1
0

ggml-backend.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  38. if (buft->iface.is_host) {
  39. return buft->iface.is_host(buft);
  40. }
  41. return false;
  42. }
  43. // backend buffer
  44. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  45. ggml_backend_buffer_type_t buft,
  46. struct ggml_backend_buffer_i iface,
  47. ggml_backend_buffer_context_t context,
  48. size_t size) {
  49. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  50. (*buffer) = (struct ggml_backend_buffer) {
  51. /* .interface = */ iface,
  52. /* .buft = */ buft,
  53. /* .context = */ context,
  54. /* .size = */ size,
  55. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  56. };
  57. return buffer;
  58. }
  59. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  60. return buffer->iface.get_name(buffer);
  61. }
  62. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  63. if (buffer == NULL) {
  64. return;
  65. }
  66. if (buffer->iface.free_buffer != NULL) {
  67. buffer->iface.free_buffer(buffer);
  68. }
  69. free(buffer);
  70. }
  71. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  72. return buffer->size;
  73. }
  74. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  75. void * base = buffer->iface.get_base(buffer);
  76. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  77. return base;
  78. }
  79. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  80. // init_tensor is optional
  81. if (buffer->iface.init_tensor) {
  82. buffer->iface.init_tensor(buffer, tensor);
  83. }
  84. }
  85. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  86. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  87. }
  88. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  92. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  93. }
  94. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  95. buffer->iface.clear(buffer, value);
  96. }
  97. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  98. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  99. }
  100. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  101. buffer->usage = usage;
  102. // FIXME: add a generic callback to the buffer interface
  103. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  104. ggml_backend_multi_buffer_set_usage(buffer, usage);
  105. }
  106. }
  107. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  108. return buffer->buft;
  109. }
  110. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  111. if (buffer->iface.reset) {
  112. buffer->iface.reset(buffer);
  113. }
  114. }
  115. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  116. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  117. if (dst_buf->iface.cpy_tensor) {
  118. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  119. }
  120. return false;
  121. }
  122. // backend
  123. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  124. if (backend == NULL) {
  125. return NULL;
  126. }
  127. return backend->guid;
  128. }
  129. const char * ggml_backend_name(ggml_backend_t backend) {
  130. if (backend == NULL) {
  131. return "NULL";
  132. }
  133. return backend->iface.get_name(backend);
  134. }
  135. void ggml_backend_free(ggml_backend_t backend) {
  136. if (backend == NULL) {
  137. return;
  138. }
  139. backend->iface.free(backend);
  140. }
  141. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  142. return backend->iface.get_default_buffer_type(backend);
  143. }
  144. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  145. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  146. }
  147. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  148. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  149. }
  150. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  151. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  152. }
  153. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  154. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  155. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  156. if (backend->iface.set_tensor_async == NULL) {
  157. ggml_backend_tensor_set(tensor, data, offset, size);
  158. } else {
  159. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  160. }
  161. }
  162. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  163. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  164. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  165. if (backend->iface.get_tensor_async == NULL) {
  166. ggml_backend_tensor_get(tensor, data, offset, size);
  167. } else {
  168. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  169. }
  170. }
  171. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  172. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  173. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  174. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  175. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  176. if (!size) {
  177. return;
  178. }
  179. buf->iface.set_tensor(buf, tensor, data, offset, size);
  180. }
  181. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  182. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  183. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  184. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  185. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  186. if (!size) {
  187. return;
  188. }
  189. buf->iface.get_tensor(buf, tensor, data, offset, size);
  190. }
  191. void ggml_backend_synchronize(ggml_backend_t backend) {
  192. if (backend->iface.synchronize == NULL) {
  193. return;
  194. }
  195. backend->iface.synchronize(backend);
  196. }
  197. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  198. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  199. return backend->iface.graph_plan_create(backend, cgraph);
  200. }
  201. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  202. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  203. backend->iface.graph_plan_free(backend, plan);
  204. }
  205. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  206. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  207. return backend->iface.graph_plan_compute(backend, plan);
  208. }
  209. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  210. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  211. ggml_backend_synchronize(backend);
  212. return err;
  213. }
  214. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  215. return backend->iface.graph_compute(backend, cgraph);
  216. }
  217. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  218. return backend->iface.supports_op(backend, op);
  219. }
  220. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  221. return backend->iface.supports_buft(backend, buft);
  222. }
  223. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  224. if (backend->iface.offload_op != NULL) {
  225. return backend->iface.offload_op(backend, op);
  226. }
  227. return false;
  228. }
  229. // backend copy
  230. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  231. if (a->type != b->type) {
  232. return false;
  233. }
  234. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  235. if (a->ne[i] != b->ne[i]) {
  236. return false;
  237. }
  238. if (a->nb[i] != b->nb[i]) {
  239. return false;
  240. }
  241. }
  242. return true;
  243. }
  244. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  245. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  246. if (src == dst) {
  247. return;
  248. }
  249. if (ggml_backend_buffer_is_host(src->buffer)) {
  250. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  251. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  252. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  253. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  254. #ifndef NDEBUG
  255. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  256. #endif
  257. size_t nbytes = ggml_nbytes(src);
  258. void * data = malloc(nbytes);
  259. ggml_backend_tensor_get(src, data, 0, nbytes);
  260. ggml_backend_tensor_set(dst, data, 0, nbytes);
  261. free(data);
  262. }
  263. }
  264. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  265. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  266. if (src == dst) {
  267. return;
  268. }
  269. if (backend_dst->iface.cpy_tensor_async != NULL) {
  270. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  271. return;
  272. }
  273. }
  274. // an async copy would normally happen after all the queued operations on both backends are completed
  275. // sync src, set_async dst
