convert-hf-to-gguf.py 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. self.gguf_writer.add_tokenizer_model("gpt2")
  205. self.gguf_writer.add_token_list(tokens)
  206. self.gguf_writer.add_token_types(toktypes)
  207. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  208. special_vocab.add_to_gguf(self.gguf_writer)
  209. def _set_vocab_qwen(self):
  210. dir_model = self.dir_model
  211. hparams = self.hparams
  212. tokens: list[str] = []
  213. toktypes: list[int] = []
  214. from transformers import AutoTokenizer
  215. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  216. vocab_size = hparams["vocab_size"]
  217. assert max(tokenizer.get_vocab().values()) < vocab_size
  218. merges = []
  219. vocab = {}
  220. mergeable_ranks = tokenizer.mergeable_ranks
  221. for token, rank in mergeable_ranks.items():
  222. vocab[QwenModel.token_bytes_to_string(token)] = rank
  223. if len(token) == 1:
  224. continue
  225. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  226. assert len(merged) == 2
  227. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  228. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  229. added_vocab = tokenizer.special_tokens
  230. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  231. for i in range(vocab_size):
  232. if i not in reverse_vocab:
  233. tokens.append(f"[PAD{i}]")
  234. toktypes.append(gguf.TokenType.USER_DEFINED)
  235. elif reverse_vocab[i] in added_vocab:
  236. tokens.append(reverse_vocab[i])
  237. toktypes.append(gguf.TokenType.CONTROL)
  238. else:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.NORMAL)
  241. self.gguf_writer.add_tokenizer_model("gpt2")
  242. self.gguf_writer.add_token_list(tokens)
  243. self.gguf_writer.add_token_types(toktypes)
  244. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  245. special_vocab.merges = merges
  246. # only add special tokens when they were not already loaded from config.json
  247. if len(special_vocab.special_token_ids) == 0:
  248. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  249. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  250. # this one is usually not in config.json anyway
  251. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab.add_to_gguf(self.gguf_writer)
  253. def _set_vocab_sentencepiece(self):
  254. from sentencepiece import SentencePieceProcessor
  255. tokenizer_path = self.dir_model / 'tokenizer.model'
  256. tokens: list[bytes] = []
  257. scores: list[float] = []
  258. toktypes: list[int] = []
  259. if not tokenizer_path.is_file():
  260. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  261. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  262. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  263. for token_id in range(tokenizer.vocab_size()):
  264. piece = tokenizer.id_to_piece(token_id)
  265. text = piece.encode("utf-8")
  266. score = tokenizer.get_score(token_id)
  267. toktype = SentencePieceTokenTypes.NORMAL
  268. if tokenizer.is_unknown(token_id):
  269. toktype = SentencePieceTokenTypes.UNKNOWN
  270. elif tokenizer.is_control(token_id):
  271. toktype = SentencePieceTokenTypes.CONTROL
  272. elif tokenizer.is_unused(token_id):
  273. toktype = SentencePieceTokenTypes.UNUSED
  274. elif tokenizer.is_byte(token_id):
  275. toktype = SentencePieceTokenTypes.BYTE
  276. tokens.append(text)
  277. scores.append(score)
  278. toktypes.append(toktype)
  279. added_tokens_file = self.dir_model / 'added_tokens.json'
  280. if added_tokens_file.is_file():
  281. with open(added_tokens_file, "r", encoding="utf-8") as f:
  282. added_tokens_json = json.load(f)
  283. for key in added_tokens_json:
  284. key = key.encode("utf-8")
  285. if key not in tokens:
  286. tokens.append(key)
  287. scores.append(-1000.0)
  288. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  289. assert len(tokens) == vocab_size
  290. self.gguf_writer.add_tokenizer_model("llama")
  291. self.gguf_writer.add_token_list(tokens)
  292. self.gguf_writer.add_token_scores(scores)
  293. self.gguf_writer.add_token_types(toktypes)
  294. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  295. special_vocab.add_to_gguf(self.gguf_writer)
  296. def _set_vocab_llama_hf(self):
  297. vocab = LlamaHfVocab(self.dir_model)
  298. tokens = []
  299. scores = []
  300. toktypes = []
  301. for text, score, toktype in vocab.all_tokens():
  302. tokens.append(text)
  303. scores.append(score)
  304. toktypes.append(toktype)
  305. assert len(tokens) == vocab.vocab_size
  306. self.gguf_writer.add_tokenizer_model("llama")
  307. self.gguf_writer.add_token_list(tokens)
  308. self.gguf_writer.add_token_scores(scores)
  309. self.gguf_writer.add_token_types(toktypes)
  310. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  311. special_vocab.add_to_gguf(self.gguf_writer)
  312. @Model.register("GPTNeoXForCausalLM")
  313. class GPTNeoXModel(Model):
  314. model_arch = gguf.MODEL_ARCH.GPTNEOX
  315. def set_gguf_parameters(self):
  316. block_count = self.hparams["num_hidden_layers"]
  317. self.gguf_writer.add_name(self.dir_model.name)
  318. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  319. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  320. self.gguf_writer.add_block_count(block_count)
  321. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  322. self.gguf_writer.add_rope_dimension_count(
  323. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  324. )
  325. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  326. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  327. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  328. @Model.register("BloomForCausalLM")
  329. class BloomModel(Model):
  330. model_arch = gguf.MODEL_ARCH.BLOOM
  331. def set_gguf_parameters(self):
  332. self.gguf_writer.add_name("Bloom")
  333. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  334. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  335. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  336. self.gguf_writer.add_embedding_length(n_embed)
  337. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  338. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  339. self.gguf_writer.add_head_count(n_head)
  340. self.gguf_writer.add_head_count_kv(n_head)
  341. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  342. self.gguf_writer.add_file_type(self.ftype)
  343. def write_tensors(self):
  344. block_count = self.hparams["n_layer"]
  345. tensors = dict(self.get_tensors())
  346. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  347. has_lm_head = True
  348. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  349. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  350. for name, data_torch in tensors.items():
  351. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  352. has_lm_head = False
  353. name = re.sub(r'transformer\.', '', name)
  354. old_dtype = data_torch.dtype
  355. # convert any unsupported data types to float32
  356. if data_torch.dtype not in (torch.float16, torch.float32):
  357. data_torch = data_torch.to(torch.float32)
  358. data = data_torch.squeeze().numpy()
  359. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  360. # Map bloom-style qkv_linear to gpt-style qkv_linear
  361. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  362. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  363. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  364. data = np.concatenate(
  365. (
  366. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  367. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  368. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  369. ),
  370. axis=0,
  371. )
  372. print("re-format attention.linear_qkv.weight")
  373. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  374. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  375. data = np.concatenate(
  376. (
  377. qkv_bias[:, 0, :].reshape((n_embed,)),
  378. qkv_bias[:, 1, :].reshape((n_embed,)),
  379. qkv_bias[:, 2, :].reshape((n_embed,)),
  380. ),
  381. axis=0,
  382. )
  383. print("re-format attention.linear_qkv.bias")
  384. # map tensor names
  385. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  386. if new_name is None:
  387. print(f"Can not map tensor {name!r}")
  388. sys.exit()
  389. n_dims = len(data.shape)
  390. data_dtype = data.dtype
  391. # if f32 desired, convert any float16 to float32
  392. if self.ftype == 0 and data_dtype == np.float16:
  393. data = data.astype(np.float32)
  394. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  395. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  396. data = data.astype(np.float32)
  397. # if f16 desired, convert any float32 2-dim weight tensors to float16
  398. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  399. data = data.astype(np.float16)
  400. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  401. self.gguf_writer.add_tensor(new_name, data)
  402. if not has_lm_head and name == "word_embeddings.weight":
  403. self.gguf_writer.add_tensor("output.weight", data)
  404. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  405. @Model.register("MPTForCausalLM")
  406. class MPTModel(Model):
  407. model_arch = gguf.MODEL_ARCH.MPT
  408. def set_vocab(self):
  409. try:
  410. self._set_vocab_gpt2()
  411. except Exception:
  412. # Fallback for SEA-LION model
  413. self._set_vocab_sentencepiece()
  414. self.gguf_writer.add_add_bos_token(False)
  415. self.gguf_writer.add_pad_token_id(3)
  416. self.gguf_writer.add_eos_token_id(1)
  417. self.gguf_writer.add_unk_token_id(0)
  418. def set_gguf_parameters(self):
  419. block_count = self.hparams["n_layers"]
  420. self.gguf_writer.add_name(self.dir_model.name)
  421. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  422. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  423. self.gguf_writer.add_block_count(block_count)
