODEL_13B, 1608ull * MB },
  68. { MODEL_30B, 3124ull * MB },
  69. { MODEL_65B, 5120ull * MB },
  70. };
  71. return _MEM_REQ_KV_SELF;
  72. }
  73. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  74. // not actually needed if BLAS is disabled
  75. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  76. {
  77. static std::map<e_model, size_t> _MEM_REQ_EVAL = {
  78. { MODEL_7B, 768ull * MB },
  79. { MODEL_13B, 1024ull * MB },
  80. { MODEL_30B, 1280ull * MB },
  81. { MODEL_65B, 1536ull * MB },
  82. };
  83. return _MEM_REQ_EVAL;
  84. }
  85. // default hparams (LLaMA 7B)
  86. struct llama_hparams {
  87. uint32_t n_vocab = 32000;
  88. uint32_t n_ctx = 512; // this is provided as user input?
  89. uint32_t n_embd = 4096;
  90. uint32_t n_mult = 256;
  91. uint32_t n_head = 32;
  92. uint32_t n_layer = 32;
  93. uint32_t n_rot = 64;
  94. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  95. bool operator!=(const llama_hparams & other) const {
  96. return memcmp(this, &other, sizeof(llama_hparams));
  97. }
  98. };
  99. struct llama_layer {
  100. // normalization
  101. struct ggml_tensor * attention_norm;
  102. // attention
  103. struct ggml_tensor * wq;
  104. struct ggml_tensor * wk;
  105. struct ggml_tensor * wv;
  106. struct ggml_tensor * wo;
  107. // normalization
  108. struct ggml_tensor * ffn_norm;
  109. // ff
  110. struct ggml_tensor * w1;
  111. struct ggml_tensor * w2;
  112. struct ggml_tensor * w3;
  113. };
  114. struct llama_kv_cache {
  115. struct ggml_tensor * k;
  116. struct ggml_tensor * v;
  117. struct ggml_context * ctx = NULL;
  118. llama_buffer buf;
  119. int n; // number of tokens currently in the cache
  120. ~llama_kv_cache() {
  121. if (ctx) {
  122. ggml_free(ctx);
  123. }
  124. }
  125. };
  126. struct llama_model {
  127. e_model type = MODEL_UNKNOWN;
  128. llama_hparams hparams;
  129. struct ggml_tensor * tok_embeddings;
  130. struct ggml_tensor * norm;
  131. struct ggml_tensor * output;
  132. std::vector<llama_layer> layers;
  133. // context
  134. struct ggml_context * ctx = NULL;
  135. // key + value cache for the self attention
  136. // TODO: move to llama_state
  137. struct llama_kv_cache kv_self;
  138. // the model memory buffer
  139. llama_buffer buf;
  140. // model memory mapped file
  141. std::unique_ptr<llama_mmap> mapping;
  142. // objects representing data potentially being locked in memory
  143. llama_mlock mlock_buf;
  144. llama_mlock mlock_mmap;
  145. // for quantize-stats only
  146. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  147. ~llama_model() {
  148. if (ctx) {
  149. ggml_free(ctx);
  150. }
  151. }
  152. };
  153. struct llama_vocab {
  154. using id = int32_t;
  155. using token = std::string;
  156. struct token_score {
  157. token tok;
  158. float score;
  159. };
  160. std::unordered_map<token, id> token_to_id;
  161. std::vector<token_score> id_to_token;
  162. };
  163. struct llama_context {
  164. std::mt19937 rng;
  165. int64_t t_load_us = 0;
  166. int64_t t_start_us = 0;
  167. bool has_evaluated_once = false;
  168. int64_t t_sample_us = 0;
  169. int64_t t_eval_us = 0;
  170. int64_t t_p_eval_us = 0;
  171. int32_t n_sample = 0; // number of tokens sampled
  172. int32_t n_eval = 0; // number of eval calls
  173. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  174. llama_model model;
  175. llama_vocab vocab;
  176. size_t mem_per_token = 0;
  177. // decode output (2-dimensional array: [n_tokens][n_vocab])
  178. std::vector<float> logits;
  179. bool logits_all = false;
  180. // input embedding (1-dimensional array: [n_embd])
  181. std::vector<float> embedding;
  182. // memory buffers used to evaluate the model
  183. // TODO: move in llama_state
  184. llama_buffer buf_compute;
  185. llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  186. int buf_last = 0;
  187. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  188. void use_buf(struct ggml_context * ctx, int i) {
  189. #if defined(LLAMA_USE_SCRATCH)
  190. size_t last_size = 0;
  191. if (i == -1) {
  192. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  193. } else {
  194. auto & buf = buf_scratch[i];
  195. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  196. }
  197. if (buf_last >= 0) {
  198. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  199. }
  200. buf_last = i;
  201. #else
  202. (void) i;
  203. (void) ctx;
  204. #endif
  205. }
  206. size_t get_buf_max_mem(int i) const {
  207. #if defined(LLAMA_USE_SCRATCH)
  208. return buf_max_size[i];
  209. #else
  210. (void) i;
  211. return 0;
  212. #endif
  213. }
  214. };
  215. template <typename T>
  216. static T checked_mul(T a, T b) {
  217. T ret = a * b;
  218. if (a != 0 && ret / a != b) {
  219. throw format("overflow multiplying %llu * %llu",
  220. (unsigned long long) a, (unsigned long long) b);
  221. }
  222. return ret;
  223. }
  224. static size_t checked_div(size_t a, size_t b) {
  225. if (b == 0 || a % b != 0) {
  226. throw format("error dividing %zu / %zu", a, b);
  227. }
  228. return a / b;
  229. }
  230. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  231. char buf[256];
  232. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  233. for (size_t i = 1; i < ne.size(); i++) {
  234. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  235. }
  236. return buf;
  237. }
  238. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  239. size_t size = ggml_type_size(type);
  240. for (uint32_t dim : ne) {
  241. size = checked_mul<size_t>(size, dim);
  242. }
  243. return size / ggml_blck_size(type);
  244. }
  245. struct llama_load_tensor_shard {
  246. std::vector<uint32_t> ne;
  247. size_t size;
  248. enum ggml_type type;
  249. size_t file_idx;
  250. size_t file_off;
  251. void calc_size() {
  252. size = llama_calc_tensor_size(ne, type);
  253. }
  254. };
  255. enum llama_split_type {
  256. SPLIT_NONE,
  257. SPLIT_BY_COLUMNS,
  258. SPLIT_BY_ROWS
  259. };
  260. struct llama_load_tensor {
  261. std::vector<llama_load_tensor_shard> shards;
  262. std::string name;
  263. enum ggml_type type = GGML_TYPE_F32;
  264. llama_split_type split_type = SPLIT_NONE;
  265. std::vector<uint32_t> ne;
  266. size_t size;
  267. struct ggml_tensor * ggml_tensor = NULL;
  268. uint8_t * data;
  269. llama_load_tensor(const std::string & name) : name(name) {}
  270. void calc_all() {
  271. calc_type();
  272. calc_split_type();
  273. calc_ne();
  274. calc_size();
  275. }
  276. void calc_type() {
  277. const auto & first_shard = shards.at(0);
  278. for (const auto & shard : shards) {
  279. if (shard.type != first_shard.type) {
  280. throw format("inconsistent tensor shard type in '%s'", name.c_str());
  281. }
  282. }
  283. type = first_shard.type;
  284. }
  285. void calc_split_type() {
  286. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  287. shards.size() == 1) { // only one file?
