sampling.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. #include "sampling.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include <cmath>
  5. #include <unordered_map>
  6. #include <algorithm>
  7. // the ring buffer works similarly to std::deque, but with a fixed capacity
  8. // TODO: deduplicate with llama-impl.h
  9. template<typename T>
  10. struct ring_buffer {
  11. ring_buffer(size_t cap) : capacity(cap), data(cap) {}
  12. T & front() {
  13. if (sz == 0) {
  14. throw std::runtime_error("ring buffer is empty");
  15. }
  16. return data[first];
  17. }
  18. const T & front() const {
  19. if (sz == 0) {
  20. throw std::runtime_error("ring buffer is empty");
  21. }
  22. return data[first];
  23. }
  24. T & back() {
  25. if (sz == 0) {
  26. throw std::runtime_error("ring buffer is empty");
  27. }
  28. return data[pos];
  29. }
  30. const T & back() const {
  31. if (sz == 0) {
  32. throw std::runtime_error("ring buffer is empty");
  33. }
  34. return data[pos];
  35. }
  36. void push_back(const T & value) {
  37. if (sz == capacity) {
  38. // advance the start when buffer is full
  39. first = (first + 1) % capacity;
  40. } else {
  41. sz++;
  42. }
  43. data[pos] = value;
  44. pos = (pos + 1) % capacity;
  45. }
  46. T pop_front() {
  47. if (sz == 0) {
  48. throw std::runtime_error("ring buffer is empty");
  49. }
  50. T value = data[first];
  51. first = (first + 1) % capacity;
  52. sz--;
  53. return value;
  54. }
  55. const T & rat(size_t i) const {
  56. if (i >= sz) {
  57. throw std::runtime_error("ring buffer: index out of bounds");
  58. }
  59. return data[(first + sz - i - 1) % capacity];
  60. }
  61. std::vector<T> to_vector() const {
  62. std::vector<T> result;
  63. result.reserve(sz);
  64. for (size_t i = 0; i < sz; i++) {
  65. result.push_back(data[(first + i) % capacity]);
  66. }
  67. return result;
  68. }
  69. void clear() {
  70. // here only reset the status of the buffer
  71. sz = 0;
  72. first = 0;
  73. pos = 0;
  74. }
  75. bool empty() const {
  76. return sz == 0;
  77. }
  78. size_t size() const {
  79. return sz;
  80. }
  81. size_t capacity = 0;
  82. size_t sz = 0;
  83. size_t first = 0;
  84. size_t pos = 0;
  85. std::vector<T> data;
  86. };
  87. struct common_sampler {
  88. common_params_sampling params;
  89. struct llama_sampler * grmr;
  90. struct llama_sampler * chain;
  91. ring_buffer<llama_token> prev;
  92. std::vector<llama_token_data> cur;
  93. llama_token_data_array cur_p;
  94. void set_logits(struct llama_context * ctx, int idx) {
  95. const auto * logits = llama_get_logits_ith(ctx, idx);
  96. const llama_model * model = llama_get_model(ctx);
  97. const llama_vocab * vocab = llama_model_get_vocab(model);
  98. const int n_vocab = llama_vocab_n_tokens(vocab);
  99. cur.resize(n_vocab);
  100. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  101. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  102. }
  103. cur_p = { cur.data(), cur.size(), -1, false };
  104. }
  105. };
  106. std::string common_params_sampling::print() const {
  107. char result[1024];
  108. snprintf(result, sizeof(result),
  109. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  110. "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
  111. "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
  112. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  113. penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
  114. dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
  115. top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
  116. mirostat, mirostat_eta, mirostat_tau);
  117. return std::string(result);
  118. }
  119. struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
  120. const llama_vocab * vocab = llama_model_get_vocab(model);
  121. llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
  122. lparams.no_perf = params.no_perf;
  123. struct llama_sampler * grmr;
  124. if (params.grammar.compare(0, 11, "%llguidance") == 0) {
  125. #ifdef LLAMA_USE_LLGUIDANCE
  126. grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
  127. #else
  128. GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
  129. #endif // LLAMA_USE_LLGUIDANCE
  130. } else {
  131. std::vector<std::string> patterns_at_start;
  132. std::vector<std::string> patterns_anywhere;
  133. std::vector<llama_token> trigger_tokens;
  134. for (const auto & trigger : params.grammar_triggers) {
  135. switch (trigger.type) {
  136. case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
  137. {
  138. const auto & word = trigger.value;
  139. patterns_anywhere.push_back(regex_escape(word));
  140. break;
  141. }
  142. case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
  143. case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
  144. {
  145. const auto & pattern = trigger.value;
  146. (trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
  147. break;
  148. }
  149. case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
  150. {
  151. const auto token = trigger.token;
  152. trigger_tokens.push_back(token);
  153. break;
  154. }
  155. default:
  156. GGML_ASSERT(false && "unknown trigger type");
  157. }
  158. }
  159. std::vector<std::string> trigger_patterns;
  160. if (!patterns_at_start.empty()) {
  161. trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
  162. }
  163. if (!patterns_anywhere.empty()) {
  164. trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
  165. }
  166. std::vector<const char *> trigger_patterns_c;
  167. trigger_patterns_c.reserve(trigger_patterns.size());
  168. for (const auto & regex : trigger_patterns) {
  169. trigger_patterns_c.push_back(regex.c_str());
  170. }
  171. grmr = params.grammar_lazy
  172. ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
  173. trigger_patterns_c.data(), trigger_patterns_c.size(),
  174. trigger_tokens.data(), trigger_tokens.size())
  175. : llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
