clip.cpp 217 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-alloc.h"
  10. #include "ggml-backend.h"
  11. #include "gguf.h"
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cstdlib>
  15. #include <cstring>
  16. #include <fstream>
  17. #include <map>
  18. #include <stdexcept>
  19. #include <unordered_set>
  20. #include <vector>
  21. #include <cinttypes>
  22. #include <limits>
  23. #include <array>
  24. #include <functional>
  25. struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
  26. enum ffn_op_type {
  27. FFN_GELU,
  28. FFN_GELU_ERF,
  29. FFN_SILU,
  30. FFN_GELU_QUICK,
  31. };
  32. enum norm_type {
  33. NORM_TYPE_NORMAL,
  34. NORM_TYPE_RMS,
  35. };
  36. //#define CLIP_DEBUG_FUNCTIONS
  37. #ifdef CLIP_DEBUG_FUNCTIONS
  38. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  39. std::ofstream file(filename, std::ios::binary);
  40. if (!file.is_open()) {
  41. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  42. return;
  43. }
  44. // PPM header: P6 format, width, height, and max color value
  45. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  46. // Write pixel data
  47. for (size_t i = 0; i < img.buf.size(); i += 3) {
  48. // PPM expects binary data in RGB format, which matches our image buffer
  49. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  50. }
  51. file.close();
  52. }
  53. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  54. std::ofstream file(filename, std::ios::binary);
  55. if (!file.is_open()) {
  56. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  57. return;
  58. }
  59. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  60. int bytesPerPixel = 3;
  61. int widthInBytes = img.nx * bytesPerPixel;
  62. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  63. int stride = widthInBytes + paddingAmount;
  64. // Bitmap file header
  65. unsigned char fileHeader[14] = {
  66. 'B','M', // Signature
  67. 0,0,0,0, // Image file size in bytes
  68. 0,0,0,0, // Reserved
  69. 54,0,0,0 // Start of pixel array
  70. };
  71. // Total file size
  72. fileSize = 54 + (stride * img.ny);
  73. fileHeader[2] = (unsigned char)(fileSize);
  74. fileHeader[3] = (unsigned char)(fileSize >> 8);
  75. fileHeader[4] = (unsigned char)(fileSize >> 16);
  76. fileHeader[5] = (unsigned char)(fileSize >> 24);
  77. // Bitmap information header (BITMAPINFOHEADER)
  78. unsigned char infoHeader[40] = {
  79. 40,0,0,0, // Size of this header (40 bytes)
  80. 0,0,0,0, // Image width
  81. 0,0,0,0, // Image height
  82. 1,0, // Number of color planes
  83. 24,0, // Bits per pixel
  84. 0,0,0,0, // No compression
  85. 0,0,0,0, // Image size (can be 0 for no compression)
  86. 0,0,0,0, // X pixels per meter (not specified)
  87. 0,0,0,0, // Y pixels per meter (not specified)
  88. 0,0,0,0, // Total colors (color table not used)
  89. 0,0,0,0 // Important colors (all are important)
  90. };
  91. // Width and height in the information header
  92. infoHeader[4] = (unsigned char)(img.nx);
  93. infoHeader[5] = (unsigned char)(img.nx >> 8);
  94. infoHeader[6] = (unsigned char)(img.nx >> 16);
  95. infoHeader[7] = (unsigned char)(img.nx >> 24);
  96. infoHeader[8] = (unsigned char)(img.ny);
  97. infoHeader[9] = (unsigned char)(img.ny >> 8);
  98. infoHeader[10] = (unsigned char)(img.ny >> 16);
  99. infoHeader[11] = (unsigned char)(img.ny >> 24);
  100. // Write file headers
  101. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  102. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  103. // Pixel data
  104. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  105. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  106. for (int x = 0; x < img.nx; ++x) {
  107. // Each pixel
  108. size_t pixelIndex = (y * img.nx + x) * 3;
  109. unsigned char pixel[3] = {
  110. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  111. img.buf[pixelIndex + 1],
  112. img.buf[pixelIndex]
  113. };
  114. file.write(reinterpret_cast<char*>(pixel), 3);
  115. }
  116. // Write padding for the row
  117. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  118. }
  119. file.close();
  120. }
  121. // debug function to convert f32 to u8
  122. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  123. dst.nx = src.nx;
  124. dst.ny = src.ny;
  125. dst.buf.resize(3 * src.nx * src.ny);
  126. for (size_t i = 0; i < src.buf.size(); ++i) {
  127. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  128. }
  129. }
  130. #endif
  131. //
  132. // clip layers
  133. //
  134. enum patch_merge_type {
  135. PATCH_MERGE_FLAT,
  136. PATCH_MERGE_SPATIAL_UNPAD,
  137. };
  138. struct clip_hparams {
  139. int32_t image_size = 0;
  140. int32_t patch_size = 0;
  141. int32_t n_embd = 0;
  142. int32_t n_ff = 0;
  143. int32_t projection_dim = 0;
  144. int32_t n_head = 0;
  145. int32_t n_layer = 0;
  146. // idefics3
  147. int32_t image_longest_edge = 0;
  148. int32_t image_min_pixels = -1;
  149. int32_t image_max_pixels = -1;
  150. int32_t n_merge = 0; // number of patch merges **per-side**
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. // audio
  167. int32_t n_mel_bins = 0; // whisper preprocessor
  168. int32_t proj_stack_factor = 0; // ultravox
  169. // legacy
  170. bool has_llava_projector = false;
  171. int minicpmv_version = 0;
  172. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  173. // custom value provided by user, can be undefined if not set
  174. int32_t custom_image_min_tokens = -1;
  175. int32_t custom_image_max_tokens = -1;
  176. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  177. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  178. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  179. image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
  180. image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
  181. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  182. }
  183. void set_warmup_n_tokens(int n_tokens) {
  184. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  185. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  186. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  187. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  188. // TODO: support warmup size for custom token numbers
  189. }
  190. };
  191. struct clip_layer {
  192. // attention
  193. ggml_tensor * k_w = nullptr;
  194. ggml_tensor * k_b = nullptr;
  195. ggml_tensor * q_w = nullptr;
  196. ggml_tensor * q_b = nullptr;
  197. ggml_tensor * v_w = nullptr;
  198. ggml_tensor * v_b = nullptr;
  199. ggml_tensor * qkv_w = nullptr;
  200. ggml_tensor * qkv_b = nullptr;
  201. ggml_tensor * o_w = nullptr;
  202. ggml_tensor * o_b = nullptr;
  203. ggml_tensor * k_norm = nullptr;
  204. ggml_tensor * q_norm = nullptr;
  205. // layernorm 1
  206. ggml_tensor * ln_1_w = nullptr;
  207. ggml_tensor * ln_1_b = nullptr;
  208. ggml_tensor * ff_up_w = nullptr;
  209. ggml_tensor * ff_up_b = nullptr;
  210. ggml_tensor * ff_gate_w = nullptr;
  211. ggml_tensor * ff_gate_b = nullptr;
  212. ggml_tensor * ff_down_w = nullptr;
  213. ggml_tensor * ff_down_b = nullptr;
  214. // layernorm 2
  215. ggml_tensor * ln_2_w = nullptr;
  216. ggml_tensor * ln_2_b = nullptr;
  217. // layer scale (no bias)
  218. ggml_tensor * ls_1_w = nullptr;
  219. ggml_tensor * ls_2_w = nullptr;
  220. // qwen3vl deepstack merger
  221. ggml_tensor * deepstack_norm_w = nullptr;
  222. ggml_tensor * deepstack_norm_b = nullptr;
  223. ggml_tensor * deepstack_fc1_w = nullptr;
  224. ggml_tensor * deepstack_fc1_b = nullptr;
  225. ggml_tensor * deepstack_fc2_w = nullptr;
  226. ggml_tensor * deepstack_fc2_b = nullptr;
  227. bool has_deepstack() const {
  228. return deepstack_fc1_w != nullptr;
  229. }
  230. };
  231. struct clip_model {
  232. clip_modality modality = CLIP_MODALITY_VISION;
  233. projector_type proj_type = PROJECTOR_TYPE_MLP;
  234. clip_hparams hparams;
  235. // embeddings
  236. ggml_tensor * class_embedding = nullptr;
  237. ggml_tensor * patch_embeddings_0 = nullptr;
  238. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  239. ggml_tensor * patch_bias = nullptr;
  240. ggml_tensor * position_embeddings = nullptr;
  241. ggml_tensor * pre_ln_w = nullptr;
  242. ggml_tensor * pre_ln_b = nullptr;
  243. std::vector<clip_layer> layers;
  244. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  245. ggml_tensor * post_ln_w;
  246. ggml_tensor * post_ln_b;
  247. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  248. ggml_tensor * mm_fc_w;
  249. ggml_tensor * mm_fc_b;
  250. // LLaVA projection
  251. ggml_tensor * mm_input_norm_w = nullptr;
  252. ggml_tensor * mm_input_norm_b = nullptr;
  253. ggml_tensor * mm_0_w = nullptr;
  254. ggml_tensor * mm_0_b = nullptr;
  255. ggml_tensor * mm_2_w = nullptr;
  256. ggml_tensor * mm_2_b = nullptr;
  257. ggml_tensor * image_newline = nullptr;
  258. // Yi type models with mlp+normalization projection
  259. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  260. ggml_tensor * mm_1_b = nullptr;
  261. ggml_tensor * mm_3_w = nullptr;
  262. ggml_tensor * mm_3_b = nullptr;
  263. ggml_tensor * mm_4_w = nullptr;
  264. ggml_tensor * mm_4_b = nullptr;
  265. // GLMV-Edge projection
  266. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  267. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  268. // MobileVLM projection
  269. ggml_tensor * mm_model_mlp_1_w = nullptr;
  270. ggml_tensor * mm_model_mlp_1_b = nullptr;
  271. ggml_tensor * mm_model_mlp_3_w = nullptr;
  272. ggml_tensor * mm_model_mlp_3_b = nullptr;
  273. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  274. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  275. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  276. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  277. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  278. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  279. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  280. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  281. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  282. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  283. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  284. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  285. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  286. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  287. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  288. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  289. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  290. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  291. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  292. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  293. // MobileVLM_V2 projection
  294. ggml_tensor * mm_model_mlp_0_w = nullptr;
  295. ggml_tensor * mm_model_mlp_0_b = nullptr;
  296. ggml_tensor * mm_model_mlp_2_w = nullptr;
  297. ggml_tensor * mm_model_mlp_2_b = nullptr;
  298. ggml_tensor * mm_model_peg_0_w = nullptr;
  299. ggml_tensor * mm_model_peg_0_b = nullptr;
  300. // MINICPMV projection
  301. ggml_tensor * mm_model_pos_embed_k = nullptr;
  302. ggml_tensor * mm_model_query = nullptr;
  303. ggml_tensor * mm_model_proj = nullptr;
  304. ggml_tensor * mm_model_kv_proj = nullptr;
  305. ggml_tensor * mm_model_attn_q_w = nullptr;
  306. ggml_tensor * mm_model_attn_q_b = nullptr;
  307. ggml_tensor * mm_model_attn_k_w = nullptr;
  308. ggml_tensor * mm_model_attn_k_b = nullptr;
  309. ggml_tensor * mm_model_attn_v_w = nullptr;
  310. ggml_tensor * mm_model_attn_v_b = nullptr;
  311. ggml_tensor * mm_model_attn_o_w = nullptr;
  312. ggml_tensor * mm_model_attn_o_b = nullptr;
  313. ggml_tensor * mm_model_ln_q_w = nullptr;
  314. ggml_tensor * mm_model_ln_q_b = nullptr;
  315. ggml_tensor * mm_model_ln_kv_w = nullptr;
  316. ggml_tensor * mm_model_ln_kv_b = nullptr;
  317. ggml_tensor * mm_model_ln_post_w = nullptr;
  318. ggml_tensor * mm_model_ln_post_b = nullptr;
  319. // gemma3
  320. ggml_tensor * mm_input_proj_w = nullptr;
  321. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  322. // pixtral
  323. ggml_tensor * token_embd_img_break = nullptr;
  324. ggml_tensor * mm_patch_merger_w = nullptr;
  325. // ultravox / whisper encoder
  326. ggml_tensor * conv1d_1_w = nullptr;
  327. ggml_tensor * conv1d_1_b = nullptr;
  328. ggml_tensor * conv1d_2_w = nullptr;
  329. ggml_tensor * conv1d_2_b = nullptr;
  330. ggml_tensor * mm_norm_pre_w = nullptr;
  331. ggml_tensor * mm_norm_mid_w = nullptr;
  332. // cogvlm
  333. ggml_tensor * mm_post_fc_norm_w = nullptr;
  334. ggml_tensor * mm_post_fc_norm_b = nullptr;
  335. ggml_tensor * mm_h_to_4h_w = nullptr;
  336. ggml_tensor * mm_gate_w = nullptr;
  337. ggml_tensor * mm_4h_to_h_w = nullptr;
  338. ggml_tensor * mm_boi = nullptr;
  339. ggml_tensor * mm_eoi = nullptr;
  340. bool audio_has_avgpool() const {
  341. return proj_type == PROJECTOR_TYPE_QWEN2A
  342. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  343. }
  344. bool audio_has_stack_frames() const {
  345. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  346. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  347. }
  348. };
  349. struct clip_ctx {
  350. clip_model model;
  351. gguf_context_ptr ctx_gguf;
  352. ggml_context_ptr ctx_data;
  353. std::vector<uint8_t> buf_compute_meta;
  354. std::vector<ggml_backend_t> backend_ptrs;
  355. std::vector<ggml_backend_buffer_type_t> backend_buft;
  356. ggml_backend_t backend = nullptr;
  357. ggml_backend_t backend_cpu = nullptr;
  358. ggml_backend_buffer_ptr buf;
  359. int max_nodes = 8192;
  360. ggml_backend_sched_ptr sched;
  361. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  362. // for debugging
  363. bool debug_graph = false;
  364. std::vector<ggml_tensor *> debug_print_tensors;
  365. clip_ctx(clip_context_params & ctx_params) {
  366. flash_attn_type = ctx_params.flash_attn_type;
  367. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  368. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  369. if (!backend_cpu) {
  370. throw std::runtime_error("failed to initialize CPU backend");
  371. }
  372. if (ctx_params.use_gpu) {
  373. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  374. if (backend_name != nullptr) {
  375. backend = ggml_backend_init_by_name(backend_name, nullptr);
  376. if (!backend) {
  377. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  378. }
  379. }
  380. if (!backend) {
  381. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  382. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  383. }
  384. }
  385. if (backend) {
  386. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  387. backend_ptrs.push_back(backend);
  388. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  389. } else {
  390. backend = backend_cpu;
  391. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  392. }
  393. if (ctx_params.image_min_tokens > 0) {
  394. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  395. }
  396. if (ctx_params.image_max_tokens > 0) {
  397. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  398. }
  399. backend_ptrs.push_back(backend_cpu);
  400. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  401. sched.reset(
  402. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  403. );
  404. }
  405. ~clip_ctx() {
  406. ggml_backend_free(backend);
  407. if (backend != backend_cpu) {
  408. ggml_backend_free(backend_cpu);
  409. }
  410. }
  411. // this function is added so that we don't change too much of the existing code
  412. projector_type proj_type() const {
  413. return model.proj_type;
  414. }
  415. };
  416. struct clip_graph {
  417. clip_ctx * ctx;
  418. const clip_model & model;
  419. const clip_hparams & hparams;
  420. // we only support single image per batch
  421. const clip_image_f32 & img;
  422. const int patch_size;
  423. const int n_patches_x;
  424. const int n_patches_y;
  425. const int n_patches;
  426. const int n_embd;
  427. const int n_head;
  428. const int d_head;
  429. const int n_layer;
  430. const float eps;
  431. const float kq_scale;
  432. ggml_context_ptr ctx0_ptr;
  433. ggml_context * ctx0;
  434. ggml_cgraph * gf;
  435. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  436. ctx(ctx),
  437. model(ctx->model),
  438. hparams(model.hparams),
  439. img(img),
  440. patch_size(hparams.patch_size),
  441. n_patches_x(img.nx / patch_size),
  442. n_patches_y(img.ny / patch_size),
  443. n_patches(n_patches_x * n_patches_y),
  444. n_embd(hparams.n_embd),
  445. n_head(hparams.n_head),
  446. d_head(n_embd / n_head),
  447. n_layer(hparams.n_layer),
  448. eps(hparams.eps),
  449. kq_scale(1.0f / sqrtf((float)d_head)) {
  450. struct ggml_init_params params = {
  451. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  452. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  453. /*.no_alloc =*/ true,
  454. };
  455. ctx0_ptr.reset(ggml_init(params));
  456. ctx0 = ctx0_ptr.get();
  457. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  458. }
  459. ggml_cgraph * build_siglip() {
  460. ggml_tensor * inp = build_inp();
  461. ggml_tensor * learned_pos_embd = model.position_embeddings;
  462. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  463. learned_pos_embd = resize_position_embeddings();
  464. }
  465. ggml_tensor * cur = build_vit(
  466. inp, n_patches,
  467. NORM_TYPE_NORMAL,
  468. hparams.ffn_op,
  469. learned_pos_embd,
  470. nullptr);
  471. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  472. const int batch_size = 1;
  473. GGML_ASSERT(n_patches_x == n_patches_y);
  474. const int patches_per_image = n_patches_x;
  475. const int kernel_size = hparams.n_merge;
  476. cur = ggml_transpose(ctx0, cur);
  477. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  478. // doing a pool2d to reduce the number of output tokens
  479. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  480. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  481. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  482. // apply norm before projection
  483. cur = ggml_rms_norm(ctx0, cur, eps);
  484. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  485. // apply projection
  486. cur = ggml_mul_mat(ctx0,
  487. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  488. cur);
  489. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  490. // pixel_shuffle
  491. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  492. const int scale_factor = model.hparams.n_merge;
  493. cur = build_patch_merge_permute(cur, scale_factor);
  494. cur = ggml_mul_mat(ctx0, model.projection, cur);
  495. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  496. // pixel unshuffle block
  497. const int scale_factor = model.hparams.n_merge;
  498. cur = build_patch_merge_permute(cur, scale_factor);
  499. // projection
  500. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  501. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  502. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  503. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  504. cur = ggml_add(ctx0, cur, model.mm_1_b);
  505. cur = ggml_gelu(ctx0, cur);
  506. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  507. cur = ggml_add(ctx0, cur, model.mm_2_b);
  508. } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
  509. cur = build_ffn(cur,
  510. model.mm_0_w, model.mm_0_b,
  511. nullptr, nullptr,
  512. model.mm_1_w, model.mm_1_b,
  513. hparams.ffn_op,
  514. -1);
  515. } else {
  516. GGML_ABORT("SigLIP: Unsupported projector type");
  517. }
  518. // build the graph
  519. ggml_build_forward_expand(gf, cur);
  520. return gf;
  521. }
  522. ggml_cgraph * build_pixtral() {
  523. const int n_merge = hparams.n_merge;
  524. // 2D input positions
  525. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  526. ggml_set_name(pos_h, "pos_h");
  527. ggml_set_input(pos_h);
  528. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  529. ggml_set_name(pos_w, "pos_w");
  530. ggml_set_input(pos_w);
  531. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  532. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  533. };
  534. ggml_tensor * inp = build_inp();
  535. ggml_tensor * cur = build_vit(
  536. inp, n_patches,
  537. NORM_TYPE_RMS,
  538. hparams.ffn_op,
  539. nullptr, // no learned pos embd
  540. add_pos);
  541. // mistral small 3.1 patch merger
  542. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  543. if (model.mm_patch_merger_w) {
  544. GGML_ASSERT(hparams.n_merge > 0);
  545. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  546. // reshape image tokens to 2D grid
  547. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  548. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  549. cur = ggml_cont(ctx0, cur);
  550. // torch.nn.functional.unfold is just an im2col under the hood
  551. // we just need a dummy kernel to make it work
  552. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  553. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  554. // project to n_embd
  555. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  556. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  557. }
  558. // LlavaMultiModalProjector (always using GELU activation)
  559. {
  560. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  561. if (model.mm_1_b) {
  562. cur = ggml_add(ctx0, cur, model.mm_1_b);
  563. }
  564. cur = ggml_gelu(ctx0, cur);
  565. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  566. if (model.mm_2_b) {
  567. cur = ggml_add(ctx0, cur, model.mm_2_b);
  568. }
  569. }
  570. // arrangement of the [IMG_BREAK] token
  571. if (model.token_embd_img_break) {
  572. // not efficient, but works
  573. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  574. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  575. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  576. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  577. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  578. const int p_total = p_x * p_y;
  579. const int n_embd_text = cur->ne[0];
