ggml.h 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGML_ROPE_TYPE_MROPE 8
  229. #define GGML_ROPE_TYPE_VISION 24
  230. #define GGML_UNUSED(x) (void)(x)
  231. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  232. #ifndef NDEBUG
  233. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  234. #elif defined(__GNUC__)
  235. # define GGML_UNREACHABLE() __builtin_unreachable()
  236. #elif defined(_MSC_VER)
  237. # define GGML_UNREACHABLE() __assume(0)
  238. #else
  239. # define GGML_UNREACHABLE() ((void) 0)
  240. #endif
  241. #ifdef __cplusplus
  242. # define GGML_NORETURN [[noreturn]]
  243. #elif defined(_MSC_VER)
  244. # define GGML_NORETURN __declspec(noreturn)
  245. #else
  246. # define GGML_NORETURN _Noreturn
  247. #endif
  248. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  249. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  250. // used to copy the number of elements and stride in bytes of tensors into local variables.
  251. // main purpose is to reduce code duplication and improve readability.
  252. //
  253. // example:
  254. //
  255. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  256. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  257. //
  258. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  259. const type prefix##0 = (pointer)->array[0]; \
  260. GGML_UNUSED(prefix##0);
  261. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  262. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  263. const type prefix##1 = (pointer)->array[1]; \
  264. GGML_UNUSED(prefix##1);
  265. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  266. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  267. const type prefix##2 = (pointer)->array[2]; \
  268. GGML_UNUSED(prefix##2);
  269. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  271. const type prefix##3 = (pointer)->array[3]; \
  272. GGML_UNUSED(prefix##3);
  273. #define GGML_TENSOR_UNARY_OP_LOCALS \
  274. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  275. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  276. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  277. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  278. #define GGML_TENSOR_BINARY_OP_LOCALS \
  279. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  280. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  281. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  282. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  283. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  285. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  286. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  287. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  288. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  290. #ifdef __cplusplus
  291. extern "C" {
  292. #endif
  293. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  294. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  295. enum ggml_status {
  296. GGML_STATUS_ALLOC_FAILED = -2,
  297. GGML_STATUS_FAILED = -1,
  298. GGML_STATUS_SUCCESS = 0,
  299. GGML_STATUS_ABORTED = 1,
  300. };
  301. // get ggml_status name string
  302. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  303. // ieee 754-2008 half-precision float16
  304. // todo: make this not an integral type
  305. typedef uint16_t ggml_fp16_t;
  306. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  307. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  308. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  309. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  310. // google brain half-precision bfloat16
  311. typedef struct { uint16_t bits; } ggml_bf16_t;
  312. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  313. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  314. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  315. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  316. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  317. struct ggml_object;
  318. struct ggml_context;
  319. struct ggml_cgraph;
  320. // NOTE: always add types at the end of the enum to keep backward compatibility
  321. enum ggml_type {
  322. GGML_TYPE_F32 = 0,
  323. GGML_TYPE_F16 = 1,
  324. GGML_TYPE_Q4_0 = 2,
  325. GGML_TYPE_Q4_1 = 3,
  326. // GGML_TYPE_Q4_2 = 4, support has been removed
  327. // GGML_TYPE_Q4_3 = 5, support has been removed
  328. GGML_TYPE_Q5_0 = 6,
  329. GGML_TYPE_Q5_1 = 7,
  330. GGML_TYPE_Q8_0 = 8,
  331. GGML_TYPE_Q8_1 = 9,
  332. GGML_TYPE_Q2_K = 10,
  333. GGML_TYPE_Q3_K = 11,
  334. GGML_TYPE_Q4_K = 12,
  335. GGML_TYPE_Q5_K = 13,
  336. GGML_TYPE_Q6_K = 14,
  337. GGML_TYPE_Q8_K = 15,
  338. GGML_TYPE_IQ2_XXS = 16,
  339. GGML_TYPE_IQ2_XS = 17,
  340. GGML_TYPE_IQ3_XXS = 18,
  341. GGML_TYPE_IQ1_S = 19,
  342. GGML_TYPE_IQ4_NL = 20,
  343. GGML_TYPE_IQ3_S = 21,
  344. GGML_TYPE_IQ2_S = 22,
  345. GGML_TYPE_IQ4_XS = 23,
  346. GGML_TYPE_I8 = 24,
  347. GGML_TYPE_I16 = 25,
  348. GGML_TYPE_I32 = 26,
  349. GGML_TYPE_I64 = 27,
  350. GGML_TYPE_F64 = 28,
  351. GGML_TYPE_IQ1_M = 29,
  352. GGML_TYPE_BF16 = 30,
  353. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  354. // GGML_TYPE_Q4_0_4_8 = 32,
  355. // GGML_TYPE_Q4_0_8_8 = 33,
  356. GGML_TYPE_TQ1_0 = 34,
  357. GGML_TYPE_TQ2_0 = 35,
  358. // GGML_TYPE_IQ4_NL_4_4 = 36,
  359. // GGML_TYPE_IQ4_NL_4_8 = 37,
  360. // GGML_TYPE_IQ4_NL_8_8 = 38,
  361. GGML_TYPE_COUNT = 39,
  362. };
  363. // precision
  364. enum ggml_prec {
  365. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  366. GGML_PREC_F32 = 10,
  367. };
  368. // model file types
  369. enum ggml_ftype {
  370. GGML_FTYPE_UNKNOWN = -1,
  371. GGML_FTYPE_ALL_F32 = 0,
  372. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  373. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  374. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  375. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  376. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  378. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  379. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  394. };
  395. // available tensor operations:
  396. enum ggml_op {
  397. GGML_OP_NONE = 0,
  398. GGML_OP_DUP,
  399. GGML_OP_ADD,
  400. GGML_OP_ADD1,
  401. GGML_OP_ACC,
  402. GGML_OP_SUB,
  403. GGML_OP_MUL,
  404. GGML_OP_DIV,
  405. GGML_OP_SQR,
  406. GGML_OP_SQRT,
  407. GGML_OP_LOG,
  408. GGML_OP_SIN,
  409. GGML_OP_COS,
  410. GGML_OP_SUM,
  411. GGML_OP_SUM_ROWS,
  412. GGML_OP_MEAN,
  413. GGML_OP_ARGMAX,
  414. GGML_OP_COUNT_EQUAL,
  415. GGML_OP_REPEAT,
  416. GGML_OP_REPEAT_BACK,
  417. GGML_OP_CONCAT,
  418. GGML_OP_SILU_BACK,
  419. GGML_OP_NORM, // normalize
  420. GGML_OP_RMS_NORM,
  421. GGML_OP_RMS_NORM_BACK,
  422. GGML_OP_GROUP_NORM,
  423. GGML_OP_L2_NORM,
  424. GGML_OP_MUL_MAT,
  425. GGML_OP_MUL_MAT_ID,
  426. GGML_OP_OUT_PROD,
  427. GGML_OP_SCALE,
  428. GGML_OP_SET,
  429. GGML_OP_CPY,
  430. GGML_OP_CONT,
  431. GGML_OP_RESHAPE,
  432. GGML_OP_VIEW,
  433. GGML_OP_PERMUTE,
  434. GGML_OP_TRANSPOSE,
  435. GGML_OP_GET_ROWS,
  436. GGML_OP_GET_ROWS_BACK,
  437. GGML_OP_DIAG,
  438. GGML_OP_DIAG_MASK_INF,
  439. GGML_OP_DIAG_MASK_ZERO,
  440. GGML_OP_SOFT_MAX,
  441. GGML_OP_SOFT_MAX_BACK,
  442. GGML_OP_ROPE,
  443. GGML_OP_ROPE_BACK,