  288. split_type = SPLIT_NONE;
  289. } else if (name.find("tok_embeddings.") == 0 ||
  290. name.find(".attention.wo.weight") != std::string::npos ||
  291. name.find(".feed_forward.w2.weight") != std::string::npos) {
  292. split_type = SPLIT_BY_COLUMNS;
  293. } else {
  294. split_type = SPLIT_BY_ROWS;
  295. }
  296. }
  297. void calc_ne() {
  298. const auto & first_shard = shards.at(0);
  299. for (const auto & shard : shards) {
  300. if (shard.ne != first_shard.ne) {
  301. throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  302. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
  303. }
  304. }
  305. ne = first_shard.ne;
  306. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  307. uint32_t n_shards = (uint32_t) shards.size();
  308. switch (split_type) {
  309. case SPLIT_NONE:
  310. ne = first_shard.ne;
  311. break;
  312. case SPLIT_BY_COLUMNS:
  313. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  314. first_shard.ne[1]};
  315. break;
  316. case SPLIT_BY_ROWS:
  317. ne = {first_shard.ne[0],
  318. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  319. break;
  320. }
  321. }
  322. void calc_size() {
  323. size = llama_calc_tensor_size(ne, type);
  324. }
  325. };
  326. struct llama_load_tensors_map {
  327. // tensors is kept in a separate vector to preserve file order
  328. std::vector<llama_load_tensor> tensors;
  329. std::unordered_map<std::string, size_t> name_to_idx;
  330. };
  331. enum llama_file_version {
  332. LLAMA_FILE_VERSION_GGML,
  333. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  334. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  335. };
  336. struct llama_file_loader {
  337. llama_file file;
  338. llama_file_version file_version;
  339. llama_hparams hparams;
  340. llama_vocab vocab;
  341. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  342. : file(fname, "rb") {
  343. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  344. read_magic();
  345. read_hparams();
  346. read_vocab();
  347. read_tensor_metadata(file_idx, tensors_map);
  348. }
  349. void read_magic() {
  350. uint32_t magic = file.read_u32();
  351. uint32_t version = 0;
  352. if (magic != 'ggml') {
  353. version = file.read_u32();
  354. }
  355. if (magic == 'ggml' && version == 0) {
  356. file_version = LLAMA_FILE_VERSION_GGML;
  357. } else if (magic == 'ggmf' && version == 1) {
  358. file_version = LLAMA_FILE_VERSION_GGMF_V1;
  359. } else if (magic == 'ggjt' && version == 1) {
  360. file_version = LLAMA_FILE_VERSION_GGJT_V1;
  361. } else {
  362. throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  363. magic, version);
  364. }
  365. }
  366. void read_hparams() {
  367. hparams.n_vocab = file.read_u32();
  368. hparams.n_embd = file.read_u32();
  369. hparams.n_mult = file.read_u32();
  370. hparams.n_head = file.read_u32();
  371. hparams.n_layer = file.read_u32();
  372. hparams.n_rot = file.read_u32();
  373. hparams.ftype = (enum llama_ftype) file.read_u32();
  374. }
  375. void read_vocab() {
  376. vocab.id_to_token.resize(hparams.n_vocab);
  377. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  378. uint32_t len = file.read_u32();
  379. std::string word = file.read_string(len);
  380. float score = 0.0f;
  381. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  382. file.read_raw(&score, sizeof(score));
  383. }
  384. vocab.token_to_id[word] = i;
  385. auto & tok_score = vocab.id_to_token[i];
  386. tok_score.tok = std::move(word);
  387. tok_score.score = score;
  388. }
  389. }
  390. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  391. while (file.tell() < file.size) {
  392. llama_load_tensor_shard shard;
  393. uint32_t n_dims = file.read_u32();
  394. uint32_t name_len = file.read_u32();
  395. shard.type = (enum ggml_type) file.read_u32();
  396. shard.ne.resize(n_dims);
  397. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  398. std::string name = file.read_string(name_len);
  399. if (n_dims < 1 || n_dims > 2) {
  400. throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
  401. }
  402. switch (shard.type) {
  403. case GGML_TYPE_F32:
  404. case GGML_TYPE_F16:
  405. case GGML_TYPE_Q4_0:
  406. case GGML_TYPE_Q4_1:
  407. case GGML_TYPE_Q4_2:
  408. case GGML_TYPE_Q4_3:
  409. break;
  410. default: {
  411. throw format("unrecognized tensor type %u\n", shard.type);
  412. }
  413. }
  414. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  415. // skip to the next multiple of 32 bytes
  416. file.seek(-file.tell() & 31, SEEK_CUR);
  417. }
  418. shard.file_idx = file_idx;
  419. shard.file_off = file.tell();
  420. shard.calc_size();
  421. file.seek(shard.size, SEEK_CUR);
  422. auto it = tensors_map.name_to_idx.find(name);
  423. size_t idx;
  424. if (it != tensors_map.name_to_idx.end()) {
  425. idx = it->second;
  426. } else {
  427. tensors_map.tensors.emplace_back(name);
  428. idx = tensors_map.tensors.size() - 1;
  429. tensors_map.name_to_idx.emplace(name, idx);
  430. }
  431. tensors_map.tensors.at(idx).shards.push_back(shard);
  432. }
  433. }
  434. };
  435. struct llama_file_saver {
  436. llama_file file;
  437. llama_file_loader * any_file_loader;
  438. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  439. : file(fname, "wb"), any_file_loader(any_file_loader) {
  440. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  441. write_magic();
  442. write_hparams(new_ftype);
  443. write_vocab();
  444. }
  445. void write_magic() {
  446. file.write_u32('ggjt'); // magic
  447. file.write_u32(1); // version
  448. }
  449. void write_hparams(enum llama_ftype new_ftype) {
  450. const llama_hparams & hparams = any_file_loader->hparams;
  451. file.write_u32(hparams.n_vocab);
  452. file.write_u32(hparams.n_embd);
  453. file.write_u32(hparams.n_mult);
  454. file.write_u32(hparams.n_head);
  455. file.write_u32(hparams.n_layer);
  456. file.write_u32(hparams.n_rot);
  457. file.write_u32(new_ftype);
  458. }
  459. void write_vocab() {
  460. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  461. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  462. }
  463. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  464. for (uint32_t i = 0; i < n_vocab; i++) {
  465. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  466. file.write_u32((uint32_t) token_score.tok.size());
  467. file.write_raw(token_score.tok.data(), token_score.tok.size());
  468. file.write_raw(&token_score.score, sizeof(token_score.score));
  469. }
  470. }
  471. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  472. switch (new_type) {
  473. case GGML_TYPE_F32:
  474. case GGML_TYPE_F16:
  475. case GGML_TYPE_Q4_0:
  476. case GGML_TYPE_Q4_1:
  477. case GGML_TYPE_Q4_2:
  478. case GGML_TYPE_Q4_3:
  479. break;
  480. default: LLAMA_ASSERT(false);
  481. }
  482. file.write_u32((uint32_t) tensor.ne.size());
  483. file.write_u32((uint32_t) tensor.name.size());
  484. file.write_u32(new_type);
  485. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  486. file.write_raw(tensor.name.data(), tensor.name.size());
  487. file.seek(-file.tell() & 31, SEEK_CUR);
  488. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  489. file.write_raw(new_data, new_size);
  490. }
  491. };
  492. struct llama_model_loader {
  493. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  494. llama_load_tensors_map tensors_map;
  495. bool use_mmap;
  496. size_t num_ggml_tensors_created = 0;
  497. struct ggml_context * ggml_ctx = NULL;
  498. std::unique_ptr<llama_mmap> mapping;
  499. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  500. auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  501. file_loaders.emplace_back(first_file);
  502. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  503. for (uint32_t i = 1; i < n_parts; i++) {
  504. std::string fname = fname_base + "." + std::to_string(i);
  505. auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  506. file_loaders.emplace_back(ith_file);
  507. if (ith_file->hparams != first_file->hparams) {
  508. throw format("llama.cpp: hparams inconsistent between files");
  509. }
  510. }
  511. if (!llama_mmap::SUPPORTED) {
  512. use_mmap = false;
  513. }
  514. if (use_mmap && alignment_prevents_mmap()) {
  515. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  516. use_mmap = false;
  517. }
  518. this->use_mmap = use_mmap;
  519. for (llama_load_tensor & lt : tensors_map.tensors) {
  520. lt.calc_all();
  521. }
  522. }
  523. bool alignment_prevents_mmap() {
  524. for (const llama_load_tensor & lt : tensors_map.tensors) {
  525. for (const llama_load_tensor_shard & shard : lt.shards) {
  526. if (shard.file_off & 3) {
  527. return true;
  528. }
  529. }
  530. }
  531. return false;
  532. }
  533. uint32_t guess_n_parts() const {
  534. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  535. if (it == tensors_map.name_to_idx.end()) {
  536. throw std::string("missing tok_embeddings.weight");
  537. }
  538. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  539. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  540. }
  541. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  542. *ctx_size_p = *mmapped_size_p = 0;
  543. for (const llama_load_tensor & lt : tensors_map.tensors) {
  544. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  545. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  546. }
  547. }
  548. struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
  549. auto it = tensors_map.name_to_idx.find(name);
  550. if (it == tensors_map.name_to_idx.end()) {
  551. throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
  552. }
  553. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  554. if (lt.ne != ne) {
  555. throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  556. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
  557. }
  558. return get_tensor_for(lt);
  559. }
  560. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
  561. struct ggml_tensor * tensor;
  562. if (lt.ne.size() == 2) {
  563. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  564. } else {
  565. LLAMA_ASSERT(lt.ne.size() == 1);
  566. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  567. }
  568. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  569. lt.ggml_tensor = tensor;
  570. num_ggml_tensors_created++;
  571. return tensor;
  572. }
  573. void done_getting_tensors() {
  574. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  575. throw std::string("llama.cpp: file contained more tensors than expected");
  576. }
  577. }
  578. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  579. size_t data_size = 0;
  580. for (const llama_load_tensor & lt : tensors_map.tensors) {
  581. data_size += lt.size;
  582. }
  583. if (use_mmap) {
  584. mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
  585. if (!lmlock) {
  586. // Don't call the callback since the actual loading will be lazy
  587. // and we can't measure it.