  276. if (ggml_backend_buffer_is_host(src->buffer)) {
  277. ggml_backend_synchronize(backend_src);
  278. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  279. } else {
  280. ggml_backend_synchronize(backend_src);
  281. ggml_backend_tensor_copy(src, dst);
  282. ggml_backend_synchronize(backend_dst);
  283. }
  284. }
  285. // events
  286. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  287. if (backend->iface.event_new == NULL) {
  288. return NULL;
  289. }
  290. return backend->iface.event_new(backend);
  291. }
  292. void ggml_backend_event_free(ggml_backend_event_t event) {
  293. if (event == NULL) {
  294. return;
  295. }
  296. event->backend->iface.event_free(event);
  297. }
  298. void ggml_backend_event_record(ggml_backend_event_t event) {
  299. GGML_ASSERT(event->backend->iface.event_record != NULL);
  300. event->backend->iface.event_record(event);
  301. }
  302. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  303. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  304. event->backend->iface.event_synchronize(event);
  305. }
  306. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  307. GGML_ASSERT(backend->iface.event_wait != NULL);
  308. backend->iface.event_wait(backend, event);
  309. }
  310. // backend registry
  311. #define GGML_REG_MAX_BACKENDS 16
  312. struct ggml_backend_reg {
  313. char name[128];
  314. ggml_backend_init_fn init_fn;
  315. ggml_backend_buffer_type_t default_buffer_type;
  316. void * user_data;
  317. };
  318. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  319. static size_t ggml_backend_registry_count = 0;
  320. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  321. GGML_CALL static void ggml_backend_registry_init(void) {
  322. static bool initialized = false;
  323. if (initialized) {
  324. return;
  325. }
  326. initialized = true;
  327. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  328. // add forward decls here to avoid including the backend headers
  329. #ifdef GGML_USE_CUDA
  330. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  331. ggml_backend_cuda_reg_devices();
  332. #endif
  333. #ifdef GGML_USE_SYCL
  334. extern void ggml_backend_sycl_reg_devices(void);
  335. ggml_backend_sycl_reg_devices();
  336. #endif
  337. #ifdef GGML_USE_METAL
  338. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  339. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  340. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  341. #endif
  342. #ifdef GGML_USE_VULKAN
  343. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  344. ggml_backend_vk_reg_devices();
  345. #endif
  346. #ifdef GGML_USE_KOMPUTE
  347. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  348. ggml_backend_kompute_reg_devices();
  349. #endif
  350. }
  351. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  352. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  353. size_t id = ggml_backend_registry_count;
  354. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  355. /* .name = */ {0},
  356. /* .fn = */ init_fn,
  357. /* .default_buffer_type = */ default_buffer_type,
  358. /* .user_data = */ user_data,
  359. };
  360. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  361. #ifndef NDEBUG
  362. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  363. #endif
  364. ggml_backend_registry_count++;
  365. }
  366. size_t ggml_backend_reg_get_count(void) {
  367. ggml_backend_registry_init();
  368. return ggml_backend_registry_count;
  369. }
  370. size_t ggml_backend_reg_find_by_name(const char * name) {
  371. ggml_backend_registry_init();
  372. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  373. // TODO: case insensitive in a portable way
  374. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  375. return i;
  376. }
  377. }
  378. // not found
  379. return SIZE_MAX;
  380. }
  381. // init from backend:params string
  382. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  383. ggml_backend_registry_init();
  384. const char * params = strchr(backend_str, ':');
  385. char backend_name[128];
  386. if (params == NULL) {
  387. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  388. params = "";
  389. } else {
  390. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  391. params++;
  392. }
  393. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  394. if (backend_i == SIZE_MAX) {
  395. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  396. return NULL;
  397. }
  398. return ggml_backend_reg_init_backend(backend_i, params);
  399. }
  400. const char * ggml_backend_reg_get_name(size_t i) {
  401. ggml_backend_registry_init();
  402. GGML_ASSERT(i < ggml_backend_registry_count);
  403. return ggml_backend_registry[i].name;
  404. }
  405. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  406. ggml_backend_registry_init();
  407. GGML_ASSERT(i < ggml_backend_registry_count);
  408. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  409. }
  410. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  411. ggml_backend_registry_init();
  412. GGML_ASSERT(i < ggml_backend_registry_count);
  413. return ggml_backend_registry[i].default_buffer_type;
  414. }
  415. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  416. ggml_backend_registry_init();
  417. GGML_ASSERT(i < ggml_backend_registry_count);
  418. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  419. }
  420. // backend CPU
  421. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  422. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  423. return "CPU";
  424. GGML_UNUSED(buffer);
  425. }
  426. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  427. uintptr_t data = (uintptr_t)buffer->context;
  428. // align the buffer
  429. if (data % TENSOR_ALIGNMENT != 0) {
  430. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  431. }
  432. return (void *)data;
  433. }
  434. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  435. free(buffer->context);
  436. }
  437. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  438. memcpy((char *)tensor->data + offset, data, size);
  439. GGML_UNUSED(buffer);
  440. }
  441. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  442. memcpy(data, (const char *)tensor->data + offset, size);
  443. GGML_UNUSED(buffer);
  444. }
  445. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  446. if (ggml_backend_buffer_is_host(src->buffer)) {
  447. memcpy(dst->data, src->data, ggml_nbytes(src));
  448. return true;
  449. }
  450. return false;
  451. GGML_UNUSED(buffer);
  452. }
  453. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  454. memset(buffer->context, value, buffer->size);
  455. }
  456. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  457. /* .get_name = */ ggml_backend_cpu_buffer_name,
  458. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  459. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  460. /* .init_tensor = */ NULL, // no initialization required
  461. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  462. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  463. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  464. /* .clear = */ ggml_backend_cpu_buffer_clear,
  465. /* .reset = */ NULL,
  466. };
  467. // for buffers from ptr, free is not called
  468. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  469. /* .get_name = */ ggml_backend_cpu_buffer_name,
  470. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  471. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  472. /* .init_tensor = */ NULL, // no initialization required
  473. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  474. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  475. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  476. /* .clear = */ ggml_backend_cpu_buffer_clear,
  477. /* .reset = */ NULL,
  478. };
  479. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  480. return "CPU";
  481. GGML_UNUSED(buft);
  482. }
  483. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  484. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  485. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  486. if (data == NULL) {
  487. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  488. return NULL;
  489. }
  490. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  491. }
  492. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  493. return TENSOR_ALIGNMENT;
  494. GGML_UNUSED(buft);
  495. }
  496. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  497. return true;
  498. GGML_UNUSED(buft);