  444. GGML_OP_CLAMP,
  445. GGML_OP_CONV_TRANSPOSE_1D,
  446. GGML_OP_IM2COL,
  447. GGML_OP_IM2COL_BACK,
  448. GGML_OP_CONV_2D_DW,
  449. GGML_OP_CONV_TRANSPOSE_2D,
  450. GGML_OP_POOL_1D,
  451. GGML_OP_POOL_2D,
  452. GGML_OP_POOL_2D_BACK,
  453. GGML_OP_UPSCALE, // nearest interpolate
  454. GGML_OP_PAD,
  455. GGML_OP_PAD_REFLECT_1D,
  456. GGML_OP_ARANGE,
  457. GGML_OP_TIMESTEP_EMBEDDING,
  458. GGML_OP_ARGSORT,
  459. GGML_OP_LEAKY_RELU,
  460. GGML_OP_FLASH_ATTN_EXT,
  461. GGML_OP_FLASH_ATTN_BACK,
  462. GGML_OP_SSM_CONV,
  463. GGML_OP_SSM_SCAN,
  464. GGML_OP_WIN_PART,
  465. GGML_OP_WIN_UNPART,
  466. GGML_OP_GET_REL_POS,
  467. GGML_OP_ADD_REL_POS,
  468. GGML_OP_RWKV_WKV6,
  469. GGML_OP_GATED_LINEAR_ATTN,
  470. GGML_OP_RWKV_WKV7,
  471. GGML_OP_UNARY,
  472. GGML_OP_MAP_CUSTOM1,
  473. GGML_OP_MAP_CUSTOM2,
  474. GGML_OP_MAP_CUSTOM3,
  475. GGML_OP_CUSTOM,
  476. GGML_OP_CROSS_ENTROPY_LOSS,
  477. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  478. GGML_OP_OPT_STEP_ADAMW,
  479. GGML_OP_COUNT,
  480. };
  481. enum ggml_unary_op {
  482. GGML_UNARY_OP_ABS,
  483. GGML_UNARY_OP_SGN,
  484. GGML_UNARY_OP_NEG,
  485. GGML_UNARY_OP_STEP,
  486. GGML_UNARY_OP_TANH,
  487. GGML_UNARY_OP_ELU,
  488. GGML_UNARY_OP_RELU,
  489. GGML_UNARY_OP_SIGMOID,
  490. GGML_UNARY_OP_GELU,
  491. GGML_UNARY_OP_GELU_QUICK,
  492. GGML_UNARY_OP_SILU,
  493. GGML_UNARY_OP_HARDSWISH,
  494. GGML_UNARY_OP_HARDSIGMOID,
  495. GGML_UNARY_OP_EXP,
  496. GGML_UNARY_OP_COUNT,
  497. };
  498. enum ggml_object_type {
  499. GGML_OBJECT_TYPE_TENSOR,
  500. GGML_OBJECT_TYPE_GRAPH,
  501. GGML_OBJECT_TYPE_WORK_BUFFER
  502. };
  503. enum ggml_log_level {
  504. GGML_LOG_LEVEL_NONE = 0,
  505. GGML_LOG_LEVEL_DEBUG = 1,
  506. GGML_LOG_LEVEL_INFO = 2,
  507. GGML_LOG_LEVEL_WARN = 3,
  508. GGML_LOG_LEVEL_ERROR = 4,
  509. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  510. };
  511. // this tensor...
  512. enum ggml_tensor_flag {
  513. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  514. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  515. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  516. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  517. };
  518. struct ggml_init_params {
  519. // memory pool
  520. size_t mem_size; // bytes
  521. void * mem_buffer; // if NULL, memory will be allocated internally
  522. bool no_alloc; // don't allocate memory for the tensor data
  523. };
  524. // n-dimensional tensor
  525. struct ggml_tensor {
  526. enum ggml_type type;
  527. struct ggml_backend_buffer * buffer;
  528. int64_t ne[GGML_MAX_DIMS]; // number of elements
  529. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  530. // nb[0] = ggml_type_size(type)
  531. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  532. // nb[i] = nb[i-1] * ne[i-1]
  533. // compute data
  534. enum ggml_op op;
  535. // op params - allocated as int32_t for alignment
  536. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  537. int32_t flags;
  538. struct ggml_tensor * src[GGML_MAX_SRC];
  539. // source tensor and offset for views
  540. struct ggml_tensor * view_src;
  541. size_t view_offs;
  542. void * data;
  543. char name[GGML_MAX_NAME];
  544. void * extra; // extra things e.g. for ggml-cuda.cu
  545. char padding[8];
  546. };
  547. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  548. // Abort callback
  549. // If not NULL, called before ggml computation
  550. // If it returns true, the computation is aborted
  551. typedef bool (*ggml_abort_callback)(void * data);
  552. //
  553. // GUID
  554. //
  555. // GUID types
  556. typedef uint8_t ggml_guid[16];
  557. typedef ggml_guid * ggml_guid_t;
  558. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  559. // misc
  560. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  561. GGML_API int64_t ggml_time_ms(void);
  562. GGML_API int64_t ggml_time_us(void);
  563. GGML_API int64_t ggml_cycles(void);
  564. GGML_API int64_t ggml_cycles_per_ms(void);
  565. // accepts a UTF-8 path, even on Windows
  566. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  567. GGML_API void ggml_print_object (const struct ggml_object * obj);
  568. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  569. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  570. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  571. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  572. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  573. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  574. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  575. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  576. GGML_DEPRECATED(
  577. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  578. "use ggml_row_size() instead");
  579. GGML_API const char * ggml_type_name(enum ggml_type type);
  580. GGML_API const char * ggml_op_name (enum ggml_op op);
  581. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  582. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  583. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  584. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  585. GGML_API bool ggml_is_quantized(enum ggml_type type);
  586. // TODO: temporary until model loading of ggml examples is refactored
  587. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  588. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  589. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  590. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  591. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  592. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  593. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  594. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  595. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  596. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  597. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  598. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  599. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  600. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  601. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  602. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  603. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  604. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  605. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  606. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  607. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  608. // use this to compute the memory overhead of a tensor
  609. GGML_API size_t ggml_tensor_overhead(void);
  610. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  611. // main
  612. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  613. GGML_API void ggml_reset(struct ggml_context * ctx);
  614. GGML_API void ggml_free (struct ggml_context * ctx);
  615. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  616. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  617. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  618. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  619. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  620. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  621. GGML_API struct ggml_tensor * ggml_new_tensor(
