server.cpp 161 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  61. enum error_type {
  62. ERROR_TYPE_INVALID_REQUEST,
  63. ERROR_TYPE_AUTHENTICATION,
  64. ERROR_TYPE_SERVER,
  65. ERROR_TYPE_NOT_FOUND,
  66. ERROR_TYPE_PERMISSION,
  67. ERROR_TYPE_UNAVAILABLE, // custom error
  68. ERROR_TYPE_NOT_SUPPORTED, // custom error
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  73. bool return_tokens = false;
  74. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  75. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  76. int32_t n_predict = -1; // new tokens to predict
  77. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  78. int64_t t_max_prompt_ms = -1; // TODO: implement
  79. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  80. std::vector<std::string> antiprompt;
  81. std::vector<std::string> response_fields;
  82. bool timings_per_token = false;
  83. bool post_sampling_probs = false;
  84. bool ignore_eos = false;
  85. struct common_params_sampling sampling;
  86. struct common_params_speculative speculative;
  87. // OAI-compat fields
  88. bool verbose = false;
  89. bool oaicompat = false;
  90. bool oaicompat_chat = true;
  91. std::string oaicompat_model;
  92. std::string oaicompat_cmpl_id;
  93. json to_json() const {
  94. std::vector<std::string> samplers;
  95. samplers.reserve(sampling.samplers.size());
  96. for (const auto & sampler : sampling.samplers) {
  97. samplers.emplace_back(common_sampler_type_to_str(sampler));
  98. }
  99. return json {
  100. {"n_predict", n_predict}, // Server configured n_predict
  101. {"seed", sampling.seed},
  102. {"temperature", sampling.temp},
  103. {"dynatemp_range", sampling.dynatemp_range},
  104. {"dynatemp_exponent", sampling.dynatemp_exponent},
  105. {"top_k", sampling.top_k},
  106. {"top_p", sampling.top_p},
  107. {"min_p", sampling.min_p},
  108. {"xtc_probability", sampling.xtc_probability},
  109. {"xtc_threshold", sampling.xtc_threshold},
  110. {"typical_p", sampling.typ_p},
  111. {"repeat_last_n", sampling.penalty_last_n},
  112. {"repeat_penalty", sampling.penalty_repeat},
  113. {"presence_penalty", sampling.penalty_present},
  114. {"frequency_penalty", sampling.penalty_freq},
  115. {"dry_multiplier", sampling.dry_multiplier},
  116. {"dry_base", sampling.dry_base},
  117. {"dry_allowed_length", sampling.dry_allowed_length},
  118. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  119. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  120. {"mirostat", sampling.mirostat},
  121. {"mirostat_tau", sampling.mirostat_tau},
  122. {"mirostat_eta", sampling.mirostat_eta},
  123. {"stop", antiprompt},
  124. {"max_tokens", n_predict}, // User configured n_predict
  125. {"n_keep", n_keep},
  126. {"n_discard", n_discard},
  127. {"ignore_eos", sampling.ignore_eos},
  128. {"stream", stream},
  129. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  130. {"n_probs", sampling.n_probs},
  131. {"min_keep", sampling.min_keep},
  132. {"grammar", sampling.grammar},
  133. {"samplers", samplers},
  134. {"speculative.n_max", speculative.n_max},
  135. {"speculative.n_min", speculative.n_min},
  136. {"speculative.p_min", speculative.p_min},
  137. {"timings_per_token", timings_per_token},
  138. {"post_sampling_probs", post_sampling_probs},
  139. };
  140. }
  141. };
  142. struct server_task {
  143. int id = -1; // to be filled by server_queue
  144. int index = -1; // used when there are multiple prompts (batch request)
  145. server_task_type type;
  146. // used by SERVER_TASK_TYPE_CANCEL
  147. int id_target = -1;
  148. // used by SERVER_TASK_TYPE_INFERENCE
  149. slot_params params;
  150. llama_tokens prompt_tokens;
  151. int id_selected_slot = -1;
  152. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  153. struct slot_action {
  154. int slot_id;
  155. std::string filename;
  156. std::string filepath;
  157. };
  158. slot_action slot_action;
  159. // used by SERVER_TASK_TYPE_METRICS
  160. bool metrics_reset_bucket = false;
  161. server_task(server_task_type type) : type(type) {}
  162. static slot_params params_from_json_cmpl(
  163. const llama_model * model,
  164. const llama_context * ctx,
  165. const common_params & params_base,
  166. const json & data) {
  167. slot_params params;
  168. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  169. slot_params defaults;
  170. defaults.sampling = params_base.sampling;
  171. defaults.speculative = params_base.speculative;
  172. // enabling this will output extra debug information in the HTTP responses from the server
  173. params.verbose = params_base.verbosity > 9;
  174. params.timings_per_token = json_value(data, "timings_per_token", false);
  175. params.stream = json_value(data, "stream", false);
  176. params.cache_prompt = json_value(data, "cache_prompt", true);
  177. params.return_tokens = json_value(data, "return_tokens", false);
  178. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  179. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  180. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  181. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  182. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  183. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  184. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  185. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  186. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  187. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  188. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  189. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  190. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  191. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  192. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  193. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  194. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  195. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  196. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  197. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  198. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  199. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  200. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  201. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  202. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  203. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  204. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  205. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  206. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  207. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  208. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  209. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  210. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  211. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  212. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  213. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  214. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  215. // TODO: add more sanity checks for the input parameters
  216. if (params.sampling.penalty_last_n < -1) {
  217. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  218. }
  219. if (params.sampling.dry_penalty_last_n < -1) {
  220. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  221. }
  222. if (params.sampling.penalty_last_n == -1) {
  223. // note: should be the slot's context and not the full context, but it's ok
  224. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  225. }
  226. if (params.sampling.dry_penalty_last_n == -1) {
  227. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  228. }
  229. if (params.sampling.dry_base < 1.0f) {
  230. params.sampling.dry_base = defaults.sampling.dry_base;
  231. }
  232. // sequence breakers for DRY
  233. {
  234. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  235. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  236. if (data.contains("dry_sequence_breakers")) {
  237. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  238. if (params.sampling.dry_sequence_breakers.empty()) {
  239. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  240. }
  241. }
  242. }
  243. // process "json_schema" and "grammar"
  244. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  245. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  246. }
  247. if (data.contains("json_schema") && !data.contains("grammar")) {
  248. try {
  249. auto schema = json_value(data, "json_schema", json::object());
  250. params.sampling.grammar = json_schema_to_grammar(schema);
  251. } catch (const std::exception & e) {
  252. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  253. }
  254. } else {
  255. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  256. }
  257. {
  258. params.sampling.logit_bias.clear();
  259. params.ignore_eos = json_value(data, "ignore_eos", false);
  260. const auto & logit_bias = data.find("logit_bias");
  261. if (logit_bias != data.end() && logit_bias->is_array()) {
  262. const int n_vocab = llama_n_vocab(model);
  263. for (const auto & el : *logit_bias) {
  264. // TODO: we may want to throw errors here, in case "el" is incorrect
  265. if (el.is_array() && el.size() == 2) {
  266. float bias;
  267. if (el[1].is_number()) {
  268. bias = el[1].get<float>();
  269. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  270. bias = -INFINITY;
  271. } else {
  272. continue;
  273. }
  274. if (el[0].is_number_integer()) {
  275. llama_token tok = el[0].get<llama_token>();
  276. if (tok >= 0 && tok < n_vocab) {
  277. params.sampling.logit_bias.push_back({tok, bias});
  278. }
  279. } else if (el[0].is_string()) {
  280. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  281. for (auto tok : toks) {
  282. params.sampling.logit_bias.push_back({tok, bias});
  283. }
  284. }
  285. }
  286. }
  287. }
  288. }
  289. {
  290. params.antiprompt.clear();
  291. const auto & stop = data.find("stop");
  292. if (stop != data.end() && stop->is_array()) {
  293. for (const auto & word : *stop) {
  294. if (!word.empty()) {
  295. params.antiprompt.push_back(word);
  296. }
  297. }
  298. }
  299. }
  300. {
  301. const auto & samplers = data.find("samplers");
  302. if (samplers != data.end()) {
  303. if (samplers->is_array()) {
  304. std::vector<std::string> sampler_names;
  305. for (const auto & name : *samplers) {
  306. if (name.is_string()) {
  307. sampler_names.emplace_back(name);
  308. }
  309. }
  310. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  311. } else if (samplers->is_string()){
  312. std::string sampler_string;
  313. for (const auto & name : *samplers) {
  314. sampler_string += name;
  315. }
  316. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  317. }
  318. } else {
  319. params.sampling.samplers = defaults.sampling.samplers;
  320. }
  321. }
  322. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  323. params.oaicompat_model = json_value(data, "model", model_name);
  324. return params;
  325. }
  326. // utility function
  327. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  328. std::unordered_set<int> ids(tasks.size());
  329. for (size_t i = 0; i < tasks.size(); i++) {
  330. ids.insert(tasks[i].id);
  331. }
  332. return ids;
  333. }
  334. };
  335. struct result_timings {
  336. int32_t prompt_n = -1;
  337. double prompt_ms;
  338. double prompt_per_token_ms;
  339. double prompt_per_second;
  340. int32_t predicted_n = -1;
  341. double predicted_ms;
  342. double predicted_per_token_ms;
  343. double predicted_per_second;
  344. json to_json() const {
  345. return {
  346. {"prompt_n", prompt_n},
  347. {"prompt_ms", prompt_ms},
  348. {"prompt_per_token_ms", prompt_per_token_ms},
  349. {"prompt_per_second", prompt_per_second},
  350. {"predicted_n", predicted_n},
  351. {"predicted_ms", predicted_ms},
  352. {"predicted_per_token_ms", predicted_per_token_ms},
  353. {"predicted_per_second", predicted_per_second},
  354. };
  355. }
  356. };
  357. struct server_task_result {
  358. int id = -1;
  359. int id_slot = -1;
  360. virtual bool is_error() {
  361. // only used by server_task_result_error
  362. return false;
  363. }
  364. virtual bool is_stop() {
  365. // only used by server_task_result_cmpl_*
  366. return false;
  367. }
  368. virtual int get_index() {
  369. return -1;
  370. }
  371. virtual json to_json() = 0;
  372. virtual ~server_task_result() = default;
  373. };
  374. // using shared_ptr for polymorphism of server_task_result
  375. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  376. inline std::string stop_type_to_str(stop_type type) {
  377. switch (type) {
  378. case STOP_TYPE_EOS: return "eos";
  379. case STOP_TYPE_WORD: return "word";
  380. case STOP_TYPE_LIMIT: return "limit";
  381. default: return "none";
  382. }
  383. }
  384. struct completion_token_output {
  385. llama_token tok;
  386. float prob;
  387. std::string text_to_send;
  388. struct prob_info {
  389. llama_token tok;
  390. std::string txt;
  391. float prob;
  392. };
  393. std::vector<prob_info> probs;
  394. json to_json(bool post_sampling_probs) const {
  395. json probs_for_token = json::array();
  396. for (const auto & p : probs) {
  397. std::string txt(p.txt);
  398. txt.resize(validate_utf8(txt));
  399. probs_for_token.push_back(json {
  400. {"id", p.tok},
  401. {"token", txt},
  402. {"bytes", str_to_bytes(p.txt)},
  403. {
  404. post_sampling_probs ? "prob" : "logprob",
  405. post_sampling_probs ? p.prob : logarithm(p.prob)
  406. },
  407. });
  408. }
  409. return probs_for_token;
  410. }
  411. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  412. json out = json::array();
  413. for (const auto & p : probs) {
  414. std::string txt(p.text_to_send);
  415. txt.resize(validate_utf8(txt));
  416. out.push_back(json {
  417. {"id", p.tok},
  418. {"token", txt},
  419. {"bytes", str_to_bytes(p.text_to_send)},
  420. {
  421. post_sampling_probs ? "prob" : "logprob",
  422. post_sampling_probs ? p.prob : logarithm(p.prob)
  423. },
  424. {
  425. post_sampling_probs ? "top_probs" : "top_logprobs",
  426. p.to_json(post_sampling_probs)
  427. },
  428. });
  429. }
  430. return out;
  431. }
  432. static float logarithm(float x) {
  433. // nlohmann::json converts -inf to null, so we need to prevent that
  434. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  435. }
  436. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  437. std::vector<unsigned char> bytes;
  438. for (unsigned char c : str) {
  439. bytes.push_back(c);
  440. }
  441. return bytes;
  442. }
  443. };
  444. struct server_task_result_cmpl_final : server_task_result {
  445. int index = 0;
  446. std::string content;
  447. llama_tokens tokens;
  448. bool stream;
  449. result_timings timings;
  450. std::string prompt;
  451. bool truncated;
  452. int32_t n_decoded;
  453. int32_t n_prompt_tokens;
  454. int32_t n_tokens_cached;
  455. bool has_new_line;
  456. std::string stopping_word;
  457. stop_type stop = STOP_TYPE_NONE;
  458. bool post_sampling_probs;
  459. std::vector<completion_token_output> probs_output;
  460. std::vector<std::string> response_fields;
  461. slot_params generation_params;
  462. // OAI-compat fields
  463. bool verbose = false;
  464. bool oaicompat = false;
  465. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  466. std::string oaicompat_model;
  467. std::string oaicompat_cmpl_id;
  468. virtual int get_index() override {
  469. return index;
  470. }
  471. virtual bool is_stop() override {
  472. return true; // in stream mode, final responses are considered stop
  473. }