  424. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  425. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  426. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  427. self.gguf_writer.add_head_count_kv(kv_n_heads)
  428. self.gguf_writer.add_layer_norm_eps(1e-5)
  429. if self.hparams["attn_config"]["clip_qkv"] is not None:
  430. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  431. if self.hparams["attn_config"]["alibi"]:
  432. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  433. else:
  434. self.gguf_writer.add_max_alibi_bias(0.0)
  435. def write_tensors(self):
  436. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  437. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  438. for name, data_torch in self.get_tensors():
  439. # we don't need these
  440. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  441. continue
  442. old_dtype = data_torch.dtype
  443. # convert any unsupported data types to float32
  444. if data_torch.dtype not in (torch.float16, torch.float32):
  445. data_torch = data_torch.to(torch.float32)
  446. data = data_torch.squeeze().numpy()
  447. # map tensor names
  448. if "scales" in name:
  449. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  450. if new_name is not None:
  451. new_name = new_name.replace("scales", "act.scales")
  452. else:
  453. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  454. if new_name is None:
  455. print(f"Can not map tensor {name!r}")
  456. sys.exit()
  457. n_dims = len(data.shape)
  458. data_dtype = data.dtype
  459. # if f32 desired, convert any float16 to float32
  460. if self.ftype == 0 and data_dtype == np.float16:
  461. data = data.astype(np.float32)
  462. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  463. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  464. data = data.astype(np.float32)
  465. # if f16 desired, convert any float32 2-dim weight tensors to float16
  466. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  467. data = data.astype(np.float16)
  468. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  469. self.gguf_writer.add_tensor(new_name, data)
  470. @Model.register("OrionForCausalLM")
  471. class OrionModel(Model):
  472. model_arch = gguf.MODEL_ARCH.ORION
  473. def set_vocab(self):
  474. self._set_vocab_sentencepiece()
  475. def set_gguf_parameters(self):
  476. block_count = self.hparams["num_hidden_layers"]
  477. head_count = self.hparams["num_attention_heads"]
  478. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  479. hf_repo = self.hparams.get("_name_or_path", "")
  480. ctx_length = 0
  481. if "max_sequence_length" in self.hparams:
  482. ctx_length = self.hparams["max_sequence_length"]
  483. elif "max_position_embeddings" in self.hparams:
  484. ctx_length = self.hparams["max_position_embeddings"]
  485. elif "model_max_length" in self.hparams:
  486. ctx_length = self.hparams["model_max_length"]
  487. else:
  488. print("gguf: can not find ctx length parameter.")
  489. sys.exit()
  490. self.gguf_writer.add_file_type(self.ftype)
  491. self.gguf_writer.add_name(self.dir_model.name)
  492. self.gguf_writer.add_source_hf_repo(hf_repo)
  493. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  494. self.gguf_writer.add_context_length(ctx_length)
  495. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  496. self.gguf_writer.add_block_count(block_count)
  497. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  498. self.gguf_writer.add_head_count(head_count)
  499. self.gguf_writer.add_head_count_kv(head_count_kv)
  500. # note: config provides rms norm but it is actually layer norm
  501. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  502. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  503. def write_tensors(self):
  504. # Collect tensors from generator object
  505. model_kv = dict(self.get_tensors())
  506. block_count = self.hparams["num_hidden_layers"]
  507. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  508. for name, data_torch in model_kv.items():
  509. # we don't need these
  510. if name.endswith(".rotary_emb.inv_freq"):
  511. continue
  512. old_dtype = data_torch.dtype
  513. # convert any unsupported data types to float32
  514. if data_torch.dtype not in (torch.float16, torch.float32):
  515. data_torch = data_torch.to(torch.float32)
  516. data = data_torch.squeeze().numpy()
  517. # map tensor names
  518. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  519. if new_name is None:
  520. print(f"Can not map tensor {name!r}")
  521. sys.exit()
  522. n_dims = len(data.shape)
  523. data_dtype = data.dtype
  524. # if f32 desired, convert any float16 to float32
  525. if self.ftype == 0 and data_dtype == np.float16:
  526. data = data.astype(np.float32)
  527. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  528. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  529. data = data.astype(np.float32)
  530. # if f16 desired, convert any float32 2-dim weight tensors to float16
  531. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  532. data = data.astype(np.float16)
  533. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  534. self.gguf_writer.add_tensor(new_name, data)
  535. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  536. class BaichuanModel(Model):
  537. model_arch = gguf.MODEL_ARCH.BAICHUAN
  538. def set_vocab(self):
  539. self._set_vocab_sentencepiece()
  540. def set_gguf_parameters(self):
  541. block_count = self.hparams["num_hidden_layers"]
  542. head_count = self.hparams["num_attention_heads"]
  543. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  544. hf_repo = self.hparams.get("_name_or_path", "")
  545. ctx_length = 0
  546. if "max_sequence_length" in self.hparams:
  547. ctx_length = self.hparams["max_sequence_length"]
  548. elif "max_position_embeddings" in self.hparams:
  549. ctx_length = self.hparams["max_position_embeddings"]
  550. elif "model_max_length" in self.hparams:
  551. ctx_length = self.hparams["model_max_length"]
  552. else:
  553. print("gguf: can not find ctx length parameter.")
  554. sys.exit()
  555. self.gguf_writer.add_name(self.dir_model.name)
  556. self.gguf_writer.add_source_hf_repo(hf_repo)
  557. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  558. self.gguf_writer.add_context_length(ctx_length)
  559. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  560. self.gguf_writer.add_block_count(block_count)
  561. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  562. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  563. self.gguf_writer.add_head_count(head_count)
  564. self.gguf_writer.add_head_count_kv(head_count_kv)
  565. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  566. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  567. if self.hparams["rope_scaling"].get("type") == "linear":
  568. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  569. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  570. def write_tensors(self):
  571. # Collect tensors from generator object
  572. model_kv = dict(self.get_tensors())
  573. block_count = self.hparams["num_hidden_layers"]
  574. head_count = self.hparams["num_attention_heads"]
  575. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  576. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  577. for i in range(block_count):
  578. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  579. print(f"Unpacking and permuting layer {i}")
  580. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  581. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  582. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  583. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  584. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  585. self._reverse_hf_part(w, 2)
  586. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  587. for name, data_torch in model_kv.items():
  588. # we don't need these
  589. if name.endswith(".rotary_emb.inv_freq"):
  590. continue
  591. old_dtype = data_torch.dtype
  592. # convert any unsupported data types to float32
  593. if data_torch.dtype not in (torch.float16, torch.float32):
  594. data_torch = data_torch.to(torch.float32)
  595. data = data_torch.squeeze().numpy()
  596. # map tensor names
  597. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  598. if new_name is None:
  599. print(f"Can not map tensor {name!r}")
  600. sys.exit()
  601. n_dims = len(data.shape)
  602. data_dtype = data.dtype
  603. # if f32 desired, convert any float16 to float32
  604. if self.ftype == 0 and data_dtype == np.float16:
  605. data = data.astype(np.float32)
  606. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  607. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  608. data = data.astype(np.float32)
  609. # if f16 desired, convert any float32 2-dim weight tensors to float16
  610. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  611. data = data.astype(np.float16)
  612. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  613. self.gguf_writer.add_tensor(new_name, data)
  614. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  615. if n_kv_head is not None and n_head != n_kv_head:
  616. n_head //= n_kv_head
  617. return (
  618. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  619. .swapaxes(1, 2)
  620. .reshape(weights.shape)
  621. )
  622. def _reverse_hf_permute_part(
  623. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  624. ) -> Tensor:
  625. r = weights.shape[0] // 3
  626. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  627. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  628. r = weights.shape[0] // 3
  629. return weights[r * n_part:r * n_part + r, ...]