  499. }
  500. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  501. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  502. /* .iface = */ {
  503. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  504. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  505. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  506. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  507. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  508. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  509. },
  510. /* .context = */ NULL,
  511. };
  512. return &ggml_backend_cpu_buffer_type;
  513. }
  514. #ifdef GGML_USE_CPU_HBM
  515. // buffer type HBM
  516. #include <hbwmalloc.h>
  517. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  518. return "CPU_HBM";
  519. GGML_UNUSED(buft);
  520. }
  521. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  522. return "CPU_HBM";
  523. GGML_UNUSED(buf);
  524. }
  525. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  526. hbw_free(buffer->context);
  527. }
  528. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  529. //void * ptr = hbw_malloc(size);
  530. void * ptr;
  531. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  532. if (result != 0) {
  533. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  534. return NULL;
  535. }
  536. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  537. buffer->buft = buft;
  538. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  539. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  540. return buffer;
  541. }
  542. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  543. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  544. /* .iface = */ {
  545. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  546. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  547. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  548. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  549. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  550. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  551. },
  552. /* .context = */ NULL,
  553. };
  554. return &ggml_backend_cpu_buffer_type_hbm;
  555. }
  556. #endif
  557. struct ggml_backend_cpu_context {
  558. int n_threads;
  559. void * work_data;
  560. size_t work_size;
  561. ggml_abort_callback abort_callback;
  562. void * abort_callback_data;
  563. };
  564. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  565. return "CPU";
  566. GGML_UNUSED(backend);
  567. }
  568. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  569. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  570. free(cpu_ctx->work_data);
  571. free(cpu_ctx);
  572. free(backend);
  573. }
  574. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  575. return ggml_backend_cpu_buffer_type();
  576. GGML_UNUSED(backend);
  577. }
  578. struct ggml_backend_plan_cpu {
  579. struct ggml_cplan cplan;
  580. struct ggml_cgraph cgraph;
  581. };
  582. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  583. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  584. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  585. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  586. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  587. if (cpu_plan->cplan.work_size > 0) {
  588. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  589. if (cpu_plan->cplan.work_data == NULL) {
  590. free(cpu_plan);
  591. return NULL;
  592. }
  593. }
  594. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  595. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  596. return cpu_plan;
  597. }
  598. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  599. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  600. free(cpu_plan->cplan.work_data);
  601. free(cpu_plan);
  602. GGML_UNUSED(backend);
  603. }
  604. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  605. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  606. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  607. GGML_UNUSED(backend);
  608. }
  609. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  610. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  611. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  612. if (cpu_ctx->work_size < cplan.work_size) {
  613. free(cpu_ctx->work_data);
  614. cpu_ctx->work_data = malloc(cplan.work_size);
  615. if (cpu_ctx->work_data == NULL) {
  616. cpu_ctx->work_size = 0;
  617. return GGML_STATUS_ALLOC_FAILED;
  618. }
  619. cpu_ctx->work_size = cplan.work_size;
  620. }
  621. cplan.work_data = cpu_ctx->work_data;
  622. cplan.abort_callback = cpu_ctx->abort_callback;
  623. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  624. return ggml_graph_compute(cgraph, &cplan);
  625. }
  626. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  627. switch (op->op) {
  628. case GGML_OP_CPY:
  629. return
  630. op->type != GGML_TYPE_IQ2_XXS &&
  631. op->type != GGML_TYPE_IQ2_XS &&
  632. op->type != GGML_TYPE_IQ1_S &&
  633. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  634. case GGML_OP_MUL_MAT:
  635. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  636. default:
  637. return true;
  638. }
  639. GGML_UNUSED(backend);
  640. }
  641. GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  642. return ggml_backend_buft_is_host(buft);
  643. GGML_UNUSED(backend);
  644. }
  645. static struct ggml_backend_i cpu_backend_i = {
  646. /* .get_name = */ ggml_backend_cpu_name,
  647. /* .free = */ ggml_backend_cpu_free,
  648. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  649. /* .set_tensor_async = */ NULL,
  650. /* .get_tensor_async = */ NULL,
  651. /* .cpy_tensor_async = */ NULL,
  652. /* .synchronize = */ NULL,
  653. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  654. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  655. /* .graph_plan_update = */ NULL,
  656. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  657. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  658. /* .supports_op = */ ggml_backend_cpu_supports_op,
  659. /* .supports_buft = */ ggml_backend_cpu_supports_buft,
  660. /* .offload_op = */ NULL,
  661. /* .event_new = */ NULL,
  662. /* .event_free = */ NULL,
  663. /* .event_record = */ NULL,
  664. /* .event_wait = */ NULL,
  665. /* .event_synchronize = */ NULL,
  666. };
  667. static ggml_guid_t ggml_backend_cpu_guid(void) {
  668. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  669. return &guid;
  670. }
  671. ggml_backend_t ggml_backend_cpu_init(void) {
  672. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  673. if (ctx == NULL) {
  674. return NULL;
  675. }
  676. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  677. ctx->work_data = NULL;
  678. ctx->work_size = 0;
  679. ctx->abort_callback = NULL;
  680. ctx->abort_callback_data = NULL;
  681. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  682. if (cpu_backend == NULL) {
  683. free(ctx);
  684. return NULL;
  685. }
  686. *cpu_backend = (struct ggml_backend) {
  687. /* .guid = */ ggml_backend_cpu_guid(),
  688. /* .interface = */ cpu_backend_i,
  689. /* .context = */ ctx
  690. };
  691. return cpu_backend;
  692. }
  693. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  694. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  695. }
  696. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  697. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  698. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  699. ctx->n_threads = n_threads;
  700. }
  701. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  702. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  703. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  704. ctx->abort_callback = abort_callback;
  705. ctx->abort_callback_data = abort_callback_data;
  706. }
  707. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  708. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  709. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  710. }
  711. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  712. return ggml_backend_cpu_init();
  713. GGML_UNUSED(params);
  714. GGML_UNUSED(user_data);
  715. }
  716. // multi-buffer buffer
  717. struct ggml_backend_multi_buffer_context {
  718. ggml_backend_buffer_t * buffers;
  719. size_t n_buffers;
  720. };
  721. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  722. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  723. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  724. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  725. }