  474. virtual json to_json() override {
  475. return oaicompat
  476. ? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
  477. : to_json_non_oaicompat();
  478. }
  479. json to_json_non_oaicompat() {
  480. json res = json {
  481. {"index", index},
  482. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  483. {"tokens", stream ? llama_tokens {} : tokens},
  484. {"id_slot", id_slot},
  485. {"stop", true},
  486. {"model", oaicompat_model},
  487. {"tokens_predicted", n_decoded},
  488. {"tokens_evaluated", n_prompt_tokens},
  489. {"generation_settings", generation_params.to_json()},
  490. {"prompt", prompt},
  491. {"has_new_line", has_new_line},
  492. {"truncated", truncated},
  493. {"stop_type", stop_type_to_str(stop)},
  494. {"stopping_word", stopping_word},
  495. {"tokens_cached", n_tokens_cached},
  496. {"timings", timings.to_json()},
  497. };
  498. if (!stream && !probs_output.empty()) {
  499. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  500. }
  501. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  502. }
  503. json to_json_oaicompat_chat() {
  504. std::string finish_reason = "length";
  505. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  506. finish_reason = "stop";
  507. }
  508. json choice = json{
  509. {"finish_reason", finish_reason},
  510. {"index", 0},
  511. {"message", json {
  512. {"content", content},
  513. {"role", "assistant"}
  514. }
  515. }};
  516. if (!stream && probs_output.size() > 0) {
  517. choice["logprobs"] = json{
  518. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  519. };
  520. }
  521. std::time_t t = std::time(0);
  522. json res = json {
  523. {"choices", json::array({choice})},
  524. {"created", t},
  525. {"model", oaicompat_model},
  526. {"system_fingerprint", build_info},
  527. {"object", "chat.completion"},
  528. {"usage", json {
  529. {"completion_tokens", n_decoded},
  530. {"prompt_tokens", n_prompt_tokens},
  531. {"total_tokens", n_decoded + n_prompt_tokens}
  532. }},
  533. {"id", oaicompat_cmpl_id}
  534. };
  535. // extra fields for debugging purposes
  536. if (verbose) {
  537. res["__verbose"] = to_json_non_oaicompat();
  538. }
  539. if (timings.prompt_n >= 0) {
  540. res.push_back({"timings", timings.to_json()});
  541. }
  542. return res;
  543. }
  544. json to_json_oaicompat_chat_stream() {
  545. std::time_t t = std::time(0);
  546. std::string finish_reason = "length";
  547. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  548. finish_reason = "stop";
  549. }
  550. json choice = json{
  551. {"finish_reason", finish_reason},
  552. {"index", 0},
  553. {"delta", json::object()}
  554. };
  555. json ret = json {
  556. {"choices", json::array({choice})},
  557. {"created", t},
  558. {"id", oaicompat_cmpl_id},
  559. {"model", oaicompat_model},
  560. {"system_fingerprint", build_info},
  561. {"object", "chat.completion.chunk"},
  562. {"usage", json {
  563. {"completion_tokens", n_decoded},
  564. {"prompt_tokens", n_prompt_tokens},
  565. {"total_tokens", n_decoded + n_prompt_tokens},
  566. }},
  567. };
  568. if (timings.prompt_n >= 0) {
  569. ret.push_back({"timings", timings.to_json()});
  570. }
  571. return ret;
  572. }
  573. };
  574. struct server_task_result_cmpl_partial : server_task_result {
  575. int index = 0;
  576. std::string content;
  577. llama_tokens tokens;
  578. int32_t n_decoded;
  579. int32_t n_prompt_tokens;
  580. bool post_sampling_probs;
  581. completion_token_output prob_output;
  582. result_timings timings;
  583. // OAI-compat fields
  584. bool verbose = false;
  585. bool oaicompat = false;
  586. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  587. std::string oaicompat_model;
  588. std::string oaicompat_cmpl_id;
  589. virtual int get_index() override {
  590. return index;
  591. }
  592. virtual bool is_stop() override {
  593. return false; // in stream mode, partial responses are not considered stop
  594. }
  595. virtual json to_json() override {
  596. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  597. }
  598. json to_json_non_oaicompat() {
  599. // non-OAI-compat JSON
  600. json res = json {
  601. {"index", index},
  602. {"content", content},
  603. {"tokens", tokens},
  604. {"stop", false},
  605. {"id_slot", id_slot},
  606. {"tokens_predicted", n_decoded},
  607. {"tokens_evaluated", n_prompt_tokens},
  608. };
  609. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  610. if (timings.prompt_n > 0) {
  611. res.push_back({"timings", timings.to_json()});
  612. }
  613. if (!prob_output.probs.empty()) {
  614. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  615. }
  616. return res;
  617. }
  618. json to_json_oaicompat() {
  619. bool first = n_decoded == 0;
  620. std::time_t t = std::time(0);
  621. json choices;
  622. if (first) {
  623. if (content.empty()) {
  624. choices = json::array({json{{"finish_reason", nullptr},
  625. {"index", 0},
  626. {"delta", json{{"role", "assistant"}}}}});
  627. } else {
  628. // We have to send this as two updates to conform to openai behavior
  629. json initial_ret = json{{"choices", json::array({json{
  630. {"finish_reason", nullptr},
  631. {"index", 0},
  632. {"delta", json{
  633. {"role", "assistant"}
  634. }}}})},
  635. {"created", t},
  636. {"id", oaicompat_cmpl_id},
  637. {"model", oaicompat_model},
  638. {"object", "chat.completion.chunk"}};
  639. json second_ret = json{
  640. {"choices", json::array({json{{"finish_reason", nullptr},
  641. {"index", 0},
  642. {"delta", json {
  643. {"content", content}}}
  644. }})},
  645. {"created", t},
  646. {"id", oaicompat_cmpl_id},
  647. {"model", oaicompat_model},
  648. {"object", "chat.completion.chunk"}};
  649. return std::vector<json>({initial_ret, second_ret});
  650. }
  651. } else {
  652. choices = json::array({json{
  653. {"finish_reason", nullptr},
  654. {"index", 0},
  655. {"delta",
  656. json {
  657. {"content", content},
  658. }},
  659. }});
  660. }
  661. GGML_ASSERT(choices.size() >= 1);
  662. if (prob_output.probs.size() > 0) {
  663. choices[0]["logprobs"] = json{
  664. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  665. };
  666. }
  667. json ret = json {
  668. {"choices", choices},
  669. {"created", t},
  670. {"id", oaicompat_cmpl_id},
  671. {"model", oaicompat_model},
  672. {"system_fingerprint", build_info},
  673. {"object", "chat.completion.chunk"}
  674. };
  675. if (timings.prompt_n >= 0) {
  676. ret.push_back({"timings", timings.to_json()});
  677. }
  678. return std::vector<json>({ret});
  679. }
  680. };
  681. struct server_task_result_embd : server_task_result {
  682. int index = 0;
  683. std::vector<std::vector<float>> embedding;
  684. int32_t n_tokens;
  685. // OAI-compat fields
  686. bool oaicompat = false;
  687. virtual int get_index() override {
  688. return index;
  689. }
  690. virtual json to_json() override {
  691. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  692. }
  693. json to_json_non_oaicompat() {
  694. return json {
  695. {"index", index},
  696. {"embedding", embedding},
  697. };
  698. }
  699. json to_json_oaicompat() {
  700. return json {
  701. {"index", index},
  702. {"embedding", embedding[0]},
  703. {"tokens_evaluated", n_tokens},
  704. };
  705. }
  706. };
  707. struct server_task_result_rerank : server_task_result {
  708. int index = 0;
  709. float score = -1e6;
  710. int32_t n_tokens;
  711. virtual int get_index() override {
  712. return index;
  713. }
  714. virtual json to_json() override {
  715. return json {
  716. {"index", index},
  717. {"score", score},
  718. {"tokens_evaluated", n_tokens},
  719. };
  720. }
  721. };
  722. // this function maybe used outside of server_task_result_error
  723. static json format_error_response(const std::string & message, const enum error_type type) {
  724. std::string type_str;
  725. int code = 500;
  726. switch (type) {
  727. case ERROR_TYPE_INVALID_REQUEST:
  728. type_str = "invalid_request_error";
  729. code = 400;
  730. break;
  731. case ERROR_TYPE_AUTHENTICATION:
  732. type_str = "authentication_error";
  733. code = 401;
  734. break;
  735. case ERROR_TYPE_NOT_FOUND:
  736. type_str = "not_found_error";
  737. code = 404;
  738. break;
  739. case ERROR_TYPE_SERVER:
  740. type_str = "server_error";
  741. code = 500;
  742. break;
  743. case ERROR_TYPE_PERMISSION:
  744. type_str = "permission_error";
  745. code = 403;
  746. break;
  747. case ERROR_TYPE_NOT_SUPPORTED:
  748. type_str = "not_supported_error";
  749. code = 501;
  750. break;
  751. case ERROR_TYPE_UNAVAILABLE:
  752. type_str = "unavailable_error";
  753. code = 503;
  754. break;
  755. }
  756. return json {
  757. {"code", code},
  758. {"message", message},
  759. {"type", type_str},
  760. };
  761. }
  762. struct server_task_result_error : server_task_result {
  763. int index = 0;
  764. error_type err_type = ERROR_TYPE_SERVER;
  765. std::string err_msg;
  766. virtual bool is_error() override {
  767. return true;
  768. }
  769. virtual json to_json() override {
  770. return format_error_response(err_msg, err_type);
  771. }
  772. };
  773. struct server_task_result_metrics : server_task_result {
  774. int n_idle_slots;
  775. int n_processing_slots;
  776. int n_tasks_deferred;
  777. int64_t t_start;
  778. int32_t kv_cache_tokens_count;
  779. int32_t kv_cache_used_cells;
  780. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  781. uint64_t n_prompt_tokens_processed_total = 0;
  782. uint64_t t_prompt_processing_total = 0;
  783. uint64_t n_tokens_predicted_total = 0;
  784. uint64_t t_tokens_generation_total = 0;
  785. uint64_t n_prompt_tokens_processed = 0;
  786. uint64_t t_prompt_processing = 0;
  787. uint64_t n_tokens_predicted = 0;
  788. uint64_t t_tokens_generation = 0;
  789. uint64_t n_decode_total = 0;
  790. uint64_t n_busy_slots_total = 0;
  791. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  792. // therefore, we use json to temporarily store the slot.to_json() result
  793. json slots_data = json::array();
  794. virtual json to_json() override {
  795. return json {
  796. { "idle", n_idle_slots },
  797. { "processing", n_processing_slots },
  798. { "deferred", n_tasks_deferred },
  799. { "t_start", t_start },
  800. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  801. { "t_tokens_generation_total", t_tokens_generation_total },
  802. { "n_tokens_predicted_total", n_tokens_predicted_total },
  803. { "t_prompt_processing_total", t_prompt_processing_total },
  804. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  805. { "t_prompt_processing", t_prompt_processing },
  806. { "n_tokens_predicted", n_tokens_predicted },
  807. { "t_tokens_generation", t_tokens_generation },
  808. { "n_decode_total", n_decode_total },
  809. { "n_busy_slots_total", n_busy_slots_total },
  810. { "kv_cache_tokens_count", kv_cache_tokens_count },
  811. { "kv_cache_used_cells", kv_cache_used_cells },
  812. { "slots", slots_data },
  813. };
  814. }
  815. };
  816. struct server_task_result_slot_save_load : server_task_result {
  817. std::string filename;
  818. bool is_save; // true = save, false = load
  819. size_t n_tokens;
  820. size_t n_bytes;
  821. double t_ms;
  822. virtual json to_json() override {
  823. if (is_save) {
  824. return json {
  825. { "id_slot", id_slot },
  826. { "filename", filename },
  827. { "n_saved", n_tokens },
  828. { "n_written", n_bytes },
  829. { "timings", {
  830. { "save_ms", t_ms }
  831. }},
  832. };
  833. } else {
  834. return json {
  835. { "id_slot", id_slot },
  836. { "filename", filename },
  837. { "n_restored", n_tokens },
  838. { "n_read", n_bytes },
  839. { "timings", {
  840. { "restore_ms", t_ms }
  841. }},
  842. };
  843. }
  844. }
  845. };
  846. struct server_task_result_slot_erase : server_task_result {
  847. size_t n_erased;
  848. virtual json to_json() override {
  849. return json {
  850. { "id_slot", id_slot },
  851. { "n_erased", n_erased },
  852. };
  853. }
  854. };
  855. struct server_task_result_apply_lora : server_task_result {
  856. virtual json to_json() override {
  857. return json {{ "success", true }};
  858. }
  859. };
  860. struct server_slot {
  861. int id;
  862. int id_task = -1;
  863. // only used for completion/embedding/infill/rerank
  864. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  865. llama_batch batch_spec = {};
  866. llama_context * ctx = nullptr;
  867. llama_context * ctx_dft = nullptr;
  868. common_speculative * spec = nullptr;
  869. // the index relative to completion multi-task request
  870. size_t index = 0;
  871. struct slot_params params;
  872. slot_state state = SLOT_STATE_IDLE;
  873. // used to determine the slot that has been used the longest
  874. int64_t t_last_used = -1;
  875. // generation props
  876. int32_t n_ctx = 0; // context size per slot
  877. int32_t n_past = 0;
  878. int32_t n_decoded = 0;
  879. int32_t n_remaining = -1;
  880. int32_t i_batch = -1;
  881. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  882. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  883. int32_t n_prompt_tokens = 0;
  884. int32_t n_prompt_tokens_processed = 0;
  885. // input prompt tokens
  886. llama_tokens prompt_tokens;
  887. size_t last_nl_pos = 0;
  888. std::string generated_text;
  889. llama_tokens generated_tokens;
  890. llama_tokens cache_tokens;
  891. std::vector<completion_token_output> generated_token_probs;
  892. bool has_next_token = true;
  893. bool has_new_line = false;
  894. bool truncated = false;
  895. stop_type stop;
  896. std::string stopping_word;
  897. // sampling
  898. json json_schema;
  899. struct common_sampler * smpl = nullptr;
  900. llama_token sampled;
  901. // stats
  902. size_t n_sent_text = 0; // number of sent text character
  903. int64_t t_start_process_prompt;
  904. int64_t t_start_generation;
  905. double t_prompt_processing; // ms
  906. double t_token_generation; // ms
  907. std::function<void(int)> callback_on_release;
  908. void reset() {
  909. SLT_DBG(*this, "%s", "\n");
  910. n_prompt_tokens = 0;
  911. last_nl_pos = 0;
  912. generated_text = "";
  913. has_new_line = false;
  914. truncated = false;
  915. stop = STOP_TYPE_NONE;
  916. stopping_word = "";
  917. n_past = 0;
  918. n_sent_text = 0;
  919. task_type = SERVER_TASK_TYPE_COMPLETION;
  920. generated_tokens.clear();
  921. generated_token_probs.clear();
  922. }
  923. bool is_non_causal() const {
  924. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  925. }
  926. bool has_budget(const common_params & global_params) {
  927. if (params.n_predict == -1 && global_params.n_predict == -1) {
  928. return true; // limitless
  929. }
  930. n_remaining = -1;
  931. if (params.n_predict != -1) {
  932. n_remaining = params.n_predict - n_decoded;
  933. } else if (global_params.n_predict != -1) {
  934. n_remaining = global_params.n_predict - n_decoded;
  935. }
  936. return n_remaining > 0; // no budget
  937. }
  938. bool is_processing() const {
  939. return state != SLOT_STATE_IDLE;
  940. }
  941. bool can_speculate() const {
  942. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  943. }
  944. void add_token(const completion_token_output & token) {
  945. if (!is_processing()) {
  946. SLT_WRN(*this, "%s", "slot is not processing\n");
  947. return;
  948. }
  949. generated_token_probs.push_back(token);
  950. }
  951. void release() {
  952. if (is_processing()) {
  953. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  954. t_last_used = ggml_time_us();
  955. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  956. state = SLOT_STATE_IDLE;
  957. callback_on_release(id);