  622. struct ggml_context * ctx,
  623. enum ggml_type type,
  624. int n_dims,
  625. const int64_t *ne);
  626. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  627. struct ggml_context * ctx,
  628. enum ggml_type type,
  629. int64_t ne0);
  630. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  631. struct ggml_context * ctx,
  632. enum ggml_type type,
  633. int64_t ne0,
  634. int64_t ne1);
  635. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  636. struct ggml_context * ctx,
  637. enum ggml_type type,
  638. int64_t ne0,
  639. int64_t ne1,
  640. int64_t ne2);
  641. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  642. struct ggml_context * ctx,
  643. enum ggml_type type,
  644. int64_t ne0,
  645. int64_t ne1,
  646. int64_t ne2,
  647. int64_t ne3);
  648. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  649. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  650. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  651. // Context tensor enumeration and lookup
  652. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  653. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  654. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  655. // Converts a flat index into coordinates
  656. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  657. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  658. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  659. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  660. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  661. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  662. GGML_ATTRIBUTE_FORMAT(2, 3)
  663. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  664. // Tensor flags
  665. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  666. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  667. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  668. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  669. //
  670. // operations on tensors with backpropagation
  671. //
  672. GGML_API struct ggml_tensor * ggml_dup(
  673. struct ggml_context * ctx,
  674. struct ggml_tensor * a);
  675. // in-place, returns view(a)
  676. GGML_API struct ggml_tensor * ggml_dup_inplace(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a);
  679. GGML_API struct ggml_tensor * ggml_add(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a,
  682. struct ggml_tensor * b);
  683. GGML_API struct ggml_tensor * ggml_add_inplace(
  684. struct ggml_context * ctx,
  685. struct ggml_tensor * a,
  686. struct ggml_tensor * b);
  687. GGML_API struct ggml_tensor * ggml_add_cast(
  688. struct ggml_context * ctx,
  689. struct ggml_tensor * a,
  690. struct ggml_tensor * b,
  691. enum ggml_type type);
  692. GGML_API struct ggml_tensor * ggml_add1(
  693. struct ggml_context * ctx,
  694. struct ggml_tensor * a,
  695. struct ggml_tensor * b);
  696. GGML_API struct ggml_tensor * ggml_add1_inplace(
  697. struct ggml_context * ctx,
  698. struct ggml_tensor * a,
  699. struct ggml_tensor * b);
  700. // dst = a
  701. // view(dst, nb1, nb2, nb3, offset) += b
  702. // return dst
  703. GGML_API struct ggml_tensor * ggml_acc(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a,
  706. struct ggml_tensor * b,
  707. size_t nb1,
  708. size_t nb2,
  709. size_t nb3,
  710. size_t offset);
  711. GGML_API struct ggml_tensor * ggml_acc_inplace(
  712. struct ggml_context * ctx,
  713. struct ggml_tensor * a,
  714. struct ggml_tensor * b,
  715. size_t nb1,
  716. size_t nb2,
  717. size_t nb3,
  718. size_t offset);
  719. GGML_API struct ggml_tensor * ggml_sub(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a,
  722. struct ggml_tensor * b);
  723. GGML_API struct ggml_tensor * ggml_sub_inplace(
  724. struct ggml_context * ctx,
  725. struct ggml_tensor * a,
  726. struct ggml_tensor * b);
  727. GGML_API struct ggml_tensor * ggml_mul(
  728. struct ggml_context * ctx,
  729. struct ggml_tensor * a,
  730. struct ggml_tensor * b);
  731. GGML_API struct ggml_tensor * ggml_mul_inplace(
  732. struct ggml_context * ctx,
  733. struct ggml_tensor * a,
  734. struct ggml_tensor * b);
  735. GGML_API struct ggml_tensor * ggml_div(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. GGML_API struct ggml_tensor * ggml_div_inplace(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b);
  743. GGML_API struct ggml_tensor * ggml_sqr(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a);
  746. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a);
  749. GGML_API struct ggml_tensor * ggml_sqrt(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a);
  755. GGML_API struct ggml_tensor * ggml_log(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a);
  758. GGML_API struct ggml_tensor * ggml_log_inplace(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. GGML_API struct ggml_tensor * ggml_sin(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a);
  764. GGML_API struct ggml_tensor * ggml_sin_inplace(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a);
  767. GGML_API struct ggml_tensor * ggml_cos(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a);
  770. GGML_API struct ggml_tensor * ggml_cos_inplace(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a);
  773. // return scalar
  774. GGML_API struct ggml_tensor * ggml_sum(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a);
  777. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  778. GGML_API struct ggml_tensor * ggml_sum_rows(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a);
  781. // mean along rows
  782. GGML_API struct ggml_tensor * ggml_mean(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a);
  785. // argmax along rows
  786. GGML_API struct ggml_tensor * ggml_argmax(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a);
  789. // count number of equal elements in a and b
  790. GGML_API struct ggml_tensor * ggml_count_equal(
  791. struct ggml_context * ctx,
  792. struct ggml_tensor * a,
  793. struct ggml_tensor * b);
  794. // if a is the same shape as b, and a is not parameter, return a
  795. // otherwise, return a new tensor: repeat(a) to fit in b
  796. GGML_API struct ggml_tensor * ggml_repeat(
  797. struct ggml_context * ctx,
  798. struct ggml_tensor * a,
  799. struct ggml_tensor * b);
  800. // sums repetitions in a into shape of b
  801. GGML_API struct ggml_tensor * ggml_repeat_back(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a,
  804. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  805. // concat a and b along dim
  806. // used in stable-diffusion
  807. GGML_API struct ggml_tensor * ggml_concat(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a,
  810. struct ggml_tensor * b,
  811. int dim);
  812. GGML_API struct ggml_tensor * ggml_abs(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a);
  815. GGML_API struct ggml_tensor * ggml_abs_inplace(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a);
  818. GGML_API struct ggml_tensor * ggml_sgn(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a);
  821. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a);
  824. GGML_API struct ggml_tensor * ggml_neg(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a);