  588. progress_callback = NULL;
  589. }
  590. if (lmlock) {
  591. lmlock->init(mapping->addr);
  592. }
  593. }
  594. size_t done_size = 0;
  595. for (llama_load_tensor & lt : tensors_map.tensors) {
  596. if (progress_callback) {
  597. progress_callback((float) done_size / data_size, progress_callback_user_data);
  598. }
  599. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  600. lt.data = (uint8_t *) lt.ggml_tensor->data;
  601. load_data_for(lt);
  602. lt.ggml_tensor->data = lt.data;
  603. done_size += lt.size;
  604. if (use_mmap && lmlock) {
  605. lmlock->grow_to(done_size);
  606. }
  607. }
  608. if (progress_callback) {
  609. progress_callback(1.0f, progress_callback_user_data);
  610. }
  611. }
  612. void load_data_for(llama_load_tensor & lt) {
  613. if (use_mmap) {
  614. LLAMA_ASSERT(lt.shards.size() == 1);
  615. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  616. } else if (lt.split_type == SPLIT_NONE) {
  617. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  618. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  619. file.read_raw(lt.data, lt.size);
  620. } else if (lt.split_type == SPLIT_BY_ROWS) {
  621. size_t offset = 0;
  622. for (llama_load_tensor_shard & shard : lt.shards) {
  623. llama_file & file = file_loaders.at(shard.file_idx)->file;
  624. file.seek(shard.file_off, SEEK_SET);
  625. file.read_raw(lt.data + offset, shard.size);
  626. offset += shard.size;
  627. }
  628. LLAMA_ASSERT(offset == lt.size);
  629. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  630. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  631. std::vector<llama_buffer> tmp_bufs;
  632. tmp_bufs.resize(lt.shards.size());
  633. for (size_t i = 0; i < lt.shards.size(); i++) {
  634. llama_load_tensor_shard & shard = lt.shards.at(i);
  635. llama_file & file = file_loaders.at(shard.file_idx)->file;
  636. file.seek(shard.file_off, SEEK_SET);
  637. tmp_bufs.at(i).resize(shard.size);
  638. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  639. }
  640. // Then reshape.
  641. size_t num_rows = lt.ne.at(1);
  642. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  643. size_t out_offset = 0;
  644. for (size_t row = 0; row < num_rows; row++) {
  645. for (llama_buffer & tmp_buf : tmp_bufs) {
  646. memcpy(lt.data + out_offset,
  647. tmp_buf.addr + row * per_shard_row_size,
  648. per_shard_row_size);
  649. out_offset += per_shard_row_size;
  650. }
  651. }
  652. LLAMA_ASSERT(out_offset == lt.size);
  653. }
  654. if (0) {
  655. print_checksum(lt);
  656. }
  657. }
  658. static void print_checksum(llama_load_tensor & lt) {
  659. uint32_t sum = 0;
  660. for (size_t i = 0; i < lt.size; i++) {
  661. uint8_t byte = lt.data[i];
  662. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  663. }
  664. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  665. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  666. }
  667. };
  668. //
  669. // kv cache
  670. //
  671. static bool kv_cache_init(
  672. const struct llama_hparams & hparams,
  673. struct llama_kv_cache & cache,
  674. ggml_type wtype,
  675. int n_ctx) {
  676. const int n_embd = hparams.n_embd;
  677. const int n_layer = hparams.n_layer;
  678. const int64_t n_mem = (int64_t)n_layer*n_ctx;
  679. const int64_t n_elements = n_embd*n_mem;
  680. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  681. struct ggml_init_params params;
  682. params.mem_size = cache.buf.size;
  683. params.mem_buffer = cache.buf.addr;
  684. params.no_alloc = false;
  685. cache.ctx = ggml_init(params);
  686. if (!cache.ctx) {
  687. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  688. return false;
  689. }
  690. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  691. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  692. return true;
  693. }
  694. struct llama_context_params llama_context_default_params() {
  695. struct llama_context_params result = {
  696. /*.n_ctx =*/ 512,
  697. /*.n_parts =*/ -1,
  698. /*.seed =*/ 0,
  699. /*.f16_kv =*/ false,
  700. /*.logits_all =*/ false,
  701. /*.vocab_only =*/ false,
  702. /*.use_mmap =*/ true,
  703. /*.use_mlock =*/ false,
  704. /*.embedding =*/ false,
  705. /*.progress_callback =*/ nullptr,
  706. /*.progress_callback_user_data =*/ nullptr,
  707. };
  708. return result;
  709. }
  710. bool llama_mmap_supported() {
  711. return llama_mmap::SUPPORTED;
  712. }
  713. bool llama_mlock_supported() {
  714. return llama_mlock::SUPPORTED;
  715. }
  716. //
  717. // model loading
  718. //
  719. static const char *llama_file_version_name(llama_file_version version) {
  720. switch (version) {
  721. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  722. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  723. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
  724. default: LLAMA_ASSERT(false);
  725. }
  726. }
  727. static const char *llama_ftype_name(enum llama_ftype ftype) {
  728. switch (ftype) {
  729. case LLAMA_FTYPE_ALL_F32: return "all F32";
  730. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  731. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  732. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  733. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  734. return "mostly Q4_1, some F16";
  735. case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
  736. case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
  737. default: return "unknown, may not work";
  738. }
  739. }
  740. static const char *llama_model_type_name(e_model type) {
  741. switch (type) {
  742. case MODEL_7B: return "7B";
  743. case MODEL_13B: return "13B";
  744. case MODEL_30B: return "30B";
  745. case MODEL_65B: return "65B";
  746. default: LLAMA_ASSERT(false);
  747. }
  748. }
  749. static void llama_model_load_internal(
  750. const std::string & fname,
  751. llama_context & lctx,
  752. int n_ctx,
  753. ggml_type memory_type,
  754. bool use_mmap,
  755. bool use_mlock,
  756. bool vocab_only,
  757. llama_progress_callback progress_callback,
  758. void * progress_callback_user_data) {
  759. lctx.t_start_us = ggml_time_us();
  760. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  761. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  762. auto & model = lctx.model;
  763. model.hparams = ml->file_loaders.at(0)->hparams;
  764. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  765. auto & hparams = model.hparams;
  766. uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  767. {
  768. switch (hparams.n_layer) {
  769. case 32: model.type = e_model::MODEL_7B; break;
  770. case 40: model.type = e_model::MODEL_13B; break;
  771. case 60: model.type = e_model::MODEL_30B; break;
  772. case 80: model.type = e_model::MODEL_65B; break;
  773. }
  774. hparams.n_ctx = n_ctx;
  775. }
  776. {
  777. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  778. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  779. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  780. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  781. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  782. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  783. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  784. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  785. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  786. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  787. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  788. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  789. }
  790. if (vocab_only) {
  791. return;
  792. }
  793. auto & ctx = model.ctx;
  794. size_t ctx_size, mmapped_size;