  580. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  581. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  582. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  583. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  584. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  585. tmp = ggml_concat(ctx0, tmp, tok, 1);
  586. cur = ggml_view_2d(ctx0, tmp,
  587. n_embd_text, n_tokens_output,
  588. ggml_row_size(tmp->type, n_embd_text), 0);
  589. }
  590. // build the graph
  591. ggml_build_forward_expand(gf, cur);
  592. return gf;
  593. }
  594. // Qwen2VL and Qwen2.5VL use M-RoPE
  595. ggml_cgraph * build_qwen2vl() {
  596. GGML_ASSERT(model.patch_bias == nullptr);
  597. GGML_ASSERT(model.class_embedding == nullptr);
  598. const int batch_size = 1;
  599. const bool use_window_attn = hparams.n_wa_pattern > 0;
  600. const int n_wa_pattern = hparams.n_wa_pattern;
  601. const int n_pos = n_patches;
  602. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  603. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  604. ? NORM_TYPE_RMS // qwen 2.5 vl
  605. : NORM_TYPE_NORMAL; // qwen 2 vl
  606. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  607. ggml_tensor * inp_raw = build_inp_raw();
  608. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  609. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  610. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  611. // second conv dimension
  612. {
  613. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  614. inp = ggml_add(ctx0, inp, inp_1);
  615. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  616. inp = ggml_cont_4d(
  617. ctx0, inp,
  618. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  619. inp = ggml_reshape_4d(
  620. ctx0, inp,
  621. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  622. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  623. inp = ggml_cont_3d(
  624. ctx0, inp,
  625. n_embd, n_patches_x * n_patches_y, batch_size);
  626. }
  627. ggml_tensor * inpL = inp;
  628. ggml_tensor * window_mask = nullptr;
  629. ggml_tensor * window_idx = nullptr;
  630. ggml_tensor * inv_window_idx = nullptr;
  631. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  632. ggml_set_name(positions, "positions");
  633. ggml_set_input(positions);
  634. // pre-layernorm
  635. if (model.pre_ln_w) {
  636. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  637. }
  638. if (use_window_attn) {
  639. // handle window attention inputs
  640. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  641. ggml_set_name(inv_window_idx, "inv_window_idx");
  642. ggml_set_input(inv_window_idx);
  643. // mask for window attention
  644. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  645. ggml_set_name(window_mask, "window_mask");
  646. ggml_set_input(window_mask);
  647. // if flash attn is used, we need to pad the mask and cast to f16
  648. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  649. int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
  650. if (n_pad > 0) {
  651. window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
  652. }
  653. window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
  654. }
  655. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  656. GGML_ASSERT(batch_size == 1);
  657. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  658. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  659. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  660. }
  661. // loop over layers
  662. for (int il = 0; il < n_layer; il++) {
  663. auto & layer = model.layers[il];
  664. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  665. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  666. // layernorm1
  667. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  668. cb(cur, "ln1", il);
  669. // self-attention
  670. {
  671. ggml_tensor * Qcur = ggml_add(ctx0,
  672. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  673. ggml_tensor * Kcur = ggml_add(ctx0,
  674. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  675. ggml_tensor * Vcur = ggml_add(ctx0,
  676. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  677. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  678. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  679. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  680. cb(Qcur, "Qcur", il);
  681. cb(Kcur, "Kcur", il);
  682. cb(Vcur, "Vcur", il);
  683. // apply M-RoPE
  684. Qcur = ggml_rope_multi(
  685. ctx0, Qcur, positions, nullptr,
  686. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  687. Kcur = ggml_rope_multi(
  688. ctx0, Kcur, positions, nullptr,
  689. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  690. cb(Qcur, "Qcur_rope", il);
  691. cb(Kcur, "Kcur_rope", il);
  692. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  693. cur = build_attn(layer.o_w, layer.o_b,
  694. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  695. cb(cur, "attn_out", il);
  696. }
  697. // re-add the layer input, e.g., residual
  698. cur = ggml_add(ctx0, cur, inpL);
  699. inpL = cur; // inpL = residual, cur = hidden_states
  700. cb(cur, "ffn_inp", il);
  701. // layernorm2
  702. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  703. cb(cur, "ffn_inp_normed", il);
  704. // ffn
  705. cur = build_ffn(cur,
  706. layer.ff_up_w, layer.ff_up_b,
  707. layer.ff_gate_w, layer.ff_gate_b,
  708. layer.ff_down_w, layer.ff_down_b,
  709. hparams.ffn_op, il);
  710. cb(cur, "ffn_out", il);
  711. // residual 2
  712. cur = ggml_add(ctx0, inpL, cur);
  713. cb(cur, "layer_out", il);
  714. inpL = cur;
  715. }
  716. // post-layernorm
  717. if (model.post_ln_w) {
  718. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  719. }
  720. // multimodal projection
  721. ggml_tensor * embeddings = inpL;
  722. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  723. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  724. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  725. // GELU activation
  726. embeddings = ggml_gelu(ctx0, embeddings);
  727. // Second linear layer
  728. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  729. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  730. if (use_window_attn) {
  731. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  732. ggml_set_name(window_idx, "window_idx");
  733. ggml_set_input(window_idx);
  734. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  735. GGML_ASSERT(batch_size == 1);
  736. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  737. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  738. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  739. }
  740. // build the graph
  741. ggml_build_forward_expand(gf, embeddings);
  742. return gf;
  743. }
  744. // Qwen3VL
  745. ggml_cgraph * build_qwen3vl() {
  746. GGML_ASSERT(model.patch_bias != nullptr);
  747. GGML_ASSERT(model.position_embeddings != nullptr);
  748. GGML_ASSERT(model.class_embedding == nullptr);
  749. const int batch_size = 1;
  750. const int n_pos = n_patches;
  751. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  752. norm_type norm_t = NORM_TYPE_NORMAL;
  753. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  754. ggml_tensor * inp_raw = build_inp_raw();
  755. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  756. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  757. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  758. // second conv dimension
  759. {
  760. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  761. inp = ggml_add(ctx0, inp, inp_1);
  762. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  763. inp = ggml_cont_4d(
  764. ctx0, inp,
  765. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  766. inp = ggml_reshape_4d(
  767. ctx0, inp,
  768. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  769. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  770. inp = ggml_cont_3d(
  771. ctx0, inp,
  772. n_embd, n_patches_x * n_patches_y, batch_size);
  773. }
  774. // add patch bias
  775. if (model.patch_bias != nullptr) {
  776. inp = ggml_add(ctx0, inp, model.patch_bias);
  777. cb(inp, "patch_bias", -1);
  778. }
  779. // calculate absolute position embedding and apply
  780. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  781. learned_pos_embd = ggml_cont_4d(
  782. ctx0, learned_pos_embd,
  783. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  784. learned_pos_embd = ggml_reshape_4d(
  785. ctx0, learned_pos_embd,
  786. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  787. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  788. learned_pos_embd = ggml_cont_3d(
  789. ctx0, learned_pos_embd,
  790. n_embd, n_patches_x * n_patches_y, batch_size);
  791. inp = ggml_add(ctx0, inp, learned_pos_embd);
  792. cb(inp, "inp_pos_emb", -1);
  793. ggml_tensor * inpL = inp;
  794. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  795. ggml_set_name(positions, "positions");
  796. ggml_set_input(positions);
  797. // pre-layernorm
  798. if (model.pre_ln_w) {
  799. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  800. }
  801. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  802. ggml_tensor * deepstack_features = nullptr;
  803. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  804. // loop over layers
  805. for (int il = 0; il < n_layer; il++) {
  806. auto & layer = model.layers[il];
  807. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  808. // layernorm1
  809. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  810. cb(cur, "ln1", il);
  811. // self-attention
  812. {
  813. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  814. cur = ggml_add(ctx0, cur, layer.qkv_b);
  815. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  816. cur->nb[1], 0);
  817. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  818. cur->nb[1], n_embd * sizeof(float));
  819. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  820. cur->nb[1], 2 * n_embd * sizeof(float));
  821. cb(Qcur, "Qcur", il);
  822. cb(Kcur, "Kcur", il);
  823. cb(Vcur, "Vcur", il);
  824. // apply M-RoPE
  825. Qcur = ggml_rope_multi(
  826. ctx0, Qcur, positions, nullptr,
  827. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  828. Kcur = ggml_rope_multi(
  829. ctx0, Kcur, positions, nullptr,
  830. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  831. cb(Qcur, "Qcur_rope", il);
  832. cb(Kcur, "Kcur_rope", il);
  833. cur = build_attn(layer.o_w, layer.o_b,
  834. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  835. cb(cur, "attn_out", il);
  836. }
  837. // re-add the layer input, e.g., residual
  838. cur = ggml_add(ctx0, cur, inpL);
  839. inpL = cur; // inpL = residual, cur = hidden_states
  840. cb(cur, "ffn_inp", il);
  841. // layernorm2
  842. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  843. cb(cur, "ffn_inp_normed", il);
  844. // ffn
  845. cur = build_ffn(cur,
  846. layer.ff_up_w, layer.ff_up_b,
  847. layer.ff_gate_w, layer.ff_gate_b,
  848. layer.ff_down_w, layer.ff_down_b,
  849. hparams.ffn_op, il);
  850. cb(cur, "ffn_out", il);
  851. // residual 2
  852. cur = ggml_add(ctx0, inpL, cur);
  853. cb(cur, "layer_out", il);
  854. if (layer.has_deepstack()) {
  855. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  856. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  857. feat = build_ffn(feat,
  858. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  859. nullptr, nullptr,
  860. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  861. ffn_op_type::FFN_GELU, il);
  862. if(!deepstack_features) {
  863. deepstack_features = feat;
  864. } else {
  865. // concat along the feature dimension
  866. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  867. }
  868. }
  869. inpL = cur;
  870. }
  871. // post-layernorm
  872. if (model.post_ln_w) {
  873. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  874. }
  875. // multimodal projection
  876. ggml_tensor * embeddings = inpL;
  877. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  878. embeddings = build_ffn(embeddings,
  879. model.mm_0_w, model.mm_0_b,
  880. nullptr, nullptr,
  881. model.mm_1_w, model.mm_1_b,
  882. ffn_op_type::FFN_GELU, -1);
  883. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  884. // build the graph
  885. ggml_build_forward_expand(gf, embeddings);
  886. return gf;
  887. }
  888. ggml_cgraph * build_minicpmv() {
  889. GGML_ASSERT(model.class_embedding == nullptr);
  890. const int n_pos = n_patches;
  891. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  892. // position embeddings for the projector (not for ViT)
  893. // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
  894. // base frequency omega
  895. ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
  896. ggml_set_name(omega, "omega");
  897. ggml_set_input(omega);
  898. // 2D input positions (using float for sinusoidal embeddings)
  899. ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  900. ggml_set_name(pos_h, "pos_h");
  901. ggml_set_input(pos_h);
  902. ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  903. ggml_set_name(pos_w, "pos_w");
  904. ggml_set_input(pos_w);
  905. // for selecting learned pos embd, used by ViT
  906. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  907. ggml_set_name(positions, "positions");
  908. ggml_set_input(positions);
  909. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  910. ggml_tensor * inp = build_inp();
  911. ggml_tensor * embeddings = build_vit(
  912. inp, n_pos,
  913. NORM_TYPE_NORMAL,
  914. hparams.ffn_op,
  915. learned_pos_embd,
  916. nullptr);
  917. // resampler projector (it is just another transformer)
  918. ggml_tensor * q = model.mm_model_query;
  919. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  920. // norm
  921. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  922. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  923. // calculate sinusoidal pos embd
  924. ggml_tensor * pos_embed = nullptr;
  925. {
  926. // outer product
  927. ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
  928. ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
  929. ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
  930. // sin and cos
  931. ggml_tensor * pos_embd_x = ggml_concat(
  932. ctx0,
  933. ggml_sin(ctx0, theta_x),
  934. ggml_cos(ctx0, theta_x),
  935. 0 // concat on first dim
  936. );
  937. ggml_tensor * pos_embd_y = ggml_concat(
  938. ctx0,
  939. ggml_sin(ctx0, theta_y),
  940. ggml_cos(ctx0, theta_y),
  941. 0 // concat on first dim
  942. );
  943. pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
  944. }
  945. // k = v + pos_embed
  946. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  947. // attention
  948. {
  949. const int d_head = 128;
  950. int n_head = n_embd_proj/d_head;
  951. // Use actual config value if available, otherwise fall back to hardcoded values
  952. int num_query = ctx->model.hparams.minicpmv_query_num;
  953. ggml_tensor * Q = ggml_add(ctx0,
  954. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  955. model.mm_model_attn_q_b);
  956. ggml_tensor * K = ggml_add(ctx0,
  957. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  958. model.mm_model_attn_k_b);
  959. ggml_tensor * V = ggml_add(ctx0,
  960. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  961. model.mm_model_attn_v_b);
  962. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  963. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  964. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  965. cb(Q, "resampler_Q", -1);
  966. cb(K, "resampler_K", -1);
  967. cb(V, "resampler_V", -1);
  968. embeddings = build_attn(
  969. model.mm_model_attn_o_w,
  970. model.mm_model_attn_o_b,
  971. Q, K, V, nullptr, kq_scale, -1);
  972. cb(embeddings, "resampler_attn_out", -1);
  973. }
  974. // layernorm
  975. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  976. // projection
  977. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  978. // build the graph
  979. ggml_build_forward_expand(gf, embeddings);
  980. return gf;
  981. }
  982. ggml_cgraph * build_internvl() {
  983. GGML_ASSERT(model.class_embedding != nullptr);
  984. GGML_ASSERT(model.position_embeddings != nullptr);
  985. const int n_pos = n_patches + 1;
  986. ggml_tensor * inp = build_inp();
  987. // add CLS token
  988. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  989. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  990. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  991. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  992. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  993. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  994. ggml_tensor * cur = build_vit(
  995. inp, n_pos,
  996. norm_t,
  997. hparams.ffn_op,
  998. model.position_embeddings,
  999. nullptr);
  1000. // remove CLS token
  1001. cur = ggml_view_2d(ctx0, cur,
  1002. n_embd, n_patches,
  1003. ggml_row_size(cur->type, n_embd), 0);
  1004. // pixel shuffle
  1005. {
  1006. const int scale_factor = model.hparams.n_merge;
  1007. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1008. const int height = n_patches_y;
  1009. const int width = n_patches_x;
  1010. GGML_ASSERT(scale_factor > 0);
  1011. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  1012. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1013. cur = ggml_cont_4d(ctx0, cur,
  1014. n_embd * scale_factor * scale_factor,
  1015. height / scale_factor,
  1016. width / scale_factor,
  1017. bsz);
  1018. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1019. // flatten to 2D
  1020. cur = ggml_cont_2d(ctx0, cur,
  1021. n_embd * scale_factor * scale_factor,
  1022. cur->ne[1] * cur->ne[2]);
  1023. }
  1024. // projector (always using GELU activation)
  1025. {
  1026. // projector LayerNorm uses pytorch's default eps = 1e-5
  1027. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  1028. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1029. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1030. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1031. cur = ggml_gelu(ctx0, cur);
  1032. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  1033. cur = ggml_add(ctx0, cur, model.mm_3_b);
  1034. }
  1035. // build the graph
  1036. ggml_build_forward_expand(gf, cur);
  1037. return gf;
  1038. }
  1039. ggml_cgraph * build_llama4() {
  1040. GGML_ASSERT(model.class_embedding != nullptr);
  1041. GGML_ASSERT(model.position_embeddings != nullptr);
  1042. const int n_pos = n_patches + 1; // +1 for [CLS]
  1043. // 2D input positions
  1044. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1045. ggml_set_name(pos_h, "pos_h");
  1046. ggml_set_input(pos_h);
  1047. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1048. ggml_set_name(pos_w, "pos_w");
  1049. ggml_set_input(pos_w);
  1050. ggml_tensor * inp = build_inp_raw();
  1051. // Llama4UnfoldConvolution
  1052. {
  1053. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1054. patch_size, patch_size, 3, n_embd);
  1055. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1056. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1057. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1058. cb(inp, "patch_conv", -1);
  1059. }
  1060. // add CLS token
  1061. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1062. // build ViT with 2D position embeddings
  1063. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1064. // first half is X axis and second half is Y axis
  1065. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1066. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1067. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1068. };
  1069. ggml_tensor * cur = build_vit(
  1070. inp, n_pos,
  1071. NORM_TYPE_NORMAL,
  1072. hparams.ffn_op,
  1073. model.position_embeddings,
  1074. add_pos);
  1075. // remove CLS token
  1076. cur = ggml_view_2d(ctx0, cur,
  1077. n_embd, n_patches,
  1078. ggml_row_size(cur->type, n_embd), 0);
  1079. // pixel shuffle
  1080. // based on Llama4VisionPixelShuffleMLP
  1081. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1082. {
  1083. const int scale_factor = model.hparams.n_merge;
  1084. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1085. GGML_ASSERT(scale_factor > 0);
  1086. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1087. cur = ggml_reshape_4d(ctx0, cur,
  1088. n_embd * scale_factor,
  1089. n_patches_x / scale_factor,
  1090. n_patches_y,
  1091. bsz);
  1092. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1093. cur = ggml_cont_4d(ctx0, cur,
  1094. n_embd * scale_factor * scale_factor,
  1095. n_patches_x / scale_factor,
  1096. n_patches_y / scale_factor,
  1097. bsz);
  1098. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1099. // flatten to 2D
  1100. cur = ggml_cont_2d(ctx0, cur,
  1101. n_embd * scale_factor * scale_factor,
  1102. n_patches / scale_factor / scale_factor);
  1103. cb(cur, "pixel_shuffle", -1);
  1104. }
  1105. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1106. {
  1107. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1108. cur = ggml_gelu(ctx0, cur);
  1109. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1110. cur = ggml_gelu(ctx0, cur);
  1111. cb(cur, "adapter_mlp", -1);
  1112. }
  1113. // Llama4MultiModalProjector
  1114. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1115. cb(cur, "projected", -1);
  1116. // build the graph
  1117. ggml_build_forward_expand(gf, cur);
  1118. return gf;
  1119. }
  1120. ggml_cgraph * build_kimivl() {
  1121. // 2D input positions
  1122. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1123. ggml_set_name(pos_h, "pos_h");
  1124. ggml_set_input(pos_h);
  1125. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1126. ggml_set_name(pos_w, "pos_w");
  1127. ggml_set_input(pos_w);
  1128. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1129. // build ViT with 2D position embeddings
  1130. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1131. // first half is X axis and second half is Y axis
  1132. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1133. };
  1134. ggml_tensor * inp = build_inp();
  1135. ggml_tensor * cur = build_vit(
  1136. inp, n_patches,
  1137. NORM_TYPE_NORMAL,
  1138. hparams.ffn_op,
  1139. learned_pos_embd,