  827. GGML_API struct ggml_tensor * ggml_neg_inplace(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a);
  830. GGML_API struct ggml_tensor * ggml_step(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. GGML_API struct ggml_tensor * ggml_step_inplace(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a);
  836. GGML_API struct ggml_tensor * ggml_tanh(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a);
  839. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a);
  842. GGML_API struct ggml_tensor * ggml_elu(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. GGML_API struct ggml_tensor * ggml_elu_inplace(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a);
  848. GGML_API struct ggml_tensor * ggml_relu(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a);
  851. GGML_API struct ggml_tensor * ggml_leaky_relu(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a, float negative_slope, bool inplace);
  854. GGML_API struct ggml_tensor * ggml_relu_inplace(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a);
  857. GGML_API struct ggml_tensor * ggml_sigmoid(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a);
  860. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a);
  863. GGML_API struct ggml_tensor * ggml_gelu(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a);
  866. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a);
  869. GGML_API struct ggml_tensor * ggml_gelu_quick(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a);
  872. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a);
  875. GGML_API struct ggml_tensor * ggml_silu(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_silu_inplace(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. // a - x
  882. // b - dy
  883. GGML_API struct ggml_tensor * ggml_silu_back(
  884. struct ggml_context * ctx,
  885. struct ggml_tensor * a,
  886. struct ggml_tensor * b);
  887. // hardswish(x) = x * relu6(x + 3) / 6
  888. GGML_API struct ggml_tensor * ggml_hardswish(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a);
  891. // hardsigmoid(x) = relu6(x + 3) / 6
  892. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  893. struct ggml_context * ctx,
  894. struct ggml_tensor * a);
  895. GGML_API struct ggml_tensor * ggml_exp(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a);
  898. GGML_API struct ggml_tensor * ggml_exp_inplace(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a);
  901. // normalize along rows
  902. GGML_API struct ggml_tensor * ggml_norm(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a,
  905. float eps);
  906. GGML_API struct ggml_tensor * ggml_norm_inplace(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a,
  909. float eps);
  910. GGML_API struct ggml_tensor * ggml_rms_norm(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a,
  913. float eps);
  914. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a,
  917. float eps);
  918. // group normalize along ne0*ne1*n_groups
  919. // used in stable-diffusion
  920. GGML_API struct ggml_tensor * ggml_group_norm(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a,
  923. int n_groups,
  924. float eps);
  925. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  926. struct ggml_context * ctx,
  927. struct ggml_tensor * a,
  928. int n_groups,
  929. float eps);
  930. // l2 normalize along rows
  931. // used in rwkv v7
  932. GGML_API struct ggml_tensor * ggml_l2_norm(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a,
  935. float eps);
  936. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. float eps);
  940. // a - x
  941. // b - dy
  942. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a,
  945. struct ggml_tensor * b,
  946. float eps);
  947. // A: k columns, n rows => [ne03, ne02, n, k]
  948. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  949. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  950. GGML_API struct ggml_tensor * ggml_mul_mat(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. struct ggml_tensor * b);
  954. // change the precision of a matrix multiplication
  955. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  956. GGML_API void ggml_mul_mat_set_prec(
  957. struct ggml_tensor * a,
  958. enum ggml_prec prec);
  959. // indirect matrix multiplication
  960. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * as,
  963. struct ggml_tensor * b,
  964. struct ggml_tensor * ids);
  965. // A: m columns, n rows,
  966. // B: p columns, n rows,
  967. // result is m columns, p rows
  968. GGML_API struct ggml_tensor * ggml_out_prod(
  969. struct ggml_context * ctx,
  970. struct ggml_tensor * a,
  971. struct ggml_tensor * b);
  972. //
  973. // operations on tensors without backpropagation
  974. //
  975. GGML_API struct ggml_tensor * ggml_scale(
  976. struct ggml_context * ctx,
  977. struct ggml_tensor * a,
  978. float s);
  979. // in-place, returns view(a)
  980. GGML_API struct ggml_tensor * ggml_scale_inplace(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. float s);
  984. // b -> view(a,offset,nb1,nb2,3), return modified a
  985. GGML_API struct ggml_tensor * ggml_set(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a,
  988. struct ggml_tensor * b,
  989. size_t nb1,
  990. size_t nb2,
  991. size_t nb3,
  992. size_t offset); // in bytes
  993. // b -> view(a,offset,nb1,nb2,3), return view(a)
  994. GGML_API struct ggml_tensor * ggml_set_inplace(
  995. struct ggml_context * ctx,
  996. struct ggml_tensor * a,
  997. struct ggml_tensor * b,
  998. size_t nb1,
  999. size_t nb2,
  1000. size_t nb3,
  1001. size_t offset); // in bytes
  1002. GGML_API struct ggml_tensor * ggml_set_1d(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a,
  1005. struct ggml_tensor * b,
  1006. size_t offset); // in bytes
  1007. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1008. struct ggml_context * ctx,
  1009. struct ggml_tensor * a,
  1010. struct ggml_tensor * b,
  1011. size_t offset); // in bytes
  1012. // b -> view(a,offset,nb1,nb2,3), return modified a
  1013. GGML_API struct ggml_tensor * ggml_set_2d(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. struct ggml_tensor * b,
  1017. size_t nb1,
  1018. size_t offset); // in bytes
  1019. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1020. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1021. struct ggml_context * ctx,
  1022. struct ggml_tensor * a,
  1023. struct ggml_tensor * b,
  1024. size_t nb1,
  1025. size_t offset); // in bytes
  1026. // a -> b, return view(b)
  1027. GGML_API struct ggml_tensor * ggml_cpy(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * a,
  1030. struct ggml_tensor * b);
  1031. GGML_API struct ggml_tensor * ggml_cast(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a,
  1034. enum ggml_type type);
  1035. // make contiguous
  1036. GGML_API struct ggml_tensor * ggml_cont(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a);
  1039. // make contiguous, with new shape
  1040. GGML_API struct ggml_tensor * ggml_cont_1d(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. int64_t ne0);
  1044. GGML_API struct ggml_tensor * ggml_cont_2d(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. int64_t ne0,
  1048. int64_t ne1);
