llama-bench.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case CSV: return "csv";
  137. case JSON: return "json";
  138. case MARKDOWN: return "md";
  139. case SQL: return "sql";
  140. default: GGML_ASSERT(!"invalid output format");
  141. }
  142. }
  143. static const char * split_mode_str(llama_split_mode mode) {
  144. switch (mode) {
  145. case LLAMA_SPLIT_MODE_NONE: return "none";
  146. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  147. case LLAMA_SPLIT_MODE_ROW: return "row";
  148. default: GGML_ASSERT(!"invalid split mode");
  149. }
  150. }
  151. struct cmd_params {
  152. std::vector<std::string> model;
  153. std::vector<int> n_prompt;
  154. std::vector<int> n_gen;
  155. std::vector<int> n_batch;
  156. std::vector<int> n_ubatch;
  157. std::vector<ggml_type> type_k;
  158. std::vector<ggml_type> type_v;
  159. std::vector<int> n_threads;
  160. std::vector<int> n_gpu_layers;
  161. std::vector<llama_split_mode> split_mode;
  162. std::vector<int> main_gpu;
  163. std::vector<bool> no_kv_offload;
  164. std::vector<bool> flash_attn;
  165. std::vector<std::vector<float>> tensor_split;
  166. std::vector<bool> use_mmap;
  167. std::vector<bool> embeddings;
  168. int reps;
  169. bool verbose;
  170. output_formats output_format;
  171. };
  172. static const cmd_params cmd_params_defaults = {
  173. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  174. /* n_prompt */ {512},
  175. /* n_gen */ {128},
  176. /* n_batch */ {2048},
  177. /* n_ubatch */ {512},
  178. /* type_k */ {GGML_TYPE_F16},
  179. /* type_v */ {GGML_TYPE_F16},
  180. /* n_threads */ {get_math_cpu_count()},
  181. /* n_gpu_layers */ {99},
  182. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  183. /* main_gpu */ {0},
  184. /* no_kv_offload */ {false},
  185. /* flash_attn */ {false},
  186. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  187. /* use_mmap */ {true},
  188. /* embeddings */ {false},
  189. /* reps */ 5,
  190. /* verbose */ false,
  191. /* output_format */ MARKDOWN
  192. };
  193. static void print_usage(int /* argc */, char ** argv) {
  194. printf("usage: %s [options]\n", argv[0]);
  195. printf("\n");
  196. printf("options:\n");
  197. printf(" -h, --help\n");
  198. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  199. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  200. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  201. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  202. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  203. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  204. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  205. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  206. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  207. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  208. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  209. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  210. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  211. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  212. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  213. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  214. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  215. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  216. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  217. printf("\n");
  218. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  219. }
  220. static ggml_type ggml_type_from_name(const std::string & s) {
  221. if (s == "f16") {
  222. return GGML_TYPE_F16;
  223. }
  224. if (s == "q8_0") {
  225. return GGML_TYPE_Q8_0;
  226. }
  227. if (s == "q4_0") {
  228. return GGML_TYPE_Q4_0;
  229. }
  230. if (s == "q4_1") {
  231. return GGML_TYPE_Q4_1;
  232. }
  233. if (s == "q5_0") {
  234. return GGML_TYPE_Q5_0;
  235. }
  236. if (s == "q5_1") {
  237. return GGML_TYPE_Q5_1;
  238. }
  239. if (s == "iq4_nl") {
  240. return GGML_TYPE_IQ4_NL;
  241. }
  242. return GGML_TYPE_COUNT;
  243. }
  244. static cmd_params parse_cmd_params(int argc, char ** argv) {
  245. cmd_params params;
  246. std::string arg;
  247. bool invalid_param = false;
  248. const std::string arg_prefix = "--";
  249. const char split_delim = ',';
  250. params.verbose = cmd_params_defaults.verbose;
  251. params.output_format = cmd_params_defaults.output_format;
  252. params.reps = cmd_params_defaults.reps;
  253. for (int i = 1; i < argc; i++) {
  254. arg = argv[i];