  958. }
  959. }
  960. result_timings get_timings() const {
  961. result_timings timings;
  962. timings.prompt_n = n_prompt_tokens_processed;
  963. timings.prompt_ms = t_prompt_processing;
  964. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  965. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  966. timings.predicted_n = n_decoded;
  967. timings.predicted_ms = t_token_generation;
  968. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  969. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  970. return timings;
  971. }
  972. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  973. size_t stop_pos = std::string::npos;
  974. for (const std::string & word : params.antiprompt) {
  975. size_t pos;
  976. if (is_full_stop) {
  977. const size_t tmp = word.size() + last_token_size;
  978. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  979. pos = text.find(word, from_pos);
  980. } else {
  981. // otherwise, partial stop
  982. pos = find_partial_stop_string(word, text);
  983. }
  984. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  985. if (is_full_stop) {
  986. stop = STOP_TYPE_WORD;
  987. stopping_word = word;
  988. has_next_token = false;
  989. }
  990. stop_pos = pos;
  991. }
  992. }
  993. return stop_pos;
  994. }
  995. void print_timings() const {
  996. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  997. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  998. const double t_gen = t_token_generation / n_decoded;
  999. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1000. SLT_INF(*this,
  1001. "\n"
  1002. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1003. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1004. " total time = %10.2f ms / %5d tokens\n",
  1005. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1006. t_token_generation, n_decoded, t_gen, n_gen_second,
  1007. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1008. }
  1009. json to_json() const {
  1010. return json {
  1011. {"id", id},
  1012. {"id_task", id_task},
  1013. {"n_ctx", n_ctx},
  1014. {"speculative", can_speculate()},
  1015. {"is_processing", is_processing()},
  1016. {"non_causal", is_non_causal()},
  1017. {"params", params.to_json()},
  1018. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1019. {"next_token",
  1020. {
  1021. {"has_next_token", has_next_token},
  1022. {"has_new_line", has_new_line},
  1023. {"n_remain", n_remaining},
  1024. {"n_decoded", n_decoded},
  1025. {"stopping_word", stopping_word},
  1026. }
  1027. },
  1028. };
  1029. }
  1030. };
  1031. struct server_metrics {
  1032. int64_t t_start = 0;
  1033. uint64_t n_prompt_tokens_processed_total = 0;
  1034. uint64_t t_prompt_processing_total = 0;
  1035. uint64_t n_tokens_predicted_total = 0;
  1036. uint64_t t_tokens_generation_total = 0;
  1037. uint64_t n_prompt_tokens_processed = 0;
  1038. uint64_t t_prompt_processing = 0;
  1039. uint64_t n_tokens_predicted = 0;
  1040. uint64_t t_tokens_generation = 0;
  1041. uint64_t n_decode_total = 0;
  1042. uint64_t n_busy_slots_total = 0;
  1043. void init() {
  1044. t_start = ggml_time_us();
  1045. }
  1046. void on_prompt_eval(const server_slot & slot) {
  1047. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1048. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1049. t_prompt_processing += slot.t_prompt_processing;
  1050. t_prompt_processing_total += slot.t_prompt_processing;
  1051. }
  1052. void on_prediction(const server_slot & slot) {
  1053. n_tokens_predicted_total += slot.n_decoded;
  1054. n_tokens_predicted += slot.n_decoded;
  1055. t_tokens_generation += slot.t_token_generation;
  1056. t_tokens_generation_total += slot.t_token_generation;
  1057. }
  1058. void on_decoded(const std::vector<server_slot> & slots) {
  1059. n_decode_total++;
  1060. for (const auto & slot : slots) {
  1061. if (slot.is_processing()) {
  1062. n_busy_slots_total++;
  1063. }
  1064. }
  1065. }
  1066. void reset_bucket() {
  1067. n_prompt_tokens_processed = 0;
  1068. t_prompt_processing = 0;
  1069. n_tokens_predicted = 0;
  1070. t_tokens_generation = 0;
  1071. }
  1072. };
  1073. struct server_queue {
  1074. int id = 0;
  1075. bool running;
  1076. // queues
  1077. std::deque<server_task> queue_tasks;
  1078. std::deque<server_task> queue_tasks_deferred;
  1079. std::mutex mutex_tasks;
  1080. std::condition_variable condition_tasks;
  1081. // callback functions
  1082. std::function<void(server_task)> callback_new_task;
  1083. std::function<void(void)> callback_update_slots;
  1084. // Add a new task to the end of the queue
  1085. int post(server_task task, bool front = false) {
  1086. std::unique_lock<std::mutex> lock(mutex_tasks);
  1087. GGML_ASSERT(task.id != -1);
  1088. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1089. if (front) {
  1090. queue_tasks.push_front(std::move(task));
  1091. } else {
  1092. queue_tasks.push_back(std::move(task));
  1093. }
  1094. condition_tasks.notify_one();
  1095. return task.id;
  1096. }
  1097. // multi-task version of post()
  1098. int post(std::vector<server_task> & tasks, bool front = false) {
  1099. std::unique_lock<std::mutex> lock(mutex_tasks);
  1100. for (auto & task : tasks) {
  1101. if (task.id == -1) {
  1102. task.id = id++;
  1103. }
  1104. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1105. if (front) {
  1106. queue_tasks.push_front(std::move(task));
  1107. } else {
  1108. queue_tasks.push_back(std::move(task));
  1109. }
  1110. }
  1111. condition_tasks.notify_one();
  1112. return 0;
  1113. }
  1114. // Add a new task, but defer until one slot is available
  1115. void defer(server_task task) {
  1116. std::unique_lock<std::mutex> lock(mutex_tasks);
  1117. QUE_DBG("defer task, id = %d\n", task.id);
  1118. queue_tasks_deferred.push_back(std::move(task));
  1119. condition_tasks.notify_one();
  1120. }
  1121. // Get the next id for creating a new task
  1122. int get_new_id() {
  1123. std::unique_lock<std::mutex> lock(mutex_tasks);
  1124. int new_id = id++;
  1125. return new_id;
  1126. }
  1127. // Register function to process a new task
  1128. void on_new_task(std::function<void(server_task)> callback) {
  1129. callback_new_task = std::move(callback);
  1130. }
  1131. // Register the function to be called when all slots data is ready to be processed
  1132. void on_update_slots(std::function<void(void)> callback) {
  1133. callback_update_slots = std::move(callback);
  1134. }
  1135. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1136. void pop_deferred_task() {
  1137. std::unique_lock<std::mutex> lock(mutex_tasks);
  1138. if (!queue_tasks_deferred.empty()) {
  1139. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1140. queue_tasks_deferred.pop_front();
  1141. }
  1142. condition_tasks.notify_one();
  1143. }
  1144. // end the start_loop routine
  1145. void terminate() {
  1146. std::unique_lock<std::mutex> lock(mutex_tasks);
  1147. running = false;
  1148. condition_tasks.notify_all();
  1149. }
  1150. /**
  1151. * Main loop consists of these steps:
  1152. * - Wait until a new task arrives
  1153. * - Process the task (i.e. maybe copy data into slot)
  1154. * - Check if multitask is finished
  1155. * - Update all slots
  1156. */
  1157. void start_loop() {
  1158. running = true;
  1159. while (true) {
  1160. QUE_DBG("%s", "processing new tasks\n");
  1161. while (true) {
  1162. std::unique_lock<std::mutex> lock(mutex_tasks);
  1163. if (queue_tasks.empty()) {
  1164. lock.unlock();
  1165. break;
  1166. }
  1167. server_task task = queue_tasks.front();
  1168. queue_tasks.pop_front();
  1169. lock.unlock();
  1170. QUE_DBG("processing task, id = %d\n", task.id);
  1171. callback_new_task(std::move(task));
  1172. }
  1173. // all tasks in the current loop is processed, slots data is now ready
  1174. QUE_DBG("%s", "update slots\n");
  1175. callback_update_slots();
  1176. QUE_DBG("%s", "waiting for new tasks\n");
  1177. {
  1178. std::unique_lock<std::mutex> lock(mutex_tasks);
  1179. if (queue_tasks.empty()) {
  1180. if (!running) {
  1181. QUE_DBG("%s", "terminate\n");
  1182. return;
  1183. }
  1184. condition_tasks.wait(lock, [&]{
  1185. return (!queue_tasks.empty() || !running);
  1186. });
  1187. }
  1188. }
  1189. }
  1190. }
  1191. };
  1192. struct server_response {
  1193. // for keeping track of all tasks waiting for the result
  1194. std::unordered_set<int> waiting_task_ids;
  1195. // the main result queue (using ptr for polymorphism)
  1196. std::vector<server_task_result_ptr> queue_results;
  1197. std::mutex mutex_results;
  1198. std::condition_variable condition_results;
  1199. // add the id_task to the list of tasks waiting for response
  1200. void add_waiting_task_id(int id_task) {
  1201. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1202. std::unique_lock<std::mutex> lock(mutex_results);
  1203. waiting_task_ids.insert(id_task);
  1204. }
  1205. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1206. std::unique_lock<std::mutex> lock(mutex_results);
  1207. for (const auto & task : tasks) {
  1208. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1209. waiting_task_ids.insert(task.id);
  1210. }
  1211. }
  1212. // when the request is finished, we can remove task associated with it
  1213. void remove_waiting_task_id(int id_task) {
  1214. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1215. std::unique_lock<std::mutex> lock(mutex_results);
  1216. waiting_task_ids.erase(id_task);
  1217. }
  1218. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1219. std::unique_lock<std::mutex> lock(mutex_results);
  1220. for (const auto & id_task : id_tasks) {
  1221. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1222. waiting_task_ids.erase(id_task);
  1223. }
  1224. }
  1225. // This function blocks the thread until there is a response for one of the id_tasks
  1226. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1227. while (true) {
  1228. std::unique_lock<std::mutex> lock(mutex_results);
  1229. condition_results.wait(lock, [&]{
  1230. return !queue_results.empty();
  1231. });
  1232. for (int i = 0; i < (int) queue_results.size(); i++) {
  1233. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1234. server_task_result_ptr res = std::move(queue_results[i]);
  1235. queue_results.erase(queue_results.begin() + i);
  1236. return res;
  1237. }
  1238. }
  1239. }
  1240. // should never reach here
  1241. }
  1242. // single-task version of recv()
  1243. server_task_result_ptr recv(int id_task) {
  1244. std::unordered_set<int> id_tasks = {id_task};
  1245. return recv(id_tasks);
  1246. }
  1247. // Send a new result to a waiting id_task
  1248. void send(server_task_result_ptr && result) {
  1249. SRV_DBG("sending result for task id = %d\n", result->id);
  1250. std::unique_lock<std::mutex> lock(mutex_results);
  1251. for (const auto & id_task : waiting_task_ids) {
  1252. if (result->id == id_task) {
  1253. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1254. queue_results.emplace_back(std::move(result));
  1255. condition_results.notify_all();
  1256. return;
  1257. }
  1258. }
  1259. }
  1260. };
  1261. struct server_context {
  1262. common_params params_base;
  1263. llama_model * model = nullptr;
  1264. llama_context * ctx = nullptr;
  1265. std::vector<common_lora_adapter_container> loras;
  1266. llama_model * model_dft = nullptr;
  1267. llama_context_params cparams_dft;
  1268. llama_batch batch = {};
  1269. bool clean_kv_cache = true;
  1270. bool add_bos_token = true;
  1271. bool has_eos_token = false;
  1272. int32_t n_ctx; // total context for all clients / slots
  1273. // slots / clients
  1274. std::vector<server_slot> slots;
  1275. json default_generation_settings_for_props;
  1276. server_queue queue_tasks;
  1277. server_response queue_results;
  1278. server_metrics metrics;
  1279. // Necessary similarity of prompt for slot selection
  1280. float slot_prompt_similarity = 0.0f;
  1281. ~server_context() {
  1282. if (ctx) {
  1283. llama_free(ctx);
  1284. ctx = nullptr;
  1285. }
  1286. if (model) {
  1287. llama_free_model(model);
  1288. model = nullptr;
  1289. }
  1290. if (model_dft) {
  1291. llama_free_model(model_dft);
  1292. model_dft = nullptr;
  1293. }
  1294. // Clear any sampling context
  1295. for (server_slot & slot : slots) {
  1296. common_sampler_free(slot.smpl);
  1297. slot.smpl = nullptr;
  1298. llama_free(slot.ctx_dft);
  1299. slot.ctx_dft = nullptr;
  1300. common_speculative_free(slot.spec);
  1301. slot.spec = nullptr;
  1302. llama_batch_free(slot.batch_spec);
  1303. }
  1304. llama_batch_free(batch);
  1305. }
  1306. bool load_model(const common_params & params) {
  1307. SRV_INF("loading model '%s'\n", params.model.c_str());
  1308. params_base = params;
  1309. common_init_result llama_init = common_init_from_params(params_base);
  1310. model = llama_init.model;
  1311. ctx = llama_init.context;
  1312. loras = llama_init.lora_adapters;
  1313. if (model == nullptr) {
  1314. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1315. return false;
  1316. }
  1317. n_ctx = llama_n_ctx(ctx);
  1318. add_bos_token = llama_add_bos_token(model);
  1319. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1320. if (!params_base.speculative.model.empty()) {
  1321. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1322. auto params_dft = params_base;
  1323. params_dft.devices = params_base.speculative.devices;
  1324. params_dft.model = params_base.speculative.model;
  1325. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1326. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1327. params_dft.n_parallel = 1;
  1328. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1329. model_dft = llama_init_dft.model;
  1330. if (model_dft == nullptr) {
  1331. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1332. return false;
  1333. }
  1334. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1335. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1336. llama_free (llama_init_dft.context);
  1337. llama_free_model(llama_init_dft.model);
  1338. return false;
  1339. }
  1340. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1341. cparams_dft = common_context_params_to_llama(params_dft);
  1342. cparams_dft.n_batch = n_ctx_dft;
  1343. // force F16 KV cache for the draft model for extra performance
  1344. cparams_dft.type_k = GGML_TYPE_F16;
  1345. cparams_dft.type_v = GGML_TYPE_F16;
  1346. // the context is not needed - we will create one for each slot
  1347. llama_free(llama_init_dft.context);
  1348. }
  1349. return true;
  1350. }
  1351. bool validate_model_chat_template() const {
  1352. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1353. std::string template_key = "tokenizer.chat_template";
  1354. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1355. if (res >= 0) {
  1356. llama_chat_message chat[] = {{"user", "test"}};
  1357. std::string tmpl = std::string(model_template.data(), model_template.size());
  1358. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1359. return chat_res > 0;
  1360. }
  1361. return false;
  1362. }
  1363. void init() {
  1364. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1365. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1366. for (int i = 0; i < params_base.n_parallel; i++) {
  1367. server_slot slot;
  1368. slot.id = i;
  1369. slot.ctx = ctx;
  1370. slot.n_ctx = n_ctx_slot;
  1371. slot.n_predict = params_base.n_predict;
  1372. if (model_dft) {
  1373. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1374. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1375. if (slot.ctx_dft == nullptr) {