  1049. GGML_API struct ggml_tensor * ggml_cont_3d(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. int64_t ne0,
  1053. int64_t ne1,
  1054. int64_t ne2);
  1055. GGML_API struct ggml_tensor * ggml_cont_4d(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a,
  1058. int64_t ne0,
  1059. int64_t ne1,
  1060. int64_t ne2,
  1061. int64_t ne3);
  1062. // return view(a), b specifies the new shape
  1063. // TODO: when we start computing gradient, make a copy instead of view
  1064. GGML_API struct ggml_tensor * ggml_reshape(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a,
  1067. struct ggml_tensor * b);
  1068. // return view(a)
  1069. // TODO: when we start computing gradient, make a copy instead of view
  1070. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a,
  1073. int64_t ne0);
  1074. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1075. struct ggml_context * ctx,
  1076. struct ggml_tensor * a,
  1077. int64_t ne0,
  1078. int64_t ne1);
  1079. // return view(a)
  1080. // TODO: when we start computing gradient, make a copy instead of view
  1081. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. int64_t ne0,
  1085. int64_t ne1,
  1086. int64_t ne2);
  1087. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * a,
  1090. int64_t ne0,
  1091. int64_t ne1,
  1092. int64_t ne2,
  1093. int64_t ne3);
  1094. // offset in bytes
  1095. GGML_API struct ggml_tensor * ggml_view_1d(
  1096. struct ggml_context * ctx,
  1097. struct ggml_tensor * a,
  1098. int64_t ne0,
  1099. size_t offset);
  1100. GGML_API struct ggml_tensor * ggml_view_2d(
  1101. struct ggml_context * ctx,
  1102. struct ggml_tensor * a,
  1103. int64_t ne0,
  1104. int64_t ne1,
  1105. size_t nb1, // row stride in bytes
  1106. size_t offset);
  1107. GGML_API struct ggml_tensor * ggml_view_3d(
  1108. struct ggml_context * ctx,
  1109. struct ggml_tensor * a,
  1110. int64_t ne0,
  1111. int64_t ne1,
  1112. int64_t ne2,
  1113. size_t nb1, // row stride in bytes
  1114. size_t nb2, // slice stride in bytes
  1115. size_t offset);
  1116. GGML_API struct ggml_tensor * ggml_view_4d(
  1117. struct ggml_context * ctx,
  1118. struct ggml_tensor * a,
  1119. int64_t ne0,
  1120. int64_t ne1,
  1121. int64_t ne2,
  1122. int64_t ne3,
  1123. size_t nb1, // row stride in bytes
  1124. size_t nb2, // slice stride in bytes
  1125. size_t nb3,
  1126. size_t offset);
  1127. GGML_API struct ggml_tensor * ggml_permute(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. int axis0,
  1131. int axis1,
  1132. int axis2,
  1133. int axis3);
  1134. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1135. GGML_API struct ggml_tensor * ggml_transpose(
  1136. struct ggml_context * ctx,
  1137. struct ggml_tensor * a);
  1138. // supports 3D: a->ne[2] == b->ne[1]
  1139. GGML_API struct ggml_tensor * ggml_get_rows(
  1140. struct ggml_context * ctx,
  1141. struct ggml_tensor * a, // data
  1142. struct ggml_tensor * b); // row indices
  1143. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1144. struct ggml_context * ctx,
  1145. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1146. struct ggml_tensor * b, // row indices
  1147. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1148. GGML_API struct ggml_tensor * ggml_diag(
  1149. struct ggml_context * ctx,
  1150. struct ggml_tensor * a);
  1151. // set elements above the diagonal to -INF
  1152. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1153. struct ggml_context * ctx,
  1154. struct ggml_tensor * a,
  1155. int n_past);
  1156. // in-place, returns view(a)
  1157. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1158. struct ggml_context * ctx,
  1159. struct ggml_tensor * a,
  1160. int n_past);
  1161. // set elements above the diagonal to 0
  1162. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1163. struct ggml_context * ctx,
  1164. struct ggml_tensor * a,
  1165. int n_past);
  1166. // in-place, returns view(a)
  1167. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. int n_past);
  1171. GGML_API struct ggml_tensor * ggml_soft_max(
  1172. struct ggml_context * ctx,
  1173. struct ggml_tensor * a);
  1174. // in-place, returns view(a)
  1175. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1176. struct ggml_context * ctx,
  1177. struct ggml_tensor * a);
  1178. // fused soft_max(a*scale + mask*(ALiBi slope))
  1179. // mask is optional
  1180. // max_bias = 0.0f for no ALiBi
  1181. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * mask,
  1185. float scale,
  1186. float max_bias);
  1187. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1188. struct ggml_context * ctx,
  1189. struct ggml_tensor * a,
  1190. struct ggml_tensor * b,
  1191. float scale,
  1192. float max_bias);
  1193. // in-place, returns view(a)
  1194. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1195. struct ggml_context * ctx,
  1196. struct ggml_tensor * a,
  1197. struct ggml_tensor * b,
  1198. float scale,
  1199. float max_bias);
  1200. // rotary position embedding
  1201. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1202. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1203. //
  1204. // b is an int32 vector with size a->ne[2], it contains the positions
  1205. GGML_API struct ggml_tensor * ggml_rope(
  1206. struct ggml_context * ctx,
  1207. struct ggml_tensor * a,
  1208. struct ggml_tensor * b,
  1209. int n_dims,
  1210. int mode);
  1211. // in-place, returns view(a)
  1212. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1213. struct ggml_context * ctx,
  1214. struct ggml_tensor * a,
  1215. struct ggml_tensor * b,
  1216. int n_dims,
  1217. int mode);
  1218. // custom RoPE
  1219. // c is freq factors (e.g. phi3-128k), (optional)
  1220. GGML_API struct ggml_tensor * ggml_rope_ext(
  1221. struct ggml_context * ctx,
  1222. struct ggml_tensor * a,
  1223. struct ggml_tensor * b,
  1224. struct ggml_tensor * c,
  1225. int n_dims,
  1226. int mode,
  1227. int n_ctx_orig,
  1228. float freq_base,
  1229. float freq_scale,
  1230. float ext_factor,
  1231. float attn_factor,
  1232. float beta_fast,
  1233. float beta_slow);
  1234. GGML_API struct ggml_tensor * ggml_rope_multi(
  1235. struct ggml_context * ctx,
  1236. struct ggml_tensor * a,
  1237. struct ggml_tensor * b,
  1238. struct ggml_tensor * c,
  1239. int n_dims,
  1240. int sections[4],
  1241. int mode,
  1242. int n_ctx_orig,
  1243. float freq_base,
  1244. float freq_scale,
  1245. float ext_factor,
  1246. float attn_factor,
  1247. float beta_fast,
  1248. float beta_slow);
  1249. // in-place, returns view(a)
  1250. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1251. struct ggml_context * ctx,
  1252. struct ggml_tensor * a,
  1253. struct ggml_tensor * b,
  1254. struct ggml_tensor * c,
  1255. int n_dims,
  1256. int mode,
  1257. int n_ctx_orig,
  1258. float freq_base,
  1259. float freq_scale,
  1260. float ext_factor,
  1261. float attn_factor,
  1262. float beta_fast,
  1263. float beta_slow);
  1264. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. struct ggml_tensor * b,
  1268. int n_dims,
  1269. int mode,
  1270. int n_ctx_orig,
  1271. float freq_base,
  1272. float freq_scale,
  1273. float ext_factor,
  1274. float attn_factor,
  1275. float beta_fast,
  1276. float beta_slow),