  255. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  256. std::replace(arg.begin(), arg.end(), '_', '-');
  257. }
  258. if (arg == "-h" || arg == "--help") {
  259. print_usage(argc, argv);
  260. exit(0);
  261. } else if (arg == "-m" || arg == "--model") {
  262. if (++i >= argc) {
  263. invalid_param = true;
  264. break;
  265. }
  266. auto p = split<std::string>(argv[i], split_delim);
  267. params.model.insert(params.model.end(), p.begin(), p.end());
  268. } else if (arg == "-p" || arg == "--n-prompt") {
  269. if (++i >= argc) {
  270. invalid_param = true;
  271. break;
  272. }
  273. auto p = split<int>(argv[i], split_delim);
  274. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  275. } else if (arg == "-n" || arg == "--n-gen") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<int>(argv[i], split_delim);
  281. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  282. } else if (arg == "-b" || arg == "--batch-size") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. auto p = split<int>(argv[i], split_delim);
  288. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  289. } else if (arg == "-ub" || arg == "--ubatch-size") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. auto p = split<int>(argv[i], split_delim);
  295. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  296. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  297. if (++i >= argc) {
  298. invalid_param = true;
  299. break;
  300. }
  301. auto p = split<std::string>(argv[i], split_delim);
  302. std::vector<ggml_type> types;
  303. for (const auto & t : p) {
  304. ggml_type gt = ggml_type_from_name(t);
  305. if (gt == GGML_TYPE_COUNT) {
  306. invalid_param = true;
  307. break;
  308. }
  309. types.push_back(gt);
  310. }
  311. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  312. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  313. if (++i >= argc) {
  314. invalid_param = true;
  315. break;
  316. }
  317. auto p = split<std::string>(argv[i], split_delim);
  318. std::vector<ggml_type> types;
  319. for (const auto & t : p) {
  320. ggml_type gt = ggml_type_from_name(t);
  321. if (gt == GGML_TYPE_COUNT) {
  322. invalid_param = true;
  323. break;
  324. }
  325. types.push_back(gt);
  326. }
  327. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  328. } else if (arg == "-t" || arg == "--threads") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = split<int>(argv[i], split_delim);
  334. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  335. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. auto p = split<int>(argv[i], split_delim);
  341. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  342. } else if (arg == "-sm" || arg == "--split-mode") {
  343. if (++i >= argc) {
  344. invalid_param = true;
  345. break;
  346. }
  347. auto p = split<std::string>(argv[i], split_delim);
  348. std::vector<llama_split_mode> modes;
  349. for (const auto & m : p) {
  350. llama_split_mode mode;
  351. if (m == "none") {
  352. mode = LLAMA_SPLIT_MODE_NONE;
  353. } else if (m == "layer") {
  354. mode = LLAMA_SPLIT_MODE_LAYER;
  355. } else if (m == "row") {
  356. mode = LLAMA_SPLIT_MODE_ROW;
  357. } else {
  358. invalid_param = true;
  359. break;
  360. }
  361. modes.push_back(mode);
  362. }
  363. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  364. } else if (arg == "-mg" || arg == "--main-gpu") {
  365. if (++i >= argc) {
  366. invalid_param = true;
  367. break;
  368. }
  369. params.main_gpu = split<int>(argv[i], split_delim);
  370. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = split<bool>(argv[i], split_delim);
  376. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  377. } else if (arg == "-fa" || arg == "--flash-attn") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. auto p = split<bool>(argv[i], split_delim);
  383. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  384. } else if (arg == "-mmp" || arg == "--mmap") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. auto p = split<bool>(argv[i], split_delim);
  390. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  391. } else if (arg == "-embd" || arg == "--embeddings") {
  392. if (++i >= argc) {
  393. invalid_param = true;
  394. break;
  395. }
  396. auto p = split<bool>(argv[i], split_delim);
  397. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  398. } else if (arg == "-ts" || arg == "--tensor-split") {
  399. if (++i >= argc) {
  400. invalid_param = true;