  630. @Model.register("XverseForCausalLM")
  631. class XverseModel(Model):
  632. model_arch = gguf.MODEL_ARCH.XVERSE
  633. def set_vocab(self):
  634. assert (self.dir_model / "tokenizer.json").is_file()
  635. dir_model = self.dir_model
  636. hparams = self.hparams
  637. tokens: list[bytearray] = []
  638. toktypes: list[int] = []
  639. from transformers import AutoTokenizer
  640. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  641. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  642. assert max(tokenizer.vocab.values()) < vocab_size
  643. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  644. added_vocab = tokenizer.get_added_vocab()
  645. for token_id in range(vocab_size):
  646. token_text = reverse_vocab[token_id].encode('utf-8')
  647. # replace "\x00" to string with length > 0
  648. if token_text == b"\x00":
  649. toktype = gguf.TokenType.BYTE # special
  650. token_text = f"<{token_text}>".encode('utf-8')
  651. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  652. toktype = gguf.TokenType.BYTE # special
  653. elif reverse_vocab[token_id] in added_vocab:
  654. if tokenizer.added_tokens_decoder[token_id].special:
  655. toktype = gguf.TokenType.CONTROL
  656. else:
  657. toktype = gguf.TokenType.USER_DEFINED
  658. else:
  659. toktype = gguf.TokenType.NORMAL
  660. tokens.append(token_text)
  661. toktypes.append(toktype)
  662. self.gguf_writer.add_tokenizer_model("llama")
  663. self.gguf_writer.add_token_list(tokens)
  664. self.gguf_writer.add_token_types(toktypes)
  665. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  666. special_vocab.add_to_gguf(self.gguf_writer)
  667. def set_gguf_parameters(self):
  668. block_count = self.hparams["num_hidden_layers"]
  669. head_count = self.hparams["num_attention_heads"]
  670. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  671. hf_repo = self.hparams.get("_name_or_path", "")
  672. ctx_length = 0
  673. if "max_sequence_length" in self.hparams:
  674. ctx_length = self.hparams["max_sequence_length"]
  675. elif "max_position_embeddings" in self.hparams:
  676. ctx_length = self.hparams["max_position_embeddings"]
  677. elif "model_max_length" in self.hparams:
  678. ctx_length = self.hparams["model_max_length"]
  679. else:
  680. print("gguf: can not find ctx length parameter.")
  681. sys.exit()
  682. self.gguf_writer.add_name(self.dir_model.name)
  683. self.gguf_writer.add_source_hf_repo(hf_repo)
  684. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  685. self.gguf_writer.add_context_length(ctx_length)
  686. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  687. self.gguf_writer.add_block_count(block_count)
  688. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  689. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  690. self.gguf_writer.add_head_count(head_count)
  691. self.gguf_writer.add_head_count_kv(head_count_kv)
  692. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  693. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  694. if self.hparams["rope_scaling"].get("type") == "linear":
  695. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  696. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  697. def write_tensors(self):
  698. # Collect tensors from generator object
  699. model_kv = dict(self.get_tensors())
  700. block_count = self.hparams["num_hidden_layers"]
  701. head_count = self.hparams["num_attention_heads"]
  702. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  703. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  704. for name, data_torch in model_kv.items():
  705. # we don't need these
  706. if name.endswith(".rotary_emb.inv_freq"):
  707. continue
  708. old_dtype = data_torch.dtype
  709. # convert any unsupported data types to float32
  710. if data_torch.dtype not in (torch.float16, torch.float32):
  711. data_torch = data_torch.to(torch.float32)
  712. # HF models permute some of the tensors, so we need to undo that
  713. if name.endswith(("q_proj.weight")):
  714. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  715. if name.endswith(("k_proj.weight")):
  716. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  717. data = data_torch.squeeze().numpy()
  718. # map tensor names
  719. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  720. if new_name is None:
  721. print(f"Can not map tensor {name!r}")
  722. sys.exit()
  723. n_dims = len(data.shape)
  724. data_dtype = data.dtype
  725. # if f32 desired, convert any float16 to float32
  726. if self.ftype == 0 and data_dtype == np.float16:
  727. data = data.astype(np.float32)
  728. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  729. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  730. data = data.astype(np.float32)
  731. # if f16 desired, convert any float32 2-dim weight tensors to float16
  732. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  733. data = data.astype(np.float16)
  734. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  735. self.gguf_writer.add_tensor(new_name, data)
  736. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  737. if n_kv_head is not None and n_head != n_kv_head:
  738. n_head //= n_kv_head
  739. return (
  740. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  741. .swapaxes(1, 2)
  742. .reshape(weights.shape)
  743. )
  744. @Model.register("FalconForCausalLM", "RWForCausalLM")
  745. class FalconModel(Model):
  746. model_arch = gguf.MODEL_ARCH.FALCON
  747. def set_gguf_parameters(self):
  748. block_count = self.hparams.get("num_hidden_layers")
  749. if block_count is None:
  750. block_count = self.hparams["n_layer"] # old name
  751. n_head = self.hparams.get("num_attention_heads")
  752. if n_head is None:
  753. n_head = self.hparams["n_head"] # old name
  754. n_head_kv = self.hparams.get("num_kv_heads")
  755. if n_head_kv is None:
  756. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  757. self.gguf_writer.add_name("Falcon")
  758. self.gguf_writer.add_context_length(2048) # not in config.json
  759. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  760. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  761. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  762. self.gguf_writer.add_block_count(block_count)
  763. self.gguf_writer.add_head_count(n_head)
  764. self.gguf_writer.add_head_count_kv(n_head_kv)
  765. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  766. self.gguf_writer.add_file_type(self.ftype)
  767. def write_tensors(self):
  768. block_count = self.hparams.get("num_hidden_layers")
  769. if block_count is None:
  770. block_count = self.hparams["n_layer"] # old name
  771. n_head = self.hparams.get("num_attention_heads")
  772. if n_head is None:
  773. n_head = self.hparams["n_head"] # old name
  774. n_head_kv = self.hparams.get("num_kv_heads")
  775. if n_head_kv is None:
  776. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  777. head_dim = self.hparams["hidden_size"] // n_head
  778. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  779. for name, data_torch in self.get_tensors():
  780. old_dtype = data_torch.dtype
  781. # convert any unsupported data types to float32
  782. if data_torch.dtype not in (torch.float16, torch.float32):
  783. data_torch = data_torch.to(torch.float32)
  784. # QKV tensor transform
  785. # The original query_key_value tensor contains n_head_kv "kv groups",
  786. # each consisting of n_head/n_head_kv query weights followed by one key
  787. # and one value weight (shared by all query heads in the kv group).
  788. # This layout makes it a big pain to work with in GGML.
  789. # So we rearrange them here,, so that we have n_head query weights
  790. # followed by n_head_kv key weights followed by n_head_kv value weights,
  791. # in contiguous fashion.
  792. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  793. if "query_key_value" in name:
  794. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  795. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  796. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  797. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  798. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  799. data = data_torch.squeeze().numpy()
  800. # map tensor names
  801. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  802. if new_name is None:
  803. print(f"Can not map tensor {name!r}")
  804. sys.exit()
  805. n_dims = len(data.shape)
  806. data_dtype = data.dtype
  807. # if f32 desired, convert any float16 to float32
  808. if self.ftype == 0 and data_dtype == np.float16:
  809. data = data.astype(np.float32)
  810. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  811. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  812. data = data.astype(np.float32)
  813. # if f16 desired, convert any float32 2-dim weight tensors to float16
  814. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  815. data = data.astype(np.float16)
  816. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  817. self.gguf_writer.add_tensor(new_name, data)
  818. @Model.register("GPTBigCodeForCausalLM")
  819. class StarCoderModel(Model):
  820. model_arch = gguf.MODEL_ARCH.STARCODER
  821. def set_gguf_parameters(self):
  822. block_count = self.hparams["n_layer"]
  823. self.gguf_writer.add_name("StarCoder")
  824. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  825. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  826. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  827. self.gguf_writer.add_block_count(block_count)
  828. self.gguf_writer.add_head_count(self.hparams["n_head"])
  829. self.gguf_writer.add_head_count_kv(1)
  830. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  831. self.gguf_writer.add_file_type(self.ftype)
  832. @Model.register("GPTRefactForCausalLM")
  833. class RefactModel(Model):
  834. model_arch = gguf.MODEL_ARCH.REFACT
  835. def set_gguf_parameters(self):
  836. hidden_dim = self.hparams["n_embd"]
  837. inner_dim = 4 * hidden_dim
  838. hidden_dim = int(2 * inner_dim / 3)
  839. multiple_of = 256
  840. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  841. block_count = self.hparams["n_layer"]
  842. self.gguf_writer.add_name("Refact")
  843. # refact uses Alibi. So this is from config.json which might be used by training.