  726. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  727. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  728. for (size_t i = 0; i < ctx->n_buffers; i++) {
  729. ggml_backend_buffer_free(ctx->buffers[i]);
  730. }
  731. free(ctx->buffers);
  732. free(ctx);
  733. }
  734. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  735. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  736. for (size_t i = 0; i < ctx->n_buffers; i++) {
  737. ggml_backend_buffer_clear(ctx->buffers[i], value);
  738. }
  739. }
  740. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  741. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  742. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  743. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  744. /* .get_base = */ NULL,
  745. /* .init_tensor = */ NULL,
  746. /* .set_tensor = */ NULL,
  747. /* .get_tensor = */ NULL,
  748. /* .cpy_tensor = */ NULL,
  749. /* .clear = */ ggml_backend_multi_buffer_clear,
  750. /* .reset = */ NULL,
  751. };
  752. return multi_backend_buffer_i;
  753. }
  754. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  755. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  756. ctx->n_buffers = n_buffers;
  757. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  758. GGML_ASSERT(ctx->buffers != NULL);
  759. size_t total_size = 0;
  760. for (size_t i = 0; i < n_buffers; i++) {
  761. ctx->buffers[i] = buffers[i];
  762. total_size += ggml_backend_buffer_get_size(buffers[i]);
  763. }
  764. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  765. }
  766. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  767. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  768. }
  769. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  770. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  771. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  772. for (size_t i = 0; i < ctx->n_buffers; i++) {
  773. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  774. }
  775. }
  776. // creates a copy of the tensor with the same memory layout
  777. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  778. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  779. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  780. dup->nb[i] = tensor->nb[i];
  781. }
  782. return dup;
  783. }
  784. static bool ggml_is_view_op(enum ggml_op op) {
  785. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  786. }
  787. // scheduler
  788. #ifndef GGML_SCHED_MAX_BACKENDS
  789. #define GGML_SCHED_MAX_BACKENDS 16
  790. #endif
  791. #ifndef GGML_SCHED_MAX_SPLITS
  792. #define GGML_SCHED_MAX_SPLITS 2048
  793. #endif
  794. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  795. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  796. #endif
  797. #ifndef GGML_SCHED_MAX_COPIES
  798. #define GGML_SCHED_MAX_COPIES 4
  799. #endif
  800. struct ggml_backend_sched_split {
  801. int backend_id;
  802. int i_start;
  803. int i_end;
  804. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  805. int n_inputs;
  806. // graph view of this split
  807. struct ggml_cgraph graph;
  808. };
  809. struct ggml_backend_sched {
  810. bool is_reset; // true if the scheduler has been reset since the last graph split
  811. bool is_alloc;
  812. int n_backends;
  813. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  814. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  815. ggml_gallocr_t galloc;
  816. // hash keys of the nodes in the graph
  817. struct ggml_hash_set hash_set;
  818. // hash values
  819. int * tensor_backend_id;
  820. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  821. int * node_backend_ids; // [graph_size]
  822. int * leaf_backend_ids; // [graph_size]
  823. int * prev_node_backend_ids; // [graph_size]
  824. int * prev_leaf_backend_ids; // [graph_size]
  825. // copy of the graph with modified inputs
  826. struct ggml_cgraph * graph;
  827. // graph splits
  828. struct ggml_backend_sched_split * splits;
  829. int n_splits;
  830. int splits_capacity;
  831. // pipeline parallelism support
  832. int n_copies;
  833. int cur_copy;
  834. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  835. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  836. int n_graph_inputs;
  837. struct ggml_context * ctx;
  838. ggml_backend_sched_eval_callback callback_eval;
  839. void * callback_eval_user_data;
  840. bool debug;
  841. // align context_buffer to GGML_MEM_ALIGN
  842. #ifdef _MSC_VER
  843. __declspec(align(GGML_MEM_ALIGN))
  844. #else
  845. __attribute__((aligned(GGML_MEM_ALIGN)))
  846. #endif
  847. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  848. };
  849. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  850. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  851. // returns the priority of the backend, lower id is higher priority
  852. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  853. for (int i = 0; i < sched->n_backends; i++) {
  854. if (sched->backends[i] == backend) {
  855. return i;
  856. }
  857. }
  858. return -1;
  859. }
  860. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  861. ggml_backend_buffer_t buffer = tensor->buffer;
  862. if (buffer == NULL) {
  863. return -1;
  864. }
  865. // find highest prio backend that supports the buffer type and the op
  866. for (int i = 0; i < sched->n_backends; i++) {
  867. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  868. ggml_backend_supports_op(sched->backends[i], op)) {
  869. return i;
  870. }
  871. }
  872. #ifndef NDEBUG
  873. fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  874. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  875. #endif
  876. return -1;
  877. }
  878. #if 0
  879. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  880. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  881. #define GET_CAUSE(node) causes[hash_id(node)]
  882. #else
  883. #define SET_CAUSE(node, ...)
  884. #define GET_CAUSE(node) ""
  885. #endif
  886. // returns the backend that should be used for the node based on the current locations
  887. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  888. // TODO: use supports_op to check if the backend supports the op
  889. // assign pre-allocated nodes to their backend
  890. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  891. if (cur_backend_id != -1) {
  892. SET_CAUSE(tensor, "1.dst");
  893. return cur_backend_id;
  894. }
  895. // view_src
  896. if (tensor->view_src != NULL) {
  897. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  898. if (cur_backend_id != -1) {
  899. SET_CAUSE(tensor, "1.vsrc");
  900. return cur_backend_id;
  901. }
  902. }
  903. // graph input
  904. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  905. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  906. SET_CAUSE(tensor, "1.inp");
  907. return cur_backend_id;
  908. }
  909. // assign nodes that use weights to the backend of the weights
  910. // operations with weights are preferably run on the same backend as the weights
  911. for (int i = 0; i < GGML_MAX_SRC; i++) {
  912. const struct ggml_tensor * src = tensor->src[i];
  913. if (src == NULL) {
  914. continue;
  915. }
  916. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  917. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  918. // check if a backend with higher prio wants to offload the op
  919. if (src_backend_id == sched->n_backends - 1) {
  920. for (int b = 0; b < src_backend_id; b++) {
  921. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  922. SET_CAUSE(tensor, "1.off");
  923. return b;
  924. }
  925. }
  926. }
  927. SET_CAUSE(tensor, "1.wgt%d", i);
  928. return src_backend_id;
  929. }
  930. }
  931. return -1;
  932. }
  933. static char * fmt_size(size_t size) {
  934. static char buffer[128];
  935. if (size >= 1024*1024) {
  936. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  937. } else {
  938. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  939. }
  940. return buffer;
  941. }
  942. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  943. int cur_split = 0;
  944. for (int i = 0; i < graph->n_nodes; i++) {
  945. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  946. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  947. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  948. sched->splits[cur_split].n_inputs);
  949. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  950. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  951. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  952. }
