common.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama-cpp.h"
  4. #include <set>
  5. #include <string>
  6. #include <string_view>
  7. #include <vector>
  8. #include <sstream>
  9. #ifdef _WIN32
  10. #define DIRECTORY_SEPARATOR '\\'
  11. #else
  12. #define DIRECTORY_SEPARATOR '/'
  13. #endif // _WIN32
  14. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  15. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  16. #define print_build_info() do { \
  17. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  18. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  19. } while(0)
  20. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  21. struct common_adapter_lora_info {
  22. std::string path;
  23. float scale;
  24. struct llama_adapter_lora * ptr;
  25. };
  26. using llama_tokens = std::vector<llama_token>;
  27. // build info
  28. extern int LLAMA_BUILD_NUMBER;
  29. extern const char * LLAMA_COMMIT;
  30. extern const char * LLAMA_COMPILER;
  31. extern const char * LLAMA_BUILD_TARGET;
  32. struct common_control_vector_load_info;
  33. //
  34. // CPU utils
  35. //
  36. struct cpu_params {
  37. int n_threads = -1;
  38. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  39. bool mask_valid = false; // Default: any CPU
  40. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  41. bool strict_cpu = false; // Use strict CPU placement
  42. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  43. };
  44. int32_t cpu_get_num_physical_cores();
  45. int32_t cpu_get_num_math();
  46. //
  47. // Common params
  48. //
  49. enum llama_example {
  50. LLAMA_EXAMPLE_COMMON,
  51. LLAMA_EXAMPLE_SPECULATIVE,
  52. LLAMA_EXAMPLE_MAIN,
  53. LLAMA_EXAMPLE_EMBEDDING,
  54. LLAMA_EXAMPLE_PERPLEXITY,
  55. LLAMA_EXAMPLE_RETRIEVAL,
  56. LLAMA_EXAMPLE_PASSKEY,
  57. LLAMA_EXAMPLE_IMATRIX,
  58. LLAMA_EXAMPLE_BENCH,
  59. LLAMA_EXAMPLE_SERVER,
  60. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  61. LLAMA_EXAMPLE_EXPORT_LORA,
  62. LLAMA_EXAMPLE_LLAVA,
  63. LLAMA_EXAMPLE_LOOKUP,
  64. LLAMA_EXAMPLE_PARALLEL,
  65. LLAMA_EXAMPLE_TTS,
  66. LLAMA_EXAMPLE_COUNT,
  67. };
  68. enum common_sampler_type {
  69. COMMON_SAMPLER_TYPE_NONE = 0,
  70. COMMON_SAMPLER_TYPE_DRY = 1,
  71. COMMON_SAMPLER_TYPE_TOP_K = 2,
  72. COMMON_SAMPLER_TYPE_TOP_P = 3,
  73. COMMON_SAMPLER_TYPE_MIN_P = 4,
  74. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  75. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  76. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  77. COMMON_SAMPLER_TYPE_XTC = 8,
  78. COMMON_SAMPLER_TYPE_INFILL = 9,
  79. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  80. COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
  81. };
  82. // dimensionality reduction methods, used by cvector-generator
  83. enum dimre_method {
  84. DIMRE_METHOD_PCA,
  85. DIMRE_METHOD_MEAN,
  86. };
  87. enum common_conversation_mode {
  88. COMMON_CONVERSATION_MODE_DISABLED = 0,
  89. COMMON_CONVERSATION_MODE_ENABLED = 1,
  90. COMMON_CONVERSATION_MODE_AUTO = 2,
  91. };
  92. enum common_grammar_trigger_type {
  93. COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
  94. COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
  95. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
  96. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
  97. };
  98. struct common_grammar_trigger {
  99. common_grammar_trigger_type type;
  100. std::string value;
  101. llama_token token = LLAMA_TOKEN_NULL;
  102. };
  103. // sampling parameters
  104. struct common_params_sampling {
  105. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  106. int32_t n_prev = 64; // number of previous tokens to remember
  107. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  108. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  109. int32_t top_k = 40; // <= 0 to use vocab size
  110. float top_p = 0.95f; // 1.0 = disabled
  111. float min_p = 0.05f; // 0.0 = disabled
  112. float xtc_probability = 0.00f; // 0.0 = disabled
  113. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  114. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  115. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  116. float dynatemp_range = 0.00f; // 0.0 = disabled
  117. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  118. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  119. float penalty_repeat = 1.00f; // 1.0 = disabled
  120. float penalty_freq = 0.00f; // 0.0 = disabled
  121. float penalty_present = 0.00f; // 0.0 = disabled
  122. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  123. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  124. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  125. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  126. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  127. float top_n_sigma = -1.00f;// -1.0 = disabled
  128. float mirostat_tau = 5.00f; // target entropy
  129. float mirostat_eta = 0.10f; // learning rate
  130. bool ignore_eos = false;
  131. bool no_perf = false; // disable performance metrics
  132. bool timing_per_token = false;
  133. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  134. std::vector<enum common_sampler_type> samplers = {
  135. COMMON_SAMPLER_TYPE_PENALTIES,
  136. COMMON_SAMPLER_TYPE_DRY,
  137. COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
  138. COMMON_SAMPLER_TYPE_TOP_K,
  139. COMMON_SAMPLER_TYPE_TYPICAL_P,
  140. COMMON_SAMPLER_TYPE_TOP_P,
  141. COMMON_SAMPLER_TYPE_MIN_P,
  142. COMMON_SAMPLER_TYPE_XTC,
  143. COMMON_SAMPLER_TYPE_TEMPERATURE,
  144. };
  145. std::string grammar; // optional BNF-like grammar to constrain sampling
  146. bool grammar_lazy = false;
  147. std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
  148. std::set<llama_token> preserved_tokens;
  149. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  150. // print the parameters into a string
  151. std::string print() const;
  152. };
  153. struct common_params_model {
  154. std::string path = ""; // model local path // NOLINT
  155. std::string url = ""; // model url to download // NOLINT
  156. std::string hf_repo = ""; // HF repo // NOLINT
  157. std::string hf_file = ""; // HF file // NOLINT
  158. };
  159. struct common_params_speculative {