  1376. SRV_ERR("%s", "failed to create draft context\n");
  1377. return;
  1378. }
  1379. slot.spec = common_speculative_init(slot.ctx_dft);
  1380. if (slot.spec == nullptr) {
  1381. SRV_ERR("%s", "failed to create speculator\n");
  1382. return;
  1383. }
  1384. }
  1385. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1386. slot.params.sampling = params_base.sampling;
  1387. slot.callback_on_release = [this](int) {
  1388. queue_tasks.pop_deferred_task();
  1389. };
  1390. slot.reset();
  1391. slots.push_back(slot);
  1392. }
  1393. default_generation_settings_for_props = slots[0].to_json();
  1394. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1395. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1396. {
  1397. const int32_t n_batch = llama_n_batch(ctx);
  1398. // only a single seq_id per token is needed
  1399. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1400. }
  1401. metrics.init();
  1402. }
  1403. server_slot * get_slot_by_id(int id) {
  1404. for (server_slot & slot : slots) {
  1405. if (slot.id == id) {
  1406. return &slot;
  1407. }
  1408. }
  1409. return nullptr;
  1410. }
  1411. server_slot * get_available_slot(const server_task & task) {
  1412. server_slot * ret = nullptr;
  1413. // find the slot that has at least n% prompt similarity
  1414. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1415. int lcs_len = 0;
  1416. float similarity = 0;
  1417. for (server_slot & slot : slots) {
  1418. // skip the slot if it is not available
  1419. if (slot.is_processing()) {
  1420. continue;
  1421. }
  1422. // skip the slot if it does not contains cached tokens
  1423. if (slot.cache_tokens.empty()) {
  1424. continue;
  1425. }
  1426. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1427. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1428. // fraction of the common subsequence length compared to the current slot's prompt length
  1429. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1430. // select the current slot if the criteria match
  1431. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1432. lcs_len = cur_lcs_len;
  1433. similarity = cur_similarity;
  1434. ret = &slot;
  1435. }
  1436. }
  1437. if (ret != nullptr) {
  1438. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1439. }
  1440. }
  1441. // find the slot that has been least recently used
  1442. if (ret == nullptr) {
  1443. int64_t t_last = ggml_time_us();
  1444. for (server_slot & slot : slots) {
  1445. // skip the slot if it is not available
  1446. if (slot.is_processing()) {
  1447. continue;
  1448. }
  1449. // select the current slot if the criteria match
  1450. if (slot.t_last_used < t_last) {
  1451. t_last = slot.t_last_used;
  1452. ret = &slot;
  1453. }
  1454. }
  1455. if (ret != nullptr) {
  1456. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1457. }
  1458. }
  1459. return ret;
  1460. }
  1461. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1462. slot.reset();
  1463. slot.id_task = task.id;
  1464. slot.index = task.index;
  1465. slot.task_type = task.type;
  1466. slot.params = std::move(task.params);
  1467. slot.prompt_tokens = std::move(task.prompt_tokens);
  1468. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1469. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1470. // Might be better to reject the request with a 400 ?
  1471. slot.params.n_predict = slot.n_predict;
  1472. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1473. }
  1474. if (slot.params.ignore_eos && has_eos_token) {
  1475. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1476. }
  1477. {
  1478. if (slot.smpl != nullptr) {
  1479. common_sampler_free(slot.smpl);
  1480. }
  1481. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1482. if (slot.smpl == nullptr) {
  1483. // for now, the only error that may happen here is invalid grammar
  1484. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1485. return false;
  1486. }
  1487. }
  1488. if (slot.ctx_dft) {
  1489. llama_batch_free(slot.batch_spec);
  1490. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1491. }
  1492. slot.state = SLOT_STATE_STARTED;
  1493. SLT_INF(slot, "%s", "processing task\n");
  1494. return true;
  1495. }
  1496. void kv_cache_clear() {
  1497. SRV_DBG("%s", "clearing KV cache\n");
  1498. // clear the entire KV cache
  1499. llama_kv_cache_clear(ctx);
  1500. clean_kv_cache = false;
  1501. }
  1502. bool process_token(completion_token_output & result, server_slot & slot) {
  1503. // remember which tokens were sampled - used for repetition penalties during sampling
  1504. const std::string token_str = result.text_to_send;
  1505. slot.sampled = result.tok;
  1506. slot.generated_text += token_str;
  1507. if (slot.params.return_tokens) {
  1508. slot.generated_tokens.push_back(result.tok);
  1509. }
  1510. slot.has_next_token = true;
  1511. // check if there is incomplete UTF-8 character at the end
  1512. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1513. // search stop word and delete it
  1514. if (!incomplete) {
  1515. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1516. const std::string str_test = slot.generated_text.substr(pos);
  1517. bool send_text = true;
  1518. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1519. if (stop_pos != std::string::npos) {
  1520. slot.generated_text.erase(
  1521. slot.generated_text.begin() + pos + stop_pos,
  1522. slot.generated_text.end());
  1523. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1524. } else if (slot.has_next_token) {
  1525. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1526. send_text = stop_pos == std::string::npos;
  1527. }
  1528. // check if there is any token to predict
  1529. if (send_text) {
  1530. // no send the stop word in the response
  1531. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1532. slot.n_sent_text += result.text_to_send.size();
  1533. // add the token to slot queue and cache
  1534. }
  1535. slot.add_token(result);
  1536. if (slot.params.stream) {
  1537. send_partial_response(slot, result);
  1538. }
  1539. }
  1540. if (incomplete) {
  1541. slot.has_next_token = true;
  1542. }
  1543. // check the limits
  1544. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1545. slot.stop = STOP_TYPE_LIMIT;
  1546. slot.has_next_token = false;
  1547. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1548. }
  1549. if (slot.has_new_line) {
  1550. // if we have already seen a new line, we stop after a certain time limit
  1551. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1552. slot.stop = STOP_TYPE_LIMIT;
  1553. slot.has_next_token = false;
  1554. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1555. }
  1556. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1557. if (slot.params.n_indent > 0) {
  1558. // check the current indentation
  1559. // TODO: improve by not doing it more than once for each new line
  1560. if (slot.last_nl_pos > 0) {
  1561. size_t pos = slot.last_nl_pos;
  1562. int n_indent = 0;
  1563. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1564. n_indent++;
  1565. pos++;
  1566. }
  1567. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1568. slot.stop = STOP_TYPE_LIMIT;
  1569. slot.has_next_token = false;
  1570. // cut the last line
  1571. slot.generated_text.erase(pos, std::string::npos);
  1572. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1573. }
  1574. }
  1575. // find the next new line
  1576. {
  1577. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1578. if (pos != std::string::npos) {
  1579. slot.last_nl_pos = pos + 1;
  1580. }
  1581. }
  1582. }
  1583. }
  1584. // check if there is a new line in the generated text
  1585. if (result.text_to_send.find('\n') != std::string::npos) {
  1586. slot.has_new_line = true;
  1587. }
  1588. // if context shift is disabled, we stop when it reaches the context limit
  1589. if (slot.n_past >= slot.n_ctx) {
  1590. slot.truncated = true;
  1591. slot.stop = STOP_TYPE_LIMIT;
  1592. slot.has_next_token = false;
  1593. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1594. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1595. }
  1596. if (llama_token_is_eog(model, result.tok)) {
  1597. slot.stop = STOP_TYPE_EOS;
  1598. slot.has_next_token = false;
  1599. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1600. }
  1601. const auto n_ctx_train = llama_n_ctx_train(model);
  1602. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1603. slot.truncated = true;
  1604. slot.stop = STOP_TYPE_LIMIT;
  1605. slot.has_next_token = false; // stop prediction
  1606. SLT_WRN(slot,
  1607. "n_predict (%d) is set for infinite generation. "
  1608. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1609. slot.params.n_predict, n_ctx_train);
  1610. }
  1611. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1612. return slot.has_next_token; // continue
  1613. }
  1614. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1615. size_t n_probs = slot.params.sampling.n_probs;
  1616. size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
  1617. if (post_sampling) {
  1618. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1619. const size_t max_probs = cur_p->size;
  1620. // set probability for sampled token
  1621. for (size_t i = 0; i < max_probs; i++) {
  1622. if (cur_p->data[i].id == result.tok) {
  1623. result.prob = cur_p->data[i].p;
  1624. break;
  1625. }
  1626. }
  1627. // set probability for top n_probs tokens
  1628. result.probs.reserve(max_probs);
  1629. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1630. result.probs.push_back({
  1631. cur_p->data[i].id,
  1632. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1633. cur_p->data[i].p
  1634. });
  1635. }
  1636. } else {
  1637. // TODO: optimize this with min-p optimization
  1638. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1639. // set probability for sampled token
  1640. for (size_t i = 0; i < n_vocab; i++) {
  1641. // set probability for sampled token
  1642. if (cur[i].id == result.tok) {
  1643. result.prob = cur[i].p;
  1644. break;
  1645. }
  1646. }
  1647. // set probability for top n_probs tokens
  1648. result.probs.reserve(n_probs);
  1649. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1650. result.probs.push_back({
  1651. cur[i].id,
  1652. common_detokenize(ctx, {cur[i].id}, special),
  1653. cur[i].p
  1654. });
  1655. }
  1656. }
  1657. }
  1658. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1659. send_error(task.id, error, type);
  1660. }
  1661. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1662. send_error(slot.id_task, error, type);
  1663. }
  1664. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1665. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1666. auto res = std::make_unique<server_task_result_error>();
  1667. res->id = id_task;
  1668. res->err_type = type;
  1669. res->err_msg = error;
  1670. queue_results.send(std::move(res));
  1671. }
  1672. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1673. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1674. res->id = slot.id_task;
  1675. res->index = slot.index;
  1676. res->content = tkn.text_to_send;
  1677. res->tokens = { tkn.tok };
  1678. res->n_decoded = slot.n_decoded;
  1679. res->n_prompt_tokens = slot.n_prompt_tokens;
  1680. res->post_sampling_probs = slot.params.post_sampling_probs;
  1681. res->verbose = slot.params.verbose;
  1682. res->oaicompat = slot.params.oaicompat;
  1683. res->oaicompat_chat = slot.params.oaicompat_chat;
  1684. res->oaicompat_model = slot.params.oaicompat_model;
  1685. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1686. // populate res.probs_output
  1687. if (slot.params.sampling.n_probs > 0) {
  1688. res->prob_output = tkn; // copy the token probs
  1689. }
  1690. // populate timings if this is final response or timings_per_token is enabled
  1691. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1692. res->timings = slot.get_timings();
  1693. }
  1694. queue_results.send(std::move(res));
  1695. }
  1696. void send_final_response(server_slot & slot) {
  1697. auto res = std::make_unique<server_task_result_cmpl_final>();
  1698. res->id = slot.id_task;
  1699. res->id_slot = slot.id;
  1700. res->index = slot.index;
  1701. res->content = slot.generated_text;
  1702. res->tokens = slot.generated_tokens;
  1703. res->timings = slot.get_timings();
  1704. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1705. res->response_fields = slot.params.response_fields;
  1706. res->truncated = slot.truncated;
  1707. res->n_decoded = slot.n_decoded;
  1708. res->n_prompt_tokens = slot.n_prompt_tokens;
  1709. res->n_tokens_cached = slot.n_past;
  1710. res->has_new_line = slot.has_new_line;
  1711. res->stopping_word = slot.stopping_word;
  1712. res->stop = slot.stop;
  1713. res->post_sampling_probs = slot.params.post_sampling_probs;
  1714. res->verbose = slot.params.verbose;
  1715. res->stream = slot.params.stream;
  1716. res->oaicompat = slot.params.oaicompat;
  1717. res->oaicompat_chat = slot.params.oaicompat_chat;
  1718. res->oaicompat_model = slot.params.oaicompat_model;
  1719. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1720. // populate res.probs_output
  1721. if (slot.params.sampling.n_probs > 0) {
  1722. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1723. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1724. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1725. res->probs_output = std::vector<completion_token_output>(
  1726. slot.generated_token_probs.begin(),
  1727. slot.generated_token_probs.end() - safe_offset);
  1728. } else {
  1729. res->probs_output = std::vector<completion_token_output>(
  1730. slot.generated_token_probs.begin(),
  1731. slot.generated_token_probs.end());
  1732. }
  1733. }
  1734. res->generation_params = slot.params; // copy the parameters
  1735. queue_results.send(std::move(res));
  1736. }
  1737. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1738. auto res = std::make_unique<server_task_result_embd>();
  1739. res->id = slot.id_task;
  1740. res->index = slot.index;
  1741. res->n_tokens = slot.n_prompt_tokens;
  1742. res->oaicompat = slot.params.oaicompat;
  1743. const int n_embd = llama_n_embd(model);
  1744. std::vector<float> embd_res(n_embd, 0.0f);
  1745. for (int i = 0; i < batch.n_tokens; ++i) {
  1746. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1747. continue;
  1748. }
  1749. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1750. if (embd == NULL) {
  1751. embd = llama_get_embeddings_ith(ctx, i);
  1752. }
  1753. if (embd == NULL) {
  1754. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1755. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1756. continue;
  1757. }
  1758. // normalize only when there is pooling
  1759. // TODO: configurable
  1760. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1761. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1762. res->embedding.push_back(embd_res);
  1763. } else {
  1764. res->embedding.push_back({ embd, embd + n_embd });
  1765. }
  1766. }
  1767. SLT_DBG(slot, "%s", "sending embeddings\n");
  1768. queue_results.send(std::move(res));
  1769. }
  1770. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1771. auto res = std::make_unique<server_task_result_rerank>();
  1772. res->id = slot.id_task;
  1773. res->index = slot.index;
  1774. res->n_tokens = slot.n_prompt_tokens;
  1775. for (int i = 0; i < batch.n_tokens; ++i) {
  1776. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1777. continue;
  1778. }
  1779. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1780. if (embd == NULL) {
  1781. embd = llama_get_embeddings_ith(ctx, i);
  1782. }
  1783. if (embd == NULL) {