  953. fprintf(stderr, "\n");
  954. cur_split++;
  955. }
  956. struct ggml_tensor * node = graph->nodes[i];
  957. if (ggml_is_view_op(node->op)) {
  958. continue;
  959. }
  960. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  961. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  962. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  963. for (int j = 0; j < GGML_MAX_SRC; j++) {
  964. struct ggml_tensor * src = node->src[j];
  965. if (src == NULL) {
  966. continue;
  967. }
  968. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  969. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  970. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  971. }
  972. fprintf(stderr, "\n");
  973. }
  974. }
  975. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  976. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  977. ggml_backend_buffer_type_t buft = NULL;
  978. if (buf) {
  979. // the tensor is already allocated
  980. buft = buf->buft;
  981. } else {
  982. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  983. int tensor_backend_id = tensor_backend_id(t);
  984. if (tensor_backend_id == -1 && t->view_src) {
  985. tensor_backend_id = tensor_backend_id(t->view_src);
  986. }
  987. if (tensor_backend_id != -1) {
  988. buft = sched->bufts[tensor_backend_id];
  989. }
  990. }
  991. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  992. }
  993. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  994. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  995. *node_backend_id = cur_backend_id;
  996. SET_CAUSE(node, "2.sup");
  997. }
  998. }
  999. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1000. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1001. // reset splits
  1002. sched->n_splits = 0;
  1003. sched->n_graph_inputs = 0;
  1004. sched->is_reset = false;
  1005. struct ggml_init_params params = {
  1006. /* .mem_size = */ sizeof(sched->context_buffer),
  1007. /* .mem_buffer = */ sched->context_buffer,
  1008. /* .no_alloc = */ true
  1009. };
  1010. ggml_free(sched->ctx);
  1011. sched->ctx = ggml_init(params);
  1012. if (sched->ctx == NULL) {
  1013. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  1014. GGML_ASSERT(false);
  1015. }
  1016. // pass 1: assign backends to ops with pre-allocated inputs
  1017. for (int i = 0; i < graph->n_leafs; i++) {
  1018. struct ggml_tensor * leaf = graph->leafs[i];
  1019. int * leaf_backend_id = &tensor_backend_id(leaf);
  1020. if (*leaf_backend_id != -1) {
  1021. // do not overwrite user assignments
  1022. continue;
  1023. }
  1024. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1025. }
  1026. for (int i = 0; i < graph->n_nodes; i++) {
  1027. struct ggml_tensor * node = graph->nodes[i];
  1028. int * node_backend_id = &tensor_backend_id(node);
  1029. if (*node_backend_id != -1) {
  1030. // do not overwrite user assignments
  1031. continue;
  1032. }
  1033. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1034. // src
  1035. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1036. struct ggml_tensor * src = node->src[j];
  1037. if (src == NULL) {
  1038. continue;
  1039. }
  1040. int * src_backend_id = &tensor_backend_id(src);
  1041. if (*src_backend_id == -1) {
  1042. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1043. }
  1044. }
  1045. }
  1046. // pass 2: expand current backend assignments
  1047. // assign the same backend to adjacent nodes
  1048. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1049. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1050. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  1051. // expand gpu down
  1052. {
  1053. int cur_backend_id = -1;
  1054. for (int i = 0; i < graph->n_nodes; i++) {
  1055. struct ggml_tensor * node = graph->nodes[i];
  1056. if (ggml_is_view_op(node->op)) {
  1057. continue;
  1058. }
  1059. int * node_backend_id = &tensor_backend_id(node);
  1060. if (*node_backend_id != -1) {
  1061. if (*node_backend_id == sched->n_backends - 1) {
  1062. // skip cpu (lowest prio backend)
  1063. cur_backend_id = -1;
  1064. } else {
  1065. cur_backend_id = *node_backend_id;
  1066. }
  1067. } else if (cur_backend_id != -1) {
  1068. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1069. }
  1070. }
  1071. }
  1072. // expand gpu up
  1073. {
  1074. int cur_backend_id = -1;
  1075. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1076. struct ggml_tensor * node = graph->nodes[i];
  1077. if (ggml_is_view_op(node->op)) {
  1078. continue;
  1079. }
  1080. int * node_backend_id = &tensor_backend_id(node);
  1081. if (*node_backend_id != -1) {
  1082. if (*node_backend_id == sched->n_backends - 1) {
  1083. // skip cpu (lowest prio backend)
  1084. cur_backend_id = -1;
  1085. } else {
  1086. cur_backend_id = *node_backend_id;
  1087. }
  1088. } else if (cur_backend_id != -1) {
  1089. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1090. }
  1091. }
  1092. }
  1093. // expand rest down
  1094. {
  1095. int cur_backend_id = -1;
  1096. for (int i = 0; i < graph->n_nodes; i++) {
  1097. struct ggml_tensor * node = graph->nodes[i];
  1098. if (ggml_is_view_op(node->op)) {
  1099. continue;
  1100. }
  1101. int * node_backend_id = &tensor_backend_id(node);
  1102. if (*node_backend_id != -1) {
  1103. cur_backend_id = *node_backend_id;
  1104. } else if (cur_backend_id != -1) {
  1105. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1106. }
  1107. }
  1108. }
  1109. // expand rest up
  1110. {
  1111. int cur_backend_id = -1;
  1112. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1113. struct ggml_tensor * node = graph->nodes[i];
  1114. if (ggml_is_view_op(node->op)) {
  1115. continue;
  1116. }
  1117. int * node_backend_id = &tensor_backend_id(node);
  1118. if (*node_backend_id != -1) {
  1119. cur_backend_id = *node_backend_id;
  1120. } else if (cur_backend_id != -1) {
  1121. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1122. }
  1123. }
  1124. }
  1125. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  1126. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  1127. // however, we also need to verify that the sources are in compatible buffer types
  1128. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  1129. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  1130. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  1131. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  1132. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  1133. for (int i = 0; i < graph->n_nodes; i++) {
  1134. struct ggml_tensor * node = graph->nodes[i];
  1135. if (ggml_is_view_op(node->op)) {
  1136. continue;
  1137. }
  1138. int * node_backend_id = &tensor_backend_id(node);
  1139. if (*node_backend_id == -1) {
  1140. // unassigned node: find the backend with the most supported inputs
  1141. int n_supported_best = -1;
  1142. for (int b = 0; b < sched->n_backends; b++) {
  1143. if (ggml_backend_supports_op(sched->backends[b], node)) {
  1144. int n_supported = 0;
  1145. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1146. struct ggml_tensor * src = node->src[j];
  1147. if (src == NULL) {
  1148. continue;
  1149. }
  1150. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1151. n_supported++;
  1152. }
  1153. }
  1154. if (n_supported > n_supported_best) {
  1155. n_supported_best = n_supported;
  1156. *node_backend_id = b;
  1157. SET_CAUSE(node, "3.best");
  1158. }
  1159. }
  1160. }
  1161. } else {
  1162. // assigned node: upgrade to higher prio backend if possible
  1163. for (int b = 0; b < *node_backend_id; b++) {
  1164. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1165. bool supported = true;
  1166. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1167. struct ggml_tensor * src = node->src[j];
  1168. if (src == NULL) {
  1169. continue;
  1170. }
  1171. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1172. supported = false;
  1173. break;
  1174. }
  1175. }
  1176. if (supported) {
  1177. *node_backend_id = b;
  1178. SET_CAUSE(node, "3.upg");
  1179. break;
  1180. }
  1181. }
  1182. }
  1183. }
  1184. }
  1185. // pass 4: assign backends to remaining src from dst and view_src
  1186. for (int i = 0; i < graph->n_nodes; i++) {
  1187. struct ggml_tensor * node = graph->nodes[i];
  1188. int * cur_backend_id = &tensor_backend_id(node);
  1189. if (node->view_src != NULL && *cur_backend_id == -1) {
  1190. *cur_backend_id = tensor_backend_id(node->view_src);
  1191. SET_CAUSE(node, "4.vsrc");