  1140. add_pos);
  1141. cb(cur, "vit_out", -1);
  1142. {
  1143. // patch_merger
  1144. const int scale_factor = model.hparams.n_merge;
  1145. cur = build_patch_merge_permute(cur, scale_factor);
  1146. // projection norm
  1147. int proj_inp_dim = cur->ne[0];
  1148. cur = ggml_view_2d(ctx0, cur,
  1149. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1150. ggml_row_size(cur->type, n_embd), 0);
  1151. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1152. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1153. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1154. cur = ggml_view_2d(ctx0, cur,
  1155. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1156. ggml_row_size(cur->type, proj_inp_dim), 0);
  1157. cb(cur, "proj_inp_normed", -1);
  1158. // projection mlp
  1159. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1160. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1161. cur = ggml_gelu(ctx0, cur);
  1162. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1163. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1164. cb(cur, "proj_out", -1);
  1165. }
  1166. // build the graph
  1167. ggml_build_forward_expand(gf, cur);
  1168. return gf;
  1169. }
  1170. // this graph is used by llava, granite and glm
  1171. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1172. ggml_cgraph * build_llava() {
  1173. const int batch_size = 1;
  1174. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1175. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1176. // Calculate the deepest feature layer based on hparams and projector type
  1177. int max_feature_layer = n_layer;
  1178. {
  1179. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1180. int il_last = hparams.n_layer - 1;
  1181. int deepest_feature_layer = -1;
  1182. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1183. il_last += 1;
  1184. }
  1185. // If we set explicit vision feature layers, only go up to the deepest one
  1186. // NOTE: only used by granite-vision models for now
  1187. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1188. if (feature_layer > deepest_feature_layer) {
  1189. deepest_feature_layer = feature_layer;
  1190. }
  1191. }
  1192. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1193. }
  1194. ggml_tensor * inp = build_inp();
  1195. // concat class_embeddings and patch_embeddings
  1196. if (model.class_embedding) {
  1197. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1198. }
  1199. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1200. ggml_set_name(positions, "positions");
  1201. ggml_set_input(positions);
  1202. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1203. ggml_tensor * inpL = inp;
  1204. // pre-layernorm
  1205. if (model.pre_ln_w) {
  1206. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1207. cb(inpL, "pre_ln", -1);
  1208. }
  1209. std::vector<ggml_tensor *> embedding_stack;
  1210. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1211. // loop over layers
  1212. for (int il = 0; il < max_feature_layer; il++) {
  1213. auto & layer = model.layers[il];
  1214. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1215. // If this is an embedding feature layer, save the output.
  1216. // NOTE: 0 index here refers to the input to the encoder.
  1217. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1218. embedding_stack.push_back(cur);
  1219. }
  1220. // layernorm1
  1221. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1222. cb(cur, "layer_inp_normed", il);
  1223. // self-attention
  1224. {
  1225. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1226. if (layer.q_b) {
  1227. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1228. }
  1229. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1230. if (layer.k_b) {
  1231. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1232. }
  1233. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1234. if (layer.v_b) {
  1235. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1236. }
  1237. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1238. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1239. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1240. cb(Qcur, "Qcur", il);
  1241. cb(Kcur, "Kcur", il);
  1242. cb(Vcur, "Vcur", il);
  1243. cur = build_attn(layer.o_w, layer.o_b,
  1244. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1245. cb(cur, "attn_out", il);
  1246. }
  1247. // re-add the layer input, e.g., residual
  1248. cur = ggml_add(ctx0, cur, inpL);
  1249. inpL = cur; // inpL = residual, cur = hidden_states
  1250. cb(cur, "ffn_inp", il);
  1251. // layernorm2
  1252. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1253. cb(cur, "ffn_inp_normed", il);
  1254. // ffn
  1255. cur = build_ffn(cur,
  1256. layer.ff_up_w, layer.ff_up_b,
  1257. layer.ff_gate_w, layer.ff_gate_b,
  1258. layer.ff_down_w, layer.ff_down_b,
  1259. hparams.ffn_op, il);
  1260. cb(cur, "ffn_out", il);
  1261. // residual 2
  1262. cur = ggml_add(ctx0, inpL, cur);
  1263. cb(cur, "layer_out", il);
  1264. inpL = cur;
  1265. }
  1266. // post-layernorm
  1267. if (model.post_ln_w) {
  1268. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1269. }
  1270. ggml_tensor * embeddings = inpL;
  1271. // process vision feature layers (used by granite)
  1272. {
  1273. // final layer is a vision feature layer
  1274. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1275. embedding_stack.push_back(inpL);
  1276. }
  1277. // If feature layers are explicitly set, stack them (if we have multiple)
  1278. if (!embedding_stack.empty()) {
  1279. embeddings = embedding_stack[0];
  1280. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1281. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1282. }
  1283. }
  1284. }
  1285. // llava projector (also used by granite)
  1286. if (ctx->model.hparams.has_llava_projector) {
  1287. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1288. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1289. ggml_set_name(patches, "patches");
  1290. ggml_set_input(patches);
  1291. // shape [1, 576, 1024]
  1292. // ne is whcn, ne = [1024, 576, 1, 1]
  1293. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1294. // print_tensor_info(embeddings, "embeddings");
  1295. // llava projector
  1296. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1297. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1298. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1299. embeddings = ggml_gelu(ctx0, embeddings);
  1300. if (model.mm_2_w) {
  1301. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1302. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1303. }
  1304. }
  1305. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1306. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1307. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1308. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1309. // First LayerNorm
  1310. embeddings = ggml_norm(ctx0, embeddings, eps);
  1311. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1312. model.mm_1_b);
  1313. // GELU activation
  1314. embeddings = ggml_gelu(ctx0, embeddings);
  1315. // Second linear layer
  1316. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1317. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1318. // Second LayerNorm
  1319. embeddings = ggml_norm(ctx0, embeddings, eps);
  1320. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1321. model.mm_4_b);
  1322. }
  1323. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1324. // MobileVLM projector
  1325. int n_patch = 24;
  1326. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1327. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1328. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1329. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1330. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1331. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1332. // block 1
  1333. ggml_tensor * block_1 = nullptr;
  1334. {
  1335. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1336. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1337. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1338. // stride = 1, padding = 1, bias is nullptr
  1339. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1340. // layer norm
  1341. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1342. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1343. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1344. block_1 = ggml_norm(ctx0, block_1, eps);
  1345. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1346. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1347. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1348. // hardswish
  1349. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1350. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1351. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1352. // pointwise conv
  1353. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1354. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1355. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1356. block_1 = ggml_relu(ctx0, block_1);
  1357. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1358. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1359. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1360. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1361. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1362. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1363. int w = block_1->ne[0], h = block_1->ne[1];
  1364. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1365. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1366. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1367. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1368. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1369. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1370. block_1 = ggml_norm(ctx0, block_1, eps);
  1371. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1372. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1373. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1374. // residual
  1375. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1376. }
  1377. // block_2
  1378. {
  1379. // stride = 2
  1380. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1381. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1382. // layer norm
  1383. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1384. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1385. block_1 = ggml_norm(ctx0, block_1, eps);
  1386. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1387. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1388. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1389. // hardswish
  1390. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1391. // not sure the parameters is right for globalAvgPooling
  1392. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1393. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1394. // pointwise conv
  1395. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1396. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1397. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1398. block_1 = ggml_relu(ctx0, block_1);
  1399. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1400. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1401. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1402. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1403. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1404. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1405. int w = block_1->ne[0], h = block_1->ne[1];
  1406. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1407. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1408. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1409. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1410. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1411. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1412. block_1 = ggml_norm(ctx0, block_1, eps);
  1413. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1414. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1415. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1416. }
  1417. embeddings = block_1;
  1418. }
  1419. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1420. {
  1421. int n_patch = 24;
  1422. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1423. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1424. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1425. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1426. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1427. // mlp_2 ne = [2048, 576, 1, 1]
  1428. // // AVG Pool Layer 2*2, strides = 2
  1429. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1430. // mlp_2 ne = [576, 2048, 1, 1]
  1431. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1432. // mlp_2 ne [24, 24, 2048, 1]
  1433. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1434. // weight ne = [3, 3, 2048, 1]
  1435. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1436. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1437. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1438. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1439. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1440. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1441. embeddings = peg_0;
  1442. }
  1443. else {
  1444. GGML_ABORT("fatal error");
  1445. }
  1446. }
  1447. // glm projector
  1448. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1449. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1450. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1451. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1452. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1453. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1454. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1455. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1456. // GLU
  1457. {
  1458. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1459. embeddings = ggml_norm(ctx0, embeddings, eps);
  1460. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1461. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1462. ggml_tensor * x = embeddings;
  1463. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1464. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1465. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1466. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1467. }
  1468. // arrangement of BOI/EOI token embeddings
  1469. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1470. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1471. {
  1472. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1473. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1474. }
  1475. }
  1476. else {
  1477. GGML_ABORT("llava: unknown projector type");
  1478. }
  1479. // build the graph
  1480. ggml_build_forward_expand(gf, embeddings);
  1481. return gf;
  1482. }
  1483. // whisper encoder with custom projector
  1484. ggml_cgraph * build_whisper_enc() {
  1485. const int n_frames = img.nx;
  1486. const int n_pos = n_frames / 2;
  1487. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1488. ggml_tensor * inp = build_inp_raw(1);
  1489. // conv1d block
  1490. {
  1491. // convolution + gelu
  1492. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1493. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1494. cur = ggml_gelu_erf(ctx0, cur);
  1495. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1496. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1497. cur = ggml_gelu_erf(ctx0, cur);
  1498. // transpose
  1499. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1500. cb(inp, "after_conv1d", -1);
  1501. }
  1502. // sanity check (only check one layer, but it should be the same for all)
  1503. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1504. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1505. GGML_ASSERT(model.layers[0].q_b);
  1506. GGML_ASSERT(model.layers[0].v_b);
  1507. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1508. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1509. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1510. ctx0, model.position_embeddings,
  1511. model.position_embeddings->ne[0], n_pos,
  1512. model.position_embeddings->nb[1], 0
  1513. );
  1514. ggml_tensor * cur = build_vit(
  1515. inp, n_pos,
  1516. NORM_TYPE_NORMAL,
  1517. hparams.ffn_op,
  1518. pos_embd_selected,
  1519. nullptr);
  1520. cb(cur, "after_transformer", -1);
  1521. if (model.audio_has_stack_frames()) {
  1522. // StackAudioFrames
  1523. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1524. int64_t stride = n_embd * hparams.proj_stack_factor;
  1525. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1526. int64_t pad = padded_len - ggml_nelements(cur);
  1527. if (pad > 0) {
  1528. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1529. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1530. }
  1531. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1532. ggml_row_size(cur->type, stride), 0);
  1533. cb(cur, "after_stacked", -1);
  1534. }
  1535. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1536. // UltravoxProjector
  1537. // pre-norm
  1538. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1539. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1540. // ffn in
  1541. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1542. // swiglu
  1543. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1544. cur = ggml_swiglu_swapped(ctx0, cur);
  1545. // mid-norm
  1546. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1547. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1548. // ffn out
  1549. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1550. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1551. // projector
  1552. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1553. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1554. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1555. // projector
  1556. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1557. cur = ggml_gelu_erf(ctx0, cur);
  1558. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1559. } else {
  1560. GGML_ABORT("%s: unknown projector type", __func__);
  1561. }
  1562. cb(cur, "projected", -1);
  1563. ggml_build_forward_expand(gf, cur);
  1564. return gf;
  1565. }
  1566. // cogvlm vision encoder
  1567. ggml_cgraph * build_cogvlm() {
  1568. GGML_ASSERT(model.class_embedding != nullptr);
  1569. GGML_ASSERT(model.position_embeddings != nullptr);
  1570. const int n_pos = n_patches + 1; // +1 for [CLS]
  1571. // build input and concatenate class embedding
  1572. ggml_tensor * inp = build_inp();
  1573. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1574. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1575. cb(inp, "inp_pos", -1);
  1576. ggml_tensor * inpL = inp;
  1577. for (int il = 0; il < n_layer; il++) {
  1578. auto & layer = model.layers[il];
  1579. ggml_tensor * cur = inpL;
  1580. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1581. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1582. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1583. cur->nb[1], 0);
  1584. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1585. cur->nb[1], n_embd * sizeof(float));
  1586. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1587. cur->nb[1], 2 * n_embd * sizeof(float));
  1588. cb(Qcur, "Qcur", il);
  1589. cb(Kcur, "Kcur", il);
  1590. cb(Vcur, "Vcur", il);
  1591. cur = build_attn(layer.o_w, layer.o_b,
  1592. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1593. cb(cur, "attn_out", il);
  1594. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1595. cb(cur, "attn_post_norm", il);
  1596. cur = ggml_add(ctx0, cur, inpL);
  1597. inpL = cur;
  1598. cur = build_ffn(cur,
  1599. layer.ff_up_w, layer.ff_up_b,
  1600. layer.ff_gate_w, layer.ff_gate_b,
  1601. layer.ff_down_w, layer.ff_down_b,
  1602. hparams.ffn_op, il);
  1603. cb(cur, "ffn_out", il);
  1604. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1605. cb(cur, "ffn_post_norm", il);
  1606. cur = ggml_add(ctx0, cur, inpL);
  1607. cb(cur, "layer_out", il);
  1608. inpL = cur;
  1609. }
  1610. // remove CLS token (like build_llama4 does)
  1611. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1612. n_embd, n_patches,
  1613. ggml_row_size(inpL->type, n_embd), 0);
  1614. // Multiply with mm_model_proj
  1615. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1616. // Apply layernorm, weight, bias
  1617. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1618. // Apply GELU
  1619. cur = ggml_gelu_inplace(ctx0, cur);
  1620. // Branch 1: multiply with mm_h_to_4h_w
  1621. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1622. // Branch 2: multiply with mm_gate_w
  1623. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1624. // Apply silu
  1625. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1626. // Apply mm_4h_to_h_w
  1627. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1628. // Concatenate with boi and eoi
  1629. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1630. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1631. // build the graph
  1632. ggml_build_forward_expand(gf, cur);
  1633. return gf;
  1634. }
  1635. private:
  1636. //
  1637. // utility functions
  1638. //
  1639. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1640. if (ctx->debug_graph) {
  1641. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1642. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1643. ggml_set_name(cur, cur_name.c_str());
  1644. ggml_set_output(cur);
  1645. ggml_build_forward_expand(gf, cur);
  1646. ctx->debug_print_tensors.push_back(cur);
  1647. }
  1648. }
  1649. // siglip2 naflex
  1650. ggml_tensor * resize_position_embeddings() {
  1651. ggml_tensor * pos_embd = model.position_embeddings;
  1652. const int height = img.ny / patch_size;
  1653. const int width = img.nx / patch_size;
  1654. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1655. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1656. GGML_ASSERT(pos_embd);
  1657. if (height == n_per_side && width == n_per_side) {