  844. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  845. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  846. self.gguf_writer.add_feed_forward_length(ff_dim)
  847. self.gguf_writer.add_block_count(block_count)
  848. self.gguf_writer.add_head_count(self.hparams["n_head"])
  849. self.gguf_writer.add_head_count_kv(1)
  850. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  851. self.gguf_writer.add_file_type(self.ftype)
  852. def write_tensors(self):
  853. hidden_dim = self.hparams["n_embd"]
  854. inner_dim = 4 * hidden_dim
  855. hidden_dim = int(2 * inner_dim / 3)
  856. multiple_of = 256
  857. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  858. n_head = self.hparams["n_head"]
  859. n_head_kv = 1
  860. head_dim = self.hparams["n_embd"] // n_head
  861. block_count = self.hparams["n_layer"]
  862. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  863. tensors = dict(self.get_tensors())
  864. for i in range(block_count):
  865. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  866. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  867. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  868. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  869. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  870. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  871. del tensors[f"transformer.h.{i}.attn.q.weight"]
  872. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  873. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  874. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  875. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  876. for name, data_torch in tensors.items():
  877. old_dtype = data_torch.dtype
  878. # convert any unsupported data types to float32
  879. if data_torch.dtype not in (torch.float16, torch.float32):
  880. data_torch = data_torch.to(torch.float32)
  881. data = data_torch.squeeze().numpy()
  882. # map tensor names
  883. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  884. if new_name is None:
  885. print(f"Can not map tensor {name!r}")
  886. sys.exit()
  887. n_dims = len(data.shape)
  888. data_dtype = data.dtype
  889. # if f32 desired, convert any float16 to float32
  890. if self.ftype == 0 and data_dtype == np.float16:
  891. data = data.astype(np.float32)
  892. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  893. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  894. data = data.astype(np.float32)
  895. # if f16 desired, convert any float32 2-dim weight tensors to float16
  896. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  897. data = data.astype(np.float16)
  898. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  899. self.gguf_writer.add_tensor(new_name, data)
  900. @Model.register("PersimmonForCausalLM")
  901. class PersimmonModel(Model):
  902. model_arch = gguf.MODEL_ARCH.PERSIMMON
  903. def set_gguf_parameters(self):
  904. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  905. head_count = self.hparams["num_attention_heads"]
  906. head_count_kv = head_count
  907. hidden_size = self.hparams["hidden_size"]
  908. self.gguf_writer.add_name('persimmon-8b-chat')
  909. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  910. self.gguf_writer.add_embedding_length(hidden_size)
  911. self.gguf_writer.add_block_count(block_count)
  912. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  913. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  914. # than the head size?
  915. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  916. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  917. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  918. self.gguf_writer.add_head_count(head_count)
  919. self.gguf_writer.add_head_count_kv(head_count_kv)
  920. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  921. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  922. def set_vocab(self):
  923. self._set_vocab_sentencepiece()
  924. # self.gguf_writer.add_bos_token_id(71013)
  925. # self.gguf_writer.add_eos_token_id(71013)
  926. def write_tensors(self):
  927. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  928. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  929. for name, data_torch in self.get_tensors():
  930. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  931. continue
  932. old_dtype = data_torch.dtype
  933. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  934. data = data_torch.to(torch.float32).squeeze().numpy()
  935. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  936. if new_name is None:
  937. print(f"Can not map tensor {name!r}")
  938. sys.exit()
  939. n_dims = len(data.shape)
  940. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  941. self.gguf_writer.add_tensor(new_name, data)
  942. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  943. class StableLMModel(Model):
  944. model_arch = gguf.MODEL_ARCH.STABLELM
  945. def set_vocab(self):
  946. if (self.dir_model / "tokenizer.json").is_file():
  947. self._set_vocab_gpt2()
  948. else:
  949. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  950. self._set_vocab_qwen()
  951. def set_gguf_parameters(self):
  952. hparams = self.hparams
  953. block_count = hparams["num_hidden_layers"]
  954. self.gguf_writer.add_name(self.dir_model.name)
  955. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  956. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  957. self.gguf_writer.add_block_count(block_count)
  958. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  959. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  960. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  961. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  962. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  963. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  964. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  965. class LlamaModel(Model):
  966. model_arch = gguf.MODEL_ARCH.LLAMA
  967. def set_vocab(self):
  968. try:
  969. self. _set_vocab_sentencepiece()
  970. except FileNotFoundError:
  971. self._set_vocab_llama_hf()
  972. def set_gguf_parameters(self):
  973. super().set_gguf_parameters()
  974. hparams = self.hparams
  975. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  976. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  977. # Same as super class, but permuting q_proj, k_proj
  978. def write_tensors(self):
  979. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  980. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  981. n_head = self.hparams.get("num_attention_heads")
  982. n_kv_head = self.hparams.get("num_key_value_heads")
  983. n_experts = self.hparams.get("num_local_experts")
  984. experts = dict()
  985. for name, data_torch in self.get_tensors():
  986. # we don't need these
  987. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  988. continue
  989. old_dtype = data_torch.dtype
  990. # convert any unsupported data types to float32
  991. if data_torch.dtype not in (torch.float16, torch.float32):
  992. data_torch = data_torch.to(torch.float32)
  993. data = data_torch.numpy()
  994. if name.endswith("q_proj.weight"):
  995. data = permute(data, n_head, n_head)
  996. if name.endswith("k_proj.weight"):
  997. data = permute(data, n_head, n_kv_head)
  998. data = data.squeeze()
  999. # process the experts separately
  1000. if name.find("block_sparse_moe.experts") != -1:
  1001. experts[name] = data
  1002. if len(experts) >= n_experts:
  1003. # merge the experts into a single 3d tensor
  1004. for bid in range(block_count):
  1005. for wid in range(1, 4):
  1006. full = True
  1007. for xid in range(n_experts):
  1008. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1009. if ename not in experts:
  1010. full = False
  1011. break
  1012. if not full:
  1013. continue
  1014. datas = []
  1015. for xid in range(n_experts):
  1016. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1017. datas.append(experts[ename])
  1018. del experts[ename]
  1019. data = np.stack(datas, axis=0)
  1020. data_dtype = data.dtype
  1021. if self.ftype == 0 and data_dtype == np.float16:
  1022. data = data.astype(np.float32)
  1023. if self.ftype == 1 and data_dtype == np.float32:
  1024. data = data.astype(np.float16)
  1025. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1026. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1027. if new_name is None:
  1028. print(f"Can not map tensor {name!r}")
  1029. sys.exit()
  1030. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1031. self.gguf_writer.add_tensor(new_name, data)
  1032. continue
  1033. # map tensor names
  1034. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1035. if new_name is None:
  1036. print(f"Can not map tensor {name!r}")
  1037. sys.exit()
  1038. n_dims = len(data.shape)
  1039. data_dtype = data.dtype
  1040. # if f32 desired, convert any float16 to float32
  1041. if self.ftype == 0 and data_dtype == np.float16:
  1042. data = data.astype(np.float32)
  1043. # 1d tensors need to be converted to float32
  1044. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1045. data = data.astype(np.float32)
  1046. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1047. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1048. data = data.astype(np.float16)
  1049. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1050. self.gguf_writer.add_tensor(new_name, data)
  1051. if len(experts) > 0:
  1052. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1053. @Model.register("GrokForCausalLM")
  1054. class GrokModel(Model):
  1055. model_arch = gguf.MODEL_ARCH.GROK
  1056. def set_vocab(self):
  1057. self._set_vocab_sentencepiece()
  1058. def __init__(self, *args, **kwargs):
  1059. super().__init__(*args, **kwargs)
  1060. def set_gguf_parameters(self):
  1061. super().set_gguf_parameters()
  1062. self.gguf_writer.add_name("Grok")
  1063. def write_tensors(self):
  1064. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1065. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1066. n_experts = self.hparams.get("num_local_experts")