  1784. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1785. res->score = -1e6;
  1786. continue;
  1787. }
  1788. res->score = embd[0];
  1789. }
  1790. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1791. queue_results.send(std::move(res));
  1792. }
  1793. //
  1794. // Functions to create new task(s) and receive result(s)
  1795. //
  1796. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1797. std::vector<server_task> cancel_tasks;
  1798. cancel_tasks.reserve(id_tasks.size());
  1799. for (const auto & id_task : id_tasks) {
  1800. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1801. server_task task(SERVER_TASK_TYPE_CANCEL);
  1802. task.id_target = id_task;
  1803. cancel_tasks.push_back(task);
  1804. queue_results.remove_waiting_task_id(id_task);
  1805. }
  1806. // push to beginning of the queue, so it has highest priority
  1807. queue_tasks.post(cancel_tasks, true);
  1808. }
  1809. // receive the results from task(s)
  1810. void receive_multi_results(
  1811. const std::unordered_set<int> & id_tasks,
  1812. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1813. const std::function<void(json)> & error_handler) {
  1814. std::vector<server_task_result_ptr> results(id_tasks.size());
  1815. for (size_t i = 0; i < id_tasks.size(); i++) {
  1816. server_task_result_ptr result = queue_results.recv(id_tasks);
  1817. if (result->is_error()) {
  1818. error_handler(result->to_json());
  1819. cancel_tasks(id_tasks);
  1820. return;
  1821. }
  1822. GGML_ASSERT(
  1823. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1824. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1825. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1826. );
  1827. const size_t idx = result->get_index();
  1828. GGML_ASSERT(idx < results.size() && "index out of range");
  1829. results[idx] = std::move(result);
  1830. }
  1831. result_handler(results);
  1832. }
  1833. // receive the results from task(s), in stream mode
  1834. void receive_cmpl_results_stream(
  1835. const std::unordered_set<int> & id_tasks,
  1836. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1837. const std::function<void(json)> & error_handler) {
  1838. size_t n_finished = 0;
  1839. while (true) {
  1840. server_task_result_ptr result = queue_results.recv(id_tasks);
  1841. if (result->is_error()) {
  1842. error_handler(result->to_json());
  1843. cancel_tasks(id_tasks);
  1844. return;
  1845. }
  1846. GGML_ASSERT(
  1847. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1848. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1849. );
  1850. if (!result_handler(result)) {
  1851. cancel_tasks(id_tasks);
  1852. break;
  1853. }
  1854. if (result->is_stop()) {
  1855. if (++n_finished == id_tasks.size()) {
  1856. break;
  1857. }
  1858. }
  1859. }
  1860. }
  1861. //
  1862. // Functions to process the task
  1863. //
  1864. void process_single_task(server_task task) {
  1865. switch (task.type) {
  1866. case SERVER_TASK_TYPE_COMPLETION:
  1867. case SERVER_TASK_TYPE_INFILL:
  1868. case SERVER_TASK_TYPE_EMBEDDING:
  1869. case SERVER_TASK_TYPE_RERANK:
  1870. {
  1871. const int id_slot = task.id_selected_slot;
  1872. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1873. if (slot == nullptr) {
  1874. // if no slot is available, we defer this task for processing later
  1875. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1876. queue_tasks.defer(task);
  1877. break;
  1878. }
  1879. if (slot->is_processing()) {
  1880. // if requested slot is unavailable, we defer this task for processing later
  1881. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1882. queue_tasks.defer(task);
  1883. break;
  1884. }
  1885. if (!launch_slot_with_task(*slot, task)) {
  1886. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1887. break;
  1888. }
  1889. } break;
  1890. case SERVER_TASK_TYPE_CANCEL:
  1891. {
  1892. // release slot linked with the task id
  1893. for (auto & slot : slots) {
  1894. if (slot.id_task == task.id_target) {
  1895. slot.release();
  1896. break;
  1897. }
  1898. }
  1899. } break;
  1900. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1901. {
  1902. // do nothing
  1903. } break;
  1904. case SERVER_TASK_TYPE_METRICS:
  1905. {
  1906. json slots_data = json::array();
  1907. int n_idle_slots = 0;
  1908. int n_processing_slots = 0;
  1909. for (server_slot & slot : slots) {
  1910. json slot_data = slot.to_json();
  1911. if (slot.is_processing()) {
  1912. n_processing_slots++;
  1913. } else {
  1914. n_idle_slots++;
  1915. }
  1916. slots_data.push_back(slot_data);
  1917. }
  1918. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1919. auto res = std::make_unique<server_task_result_metrics>();
  1920. res->id = task.id;
  1921. res->slots_data = std::move(slots_data);
  1922. res->n_idle_slots = n_idle_slots;
  1923. res->n_processing_slots = n_processing_slots;
  1924. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  1925. res->t_start = metrics.t_start;
  1926. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  1927. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  1928. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1929. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1930. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1931. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1932. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1933. res->t_prompt_processing = metrics.t_prompt_processing;
  1934. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1935. res->t_tokens_generation = metrics.t_tokens_generation;
  1936. res->n_decode_total = metrics.n_decode_total;
  1937. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1938. if (task.metrics_reset_bucket) {
  1939. metrics.reset_bucket();
  1940. }
  1941. queue_results.send(std::move(res));
  1942. } break;
  1943. case SERVER_TASK_TYPE_SLOT_SAVE:
  1944. {
  1945. int id_slot = task.slot_action.slot_id;
  1946. server_slot * slot = get_slot_by_id(id_slot);
  1947. if (slot == nullptr) {
  1948. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1949. break;
  1950. }
  1951. if (slot->is_processing()) {
  1952. // if requested slot is unavailable, we defer this task for processing later
  1953. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1954. queue_tasks.defer(task);
  1955. break;
  1956. }
  1957. const size_t token_count = slot->cache_tokens.size();
  1958. const int64_t t_start = ggml_time_us();
  1959. std::string filename = task.slot_action.filename;
  1960. std::string filepath = task.slot_action.filepath;
  1961. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  1962. const int64_t t_end = ggml_time_us();
  1963. const double t_save_ms = (t_end - t_start) / 1000.0;
  1964. auto res = std::make_unique<server_task_result_slot_save_load>();
  1965. res->id = task.id;
  1966. res->id_slot = id_slot;
  1967. res->filename = filename;
  1968. res->is_save = true;
  1969. res->n_tokens = token_count;
  1970. res->n_bytes = nwrite;
  1971. res->t_ms = t_save_ms;
  1972. queue_results.send(std::move(res));
  1973. } break;
  1974. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1975. {
  1976. int id_slot = task.slot_action.slot_id;
  1977. server_slot * slot = get_slot_by_id(id_slot);
  1978. if (slot == nullptr) {
  1979. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1980. break;
  1981. }
  1982. if (slot->is_processing()) {
  1983. // if requested slot is unavailable, we defer this task for processing later
  1984. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1985. queue_tasks.defer(task);
  1986. break;
  1987. }
  1988. const int64_t t_start = ggml_time_us();
  1989. std::string filename = task.slot_action.filename;
  1990. std::string filepath = task.slot_action.filepath;
  1991. slot->cache_tokens.resize(slot->n_ctx);
  1992. size_t token_count = 0;
  1993. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1994. if (nread == 0) {
  1995. slot->cache_tokens.resize(0);
  1996. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1997. break;
  1998. }
  1999. slot->cache_tokens.resize(token_count);
  2000. const int64_t t_end = ggml_time_us();
  2001. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2002. auto res = std::make_unique<server_task_result_slot_save_load>();
  2003. res->id = task.id;
  2004. res->id_slot = id_slot;
  2005. res->filename = filename;
  2006. res->is_save = false;
  2007. res->n_tokens = token_count;
  2008. res->n_bytes = nread;
  2009. res->t_ms = t_restore_ms;
  2010. queue_results.send(std::move(res));
  2011. } break;
  2012. case SERVER_TASK_TYPE_SLOT_ERASE:
  2013. {
  2014. int id_slot = task.slot_action.slot_id;
  2015. server_slot * slot = get_slot_by_id(id_slot);
  2016. if (slot == nullptr) {
  2017. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2018. break;
  2019. }
  2020. if (slot->is_processing()) {
  2021. // if requested slot is unavailable, we defer this task for processing later
  2022. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2023. queue_tasks.defer(task);
  2024. break;
  2025. }
  2026. // Erase token cache
  2027. const size_t n_erased = slot->cache_tokens.size();
  2028. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2029. slot->cache_tokens.clear();
  2030. auto res = std::make_unique<server_task_result_slot_erase>();
  2031. res->id = task.id;
  2032. res->id_slot = id_slot;
  2033. res->n_erased = n_erased;
  2034. queue_results.send(std::move(res));
  2035. } break;
  2036. case SERVER_TASK_TYPE_SET_LORA:
  2037. {
  2038. common_lora_adapters_apply(ctx, loras);
  2039. auto res = std::make_unique<server_task_result_apply_lora>();
  2040. res->id = task.id;
  2041. queue_results.send(std::move(res));
  2042. } break;
  2043. }
  2044. }
  2045. void update_slots() {
  2046. // check if all slots are idle
  2047. {
  2048. bool all_idle = true;
  2049. for (auto & slot : slots) {
  2050. if (slot.is_processing()) {
  2051. all_idle = false;
  2052. break;
  2053. }
  2054. }
  2055. if (all_idle) {
  2056. SRV_INF("%s", "all slots are idle\n");
  2057. if (clean_kv_cache) {
  2058. kv_cache_clear();
  2059. }
  2060. return;
  2061. }
  2062. }
  2063. {
  2064. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2065. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2066. task.id = queue_tasks.get_new_id();
  2067. queue_tasks.post(task);
  2068. }
  2069. // apply context-shift if needed
  2070. // TODO: simplify and improve
  2071. for (server_slot & slot : slots) {
  2072. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2073. if (!params_base.ctx_shift) {
  2074. // this check is redundant (for good)
  2075. // we should never get here, because generation should already stopped in process_token()
  2076. slot.release();
  2077. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2078. continue;
  2079. }
  2080. // Shift context
  2081. const int n_keep = slot.params.n_keep + add_bos_token;
  2082. const int n_left = slot.n_past - n_keep;
  2083. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2084. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2085. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2086. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2087. if (slot.params.cache_prompt) {
  2088. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2089. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2090. }
  2091. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2092. }
  2093. slot.n_past -= n_discard;
  2094. slot.truncated = true;
  2095. }
  2096. }
  2097. // start populating the batch for this iteration
  2098. common_batch_clear(batch);
  2099. // frist, add sampled tokens from any ongoing sequences
  2100. for (auto & slot : slots) {
  2101. if (slot.state != SLOT_STATE_GENERATING) {
  2102. continue;
  2103. }
  2104. slot.i_batch = batch.n_tokens;
  2105. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2106. slot.n_past += 1;
  2107. if (slot.params.cache_prompt) {
  2108. slot.cache_tokens.push_back(slot.sampled);
  2109. }
  2110. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2111. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2112. }
  2113. // process in chunks of params.n_batch
  2114. int32_t n_batch = llama_n_batch(ctx);
  2115. int32_t n_ubatch = llama_n_ubatch(ctx);
  2116. // track if this is an embedding or non-embedding batch
  2117. // if we've added sampled tokens above, we are in non-embedding mode
  2118. // -1: none, 0: non-embedding, 1: embedding
  2119. // TODO: make enum
  2120. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2121. // next, batch any pending prompts without exceeding n_batch
  2122. if (params_base.cont_batching || batch.n_tokens == 0) {
  2123. for (auto & slot : slots) {
  2124. // this slot still has a prompt to be processed
  2125. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2126. auto & prompt_tokens = slot.prompt_tokens;
  2127. // TODO: maybe move branch to outside of this loop in the future
  2128. if (slot.state == SLOT_STATE_STARTED) {
  2129. slot.t_start_process_prompt = ggml_time_us();
  2130. slot.t_start_generation = 0;
  2131. slot.n_past = 0;
  2132. slot.n_prompt_tokens = prompt_tokens.size();
  2133. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2134. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2135. // print prompt tokens (for debugging)
  2136. if (1) {
  2137. // first 16 tokens (avoid flooding logs)
  2138. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2139. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2140. }
  2141. } else {
  2142. // all
  2143. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2144. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2145. }
  2146. }
  2147. // empty prompt passed -> release the slot and send empty response
  2148. if (prompt_tokens.empty()) {
  2149. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2150. slot.release();
  2151. slot.print_timings();
  2152. send_final_response(slot);
  2153. continue;
  2154. }
  2155. if (slot.is_non_causal()) {
  2156. if (slot.n_prompt_tokens > n_ubatch) {
  2157. slot.release();
  2158. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2159. continue;
  2160. }
  2161. if (slot.n_prompt_tokens > slot.n_ctx) {
  2162. slot.release();
  2163. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2164. continue;
  2165. }
  2166. } else {
  2167. if (!params_base.ctx_shift) {
  2168. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2169. // TODO: there should be a separate parameter that control prompt truncation
  2170. // context shift should be applied only during the generation phase
  2171. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2172. slot.release();
  2173. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2174. continue;
  2175. }
  2176. }
  2177. if (slot.params.n_keep < 0) {
  2178. slot.params.n_keep = slot.n_prompt_tokens;
  2179. }
  2180. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2181. // if input prompt is too big, truncate it
  2182. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2183. const int n_left = slot.n_ctx - slot.params.n_keep;
  2184. const int n_block_size = n_left / 2;
  2185. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2186. llama_tokens new_tokens(
  2187. prompt_tokens.begin(),
  2188. prompt_tokens.begin() + slot.params.n_keep);
  2189. new_tokens.insert(
  2190. new_tokens.end(),
  2191. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2192. prompt_tokens.end());
  2193. prompt_tokens = std::move(new_tokens);
  2194. slot.truncated = true;
  2195. slot.n_prompt_tokens = prompt_tokens.size();
  2196. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2197. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2198. }