  1658. return pos_embd;
  1659. }
  1660. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1661. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1662. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1663. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1664. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1665. return pos_embd;
  1666. }
  1667. // build vision transformer (ViT) cgraph
  1668. // this function should cover most of the models
  1669. // if your model has specific features, you should probably duplicate this function
  1670. ggml_tensor * build_vit(
  1671. ggml_tensor * inp,
  1672. int64_t n_pos,
  1673. norm_type norm_t,
  1674. ffn_op_type ffn_t,
  1675. ggml_tensor * learned_pos_embd,
  1676. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1677. ) {
  1678. if (learned_pos_embd) {
  1679. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1680. cb(inp, "pos_embed", -1);
  1681. }
  1682. ggml_tensor * inpL = inp;
  1683. // pre-layernorm
  1684. if (model.pre_ln_w) {
  1685. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1686. cb(inpL, "pre_ln", -1);
  1687. }
  1688. // loop over layers
  1689. for (int il = 0; il < n_layer; il++) {
  1690. auto & layer = model.layers[il];
  1691. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1692. // layernorm1
  1693. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1694. cb(cur, "layer_inp_normed", il);
  1695. // self-attention
  1696. {
  1697. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1698. if (layer.q_b) {
  1699. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1700. }
  1701. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1702. if (layer.k_b) {
  1703. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1704. }
  1705. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1706. if (layer.v_b) {
  1707. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1708. }
  1709. if (layer.q_norm) {
  1710. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1711. cb(Qcur, "Qcur_norm", il);
  1712. }
  1713. if (layer.k_norm) {
  1714. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1715. cb(Kcur, "Kcur_norm", il);
  1716. }
  1717. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1718. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1719. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1720. cb(Qcur, "Qcur", il);
  1721. cb(Kcur, "Kcur", il);
  1722. cb(Vcur, "Vcur", il);
  1723. if (add_pos) {
  1724. Qcur = add_pos(Qcur, layer);
  1725. Kcur = add_pos(Kcur, layer);
  1726. cb(Qcur, "Qcur_pos", il);
  1727. cb(Kcur, "Kcur_pos", il);
  1728. }
  1729. cur = build_attn(layer.o_w, layer.o_b,
  1730. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1731. cb(cur, "attn_out", il);
  1732. }
  1733. if (layer.ls_1_w) {
  1734. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1735. cb(cur, "attn_out_scaled", il);
  1736. }
  1737. // re-add the layer input, e.g., residual
  1738. cur = ggml_add(ctx0, cur, inpL);
  1739. inpL = cur; // inpL = residual, cur = hidden_states
  1740. cb(cur, "ffn_inp", il);
  1741. // layernorm2
  1742. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1743. cb(cur, "ffn_inp_normed", il);
  1744. // ffn
  1745. cur = build_ffn(cur,
  1746. layer.ff_up_w, layer.ff_up_b,
  1747. layer.ff_gate_w, layer.ff_gate_b,
  1748. layer.ff_down_w, layer.ff_down_b,
  1749. ffn_t, il);
  1750. cb(cur, "ffn_out", il);
  1751. if (layer.ls_2_w) {
  1752. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1753. cb(cur, "ffn_out_scaled", il);
  1754. }
  1755. // residual 2
  1756. cur = ggml_add(ctx0, inpL, cur);
  1757. cb(cur, "layer_out", il);
  1758. inpL = cur;
  1759. }
  1760. if (ctx->model.audio_has_avgpool()) {
  1761. ggml_tensor * cur = inpL;
  1762. cur = ggml_transpose(ctx0, cur);
  1763. cur = ggml_cont(ctx0, cur);
  1764. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1765. cur = ggml_transpose(ctx0, cur);
  1766. cur = ggml_cont(ctx0, cur);
  1767. inpL = cur;
  1768. }
  1769. // post-layernorm
  1770. if (model.post_ln_w) {
  1771. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1772. }
  1773. return inpL;
  1774. }
  1775. // build the input after conv2d (inp_raw --> patches)
  1776. // returns tensor with shape [n_embd, n_patches]
  1777. ggml_tensor * build_inp() {
  1778. ggml_tensor * inp_raw = build_inp_raw();
  1779. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1780. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1781. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1782. if (model.patch_bias) {
  1783. inp = ggml_add(ctx0, inp, model.patch_bias);
  1784. cb(inp, "patch_bias", -1);
  1785. }
  1786. return inp;
  1787. }
  1788. ggml_tensor * build_inp_raw(int channels = 3) {
  1789. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1790. ggml_set_name(inp_raw, "inp_raw");
  1791. ggml_set_input(inp_raw);
  1792. return inp_raw;
  1793. }
  1794. ggml_tensor * build_norm(
  1795. ggml_tensor * cur,
  1796. ggml_tensor * mw,
  1797. ggml_tensor * mb,
  1798. norm_type type,
  1799. float norm_eps,
  1800. int il) const {
  1801. cur = type == NORM_TYPE_RMS
  1802. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1803. : ggml_norm(ctx0, cur, norm_eps);
  1804. if (mw || mb) {
  1805. cb(cur, "norm", il);
  1806. }
  1807. if (mw) {
  1808. cur = ggml_mul(ctx0, cur, mw);
  1809. if (mb) {
  1810. cb(cur, "norm_w", il);
  1811. }
  1812. }
  1813. if (mb) {
  1814. cur = ggml_add(ctx0, cur, mb);
  1815. }
  1816. return cur;
  1817. }
  1818. ggml_tensor * build_ffn(
  1819. ggml_tensor * cur,
  1820. ggml_tensor * up,
  1821. ggml_tensor * up_b,
  1822. ggml_tensor * gate,
  1823. ggml_tensor * gate_b,
  1824. ggml_tensor * down,
  1825. ggml_tensor * down_b,
  1826. ffn_op_type type_op,
  1827. int il) const {
  1828. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1829. cb(tmp, "ffn_up", il);
  1830. if (up_b) {
  1831. tmp = ggml_add(ctx0, tmp, up_b);
  1832. cb(tmp, "ffn_up_b", il);
  1833. }
  1834. if (gate) {
  1835. cur = ggml_mul_mat(ctx0, gate, cur);
  1836. cb(cur, "ffn_gate", il);
  1837. if (gate_b) {
  1838. cur = ggml_add(ctx0, cur, gate_b);
  1839. cb(cur, "ffn_gate_b", il);
  1840. }
  1841. } else {
  1842. cur = tmp;
  1843. }
  1844. // we only support parallel ffn for now
  1845. switch (type_op) {
  1846. case FFN_SILU:
  1847. if (gate) {
  1848. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1849. cb(cur, "ffn_swiglu", il);
  1850. } else {
  1851. cur = ggml_silu(ctx0, cur);
  1852. cb(cur, "ffn_silu", il);
  1853. } break;
  1854. case FFN_GELU:
  1855. if (gate) {
  1856. cur = ggml_geglu_split(ctx0, cur, tmp);
  1857. cb(cur, "ffn_geglu", il);
  1858. } else {
  1859. cur = ggml_gelu(ctx0, cur);
  1860. cb(cur, "ffn_gelu", il);
  1861. } break;
  1862. case FFN_GELU_ERF:
  1863. if (gate) {
  1864. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1865. cb(cur, "ffn_geglu_erf", il);
  1866. } else {
  1867. cur = ggml_gelu_erf(ctx0, cur);
  1868. cb(cur, "ffn_gelu_erf", il);
  1869. } break;
  1870. case FFN_GELU_QUICK:
  1871. if (gate) {
  1872. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1873. cb(cur, "ffn_geglu_quick", il);
  1874. } else {
  1875. cur = ggml_gelu_quick(ctx0, cur);
  1876. cb(cur, "ffn_gelu_quick", il);
  1877. } break;
  1878. }
  1879. if (down) {
  1880. cur = ggml_mul_mat(ctx0, down, cur);
  1881. }
  1882. if (down_b) {
  1883. cb(cur, "ffn_down", il);
  1884. }
  1885. if (down_b) {
  1886. cur = ggml_add(ctx0, cur, down_b);
  1887. }
  1888. return cur;
  1889. }
  1890. ggml_tensor * build_attn(
  1891. ggml_tensor * wo,
  1892. ggml_tensor * wo_b,
  1893. ggml_tensor * q_cur,
  1894. ggml_tensor * k_cur,
  1895. ggml_tensor * v_cur,
  1896. ggml_tensor * kq_mask,
  1897. float kq_scale,
  1898. int il) const {
  1899. // these nodes are added to the graph together so that they are not reordered
  1900. // by doing so, the number of splits in the graph is reduced
  1901. ggml_build_forward_expand(gf, q_cur);
  1902. ggml_build_forward_expand(gf, k_cur);
  1903. ggml_build_forward_expand(gf, v_cur);
  1904. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1905. //cb(q, "q", il);
  1906. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1907. //cb(k, "k", il);
  1908. ggml_tensor * cur;
  1909. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1910. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1911. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1912. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1913. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  1914. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  1915. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1916. } else {
  1917. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1918. v = ggml_cont(ctx0, v);
  1919. const auto n_tokens = q->ne[1];
  1920. const auto n_head = q->ne[2];
  1921. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1922. // F32 may not needed for vision encoders?
  1923. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1924. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1925. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1926. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1927. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1928. }
  1929. cb(cur, "kqv_out", il);
  1930. if (wo) {
  1931. cur = ggml_mul_mat(ctx0, wo, cur);
  1932. }
  1933. if (wo_b) {
  1934. cur = ggml_add(ctx0, cur, wo_b);
  1935. }
  1936. return cur;
  1937. }
  1938. // implementation of the 2D RoPE without adding a new op in ggml
  1939. // this is not efficient (use double the memory), but works on all backends
  1940. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1941. static ggml_tensor * build_rope_2d(
  1942. ggml_context * ctx0,
  1943. ggml_tensor * cur,
  1944. ggml_tensor * pos_a, // first half
  1945. ggml_tensor * pos_b, // second half
  1946. const float freq_base,
  1947. const bool interleave_freq
  1948. ) {
  1949. const int64_t n_dim = cur->ne[0];
  1950. const int64_t n_head = cur->ne[1];
  1951. const int64_t n_pos = cur->ne[2];
  1952. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1953. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1954. // first half of cur will use 1e-0, 1e-2 (even)
  1955. // second half of cur will use 1e-1, 1e-3 (odd)
  1956. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1957. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1958. // then for the second half, we use freq_scale to shift the inv_freq
  1959. // ^ why? replace (2i) with (2i+1) in the above equation
  1960. const float freq_scale_odd = interleave_freq
  1961. ? std::pow(freq_base, (float)-2/n_dim)
  1962. : 1.0;
  1963. // first half
  1964. ggml_tensor * first;
  1965. {
  1966. first = ggml_view_3d(ctx0, cur,
  1967. n_dim/2, n_head, n_pos,
  1968. ggml_row_size(cur->type, n_dim),
  1969. ggml_row_size(cur->type, n_dim*n_head),
  1970. 0);
  1971. first = ggml_rope_ext(
  1972. ctx0,
  1973. first,
  1974. pos_a, // positions
  1975. nullptr, // freq factors
  1976. n_dim/2, // n_dims
  1977. 0, 0, freq_base,
  1978. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1979. );
  1980. }
  1981. // second half
  1982. ggml_tensor * second;
  1983. {
  1984. second = ggml_view_3d(ctx0, cur,
  1985. n_dim/2, n_head, n_pos,
  1986. ggml_row_size(cur->type, n_dim),
  1987. ggml_row_size(cur->type, n_dim*n_head),
  1988. n_dim/2 * ggml_element_size(cur));
  1989. second = ggml_rope_ext(
  1990. ctx0,
  1991. second,
  1992. pos_b, // positions
  1993. nullptr, // freq factors
  1994. n_dim/2, // n_dims
  1995. 0, 0, freq_base,
  1996. freq_scale_odd,
  1997. 0.0f, 1.0f, 0.0f, 0.0f
  1998. );
  1999. }
  2000. cur = ggml_concat(ctx0, first, second, 0);
  2001. return cur;
  2002. }
  2003. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  2004. // support dynamic resolution
  2005. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  2006. GGML_ASSERT(scale_factor > 1);
  2007. const int n_embd = cur->ne[0];
  2008. int width = img.nx / patch_size;
  2009. int height = img.ny / patch_size;
  2010. // pad width and height to factor
  2011. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  2012. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  2013. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  2014. if (pad_width || pad_height) {
  2015. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  2016. width += pad_width;
  2017. height += pad_height;
  2018. }
  2019. // unshuffle h
  2020. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  2021. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2022. // unshuffle w
  2023. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  2024. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2025. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  2026. cb(cur, "pixel_shuffle", -1);
  2027. return cur;
  2028. }
  2029. };
  2030. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  2031. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  2032. clip_graph graph(ctx, *imgs.entries[0]);
  2033. ggml_cgraph * res;
  2034. switch (ctx->proj_type()) {
  2035. case PROJECTOR_TYPE_GEMMA3:
  2036. case PROJECTOR_TYPE_IDEFICS3:
  2037. case PROJECTOR_TYPE_LFM2:
  2038. {
  2039. res = graph.build_siglip();
  2040. } break;
  2041. case PROJECTOR_TYPE_PIXTRAL:
  2042. case PROJECTOR_TYPE_LIGHTONOCR:
  2043. {
  2044. res = graph.build_pixtral();
  2045. } break;
  2046. case PROJECTOR_TYPE_QWEN2VL:
  2047. case PROJECTOR_TYPE_QWEN25VL:
  2048. {
  2049. res = graph.build_qwen2vl();
  2050. } break;
  2051. case PROJECTOR_TYPE_QWEN3VL:
  2052. {
  2053. res = graph.build_qwen3vl();
  2054. } break;
  2055. case PROJECTOR_TYPE_MINICPMV:
  2056. {
  2057. res = graph.build_minicpmv();
  2058. } break;
  2059. case PROJECTOR_TYPE_INTERNVL:
  2060. {
  2061. res = graph.build_internvl();
  2062. } break;
  2063. case PROJECTOR_TYPE_LLAMA4:
  2064. {
  2065. res = graph.build_llama4();
  2066. } break;
  2067. case PROJECTOR_TYPE_ULTRAVOX:
  2068. case PROJECTOR_TYPE_VOXTRAL:
  2069. case PROJECTOR_TYPE_QWEN2A:
  2070. {
  2071. res = graph.build_whisper_enc();
  2072. } break;
  2073. case PROJECTOR_TYPE_KIMIVL:
  2074. {
  2075. res = graph.build_kimivl();
  2076. } break;
  2077. case PROJECTOR_TYPE_JANUS_PRO:
  2078. {
  2079. res = graph.build_siglip();
  2080. } break;
  2081. case PROJECTOR_TYPE_COGVLM:
  2082. {
  2083. res = graph.build_cogvlm();
  2084. } break;
  2085. default:
  2086. {
  2087. res = graph.build_llava();
  2088. } break;
  2089. }
  2090. return res;
  2091. }
  2092. struct clip_model_loader {
  2093. ggml_context_ptr ctx_meta;
  2094. gguf_context_ptr ctx_gguf;
  2095. std::string fname;
  2096. size_t model_size = 0; // in bytes
  2097. bool has_vision = false;
  2098. bool has_audio = false;
  2099. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2100. clip_model_loader(const char * fname) : fname(fname) {
  2101. struct ggml_context * meta = nullptr;
  2102. struct gguf_init_params params = {
  2103. /*.no_alloc = */ true,
  2104. /*.ctx = */ &meta,
  2105. };
  2106. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2107. if (!ctx_gguf.get()) {
  2108. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2109. }
  2110. ctx_meta.reset(meta);
  2111. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2112. // print gguf info
  2113. {
  2114. std::string name;
  2115. get_string(KEY_NAME, name, false);
  2116. std::string description;
  2117. get_string(KEY_DESCRIPTION, description, false);
  2118. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2119. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2120. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2121. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2122. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2123. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2124. LOG_INF("\n");
  2125. }
  2126. // modalities
  2127. {
  2128. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2129. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2130. if (has_vision) {
  2131. LOG_INF("%s: has vision encoder\n", __func__);
  2132. }
  2133. if (has_audio) {
  2134. LOG_INF("%s: has audio encoder\n", __func__);
  2135. }
  2136. }
  2137. // tensors
  2138. {
  2139. for (int i = 0; i < n_tensors; ++i) {
  2140. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2141. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2142. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2143. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2144. size_t tensor_size = ggml_nbytes(cur);
  2145. model_size += tensor_size;
  2146. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2147. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2148. }
  2149. }
  2150. }
  2151. void load_hparams(clip_model & model, clip_modality modality) {
  2152. auto & hparams = model.hparams;
  2153. std::string log_ffn_op; // for logging
  2154. // sanity check
  2155. if (modality == CLIP_MODALITY_VISION) {
  2156. GGML_ASSERT(has_vision);
  2157. } else if (modality == CLIP_MODALITY_AUDIO) {
  2158. GGML_ASSERT(has_audio);
  2159. }
  2160. model.modality = modality;
  2161. // projector type
  2162. std::string proj_type;
  2163. {
  2164. // default key
  2165. get_string(KEY_PROJ_TYPE, proj_type, false);
  2166. // for models with mixed modalities
  2167. if (proj_type.empty()) {
  2168. if (modality == CLIP_MODALITY_VISION) {
  2169. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2170. } else if (modality == CLIP_MODALITY_AUDIO) {
  2171. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2172. } else {
  2173. GGML_ABORT("unknown modality");
  2174. }
  2175. }
  2176. model.proj_type = clip_projector_type_from_string(proj_type);
  2177. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2178. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2179. }
  2180. // correct arch for multimodal models (legacy method)
  2181. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2182. model.proj_type = modality == CLIP_MODALITY_VISION
  2183. ? PROJECTOR_TYPE_QWEN25VL
  2184. : PROJECTOR_TYPE_QWEN2A;
  2185. }
  2186. }
  2187. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2188. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2189. // other hparams
  2190. {
  2191. const char * prefix = is_vision ? "vision" : "audio";
  2192. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2193. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2194. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2195. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2196. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2197. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2198. if (is_vision) {
  2199. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2200. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2201. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2202. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2203. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2204. if (hparams.minicpmv_query_num == 0) {
  2205. // Fallback to hardcoded values for legacy models
  2206. if (hparams.minicpmv_version == 3) {
  2207. hparams.minicpmv_query_num = 64;
  2208. } else if (hparams.minicpmv_version == 4) {
  2209. hparams.minicpmv_query_num = 64;
  2210. } else if (hparams.minicpmv_version == 5) {
  2211. hparams.minicpmv_query_num = 64;
  2212. } else if (hparams.minicpmv_version == 6) {
  2213. hparams.minicpmv_query_num = 64;
  2214. } else {
  2215. hparams.minicpmv_query_num = 96;
  2216. }
  2217. }
  2218. } else if (is_audio) {
  2219. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2220. // some hparams are unused, but still need to set to avoid issues
  2221. hparams.image_size = 0;
  2222. hparams.patch_size = 1;
  2223. } else {
  2224. GGML_ASSERT(false && "unknown modality");
  2225. }
  2226. // for pinpoints, we need to convert it into a list of resolution candidates
  2227. {
  2228. std::vector<int> pinpoints;
  2229. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2230. if (!pinpoints.empty()) {
  2231. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2232. hparams.image_res_candidates.push_back({
  2233. pinpoints[i],
  2234. pinpoints[i+1],
  2235. });
  2236. }
  2237. }
  2238. }
  2239. // default warmup value
  2240. hparams.warmup_image_size = hparams.image_size;
  2241. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2242. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2243. || model.proj_type == PROJECTOR_TYPE_LDP
  2244. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2245. {
  2246. bool use_gelu = false;
  2247. bool use_silu = false;
  2248. get_bool(KEY_USE_GELU, use_gelu, false);
  2249. get_bool(KEY_USE_SILU, use_silu, false);
  2250. if (use_gelu && use_silu) {
  2251. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2252. }
  2253. if (use_gelu) {
  2254. hparams.ffn_op = FFN_GELU;
  2255. log_ffn_op = "gelu";
  2256. } else if (use_silu) {
  2257. hparams.ffn_op = FFN_SILU;
  2258. log_ffn_op = "silu";
  2259. } else {
  2260. hparams.ffn_op = FFN_GELU_QUICK;
  2261. log_ffn_op = "gelu_quick";
  2262. }
  2263. }
  2264. {
  2265. std::string mm_patch_merge_type;
  2266. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2267. if (mm_patch_merge_type == "spatial_unpad") {
  2268. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2269. }
  2270. }
  2271. if (is_vision) {
  2272. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2273. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2274. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2275. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2276. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2277. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2278. for (int i = 0; i < 3; ++i) {
  2279. hparams.image_mean[i] = mean_data[i];
  2280. hparams.image_std[i] = std_data[i];
  2281. }
  2282. }
  2283. // Load the vision feature layer indices if they are explicitly provided;
  2284. // if multiple vision feature layers are present, the values will be concatenated
  2285. // to form the final visual features.