  1192. }
  1193. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1194. struct ggml_tensor * src = node->src[j];
  1195. if (src == NULL) {
  1196. continue;
  1197. }
  1198. int * src_backend_id = &tensor_backend_id(src);
  1199. if (*src_backend_id == -1) {
  1200. if (src->view_src != NULL) {
  1201. // views are always on the same backend as the source
  1202. *src_backend_id = tensor_backend_id(src->view_src);
  1203. SET_CAUSE(src, "4.vsrc");
  1204. } else {
  1205. *src_backend_id = *cur_backend_id;
  1206. SET_CAUSE(src, "4.cur");
  1207. }
  1208. }
  1209. }
  1210. }
  1211. // pass 4: split graph, find tensors that need to be copied
  1212. {
  1213. int i_split = 0;
  1214. struct ggml_backend_sched_split * split = &sched->splits[0];
  1215. // find the backend of the first split, skipping view ops
  1216. for (int i = 0; i < graph->n_nodes; i++) {
  1217. struct ggml_tensor * node = graph->nodes[i];
  1218. if (!ggml_is_view_op(node->op)) {
  1219. split->backend_id = tensor_backend_id(node);
  1220. break;
  1221. }
  1222. }
  1223. split->i_start = 0;
  1224. split->n_inputs = 0;
  1225. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1226. int cur_backend_id = split->backend_id;
  1227. for (int i = 0; i < graph->n_nodes; i++) {
  1228. struct ggml_tensor * node = graph->nodes[i];
  1229. if (ggml_is_view_op(node->op)) {
  1230. continue;
  1231. }
  1232. const int node_backend_id = tensor_backend_id(node);
  1233. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1234. // check if we should start a new split based on the sources of the current node
  1235. bool need_new_split = false;
  1236. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1237. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1238. struct ggml_tensor * src = node->src[j];
  1239. if (src == NULL) {
  1240. continue;
  1241. }
  1242. // check if a weight is on a different backend
  1243. // by starting a new split, the memory of the previously offloaded weights can be reused
  1244. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1245. int src_backend_id = tensor_backend_id(src);
  1246. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1247. need_new_split = true;
  1248. break;
  1249. }
  1250. }
  1251. // check if the split has too many inputs
  1252. // FIXME: count the number of inputs instead of only checking when full
  1253. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1254. const size_t id = hash_id(src);
  1255. int src_backend_id = sched->tensor_backend_id[id];
  1256. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1257. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
  1258. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1259. need_new_split = true;
  1260. break;
  1261. }
  1262. }
  1263. }
  1264. }
  1265. if (node_backend_id != cur_backend_id || need_new_split) {
  1266. split->i_end = i;
  1267. i_split++;
  1268. if (i_split >= sched->splits_capacity) {
  1269. sched->splits_capacity *= 2;
  1270. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1271. GGML_ASSERT(sched->splits != NULL);
  1272. }
  1273. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1274. split = &sched->splits[i_split];
  1275. split->backend_id = node_backend_id;
  1276. split->i_start = i;
  1277. split->n_inputs = 0;
  1278. cur_backend_id = node_backend_id;
  1279. }
  1280. // find inputs that are not on the same backend
  1281. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1282. struct ggml_tensor * src = node->src[j];
  1283. if (src == NULL) {
  1284. continue;
  1285. }
  1286. const int src_backend_id = tensor_backend_id(src);
  1287. assert(src_backend_id != -1); // all inputs should be assigned by now
  1288. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1289. size_t id = hash_id(src);
  1290. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1291. ggml_backend_t backend = sched->backends[src_backend_id];
  1292. for (int c = 0; c < sched->n_copies; c++) {
  1293. struct ggml_tensor * tensor_copy;
  1294. if (c == sched->cur_copy) {
  1295. tensor_copy = src; // use the original tensor as the current copy
  1296. } else {
  1297. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1298. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1299. }
  1300. if (sched->n_copies > 1) {
  1301. ggml_set_input(tensor_copy);
  1302. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1303. }
  1304. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1305. SET_CAUSE(tensor_copy, "4.cpy");
  1306. }
  1307. int n_graph_inputs = sched->n_graph_inputs++;
  1308. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1309. sched->graph_inputs[n_graph_inputs] = src;
  1310. }
  1311. }
  1312. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1313. if (src_backend_id != cur_backend_id && !supported) {
  1314. // create a copy of the input in the split's backend
  1315. const size_t id = hash_id(src);
  1316. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1317. ggml_backend_t backend = sched->backends[cur_backend_id];
  1318. for (int c = 0; c < sched->n_copies; c++) {
  1319. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1320. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1321. if (sched->n_copies > 1) {
  1322. ggml_set_input(tensor_copy);
  1323. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1324. }
  1325. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1326. SET_CAUSE(tensor_copy, "4.cpy");
  1327. }
  1328. int n_inputs = split->n_inputs++;
  1329. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1330. split->inputs[n_inputs] = src;
  1331. }
  1332. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1333. }
  1334. }
  1335. }
  1336. split->i_end = graph->n_nodes;
  1337. sched->n_splits = i_split + 1;
  1338. }
  1339. if (sched->debug) {
  1340. ggml_backend_sched_print_assignments(sched, graph);
  1341. }
  1342. // swap node_backend_ids and leaf_backend_ids and prevs
  1343. {
  1344. int * tmp = sched->node_backend_ids;
  1345. sched->node_backend_ids = sched->prev_node_backend_ids;
  1346. sched->prev_node_backend_ids = tmp;
  1347. tmp = sched->leaf_backend_ids;
  1348. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1349. sched->prev_leaf_backend_ids = tmp;
  1350. }
  1351. // create copies of the graph for each split
  1352. // TODO: avoid this copy
  1353. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1354. for (int i = 0; i < sched->n_splits; i++) {
  1355. struct ggml_backend_sched_split * split = &sched->splits[i];
  1356. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1357. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1358. for (int j = 0; j < split->n_inputs; j++) {
  1359. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1360. struct ggml_tensor * input = split->inputs[j];
  1361. const size_t input_id = hash_id(input);
  1362. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1363. // add a dependency to the input source so that it is not freed before the copy is done
  1364. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1365. input_dep->src[0] = input;
  1366. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1367. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1368. // add a dependency to the input copy so that it is allocated at the start of the split
  1369. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1370. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1371. }
  1372. for (int j = split->i_start; j < split->i_end; j++) {
  1373. assert(graph_copy->size > graph_copy->n_nodes);
  1374. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1375. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1376. }
  1377. }
  1378. if (sched->n_copies > 1) {
  1379. // add input copies as leafs so that they are allocated first
  1380. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1381. struct ggml_tensor * input = sched->graph_inputs[i];
  1382. size_t id = hash_id(input);
  1383. int backend_id = tensor_backend_id(input);
  1384. for (int c = 0; c < sched->n_copies; c++) {
  1385. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1386. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1387. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1388. }
  1389. }
  1390. for (int i = 0; i < sched->n_splits; i++) {
  1391. struct ggml_backend_sched_split * split = &sched->splits[i];
  1392. int backend_id = split->backend_id;
  1393. for (int j = 0; j < split->n_inputs; j++) {
  1394. struct ggml_tensor * input = split->inputs[j];