  1067. experts = dict()
  1068. for name, data_torch in self.get_tensors():
  1069. # we don't need these
  1070. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1071. continue
  1072. old_dtype = data_torch.dtype
  1073. # convert any unsupported data types to float32
  1074. if data_torch.dtype not in (torch.float16, torch.float32):
  1075. data_torch = data_torch.to(torch.float32)
  1076. data = data_torch.squeeze().numpy()
  1077. # process the experts separately
  1078. if name.find(".moe.") != -1:
  1079. experts[name] = data
  1080. if len(experts) >= n_experts:
  1081. # merge the experts into a single 3d tensor
  1082. for bid in range(block_count):
  1083. for wid in ["linear", "linear_1", "linear_v"]:
  1084. full = True
  1085. for xid in range(n_experts):
  1086. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1087. if ename not in experts:
  1088. full = False
  1089. break
  1090. if not full:
  1091. continue
  1092. datas = []
  1093. for xid in range(n_experts):
  1094. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1095. datas.append(experts[ename])
  1096. del experts[ename]
  1097. data = np.stack(datas, axis=0)
  1098. data_dtype = data.dtype
  1099. if self.ftype == 0 and data_dtype == np.float16:
  1100. data = data.astype(np.float32)
  1101. if self.ftype == 1 and data_dtype == np.float32:
  1102. data = data.astype(np.float16)
  1103. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1104. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1105. if new_name is None:
  1106. print(f"Can not map tensor {name!r}")
  1107. sys.exit()
  1108. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1109. self.gguf_writer.add_tensor(new_name, data)
  1110. continue
  1111. # map tensor names
  1112. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1113. if new_name is None:
  1114. print(f"Can not map tensor {name!r}")
  1115. sys.exit()
  1116. n_dims = len(data.shape)
  1117. data_dtype = data.dtype
  1118. # if f32 desired, convert any float16 to float32
  1119. if self.ftype == 0 and data_dtype == np.float16:
  1120. data = data.astype(np.float32)
  1121. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1122. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1123. data = data.astype(np.float32)
  1124. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1125. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1126. data = data.astype(np.float16)
  1127. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1128. self.gguf_writer.add_tensor(new_name, data)
  1129. @Model.register("MiniCPMForCausalLM")
  1130. class MiniCPMModel(Model):
  1131. model_arch = gguf.MODEL_ARCH.MINICPM
  1132. def set_gguf_parameters(self):
  1133. block_count = self.hparams["num_hidden_layers"]
  1134. self.gguf_writer.add_name("MiniCPM")
  1135. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1136. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1137. self.gguf_writer.add_block_count(block_count)
  1138. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1139. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1140. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1141. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1142. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1143. self.gguf_writer.add_file_type(self.ftype)
  1144. def set_vocab(self):
  1145. self._set_vocab_llama_hf()
  1146. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1147. if n_kv_head is not None and n_head != n_kv_head:
  1148. n_head //= n_kv_head
  1149. return (
  1150. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1151. .swapaxes(1, 2)
  1152. .reshape(weights.shape)
  1153. )
  1154. def write_tensors(self):
  1155. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1156. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1157. n_head = self.hparams.get("num_attention_heads")
  1158. n_kv_head = self.hparams.get("num_key_value_heads")
  1159. for name, data_torch in self.get_tensors():
  1160. # we don't need these
  1161. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1162. continue
  1163. old_dtype = data_torch.dtype
  1164. # convert any unsupported data types to float32
  1165. if data_torch.dtype not in (torch.float16, torch.float32):
  1166. data_torch = data_torch.to(torch.float32)
  1167. # HF models permute some of the tensors, so we need to undo that
  1168. if name.endswith(("q_proj.weight")):
  1169. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1170. if name.endswith(("k_proj.weight")):
  1171. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1172. data = data_torch.squeeze().numpy()
  1173. # map tensor names
  1174. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1175. if new_name is None:
  1176. print(f"Can not map tensor {name!r}")
  1177. sys.exit()
  1178. n_dims = len(data.shape)
  1179. data_dtype = data.dtype
  1180. # if f32 desired, convert any float16 to float32
  1181. if self.ftype == 0 and data_dtype == np.float16:
  1182. data = data.astype(np.float32)
  1183. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1184. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1185. data = data.astype(np.float32)
  1186. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1187. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1188. data = data.astype(np.float16)
  1189. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1190. self.gguf_writer.add_tensor(new_name, data)
  1191. @Model.register("QWenLMHeadModel")
  1192. class QwenModel(Model):
  1193. model_arch = gguf.MODEL_ARCH.QWEN
  1194. @staticmethod
  1195. def token_bytes_to_string(b):
  1196. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1197. byte_encoder = bytes_to_unicode()
  1198. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1199. @staticmethod
  1200. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1201. parts = [bytes([b]) for b in token]
  1202. while True:
  1203. min_idx = None
  1204. min_rank = None
  1205. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1206. rank = mergeable_ranks.get(pair[0] + pair[1])
  1207. if rank is not None and (min_rank is None or rank < min_rank):
  1208. min_idx = i
  1209. min_rank = rank
  1210. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1211. break
  1212. assert min_idx is not None
  1213. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1214. return parts
  1215. def set_vocab(self):
  1216. self._set_vocab_qwen()
  1217. def set_gguf_parameters(self):
  1218. self.gguf_writer.add_name("Qwen")
  1219. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1220. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1221. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1222. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1223. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1224. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1225. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1226. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1227. def write_tensors(self):
  1228. block_count = self.hparams["num_hidden_layers"]
  1229. model_kv = dict(self.get_tensors())
  1230. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1231. for name, data_torch in model_kv.items():
  1232. # we don't need these
  1233. if name.endswith(".rotary_emb.inv_freq"):
  1234. continue
  1235. old_dtype = data_torch.dtype
  1236. # convert any unsupported data types to float32
  1237. if data_torch.dtype not in (torch.float16, torch.float32):
  1238. data_torch = data_torch.to(torch.float32)
  1239. data = data_torch.squeeze().numpy()
  1240. # map tensor names
  1241. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1242. if new_name is None:
  1243. print(f"Can not map tensor {name!r}")
  1244. sys.exit()
  1245. n_dims = len(data.shape)
  1246. data_dtype = data.dtype
  1247. # if f32 desired, convert any float16 to float32
  1248. if self.ftype == 0 and data_dtype == np.float16:
  1249. data = data.astype(np.float32)
  1250. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1251. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1252. data = data.astype(np.float32)
  1253. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1254. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1255. data = data.astype(np.float16)
  1256. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1257. self.gguf_writer.add_tensor(new_name, data)
  1258. @Model.register("Qwen2ForCausalLM")
  1259. class Qwen2Model(Model):
  1260. model_arch = gguf.MODEL_ARCH.QWEN2
  1261. @Model.register("GPT2LMHeadModel")
  1262. class GPT2Model(Model):
  1263. model_arch = gguf.MODEL_ARCH.GPT2
  1264. def set_gguf_parameters(self):
  1265. self.gguf_writer.add_name(self.dir_model.name)
  1266. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1267. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1268. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1269. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1270. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1271. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. def write_tensors(self):
  1274. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1275. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1276. for name, data_torch in self.get_tensors():
  1277. # we don't need these
  1278. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1279. continue
  1280. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1281. data_torch = data_torch.transpose(1, 0)
  1282. old_dtype = data_torch.dtype
  1283. # convert any unsupported data types to float32
  1284. if data_torch.dtype not in (torch.float16, torch.float32):
  1285. data_torch = data_torch.to(torch.float32)
  1286. data = data_torch.squeeze().numpy()
  1287. # map tensor names
  1288. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1289. if new_name is None:
  1290. print(f"Can not map tensor {name!r}")
  1291. sys.exit()
  1292. n_dims = len(data.shape)
  1293. data_dtype = data.dtype
  1294. # if f32 desired, convert any float16 to float32
