plamo3.cpp 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. #include "models.h"
  2. template <bool iswa>
  3. llm_build_plamo3<iswa>::llm_build_plamo3(const llama_model & model, const llm_graph_params & params) :
  4. llm_graph_context(params) {
  5. const int64_t head_dim_q = hparams.n_embd_head_k;
  6. const int64_t head_dim_v = hparams.n_embd_head_v;
  7. ggml_tensor * cur;
  8. ggml_tensor * inpL = build_inp_embd(model.tok_embd);
  9. ggml_tensor * inp_pos = build_inp_pos();
  10. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  11. inp_attn_type * inp_attn = nullptr;
  12. if constexpr (iswa) {
  13. inp_attn = build_attn_inp_kv_iswa();
  14. } else {
  15. inp_attn = build_attn_inp_kv();
  16. }
  17. ggml_tensor * inp_out_ids = build_inp_out_ids();
  18. for (int il = 0; il < n_layer; ++il) {
  19. ggml_tensor * residual = inpL;
  20. float freq_base_l = 0.0f;
  21. float freq_scale_l = 0.0f;
  22. if constexpr (iswa) {
  23. freq_base_l = model.get_rope_freq_base (cparams, il);
  24. freq_scale_l = model.get_rope_freq_scale(cparams, il);
  25. } else {
  26. freq_base_l = freq_base;
  27. freq_scale_l = freq_scale;
  28. }
  29. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  30. cb(cur, "attn_norm", il);
  31. ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
  32. cb(cur, "wqkv", il);
  33. const int32_t n_head = hparams.n_head(il);
  34. const int32_t n_head_kv = hparams.n_head_kv(il);
  35. const int64_t q_offset = 0;
  36. const int64_t k_offset = head_dim_q * n_head;
  37. const int64_t v_offset = k_offset + head_dim_q * n_head_kv;
  38. ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head, n_tokens,
  39. head_dim_q * sizeof(float), qkv->nb[1], q_offset * ggml_element_size(qkv));
  40. ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head_kv, n_tokens,
  41. head_dim_q * sizeof(float), qkv->nb[1], k_offset * ggml_element_size(qkv));
  42. ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, head_dim_v, n_head_kv, n_tokens,
  43. head_dim_v * sizeof(float), qkv->nb[1], v_offset * ggml_element_size(qkv));
  44. cb(Qcur, "Qcur", il);
  45. cb(Kcur, "Kcur", il);
  46. cb(Vcur, "Vcur", il);
  47. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  48. cb(Qcur, "attn_q_norm", il);
  49. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  50. cb(Kcur, "attn_k_norm", il);
  51. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr,
  52. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  53. ext_factor, attn_factor, beta_fast, beta_slow);
  54. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
  55. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  56. ext_factor, attn_factor, beta_fast, beta_slow);
  57. const float attn_scale = 1.0f / sqrtf(float(head_dim_q));
  58. cur = build_attn(inp_attn,
  59. model.layers[il].wo, NULL,
  60. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, attn_scale, il);
  61. cb(cur, "attn_out", il);
  62. if (il == n_layer - 1 && inp_out_ids) {
  63. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  64. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  65. }
  66. cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
  67. cb(cur, "attn_post_norm", il);
  68. cur = ggml_add(ctx0, cur, residual);
  69. cb(cur, "attn_residual", il);
  70. residual = cur;
  71. cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  72. cb(cur, "ffn_norm", il);
  73. cur = build_ffn(cur,
  74. model.layers[il].ffn_up, NULL, NULL,
  75. NULL, NULL, NULL,
  76. model.layers[il].ffn_down, NULL, NULL,
  77. NULL,
  78. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  79. cb(cur, "ffn_out", il);
  80. cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
  81. cb(cur, "ffn_post_norm", il);
  82. cur = ggml_add(ctx0, cur, residual);
  83. cb(cur, "ffn_residual", il);
  84. cur = build_cvec(cur, il);
  85. cb(cur, "l_out", il);
  86. inpL = cur;
  87. }
  88. cur = inpL;
  89. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  90. res->t_embd = cur;
  91. cur = build_lora_mm(model.output, cur);
  92. res->t_logits = cur;
  93. ggml_build_forward_expand(gf, cur);
  94. }
  95. // Explicit template instantiations
  96. template struct llm_build_plamo3<false>;
  97. template struct llm_build_plamo3<true>;