  160. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  161. int32_t n_ctx = 0; // draft context size
  162. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  163. int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
  164. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  165. float p_split = 0.1f; // speculative decoding split probability
  166. float p_min = 0.75f; // minimum speculative decoding probability (greedy)
  167. struct cpu_params cpuparams;
  168. struct cpu_params cpuparams_batch;
  169. struct common_params_model model;
  170. };
  171. struct common_params_vocoder {
  172. struct common_params_model model;
  173. std::string speaker_file = ""; // speaker file path // NOLINT
  174. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  175. };
  176. enum common_reasoning_format {
  177. COMMON_REASONING_FORMAT_NONE,
  178. COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
  179. };
  180. struct common_params {
  181. int32_t n_predict = -1; // new tokens to predict
  182. int32_t n_ctx = 4096; // context size
  183. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  184. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  185. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  186. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  187. int32_t n_parallel = 1; // number of parallel sequences to decode
  188. int32_t n_sequences = 1; // number of sequences to decode
  189. int32_t grp_attn_n = 1; // group-attention factor
  190. int32_t grp_attn_w = 512; // group-attention width
  191. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  192. float rope_freq_base = 0.0f; // RoPE base frequency
  193. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  194. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  195. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  196. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  197. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  198. int32_t yarn_orig_ctx = 0; // YaRN original context length
  199. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  200. // offload params
  201. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  202. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  203. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  204. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  205. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  206. struct cpu_params cpuparams;
  207. struct cpu_params cpuparams_batch;
  208. ggml_backend_sched_eval_callback cb_eval = nullptr;
  209. void * cb_eval_user_data = nullptr;
  210. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  211. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  212. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  213. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  214. struct common_params_sampling sampling;
  215. struct common_params_speculative speculative;
  216. struct common_params_vocoder vocoder;
  217. struct common_params_model model;
  218. std::string model_alias = ""; // model alias // NOLINT
  219. std::string hf_token = ""; // HF token // NOLINT
  220. std::string prompt = ""; // NOLINT
  221. std::string system_prompt = ""; // NOLINT
  222. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  223. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  224. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  225. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  226. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  227. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  228. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  229. std::vector<std::string> in_files; // all input files
  230. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  231. std::vector<llama_model_kv_override> kv_overrides;
  232. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  233. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  234. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  235. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  236. int32_t verbosity = 0;
  237. int32_t control_vector_layer_start = -1; // layer range for control vector
  238. int32_t control_vector_layer_end = -1; // layer range for control vector
  239. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  240. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  241. // (which is more convenient to use for plotting)
  242. //
  243. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  244. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  245. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  246. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  247. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  248. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  249. bool kl_divergence = false; // compute KL divergence
  250. bool usage = false; // print usage
  251. bool completion = false; // print source-able completion script
  252. bool use_color = false; // use color to distinguish generations and inputs
  253. bool special = false; // enable special token output
  254. bool interactive = false; // interactive mode
  255. bool interactive_first = false; // wait for user input immediately
  256. bool prompt_cache_all = false; // save user input and generations to prompt cache
  257. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  258. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  259. bool multiline_input = false; // reverse the usage of `\`
  260. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  261. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  262. bool flash_attn = false; // flash attention
  263. bool no_perf = false; // disable performance metrics
  264. bool ctx_shift = true; // context shift on inifinite text generation
  265. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  266. bool use_mmap = true; // use mmap for faster loads
  267. bool use_mlock = false; // use mlock to keep model in memory
  268. bool verbose_prompt = false; // print prompt tokens before generation
  269. bool display_prompt = true; // print prompt before generation
  270. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  271. bool no_kv_offload = false; // disable KV offloading
  272. bool warmup = true; // warmup run
  273. bool check_tensors = false; // validate tensor data