  1395. size_t id = hash_id(input);
  1396. for (int c = 0; c < sched->n_copies; c++) {
  1397. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1398. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1399. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1400. }
  1401. }
  1402. }
  1403. }
  1404. // add leafs from the original graph
  1405. for (int i = 0; i < graph->n_leafs; i++) {
  1406. struct ggml_tensor * leaf = graph->leafs[i];
  1407. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1408. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1409. }
  1410. sched->graph = graph_copy;
  1411. }
  1412. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1413. bool backend_ids_changed = false;
  1414. for (int i = 0; i < sched->graph->n_nodes; i++) {
  1415. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1416. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1417. backend_ids_changed = true;
  1418. break;
  1419. }
  1420. }
  1421. if (!backend_ids_changed) {
  1422. for (int i = 0; i < sched->graph->n_leafs; i++) {
  1423. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1424. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1425. backend_ids_changed = true;
  1426. break;
  1427. }
  1428. }
  1429. }
  1430. // allocate graph
  1431. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1432. // the re-allocation may cause the split inputs to be moved to a different address
  1433. ggml_backend_sched_synchronize(sched);
  1434. #ifndef NDEBUG
  1435. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1436. #endif
  1437. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1438. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1439. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1440. return false;
  1441. }
  1442. }
  1443. return true;
  1444. }
  1445. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1446. struct ggml_backend_sched_split * splits = sched->splits;
  1447. for (int i = 0; i < sched->n_splits; i++) {
  1448. struct ggml_backend_sched_split * split = &splits[i];
  1449. int split_backend_id = split->backend_id;
  1450. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1451. // copy the input tensors to the split backend
  1452. for (int j = 0; j < split->n_inputs; j++) {
  1453. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1454. struct ggml_tensor * input = split->inputs[j];
  1455. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1456. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1457. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1458. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1459. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1460. } else {
  1461. ggml_backend_synchronize(split_backend);
  1462. }
  1463. ggml_backend_tensor_copy(input, input_cpy);
  1464. } else {
  1465. // wait for the split backend to finish using the input before overwriting it
  1466. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1467. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1468. } else {
  1469. ggml_backend_synchronize(split_backend);
  1470. }
  1471. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1472. }
  1473. }
  1474. if (!sched->callback_eval) {
  1475. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1476. if (ec != GGML_STATUS_SUCCESS) {
  1477. return ec;
  1478. }
  1479. } else {
  1480. // similar to ggml_backend_compare_graph_backend
  1481. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1482. struct ggml_tensor * t = split->graph.nodes[j0];
  1483. // check if the user needs data from this node
  1484. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1485. int j1 = j0;
  1486. // determine the range [j0, j1] of nodes that can be computed together
  1487. while (!need && j1 < split->graph.n_nodes - 1) {
  1488. t = split->graph.nodes[++j1];
  1489. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1490. }
  1491. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1492. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1493. if (ec != GGML_STATUS_SUCCESS) {
  1494. return ec;
  1495. }
  1496. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1497. ggml_backend_synchronize(split_backend);
  1498. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1499. break;
  1500. }
  1501. j0 = j1;
  1502. }
  1503. }
  1504. // record the event of this copy
  1505. if (split->n_inputs > 0) {
  1506. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1507. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1508. }
  1509. }
  1510. }
  1511. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1512. return GGML_STATUS_SUCCESS;
  1513. }
  1514. ggml_backend_sched_t ggml_backend_sched_new(
  1515. ggml_backend_t * backends,
  1516. ggml_backend_buffer_type_t * bufts,
  1517. int n_backends,
  1518. size_t graph_size,
  1519. bool parallel) {
  1520. GGML_ASSERT(n_backends > 0);
  1521. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1522. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1523. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1524. sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
  1525. // initialize hash table
  1526. sched->hash_set = ggml_hash_set_new(graph_size);
  1527. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1528. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1529. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1530. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1531. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1532. sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1533. sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1534. sched->n_backends = n_backends;
  1535. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1536. const int initial_splits_capacity = 16;
  1537. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1538. sched->splits_capacity = initial_splits_capacity;
  1539. for (int b = 0; b < n_backends; b++) {
  1540. sched->backends[b] = backends[b];
  1541. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1542. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1543. if (sched->n_copies > 1) {
  1544. for (int c = 0; c < sched->n_copies; c++) {
  1545. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1546. }
  1547. }
  1548. }
  1549. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1550. ggml_backend_sched_reset(sched);
  1551. return sched;
  1552. }
  1553. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1554. if (sched == NULL) {
  1555. return;
  1556. }
  1557. for (int b = 0; b < sched->n_backends; b++) {
  1558. for (int c = 0; c < sched->n_copies; c++) {
  1559. ggml_backend_event_free(sched->events[b][c]);
  1560. }
  1561. }
  1562. ggml_gallocr_free(sched->galloc);
  1563. ggml_free(sched->ctx);
  1564. free(sched->splits);
  1565. free(sched->hash_set.keys);
  1566. free(sched->tensor_backend_id);
  1567. free(sched->tensor_copies);
  1568. free(sched->node_backend_ids);
  1569. free(sched->leaf_backend_ids);
  1570. free(sched->prev_node_backend_ids);
  1571. free(sched->prev_leaf_backend_ids);
  1572. free(sched);
  1573. }
  1574. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1575. // reset state for the next run
  1576. if (!sched->is_reset) {
  1577. size_t hash_size = sched->hash_set.size;
  1578. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1579. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1580. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1581. sched->is_reset = true;
  1582. }
  1583. sched->is_alloc = false;
  1584. }
  1585. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1586. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1587. ggml_backend_sched_split_graph(sched, measure_graph);
  1588. // TODO: extract this to a separate function
  1589. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1590. return false;
  1591. }
  1592. ggml_backend_sched_reset(sched);
  1593. ggml_backend_sched_synchronize(sched);
  1594. return true;
  1595. }
  1596. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1597. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1598. ggml_backend_sched_split_graph(sched, graph);
  1599. if (!ggml_backend_sched_alloc_splits(sched)) {
  1600. return false;
  1601. }
  1602. sched->is_alloc = true;
  1603. return true;
  1604. }
  1605. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1606. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1607. ggml_backend_sched_synchronize(sched);
  1608. return err;
  1609. }
  1610. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1611. if (!sched->is_reset && !sched->is_alloc) {