  2286. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2287. // be non-negative, since we use -1 to mark values as unset here.
  2288. std::vector<int> vision_feature_layer;
  2289. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2290. // convert std::vector to std::unordered_set
  2291. for (auto & layer : vision_feature_layer) {
  2292. hparams.vision_feature_layer.insert(layer);
  2293. }
  2294. // model-specific params
  2295. switch (model.proj_type) {
  2296. case PROJECTOR_TYPE_MINICPMV:
  2297. {
  2298. if (hparams.minicpmv_version == 0) {
  2299. hparams.minicpmv_version = 2; // default to 2 if not set
  2300. }
  2301. } break;
  2302. case PROJECTOR_TYPE_INTERNVL:
  2303. {
  2304. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2305. } break;
  2306. case PROJECTOR_TYPE_IDEFICS3:
  2307. {
  2308. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2309. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2310. } break;
  2311. case PROJECTOR_TYPE_LFM2:
  2312. {
  2313. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2314. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2315. hparams.set_limit_image_tokens(64, 256);
  2316. } break;
  2317. case PROJECTOR_TYPE_PIXTRAL:
  2318. case PROJECTOR_TYPE_LIGHTONOCR:
  2319. {
  2320. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2321. // TODO: verify the image_min_tokens
  2322. hparams.n_merge = 1; // the original pixtral does not use patch merging
  2323. hparams.rope_theta = 10000.0f;
  2324. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2325. hparams.set_limit_image_tokens(8, 1024);
  2326. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2327. } break;
  2328. case PROJECTOR_TYPE_KIMIVL:
  2329. {
  2330. hparams.rope_theta = 10000.0f;
  2331. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2332. // TODO: check kimivl preprocessor for exact values
  2333. hparams.set_limit_image_tokens(8, 1024);
  2334. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2335. } break;
  2336. case PROJECTOR_TYPE_GEMMA3:
  2337. {
  2338. // default value (used by all model sizes in gemma 3 family)
  2339. // number of patches for each **side** is reduced by a factor of 4
  2340. hparams.n_merge = 4;
  2341. // test model (tinygemma3) has a different value, we optionally read it
  2342. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2343. } break;
  2344. case PROJECTOR_TYPE_QWEN2VL:
  2345. case PROJECTOR_TYPE_QWEN25VL:
  2346. case PROJECTOR_TYPE_QWEN3VL:
  2347. {
  2348. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2349. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2350. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2351. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2352. hparams.set_limit_image_tokens(8, 4096);
  2353. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  2354. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  2355. if (hparams.image_min_pixels < warn_min_pixels) {
  2356. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  2357. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  2358. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  2359. }
  2360. } break;
  2361. case PROJECTOR_TYPE_LLAMA4:
  2362. {
  2363. hparams.rope_theta = 10000.0f;
  2364. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2365. set_llava_uhd_res_candidates(model, 3);
  2366. } break;
  2367. case PROJECTOR_TYPE_ULTRAVOX:
  2368. case PROJECTOR_TYPE_QWEN2A:
  2369. case PROJECTOR_TYPE_VOXTRAL:
  2370. {
  2371. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2372. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2373. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2374. if (hparams.n_mel_bins != 128) {
  2375. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2376. }
  2377. hparams.ffn_op = FFN_GELU_ERF;
  2378. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2379. } break;
  2380. default:
  2381. break;
  2382. }
  2383. // sanity check
  2384. {
  2385. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  2386. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  2387. }
  2388. }
  2389. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2390. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2391. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2392. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2393. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2394. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2395. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2396. if (is_vision) {
  2397. LOG_INF("\n--- vision hparams ---\n");
  2398. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2399. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2400. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2401. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2402. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2403. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2404. if (hparams.image_min_pixels > 0) {
  2405. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  2406. }
  2407. if (hparams.image_max_pixels > 0) {
  2408. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  2409. }
  2410. } else if (is_audio) {
  2411. LOG_INF("\n--- audio hparams ---\n");
  2412. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2413. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2414. }
  2415. LOG_INF("\n");
  2416. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2417. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2418. }
  2419. }
  2420. void load_tensors(clip_ctx & ctx_clip) {
  2421. auto & model = ctx_clip.model;
  2422. auto & hparams = model.hparams;
  2423. std::map<std::string, size_t> tensor_offset;
  2424. std::vector<ggml_tensor *> tensors_to_load;
  2425. // TODO @ngxson : support both audio and video in the future
  2426. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2427. // get offsets
  2428. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2429. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2430. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2431. }
  2432. // create data context
  2433. struct ggml_init_params params = {
  2434. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2435. /*.mem_buffer =*/ NULL,
  2436. /*.no_alloc =*/ true,
  2437. };
  2438. ctx_clip.ctx_data.reset(ggml_init(params));
  2439. if (!ctx_clip.ctx_data) {
  2440. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2441. }
  2442. // helper function
  2443. auto get_tensor = [&](const std::string & name, bool required = true) {
  2444. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2445. if (!cur && required) {
  2446. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2447. }
  2448. if (cur) {
  2449. tensors_to_load.push_back(cur);
  2450. // add tensors to context
  2451. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2452. ggml_set_name(data_tensor, cur->name);
  2453. cur = data_tensor;
  2454. }
  2455. return cur;
  2456. };
  2457. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2458. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2459. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2460. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2461. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2462. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2463. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2464. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2465. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2466. // layers
  2467. model.layers.resize(hparams.n_layer);
  2468. for (int il = 0; il < hparams.n_layer; ++il) {
  2469. auto & layer = model.layers[il];
  2470. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2471. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2472. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2473. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2474. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2475. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2476. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2477. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2478. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2479. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2480. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2481. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2482. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2483. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2484. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2485. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2486. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2487. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2488. // ffn
  2489. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2490. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2491. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2492. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2493. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2494. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2495. // qwen3vl deepstack layer
  2496. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2497. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2498. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2499. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2500. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2501. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2502. if (layer.has_deepstack()) {
  2503. model.n_deepstack_layers++;
  2504. }
  2505. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2506. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2507. bool is_ffn_swapped = (
  2508. // only old models need this fix
  2509. model.proj_type == PROJECTOR_TYPE_MLP
  2510. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2511. || model.proj_type == PROJECTOR_TYPE_LDP
  2512. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2513. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2514. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2515. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2516. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2517. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2518. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2519. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2520. if (is_ffn_swapped) {
  2521. // swap up and down weights
  2522. ggml_tensor * tmp = layer.ff_up_w;
  2523. layer.ff_up_w = layer.ff_down_w;
  2524. layer.ff_down_w = tmp;
  2525. // swap up and down biases
  2526. tmp = layer.ff_up_b;
  2527. layer.ff_up_b = layer.ff_down_b;
  2528. layer.ff_down_b = tmp;
  2529. if (il == 0) {
  2530. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2531. }
  2532. }
  2533. }
  2534. switch (model.proj_type) {
  2535. case PROJECTOR_TYPE_MLP:
  2536. case PROJECTOR_TYPE_MLP_NORM:
  2537. {
  2538. // LLaVA projection
  2539. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2540. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2541. // Yi-type llava
  2542. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2543. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2544. // missing in Yi-type llava
  2545. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2546. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2547. // Yi-type llava
  2548. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2549. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2550. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2551. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2552. if (model.mm_3_w) {
  2553. // TODO: this is a hack to support Yi-type llava
  2554. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2555. }
  2556. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2557. } break;
  2558. case PROJECTOR_TYPE_LDP:
  2559. {
  2560. // MobileVLM projection
  2561. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2562. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2563. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2564. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2565. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2566. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2567. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2568. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2569. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2570. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2571. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2572. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2573. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2574. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2575. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2576. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2577. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2578. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2579. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2580. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2581. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2582. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2583. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2584. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2585. } break;
  2586. case PROJECTOR_TYPE_LDPV2:
  2587. {
  2588. // MobilVLM_V2 projection
  2589. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2590. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2591. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2592. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2593. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2594. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2595. } break;
  2596. case PROJECTOR_TYPE_MINICPMV:
  2597. {
  2598. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2599. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2600. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2601. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2602. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2603. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2604. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2605. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2606. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2607. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2608. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2609. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2610. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2611. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2612. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2613. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2614. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2615. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2616. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2617. } break;
  2618. case PROJECTOR_TYPE_GLM_EDGE:
  2619. {
  2620. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2621. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2622. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2623. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2624. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2625. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2626. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2627. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2628. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2629. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2630. } break;
  2631. case PROJECTOR_TYPE_QWEN2VL:
  2632. case PROJECTOR_TYPE_QWEN25VL:
  2633. {
  2634. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2635. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2636. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2637. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2638. } break;
  2639. case PROJECTOR_TYPE_QWEN3VL:
  2640. {
  2641. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2642. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2643. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2644. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2645. } break;
  2646. case PROJECTOR_TYPE_GEMMA3:
  2647. {
  2648. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2649. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2650. } break;
  2651. case PROJECTOR_TYPE_IDEFICS3:
  2652. {
  2653. model.projection = get_tensor(TN_MM_PROJECTOR);
  2654. } break;
  2655. case PROJECTOR_TYPE_LFM2:
  2656. case PROJECTOR_TYPE_KIMIVL:
  2657. {
  2658. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2659. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2660. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2661. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2662. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2663. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2664. } break;
  2665. case PROJECTOR_TYPE_PIXTRAL:
  2666. {
  2667. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2668. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2669. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2670. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2671. // [IMG_BREAK] token embedding
  2672. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2673. // for mistral small 3.1
  2674. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2675. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2676. } break;
  2677. case PROJECTOR_TYPE_LIGHTONOCR:
  2678. {
  2679. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2680. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2681. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2682. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2683. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2684. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2685. } break;
  2686. case PROJECTOR_TYPE_ULTRAVOX:
  2687. {
  2688. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2689. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2690. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2691. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2692. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2693. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2694. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2695. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2696. } break;
  2697. case PROJECTOR_TYPE_QWEN2A:
  2698. {
  2699. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2700. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2701. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2702. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2703. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2704. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2705. } break;
  2706. case PROJECTOR_TYPE_VOXTRAL:
  2707. {
  2708. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2709. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2710. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2711. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2712. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2713. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2714. } break;
  2715. case PROJECTOR_TYPE_INTERNVL:
  2716. {
  2717. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2718. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2719. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2720. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2721. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2722. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2723. } break;
  2724. case PROJECTOR_TYPE_LLAMA4:
  2725. {
  2726. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2727. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2728. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2729. } break;
  2730. case PROJECTOR_TYPE_COGVLM:
  2731. {
  2732. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2733. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2734. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2735. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2736. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2737. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2738. model.mm_boi = get_tensor(TN_TOK_BOI);
  2739. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2740. } break;
  2741. case PROJECTOR_TYPE_JANUS_PRO:
  2742. {
  2743. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2744. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2745. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2746. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2747. } break;
  2748. default:
  2749. GGML_ASSERT(false && "unknown projector type");
  2750. }
  2751. // load data
  2752. {
  2753. std::vector<uint8_t> read_buf;
  2754. auto fin = std::ifstream(fname, std::ios::binary);
  2755. if (!fin) {
  2756. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2757. }
  2758. // alloc memory and offload data
  2759. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2760. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2761. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2762. for (auto & t : tensors_to_load) {
  2763. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2764. const size_t offset = tensor_offset[t->name];
  2765. fin.seekg(offset, std::ios::beg);
  2766. if (!fin) {
  2767. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2768. }
  2769. size_t num_bytes = ggml_nbytes(cur);
  2770. if (ggml_backend_buft_is_host(buft)) {
  2771. // for the CPU and Metal backend, we can read directly into the tensor
  2772. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2773. } else {
  2774. // read into a temporary buffer first, then copy to device memory
  2775. read_buf.resize(num_bytes);
  2776. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2777. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2778. }
  2779. }
  2780. fin.close();
  2781. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2782. }
  2783. }
  2784. struct support_info_op {
  2785. ggml_tensor * op;
  2786. // true if the op runs on the accelerated ctx_clip.backend
  2787. bool is_accel = true;
  2788. };
  2789. struct support_info_graph {
  2790. // whether the clip_ctx.backend supports flash attention
  2791. bool fattn = true;
  2792. ggml_tensor * fattn_op = nullptr; // for debugging
  2793. std::vector<support_info_op> ops;
  2794. };
  2795. static void warmup(clip_ctx & ctx_clip) {
  2796. support_info_graph info;
  2797. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  2798. // try to enable flash attention to see if it's supported
  2799. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  2800. info = alloc_compute_meta(ctx_clip);
  2801. if (!info.fattn && info.fattn_op) {
  2802. auto op = info.fattn_op;
  2803. LOG_WRN("%s: *****************************************************************\n", __func__);
  2804. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  2805. LOG_WRN("%s: op params: \n", __func__);
  2806. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  2807. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  2808. name, ggml_type_name(t->type),
  2809. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  2810. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  2811. };
  2812. print_shape(__func__, " dst", op);
  2813. print_shape(__func__, "src0", op->src[0]);
  2814. print_shape(__func__, "src1", op->src[1]);
  2815. print_shape(__func__, "src2", op->src[2]);
  2816. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2817. LOG_WRN("%s: *****************************************************************\n", __func__);
  2818. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  2819. alloc_compute_meta(ctx_clip);
  2820. }
  2821. } else {
  2822. info = alloc_compute_meta(ctx_clip);
  2823. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  2824. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  2825. }
  2826. }
  2827. LOG_INF("%s: flash attention is %s\n", __func__,
  2828. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2829. // print ops that are not supported by the GPU backend (if there is one)
  2830. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  2831. std::vector<support_info_op> unsupported_ops;
  2832. for (const auto & op : info.ops) {
  2833. if (!op.is_accel) {
  2834. unsupported_ops.push_back(op);