  274. bool no_op_offload = false; // globally disable offload host tensor operations to device
  275. bool single_turn = false; // single turn chat conversation
  276. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  277. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  278. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  279. // multimodal models (see tools/mtmd)
  280. struct common_params_model mmproj;
  281. bool mmproj_use_gpu = true; // use GPU for multimodal model
  282. bool no_mmproj = false; // explicitly disable multimodal model
  283. std::vector<std::string> image; // path to image file(s)
  284. // embedding
  285. bool embedding = false; // get only sentence embedding
  286. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  287. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  288. std::string embd_sep = "\n"; // separator of embeddings
  289. bool reranking = false; // enable reranking support on server
  290. // server params
  291. int32_t port = 8080; // server listens on this network port
  292. int32_t timeout_read = 600; // http read timeout in seconds
  293. int32_t timeout_write = timeout_read; // http write timeout in seconds
  294. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  295. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  296. std::string hostname = "127.0.0.1";
  297. std::string public_path = ""; // NOLINT
  298. std::string chat_template = ""; // NOLINT
  299. bool use_jinja = false; // NOLINT
  300. bool enable_chat_template = true;
  301. common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
  302. bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
  303. std::vector<std::string> api_keys;
  304. std::string ssl_file_key = ""; // NOLINT
  305. std::string ssl_file_cert = ""; // NOLINT
  306. // "advanced" endpoints are disabled by default for better security
  307. bool webui = true;
  308. bool endpoint_slots = false;
  309. bool endpoint_props = false; // only control POST requests, not GET
  310. bool endpoint_metrics = false;
  311. bool log_json = false;
  312. std::string slot_save_path;
  313. float slot_prompt_similarity = 0.5f;
  314. // batched-bench params
  315. bool is_pp_shared = false;
  316. std::vector<int32_t> n_pp;
  317. std::vector<int32_t> n_tg;
  318. std::vector<int32_t> n_pl;
  319. // retrieval params
  320. std::vector<std::string> context_files; // context files to embed
  321. int32_t chunk_size = 64; // chunk size for context embedding
  322. std::string chunk_separator = "\n"; // chunk separator for context embedding
  323. // passkey params
  324. int32_t n_junk = 250; // number of times to repeat the junk text
  325. int32_t i_pos = -1; // position of the passkey in the junk text
  326. // imatrix params
  327. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  328. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  329. int32_t i_chunk = 0; // start processing from this chunk
  330. bool process_output = false; // collect data for the output tensor
  331. bool compute_ppl = true; // whether to compute perplexity
  332. bool parse_special = false; // whether to parse special tokens during imatrix tokenization
  333. // cvector-generator params
  334. int n_pca_batch = 100;
  335. int n_pca_iterations = 1000;
  336. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  337. std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
  338. std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
  339. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  340. // batched-bench params
  341. bool batched_bench_output_jsonl = false;
  342. // common params
  343. std::string out_file; // output filename for all example programs
  344. };
  345. // call once at the start of a program if it uses libcommon
  346. // initializes the logging system and prints info about the build
  347. void common_init();
  348. std::string common_params_get_system_info(const common_params & params);
  349. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  350. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  351. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  352. bool set_process_priority(enum ggml_sched_priority prio);
  353. //
  354. // String utils
  355. //
  356. #ifdef __GNUC__
  357. # if defined(__MINGW32__) && !defined(__clang__)
  358. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  359. # else
  360. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  361. # endif
  362. #else
  363. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  364. #endif
  365. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  366. std::string string_format(const char * fmt, ...);
  367. std::string string_strip(const std::string & str);
  368. std::string string_get_sortable_timestamp();
  369. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  370. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  371. std::string string_repeat(const std::string & str, size_t n);
  372. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  373. std::string regex_escape(const std::string & s);
  374. template<class T>
  375. static std::vector<T> string_split(const std::string & str, char delim) {
  376. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  377. std::vector<T> values;
  378. std::istringstream str_stream(str);
  379. std::string token;
  380. while (std::getline(str_stream, token, delim)) {
  381. T value;
  382. std::istringstream token_stream(token);
  383. token_stream >> value;
  384. values.push_back(value);
  385. }
  386. return values;
  387. }
  388. template<>
  389. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  390. {
  391. std::vector<std::string> parts;
  392. size_t begin_pos = 0;
  393. size_t separator_pos = input.find(separator);
  394. while (separator_pos != std::string::npos) {
  395. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  396. parts.emplace_back(part);
  397. begin_pos = separator_pos + 1;
  398. separator_pos = input.find(separator, begin_pos);
  399. }
  400. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  401. return parts;
  402. }
  403. static bool string_starts_with(const std::string & str,
  404. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  405. return str.rfind(prefix, 0) == 0;
  406. }
  407. // While we wait for C++20's std::string::ends_with...