  795. ml->calc_sizes(&ctx_size, &mmapped_size);
  796. fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
  797. // print memory requirements
  798. {
  799. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  800. // this is the total memory required to run the inference
  801. const size_t mem_required =
  802. ctx_size +
  803. mmapped_size +
  804. MEM_REQ_SCRATCH0().at(model.type) +
  805. MEM_REQ_SCRATCH1().at(model.type) +
  806. MEM_REQ_EVAL().at(model.type);
  807. // this is the memory required by one llama_state
  808. const size_t mem_required_state =
  809. scale*MEM_REQ_KV_SELF().at(model.type);
  810. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  811. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  812. }
  813. // create the ggml context
  814. {
  815. lctx.model.buf.resize(ctx_size);
  816. if (use_mlock) {
  817. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  818. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  819. }
  820. struct ggml_init_params params = {
  821. /*.mem_size =*/ lctx.model.buf.size,
  822. /*.mem_buffer =*/ lctx.model.buf.addr,
  823. /*.no_alloc =*/ ml->use_mmap,
  824. };
  825. model.ctx = ggml_init(params);
  826. if (!model.ctx) {
  827. throw format("ggml_init() failed");
  828. }
  829. }
  830. // prepare memory for the weights
  831. {
  832. const auto & hparams = model.hparams;
  833. const uint32_t n_embd = hparams.n_embd;
  834. const uint32_t n_layer = hparams.n_layer;
  835. const uint32_t n_vocab = hparams.n_vocab;
  836. ml->ggml_ctx = ctx;
  837. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
  838. model.norm = ml->get_tensor("norm.weight", {n_embd});
  839. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
  840. model.layers.resize(n_layer);
  841. for (uint32_t i = 0; i < n_layer; ++i) {
  842. auto & layer = model.layers[i];
  843. std::string layers_i = "layers." + std::to_string(i);
  844. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
  845. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
  846. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
  847. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
  848. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
  849. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
  850. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
  851. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
  852. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
  853. }
  854. }
  855. ml->done_getting_tensors();
  856. // populate `tensors_by_name`
  857. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  858. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  859. }
  860. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  861. model.mapping = std::move(ml->mapping);
  862. // loading time will be recalculate after the first eval, so
  863. // we take page faults deferred by mmap() into consideration
  864. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  865. }
  866. static bool llama_model_load(
  867. const std::string & fname,
  868. llama_context & lctx,
  869. int n_ctx,
  870. ggml_type memory_type,
  871. bool use_mmap,
  872. bool use_mlock,
  873. bool vocab_only,
  874. llama_progress_callback progress_callback,
  875. void *progress_callback_user_data) {
  876. try {
  877. llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
  878. vocab_only, progress_callback, progress_callback_user_data);
  879. return true;
  880. } catch (const std::string & err) {
  881. fprintf(stderr, "error loading model: %s\n", err.c_str());
  882. return false;
  883. }
  884. }
  885. // evaluate the transformer
  886. //
  887. // - lctx: llama context
  888. // - tokens: new batch of tokens to process
  889. // - n_past: the context size so far
  890. // - n_threads: number of threads to use
  891. //
  892. static bool llama_eval_internal(
  893. llama_context & lctx,
  894. const llama_token * tokens,
  895. const int n_tokens,
  896. const int n_past,
  897. const int n_threads) {
  898. const int64_t t_start_us = ggml_time_us();
  899. const int N = n_tokens;
  900. const auto & model = lctx.model;
  901. const auto & hparams = model.hparams;
  902. auto & kv_self = model.kv_self;
  903. LLAMA_ASSERT(!!kv_self.ctx);
  904. const int n_embd = hparams.n_embd;
  905. const int n_layer = hparams.n_layer;
  906. const int n_ctx = hparams.n_ctx;
  907. const int n_head = hparams.n_head;
  908. const int n_vocab = hparams.n_vocab;
  909. const int n_rot = hparams.n_embd/hparams.n_head;
  910. auto & mem_per_token = lctx.mem_per_token;
  911. auto & buf_compute = lctx.buf_compute;
  912. struct ggml_init_params params = {
  913. /*.mem_size =*/ buf_compute.size,
  914. /*.mem_buffer =*/ buf_compute.addr,
  915. /*.no_alloc =*/ false,
  916. };
  917. struct ggml_context * ctx0 = ggml_init(params);
  918. // for big prompts, if BLAS is enabled, it is better to use only one thread
  919. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  920. ggml_cgraph gf = {};
  921. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : n_threads;
  922. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  923. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  924. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  925. for (int il = 0; il < n_layer; ++il) {
  926. struct ggml_tensor * inpSA = inpL;
  927. struct ggml_tensor * cur;
  928. lctx.use_buf(ctx0, 0);
  929. // norm
  930. {
  931. cur = ggml_rms_norm(ctx0, inpL);
  932. // cur = attention_norm*cur
  933. cur = ggml_mul(ctx0,
  934. ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
  935. cur);
  936. }
  937. // self-attention
  938. {
  939. // compute Q and K and RoPE them
  940. struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  941. struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  942. // store key and value to memory
  943. {
  944. // compute the transposed [N, n_embd] V matrix
  945. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
  946. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  947. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  948. ( n_ctx)*ggml_element_size(kv_self.v),
  949. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  950. // important: storing RoPE-ed version of K in the KV cache!
  951. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  952. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  953. }
  954. struct ggml_tensor * Q =
  955. ggml_permute(ctx0,
  956. Qcur,
  957. 0, 2, 1, 3);
  958. struct ggml_tensor * K =
  959. ggml_permute(ctx0,
  960. ggml_reshape_3d(ctx0,
  961. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  962. n_embd/n_head, n_head, n_past + N),
  963. 0, 2, 1, 3);
  964. // K * Q
  965. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  966. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  967. struct ggml_tensor * KQ_scaled =
  968. ggml_scale(ctx0,
  969. KQ,
  970. ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
  971. // KQ_masked = mask_past(KQ_scaled)
  972. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
  973. // KQ = soft_max(KQ_masked)
  974. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  975. // split cached V into n_head heads
  976. struct ggml_tensor * V =
  977. ggml_view_3d(ctx0, kv_self.v,
  978. n_past + N, n_embd/n_head, n_head,
  979. n_ctx*ggml_element_size(kv_self.v),
  980. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  981. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  982. #if 1
  983. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  984. #else
  985. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  986. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  987. // is there a better way?