  401. break;
  402. }
  403. for (auto ts : split<std::string>(argv[i], split_delim)) {
  404. // split string by ; and /
  405. const std::regex regex{R"([;/]+)"};
  406. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  407. std::vector<std::string> split_arg{it, {}};
  408. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  409. std::vector<float> tensor_split(llama_max_devices());
  410. for (size_t i = 0; i < llama_max_devices(); ++i) {
  411. if (i < split_arg.size()) {
  412. tensor_split[i] = std::stof(split_arg[i]);
  413. } else {
  414. tensor_split[i] = 0.0f;
  415. }
  416. }
  417. params.tensor_split.push_back(tensor_split);
  418. }
  419. } else if (arg == "-r" || arg == "--repetitions") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. params.reps = std::stoi(argv[i]);
  425. } else if (arg == "-o" || arg == "--output") {
  426. if (++i >= argc) {
  427. invalid_param = true;
  428. break;
  429. }
  430. if (argv[i] == std::string("csv")) {
  431. params.output_format = CSV;
  432. } else if (argv[i] == std::string("json")) {
  433. params.output_format = JSON;
  434. } else if (argv[i] == std::string("md")) {
  435. params.output_format = MARKDOWN;
  436. } else if (argv[i] == std::string("sql")) {
  437. params.output_format = SQL;
  438. } else {
  439. invalid_param = true;
  440. break;
  441. }
  442. } else if (arg == "-v" || arg == "--verbose") {
  443. params.verbose = true;
  444. } else {
  445. invalid_param = true;
  446. break;
  447. }
  448. }
  449. if (invalid_param) {
  450. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  451. print_usage(argc, argv);
  452. exit(1);
  453. }
  454. // set defaults
  455. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  456. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  457. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  458. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  459. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  460. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  461. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  462. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  463. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  464. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  465. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  466. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  467. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  468. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  469. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  470. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  471. return params;
  472. }
  473. struct cmd_params_instance {
  474. std::string model;
  475. int n_prompt;
  476. int n_gen;
  477. int n_batch;
  478. int n_ubatch;
  479. ggml_type type_k;
  480. ggml_type type_v;
  481. int n_threads;
  482. int n_gpu_layers;
  483. llama_split_mode split_mode;
  484. int main_gpu;
  485. bool no_kv_offload;
  486. bool flash_attn;
  487. std::vector<float> tensor_split;
  488. bool use_mmap;
  489. bool embeddings;
  490. llama_model_params to_llama_mparams() const {
  491. llama_model_params mparams = llama_model_default_params();
  492. mparams.n_gpu_layers = n_gpu_layers;
  493. mparams.split_mode = split_mode;
  494. mparams.main_gpu = main_gpu;
  495. mparams.tensor_split = tensor_split.data();
  496. mparams.use_mmap = use_mmap;
  497. return mparams;
  498. }
  499. bool equal_mparams(const cmd_params_instance & other) const {
  500. return model == other.model &&
  501. n_gpu_layers == other.n_gpu_layers &&
  502. split_mode == other.split_mode &&
  503. main_gpu == other.main_gpu &&
  504. use_mmap == other.use_mmap &&
  505. tensor_split == other.tensor_split;
  506. }
  507. llama_context_params to_llama_cparams() const {
  508. llama_context_params cparams = llama_context_default_params();
  509. cparams.n_ctx = n_prompt + n_gen;
  510. cparams.n_batch = n_batch;
  511. cparams.n_ubatch = n_ubatch;
  512. cparams.type_k = type_k;
  513. cparams.type_v = type_v;
  514. cparams.offload_kqv = !no_kv_offload;
  515. cparams.flash_attn = flash_attn;
  516. cparams.embeddings = embeddings;
  517. return cparams;
  518. }
  519. };
  520. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  521. std::vector<cmd_params_instance> instances;
  522. // this ordering minimizes the number of times that each model needs to be reloaded
  523. for (const auto & m : params.model)