  2835. }
  2836. }
  2837. if (!unsupported_ops.empty()) {
  2838. LOG_WRN("%s: *****************************************************************\n", __func__);
  2839. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  2840. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  2841. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  2842. for (const auto & op : unsupported_ops) {
  2843. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  2844. ggml_op_name(op.op->op),
  2845. ggml_type_name(op.op->type),
  2846. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  2847. }
  2848. LOG_WRN("%s: flash attention is %s\n", __func__,
  2849. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2850. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2851. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  2852. LOG_WRN("%s: *****************************************************************\n", __func__);
  2853. }
  2854. }
  2855. }
  2856. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
  2857. const auto & hparams = ctx_clip.model.hparams;
  2858. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2859. // create a fake batch
  2860. clip_image_f32_batch batch;
  2861. clip_image_f32_ptr img(clip_image_f32_init());
  2862. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2863. img->nx = hparams.warmup_image_size;
  2864. img->ny = hparams.warmup_image_size;
  2865. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2866. } else {
  2867. img->nx = hparams.warmup_audio_size;
  2868. img->ny = hparams.n_mel_bins;
  2869. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2870. }
  2871. batch.entries.push_back(std::move(img));
  2872. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2873. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2874. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2875. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2876. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2877. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2878. if (size > 1) {
  2879. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2880. ggml_backend_buft_name(buft),
  2881. size / 1024.0 / 1024.0);
  2882. }
  2883. }
  2884. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  2885. const int n_nodes = ggml_graph_n_nodes(gf);
  2886. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  2887. support_info_graph res {
  2888. /*.fattn = */ true,
  2889. /*.fattn_op = */ nullptr,
  2890. /*.ops = */ {},
  2891. };
  2892. // check op support
  2893. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  2894. ggml_tensor * node = ggml_graph_node(gf, i);
  2895. res.ops.push_back({node, true});
  2896. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  2897. res.ops.back().is_accel = false;
  2898. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  2899. res.fattn = false;
  2900. res.fattn_op = node;
  2901. }
  2902. }
  2903. }
  2904. return res;
  2905. }
  2906. void get_bool(const std::string & key, bool & output, bool required = true) const {
  2907. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2908. if (i < 0) {
  2909. if (required) {
  2910. throw std::runtime_error("Key not found: " + key);
  2911. }
  2912. return;
  2913. }
  2914. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2915. }
  2916. void get_i32(const std::string & key, int & output, bool required = true) const {
  2917. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2918. if (i < 0) {
  2919. if (required) {
  2920. throw std::runtime_error("Key not found: " + key);
  2921. }
  2922. return;
  2923. }
  2924. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2925. }
  2926. void get_u32(const std::string & key, int & output, bool required = true) const {
  2927. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2928. if (i < 0) {
  2929. if (required) {
  2930. throw std::runtime_error("Key not found: " + key);
  2931. }
  2932. return;
  2933. }
  2934. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2935. }
  2936. void get_f32(const std::string & key, float & output, bool required = true) const {
  2937. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2938. if (i < 0) {
  2939. if (required) {
  2940. throw std::runtime_error("Key not found: " + key);
  2941. }
  2942. return;
  2943. }
  2944. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2945. }
  2946. void get_string(const std::string & key, std::string & output, bool required = true) const {
  2947. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2948. if (i < 0) {
  2949. if (required) {
  2950. throw std::runtime_error("Key not found: " + key);
  2951. }
  2952. return;
  2953. }
  2954. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2955. }
  2956. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  2957. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2958. if (i < 0) {
  2959. if (required) {
  2960. throw std::runtime_error("Key not found: " + key);
  2961. }
  2962. return;
  2963. }
  2964. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2965. output.resize(n);
  2966. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2967. for (int i = 0; i < n; ++i) {
  2968. output[i] = values[i];
  2969. }
  2970. }
  2971. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2972. auto & hparams = model.hparams;
  2973. for (int x = 1; x <= max_patches_per_side; x++) {
  2974. for (int y = 1; y <= max_patches_per_side; y++) {
  2975. if (x == 1 && y == 1) {
  2976. continue; // skip the first point
  2977. }
  2978. hparams.image_res_candidates.push_back(clip_image_size{
  2979. x*hparams.image_size,
  2980. y*hparams.image_size,
  2981. });
  2982. }
  2983. }
  2984. }
  2985. };
  2986. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2987. clip_ctx * ctx_vision = nullptr;
  2988. clip_ctx * ctx_audio = nullptr;
  2989. try {
  2990. clip_model_loader loader(fname);
  2991. if (loader.has_vision) {
  2992. ctx_vision = new clip_ctx(ctx_params);
  2993. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2994. loader.load_tensors(*ctx_vision);
  2995. loader.warmup(*ctx_vision);
  2996. }
  2997. if (loader.has_audio) {
  2998. ctx_audio = new clip_ctx(ctx_params);
  2999. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  3000. loader.load_tensors(*ctx_audio);
  3001. loader.warmup(*ctx_audio);
  3002. }
  3003. } catch (const std::exception & e) {
  3004. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  3005. delete ctx_vision;
  3006. delete ctx_audio;
  3007. return {nullptr, nullptr};
  3008. }
  3009. return {ctx_vision, ctx_audio};
  3010. }
  3011. struct clip_image_size * clip_image_size_init() {
  3012. struct clip_image_size * load_image_size = new struct clip_image_size();
  3013. load_image_size->width = 448;
  3014. load_image_size->height = 448;
  3015. return load_image_size;
  3016. }
  3017. struct clip_image_u8 * clip_image_u8_init() {
  3018. return new clip_image_u8();
  3019. }
  3020. struct clip_image_f32 * clip_image_f32_init() {
  3021. return new clip_image_f32();
  3022. }
  3023. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  3024. return new clip_image_f32_batch();
  3025. }
  3026. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  3027. if (nx) *nx = img->nx;
  3028. if (ny) *ny = img->ny;
  3029. return img->buf.data();
  3030. }
  3031. void clip_image_size_free(struct clip_image_size * load_image_size) {
  3032. if (load_image_size == nullptr) {
  3033. return;
  3034. }
  3035. delete load_image_size;
  3036. }
  3037. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  3038. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  3039. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  3040. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  3041. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  3042. return batch->entries.size();
  3043. }
  3044. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  3045. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3046. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3047. return 0;
  3048. }
  3049. return batch->entries[idx]->nx;
  3050. }
  3051. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  3052. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3053. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3054. return 0;
  3055. }
  3056. return batch->entries[idx]->ny;
  3057. }
  3058. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  3059. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3060. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3061. return nullptr;
  3062. }
  3063. return batch->entries[idx].get();
  3064. }
  3065. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  3066. img->nx = nx;
  3067. img->ny = ny;
  3068. img->buf.resize(3 * nx * ny);
  3069. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  3070. }
  3071. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  3072. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  3073. dst.nx = src.nx;
  3074. dst.ny = src.ny;
  3075. dst.buf.resize(src.buf.size());
  3076. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  3077. for (size_t i = 0; i < src.buf.size(); ++i) {
  3078. int c = i % 3; // rgb
  3079. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  3080. }
  3081. }
  3082. // set of tools to manupulate images
  3083. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  3084. struct img_tool {
  3085. enum resize_algo {
  3086. RESIZE_ALGO_BILINEAR,
  3087. RESIZE_ALGO_BICUBIC,
  3088. // RESIZE_ALGO_LANCZOS, // TODO
  3089. };
  3090. static void resize(
  3091. const clip_image_u8 & src,
  3092. clip_image_u8 & dst,
  3093. const clip_image_size & target_resolution,
  3094. resize_algo algo,
  3095. bool add_padding = true, // TODO: define the behavior for add_padding = false
  3096. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  3097. dst.nx = target_resolution.width;
  3098. dst.ny = target_resolution.height;
  3099. dst.buf.resize(3 * dst.nx * dst.ny);
  3100. if (dst.nx == src.nx && dst.ny == src.ny) {
  3101. // no resize needed, simple copy
  3102. dst.buf = src.buf;
  3103. return;
  3104. }
  3105. if (!add_padding) {
  3106. // direct resize
  3107. switch (algo) {
  3108. case RESIZE_ALGO_BILINEAR:
  3109. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  3110. break;
  3111. case RESIZE_ALGO_BICUBIC:
  3112. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  3113. break;
  3114. default:
  3115. throw std::runtime_error("Unsupported resize algorithm");
  3116. }
  3117. } else {
  3118. // resize with padding
  3119. clip_image_u8 resized_image;
  3120. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  3121. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  3122. float scale = std::min(scale_w, scale_h);
  3123. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  3124. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  3125. switch (algo) {
  3126. case RESIZE_ALGO_BILINEAR:
  3127. resize_bilinear(src, resized_image, new_width, new_height);
  3128. break;
  3129. case RESIZE_ALGO_BICUBIC:
  3130. resize_bicubic(src, resized_image, new_width, new_height);
  3131. break;
  3132. default:
  3133. throw std::runtime_error("Unsupported resize algorithm");
  3134. }
  3135. // fill dst with pad_color
  3136. fill(dst, pad_color);
  3137. int offset_x = (target_resolution.width - new_width) / 2;
  3138. int offset_y = (target_resolution.height - new_height) / 2;
  3139. composite(dst, resized_image, offset_x, offset_y);
  3140. }
  3141. }
  3142. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3143. dst.nx = w;
  3144. dst.ny = h;
  3145. dst.buf.resize(3 * w * h);
  3146. for (int i = 0; i < h; ++i) {
  3147. for (int j = 0; j < w; ++j) {
  3148. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3149. int dst_idx = 3 * (i*w + j);
  3150. dst.buf[dst_idx] = image.buf[src_idx];
  3151. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3152. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3153. }
  3154. }
  3155. }
  3156. // calculate the size of the **resized** image, while preserving the aspect ratio
  3157. // the calculated size will be aligned to the nearest multiple of align_size
  3158. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  3159. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  3160. GGML_ASSERT(align_size > 0);
  3161. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  3162. return {0, 0};
  3163. }
  3164. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  3165. static_cast<float>(longest_edge) / inp_size.height);
  3166. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3167. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3168. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3169. int aligned_width = ceil_by_factor(target_width_f);
  3170. int aligned_height = ceil_by_factor(target_height_f);
  3171. return {aligned_width, aligned_height};
  3172. }
  3173. // calculate the size of the **resized** image, while preserving the aspect ratio
  3174. // the calculated size will have min_pixels <= W*H <= max_pixels
  3175. // this is referred as "smart_resize" in transformers code
  3176. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3177. GGML_ASSERT(align_size > 0);
  3178. const int width = inp_size.width;
  3179. const int height = inp_size.height;
  3180. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3181. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3182. // always align up first
  3183. int h_bar = std::max(align_size, ceil_by_factor(height));
  3184. int w_bar = std::max(align_size, ceil_by_factor(width));
  3185. if (h_bar * w_bar > max_pixels) {
  3186. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3187. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3188. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3189. } else if (h_bar * w_bar < min_pixels) {
  3190. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3191. h_bar = ceil_by_factor(height * beta);
  3192. w_bar = ceil_by_factor(width * beta);
  3193. }
  3194. return {w_bar, h_bar};
  3195. }
  3196. // draw src image into dst image at offset (offset_x, offset_y)
  3197. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3198. for (int y = 0; y < src.ny; ++y) {
  3199. for (int x = 0; x < src.nx; ++x) {
  3200. int dx = x + offset_x;
  3201. int dy = y + offset_y;
  3202. // skip pixels that would be out of bounds in the destination
  3203. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3204. continue;
  3205. }
  3206. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3207. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3208. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3209. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3210. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3211. }
  3212. }
  3213. }
  3214. // fill the image with a solid color
  3215. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3216. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3217. img.buf[i] = color[0];
  3218. img.buf[i + 1] = color[1];
  3219. img.buf[i + 2] = color[2];
  3220. }
  3221. }
  3222. private:
  3223. // Bilinear resize function
  3224. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3225. dst.nx = target_width;
  3226. dst.ny = target_height;
  3227. dst.buf.resize(3 * target_width * target_height);
  3228. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3229. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3230. for (int y = 0; y < target_height; y++) {
  3231. for (int x = 0; x < target_width; x++) {
  3232. float px = x_ratio * x;
  3233. float py = y_ratio * y;
  3234. int x_floor = static_cast<int>(px);
  3235. int y_floor = static_cast<int>(py);
  3236. float x_lerp = px - x_floor;
  3237. float y_lerp = py - y_floor;
  3238. for (int c = 0; c < 3; c++) {
  3239. float top = lerp(
  3240. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3241. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3242. x_lerp
  3243. );
  3244. float bottom = lerp(
  3245. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3246. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3247. x_lerp
  3248. );
  3249. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3250. }
  3251. }
  3252. }
  3253. }
  3254. // Bicubic resize function
  3255. // part of image will be cropped if the aspect ratio is different
  3256. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3257. const int nx = img.nx;
  3258. const int ny = img.ny;
  3259. dst.nx = target_width;
  3260. dst.ny = target_height;
  3261. dst.buf.resize(3 * target_width * target_height);
  3262. float Cc;
  3263. float C[5] = {};
  3264. float d0, d2, d3, a0, a1, a2, a3;
  3265. int i, j, k, jj;
  3266. int x, y;
  3267. float dx, dy;
  3268. float tx, ty;
  3269. tx = (float)nx / (float)target_width;
  3270. ty = (float)ny / (float)target_height;
  3271. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3272. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3273. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3274. for (i = 0; i < target_height; i++) {
  3275. for (j = 0; j < target_width; j++) {
  3276. x = (int)(tx * j);
  3277. y = (int)(ty * i);
  3278. dx = tx * j - x;
  3279. dy = ty * i - y;
  3280. for (k = 0; k < 3; k++) {
  3281. for (jj = 0; jj <= 3; jj++) {
  3282. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3283. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3284. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3285. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3286. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3287. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3288. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3289. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3290. d0 = C[0] - C[1];
  3291. d2 = C[2] - C[1];
  3292. d3 = C[3] - C[1];
  3293. a0 = C[1];
  3294. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3295. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3296. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3297. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3298. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3299. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3300. }
  3301. }
  3302. }
  3303. }
  3304. return true;
  3305. }
  3306. static inline int clip(int x, int lower, int upper) {
  3307. return std::max(lower, std::min(x, upper));
  3308. }
  3309. // Linear interpolation between two points
  3310. static inline float lerp(float s, float e, float t) {
  3311. return s + (e - s) * t;
  3312. }
  3313. };
  3314. /**
  3315. * implementation of LLaVA-UHD:
  3316. * - https://arxiv.org/pdf/2403.11703
  3317. * - https://github.com/thunlp/LLaVA-UHD
  3318. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3319. *
  3320. * overview:
  3321. * - an image always have a single overview (downscaled image)
  3322. * - an image can have 0 or multiple slices, depending on the image size
  3323. * - each slice can then be considered as a separate image
  3324. *
  3325. * for example:
  3326. *
  3327. * [overview] --> [slice 1] --> [slice 2]
  3328. * | |
  3329. * +--> [slice 3] --> [slice 4]
  3330. */
  3331. struct llava_uhd {
  3332. struct slice_coordinates {
  3333. int x;
  3334. int y;
  3335. clip_image_size size;
  3336. };
  3337. struct slice_instructions {
  3338. clip_image_size overview_size; // size of downscaled image
  3339. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3340. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3341. std::vector<slice_coordinates> slices;
  3342. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3343. };
  3344. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3345. slice_instructions res;
  3346. const int patch_size = clip_get_patch_size(ctx);
  3347. const int slice_size = clip_get_image_size(ctx);
  3348. const int original_width = original_size.width;
  3349. const int original_height = original_size.height;
  3350. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3351. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3352. if (!has_slices) {
  3353. // skip slicing logic
  3354. res.overview_size = clip_image_size{slice_size, slice_size};
  3355. res.refined_size = clip_image_size{0, 0};
  3356. res.grid_size = clip_image_size{0, 0};
  3357. return res;
  3358. }
  3359. if (has_pinpoints) {
  3360. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3361. auto refine_size = llava_uhd::select_best_resolution(
  3362. original_size,
  3363. ctx->model.hparams.image_res_candidates);
  3364. res.overview_size = clip_image_size{slice_size, slice_size};
  3365. res.refined_size = refine_size;
  3366. res.grid_size = clip_image_size{0, 0};
  3367. res.padding_refined = true;
  3368. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3369. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3370. __func__, original_width, original_height,
  3371. res.overview_size.width, res.overview_size.height,
  3372. res.refined_size.width, res.refined_size.height);
  3373. for (int y = 0; y < refine_size.height; y += slice_size) {
  3374. for (int x = 0; x < refine_size.width; x += slice_size) {
  3375. slice_coordinates slice;
  3376. slice.x = x;
  3377. slice.y = y;
  3378. slice.size.width = std::min(slice_size, refine_size.width - x);
  3379. slice.size.height = std::min(slice_size, refine_size.height - y);
  3380. res.slices.push_back(slice);
  3381. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3382. __func__, (int)res.slices.size() - 1,
  3383. slice.x, slice.y, slice.size.width, slice.size.height);
  3384. }
  3385. }
  3386. res.grid_size.height = refine_size.height / slice_size;
  3387. res.grid_size.width = refine_size.width / slice_size;
  3388. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3389. return res;
  3390. }
  3391. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3392. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3393. res.overview_size = best_size;
  3394. {
  3395. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3396. const float log_ratio = log((float)original_width / original_height);
  3397. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3398. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3399. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3400. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3401. res.grid_size = best_grid;
  3402. res.refined_size = refine_size;
  3403. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3404. __func__, original_width, original_height,
  3405. res.overview_size.width, res.overview_size.height,
  3406. res.refined_size.width, res.refined_size.height,
  3407. res.grid_size.width, res.grid_size.height);
  3408. int width = refine_size.width;
  3409. int height = refine_size.height;
  3410. int grid_x = int(width / best_grid.width);
  3411. int grid_y = int(height / best_grid.height);
  3412. for (int patches_y = 0, ic = 0;
  3413. patches_y < refine_size.height && ic < best_grid.height;
  3414. patches_y += grid_y, ic += 1) {
  3415. for (int patches_x = 0, jc = 0;
  3416. patches_x < refine_size.width && jc < best_grid.width;
  3417. patches_x += grid_x, jc += 1) {
  3418. slice_coordinates slice;
  3419. slice.x = patches_x;
  3420. slice.y = patches_y;
  3421. slice.size.width = grid_x;
  3422. slice.size.height = grid_y;
  3423. res.slices.push_back(slice);
  3424. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3425. __func__, (int)res.slices.size() - 1,
  3426. slice.x, slice.y, slice.size.width, slice.size.height);
  3427. }
  3428. }
  3429. }
  3430. return res;
  3431. }
  3432. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3433. std::vector<clip_image_u8_ptr> output;
  3434. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3435. // resize to overview size
  3436. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3437. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3438. output.push_back(std::move(resized_img));
  3439. if (inst.slices.empty()) {
  3440. // no slices, just return the resized image
  3441. return output;
  3442. }
  3443. // resize to refined size
  3444. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3445. if (inst.padding_refined) {
  3446. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3447. } else {
  3448. // only algo bicubic preserves the ratio; old models rely on this behavior
  3449. // TODO: do we need to support other algos here?