  2199. if (slot.params.cache_prompt) {
  2200. // reuse any previously computed tokens that are common with the new prompt
  2201. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2202. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2203. if (params_base.n_cache_reuse > 0) {
  2204. size_t head_c = slot.n_past; // cache
  2205. size_t head_p = slot.n_past; // current prompt
  2206. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2207. while (head_c < slot.cache_tokens.size() &&
  2208. head_p < prompt_tokens.size()) {
  2209. size_t n_match = 0;
  2210. while (head_c + n_match < slot.cache_tokens.size() &&
  2211. head_p + n_match < prompt_tokens.size() &&
  2212. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2213. n_match++;
  2214. }
  2215. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2216. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2217. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2218. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2219. //}
  2220. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2221. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2222. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2223. for (size_t i = 0; i < n_match; i++) {
  2224. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2225. slot.n_past++;
  2226. }
  2227. head_c += n_match;
  2228. head_p += n_match;
  2229. } else {
  2230. head_c += 1;
  2231. }
  2232. }
  2233. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2234. }
  2235. }
  2236. }
  2237. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2238. // we have to evaluate at least 1 token to generate logits.
  2239. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2240. slot.n_past--;
  2241. }
  2242. slot.n_prompt_tokens_processed = 0;
  2243. }
  2244. // non-causal tasks require to fit the entire prompt in the physical batch
  2245. if (slot.is_non_causal()) {
  2246. // cannot fit the prompt in the current batch - will try next iter
  2247. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2248. continue;
  2249. }
  2250. }
  2251. // check that we are in the right batch_type, if not defer the slot
  2252. int slot_type = slot.is_non_causal();
  2253. if (batch_type == -1) {
  2254. batch_type = slot_type;
  2255. } else if (batch_type != slot_type) {
  2256. continue;
  2257. }
  2258. // keep only the common part
  2259. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2260. // could not partially delete (likely using a non-Transformer model)
  2261. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2262. // there is no common part left
  2263. slot.n_past = 0;
  2264. }
  2265. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2266. // remove the non-common part from the cache
  2267. slot.cache_tokens.resize(slot.n_past);
  2268. // add prompt tokens for processing in the current batch
  2269. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2270. // without pooling, we want to output the embeddings for all the tokens in the batch
  2271. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2272. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2273. if (slot.params.cache_prompt) {
  2274. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2275. }
  2276. slot.n_prompt_tokens_processed++;
  2277. slot.n_past++;
  2278. }
  2279. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2280. // entire prompt has been processed
  2281. if (slot.n_past == slot.n_prompt_tokens) {
  2282. slot.state = SLOT_STATE_DONE_PROMPT;
  2283. GGML_ASSERT(batch.n_tokens > 0);
  2284. common_sampler_reset(slot.smpl);
  2285. // Process all prompt tokens through sampler system
  2286. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2287. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2288. }
  2289. // extract the logits only for the last token
  2290. batch.logits[batch.n_tokens - 1] = true;
  2291. slot.n_decoded = 0;
  2292. slot.i_batch = batch.n_tokens - 1;
  2293. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2294. }
  2295. }
  2296. if (batch.n_tokens >= n_batch) {
  2297. break;
  2298. }
  2299. }
  2300. }
  2301. if (batch.n_tokens == 0) {
  2302. SRV_WRN("%s", "no tokens to decode\n");
  2303. return;
  2304. }
  2305. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2306. // make sure we're in the right embedding mode
  2307. llama_set_embeddings(ctx, batch_type == 1);
  2308. // process the created batch of tokens
  2309. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2310. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2311. llama_batch batch_view = {
  2312. n_tokens,
  2313. batch.token + i,
  2314. nullptr,
  2315. batch.pos + i,
  2316. batch.n_seq_id + i,
  2317. batch.seq_id + i,
  2318. batch.logits + i,
  2319. };
  2320. const int ret = llama_decode(ctx, batch_view);
  2321. metrics.on_decoded(slots);
  2322. if (ret != 0) {
  2323. if (n_batch == 1 || ret < 0) {
  2324. // if you get here, it means the KV cache is full - try increasing it via the context size
  2325. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2326. for (auto & slot : slots) {
  2327. slot.release();
  2328. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2329. }
  2330. break; // break loop of n_batch
  2331. }
  2332. // retry with half the batch size to try to find a free slot in the KV cache
  2333. n_batch /= 2;
  2334. i -= n_batch;
  2335. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2336. continue; // continue loop of n_batch
  2337. }
  2338. for (auto & slot : slots) {
  2339. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2340. continue; // continue loop of slots
  2341. }
  2342. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2343. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2344. // prompt evaluated for embedding
  2345. send_embedding(slot, batch_view);
  2346. slot.release();
  2347. slot.i_batch = -1;
  2348. continue; // continue loop of slots
  2349. }
  2350. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2351. send_rerank(slot, batch_view);
  2352. slot.release();
  2353. slot.i_batch = -1;
  2354. continue; // continue loop of slots
  2355. }
  2356. // prompt evaluated for next-token prediction
  2357. slot.state = SLOT_STATE_GENERATING;
  2358. } else if (slot.state != SLOT_STATE_GENERATING) {
  2359. continue; // continue loop of slots
  2360. }
  2361. const int tok_idx = slot.i_batch - i;
  2362. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2363. slot.i_batch = -1;
  2364. common_sampler_accept(slot.smpl, id, true);
  2365. slot.n_decoded += 1;
  2366. const int64_t t_current = ggml_time_us();
  2367. if (slot.n_decoded == 1) {
  2368. slot.t_start_generation = t_current;
  2369. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2370. metrics.on_prompt_eval(slot);
  2371. }
  2372. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2373. completion_token_output result;
  2374. result.tok = id;
  2375. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2376. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2377. if (slot.params.sampling.n_probs > 0) {
  2378. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2379. }
  2380. if (!process_token(result, slot)) {
  2381. // release slot because of stop condition
  2382. slot.release();
  2383. slot.print_timings();
  2384. send_final_response(slot);
  2385. metrics.on_prediction(slot);
  2386. continue;
  2387. }
  2388. }
  2389. // do speculative decoding
  2390. for (auto & slot : slots) {
  2391. if (!slot.is_processing() || !slot.can_speculate()) {
  2392. continue;
  2393. }
  2394. if (slot.state != SLOT_STATE_GENERATING) {
  2395. continue;
  2396. }
  2397. // determine the max draft that fits the current slot state
  2398. int n_draft_max = slot.params.speculative.n_max;
  2399. // note: n_past is not yet increased for the `id` token sampled above
  2400. // also, need to leave space for 1 extra token to allow context shifts
  2401. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2402. if (slot.n_remaining > 0) {
  2403. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2404. }
  2405. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2406. if (n_draft_max < slot.params.speculative.n_min) {
  2407. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2408. continue;
  2409. }
  2410. llama_token id = slot.sampled;
  2411. struct common_speculative_params params_spec;
  2412. params_spec.n_draft = n_draft_max;
  2413. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2414. params_spec.p_min = slot.params.speculative.p_min;
  2415. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2416. // ignore small drafts
  2417. if (slot.params.speculative.n_min > (int) draft.size()) {
  2418. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2419. continue;
  2420. }
  2421. // construct the speculation batch
  2422. common_batch_clear(slot.batch_spec);
  2423. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2424. for (size_t i = 0; i < draft.size(); ++i) {
  2425. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2426. }
  2427. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2428. llama_decode(ctx, slot.batch_spec);
  2429. // the accepted tokens from the speculation
  2430. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2431. slot.n_past += ids.size();
  2432. slot.n_decoded += ids.size();
  2433. slot.cache_tokens.push_back(id);
  2434. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2435. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2436. for (size_t i = 0; i < ids.size(); ++i) {
  2437. completion_token_output result;
  2438. result.tok = ids[i];
  2439. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2440. result.prob = 1.0f; // set later
  2441. // TODO: set result.probs
  2442. if (!process_token(result, slot)) {
  2443. // release slot because of stop condition
  2444. slot.release();
  2445. slot.print_timings();
  2446. send_final_response(slot);
  2447. metrics.on_prediction(slot);
  2448. break;
  2449. }
  2450. }
  2451. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2452. }
  2453. }
  2454. SRV_DBG("%s", "run slots completed\n");
  2455. }
  2456. json model_meta() const {
  2457. return json {
  2458. {"vocab_type", llama_vocab_type (model)},
  2459. {"n_vocab", llama_n_vocab (model)},
  2460. {"n_ctx_train", llama_n_ctx_train (model)},
  2461. {"n_embd", llama_n_embd (model)},
  2462. {"n_params", llama_model_n_params(model)},
  2463. {"size", llama_model_size (model)},
  2464. };
  2465. }
  2466. };
  2467. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2468. // skip GH copilot requests when using default port
  2469. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2470. return;
  2471. }
  2472. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2473. LOG_DBG("request: %s\n", req.body.c_str());
  2474. LOG_DBG("response: %s\n", res.body.c_str());
  2475. }
  2476. std::function<void(int)> shutdown_handler;
  2477. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2478. inline void signal_handler(int signal) {
  2479. if (is_terminating.test_and_set()) {
  2480. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2481. // this is for better developer experience, we can remove when the server is stable enough
  2482. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2483. exit(1);
  2484. }
  2485. shutdown_handler(signal);
  2486. }
  2487. int main(int argc, char ** argv) {
  2488. // own arguments required by this example
  2489. common_params params;
  2490. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2491. return 1;
  2492. }
  2493. common_init();
  2494. // struct that contains llama context and inference
  2495. server_context ctx_server;
  2496. llama_backend_init();
  2497. llama_numa_init(params.numa);
  2498. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2499. LOG_INF("\n");
  2500. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2501. LOG_INF("\n");
  2502. std::unique_ptr<httplib::Server> svr;
  2503. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2504. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2505. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2506. svr.reset(
  2507. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2508. );
  2509. } else {
  2510. LOG_INF("Running without SSL\n");
  2511. svr.reset(new httplib::Server());
  2512. }
  2513. #else
  2514. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2515. LOG_ERR("Server is built without SSL support\n");
  2516. return 1;
  2517. }
  2518. svr.reset(new httplib::Server());
  2519. #endif
  2520. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2521. svr->set_default_headers({{"Server", "llama.cpp"}});
  2522. svr->set_logger(log_server_request);
  2523. auto res_error = [](httplib::Response & res, const json & error_data) {
  2524. json final_response {{"error", error_data}};
  2525. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2526. res.status = json_value(error_data, "code", 500);
  2527. };
  2528. auto res_ok = [](httplib::Response & res, const json & data) {
  2529. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2530. res.status = 200;
  2531. };
  2532. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2533. std::string message;
  2534. try {
  2535. std::rethrow_exception(ep);
  2536. } catch (const std::exception & e) {
  2537. message = e.what();
  2538. } catch (...) {
  2539. message = "Unknown Exception";
  2540. }
  2541. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2542. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2543. res_error(res, formatted_error);
  2544. });
  2545. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2546. if (res.status == 404) {
  2547. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2548. }
  2549. // for other error codes, we skip processing here because it's already done by res_error()
  2550. });
  2551. // set timeouts and change hostname and port
  2552. svr->set_read_timeout (params.timeout_read);
  2553. svr->set_write_timeout(params.timeout_write);
  2554. std::unordered_map<std::string, std::string> log_data;
  2555. log_data["hostname"] = params.hostname;
  2556. log_data["port"] = std::to_string(params.port);
  2557. if (params.api_keys.size() == 1) {
  2558. auto key = params.api_keys[0];
  2559. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2560. } else if (params.api_keys.size() > 1) {
  2561. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2562. }
  2563. // Necessary similarity of prompt for slot selection
  2564. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2565. //
  2566. // Middlewares
  2567. //
  2568. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2569. static const std::unordered_set<std::string> public_endpoints = {
  2570. "/health",
  2571. "/models",
  2572. "/v1/models",
  2573. };
  2574. // If API key is not set, skip validation
  2575. if (params.api_keys.empty()) {
  2576. return true;
  2577. }
  2578. // If path is public or is static file, skip validation
  2579. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2580. return true;
  2581. }
  2582. // Check for API key in the header
  2583. auto auth_header = req.get_header_value("Authorization");
  2584. std::string prefix = "Bearer ";
  2585. if (auth_header.substr(0, prefix.size()) == prefix) {
  2586. std::string received_api_key = auth_header.substr(prefix.size());
  2587. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2588. return true; // API key is valid
  2589. }
  2590. }
  2591. // API key is invalid or not provided
  2592. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2593. LOG_WRN("Unauthorized: Invalid API Key\n");
  2594. return false;
  2595. };