  1277. "use ggml_rope_ext instead");
  1278. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1279. struct ggml_context * ctx,
  1280. struct ggml_tensor * a,
  1281. struct ggml_tensor * b,
  1282. int n_dims,
  1283. int mode,
  1284. int n_ctx_orig,
  1285. float freq_base,
  1286. float freq_scale,
  1287. float ext_factor,
  1288. float attn_factor,
  1289. float beta_fast,
  1290. float beta_slow),
  1291. "use ggml_rope_ext_inplace instead");
  1292. // compute correction dims for YaRN RoPE scaling
  1293. GGML_API void ggml_rope_yarn_corr_dims(
  1294. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1295. // rotary position embedding backward, i.e compute dx from dy
  1296. // a - dy
  1297. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1298. struct ggml_context * ctx,
  1299. struct ggml_tensor * a, // gradients of ggml_rope result
  1300. struct ggml_tensor * b, // positions
  1301. struct ggml_tensor * c, // freq factors
  1302. int n_dims,
  1303. int mode,
  1304. int n_ctx_orig,
  1305. float freq_base,
  1306. float freq_scale,
  1307. float ext_factor,
  1308. float attn_factor,
  1309. float beta_fast,
  1310. float beta_slow);
  1311. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1312. struct ggml_context * ctx,
  1313. struct ggml_tensor * a,
  1314. struct ggml_tensor * b,
  1315. struct ggml_tensor * c,
  1316. int n_dims,
  1317. int sections[4],
  1318. int mode,
  1319. int n_ctx_orig,
  1320. float freq_base,
  1321. float freq_scale,
  1322. float ext_factor,
  1323. float attn_factor,
  1324. float beta_fast,
  1325. float beta_slow);
  1326. // clamp
  1327. // in-place, returns view(a)
  1328. GGML_API struct ggml_tensor * ggml_clamp(
  1329. struct ggml_context * ctx,
  1330. struct ggml_tensor * a,
  1331. float min,
  1332. float max);
  1333. // im2col
  1334. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1335. GGML_API struct ggml_tensor * ggml_im2col(
  1336. struct ggml_context * ctx,
  1337. struct ggml_tensor * a, // convolution kernel
  1338. struct ggml_tensor * b, // data
  1339. int s0, // stride dimension 0
  1340. int s1, // stride dimension 1
  1341. int p0, // padding dimension 0
  1342. int p1, // padding dimension 1
  1343. int d0, // dilation dimension 0
  1344. int d1, // dilation dimension 1
  1345. bool is_2D,
  1346. enum ggml_type dst_type);
  1347. GGML_API struct ggml_tensor * ggml_im2col_back(
  1348. struct ggml_context * ctx,
  1349. struct ggml_tensor * a, // convolution kernel
  1350. struct ggml_tensor * b, // gradient of im2col output
  1351. int64_t * ne, // shape of im2col input
  1352. int s0, // stride dimension 0
  1353. int s1, // stride dimension 1
  1354. int p0, // padding dimension 0
  1355. int p1, // padding dimension 1
  1356. int d0, // dilation dimension 0
  1357. int d1, // dilation dimension 1
  1358. bool is_2D);
  1359. GGML_API struct ggml_tensor * ggml_conv_1d(
  1360. struct ggml_context * ctx,
  1361. struct ggml_tensor * a, // convolution kernel
  1362. struct ggml_tensor * b, // data
  1363. int s0, // stride
  1364. int p0, // padding
  1365. int d0); // dilation
  1366. // conv_1d with padding = half
  1367. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1368. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1369. struct ggml_context * ctx,
  1370. struct ggml_tensor * a, // convolution kernel
  1371. struct ggml_tensor * b, // data
  1372. int s, // stride
  1373. int d); // dilation
  1374. // depthwise
  1375. // TODO: this is very likely wrong for some cases! - needs more testing
  1376. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a, // convolution kernel
  1379. struct ggml_tensor * b, // data
  1380. int s0, // stride
  1381. int p0, // padding
  1382. int d0); // dilation
  1383. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1384. struct ggml_context * ctx,
  1385. struct ggml_tensor * a, // convolution kernel
  1386. struct ggml_tensor * b, // data
  1387. int s0, // stride
  1388. int d0); // dilation
  1389. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a, // convolution kernel
  1392. struct ggml_tensor * b, // data
  1393. int s0, // stride
  1394. int p0, // padding
  1395. int d0); // dilation
  1396. GGML_API struct ggml_tensor * ggml_conv_2d(
  1397. struct ggml_context * ctx,
  1398. struct ggml_tensor * a, // convolution kernel
  1399. struct ggml_tensor * b, // data
  1400. int s0, // stride dimension 0
  1401. int s1, // stride dimension 1
  1402. int p0, // padding dimension 0
  1403. int p1, // padding dimension 1
  1404. int d0, // dilation dimension 0
  1405. int d1); // dilation dimension 1
  1406. // kernel size is a->ne[0] x a->ne[1]
  1407. // stride is equal to kernel size
  1408. // padding is zero
  1409. // example:
  1410. // a: 16 16 3 768
  1411. // b: 1024 1024 3 1
  1412. // res: 64 64 768 1
  1413. // used in sam
  1414. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1415. struct ggml_context * ctx,
  1416. struct ggml_tensor * a,
  1417. struct ggml_tensor * b);
  1418. // kernel size is a->ne[0] x a->ne[1]
  1419. // stride is 1
  1420. // padding is half
  1421. // example:
  1422. // a: 3 3 256 256
  1423. // b: 64 64 256 1
  1424. // res: 64 64 256 1
  1425. // used in sam
  1426. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. struct ggml_tensor * b);
  1430. // depthwise (via im2col and mul_mat)
  1431. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * a, // convolution kernel
  1434. struct ggml_tensor * b, // data
  1435. int s0, // stride dimension 0
  1436. int s1, // stride dimension 1
  1437. int p0, // padding dimension 0
  1438. int p1, // padding dimension 1
  1439. int d0, // dilation dimension 0
  1440. int d1); // dilation dimension 1
  1441. // Depthwise 2D convolution
  1442. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1443. // a: KW KH 1 C convolution kernel
  1444. // b: W H C N input data
  1445. // res: W_out H_out C N
  1446. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. struct ggml_tensor * b,
  1450. int stride0,
  1451. int stride1,
  1452. int pad0,
  1453. int pad1,
  1454. int dilation0,
  1455. int dilation1);
  1456. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1457. struct ggml_context * ctx,
  1458. struct ggml_tensor * a,
  1459. struct ggml_tensor * b,
  1460. int stride);
  1461. enum ggml_op_pool {
  1462. GGML_OP_POOL_MAX,
  1463. GGML_OP_POOL_AVG,
  1464. GGML_OP_POOL_COUNT,
  1465. };
  1466. GGML_API struct ggml_tensor * ggml_pool_1d(
  1467. struct ggml_context * ctx,
  1468. struct ggml_tensor * a,
  1469. enum ggml_op_pool op,
  1470. int k0, // kernel size
  1471. int s0, // stride
  1472. int p0); // padding
  1473. // the result will have 2*p0 padding for the first dimension
  1474. // and 2*p1 padding for the second dimension
  1475. GGML_API struct ggml_tensor * ggml_pool_2d(
  1476. struct ggml_context * ctx,
  1477. struct ggml_tensor * a,
  1478. enum ggml_op_pool op,
  1479. int k0,
  1480. int k1,
  1481. int s0,
  1482. int s1,
  1483. float p0,
  1484. float p1);
  1485. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1486. struct ggml_context * ctx,
  1487. struct ggml_tensor * a,
  1488. struct ggml_tensor * af, // "a"/input used in forward pass