  3450. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3451. }
  3452. // create slices
  3453. for (const auto & slice : inst.slices) {
  3454. int x = slice.x;
  3455. int y = slice.y;
  3456. int w = slice.size.width;
  3457. int h = slice.size.height;
  3458. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3459. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3460. output.push_back(std::move(img_slice));
  3461. }
  3462. return output;
  3463. }
  3464. private:
  3465. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3466. int width = original_size.width;
  3467. int height = original_size.height;
  3468. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3469. float r = static_cast<float>(width) / height;
  3470. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3471. width = static_cast<int>(height * r);
  3472. }
  3473. clip_image_size res;
  3474. res.width = ensure_divide(width, patch_size);
  3475. res.height = ensure_divide(height, patch_size);
  3476. return res;
  3477. }
  3478. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3479. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3480. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3481. float scale = std::min(scale_width, scale_height);
  3482. return clip_image_size{
  3483. static_cast<int>(orig.width * scale),
  3484. static_cast<int>(orig.height * scale),
  3485. };
  3486. }
  3487. /**
  3488. * Selects the best resolution from a list of possible resolutions based on the original size.
  3489. *
  3490. * For example, when given a list of resolutions:
  3491. * - 100x100
  3492. * - 200x100
  3493. * - 100x200
  3494. * - 200x200
  3495. *
  3496. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3497. *
  3498. * @param original_size The original size of the image
  3499. * @param possible_resolutions A list of possible resolutions
  3500. * @return The best fit resolution
  3501. */
  3502. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3503. clip_image_size best_fit;
  3504. int min_wasted_area = std::numeric_limits<int>::max();
  3505. int max_effective_resolution = 0;
  3506. for (const clip_image_size & candidate : possible_resolutions) {
  3507. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3508. int effective_resolution = std::min(
  3509. target_size.width * target_size.height,
  3510. original_size.width * original_size.height);
  3511. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3512. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3513. max_effective_resolution = effective_resolution;
  3514. min_wasted_area = wasted_area;
  3515. best_fit = candidate;
  3516. }
  3517. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3518. }
  3519. return best_fit;
  3520. }
  3521. static int ensure_divide(int length, int patch_size) {
  3522. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3523. }
  3524. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3525. int width = original_size.width;
  3526. int height = original_size.height;
  3527. int grid_x = grid.width;
  3528. int grid_y = grid.height;
  3529. int refine_width = ensure_divide(width, grid_x);
  3530. int refine_height = ensure_divide(height, grid_y);
  3531. clip_image_size grid_size;
  3532. grid_size.width = refine_width / grid_x;
  3533. grid_size.height = refine_height / grid_y;
  3534. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3535. int best_grid_width = best_grid_size.width;
  3536. int best_grid_height = best_grid_size.height;
  3537. clip_image_size refine_size;
  3538. refine_size.width = best_grid_width * grid_x;
  3539. refine_size.height = best_grid_height * grid_y;
  3540. return refine_size;
  3541. }
  3542. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3543. std::vector<int> candidate_split_grids_nums;
  3544. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3545. if (i == 1 || i > max_slice_nums) {
  3546. continue;
  3547. }
  3548. candidate_split_grids_nums.push_back(i);
  3549. }
  3550. std::vector<clip_image_size> candidate_grids;
  3551. for (int split_grids_nums : candidate_split_grids_nums) {
  3552. int m = 1;
  3553. while (m <= split_grids_nums) {
  3554. if (split_grids_nums % m == 0) {
  3555. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3556. }
  3557. ++m;
  3558. }
  3559. }
  3560. clip_image_size best_grid{1, 1};
  3561. float min_error = std::numeric_limits<float>::infinity();
  3562. for (const auto& grid : candidate_grids) {
  3563. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3564. if (error < min_error) {
  3565. best_grid = grid;
  3566. min_error = error;
  3567. }
  3568. }
  3569. return best_grid;
  3570. }
  3571. };
  3572. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3573. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3574. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3575. clip_image_size original_size{img->nx, img->ny};
  3576. auto & params = ctx->model.hparams;
  3577. switch (ctx->proj_type()) {
  3578. case PROJECTOR_TYPE_MINICPMV:
  3579. {
  3580. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3581. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3582. for (size_t i = 0; i < imgs.size(); ++i) {
  3583. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3584. clip_image_f32_ptr res(clip_image_f32_init());
  3585. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3586. res_imgs->entries.push_back(std::move(res));
  3587. }
  3588. res_imgs->grid_x = inst.grid_size.width;
  3589. res_imgs->grid_y = inst.grid_size.height;
  3590. } break;
  3591. case PROJECTOR_TYPE_QWEN2VL:
  3592. case PROJECTOR_TYPE_QWEN25VL:
  3593. case PROJECTOR_TYPE_QWEN3VL:
  3594. {
  3595. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3596. clip_image_u8 resized;
  3597. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3598. original_size,
  3599. params.patch_size * 2,
  3600. params.image_min_pixels,
  3601. params.image_max_pixels);
  3602. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3603. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3604. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3605. // clip_image_f32_ptr res(clip_image_f32_init());
  3606. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3607. // res_imgs->data[0] = *res;
  3608. res_imgs->entries.push_back(std::move(img_f32));
  3609. } break;
  3610. case PROJECTOR_TYPE_IDEFICS3:
  3611. {
  3612. // The refined size has two steps:
  3613. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3614. // the preprocessor longest size
  3615. // 2. Resize w/out preserving aspect ratio such that both sides are
  3616. // multiples of image_size (always rounding up)
  3617. //
  3618. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3619. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3620. original_size, params.image_size, params.image_longest_edge);
  3621. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3622. // __func__, original_size.width, original_size.height,
  3623. // refined_size.width, refined_size.height);
  3624. llava_uhd::slice_instructions instructions;
  3625. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3626. instructions.refined_size = refined_size;
  3627. instructions.grid_size = clip_image_size{
  3628. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3629. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3630. };
  3631. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3632. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3633. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3634. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3635. /* x */x,
  3636. /* y */y,
  3637. /* size */clip_image_size{
  3638. std::min(params.image_size, refined_size.width - x),
  3639. std::min(params.image_size, refined_size.height - y)
  3640. }
  3641. });
  3642. }
  3643. }
  3644. auto imgs = llava_uhd::slice_image(img, instructions);
  3645. // cast and normalize to f32
  3646. for (size_t i = 0; i < imgs.size(); ++i) {
  3647. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3648. clip_image_f32_ptr res(clip_image_f32_init());
  3649. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3650. res_imgs->entries.push_back(std::move(res));
  3651. }
  3652. res_imgs->grid_x = instructions.grid_size.width;
  3653. res_imgs->grid_y = instructions.grid_size.height;
  3654. } break;
  3655. case PROJECTOR_TYPE_GLM_EDGE:
  3656. case PROJECTOR_TYPE_GEMMA3:
  3657. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3658. {
  3659. clip_image_u8 resized_image;
  3660. int sz = params.image_size;
  3661. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3662. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3663. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3664. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3665. res_imgs->entries.push_back(std::move(img_f32));
  3666. } break;
  3667. case PROJECTOR_TYPE_JANUS_PRO:
  3668. {
  3669. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  3670. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  3671. clip_image_u8 resized_image;
  3672. int sz = params.image_size;
  3673. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3674. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3675. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3676. res_imgs->entries.push_back(std::move(img_f32));
  3677. } break;
  3678. case PROJECTOR_TYPE_PIXTRAL:
  3679. case PROJECTOR_TYPE_LIGHTONOCR:
  3680. {
  3681. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3682. clip_image_u8 resized_image;
  3683. // the original pixtral model doesn't have n_merge
  3684. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3685. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3686. original_size,
  3687. params.patch_size * cur_merge,
  3688. params.image_min_pixels,
  3689. params.image_max_pixels);
  3690. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3691. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3692. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3693. res_imgs->entries.push_back(std::move(img_f32));
  3694. } break;
  3695. case PROJECTOR_TYPE_LLAMA4:
  3696. {
  3697. GGML_ASSERT(!params.image_res_candidates.empty());
  3698. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3699. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3700. for (size_t i = 0; i < imgs.size(); ++i) {
  3701. clip_image_f32_ptr res(clip_image_f32_init());
  3702. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3703. res_imgs->entries.push_back(std::move(res));
  3704. }
  3705. res_imgs->grid_x = inst.grid_size.width;
  3706. res_imgs->grid_y = inst.grid_size.height;
  3707. } break;
  3708. case PROJECTOR_TYPE_LFM2:
  3709. case PROJECTOR_TYPE_KIMIVL:
  3710. {
  3711. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3712. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3713. original_size,
  3714. params.patch_size * params.n_merge,
  3715. params.image_min_pixels,
  3716. params.image_max_pixels);
  3717. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3718. clip_image_u8 resized_img;
  3719. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3720. clip_image_f32_ptr res(clip_image_f32_init());
  3721. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3722. res_imgs->entries.push_back(std::move(res));
  3723. } break;
  3724. case PROJECTOR_TYPE_MLP:
  3725. case PROJECTOR_TYPE_MLP_NORM:
  3726. case PROJECTOR_TYPE_LDP:
  3727. case PROJECTOR_TYPE_LDPV2:
  3728. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3729. {
  3730. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3731. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3732. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3733. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3734. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3735. if (params.image_res_candidates.empty()) { // pad_to_square
  3736. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3737. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3738. const int longer_side = std::max(img->nx, img->ny);
  3739. temp->nx = longer_side;
  3740. temp->ny = longer_side;
  3741. temp->buf.resize(3 * longer_side * longer_side);
  3742. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3743. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3744. // resize the image to the target_size
  3745. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3746. clip_image_f32_ptr res(clip_image_f32_init());
  3747. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3748. res_imgs->entries.push_back(std::move(res));
  3749. } else {
  3750. // "spatial_unpad" with "anyres" processing for llava-1.6
  3751. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3752. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3753. for (size_t i = 0; i < imgs.size(); ++i) {
  3754. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3755. clip_image_f32_ptr res(clip_image_f32_init());
  3756. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3757. res_imgs->entries.push_back(std::move(res));
  3758. }
  3759. }
  3760. } break;
  3761. default:
  3762. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3763. return false;
  3764. }
  3765. return true;
  3766. }
  3767. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3768. return ctx->model.image_newline;
  3769. }
  3770. void clip_free(clip_ctx * ctx) {
  3771. if (ctx == nullptr) {
  3772. return;
  3773. }
  3774. delete ctx;
  3775. }
  3776. // deprecated
  3777. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3778. const int32_t nx = ctx->model.hparams.image_size;
  3779. const int32_t ny = ctx->model.hparams.image_size;
  3780. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3781. }
  3782. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3783. clip_image_f32 img;
  3784. img.nx = img_w;
  3785. img.ny = img_h;
  3786. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3787. }
  3788. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3789. return ctx->model.hparams.image_size;
  3790. }
  3791. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3792. return ctx->model.hparams.patch_size;
  3793. }
  3794. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3795. return ctx->model.hparams.n_embd;
  3796. }
  3797. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3798. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3799. }
  3800. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3801. const auto & params = ctx->model.hparams;
  3802. const int n_total = clip_n_output_tokens(ctx, img);
  3803. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3804. return img->nx / (params.patch_size * 2);
  3805. }
  3806. return n_total;
  3807. }
  3808. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3809. const auto & params = ctx->model.hparams;
  3810. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3811. return img->ny / (params.patch_size * 2);
  3812. }
  3813. return 1;
  3814. }
  3815. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3816. const auto & params = ctx->model.hparams;
  3817. // for models with fixed size image, the input image is already pre-processed and resized to square
  3818. int patch_size = params.patch_size;
  3819. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3820. projector_type proj = ctx->proj_type();
  3821. switch (proj) {
  3822. case PROJECTOR_TYPE_MLP:
  3823. case PROJECTOR_TYPE_MLP_NORM:
  3824. case PROJECTOR_TYPE_JANUS_PRO:
  3825. {
  3826. // do nothing
  3827. } break;
  3828. case PROJECTOR_TYPE_LDP:
  3829. case PROJECTOR_TYPE_LDPV2:
  3830. case PROJECTOR_TYPE_GLM_EDGE:
  3831. {
  3832. n_patches /= 4;
  3833. if (ctx->model.mm_boi) {
  3834. n_patches += 2; // for BOI and EOI token embeddings
  3835. }
  3836. } break;
  3837. case PROJECTOR_TYPE_MINICPMV:
  3838. {
  3839. // Use actual config value if available, otherwise fall back to hardcoded values
  3840. if (params.minicpmv_query_num > 0) {
  3841. n_patches = params.minicpmv_query_num;
  3842. } else {
  3843. // Fallback to hardcoded values for legacy models
  3844. if (params.minicpmv_version == 2) {
  3845. n_patches = 96;
  3846. } else if (params.minicpmv_version == 3) {
  3847. n_patches = 64;
  3848. } else if (params.minicpmv_version == 4) {
  3849. n_patches = 64;
  3850. } else if (params.minicpmv_version == 5) {
  3851. // MiniCPM-V 4.0
  3852. n_patches = 64;
  3853. } else if (params.minicpmv_version == 6) {
  3854. // MiniCPM-V 4.5
  3855. n_patches = 64;
  3856. } else {
  3857. GGML_ABORT("Unknown minicpmv version");
  3858. }
  3859. }
  3860. } break;
  3861. case PROJECTOR_TYPE_QWEN2VL:
  3862. case PROJECTOR_TYPE_QWEN25VL:
  3863. case PROJECTOR_TYPE_QWEN3VL:
  3864. {
  3865. // dynamic size (2 conv, so double patch size)
  3866. int x_patch = img->nx / (params.patch_size * 2);
  3867. int y_patch = img->ny / (params.patch_size * 2);
  3868. n_patches = x_patch * y_patch;
  3869. } break;
  3870. case PROJECTOR_TYPE_GEMMA3:
  3871. case PROJECTOR_TYPE_IDEFICS3:
  3872. case PROJECTOR_TYPE_INTERNVL:
  3873. case PROJECTOR_TYPE_LLAMA4:
  3874. {
  3875. // both X and Y are downscaled by the scale factor
  3876. int scale_factor = ctx->model.hparams.n_merge;
  3877. n_patches /= (scale_factor * scale_factor);
  3878. } break;
  3879. case PROJECTOR_TYPE_LFM2:
  3880. case PROJECTOR_TYPE_KIMIVL:
  3881. {
  3882. // dynamic size
  3883. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3884. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3885. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3886. n_patches = x_patch * y_patch;
  3887. } break;
  3888. case PROJECTOR_TYPE_PIXTRAL:
  3889. case PROJECTOR_TYPE_LIGHTONOCR:
  3890. {
  3891. // dynamic size
  3892. int n_merge = ctx->model.hparams.n_merge;
  3893. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3894. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3895. if (ctx->model.token_embd_img_break) {
  3896. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3897. } else {
  3898. n_patches = n_patches_y * n_patches_x;
  3899. }
  3900. } break;
  3901. case PROJECTOR_TYPE_VOXTRAL:
  3902. case PROJECTOR_TYPE_ULTRAVOX:
  3903. case PROJECTOR_TYPE_QWEN2A:
  3904. {
  3905. n_patches = img->nx;
  3906. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3907. if (ctx->model.audio_has_stack_frames()) {