  408. bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
  409. size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
  410. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  411. void string_process_escapes(std::string & input);
  412. std::string string_from(bool value);
  413. std::string string_from(const std::vector<int> & values);
  414. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  415. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  416. //
  417. // Filesystem utils
  418. //
  419. bool fs_validate_filename(const std::string & filename);
  420. bool fs_create_directory_with_parents(const std::string & path);
  421. std::string fs_get_cache_directory();
  422. std::string fs_get_cache_file(const std::string & filename);
  423. //
  424. // Model utils
  425. //
  426. // note: defines object's lifetime
  427. struct common_init_result {
  428. llama_model_ptr model;
  429. llama_context_ptr context;
  430. std::vector<llama_adapter_lora_ptr> lora;
  431. };
  432. struct common_init_result common_init_from_params(common_params & params);
  433. struct llama_model_params common_model_params_to_llama ( common_params & params);
  434. struct llama_context_params common_context_params_to_llama(const common_params & params);
  435. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  436. // clear LoRA adapters from context, then apply new list of adapters
  437. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  438. std::string get_model_endpoint();
  439. //
  440. // Batch utils
  441. //
  442. void common_batch_clear(struct llama_batch & batch);
  443. void common_batch_add(
  444. struct llama_batch & batch,
  445. llama_token id,
  446. llama_pos pos,
  447. const std::vector<llama_seq_id> & seq_ids,
  448. bool logits);
  449. //
  450. // Token utils
  451. //
  452. // longest common prefix
  453. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  454. // longet common subsequence
  455. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  456. //
  457. // Vocab utils
  458. //
  459. // tokenizes a string into a vector of tokens
  460. // should work similar to Python's `tokenizer.encode`
  461. std::vector<llama_token> common_tokenize(
  462. const struct llama_context * ctx,
  463. const std::string & text,
  464. bool add_special,
  465. bool parse_special = false);
  466. std::vector<llama_token> common_tokenize(
  467. const struct llama_vocab * vocab,
  468. const std::string & text,
  469. bool add_special,
  470. bool parse_special = false);
  471. // tokenizes a token into a piece, optionally renders special/control tokens
  472. // should work similar to Python's `tokenizer.id_to_piece`
  473. std::string common_token_to_piece(
  474. const struct llama_context * ctx,
  475. llama_token token,
  476. bool special = true);
  477. std::string common_token_to_piece(
  478. const struct llama_vocab * vocab,
  479. llama_token token,
  480. bool special = true);
  481. // detokenizes a vector of tokens into a string
  482. // should work similar to Python's `tokenizer.decode`
  483. // optionally renders special/control tokens
  484. std::string common_detokenize(
  485. const struct llama_context * ctx,
  486. const std::vector<llama_token> & tokens,
  487. bool special = true);
  488. std::string common_detokenize(
  489. const struct llama_vocab * vocab,
  490. const std::vector<llama_token> & tokens,
  491. bool special = true);
  492. //
  493. // KV cache utils
  494. //
  495. // Dump the KV cache view with the number of sequences per cell.
  496. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  497. // Dump the KV cache view showing individual sequences in each cell (long output).
  498. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  499. //
  500. // Embedding utils
  501. //
  502. // TODO: repace embd_norm with an enum
  503. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  504. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  505. //
  506. // Control vector utils
  507. //
  508. struct common_control_vector_data {
  509. int n_embd;
  510. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  511. std::vector<float> data;
  512. };
  513. struct common_control_vector_load_info {
  514. float strength;
  515. std::string fname;
  516. };
  517. // Load control vectors, scale each by strength, and add them together.
  518. // On error, returns {-1, empty}
  519. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  520. //
  521. // Split utils
  522. //
  523. namespace {
  524. const char * const LLM_KV_SPLIT_NO = "split.no";
  525. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  526. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  527. }
  528. //
  529. // training utils
  530. //
  531. ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);