  1489. enum ggml_op_pool op,
  1490. int k0,
  1491. int k1,
  1492. int s0,
  1493. int s1,
  1494. float p0,
  1495. float p1);
  1496. enum ggml_scale_mode {
  1497. GGML_SCALE_MODE_NEAREST = 0,
  1498. GGML_SCALE_MODE_BILINEAR = 1,
  1499. };
  1500. // interpolate
  1501. // multiplies ne0 and ne1 by scale factor
  1502. GGML_API struct ggml_tensor * ggml_upscale(
  1503. struct ggml_context * ctx,
  1504. struct ggml_tensor * a,
  1505. int scale_factor,
  1506. enum ggml_scale_mode mode);
  1507. // interpolate
  1508. // interpolate scale to specified dimensions
  1509. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1510. struct ggml_context * ctx,
  1511. struct ggml_tensor * a,
  1512. int ne0,
  1513. int ne1,
  1514. int ne2,
  1515. int ne3,
  1516. enum ggml_scale_mode mode);
  1517. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1518. GGML_API struct ggml_tensor * ggml_pad(
  1519. struct ggml_context * ctx,
  1520. struct ggml_tensor * a,
  1521. int p0,
  1522. int p1,
  1523. int p2,
  1524. int p3);
  1525. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1526. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1527. struct ggml_context * ctx,
  1528. struct ggml_tensor * a,
  1529. int p0,
  1530. int p1);
  1531. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1532. // timesteps: [N,]
  1533. // return: [N, dim]
  1534. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1535. struct ggml_context * ctx,
  1536. struct ggml_tensor * timesteps,
  1537. int dim,
  1538. int max_period);
  1539. // sort rows
  1540. enum ggml_sort_order {
  1541. GGML_SORT_ORDER_ASC,
  1542. GGML_SORT_ORDER_DESC,
  1543. };
  1544. GGML_API struct ggml_tensor * ggml_argsort(
  1545. struct ggml_context * ctx,
  1546. struct ggml_tensor * a,
  1547. enum ggml_sort_order order);
  1548. GGML_API struct ggml_tensor * ggml_arange(
  1549. struct ggml_context * ctx,
  1550. float start,
  1551. float stop,
  1552. float step);
  1553. // top k elements per row
  1554. GGML_API struct ggml_tensor * ggml_top_k(
  1555. struct ggml_context * ctx,
  1556. struct ggml_tensor * a,
  1557. int k);
  1558. #define GGML_KQ_MASK_PAD 64
  1559. // q: [n_embd_k, n_batch, n_head, 1]
  1560. // k: [n_embd_k, n_kv, n_head_kv, 1]
  1561. // v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
  1562. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1563. // res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
  1564. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1565. struct ggml_context * ctx,
  1566. struct ggml_tensor * q,
  1567. struct ggml_tensor * k,
  1568. struct ggml_tensor * v,
  1569. struct ggml_tensor * mask,
  1570. float scale,
  1571. float max_bias,
  1572. float logit_softcap);
  1573. GGML_API void ggml_flash_attn_ext_set_prec(
  1574. struct ggml_tensor * a,
  1575. enum ggml_prec prec);
  1576. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1577. const struct ggml_tensor * a);
  1578. // TODO: needs to be adapted to ggml_flash_attn_ext
  1579. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1580. struct ggml_context * ctx,
  1581. struct ggml_tensor * q,
  1582. struct ggml_tensor * k,
  1583. struct ggml_tensor * v,
  1584. struct ggml_tensor * d,
  1585. bool masked);
  1586. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1587. struct ggml_context * ctx,
  1588. struct ggml_tensor * sx,
  1589. struct ggml_tensor * c);
  1590. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1591. struct ggml_context * ctx,
  1592. struct ggml_tensor * s,
  1593. struct ggml_tensor * x,
  1594. struct ggml_tensor * dt,
  1595. struct ggml_tensor * A,
  1596. struct ggml_tensor * B,
  1597. struct ggml_tensor * C);
  1598. // partition into non-overlapping windows with padding if needed
  1599. // example:
  1600. // a: 768 64 64 1
  1601. // w: 14
  1602. // res: 768 14 14 25
  1603. // used in sam
  1604. GGML_API struct ggml_tensor * ggml_win_part(
  1605. struct ggml_context * ctx,
  1606. struct ggml_tensor * a,
  1607. int w);
  1608. // reverse of ggml_win_part
  1609. // used in sam
  1610. GGML_API struct ggml_tensor * ggml_win_unpart(
  1611. struct ggml_context * ctx,
  1612. struct ggml_tensor * a,
  1613. int w0,
  1614. int h0,
  1615. int w);
  1616. GGML_API struct ggml_tensor * ggml_unary(
  1617. struct ggml_context * ctx,
  1618. struct ggml_tensor * a,
  1619. enum ggml_unary_op op);
  1620. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1621. struct ggml_context * ctx,
  1622. struct ggml_tensor * a,
  1623. enum ggml_unary_op op);
  1624. // used in sam
  1625. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1626. struct ggml_context * ctx,
  1627. struct ggml_tensor * a,
  1628. int qh,
  1629. int kh);
  1630. // used in sam
  1631. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1632. struct ggml_context * ctx,
  1633. struct ggml_tensor * a,
  1634. struct ggml_tensor * pw,
  1635. struct ggml_tensor * ph);
  1636. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1637. struct ggml_context * ctx,
  1638. struct ggml_tensor * a,
  1639. struct ggml_tensor * pw,
  1640. struct ggml_tensor * ph);
  1641. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1642. struct ggml_context * ctx,
  1643. struct ggml_tensor * k,
  1644. struct ggml_tensor * v,
  1645. struct ggml_tensor * r,
  1646. struct ggml_tensor * tf,
  1647. struct ggml_tensor * td,
  1648. struct ggml_tensor * state);
  1649. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  1650. struct ggml_context * ctx,
  1651. struct ggml_tensor * k,
  1652. struct ggml_tensor * v,
  1653. struct ggml_tensor * q,
  1654. struct ggml_tensor * g,
  1655. struct ggml_tensor * state,
  1656. float scale);
  1657. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  1658. struct ggml_context * ctx,
  1659. struct ggml_tensor * r,
  1660. struct ggml_tensor * w,
  1661. struct ggml_tensor * k,
  1662. struct ggml_tensor * v,
  1663. struct ggml_tensor * a,
  1664. struct ggml_tensor * b,
  1665. struct ggml_tensor * state);
  1666. // custom operators
  1667. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1668. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1669. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1670. #define GGML_N_TASKS_MAX (-1)
  1671. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1672. GGML_API struct ggml_tensor * ggml_map_custom1(
  1673. struct ggml_context * ctx,
  1674. struct ggml_tensor * a,
  1675. ggml_custom1_op_t fun,
  1676. int n_tasks,
  1677. void * userdata);
  1678. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1679. struct ggml_context * ctx,
  1680. struct ggml_tensor * a,
  1681. ggml_custom1_op_t fun,
  1682. int n_tasks,
  1683. void * userdata);
  1684. GGML_API struct ggml_tensor * ggml_map_custom2(
  1685. struct ggml_context * ctx,
  1686. struct ggml_tensor * a,
  1687. struct ggml_tensor * b,
  1688. ggml_custom2_op_t fun,
  1689. int n_tasks,
  1690. void * userdata);
  1691. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1692. struct ggml_context * ctx,
  1693. struct ggml_tensor * a,
  1694. struct ggml_tensor * b,
  1695. ggml_custom2_op_t fun,
  1696. int n_tasks,
  1697. void * userdata);
  1698. GGML_API struct ggml_tensor * ggml_map_custom3(