  3908. GGML_ASSERT(proj_stack_factor > 0);
  3909. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3910. n_patches = n_len / proj_stack_factor;
  3911. }
  3912. // whisper downscales input token by half after conv1d
  3913. n_patches /= 2;
  3914. if (ctx->model.audio_has_avgpool()) {
  3915. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3916. n_patches /= 2;
  3917. }
  3918. } break;
  3919. case PROJECTOR_TYPE_COGVLM:
  3920. {
  3921. n_patches += 2; // for BOI and EOI token embeddings
  3922. } break;
  3923. default:
  3924. GGML_ABORT("unsupported projector type");
  3925. }
  3926. return n_patches;
  3927. }
  3928. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3929. clip_image_f32_batch imgs;
  3930. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3931. *img_copy = *img;
  3932. imgs.entries.push_back(std::move(img_copy));
  3933. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3934. }
  3935. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3936. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3937. int batch_size = imgs.entries.size();
  3938. // TODO @ngxson : implement batch size > 1 as a loop
  3939. // we don't need true batching support because the cgraph will gonna be big anyway
  3940. if (batch_size != 1) {
  3941. return false; // only support batch size of 1
  3942. }
  3943. // build the inference graph
  3944. ctx->debug_print_tensors.clear();
  3945. ggml_backend_sched_reset(ctx->sched.get());
  3946. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3947. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3948. // set inputs
  3949. const auto & model = ctx->model;
  3950. const auto & hparams = model.hparams;
  3951. const int image_size_width = imgs.entries[0]->nx;
  3952. const int image_size_height = imgs.entries[0]->ny;
  3953. const int patch_size = hparams.patch_size;
  3954. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3955. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3956. const int pos_w = image_size_width / patch_size;
  3957. const int pos_h = image_size_height / patch_size;
  3958. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3959. auto get_inp_tensor = [&gf](const char * name) {
  3960. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3961. if (inp == nullptr) {
  3962. GGML_ABORT("Failed to get tensor %s", name);
  3963. }
  3964. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3965. GGML_ABORT("Tensor %s is not an input tensor", name);
  3966. }
  3967. return inp;
  3968. };
  3969. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3970. ggml_tensor * cur = get_inp_tensor(name);
  3971. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3972. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3973. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3974. };
  3975. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3976. ggml_tensor * cur = get_inp_tensor(name);
  3977. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3978. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3979. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3980. };
  3981. // set input pixel values
  3982. if (!imgs.is_audio) {
  3983. size_t nelem = 0;
  3984. for (const auto & img : imgs.entries) {
  3985. nelem += img->nx * img->ny * 3;
  3986. }
  3987. std::vector<float> inp_raw(nelem);
  3988. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3989. //
  3990. // ┌──W──┐
  3991. // │ H │ channel = R
  3992. // ├─────┤ │
  3993. // │ H │ channel = G
  3994. // ├─────┤ │
  3995. // │ H │ channel = B
  3996. // └─────┘ │
  3997. // ──────┘ x B
  3998. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3999. const int nx = imgs.entries[i]->nx;
  4000. const int ny = imgs.entries[i]->ny;
  4001. const int n = nx * ny;
  4002. for (int b = 0; b < batch_size; b++) {
  4003. float * batch_entry = inp_raw.data() + b * (3*n);
  4004. for (int y = 0; y < ny; y++) {
  4005. for (int x = 0; x < nx; x++) {
  4006. size_t base_src = 3*(y * nx + x); // idx of the first channel
  4007. size_t base_dst = y * nx + x; // idx of the first channel
  4008. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  4009. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  4010. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  4011. }
  4012. }
  4013. }
  4014. }
  4015. set_input_f32("inp_raw", inp_raw);
  4016. } else {
  4017. // audio input
  4018. GGML_ASSERT(imgs.entries.size() == 1);
  4019. const auto & mel_inp = imgs.entries[0];
  4020. const int n_step = mel_inp->nx;
  4021. const int n_mel = mel_inp->ny;
  4022. std::vector<float> inp_raw(n_step * n_mel);
  4023. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  4024. set_input_f32("inp_raw", inp_raw);
  4025. }
  4026. // set input per projector
  4027. switch (ctx->model.proj_type) {
  4028. case PROJECTOR_TYPE_MINICPMV:
  4029. {
  4030. // inspired from siglip:
  4031. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  4032. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  4033. std::vector<int32_t> positions(pos_h * pos_w);
  4034. int bucket_coords_h[1024];
  4035. int bucket_coords_w[1024];
  4036. for (int i = 0; i < pos_h; i++){
  4037. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  4038. }
  4039. for (int i = 0; i < pos_w; i++){
  4040. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  4041. }
  4042. for (int i = 0, id = 0; i < pos_h; i++){
  4043. for (int j = 0; j < pos_w; j++){
  4044. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  4045. }
  4046. }
  4047. set_input_i32("positions", positions);
  4048. // inputs for resampler projector
  4049. // set the 2D positions (using float for sinusoidal embedding)
  4050. int n_patches_per_col = image_size_width / patch_size;
  4051. std::vector<float> pos_data(n_pos);
  4052. // dimension H
  4053. for (int i = 0; i < n_pos; i++) {
  4054. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  4055. }
  4056. set_input_f32("pos_h", pos_data);
  4057. // dimension W
  4058. for (int i = 0; i < n_pos; i++) {
  4059. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  4060. }
  4061. set_input_f32("pos_w", pos_data);
  4062. // base frequency omega
  4063. const float base_freq = 10000.0f;
  4064. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  4065. std::vector<float> omega(n_embd_proj / 4);
  4066. for (int i = 0; i < n_embd_proj / 4; ++i) {
  4067. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  4068. }
  4069. set_input_f32("omega", omega);
  4070. } break;
  4071. case PROJECTOR_TYPE_QWEN2VL:
  4072. case PROJECTOR_TYPE_QWEN3VL:
  4073. {
  4074. const int merge_ratio = hparams.n_merge;
  4075. const int pw = image_size_width / patch_size;
  4076. const int ph = image_size_height / patch_size;
  4077. std::vector<int> positions(n_pos * 4);
  4078. int ptr = 0;
  4079. for (int y = 0; y < ph; y += merge_ratio) {
  4080. for (int x = 0; x < pw; x += merge_ratio) {
  4081. for (int dy = 0; dy < 2; dy++) {
  4082. for (int dx = 0; dx < 2; dx++) {
  4083. positions[ ptr] = y + dy;
  4084. positions[ num_patches + ptr] = x + dx;
  4085. positions[2 * num_patches + ptr] = y + dy;
  4086. positions[3 * num_patches + ptr] = x + dx;
  4087. ptr++;
  4088. }
  4089. }
  4090. }
  4091. }
  4092. set_input_i32("positions", positions);
  4093. } break;
  4094. case PROJECTOR_TYPE_QWEN25VL:
  4095. {
  4096. // pw * ph = number of tokens output by ViT after apply patch merger
  4097. // ipw * ipw = number of vision token been processed inside ViT
  4098. const int merge_ratio = 2;
  4099. const int pw = image_size_width / patch_size / merge_ratio;
  4100. const int ph = image_size_height / patch_size / merge_ratio;
  4101. const int ipw = image_size_width / patch_size;
  4102. const int iph = image_size_height / patch_size;
  4103. std::vector<int> idx (ph * pw);
  4104. std::vector<int> inv_idx(ph * pw);
  4105. if (use_window_attn) {
  4106. const int attn_window_size = 112;
  4107. const int grid_window = attn_window_size / patch_size / merge_ratio;
  4108. int dst = 0;
  4109. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  4110. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  4111. int mask_row = 0;
  4112. for (int y = 0; y < ph; y += grid_window) {
  4113. for (int x = 0; x < pw; x += grid_window) {
  4114. const int win_h = std::min(grid_window, ph - y);
  4115. const int win_w = std::min(grid_window, pw - x);
  4116. const int dst_0 = dst;
  4117. // group all tokens belong to the same window togather (to a continue range)
  4118. for (int dy = 0; dy < win_h; dy++) {
  4119. for (int dx = 0; dx < win_w; dx++) {
  4120. const int src = (y + dy) * pw + (x + dx);
  4121. GGML_ASSERT(src < (int)idx.size());
  4122. GGML_ASSERT(dst < (int)inv_idx.size());
  4123. idx [src] = dst;
  4124. inv_idx[dst] = src;
  4125. dst++;
  4126. }
  4127. }
  4128. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4129. int row_offset = mask_row * (ipw * iph);
  4130. std::fill(
  4131. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4132. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4133. 0.0);
  4134. mask_row++;
  4135. }
  4136. }
  4137. }
  4138. set_input_i32("window_idx", idx);
  4139. set_input_i32("inv_window_idx", inv_idx);
  4140. set_input_f32("window_mask", mask);
  4141. } else {
  4142. for (int i = 0; i < ph * pw; i++) {
  4143. idx[i] = i;
  4144. }
  4145. }
  4146. const int mpow = merge_ratio * merge_ratio;
  4147. std::vector<int> positions(n_pos * 4);
  4148. int ptr = 0;
  4149. for (int y = 0; y < iph; y += merge_ratio) {
  4150. for (int x = 0; x < ipw; x += merge_ratio) {
  4151. for (int dy = 0; dy < 2; dy++) {
  4152. for (int dx = 0; dx < 2; dx++) {
  4153. auto remap = idx[ptr / mpow];
  4154. remap = (remap * mpow) + (ptr % mpow);
  4155. positions[ remap] = y + dy;
  4156. positions[ num_patches + remap] = x + dx;
  4157. positions[2 * num_patches + remap] = y + dy;
  4158. positions[3 * num_patches + remap] = x + dx;
  4159. ptr++;
  4160. }
  4161. }
  4162. }
  4163. }
  4164. set_input_i32("positions", positions);
  4165. } break;
  4166. case PROJECTOR_TYPE_PIXTRAL:
  4167. case PROJECTOR_TYPE_KIMIVL:
  4168. case PROJECTOR_TYPE_LIGHTONOCR:
  4169. {
  4170. // set the 2D positions
  4171. int n_patches_per_col = image_size_width / patch_size;
  4172. std::vector<int> pos_data(n_pos);
  4173. // dimension H
  4174. for (int i = 0; i < n_pos; i++) {
  4175. pos_data[i] = i / n_patches_per_col;
  4176. }
  4177. set_input_i32("pos_h", pos_data);
  4178. // dimension W
  4179. for (int i = 0; i < n_pos; i++) {
  4180. pos_data[i] = i % n_patches_per_col;
  4181. }
  4182. set_input_i32("pos_w", pos_data);
  4183. } break;
  4184. case PROJECTOR_TYPE_GLM_EDGE:
  4185. {
  4186. // llava and other models
  4187. std::vector<int32_t> positions(n_pos);
  4188. for (int i = 0; i < n_pos; i++) {
  4189. positions[i] = i;
  4190. }
  4191. set_input_i32("positions", positions);
  4192. } break;
  4193. case PROJECTOR_TYPE_MLP:
  4194. case PROJECTOR_TYPE_MLP_NORM:
  4195. case PROJECTOR_TYPE_LDP:
  4196. case PROJECTOR_TYPE_LDPV2:
  4197. {
  4198. // llava and other models
  4199. std::vector<int32_t> positions(n_pos);
  4200. for (int i = 0; i < n_pos; i++) {
  4201. positions[i] = i;
  4202. }
  4203. set_input_i32("positions", positions);
  4204. // The patches vector is used to get rows to index into the embeds with;
  4205. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4206. // when retrieving the rows.
  4207. int patch_offset = model.class_embedding ? 1 : 0;
  4208. std::vector<int32_t> patches(num_patches);
  4209. for (int i = 0; i < num_patches; i++) {
  4210. patches[i] = i + patch_offset;
  4211. }
  4212. set_input_i32("patches", patches);
  4213. } break;
  4214. case PROJECTOR_TYPE_GEMMA3:
  4215. case PROJECTOR_TYPE_IDEFICS3:
  4216. case PROJECTOR_TYPE_INTERNVL:
  4217. case PROJECTOR_TYPE_QWEN2A:
  4218. case PROJECTOR_TYPE_ULTRAVOX:
  4219. case PROJECTOR_TYPE_LFM2:
  4220. case PROJECTOR_TYPE_VOXTRAL:
  4221. case PROJECTOR_TYPE_JANUS_PRO:
  4222. case PROJECTOR_TYPE_COGVLM:
  4223. {
  4224. // do nothing
  4225. } break;
  4226. case PROJECTOR_TYPE_LLAMA4:
  4227. {
  4228. // set the 2D positions
  4229. int n_patches_per_col = image_size_width / patch_size;
  4230. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4231. // last pos is always kept 0, it's for CLS
  4232. // dimension H
  4233. for (int i = 0; i < num_patches; i++) {
  4234. pos_data[i] = (i / n_patches_per_col) + 1;
  4235. }
  4236. set_input_i32("pos_h", pos_data);
  4237. // dimension W
  4238. for (int i = 0; i < num_patches; i++) {
  4239. pos_data[i] = (i % n_patches_per_col) + 1;
  4240. }
  4241. set_input_i32("pos_w", pos_data);
  4242. } break;
  4243. default:
  4244. GGML_ABORT("Unknown projector type");
  4245. }
  4246. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4247. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4248. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4249. if (reg) {
  4250. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4251. if (ggml_backend_set_n_threads_fn) {
  4252. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4253. }
  4254. }
  4255. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4256. if (status != GGML_STATUS_SUCCESS) {
  4257. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4258. return false;
  4259. }
  4260. // print debug nodes
  4261. if (ctx->debug_graph) {
  4262. LOG_INF("\n\n---\n\n");
  4263. LOG_INF("\n\nDebug graph:\n\n");
  4264. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4265. std::vector<uint8_t> data(ggml_nbytes(t));
  4266. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4267. print_tensor_shape(t);
  4268. print_tensor_data(t, data.data(), 3);
  4269. }
  4270. }
  4271. // the last node is the embedding tensor
  4272. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4273. // sanity check (only support batch size of 1 for now)
  4274. const int n_tokens_out = embeddings->ne[1];
  4275. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4276. if (n_tokens_out != expected_n_tokens_out) {
  4277. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4278. GGML_ABORT("Invalid number of output tokens");
  4279. }
  4280. // copy the embeddings to the location passed by the user
  4281. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4282. return true;
  4283. }
  4284. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4285. switch (ctx->model.proj_type) {
  4286. case PROJECTOR_TYPE_LDP:
  4287. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4288. case PROJECTOR_TYPE_LDPV2:
  4289. return ctx->model.mm_model_peg_0_b->ne[0];
  4290. case PROJECTOR_TYPE_MLP:
  4291. case PROJECTOR_TYPE_PIXTRAL:
  4292. case PROJECTOR_TYPE_LIGHTONOCR:
  4293. return ctx->model.mm_2_w->ne[1];
  4294. case PROJECTOR_TYPE_MLP_NORM:
  4295. return ctx->model.mm_3_b->ne[0];
  4296. case PROJECTOR_TYPE_MINICPMV:
  4297. return ctx->model.mm_model_proj->ne[0];
  4298. case PROJECTOR_TYPE_GLM_EDGE:
  4299. return ctx->model.mm_model_mlp_3_w->ne[1];
  4300. case PROJECTOR_TYPE_QWEN2VL:
  4301. case PROJECTOR_TYPE_QWEN25VL:
  4302. case PROJECTOR_TYPE_JANUS_PRO:
  4303. return ctx->model.mm_1_b->ne[0];
  4304. case PROJECTOR_TYPE_QWEN3VL:
  4305. // main path + deepstack paths
  4306. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4307. case PROJECTOR_TYPE_GEMMA3:
  4308. return ctx->model.mm_input_proj_w->ne[0];
  4309. case PROJECTOR_TYPE_IDEFICS3:
  4310. return ctx->model.projection->ne[1];
  4311. case PROJECTOR_TYPE_ULTRAVOX:
  4312. case PROJECTOR_TYPE_VOXTRAL:
  4313. return ctx->model.mm_2_w->ne[1];
  4314. case PROJECTOR_TYPE_INTERNVL:
  4315. return ctx->model.mm_3_w->ne[1];
  4316. case PROJECTOR_TYPE_LLAMA4:
  4317. return ctx->model.mm_model_proj->ne[1];
  4318. case PROJECTOR_TYPE_QWEN2A:
  4319. return ctx->model.mm_fc_w->ne[1];
  4320. case PROJECTOR_TYPE_LFM2:
  4321. case PROJECTOR_TYPE_KIMIVL:
  4322. return ctx->model.mm_2_w->ne[1];
  4323. case PROJECTOR_TYPE_COGVLM:
  4324. return ctx->model.mm_4h_to_h_w->ne[1];
  4325. default:
  4326. GGML_ABORT("Unknown projector type");
  4327. }
  4328. }
  4329. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4330. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4331. return ctx->model.hparams.minicpmv_version;
  4332. }
  4333. return 0;
  4334. }
  4335. bool clip_is_glm(const struct clip_ctx * ctx) {
  4336. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4337. }
  4338. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4339. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4340. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4341. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4342. }
  4343. bool clip_is_llava(const struct clip_ctx * ctx) {
  4344. return ctx->model.hparams.has_llava_projector;
  4345. }
  4346. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4347. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4348. }
  4349. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4350. return ctx->model.modality == CLIP_MODALITY_VISION;
  4351. }
  4352. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4353. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4354. }
  4355. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4356. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4357. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4358. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4359. }
  4360. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4361. clip_image_f32 clip_img;
  4362. clip_img.buf.resize(h * w * 3);
  4363. for (int i = 0; i < h*w*3; i++)
  4364. {
  4365. clip_img.buf[i] = img[i];
  4366. }
  4367. clip_img.nx = w;
  4368. clip_img.ny = h;
  4369. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4370. return true;
  4371. }
  4372. //
  4373. // API used internally with mtmd
  4374. //
  4375. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4376. return ctx->proj_type();
  4377. }
  4378. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4379. clip_image_f32 * audio = new clip_image_f32;
  4380. audio->nx = n_frames;
  4381. audio->ny = n_mel;
  4382. audio->buf.resize(n_frames * n_mel);
  4383. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4384. batch->entries.push_back(clip_image_f32_ptr(audio));
  4385. batch->is_audio = true;
  4386. }