  988. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  989. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  990. #endif
  991. // KQV_merged = KQV.permute(0, 2, 1, 3)
  992. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  993. // cur = KQV_merged.contiguous().view(n_embd, N)
  994. cur = ggml_cpy(ctx0,
  995. KQV_merged,
  996. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  997. // projection (no bias)
  998. cur = ggml_mul_mat(ctx0,
  999. model.layers[il].wo,
  1000. cur);
  1001. }
  1002. lctx.use_buf(ctx0, 1);
  1003. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1004. // feed-forward network
  1005. {
  1006. // norm
  1007. {
  1008. cur = ggml_rms_norm(ctx0, inpFF);
  1009. // cur = ffn_norm*cur
  1010. cur = ggml_mul(ctx0,
  1011. ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
  1012. cur);
  1013. }
  1014. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1015. model.layers[il].w3,
  1016. cur);
  1017. cur = ggml_mul_mat(ctx0,
  1018. model.layers[il].w1,
  1019. cur);
  1020. // SILU activation
  1021. cur = ggml_silu(ctx0, cur);
  1022. cur = ggml_mul(ctx0, cur, tmp);
  1023. cur = ggml_mul_mat(ctx0,
  1024. model.layers[il].w2,
  1025. cur);
  1026. }
  1027. cur = ggml_add(ctx0, cur, inpFF);
  1028. // input for next layer
  1029. inpL = cur;
  1030. }
  1031. lctx.use_buf(ctx0, 0);
  1032. // used at the end to optionally extract the embeddings
  1033. struct ggml_tensor * embeddings = NULL;
  1034. // norm
  1035. {
  1036. inpL = ggml_rms_norm(ctx0, inpL);
  1037. // inpL = norm*inpL
  1038. inpL = ggml_mul(ctx0,
  1039. ggml_repeat(ctx0, model.norm, inpL),
  1040. inpL);
  1041. embeddings = inpL;
  1042. }
  1043. // lm_head
  1044. inpL = ggml_mul_mat(ctx0, model.output, inpL);
  1045. lctx.use_buf(ctx0, -1);
  1046. // logits -> probs
  1047. //inpL = ggml_soft_max(ctx0, inpL);
  1048. // run the computation
  1049. ggml_build_forward_expand(&gf, inpL);
  1050. ggml_graph_compute (ctx0, &gf);
  1051. #ifdef GGML_PERF
  1052. // print timing information per ggml operation (for debugging purposes)
  1053. // requires GGML_PERF to be defined
  1054. ggml_graph_print(&gf);
  1055. #endif
  1056. // plot the computation graph in dot format (for debugging purposes)
  1057. //if (n_past%100 == 0) {
  1058. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1059. //}
  1060. //embd_w.resize(n_vocab*N);
  1061. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1062. // extract logits
  1063. {
  1064. auto & logits_out = lctx.logits;
  1065. if (lctx.logits_all) {
  1066. logits_out.resize(n_vocab * N);
  1067. memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1068. } else {
  1069. // return result for just the last token
  1070. logits_out.resize(n_vocab);
  1071. memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1072. }
  1073. }
  1074. // extract embeddings
  1075. if (lctx.embedding.size()) {
  1076. auto & embedding_out = lctx.embedding;
  1077. embedding_out.resize(n_embd);
  1078. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1079. }
  1080. if (mem_per_token == 0) {
  1081. mem_per_token = ggml_used_mem(ctx0)/N;
  1082. }
  1083. #if 0
  1084. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1085. ggml_used_mem(ctx0)/1024.0/1024.0,
  1086. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1087. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1088. #endif
  1089. ggml_free(ctx0);
  1090. // measure the performance only for the single-token evals
  1091. if (N == 1) {
  1092. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1093. lctx.n_eval++;
  1094. }
  1095. else if (N > 1) {
  1096. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1097. lctx.n_p_eval += N;
  1098. }
  1099. return true;
  1100. }
  1101. //
  1102. // tokenizer
  1103. //
  1104. static size_t utf8_len(char src) {
  1105. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1106. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1107. return lookup[highbits];
  1108. }
  1109. struct llama_sp_symbol {
  1110. using index = int;
  1111. index prev;
  1112. index next;
  1113. const char * text;
  1114. size_t n;
  1115. };
  1116. struct llama_sp_bigram {
  1117. struct comparator {
  1118. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1119. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1120. }
  1121. };
  1122. using queue_storage = std::vector<llama_sp_bigram>;
  1123. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1124. llama_sp_symbol::index left;
  1125. llama_sp_symbol::index right;
  1126. float score;
  1127. size_t size;
  1128. };
  1129. // original implementation:
  1130. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1131. struct llama_tokenizer {
  1132. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1133. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1134. // split string into utf8 chars
  1135. int index = 0;
  1136. size_t offs = 0;
  1137. while (offs < text.size()) {
  1138. llama_sp_symbol sym;
  1139. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1140. sym.text = text.c_str() + offs;
  1141. sym.n = char_len;
  1142. offs += char_len;
  1143. sym.prev = index - 1;
  1144. sym.next = offs == text.size() ? -1 : index + 1;
  1145. index++;
  1146. symbols_.emplace_back(std::move(sym));
  1147. }
  1148. // seed the work queue with all possible 2-character tokens.
  1149. for (size_t i = 1; i < symbols_.size(); ++i) {
  1150. try_add_bigram(i - 1, i);
  1151. }
  1152. // keep substituting the highest frequency pairs for as long as we can.
  1153. while (!work_queue_.empty()) {
  1154. auto bigram = work_queue_.top();
  1155. work_queue_.pop();
  1156. auto & left_sym = symbols_[bigram.left];
  1157. auto & right_sym = symbols_[bigram.right];
  1158. // if one of the symbols already got merged, skip it.
  1159. if (left_sym.n == 0 || right_sym.n == 0 ||
  1160. left_sym.n + right_sym.n != bigram.size) {
  1161. continue;
  1162. }
  1163. // merge the right sym into the left one
  1164. left_sym.n += right_sym.n;
  1165. right_sym.n = 0;
  1166. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1167. // remove the right sym from the chain
  1168. left_sym.next = right_sym.next;
  1169. if (right_sym.next >= 0) {
  1170. symbols_[right_sym.next].prev = bigram.left;
  1171. }
  1172. // find more substitutions
  1173. try_add_bigram(left_sym.prev, bigram.left);
  1174. try_add_bigram(bigram.left, left_sym.next);
  1175. }
  1176. for (int i = 0; i != -1; i = symbols_[i].next) {
  1177. auto & symbol = symbols_[i];
  1178. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1179. if (token == vocab_.token_to_id.end()) {
  1180. // output any symbols that did not form tokens as bytes.
  1181. for (int j = 0; j < (int) symbol.n; ++j) {
  1182. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1183. output.push_back(token_id);
  1184. }
  1185. } else {
  1186. output.push_back((*token).second);
  1187. }
  1188. }
  1189. }
  1190. private:
  1191. void try_add_bigram(int left, int right) {
  1192. if (left == -1 || right == -1) {
  1193. return;
  1194. }
  1195. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1196. auto token = vocab_.token_to_id.find(text);
  1197. if (token == vocab_.token_to_id.end()) {
  1198. return;
  1199. }
  1200. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1201. return;
  1202. }
  1203. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1204. llama_sp_bigram bigram;
  1205. bigram.left = left;
  1206. bigram.right = right;
  1207. bigram.score = tok_score.score;
  1208. bigram.size = text.size();
  1209. work_queue_.push(bigram);
  1210. }
  1211. const llama_vocab & vocab_;
  1212. std::vector<llama_sp_symbol> symbols_;
  1213. llama_sp_bigram::queue work_queue_;
  1214. };
  1215. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1216. llama_tokenizer tokenizer(vocab);
  1217. std::vector<llama_vocab::id> output;
  1218. if (text.size() == 0) {
  1219. return output;
  1220. }
  1221. if (bos) {
  1222. output.push_back(1);
  1223. }
  1224. tokenizer.tokenize(text, output);
  1225. return output;
  1226. }
  1227. //
  1228. // sampling
  1229. //
  1230. static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
  1231. // find the top k tokens
  1232. std::partial_sort(
  1233. logits_id.begin(),
  1234. logits_id.begin() + top_k, logits_id.end(),
  1235. [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
  1236. return a.first > b.first;
  1237. });
  1238. logits_id.resize(top_k);
  1239. }
  1240. static llama_vocab::id llama_sample_top_p_top_k(
  1241. llama_context & lctx,
  1242. const std::vector<llama_vocab::id> & last_n_tokens,
  1243. int top_k,
  1244. float top_p,
  1245. float temp,
  1246. float repeat_penalty) {
  1247. auto & rng = lctx.rng;
  1248. const int n_logits = lctx.model.hparams.n_vocab;
  1249. const auto & logits = lctx.logits;
  1250. const auto * plogits = logits.data() + logits.size() - n_logits;
  1251. if (temp <= 0) {
  1252. // select the token with the highest logit directly
  1253. float max_logit = plogits[0];
  1254. llama_vocab::id max_id = 0;
  1255. for (int i = 1; i < n_logits; ++i) {
  1256. if (plogits[i] > max_logit) {
  1257. max_logit = plogits[i];