  2596. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2597. server_state current_state = state.load();
  2598. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2599. auto tmp = string_split<std::string>(req.path, '.');
  2600. if (req.path == "/" || tmp.back() == "html") {
  2601. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2602. res.status = 503;
  2603. } else {
  2604. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2605. }
  2606. return false;
  2607. }
  2608. return true;
  2609. };
  2610. // register server middlewares
  2611. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2612. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2613. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2614. if (req.method == "OPTIONS") {
  2615. res.set_header("Access-Control-Allow-Credentials", "true");
  2616. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2617. res.set_header("Access-Control-Allow-Headers", "*");
  2618. res.set_content("", "text/html"); // blank response, no data
  2619. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2620. }
  2621. if (!middleware_server_state(req, res)) {
  2622. return httplib::Server::HandlerResponse::Handled;
  2623. }
  2624. if (!middleware_validate_api_key(req, res)) {
  2625. return httplib::Server::HandlerResponse::Handled;
  2626. }
  2627. return httplib::Server::HandlerResponse::Unhandled;
  2628. });
  2629. //
  2630. // Route handlers (or controllers)
  2631. //
  2632. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2633. // error and loading states are handled by middleware
  2634. json health = {{"status", "ok"}};
  2635. res_ok(res, health);
  2636. };
  2637. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2638. if (!params.endpoint_slots) {
  2639. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2640. return;
  2641. }
  2642. // request slots data using task queue
  2643. server_task task(SERVER_TASK_TYPE_METRICS);
  2644. task.id = ctx_server.queue_tasks.get_new_id();
  2645. ctx_server.queue_results.add_waiting_task_id(task.id);
  2646. ctx_server.queue_tasks.post(task, true); // high-priority task
  2647. // get the result
  2648. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2649. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2650. if (result->is_error()) {
  2651. res_error(res, result->to_json());
  2652. return;
  2653. }
  2654. // TODO: get rid of this dynamic_cast
  2655. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2656. GGML_ASSERT(res_metrics != nullptr);
  2657. // optionally return "fail_on_no_slot" error
  2658. if (req.has_param("fail_on_no_slot")) {
  2659. if (res_metrics->n_idle_slots == 0) {
  2660. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2661. return;
  2662. }
  2663. }
  2664. res_ok(res, res_metrics->slots_data);
  2665. };
  2666. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2667. if (!params.endpoint_metrics) {
  2668. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2669. return;
  2670. }
  2671. // request slots data using task queue
  2672. server_task task(SERVER_TASK_TYPE_METRICS);
  2673. task.id = ctx_server.queue_tasks.get_new_id();
  2674. task.metrics_reset_bucket = true;
  2675. ctx_server.queue_results.add_waiting_task_id(task.id);
  2676. ctx_server.queue_tasks.post(task, true); // high-priority task
  2677. // get the result
  2678. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2679. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2680. if (result->is_error()) {
  2681. res_error(res, result->to_json());
  2682. return;
  2683. }
  2684. // TODO: get rid of this dynamic_cast
  2685. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2686. GGML_ASSERT(res_metrics != nullptr);
  2687. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2688. json all_metrics_def = json {
  2689. {"counter", {{
  2690. {"name", "prompt_tokens_total"},
  2691. {"help", "Number of prompt tokens processed."},
  2692. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2693. }, {
  2694. {"name", "prompt_seconds_total"},
  2695. {"help", "Prompt process time"},
  2696. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2697. }, {
  2698. {"name", "tokens_predicted_total"},
  2699. {"help", "Number of generation tokens processed."},
  2700. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2701. }, {
  2702. {"name", "tokens_predicted_seconds_total"},
  2703. {"help", "Predict process time"},
  2704. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2705. }, {
  2706. {"name", "n_decode_total"},
  2707. {"help", "Total number of llama_decode() calls"},
  2708. {"value", res_metrics->n_decode_total}
  2709. }, {
  2710. {"name", "n_busy_slots_per_decode"},
  2711. {"help", "Average number of busy slots per llama_decode() call"},
  2712. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2713. }}},
  2714. {"gauge", {{
  2715. {"name", "prompt_tokens_seconds"},
  2716. {"help", "Average prompt throughput in tokens/s."},
  2717. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2718. },{
  2719. {"name", "predicted_tokens_seconds"},
  2720. {"help", "Average generation throughput in tokens/s."},
  2721. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2722. },{
  2723. {"name", "kv_cache_usage_ratio"},
  2724. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2725. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2726. },{
  2727. {"name", "kv_cache_tokens"},
  2728. {"help", "KV-cache tokens."},
  2729. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2730. },{
  2731. {"name", "requests_processing"},
  2732. {"help", "Number of request processing."},
  2733. {"value", (uint64_t) res_metrics->n_processing_slots}
  2734. },{
  2735. {"name", "requests_deferred"},
  2736. {"help", "Number of request deferred."},
  2737. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2738. }}}
  2739. };
  2740. std::stringstream prometheus;
  2741. for (const auto & el : all_metrics_def.items()) {
  2742. const auto & type = el.key();
  2743. const auto & metrics_def = el.value();
  2744. for (const auto & metric_def : metrics_def) {
  2745. const std::string name = metric_def.at("name");
  2746. const std::string help = metric_def.at("help");
  2747. auto value = json_value(metric_def, "value", 0.);
  2748. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2749. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2750. << "llamacpp:" << name << " " << value << "\n";
  2751. }
  2752. }
  2753. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2754. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2755. res.status = 200; // HTTP OK
  2756. };
  2757. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2758. json request_data = json::parse(req.body);
  2759. std::string filename = request_data.at("filename");
  2760. if (!fs_validate_filename(filename)) {
  2761. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2762. return;
  2763. }
  2764. std::string filepath = params.slot_save_path + filename;
  2765. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2766. task.id = ctx_server.queue_tasks.get_new_id();
  2767. task.slot_action.slot_id = id_slot;
  2768. task.slot_action.filename = filename;
  2769. task.slot_action.filepath = filepath;
  2770. ctx_server.queue_results.add_waiting_task_id(task.id);
  2771. ctx_server.queue_tasks.post(task);
  2772. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2773. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2774. if (result->is_error()) {
  2775. res_error(res, result->to_json());
  2776. return;
  2777. }
  2778. res_ok(res, result->to_json());
  2779. };
  2780. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2781. json request_data = json::parse(req.body);
  2782. std::string filename = request_data.at("filename");
  2783. if (!fs_validate_filename(filename)) {
  2784. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2785. return;
  2786. }
  2787. std::string filepath = params.slot_save_path + filename;
  2788. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2789. task.id = ctx_server.queue_tasks.get_new_id();
  2790. task.slot_action.slot_id = id_slot;
  2791. task.slot_action.filename = filename;
  2792. task.slot_action.filepath = filepath;
  2793. ctx_server.queue_results.add_waiting_task_id(task.id);
  2794. ctx_server.queue_tasks.post(task);
  2795. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2796. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2797. if (result->is_error()) {
  2798. res_error(res, result->to_json());
  2799. return;
  2800. }
  2801. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2802. res_ok(res, result->to_json());
  2803. };
  2804. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2805. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2806. task.id = ctx_server.queue_tasks.get_new_id();
  2807. task.slot_action.slot_id = id_slot;
  2808. ctx_server.queue_results.add_waiting_task_id(task.id);
  2809. ctx_server.queue_tasks.post(task);
  2810. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2811. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2812. if (result->is_error()) {
  2813. res_error(res, result->to_json());
  2814. return;
  2815. }
  2816. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2817. res_ok(res, result->to_json());
  2818. };
  2819. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2820. if (params.slot_save_path.empty()) {
  2821. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2822. return;
  2823. }
  2824. std::string id_slot_str = req.path_params.at("id_slot");
  2825. int id_slot;
  2826. try {
  2827. id_slot = std::stoi(id_slot_str);
  2828. } catch (const std::exception &) {
  2829. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2830. return;
  2831. }
  2832. std::string action = req.get_param_value("action");
  2833. if (action == "save") {
  2834. handle_slots_save(req, res, id_slot);
  2835. } else if (action == "restore") {
  2836. handle_slots_restore(req, res, id_slot);
  2837. } else if (action == "erase") {
  2838. handle_slots_erase(req, res, id_slot);
  2839. } else {
  2840. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2841. }
  2842. };
  2843. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2844. // this endpoint is publicly available, please only return what is safe to be exposed
  2845. json data = {
  2846. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2847. { "total_slots", ctx_server.params_base.n_parallel },
  2848. { "model_path", ctx_server.params_base.model },
  2849. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2850. { "build_info", build_info },
  2851. };
  2852. res_ok(res, data);
  2853. };
  2854. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2855. if (!ctx_server.params_base.endpoint_props) {
  2856. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2857. return;
  2858. }
  2859. json data = json::parse(req.body);
  2860. // update any props here
  2861. res_ok(res, {{ "success", true }});
  2862. };
  2863. // handle completion-like requests (completion, chat, infill)
  2864. // we can optionally provide a custom format for partial results and final results
  2865. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
  2866. server_task_type type,
  2867. json & data,
  2868. httplib::Response & res,
  2869. bool oaicompat = false,
  2870. bool oaicompat_chat = false) {
  2871. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2872. if (ctx_server.params_base.embedding) {
  2873. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2874. return;
  2875. }
  2876. auto completion_id = gen_chatcmplid();
  2877. std::vector<server_task> tasks;
  2878. try {
  2879. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2880. tasks.reserve(tokenized_prompts.size());
  2881. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2882. server_task task = server_task(type);
  2883. task.id = ctx_server.queue_tasks.get_new_id();
  2884. task.index = i;
  2885. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2886. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
  2887. task.id_selected_slot = json_value(data, "id_slot", -1);
  2888. // OAI-compat
  2889. task.params.oaicompat = oaicompat;
  2890. task.params.oaicompat_chat = oaicompat_chat;
  2891. task.params.oaicompat_cmpl_id = completion_id;
  2892. // oaicompat_model is already populated by params_from_json_cmpl
  2893. tasks.push_back(task);
  2894. }
  2895. } catch (const std::exception & e) {
  2896. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2897. return;
  2898. }
  2899. ctx_server.queue_results.add_waiting_tasks(tasks);
  2900. ctx_server.queue_tasks.post(tasks);
  2901. bool stream = json_value(data, "stream", false);
  2902. const auto task_ids = server_task::get_list_id(tasks);
  2903. if (!stream) {
  2904. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2905. if (results.size() == 1) {
  2906. // single result
  2907. res_ok(res, results[0]->to_json());
  2908. } else {
  2909. // multiple results (multitask)
  2910. json arr = json::array();
  2911. for (auto & res : results) {
  2912. arr.push_back(res->to_json());
  2913. }
  2914. res_ok(res, arr);
  2915. }
  2916. }, [&](const json & error_data) {
  2917. res_error(res, error_data);
  2918. });
  2919. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2920. } else {
  2921. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  2922. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  2923. json res_json = result->to_json();
  2924. if (res_json.is_array()) {
  2925. for (const auto & res : res_json) {
  2926. if (!server_sent_event(sink, "data", res)) {
  2927. return false;
  2928. }
  2929. }
  2930. return true;
  2931. } else {
  2932. return server_sent_event(sink, "data", res_json);
  2933. }
  2934. }, [&](const json & error_data) {
  2935. server_sent_event(sink, "error", error_data);
  2936. });
  2937. if (oaicompat) {
  2938. static const std::string ev_done = "data: [DONE]\n\n";
  2939. sink.write(ev_done.data(), ev_done.size());
  2940. }
  2941. sink.done();
  2942. return false;
  2943. };
  2944. auto on_complete = [task_ids, &ctx_server] (bool) {
  2945. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2946. };
  2947. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2948. }
  2949. };
  2950. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2951. json data = json::parse(req.body);
  2952. return handle_completions_generic(
  2953. SERVER_TASK_TYPE_COMPLETION,
  2954. data,
  2955. res,
  2956. /* oaicompat */ false,
  2957. /* oaicompat_chat */ false);
  2958. };
  2959. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2960. // check model compatibility
  2961. std::string err;
  2962. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2963. err += "prefix token is missing. ";
  2964. }
  2965. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2966. err += "suffix token is missing. ";
  2967. }
  2968. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2969. err += "middle token is missing. ";
  2970. }
  2971. if (!err.empty()) {
  2972. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2973. return;
  2974. }
  2975. json data = json::parse(req.body);
  2976. // validate input
  2977. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  2978. // prompt is optional
  2979. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2980. }
  2981. if (!data.contains("input_prefix")) {
  2982. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2983. }
  2984. if (!data.contains("input_suffix")) {
  2985. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2986. }
  2987. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2988. // input_extra is optional
  2989. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2990. return;