  1295. if self.ftype == 0 and data_dtype == np.float16:
  1296. data = data.astype(np.float32)
  1297. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1298. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1299. data = data.astype(np.float32)
  1300. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1301. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1302. data = data.astype(np.float16)
  1303. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1304. self.gguf_writer.add_tensor(new_name, data)
  1305. # note: GPT2 output is tied to (same as) wte in original model
  1306. if new_name == "token_embd.weight":
  1307. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1308. self.gguf_writer.add_tensor("output.weight", data)
  1309. @Model.register("PhiForCausalLM")
  1310. class Phi2Model(Model):
  1311. model_arch = gguf.MODEL_ARCH.PHI2
  1312. def set_gguf_parameters(self):
  1313. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1314. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1315. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1316. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1317. self.gguf_writer.add_name("Phi2")
  1318. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1319. self.gguf_writer.add_embedding_length(n_embd)
  1320. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1321. self.gguf_writer.add_block_count(block_count)
  1322. self.gguf_writer.add_head_count(n_head)
  1323. self.gguf_writer.add_head_count_kv(n_head)
  1324. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1325. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1326. self.gguf_writer.add_file_type(self.ftype)
  1327. self.gguf_writer.add_add_bos_token(False)
  1328. @Model.register("PlamoForCausalLM")
  1329. class PlamoModel(Model):
  1330. model_arch = gguf.MODEL_ARCH.PLAMO
  1331. def set_vocab(self):
  1332. self._set_vocab_sentencepiece()
  1333. def set_gguf_parameters(self):
  1334. hparams = self.hparams
  1335. block_count = hparams["num_hidden_layers"]
  1336. self.gguf_writer.add_name("PLaMo")
  1337. self.gguf_writer.add_context_length(4096) # not in config.json
  1338. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1339. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1340. self.gguf_writer.add_block_count(block_count)
  1341. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1342. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1343. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1344. def shuffle_attn_q_weight(self, data_torch):
  1345. assert data_torch.size() == (5120, 5120)
  1346. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1347. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1348. data_torch = torch.reshape(data_torch, (5120, 5120))
  1349. return data_torch
  1350. def shuffle_attn_output_weight(self, data_torch):
  1351. assert data_torch.size() == (5120, 5120)
  1352. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1353. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1354. data_torch = torch.reshape(data_torch, (5120, 5120))
  1355. return data_torch
  1356. def write_tensors(self):
  1357. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1358. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1359. for name, data_torch in self.get_tensors():
  1360. if "self_attn.rotary_emb.inv_freq" in name:
  1361. continue
  1362. # map tensor names
  1363. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1364. if new_name is None:
  1365. print(f"Can not map tensor {name!r}")
  1366. sys.exit()
  1367. # shuffle for broadcasting of gqa in ggml_mul_mat
  1368. if new_name.endswith("attn_q.weight"):
  1369. data_torch = self.shuffle_attn_q_weight(data_torch)
  1370. elif new_name.endswith("attn_output.weight"):
  1371. data_torch = self.shuffle_attn_output_weight(data_torch)
  1372. old_dtype = data_torch.dtype
  1373. # convert any unsupported data types to float32
  1374. if data_torch.dtype not in (torch.float16, torch.float32):
  1375. data_torch = data_torch.to(torch.float32)
  1376. data = data_torch.squeeze().numpy()
  1377. n_dims = len(data.shape)
  1378. data_dtype = data.dtype
  1379. # if f32 desired, convert any float16 to float32
  1380. if self.ftype == 0 and data_dtype == np.float16:
  1381. data = data.astype(np.float32)
  1382. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1383. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1384. data = data.astype(np.float32)
  1385. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1386. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1387. data = data.astype(np.float16)
  1388. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1389. self.gguf_writer.add_tensor(new_name, data)
  1390. @Model.register("CodeShellForCausalLM")
  1391. class CodeShellModel(Model):
  1392. model_arch = gguf.MODEL_ARCH.CODESHELL
  1393. def set_gguf_parameters(self):
  1394. block_count = self.hparams["n_layer"]
  1395. self.gguf_writer.add_name("CodeShell")
  1396. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1397. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1398. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1399. self.gguf_writer.add_block_count(block_count)
  1400. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1401. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1402. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1403. self.gguf_writer.add_file_type(self.ftype)
  1404. self.gguf_writer.add_rope_freq_base(10000.0)
  1405. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1406. self.gguf_writer.add_rope_scaling_factor(1.0)
  1407. def write_tensors(self):
  1408. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1409. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1410. tensors = dict(self.get_tensors())
  1411. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1412. for name, data_torch in tensors.items():
  1413. # we don't need these
  1414. if name.endswith((".attn.rotary_emb.inv_freq")):
  1415. continue
  1416. old_dtype = data_torch.dtype
  1417. # convert any unsupported data types to float32
  1418. if data_torch.dtype not in (torch.float16, torch.float32):
  1419. data_torch = data_torch.to(torch.float32)
  1420. data = data_torch.squeeze().numpy()
  1421. # map tensor names
  1422. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1423. if new_name is None:
  1424. print(f"Can not map tensor {name!r}")
  1425. sys.exit()
  1426. n_dims = len(data.shape)
  1427. data_dtype = data.dtype
  1428. # if f32 desired, convert any float16 to float32
  1429. if self.ftype == 0 and data_dtype == np.float16:
  1430. data = data.astype(np.float32)
  1431. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1432. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1433. data = data.astype(np.float32)
  1434. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1435. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1436. data = data.astype(np.float16)
  1437. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1438. self.gguf_writer.add_tensor(new_name, data)
  1439. if not has_lm_head and name == "transformer.wte.weight":
  1440. self.gguf_writer.add_tensor("output.weight", data)
  1441. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1442. @Model.register("InternLM2ForCausalLM")
  1443. class InternLM2Model(Model):
  1444. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1445. def set_vocab(self):
  1446. # (TODO): Is there a better way?
  1447. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1448. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1449. # recognized as an empty string in C++.
  1450. from sentencepiece import SentencePieceProcessor
  1451. from sentencepiece import sentencepiece_model_pb2 as model
  1452. tokenizer_path = self.dir_model / 'tokenizer.model'
  1453. tokens: list[bytes] = []
  1454. scores: list[float] = []
  1455. toktypes: list[int] = []
  1456. if not tokenizer_path.is_file():
  1457. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1458. sys.exit(1)
  1459. sentencepiece_model = model.ModelProto()
  1460. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1461. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1462. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1463. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1464. for token_id in range(vocab_size):
  1465. piece = tokenizer.id_to_piece(token_id)
  1466. text = piece.encode("utf-8")
  1467. score = tokenizer.get_score(token_id)
  1468. if text == b"\x00":
  1469. # (TODO): fixme
  1470. # Hack here and replace the \x00 characters.
  1471. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1472. text = "🐉"
  1473. toktype = SentencePieceTokenTypes.NORMAL
  1474. if tokenizer.is_unknown(token_id):
  1475. toktype = SentencePieceTokenTypes.UNKNOWN
  1476. elif tokenizer.is_control(token_id):
  1477. toktype = SentencePieceTokenTypes.CONTROL
  1478. elif tokenizer.is_unused(token_id):
  1479. toktype = SentencePieceTokenTypes.UNUSED
  1480. elif tokenizer.is_byte(token_id):
  1481. toktype = SentencePieceTokenTypes.BYTE
  1482. tokens.append(text)
  1483. scores.append(score)
  1484. toktypes.append(toktype)
  1485. added_tokens_file = self.dir_model / 'added_tokens.json'
  1486. if added_tokens_file.is_file():
  1487. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1488. added_tokens_json = json.load(f)
  1489. for key in added_tokens_json:
  1490. tokens.append(key.encode("utf-8"))
  1491. scores.append(-1000.0)
  1492. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1493. self.gguf_writer.add_tokenizer_model("llama")
  1494. self.gguf_writer.add_token_list(tokens)
  1495. self.gguf_writer.add_token_scores(scores)
  1496. self.gguf_writer.add_token_types(toktypes)
  1497. self.gguf_writer.add_add_space_prefix(add_prefix)
  1498. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1499. old_eos = special_vocab.special_token_ids["eos"]
  1500. if "chat" in os.path.basename(self.dir_model.absolute()):
  1501. # For the chat model, we replace the eos with '<|im_end|>'.