  1258. max_id = i;
  1259. }
  1260. }
  1261. return max_id;
  1262. }
  1263. std::vector<std::pair<float, llama_vocab::id>> logits_id;
  1264. logits_id.reserve(n_logits);
  1265. {
  1266. const float scale = 1.0f/temp;
  1267. for (int i = 0; i < n_logits; ++i) {
  1268. // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
  1269. // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
  1270. if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
  1271. // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
  1272. if (plogits[i] < 0.0f) {
  1273. logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
  1274. } else {
  1275. logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
  1276. }
  1277. } else {
  1278. logits_id.push_back(std::make_pair(plogits[i]*scale, i));
  1279. }
  1280. }
  1281. }
  1282. sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
  1283. // compute probs for the top k tokens
  1284. std::vector<float> probs;
  1285. probs.reserve(logits_id.size());
  1286. float maxl = logits_id[0].first;
  1287. double sum = 0.0;
  1288. for (const auto & kv : logits_id) {
  1289. const float p = expf(kv.first - maxl);
  1290. probs.push_back(p);
  1291. sum += p;
  1292. }
  1293. // normalize the probs
  1294. for (auto & p : probs) {
  1295. p /= sum;
  1296. }
  1297. if (top_p < 1.0) {
  1298. double cumsum = 0.0;
  1299. for (int i = 0; i < (int) probs.size(); i++) {
  1300. cumsum += probs[i];
  1301. if (cumsum >= top_p) {
  1302. probs.resize(i + 1);
  1303. logits_id.resize(i + 1);
  1304. break;
  1305. }
  1306. }
  1307. }
  1308. //printf("\n");
  1309. //for (int i = 0; i < (int) 10; i++) {
  1310. // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
  1311. //}
  1312. //printf("\n\n");
  1313. //exit(0);
  1314. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1315. int idx = dist(rng);
  1316. return logits_id[idx].second;
  1317. }
  1318. //
  1319. // quantization
  1320. //
  1321. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
  1322. ggml_type quantized_type;
  1323. switch (ftype) {
  1324. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  1325. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  1326. case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break;
  1327. case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break;
  1328. default: throw format("invalid output file type %d\n", ftype);
  1329. };
  1330. if (nthread <= 0) {
  1331. nthread = std::thread::hardware_concurrency();
  1332. }
  1333. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
  1334. /*vocab_only*/ false));
  1335. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
  1336. size_t total_size_org = 0;
  1337. size_t total_size_new = 0;
  1338. std::vector<int64_t> hist_all(1 << 4, 0);
  1339. std::vector<std::thread> workers;
  1340. std::mutex mutex;
  1341. size_t idx = 0;
  1342. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  1343. llama_buffer read_data;
  1344. read_data.resize(tensor.size);
  1345. tensor.data = read_data.addr;
  1346. model_loader->load_data_for(tensor);
  1347. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  1348. ++idx, model_loader->tensors_map.tensors.size(),
  1349. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  1350. ggml_type_name(tensor.type));
  1351. // This used to be a regex, but <regex> has an extreme cost to compile times.
  1352. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  1353. // quantize only 2D tensors
  1354. quantize &= (tensor.ne.size() == 2);
  1355. // uncomment this to keep the output layer in FP16
  1356. //if (tensor.name == "output.weight") {
  1357. // quantize = false;
  1358. //}
  1359. enum ggml_type new_type;
  1360. void * new_data;
  1361. size_t new_size;
  1362. llama_buffer work;
  1363. if (!quantize) {
  1364. new_type = tensor.type;
  1365. new_data = tensor.data;
  1366. new_size = tensor.size;
  1367. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  1368. } else {
  1369. new_type = quantized_type;
  1370. float * f32_data;
  1371. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  1372. llama_buffer f32_conv_buf;
  1373. if (tensor.type == GGML_TYPE_F32) {
  1374. f32_data = (float *) tensor.data;
  1375. } else if (tensor.type == GGML_TYPE_F16) {
  1376. f32_conv_buf.resize(nelements * sizeof(float));
  1377. f32_data = (float *) f32_conv_buf.addr;
  1378. auto f16_data = (const ggml_fp16_t *) tensor.data;
  1379. for (size_t i = 0; i < nelements; i++) {
  1380. f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
  1381. }
  1382. } else {
  1383. throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
  1384. }
  1385. printf("quantizing .. ");
  1386. fflush(stdout);
  1387. work.resize(nelements * 4); // upper bound on size
  1388. new_data = work.addr;
  1389. std::vector<int64_t> hist_cur(1 << 4, 0);
  1390. int chunk_size = 32 * 512;
  1391. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  1392. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  1393. if (nthread_use < 2) {
  1394. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  1395. } else {
  1396. size_t counter = 0;
  1397. new_size = 0;
  1398. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  1399. std::vector<int64_t> local_hist;
  1400. size_t local_size = 0;
  1401. while (true) {
  1402. std::unique_lock<std::mutex> lock(mutex);
  1403. size_t first = counter; counter += chunk_size;
  1404. if (first >= nelements) {
  1405. if (!local_hist.empty()) {
  1406. for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
  1407. new_size += local_size;
  1408. }
  1409. break;
  1410. }
  1411. lock.unlock();
  1412. size_t last = std::min(nelements, first + chunk_size);
  1413. if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
  1414. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  1415. }
  1416. };
  1417. if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
  1418. for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
  1419. compute();
  1420. for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
  1421. }
  1422. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  1423. for (size_t i = 0; i < hist_cur.size(); i++) {
  1424. hist_all[i] += hist_cur[i];
  1425. }
  1426. for (size_t i = 0; i < hist_cur.size(); i++) {
  1427. printf("%5.3f ", hist_cur[i] / float(nelements));
  1428. }
  1429. printf("\n");
  1430. }
  1431. total_size_org += tensor.size;
  1432. total_size_new += new_size;
  1433. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  1434. }
  1435. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  1436. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  1437. {
  1438. int64_t sum_all = 0;
  1439. for (size_t i = 0; i < hist_all.size(); i++) {
  1440. sum_all += hist_all[i];
  1441. }
  1442. printf("%s: hist: ", __func__);
  1443. for (size_t i = 0; i < hist_all.size(); i++) {
  1444. printf("%5.3f ", hist_all[i] / float(sum_all));
  1445. }
  1446. printf("\n");
  1447. }
  1448. }
  1449. //
  1450. // interface implementation
  1451. //
  1452. struct llama_context * llama_init_from_file(
  1453. const char * path_model,
  1454. struct llama_context_params params) {
  1455. ggml_time_init();
  1456. llama_context * ctx = new llama_context;
  1457. if (params.seed <= 0) {
  1458. params.seed = time(NULL);
  1459. }
  1460. unsigned cur_percentage = 0;
  1461. if (params.progress_callback == NULL) {
  1462. params.progress_callback_user_data = &cur_percentage;
  1463. params.progress_callback = [](float progress, void * ctx) {
  1464. unsigned * cur_percentage_p = (unsigned *) ctx;
  1465. unsigned percentage = (unsigned) (100 * progress);
  1466. while (percentage > *cur_percentage_p) {
  1467. ++*cur_percentage_p;
  1468. fprintf(stderr, ".");
  1469. fflush(stderr);
  1470. if (percentage >= 100) {
  1471. fprintf(stderr, "\n");
  1472. }
  1473. }
  1474. };
  1475. }
  1476. ctx->rng = std::mt19937(params.seed);
  1477. ctx->logits_all = params.logits_all;
  1478. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  1479. if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
  1480. params.use_mmap, params.use_mlock, params.vocab_only,
  1481. params.progress_callback, params.progress_callback_user_data)) {
  1482. fprintf(stderr, "%s: failed to load model\n", __func__);
  1483. llama_free(ctx);
  1484. return nullptr;
  1485. }
  1486. // reserve memory for context buffers
  1487. if (!params.vocab_only) {
  1488. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
  1489. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  1490. llama_free(ctx);
  1491. return nullptr;
  1492. }
  1493. {
  1494. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  1495. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  1496. }
  1497. const auto & hparams = ctx->model.hparams;
  1498. // resized during inference
  1499. if (params.logits_all) {
  1500. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  1501. } else {
  1502. ctx->logits.reserve(hparams.n_vocab);
  1503. }
  1504. if (params.embedding){
  1505. ctx->embedding.resize(hparams.n_embd);
  1506. }
