batched.cpp 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <algorithm>
  4. #include <cmath>
  5. #include <cstdio>
  6. #include <string>
  7. #include <vector>
  8. static void print_usage(int argc, char ** argv, const gpt_params & params) {
  9. gpt_params_print_usage(argc, argv, params);
  10. LOG_TEE("\nexample usage:\n");
  11. LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
  12. LOG_TEE("\n");
  13. }
  14. int main(int argc, char ** argv) {
  15. gpt_params params;
  16. params.prompt = "Hello my name is";
  17. params.n_predict = 32;
  18. if (!gpt_params_parse(argc, argv, params)) {
  19. print_usage(argc, argv, params);
  20. return 1;
  21. }
  22. // number of parallel batches
  23. int n_parallel = params.n_parallel;
  24. // total length of the sequences including the prompt
  25. int n_predict = 32;
  26. // init LLM
  27. llama_backend_init();
  28. llama_numa_init(params.numa);
  29. // initialize the model
  30. llama_model_params model_params = llama_model_params_from_gpt_params(params);
  31. llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
  32. if (model == NULL) {
  33. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  34. return 1;
  35. }
  36. // tokenize the prompt
  37. std::vector<llama_token> tokens_list;
  38. tokens_list = ::llama_tokenize(model, params.prompt, true);
  39. const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
  40. // initialize the context
  41. llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
  42. ctx_params.n_ctx = n_kv_req;
  43. ctx_params.n_batch = std::max(n_predict, n_parallel);
  44. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  45. if (ctx == NULL) {
  46. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  47. return 1;
  48. }
  49. const int n_ctx = llama_n_ctx(ctx);
  50. LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
  51. // make sure the KV cache is big enough to hold all the prompt and generated tokens
  52. if (n_kv_req > n_ctx) {
  53. LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
  54. LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
  55. return 1;
  56. }
  57. // print the prompt token-by-token
  58. fprintf(stderr, "\n");
  59. for (auto id : tokens_list) {
  60. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  61. }
  62. fflush(stderr);
  63. // create a llama_batch
  64. // we use this object to submit token data for decoding
  65. llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
  66. // evaluate the initial prompt
  67. for (size_t i = 0; i < tokens_list.size(); ++i) {
  68. llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
  69. }
  70. GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
  71. // llama_decode will output logits only for the last token of the prompt
  72. batch.logits[batch.n_tokens - 1] = true;
  73. if (llama_decode(ctx, batch) != 0) {
  74. LOG_TEE("%s: llama_decode() failed\n", __func__);
  75. return 1;
  76. }
  77. // assign the system KV cache to all parallel sequences
  78. // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
  79. for (int32_t i = 1; i < n_parallel; ++i) {
  80. llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
  81. }
  82. if (n_parallel > 1) {
  83. LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
  84. }
  85. // main loop
  86. // we will store the parallel decoded sequences in this vector
  87. std::vector<std::string> streams(n_parallel);
  88. // remember the batch index of the last token for each parallel sequence
  89. // we need this to determine which logits to sample from
  90. std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
  91. int n_cur = batch.n_tokens;
  92. int n_decode = 0;
  93. const auto t_main_start = ggml_time_us();
  94. while (n_cur <= n_predict) {
  95. // prepare the next batch
  96. llama_batch_clear(batch);
  97. // sample the next token for each parallel sequence / stream
  98. for (int32_t i = 0; i < n_parallel; ++i) {
  99. if (i_batch[i] < 0) {
  100. // the stream has already finished
  101. continue;
  102. }
  103. auto n_vocab = llama_n_vocab(model);
  104. auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
  105. std::vector<llama_token_data> candidates;
  106. candidates.reserve(n_vocab);
  107. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  108. candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
  109. }
  110. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  111. const int top_k = 40;
  112. const float top_p = 0.9f;
  113. const float temp = 0.4f;
  114. llama_sample_top_k(ctx, &candidates_p, top_k, 1);
  115. llama_sample_top_p(ctx, &candidates_p, top_p, 1);
  116. llama_sample_temp (ctx, &candidates_p, temp);
  117. const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
  118. //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
  119. // is it an end of generation? -> mark the stream as finished
  120. if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
  121. i_batch[i] = -1;
  122. LOG_TEE("\n");
  123. if (n_parallel > 1) {
  124. LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
  125. }
  126. continue;
  127. }
  128. // if there is only one stream, we print immediately to stdout
  129. if (n_parallel == 1) {
  130. LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
  131. fflush(stdout);
  132. }
  133. streams[i] += llama_token_to_piece(ctx, new_token_id);
  134. i_batch[i] = batch.n_tokens;
  135. // push this new token for next evaluation
  136. llama_batch_add(batch, new_token_id, n_cur, { i }, true);
  137. n_decode += 1;
  138. }
  139. // all streams are finished
  140. if (batch.n_tokens == 0) {
  141. break;
  142. }
  143. n_cur += 1;
  144. // evaluate the current batch with the transformer model
  145. if (llama_decode(ctx, batch)) {
  146. fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
  147. return 1;
  148. }
  149. }
  150. LOG_TEE("\n");
  151. if (n_parallel > 1) {
  152. LOG_TEE("\n");
  153. for (int32_t i = 0; i < n_parallel; ++i) {
  154. LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
  155. }
  156. }
  157. const auto t_main_end = ggml_time_us();
  158. LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  159. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  160. llama_print_timings(ctx);
  161. fprintf(stderr, "\n");
  162. llama_batch_free(batch);
  163. llama_free(ctx);
  164. llama_free_model(model);
  165. llama_backend_free();
  166. return 0;
  167. }