  176. if (!grmr) {
  177. return nullptr;
  178. }
  179. }
  180. auto * result = new common_sampler {
  181. /* .params = */ params,
  182. /* .grmr = */ grmr,
  183. /* .chain = */ llama_sampler_chain_init(lparams),
  184. /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
  185. /* .cur = */ {},
  186. /* .cur_p = */ {},
  187. };
  188. llama_sampler_chain_add(result->chain,
  189. llama_sampler_init_logit_bias(
  190. llama_vocab_n_tokens(vocab),
  191. params.logit_bias.size(),
  192. params.logit_bias.data()));
  193. if (params.mirostat == 0) {
  194. for (const auto & cnstr : params.samplers) {
  195. switch (cnstr) {
  196. case COMMON_SAMPLER_TYPE_DRY:
  197. {
  198. std::vector<const char *> c_breakers;
  199. c_breakers.reserve(params.dry_sequence_breakers.size());
  200. for (const auto & str : params.dry_sequence_breakers) {
  201. c_breakers.push_back(str.c_str());
  202. }
  203. llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
  204. }
  205. break;
  206. case COMMON_SAMPLER_TYPE_TOP_K:
  207. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
  208. break;
  209. case COMMON_SAMPLER_TYPE_TOP_P:
  210. llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
  211. break;
  212. case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
  213. llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
  214. break;
  215. case COMMON_SAMPLER_TYPE_MIN_P:
  216. llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
  217. break;
  218. case COMMON_SAMPLER_TYPE_XTC:
  219. llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
  220. break;
  221. case COMMON_SAMPLER_TYPE_TYPICAL_P:
  222. llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
  223. break;
  224. case COMMON_SAMPLER_TYPE_TEMPERATURE:
  225. llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
  226. break;
  227. case COMMON_SAMPLER_TYPE_INFILL:
  228. llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
  229. break;
  230. case COMMON_SAMPLER_TYPE_PENALTIES:
  231. llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
  232. break;
  233. default:
  234. GGML_ASSERT(false && "unknown sampler type");
  235. }
  236. }
  237. llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
  238. } else if (params.mirostat == 1) {
  239. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  240. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
  241. } else if (params.mirostat == 2) {
  242. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  243. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
  244. } else {
  245. GGML_ASSERT(false && "unknown mirostat version");
  246. }
  247. return result;
  248. }
  249. void common_sampler_free(struct common_sampler * gsmpl) {
  250. if (gsmpl) {
  251. llama_sampler_free(gsmpl->grmr);
  252. llama_sampler_free(gsmpl->chain);
  253. delete gsmpl;
  254. }
  255. }
  256. void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
  257. if (accept_grammar) {
  258. llama_sampler_accept(gsmpl->grmr, token);
  259. }
  260. llama_sampler_accept(gsmpl->chain, token);
  261. gsmpl->prev.push_back(token);
  262. }
  263. void common_sampler_reset(struct common_sampler * gsmpl) {
  264. llama_sampler_reset(gsmpl->grmr);
  265. llama_sampler_reset(gsmpl->chain);
  266. }
  267. struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
  268. return new common_sampler {
  269. /* .params = */ gsmpl->params,
  270. /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
  271. /* .chain = */ llama_sampler_clone(gsmpl->chain),
  272. /* .prev = */ gsmpl->prev,
  273. /* .cur = */ gsmpl->cur,
  274. /* .cur_p = */ gsmpl->cur_p,
  275. };
  276. }
  277. void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
  278. // TODO: measure grammar performance
  279. if (gsmpl) {
  280. llama_perf_sampler_print(gsmpl->chain);
  281. }
  282. if (ctx) {
  283. llama_perf_context_print(ctx);
  284. }
  285. }
  286. llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
  287. gsmpl->set_logits(ctx, idx);
  288. auto & grmr = gsmpl->grmr;
  289. auto & chain = gsmpl->chain;
  290. auto & cur_p = gsmpl->cur_p; // initialized by set_logits
  291. if (grammar_first) {
  292. llama_sampler_apply(grmr, &cur_p);
  293. }
  294. llama_sampler_apply(chain, &cur_p);
  295. GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
  296. const llama_token id = cur_p.data[cur_p.selected].id;
  297. if (grammar_first) {
  298. return id;
  299. }
  300. // check if it the sampled token fits the grammar
  301. {
  302. llama_token_data single_token_data = { id, 1.0f, 0.0f };
  303. llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
  304. llama_sampler_apply(grmr, &single_token_data_array);
  305. const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  306. if (is_valid) {
  307. return id;
  308. }
  309. }
  310. // resampling:
  311. // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
  312. gsmpl->set_logits(ctx, idx);
  313. llama_sampler_apply(grmr, &cur_p);
  314. llama_sampler_apply(chain, &cur_p);
  315. GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
  316. return cur_p.data[cur_p.selected].id;
  317. }
  318. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
  319. GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
  320. std::vector<llama_token> result;
  321. result.reserve(idxs.size());
  322. size_t i = 0;
  323. for (; i < draft.size(); i++) {
  324. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  325. common_sampler_accept(gsmpl, id, true);
  326. result.push_back(id);
  327. if (draft[i] != id) {
  328. break;
  329. }
  330. }
  331. if (i == draft.size()) {
  332. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  333. common_sampler_accept(gsmpl, id, true);
  334. result.push_back(id);
  335. }
  336. return result;
  337. }
  338. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
  339. std::vector<int> idxs(draft.size() + 1);
  340. for (size_t i = 0; i < idxs.size(); ++i) {
  341. idxs[i] = i;
  342. }