  1507. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  1508. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  1509. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  1510. }
  1511. return ctx;
  1512. }
  1513. void llama_free(struct llama_context * ctx) {
  1514. delete ctx;
  1515. }
  1516. int llama_model_quantize(
  1517. const char * fname_inp,
  1518. const char * fname_out,
  1519. enum llama_ftype ftype,
  1520. int nthread) {
  1521. try {
  1522. llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
  1523. return 0;
  1524. } catch (const std::string & err) {
  1525. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
  1526. return 1;
  1527. }
  1528. }
  1529. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  1530. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  1531. auto & model = ctx->model;
  1532. const int64_t t_start_lora_us = ggml_time_us();
  1533. auto fin = std::ifstream(path_lora, std::ios::binary);
  1534. if (!fin) {
  1535. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  1536. return 1;
  1537. }
  1538. // verify magic and version
  1539. {
  1540. uint32_t magic;
  1541. fin.read((char *) &magic, sizeof(magic));
  1542. if (magic != 'ggla') {
  1543. fprintf(stderr, "%s: bad file magic\n", __func__);
  1544. return 1;
  1545. }
  1546. uint32_t format_version;
  1547. fin.read((char *) &format_version, sizeof(format_version));
  1548. if (format_version != 1) {
  1549. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  1550. return 1;
  1551. }
  1552. }
  1553. int32_t lora_r;
  1554. int32_t lora_alpha;
  1555. fin.read((char *) &lora_r, sizeof(lora_r));
  1556. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  1557. float scaling = (float)lora_alpha / (float)lora_r;
  1558. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  1559. // create a temporary ggml context to store the lora tensors
  1560. // todo: calculate size from biggest possible tensor
  1561. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  1562. struct ggml_init_params params;
  1563. params.mem_size = lora_buf.size();
  1564. params.mem_buffer = lora_buf.data();
  1565. params.no_alloc = false;
  1566. ggml_context * lora_ctx = ggml_init(params);
  1567. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  1568. // create a name -> tensor map of the model to accelerate lookups
  1569. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  1570. for (auto & kv: model.tensors_by_name) {
  1571. model_tensors.insert(kv);
  1572. }
  1573. // load base model
  1574. std::unique_ptr<llama_model_loader> model_loader;
  1575. ggml_context * base_ctx = NULL;
  1576. llama_buffer base_buf;
  1577. if (path_base_model) {
  1578. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  1579. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  1580. size_t ctx_size, mmapped_size;
  1581. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  1582. base_buf.resize(ctx_size);
  1583. ggml_init_params base_params;
  1584. base_params.mem_size = base_buf.size;
  1585. base_params.mem_buffer = base_buf.addr;
  1586. base_params.no_alloc = model_loader->use_mmap;
  1587. base_ctx = ggml_init(base_params);
  1588. model_loader->ggml_ctx = base_ctx;
  1589. // maybe this should in llama_model_loader
  1590. if (model_loader->use_mmap) {
  1591. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
  1592. }
  1593. }
  1594. // read tensors and apply
  1595. bool warned = false;
  1596. int n_tensors = 0;
  1597. while (true) {
  1598. int32_t n_dims;
  1599. int32_t length;
  1600. int32_t ftype;
  1601. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  1602. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  1603. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  1604. if (fin.eof()) {
  1605. break;
  1606. }
  1607. int32_t ne[2] = { 1, 1 };
  1608. for (int i = 0; i < n_dims; ++i) {
  1609. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  1610. }
  1611. std::string name(length, 0);
  1612. fin.read(&name[0], length);
  1613. // check for lora suffix and get the type of tensor
  1614. const std::string lora_suffix = ".lora";
  1615. size_t pos = name.rfind(lora_suffix);
  1616. if (pos == std::string::npos) {
  1617. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  1618. return 1;
  1619. }
  1620. std::string lora_type = name.substr(pos + lora_suffix.length());
  1621. std::string base_name = name;
  1622. base_name.erase(pos);
  1623. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  1624. if (model_tensors.find(base_name.data()) == model_tensors.end()) {
  1625. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  1626. return 1;
  1627. }
  1628. // create ggml tensor
  1629. ggml_type wtype;
  1630. switch (ftype) {
  1631. case 0: wtype = GGML_TYPE_F32; break;
  1632. case 1: wtype = GGML_TYPE_F16; break;
  1633. default:
  1634. {
  1635. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  1636. __func__, ftype);
  1637. return false;
  1638. }
  1639. }
  1640. ggml_tensor* lora_tensor;
  1641. if (n_dims == 2) {
  1642. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  1643. }
  1644. else {
  1645. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  1646. return 1;
  1647. }
  1648. // load tensor data
  1649. size_t offset = fin.tellg();
  1650. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  1651. offset = (offset + 31) & -32;
  1652. fin.seekg(offset);
  1653. fin.read((char*)lora_tensor->data, tensor_data_size);
  1654. lora_tensors[name] = lora_tensor;
  1655. // check if we have both A and B tensors and apply
  1656. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  1657. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  1658. ggml_tensor * dest_t = model_tensors[base_name];
  1659. ggml_tensor * base_t;
  1660. if (model_loader) {
  1661. // load from base model
  1662. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  1663. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  1664. return 1;
  1665. }
  1666. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  1667. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  1668. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
  1669. lt.data = (uint8_t *) lt.ggml_tensor->data;
  1670. model_loader->load_data_for(lt);
  1671. lt.ggml_tensor->data = lt.data;
  1672. }
  1673. else {
  1674. base_t = dest_t;
  1675. }
  1676. if (ggml_is_quantized(base_t->type)) {
  1677. if (!warned) {
  1678. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  1679. "use a f16 or f32 base model with --lora-base\n", __func__);
  1680. warned = true;
  1681. }
  1682. }
  1683. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  1684. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  1685. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  1686. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  1687. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  1688. return 1;
  1689. }
  1690. // w = w + BA*s
  1691. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  1692. if (scaling != 1.0f) {
  1693. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  1694. BA = ggml_scale(lora_ctx, BA, scale_tensor);
  1695. }
  1696. ggml_tensor * r;
  1697. if (base_t == dest_t) {
  1698. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  1699. }
  1700. else {
  1701. r = ggml_add(lora_ctx, base_t, BA);
  1702. r = ggml_cpy(lora_ctx, r, dest_t);
  1703. }
  1704. struct ggml_cgraph gf = ggml_build_forward(r);
  1705. gf.n_threads = n_threads;
  1706. ggml_graph_compute(lora_ctx, &gf);
  1707. // we won't need these tensors again, reset the context to save memory
  1708. ggml_free(lora_ctx);
  1709. lora_ctx = ggml_init(params);
  1710. lora_tensors.clear();
  1711. n_tensors++;
  1712. if (n_tensors % 4 == 0)
  1713. fprintf(stderr, ".");
  1714. }
  1715. }
  1716. // TODO: this should be in a destructor, it will leak on failure
  1717. ggml_free(lora_ctx);
  1718. if (base_ctx) {
  1719. ggml_free(base_ctx);
  1720. }
  1721. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  1722. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  1723. return 0;
  1724. }
  1725. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  1726. try {
  1727. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  1728. } catch (const std::string & err) {
  1729. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
  1730. return 1;
  1731. }
  1732. }
  1733. int llama_get_kv_cache_token_count(struct llama_context * ctx) {
  1734. return ctx->model.kv_self.n;
  1735. }
  1736. #define LLAMA_MAX_RNG_STATE 64*1024
  1737. // Returns the size of the state
  1738. size_t llama_get_state_size(struct llama_context * ctx) {
  1739. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  1740. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  1741. const size_t s_rng_size = sizeof(size_t);
  1742. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  1743. const size_t s_logits_capacity = sizeof(size_t);
  1744. const size_t s_logits_size = sizeof(size_t);
  1745. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  1746. const size_t s_embedding_size = sizeof(size_t);
  1747. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  1748. const size_t s_kv_size = sizeof(size_t);
  1749. const size_t s_kv_ntok = sizeof(int);