  2991. }
  2992. json input_extra = json_value(data, "input_extra", json::array());
  2993. for (const auto & chunk : input_extra) {
  2994. // { "text": string, "filename": string }
  2995. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2996. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2997. return;
  2998. }
  2999. // filename is optional
  3000. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3001. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3002. return;
  3003. }
  3004. }
  3005. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3006. std::string prompt = json_value(data, "prompt", std::string());
  3007. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3008. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3009. data["prompt"] = format_infill(
  3010. ctx_server.ctx,
  3011. data.at("input_prefix"),
  3012. data.at("input_suffix"),
  3013. data.at("input_extra"),
  3014. ctx_server.params_base.n_batch,
  3015. ctx_server.params_base.n_predict,
  3016. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3017. ctx_server.params_base.spm_infill,
  3018. tokenized_prompts[0]
  3019. );
  3020. return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
  3021. };
  3022. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  3023. if (ctx_server.params_base.embedding) {
  3024. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3025. return;
  3026. }
  3027. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  3028. return handle_completions_generic(
  3029. SERVER_TASK_TYPE_COMPLETION,
  3030. data,
  3031. res,
  3032. /* oaicompat */ true,
  3033. /* oaicompat_chat */ true);
  3034. };
  3035. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3036. json models = {
  3037. {"object", "list"},
  3038. {"data", {
  3039. {
  3040. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3041. {"object", "model"},
  3042. {"created", std::time(0)},
  3043. {"owned_by", "llamacpp"},
  3044. {"meta", ctx_server.model_meta()}
  3045. },
  3046. }}
  3047. };
  3048. res_ok(res, models);
  3049. };
  3050. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3051. const json body = json::parse(req.body);
  3052. json tokens_response = json::array();
  3053. if (body.count("content") != 0) {
  3054. const bool add_special = json_value(body, "add_special", false);
  3055. const bool with_pieces = json_value(body, "with_pieces", false);
  3056. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  3057. if (with_pieces) {
  3058. for (const auto& token : tokens) {
  3059. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3060. json piece_json;
  3061. // Check if the piece is valid UTF-8
  3062. if (is_valid_utf8(piece)) {
  3063. piece_json = piece;
  3064. } else {
  3065. // If not valid UTF-8, store as array of byte values
  3066. piece_json = json::array();
  3067. for (unsigned char c : piece) {
  3068. piece_json.push_back(static_cast<int>(c));
  3069. }
  3070. }
  3071. tokens_response.push_back({
  3072. {"id", token},
  3073. {"piece", piece_json}
  3074. });
  3075. }
  3076. } else {
  3077. tokens_response = tokens;
  3078. }
  3079. }
  3080. const json data = format_tokenizer_response(tokens_response);
  3081. res_ok(res, data);
  3082. };
  3083. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3084. const json body = json::parse(req.body);
  3085. std::string content;
  3086. if (body.count("tokens") != 0) {
  3087. const llama_tokens tokens = body.at("tokens");
  3088. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3089. }
  3090. const json data = format_detokenized_response(content);
  3091. res_ok(res, data);
  3092. };
  3093. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) {
  3094. const json body = json::parse(req.body);
  3095. if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3096. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3097. return;
  3098. }
  3099. // for the shape of input/content, see tokenize_input_prompts()
  3100. json prompt;
  3101. if (body.count("input") != 0) {
  3102. prompt = body.at("input");
  3103. } else if (body.contains("content")) {
  3104. oaicompat = false;
  3105. prompt = body.at("content");
  3106. } else {
  3107. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3108. return;
  3109. }
  3110. bool use_base64 = false;
  3111. if (body.count("encoding_format") != 0) {
  3112. const std::string& format = body.at("encoding_format");
  3113. if (format == "base64") {
  3114. use_base64 = true;
  3115. } else if (format != "float") {
  3116. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3117. return;
  3118. }
  3119. }
  3120. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3121. for (const auto & tokens : tokenized_prompts) {
  3122. // this check is necessary for models that do not add BOS token to the input
  3123. if (tokens.empty()) {
  3124. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3125. return;
  3126. }
  3127. }
  3128. // create and queue the task
  3129. json responses = json::array();
  3130. bool error = false;
  3131. {
  3132. std::vector<server_task> tasks;
  3133. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3134. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3135. task.id = ctx_server.queue_tasks.get_new_id();
  3136. task.index = i;
  3137. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3138. // OAI-compat
  3139. task.params.oaicompat = oaicompat;
  3140. tasks.push_back(task);
  3141. }
  3142. ctx_server.queue_results.add_waiting_tasks(tasks);
  3143. ctx_server.queue_tasks.post(tasks);
  3144. // get the result
  3145. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3146. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3147. for (auto & res : results) {
  3148. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3149. responses.push_back(res->to_json());
  3150. }
  3151. }, [&](const json & error_data) {
  3152. res_error(res, error_data);
  3153. error = true;
  3154. });
  3155. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3156. }
  3157. if (error) {
  3158. return;
  3159. }
  3160. // write JSON response
  3161. json root = oaicompat ? format_embeddings_response_oaicompat(body, responses, use_base64) : json(responses);
  3162. res_ok(res, root);
  3163. };
  3164. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3165. handle_embeddings_impl(req, res, false);
  3166. };
  3167. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3168. handle_embeddings_impl(req, res, true);
  3169. };
  3170. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3171. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3172. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3173. return;
  3174. }
  3175. const json body = json::parse(req.body);
  3176. // TODO: implement
  3177. //int top_n = 1;
  3178. //if (body.count("top_n") != 1) {
  3179. // top_n = body.at("top_n");
  3180. //} else {
  3181. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3182. // return;
  3183. //}
  3184. json query;
  3185. if (body.count("query") == 1) {
  3186. query = body.at("query");
  3187. if (!query.is_string()) {
  3188. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3189. return;
  3190. }
  3191. } else {
  3192. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3193. return;
  3194. }
  3195. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3196. if (documents.empty()) {
  3197. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3198. return;
  3199. }
  3200. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3201. // create and queue the task
  3202. json responses = json::array();
  3203. bool error = false;
  3204. {
  3205. std::vector<server_task> tasks;
  3206. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3207. tasks.reserve(tokenized_docs.size());
  3208. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3209. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3210. task.id = ctx_server.queue_tasks.get_new_id();
  3211. task.index = i;
  3212. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3213. tasks.push_back(task);
  3214. }
  3215. ctx_server.queue_results.add_waiting_tasks(tasks);
  3216. ctx_server.queue_tasks.post(tasks);
  3217. // get the result
  3218. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3219. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3220. for (auto & res : results) {
  3221. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3222. responses.push_back(res->to_json());
  3223. }
  3224. }, [&](const json & error_data) {
  3225. res_error(res, error_data);
  3226. error = true;
  3227. });
  3228. }
  3229. if (error) {
  3230. return;
  3231. }
  3232. // write JSON response
  3233. json root = format_response_rerank(body, responses);
  3234. res_ok(res, root);
  3235. };
  3236. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3237. json result = json::array();
  3238. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3239. auto & lora = ctx_server.loras[i];
  3240. result.push_back({
  3241. {"id", i},
  3242. {"path", lora.path},
  3243. {"scale", lora.scale},
  3244. });
  3245. }
  3246. res_ok(res, result);
  3247. res.status = 200; // HTTP OK
  3248. };
  3249. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3250. const std::vector<json> body = json::parse(req.body);
  3251. int max_idx = ctx_server.loras.size();
  3252. // clear existing value
  3253. for (auto & lora : ctx_server.loras) {
  3254. lora.scale = 0.0f;
  3255. }
  3256. // set value
  3257. for (auto entry : body) {
  3258. int id = entry.at("id");
  3259. float scale = entry.at("scale");
  3260. if (0 <= id && id < max_idx) {
  3261. ctx_server.loras[id].scale = scale;
  3262. } else {
  3263. throw std::runtime_error("invalid adapter id");
  3264. }
  3265. }
  3266. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3267. task.id = ctx_server.queue_tasks.get_new_id();
  3268. ctx_server.queue_results.add_waiting_task_id(task.id);
  3269. ctx_server.queue_tasks.post(task);
  3270. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3271. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3272. if (result->is_error()) {
  3273. res_error(res, result->to_json());
  3274. return;
  3275. }
  3276. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3277. res_ok(res, result->to_json());
  3278. };
  3279. //
  3280. // Router
  3281. //
  3282. if (!params.webui) {
  3283. LOG_INF("Web UI is disabled\n");
  3284. } else {
  3285. // register static assets routes
  3286. if (!params.public_path.empty()) {
  3287. // Set the base directory for serving static files
  3288. bool is_found = svr->set_mount_point("/", params.public_path);
  3289. if (!is_found) {
  3290. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3291. return 1;
  3292. }
  3293. } else {
  3294. // using embedded static index.html
  3295. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3296. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3297. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3298. } else {
  3299. res.set_header("Content-Encoding", "gzip");
  3300. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3301. }
  3302. return false;
  3303. });
  3304. }
  3305. }
  3306. // register API routes
  3307. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3308. svr->Get ("/metrics", handle_metrics);
  3309. svr->Get ("/props", handle_props);
  3310. svr->Post("/props", handle_props_change);
  3311. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3312. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3313. svr->Post("/completion", handle_completions); // legacy
  3314. svr->Post("/completions", handle_completions);
  3315. svr->Post("/v1/completions", handle_completions);
  3316. svr->Post("/chat/completions", handle_chat_completions);
  3317. svr->Post("/v1/chat/completions", handle_chat_completions);
  3318. svr->Post("/infill", handle_infill);
  3319. svr->Post("/embedding", handle_embeddings); // legacy
  3320. svr->Post("/embeddings", handle_embeddings);
  3321. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3322. svr->Post("/rerank", handle_rerank);
  3323. svr->Post("/reranking", handle_rerank);
  3324. svr->Post("/v1/rerank", handle_rerank);
  3325. svr->Post("/v1/reranking", handle_rerank);
  3326. svr->Post("/tokenize", handle_tokenize);
  3327. svr->Post("/detokenize", handle_detokenize);
  3328. // LoRA adapters hotswap
  3329. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3330. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3331. // Save & load slots
  3332. svr->Get ("/slots", handle_slots);
  3333. svr->Post("/slots/:id_slot", handle_slots_action);
  3334. //
  3335. // Start the server
  3336. //
  3337. if (params.n_threads_http < 1) {
  3338. // +2 threads for monitoring endpoints
  3339. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3340. }
  3341. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3342. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3343. // clean up function, to be called before exit
  3344. auto clean_up = [&svr]() {
  3345. svr->stop();
  3346. llama_backend_free();
  3347. };
  3348. // bind HTTP listen port
  3349. bool was_bound = false;
  3350. if (params.port == 0) {
  3351. int bound_port = svr->bind_to_any_port(params.hostname);
  3352. if ((was_bound = (bound_port >= 0))) {
  3353. params.port = bound_port;
  3354. }
  3355. } else {
  3356. was_bound = svr->bind_to_port(params.hostname, params.port);
  3357. }
  3358. if (!was_bound) {
  3359. //LOG_ERROR("couldn't bind HTTP server socket", {
  3360. // {"hostname", params.hostname},
  3361. // {"port", params.port},
  3362. //});
  3363. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3364. clean_up();
  3365. return 1;
  3366. }
  3367. // run the HTTP server in a thread
  3368. std::thread t([&]() { svr->listen_after_bind(); });
  3369. svr->wait_until_ready();
  3370. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3371. // load the model
  3372. LOG_INF("%s: loading model\n", __func__);
  3373. if (!ctx_server.load_model(params)) {
  3374. clean_up();
  3375. t.join();
  3376. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3377. return 1;
  3378. }
  3379. ctx_server.init();
  3380. state.store(SERVER_STATE_READY);
  3381. LOG_INF("%s: model loaded\n", __func__);
  3382. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3383. if (params.chat_template.empty()) {
  3384. if (!ctx_server.validate_model_chat_template()) {
  3385. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3386. params.chat_template = "chatml";
  3387. }
  3388. }
  3389. // print sample chat example to make it clear which template is used
  3390. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3391. ctx_server.queue_tasks.on_new_task(std::bind(
  3392. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3393. ctx_server.queue_tasks.on_update_slots(std::bind(
  3394. &server_context::update_slots, &ctx_server));
  3395. shutdown_handler = [&](int) {
  3396. ctx_server.queue_tasks.terminate();
  3397. };
  3398. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3399. ctx_server.queue_tasks.start_loop();
  3400. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3401. struct sigaction sigint_action;
  3402. sigint_action.sa_handler = signal_handler;
  3403. sigemptyset (&sigint_action.sa_mask);
  3404. sigint_action.sa_flags = 0;
  3405. sigaction(SIGINT, &sigint_action, NULL);
  3406. sigaction(SIGTERM, &sigint_action, NULL);
  3407. #elif defined (_WIN32)
  3408. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3409. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3410. };
  3411. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3412. #endif
  3413. clean_up();
  3414. t.join();
  3415. return 0;
  3416. }