  1699. struct ggml_context * ctx,
  1700. struct ggml_tensor * a,
  1701. struct ggml_tensor * b,
  1702. struct ggml_tensor * c,
  1703. ggml_custom3_op_t fun,
  1704. int n_tasks,
  1705. void * userdata);
  1706. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1707. struct ggml_context * ctx,
  1708. struct ggml_tensor * a,
  1709. struct ggml_tensor * b,
  1710. struct ggml_tensor * c,
  1711. ggml_custom3_op_t fun,
  1712. int n_tasks,
  1713. void * userdata);
  1714. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  1715. GGML_API struct ggml_tensor * ggml_custom_4d(
  1716. struct ggml_context * ctx,
  1717. enum ggml_type type,
  1718. int64_t ne0,
  1719. int64_t ne1,
  1720. int64_t ne2,
  1721. int64_t ne3,
  1722. struct ggml_tensor ** args,
  1723. int n_args,
  1724. ggml_custom_op_t fun,
  1725. int n_tasks,
  1726. void * userdata);
  1727. GGML_API struct ggml_tensor * ggml_custom_inplace(
  1728. struct ggml_context * ctx,
  1729. struct ggml_tensor * a,
  1730. struct ggml_tensor ** args,
  1731. int n_args,
  1732. ggml_custom_op_t fun,
  1733. int n_tasks,
  1734. void * userdata);
  1735. // loss function
  1736. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1737. struct ggml_context * ctx,
  1738. struct ggml_tensor * a, // logits
  1739. struct ggml_tensor * b); // labels
  1740. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1741. struct ggml_context * ctx,
  1742. struct ggml_tensor * a, // logits
  1743. struct ggml_tensor * b, // labels
  1744. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1745. // AdamW optimizer step
  1746. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1747. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1748. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1749. struct ggml_context * ctx,
  1750. struct ggml_tensor * a,
  1751. struct ggml_tensor * grad,
  1752. struct ggml_tensor * m,
  1753. struct ggml_tensor * v,
  1754. struct ggml_tensor * adamw_params); // parameters such a the learning rate
  1755. //
  1756. // automatic differentiation
  1757. //
  1758. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1759. GGML_API void ggml_build_backward_expand(
  1760. struct ggml_context * ctx, // context for gradient computation
  1761. struct ggml_cgraph * cgraph,
  1762. struct ggml_tensor ** grad_accs);
  1763. // graph allocation in a context
  1764. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1765. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1766. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  1767. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1768. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1769. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1770. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1771. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1772. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1773. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1774. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1775. GGML_API size_t ggml_graph_overhead(void);
  1776. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1777. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  1778. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1779. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1780. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1781. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1782. // print info and performance information for the graph
  1783. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1784. // dump the graph into a file using the dot format
  1785. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1786. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  1787. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1788. // Set callback for all future logging events.
  1789. // If this is not called, or NULL is supplied, everything is output on stderr.
  1790. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  1791. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  1792. //
  1793. // quantization
  1794. //
  1795. // - ggml_quantize_init can be called multiple times with the same type
  1796. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1797. // automatically called by ggml_quantize_chunk for convenience
  1798. //
  1799. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1800. // call this at the end of the program to avoid memory leaks
  1801. //
  1802. // note: these are thread-safe
  1803. //
  1804. GGML_API void ggml_quantize_init(enum ggml_type type);
  1805. GGML_API void ggml_quantize_free(void);
  1806. // some quantization type cannot be used without an importance matrix
  1807. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1808. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1809. GGML_API size_t ggml_quantize_chunk(
  1810. enum ggml_type type,
  1811. const float * src,
  1812. void * dst,
  1813. int64_t start,
  1814. int64_t nrows,
  1815. int64_t n_per_row,
  1816. const float * imatrix);
  1817. #ifdef __cplusplus
  1818. // restrict not standard in C++
  1819. # if defined(__GNUC__)
  1820. # define GGML_RESTRICT __restrict__
  1821. # elif defined(__clang__)
  1822. # define GGML_RESTRICT __restrict
  1823. # elif defined(_MSC_VER)
  1824. # define GGML_RESTRICT __restrict
  1825. # else
  1826. # define GGML_RESTRICT
  1827. # endif
  1828. #else
  1829. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  1830. # define GGML_RESTRICT __restrict
  1831. # else
  1832. # define GGML_RESTRICT restrict
  1833. # endif
  1834. #endif
  1835. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  1836. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  1837. struct ggml_type_traits {
  1838. const char * type_name;
  1839. int64_t blck_size;
  1840. int64_t blck_size_interleave; // interleave elements in blocks
  1841. size_t type_size;
  1842. bool is_quantized;
  1843. ggml_to_float_t to_float;
  1844. ggml_from_float_t from_float_ref;
  1845. };
  1846. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  1847. // ggml threadpool
  1848. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  1849. // the goal should be to create an API that other backends can use move everything to the ggml base
  1850. // scheduling priorities
  1851. enum ggml_sched_priority {
  1852. GGML_SCHED_PRIO_NORMAL,
  1853. GGML_SCHED_PRIO_MEDIUM,
  1854. GGML_SCHED_PRIO_HIGH,
  1855. GGML_SCHED_PRIO_REALTIME
  1856. };
  1857. // threadpool params
  1858. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  1859. struct ggml_threadpool_params {
  1860. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  1861. int n_threads; // number of threads
  1862. enum ggml_sched_priority prio; // thread priority
  1863. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  1864. bool strict_cpu; // strict cpu placement
  1865. bool paused; // start in paused state
  1866. };
  1867. struct ggml_threadpool; // forward declaration, see ggml.c
  1868. typedef struct ggml_threadpool * ggml_threadpool_t;
  1869. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1870. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1871. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1872. #ifdef __cplusplus
  1873. }
  1874. #endif