  1750. const size_t s_kv = ctx->model.kv_self.buf.size;
  1751. const size_t s_total = (
  1752. + s_rng_size
  1753. + s_rng
  1754. + s_logits_capacity
  1755. + s_logits_size
  1756. + s_logits
  1757. + s_embedding_size
  1758. + s_embedding
  1759. + s_kv_size
  1760. + s_kv_ntok
  1761. + s_kv
  1762. );
  1763. return s_total;
  1764. }
  1765. // Copies the state to the specified destination address
  1766. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) {
  1767. uint8_t * out = dest;
  1768. // copy rng
  1769. {
  1770. std::stringstream rng_ss;
  1771. rng_ss << ctx->rng;
  1772. const size_t rng_size = rng_ss.str().size();
  1773. char rng_buf[LLAMA_MAX_RNG_STATE];
  1774. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  1775. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  1776. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  1777. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  1778. }
  1779. // copy logits
  1780. {
  1781. const size_t logits_cap = ctx->logits.capacity();
  1782. const size_t logits_size = ctx->logits.size();
  1783. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  1784. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  1785. if (logits_size) {
  1786. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  1787. }
  1788. out += logits_cap * sizeof(float);
  1789. }
  1790. // copy embeddings
  1791. {
  1792. const size_t embedding_size = ctx->embedding.size();
  1793. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  1794. if (embedding_size) {
  1795. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  1796. out += embedding_size * sizeof(float);
  1797. }
  1798. }
  1799. // copy kv cache
  1800. {
  1801. const size_t kv_size = ctx->model.kv_self.buf.size;
  1802. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  1803. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  1804. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  1805. if (kv_size) {
  1806. memcpy(out, ctx->model.kv_self.buf.addr, kv_size); out += kv_size;
  1807. }
  1808. }
  1809. const size_t written = out - dest;
  1810. const size_t expected = llama_get_state_size(ctx);
  1811. LLAMA_ASSERT(written == expected);
  1812. return written;
  1813. }
  1814. // Sets the state reading from the specified source address
  1815. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  1816. const uint8_t * in = src;
  1817. // set rng
  1818. {
  1819. size_t rng_size;
  1820. char rng_buf[LLAMA_MAX_RNG_STATE];
  1821. memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
  1822. memcpy(&rng_buf[0], in, LLAMA_MAX_RNG_STATE); in += LLAMA_MAX_RNG_STATE;
  1823. std::stringstream rng_ss;
  1824. rng_ss.str(std::string(&rng_buf[0], rng_size));
  1825. rng_ss >> ctx->rng;
  1826. LLAMA_ASSERT(rng_ss.fail() == false);
  1827. }
  1828. // set logits
  1829. {
  1830. size_t logits_cap;
  1831. size_t logits_size;
  1832. memcpy(&logits_cap, in, sizeof(logits_cap)); in += sizeof(logits_cap);
  1833. memcpy(&logits_size, in, sizeof(logits_size)); in += sizeof(logits_size);
  1834. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  1835. if (logits_size) {
  1836. ctx->logits.resize(logits_size);
  1837. memcpy(ctx->logits.data(), in, logits_size * sizeof(float));
  1838. }
  1839. in += logits_cap * sizeof(float);
  1840. }
  1841. // set embeddings
  1842. {
  1843. size_t embedding_size;
  1844. memcpy(&embedding_size, in, sizeof(embedding_size)); in += sizeof(embedding_size);
  1845. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  1846. if (embedding_size) {
  1847. memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float));
  1848. in += embedding_size * sizeof(float);
  1849. }
  1850. }
  1851. // set kv cache
  1852. {
  1853. size_t kv_size;
  1854. int kv_ntok;
  1855. memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
  1856. memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
  1857. if (kv_size) {
  1858. LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size);
  1859. void * k_data = ctx->model.kv_self.k->data; // remember data pointers
  1860. void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
  1861. memcpy(ctx->model.kv_self.buf.addr, in, kv_size); in += kv_size;
  1862. ctx->model.kv_self.k->data = k_data; // restore correct data pointers
  1863. ctx->model.kv_self.v->data = v_data;
  1864. }
  1865. ctx->model.kv_self.n = kv_ntok;
  1866. }
  1867. const size_t nread = in - src;
  1868. const size_t expected = llama_get_state_size(ctx);
  1869. LLAMA_ASSERT(nread == expected);
  1870. return nread;
  1871. }
  1872. int llama_eval(
  1873. struct llama_context * ctx,
  1874. const llama_token * tokens,
  1875. int n_tokens,
  1876. int n_past,
  1877. int n_threads) {
  1878. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
  1879. fprintf(stderr, "%s: failed to eval\n", __func__);
  1880. return 1;
  1881. }
  1882. // get a more accurate load time, upon first eval
  1883. if (!ctx->has_evaluated_once) {
  1884. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  1885. ctx->has_evaluated_once = true;
  1886. }
  1887. return 0;
  1888. }
  1889. int llama_tokenize(
  1890. struct llama_context * ctx,
  1891. const char * text,
  1892. llama_token * tokens,
  1893. int n_max_tokens,
  1894. bool add_bos) {
  1895. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  1896. if (n_max_tokens < (int) res.size()) {
  1897. fprintf(stderr, "%s: too many tokens\n", __func__);
  1898. return -((int) res.size());
  1899. }
  1900. for (size_t i = 0; i < res.size(); i++) {
  1901. tokens[i] = res[i];
  1902. }
  1903. return res.size();
  1904. }
  1905. int llama_n_vocab(struct llama_context * ctx) {
  1906. return ctx->vocab.id_to_token.size();
  1907. }
  1908. int llama_n_ctx(struct llama_context * ctx) {
  1909. return ctx->model.hparams.n_ctx;
  1910. }
  1911. int llama_n_embd(struct llama_context * ctx) {
  1912. return ctx->model.hparams.n_embd;
  1913. }
  1914. float * llama_get_logits(struct llama_context * ctx) {
  1915. return ctx->logits.data();
  1916. }
  1917. float * llama_get_embeddings(struct llama_context * ctx) {
  1918. return ctx->embedding.data();
  1919. }
  1920. const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
  1921. if (token >= llama_n_vocab(ctx)) {
  1922. return nullptr;
  1923. }
  1924. return ctx->vocab.id_to_token[token].tok.c_str();
  1925. }
  1926. llama_token llama_token_bos() {
  1927. return 1;
  1928. }
  1929. llama_token llama_token_eos() {
  1930. return 2;
  1931. }
  1932. llama_token llama_sample_top_p_top_k(
  1933. llama_context * ctx,
  1934. const llama_token * last_n_tokens_data,
  1935. int last_n_tokens_size,
  1936. int top_k,
  1937. float top_p,
  1938. float temp,
  1939. float repeat_penalty) {
  1940. const int64_t t_start_sample_us = ggml_time_us();
  1941. llama_token result = 0;
  1942. // TODO: avoid this ...
  1943. const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
  1944. result = llama_sample_top_p_top_k(
  1945. *ctx,
  1946. last_n_tokens,
  1947. top_k,
  1948. top_p,
  1949. temp,
  1950. repeat_penalty);
  1951. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1952. ctx->n_sample++;
  1953. return result;
  1954. }
  1955. void llama_print_timings(struct llama_context * ctx) {
  1956. const int64_t t_end_us = ggml_time_us();
  1957. const int32_t n_sample = std::max(1, ctx->n_sample);
  1958. const int32_t n_eval = std::max(1, ctx->n_eval);
  1959. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  1960. fprintf(stderr, "\n");
  1961. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  1962. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  1963. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  1964. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  1965. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  1966. }
  1967. void llama_reset_timings(struct llama_context * ctx) {
  1968. ctx->t_start_us = ggml_time_us();
  1969. ctx->t_sample_us = ctx->n_sample = 0;
  1970. ctx->t_eval_us = ctx->n_eval = 0;
  1971. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  1972. }
  1973. const char * llama_print_system_info(void) {
  1974. static std::string s;
  1975. s = "";
  1976. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  1977. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  1978. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  1979. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  1980. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  1981. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  1982. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  1983. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  1984. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  1985. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  1986. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  1987. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  1988. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  1989. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  1990. return s.c_str();
  1991. }
  1992. // For internal test use
  1993. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  1994. return ctx->model.tensors_by_name;
  1995. }