  1502. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1503. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1504. in chat mode so that the conversation can end normally.")
  1505. special_vocab.add_to_gguf(self.gguf_writer)
  1506. def _try_get_sft_eos(self, tokenizer):
  1507. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1508. im_end_list = tokenizer.encode('<|im_end|>')
  1509. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1510. if len(unused_145_list) == 1:
  1511. eos_token = unused_145_list[0]
  1512. if len(im_end_list) == 1:
  1513. eos_token = im_end_list[0]
  1514. return eos_token
  1515. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1516. if n_head_kv is not None and n_head != n_head_kv:
  1517. n_head = n_head_kv
  1518. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1519. .swapaxes(1, 2)
  1520. .reshape(weights.shape))
  1521. def set_gguf_parameters(self):
  1522. self.gguf_writer.add_name("InternLM2")
  1523. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1524. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1525. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1526. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1527. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1528. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1529. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1530. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1531. def post_write_tensors(self, tensor_map, name, data_torch):
  1532. old_dtype = data_torch.dtype
  1533. # convert any unsupported data types to float32
  1534. if data_torch.dtype not in (torch.float16, torch.float32):
  1535. data_torch = data_torch.to(torch.float32)
  1536. data = data_torch.squeeze().numpy()
  1537. # map tensor names
  1538. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1539. if new_name is None:
  1540. print(f"Can not map tensor {name!r}")
  1541. sys.exit()
  1542. n_dims = len(data.shape)
  1543. data_dtype = data.dtype
  1544. # if f32 desired, convert any float16 to float32
  1545. if self.ftype == 0 and data_dtype == np.float16:
  1546. data = data.astype(np.float32)
  1547. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1548. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1549. data = data.astype(np.float32)
  1550. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1551. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1552. data = data.astype(np.float16)
  1553. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1554. self.gguf_writer.add_tensor(new_name, data)
  1555. def write_tensors(self):
  1556. from einops import rearrange
  1557. num_heads = self.hparams.get("num_attention_heads")
  1558. num_kv_heads = self.hparams.get("num_key_value_heads")
  1559. hidden_size = self.hparams.get("hidden_size")
  1560. q_per_kv = num_heads // num_kv_heads
  1561. head_dim = hidden_size // num_heads
  1562. num_groups = num_heads // q_per_kv
  1563. block_count = self.hparams["num_hidden_layers"]
  1564. model_kv = dict(self.get_tensors())
  1565. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1566. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1567. for name, data_torch in model_kv.items():
  1568. # we don't need these
  1569. if name.endswith(".rotary_emb.inv_freq"):
  1570. continue
  1571. if re.match(qkv_pattern, name):
  1572. bid = re.findall(qkv_pattern, name)[0]
  1573. qkv = data_torch
  1574. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1575. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1576. # The model weights of q and k equire additional reshape.
  1577. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1578. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1579. v = rearrange(v, " o g n i -> o (g n i)").T
  1580. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1581. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1582. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1583. else:
  1584. self.post_write_tensors(tensor_map, name, data_torch)
  1585. @Model.register("BertModel", "CamembertModel")
  1586. class BertModel(Model):
  1587. model_arch = gguf.MODEL_ARCH.BERT
  1588. def __init__(self, *args, **kwargs):
  1589. super().__init__(*args, **kwargs)
  1590. self.vocab_size = None
  1591. def set_gguf_parameters(self):
  1592. super().set_gguf_parameters()
  1593. self.gguf_writer.add_causal_attention(False)
  1594. # get pooling path
  1595. pooling_path = None
  1596. module_path = self.dir_model / "modules.json"
  1597. if module_path.is_file():
  1598. with open(module_path, encoding="utf-8") as f:
  1599. modules = json.load(f)
  1600. for mod in modules:
  1601. if mod["type"] == "sentence_transformers.models.Pooling":
  1602. pooling_path = mod["path"]
  1603. break
  1604. # get pooling type
  1605. if pooling_path is not None:
  1606. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1607. pooling = json.load(f)
  1608. if pooling["pooling_mode_mean_tokens"]:
  1609. pooling_type = gguf.PoolingType.MEAN
  1610. elif pooling["pooling_mode_cls_token"]:
  1611. pooling_type = gguf.PoolingType.CLS
  1612. else:
  1613. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1614. self.gguf_writer.add_pooling_type(pooling_type)
  1615. def set_vocab(self):
  1616. # use huggingface vocab to get all tokens
  1617. vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
  1618. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1619. assert len(tokens) == vocab.vocab_size
  1620. self.vocab_size = vocab.vocab_size
  1621. # we need this to validate the size of the token_type embeddings
  1622. # though currently we are passing all zeros to the token_type embeddings
  1623. n_token_types = len(set(toktypes))
  1624. self.gguf_writer.add_token_type_count(n_token_types)
  1625. # convert to phantom space vocab
  1626. def phantom(tok, typ):
  1627. if tok.startswith(b"[") and tok.endswith(b"]"):
  1628. return tok
  1629. if tok.startswith(b"##"):
  1630. return tok[2:]
  1631. return b"\xe2\x96\x81" + tok
  1632. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1633. # set up bos and eos tokens (cls and sep)
  1634. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1635. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1636. # add vocab to gguf
  1637. self.gguf_writer.add_tokenizer_model("bert")
  1638. self.gguf_writer.add_token_list(tokens)
  1639. self.gguf_writer.add_token_scores(scores)
  1640. self.gguf_writer.add_token_types(toktypes)
  1641. # handle special tokens
  1642. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1643. special_vocab.add_to_gguf(self.gguf_writer)
  1644. def write_tensors(self):
  1645. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1646. tensors = dict(self.get_tensors())
  1647. for name, data_torch in tensors.items():
  1648. # we are only using BERT for embeddings so we don't need the pooling layer
  1649. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1650. continue # we don't need these
  1651. # map tensor names
  1652. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1653. if new_name is None:
  1654. print(f"Can not map tensor {name!r}")
  1655. sys.exit()
  1656. data = data_torch.squeeze().numpy()
  1657. n_dims = len(data.shape)
  1658. new_dtype: type[np.floating[Any]]
  1659. if (
  1660. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1661. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1662. ):
  1663. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1664. new_dtype = np.float16
  1665. else:
  1666. # if f32 desired, convert any float16 to float32
  1667. new_dtype = np.float32
  1668. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1669. if data.dtype != new_dtype:
  1670. data = data.astype(new_dtype)
  1671. self.gguf_writer.add_tensor(new_name, data)
  1672. @Model.register("NomicBertModel")
  1673. class NomicBertModel(BertModel):
  1674. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1675. def __init__(self, *args, **kwargs):
  1676. super().__init__(*args, **kwargs)
  1677. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1678. self.hparams["n_ctx"] = 2048
  1679. # SwigLU activation
  1680. assert self.hparams["activation_function"] == "swiglu"
  1681. # this doesn't do anything in the HF version
  1682. assert self.hparams["causal"] is False
  1683. # no bias tensors
  1684. assert self.hparams["qkv_proj_bias"] is False
  1685. assert self.hparams["mlp_fc1_bias"] is False
  1686. assert self.hparams["mlp_fc2_bias"] is False
  1687. # norm at end of layer
  1688. assert self.hparams["prenorm"] is False
  1689. # standard RoPE
  1690. assert self.hparams["rotary_emb_fraction"] == 1.0
  1691. assert self.hparams["rotary_emb_interleaved"] is False
  1692. assert self.hparams["rotary_emb_scale_base"] is None
  1693. def set_gguf_parameters(self):
  1694. super().set_gguf_parameters()
  1695. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1696. def get_tensors(self):
  1697. assert self.vocab_size is not None
  1698. for name, data in super().get_tensors():
  1699. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1700. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1701. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1702. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1703. data = data[:self.vocab_size, :]
  1704. yield name, data
  1705. @Model.register("GemmaForCausalLM")
  1706. class GemmaModel(Model):
  1707. model_arch = gguf.MODEL_ARCH.GEMMA
  1708. def set_vocab(self):
  1709. self._set_vocab_sentencepiece()
  1710. def set_gguf_parameters(self):
  1711. hparams = self.hparams
  1712. block_count = hparams["num_hidden_layers"]
  1713. self.gguf_writer.add_name(self.dir_model.name)
  1714. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1715. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1716. self.gguf_writer.add_block_count(block_count)