  1612. ggml_backend_sched_reset(sched);
  1613. }
  1614. if (!sched->is_alloc) {
  1615. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1616. return GGML_STATUS_ALLOC_FAILED;
  1617. }
  1618. }
  1619. return ggml_backend_sched_compute_splits(sched);
  1620. }
  1621. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1622. for (int i = 0; i < sched->n_backends; i++) {
  1623. ggml_backend_synchronize(sched->backends[i]);
  1624. }
  1625. }
  1626. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1627. sched->callback_eval = callback;
  1628. sched->callback_eval_user_data = user_data;
  1629. }
  1630. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1631. return sched->n_splits;
  1632. }
  1633. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1634. return sched->n_copies;
  1635. }
  1636. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1637. return sched->n_backends;
  1638. }
  1639. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1640. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1641. return sched->backends[i];
  1642. }
  1643. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1644. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1645. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1646. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1647. }
  1648. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1649. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1650. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1651. tensor_backend_id(node) = backend_index;
  1652. SET_CAUSE(node, "usr");
  1653. }
  1654. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1655. int backend_index = tensor_backend_id(node);
  1656. if (backend_index == -1) {
  1657. return NULL;
  1658. }
  1659. return sched->backends[backend_index];
  1660. }
  1661. // utils
  1662. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1663. GGML_ASSERT(tensor->buffer == NULL);
  1664. GGML_ASSERT(tensor->view_src != NULL);
  1665. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1666. GGML_ASSERT(tensor->view_src->data != NULL);
  1667. tensor->buffer = tensor->view_src->buffer;
  1668. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1669. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1670. }
  1671. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1672. GGML_ASSERT(tensor->buffer == NULL);
  1673. GGML_ASSERT(tensor->data == NULL);
  1674. GGML_ASSERT(tensor->view_src == NULL);
  1675. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1676. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1677. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1678. tensor->buffer = buffer;
  1679. tensor->data = addr;
  1680. ggml_backend_buffer_init_tensor(buffer, tensor);
  1681. }
  1682. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1683. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1684. GGML_ASSERT(src != NULL);
  1685. GGML_ASSERT(src->data && "graph must be allocated");
  1686. size_t id = ggml_hash_insert(hash_set, src);
  1687. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1688. return node_copies[ggml_hash_find(hash_set, src)];
  1689. }
  1690. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1691. if (src->view_src != NULL) {
  1692. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1693. dst->view_offs = src->view_offs;
  1694. }
  1695. dst->op = src->op;
  1696. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1697. ggml_set_name(dst, src->name);
  1698. // copy src
  1699. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1700. struct ggml_tensor * s = src->src[i];
  1701. if (s == NULL) {
  1702. continue;
  1703. }
  1704. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1705. }
  1706. node_copies[id] = dst;
  1707. return dst;
  1708. }
  1709. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1710. size_t id = ggml_hash_find(hash_set, src);
  1711. if (node_init[id]) {
  1712. return;
  1713. }
  1714. node_init[id] = true;
  1715. struct ggml_tensor * dst = node_copies[id];
  1716. if (dst->view_src != NULL) {
  1717. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1718. ggml_backend_view_init(dst);
  1719. }
  1720. else {
  1721. ggml_backend_tensor_copy(src, dst);
  1722. }
  1723. // init src
  1724. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1725. struct ggml_tensor * s = src->src[i];
  1726. if (s == NULL) {
  1727. continue;
  1728. }
  1729. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1730. }
  1731. }
  1732. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1733. struct ggml_hash_set hash_set = {
  1734. /* .size = */ graph->visited_hash_table.size,
  1735. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1736. };
  1737. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1738. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1739. struct ggml_init_params params = {
  1740. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1741. /* .mem_buffer = */ NULL,
  1742. /* .no_alloc = */ true
  1743. };
  1744. struct ggml_context * ctx_allocated = ggml_init(params);
  1745. struct ggml_context * ctx_unallocated = ggml_init(params);
  1746. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1747. fprintf(stderr, "failed to allocate context for graph copy\n");
  1748. free(hash_set.keys);
  1749. free(node_copies);
  1750. free(node_init);
  1751. ggml_free(ctx_allocated);
  1752. ggml_free(ctx_unallocated);
  1753. return (struct ggml_backend_graph_copy) {
  1754. /* .buffer = */ NULL,
  1755. /* .ctx_allocated = */ NULL,
  1756. /* .ctx_unallocated = */ NULL,
  1757. /* .graph = */ NULL,
  1758. };
  1759. }
  1760. // dup nodes
  1761. for (int i = 0; i < graph->n_nodes; i++) {
  1762. struct ggml_tensor * node = graph->nodes[i];
  1763. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1764. }
  1765. // allocate nodes
  1766. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1767. if (buffer == NULL) {
  1768. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1769. free(hash_set.keys);
  1770. free(node_copies);
  1771. free(node_init);
  1772. ggml_free(ctx_allocated);
  1773. ggml_free(ctx_unallocated);
  1774. return (struct ggml_backend_graph_copy) {
  1775. /* .buffer = */ NULL,
  1776. /* .ctx_allocated = */ NULL,
  1777. /* .ctx_unallocated = */ NULL,
  1778. /* .graph = */ NULL,
  1779. };
  1780. }
  1781. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1782. // copy data and init views
  1783. for (int i = 0; i < graph->n_nodes; i++) {
  1784. struct ggml_tensor * node = graph->nodes[i];
  1785. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1786. }
  1787. // build graph copy
  1788. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1789. for (int i = 0; i < graph->n_nodes; i++) {
  1790. struct ggml_tensor * node = graph->nodes[i];
  1791. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1792. graph_copy->nodes[i] = node_copy;
  1793. }
  1794. graph_copy->n_nodes = graph->n_nodes;
  1795. free(hash_set.keys);
  1796. free(node_copies);
  1797. free(node_init);
  1798. return (struct ggml_backend_graph_copy) {
  1799. /* .buffer = */ buffer,
  1800. /* .ctx_allocated = */ ctx_allocated,
  1801. /* .ctx_unallocated = */ ctx_unallocated,
  1802. /* .graph = */ graph_copy,
  1803. };
  1804. }
  1805. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1806. ggml_backend_buffer_free(copy.buffer);
  1807. ggml_free(copy.ctx_allocated);
  1808. ggml_free(copy.ctx_unallocated);
  1809. }
  1810. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1811. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1812. if (copy.buffer == NULL) {
  1813. return false;
  1814. }
  1815. struct ggml_cgraph * g1 = graph;
  1816. struct ggml_cgraph * g2 = copy.graph;
  1817. assert(g1->n_nodes == g2->n_nodes);
  1818. for (int i = 0; i < g1->n_nodes; i++) {
  1819. //printf("eval %d/%d\n", i, g1->n_nodes);
  1820. struct ggml_tensor * t1 = g1->nodes[i];
  1821. struct ggml_tensor * t2 = g2->nodes[i];
  1822. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1823. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1824. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1825. ggml_backend_graph_compute(backend1, &g1v);
  1826. ggml_backend_graph_compute(backend2, &g2v);
  1827. if (ggml_is_view_op(t1->op)) {
  1828. continue;
  1829. }
  1830. // compare results, calculate rms etc
  1831. if (!callback(i, t1, t2, user_data)) {
  1832. break;
  1833. }
  1834. }
  1835. ggml_backend_graph_copy_free(copy);
  1836. return true;
  1837. }