  343. return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
  344. }
  345. uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
  346. return llama_sampler_get_seed(gsmpl->chain);
  347. }
  348. // helpers
  349. llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
  350. return &gsmpl->cur_p;
  351. }
  352. llama_token common_sampler_last(const struct common_sampler * gsmpl) {
  353. return gsmpl->prev.rat(0);
  354. }
  355. std::string common_sampler_print(const struct common_sampler * gsmpl) {
  356. std::string result = "logits ";
  357. for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
  358. const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
  359. result += std::string("-> ") + llama_sampler_name(smpl) + " ";
  360. }
  361. return result;
  362. }
  363. std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
  364. n = std::min(n, (int) gsmpl->prev.size());
  365. if (n <= 0) {
  366. return "";
  367. }
  368. std::string result;
  369. result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
  370. for (int i = n - 1; i >= 0; i--) {
  371. const llama_token id = gsmpl->prev.rat(i);
  372. GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
  373. result += common_token_to_piece(ctx_main, id);
  374. }
  375. return result;
  376. }
  377. char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
  378. switch (cnstr) {
  379. case COMMON_SAMPLER_TYPE_DRY: return 'd';
  380. case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
  381. case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
  382. case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
  383. case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
  384. case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
  385. case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
  386. case COMMON_SAMPLER_TYPE_XTC: return 'x';
  387. case COMMON_SAMPLER_TYPE_INFILL: return 'i';
  388. case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
  389. default : return '?';
  390. }
  391. }
  392. std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
  393. switch (cnstr) {
  394. case COMMON_SAMPLER_TYPE_DRY: return "dry";
  395. case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
  396. case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
  397. case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
  398. case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
  399. case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
  400. case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
  401. case COMMON_SAMPLER_TYPE_XTC: return "xtc";
  402. case COMMON_SAMPLER_TYPE_INFILL: return "infill";
  403. case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
  404. default : return "";
  405. }
  406. }
  407. std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  408. std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
  409. { "dry", COMMON_SAMPLER_TYPE_DRY },
  410. { "top_k", COMMON_SAMPLER_TYPE_TOP_K },
  411. { "top_p", COMMON_SAMPLER_TYPE_TOP_P },
  412. { "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
  413. { "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  414. { "min_p", COMMON_SAMPLER_TYPE_MIN_P },
  415. { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
  416. { "xtc", COMMON_SAMPLER_TYPE_XTC },
  417. { "infill", COMMON_SAMPLER_TYPE_INFILL },
  418. { "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
  419. };
  420. // since samplers names are written multiple ways
  421. // make it ready for both system names and input names
  422. std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
  423. { "top-k", COMMON_SAMPLER_TYPE_TOP_K },
  424. { "top-p", COMMON_SAMPLER_TYPE_TOP_P },
  425. { "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
  426. { "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
  427. { "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  428. { "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
  429. { "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  430. { "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
  431. { "min-p", COMMON_SAMPLER_TYPE_MIN_P },
  432. { "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
  433. };
  434. std::vector<common_sampler_type> samplers;
  435. samplers.reserve(names.size());
  436. for (const auto & name : names) {
  437. auto sampler = sampler_canonical_name_map.find(name);
  438. if (sampler != sampler_canonical_name_map.end()) {
  439. samplers.push_back(sampler->second);
  440. continue;
  441. }
  442. if (allow_alt_names) {
  443. sampler = sampler_alt_name_map.find(name);
  444. if (sampler != sampler_alt_name_map.end()) {
  445. samplers.push_back(sampler->second);
  446. continue;
  447. }
  448. }
  449. LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
  450. }
  451. return samplers;
  452. }
  453. std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
  454. std::unordered_map<char, common_sampler_type> sampler_name_map = {
  455. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
  456. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
  457. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
  458. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
  459. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
  460. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
  461. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
  462. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
  463. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
  464. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
  465. };
  466. std::vector<common_sampler_type> samplers;
  467. samplers.reserve(chars.size());
  468. for (const auto & c : chars) {
  469. const auto sampler = sampler_name_map.find(c);
  470. if (sampler != sampler_name_map.end()) {
  471. samplers.push_back(sampler->second);
  472. } else {
  473. LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
  474. }
  475. }
  476. return samplers;
  477. }