  1717. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1718. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1719. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1720. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1721. self.gguf_writer.add_key_length(hparams["head_dim"])
  1722. self.gguf_writer.add_value_length(hparams["head_dim"])
  1723. self.gguf_writer.add_file_type(self.ftype)
  1724. def write_tensors(self):
  1725. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1726. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1727. for name, data_torch in self.get_tensors():
  1728. old_dtype = data_torch.dtype
  1729. # convert any unsupported data types to float32
  1730. if data_torch.dtype not in (torch.float16, torch.float32):
  1731. data_torch = data_torch.to(torch.float32)
  1732. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1733. if name.endswith("norm.weight"):
  1734. data_torch = data_torch + 1
  1735. data = data_torch.squeeze().numpy()
  1736. # map tensor names
  1737. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1738. if new_name is None:
  1739. print(f"Can not map tensor {name!r}")
  1740. sys.exit()
  1741. n_dims = len(data.shape)
  1742. data_dtype = data.dtype
  1743. data = data.astype(np.float32)
  1744. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1745. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1746. data = data.astype(np.float16)
  1747. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1748. self.gguf_writer.add_tensor(new_name, data)
  1749. @Model.register("Starcoder2ForCausalLM")
  1750. class StarCoder2Model(Model):
  1751. model_arch = gguf.MODEL_ARCH.STARCODER2
  1752. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1753. class MambaModel(Model):
  1754. model_arch = gguf.MODEL_ARCH.MAMBA
  1755. def set_vocab(self):
  1756. vocab_size = self.hparams["vocab_size"]
  1757. # Round vocab size to next multiple of 8
  1758. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1759. # pad using ceiling division
  1760. # ref: https://stackoverflow.com/a/17511341/22827863
  1761. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1762. self.hparams["vocab_size"] = vocab_size
  1763. if (self.dir_model / "tokenizer.json").is_file():
  1764. self._set_vocab_gpt2()
  1765. else:
  1766. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1767. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1768. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1769. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1770. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1771. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1772. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1773. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1774. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1775. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1776. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1777. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1778. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1779. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1780. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1781. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1782. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1783. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1784. def set_gguf_parameters(self):
  1785. d_model = self.find_hparam(["hidden_size", "d_model"])
  1786. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1787. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1788. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1789. # ceiling division
  1790. # ref: https://stackoverflow.com/a/17511341/22827863
  1791. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1792. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1793. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1794. # Fail early for models which don't have a block expansion factor of 2
  1795. assert d_inner == 2 * d_model
  1796. self.gguf_writer.add_name(self.dir_model.name)
  1797. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1798. self.gguf_writer.add_embedding_length(d_model)
  1799. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1800. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1801. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1802. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1803. self.gguf_writer.add_ssm_inner_size(d_inner)
  1804. self.gguf_writer.add_ssm_state_size(d_state)
  1805. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1806. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1807. self.gguf_writer.add_file_type(self.ftype)
  1808. def write_tensors(self):
  1809. block_count = self.hparams["n_layer"]
  1810. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1811. tok_embd = None
  1812. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1813. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1814. for name, data_torch in self.get_tensors():
  1815. old_dtype = data_torch.dtype
  1816. # convert any unsupported data types to float32
  1817. if data_torch.dtype not in (torch.float16, torch.float32):
  1818. data_torch = data_torch.to(torch.float32)
  1819. # map tensor names
  1820. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1821. if new_name is None:
  1822. print(f"Can not map tensor {name!r}")
  1823. sys.exit()
  1824. if name.endswith(".A_log"):
  1825. print("A_log --> A ==> " + new_name)
  1826. data_torch = -torch.exp(data_torch)
  1827. # assuming token_embd.weight is seen before output.weight
  1828. if tok_embd is not None and new_name == output_name:
  1829. if torch.equal(tok_embd, data_torch):
  1830. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1831. continue
  1832. if new_name == tok_embd_name:
  1833. tok_embd = data_torch
  1834. data = data_torch.squeeze().numpy()
  1835. n_dims = len(data.shape)
  1836. data_dtype = data.dtype
  1837. # if f32 desired, convert any float16 to float32
  1838. if self.ftype == 0 and data_dtype == np.float16:
  1839. data = data.astype(np.float32)
  1840. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1841. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1842. data = data.astype(np.float32)
  1843. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1844. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1845. data = data.astype(np.float16)
  1846. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1847. self.gguf_writer.add_tensor(new_name, data)
  1848. @Model.register("CohereForCausalLM")
  1849. class CommandR2Model(Model):
  1850. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1851. def __init__(self, *args, **kwargs):
  1852. super().__init__(*args, **kwargs)
  1853. # max_position_embeddings = 8192 in config.json but model was actually
  1854. # trained on 128k context length
  1855. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1856. def set_gguf_parameters(self):
  1857. super().set_gguf_parameters()
  1858. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1859. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1860. ###### CONVERSION LOGIC ######
  1861. def parse_args() -> argparse.Namespace:
  1862. parser = argparse.ArgumentParser(
  1863. description="Convert a huggingface model to a GGML compatible file")
  1864. parser.add_argument(
  1865. "--vocab-only", action="store_true",
  1866. help="extract only the vocab",
  1867. )
  1868. parser.add_argument(
  1869. "--awq-path", type=Path, default=None,
  1870. help="Path to scale awq cache file")
  1871. parser.add_argument(
  1872. "--outfile", type=Path,
  1873. help="path to write to; default: based on input",
  1874. )
  1875. parser.add_argument(
  1876. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1877. help="output format - use f32 for float32, f16 for float16",
  1878. )
  1879. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1880. parser.add_argument(
  1881. "model", type=Path,
  1882. help="directory containing model file",
  1883. )
  1884. return parser.parse_args()
  1885. def main() -> None:
  1886. args = parse_args()
  1887. dir_model = args.model
  1888. if args.awq_path:
  1889. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1890. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1891. tmp_model_path = args.model / "weighted_model"
  1892. dir_model = tmp_model_path
  1893. if tmp_model_path.is_dir():
  1894. print(f"{tmp_model_path} exists as a weighted model.")
  1895. else:
  1896. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1897. print("Saving new weighted model ...")
  1898. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1899. print(f"Saved weighted model at {tmp_model_path}.")
  1900. if not dir_model.is_dir():
  1901. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1902. sys.exit(1)
  1903. ftype_map = {
  1904. "f32": gguf.GGMLQuantizationType.F32,
  1905. "f16": gguf.GGMLQuantizationType.F16,
  1906. }
  1907. if args.outfile is not None:
  1908. fname_out = args.outfile
  1909. else:
  1910. # output in the same directory as the model by default
  1911. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1912. print(f"Loading model: {dir_model.name}")
  1913. hparams = Model.load_hparams(dir_model)
  1914. with torch.inference_mode():
  1915. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1916. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1917. print("Set model parameters")
  1918. model_instance.set_gguf_parameters()
  1919. print("Set model tokenizer")
  1920. model_instance.set_vocab()
  1921. if args.vocab_only:
  1922. print(f"Exporting model vocab to '{fname_out}'")
  1923. model_instance.write_vocab()
  1924. else:
  1925. print(f"Exporting model to '{fname_out}'")
  1926. model_instance.write()
  1927. print(f"Model successfully exported to '{fname_out}'")
  1928. if __name__ == '__main__':
  1929. main()