  524. for (const auto & nl : params.n_gpu_layers)
  525. for (const auto & sm : params.split_mode)
  526. for (const auto & mg : params.main_gpu)
  527. for (const auto & ts : params.tensor_split)
  528. for (const auto & mmp : params.use_mmap)
  529. for (const auto & embd : params.embeddings)
  530. for (const auto & nb : params.n_batch)
  531. for (const auto & nub : params.n_ubatch)
  532. for (const auto & tk : params.type_k)
  533. for (const auto & tv : params.type_v)
  534. for (const auto & nkvo : params.no_kv_offload)
  535. for (const auto & fa : params.flash_attn)
  536. for (const auto & nt : params.n_threads) {
  537. for (const auto & n_prompt : params.n_prompt) {
  538. if (n_prompt == 0) {
  539. continue;
  540. }
  541. cmd_params_instance instance = {
  542. /* .model = */ m,
  543. /* .n_prompt = */ n_prompt,
  544. /* .n_gen = */ 0,
  545. /* .n_batch = */ nb,
  546. /* .n_ubatch = */ nub,
  547. /* .type_k = */ tk,
  548. /* .type_v = */ tv,
  549. /* .n_threads = */ nt,
  550. /* .n_gpu_layers = */ nl,
  551. /* .split_mode = */ sm,
  552. /* .main_gpu = */ mg,
  553. /* .no_kv_offload= */ nkvo,
  554. /* .flash_attn = */ fa,
  555. /* .tensor_split = */ ts,
  556. /* .use_mmap = */ mmp,
  557. /* .embeddings = */ embd,
  558. };
  559. instances.push_back(instance);
  560. }
  561. for (const auto & n_gen : params.n_gen) {
  562. if (n_gen == 0) {
  563. continue;
  564. }
  565. cmd_params_instance instance = {
  566. /* .model = */ m,
  567. /* .n_prompt = */ 0,
  568. /* .n_gen = */ n_gen,
  569. /* .n_batch = */ nb,
  570. /* .n_ubatch = */ nub,
  571. /* .type_k = */ tk,
  572. /* .type_v = */ tv,
  573. /* .n_threads = */ nt,
  574. /* .n_gpu_layers = */ nl,
  575. /* .split_mode = */ sm,
  576. /* .main_gpu = */ mg,
  577. /* .no_kv_offload= */ nkvo,
  578. /* .flash_attn = */ fa,
  579. /* .tensor_split = */ ts,
  580. /* .use_mmap = */ mmp,
  581. /* .embeddings = */ embd,
  582. };
  583. instances.push_back(instance);
  584. }
  585. }
  586. return instances;
  587. }
  588. struct test {
  589. static const std::string build_commit;
  590. static const int build_number;
  591. static const bool cuda;
  592. static const bool opencl;
  593. static const bool vulkan;
  594. static const bool kompute;
  595. static const bool metal;
  596. static const bool sycl;
  597. static const bool gpu_blas;
  598. static const bool blas;
  599. static const std::string cpu_info;
  600. static const std::string gpu_info;
  601. std::string model_filename;
  602. std::string model_type;
  603. uint64_t model_size;
  604. uint64_t model_n_params;
  605. int n_batch;
  606. int n_ubatch;
  607. int n_threads;
  608. ggml_type type_k;
  609. ggml_type type_v;
  610. int n_gpu_layers;
  611. llama_split_mode split_mode;
  612. int main_gpu;
  613. bool no_kv_offload;
  614. bool flash_attn;
  615. std::vector<float> tensor_split;
  616. bool use_mmap;
  617. bool embeddings;
  618. int n_prompt;
  619. int n_gen;
  620. std::string test_time;
  621. std::vector<uint64_t> samples_ns;
  622. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  623. model_filename = inst.model;
  624. char buf[128];
  625. llama_model_desc(lmodel, buf, sizeof(buf));
  626. model_type = buf;
  627. model_size = llama_model_size(lmodel);
  628. model_n_params = llama_model_n_params(lmodel);
  629. n_batch = inst.n_batch;
  630. n_ubatch = inst.n_ubatch;
  631. n_threads = inst.n_threads;
  632. type_k = inst.type_k;
  633. type_v = inst.type_v;
  634. n_gpu_layers = inst.n_gpu_layers;
  635. split_mode = inst.split_mode;
  636. main_gpu = inst.main_gpu;
  637. no_kv_offload = inst.no_kv_offload;
  638. flash_attn = inst.flash_attn;
  639. tensor_split = inst.tensor_split;
  640. use_mmap = inst.use_mmap;
  641. embeddings = inst.embeddings;
  642. n_prompt = inst.n_prompt;
  643. n_gen = inst.n_gen;
  644. // RFC 3339 date-time format
  645. time_t t = time(NULL);
  646. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  647. test_time = buf;
  648. (void) ctx;
  649. }
  650. uint64_t avg_ns() const {
  651. return ::avg(samples_ns);
  652. }
  653. uint64_t stdev_ns() const {
  654. return ::stdev(samples_ns);
  655. }
  656. std::vector<double> get_ts() const {
  657. int n_tokens = n_prompt + n_gen;
  658. std::vector<double> ts;
  659. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  660. return ts;
  661. }
  662. double avg_ts() const {
  663. return ::avg(get_ts());
  664. }
  665. double stdev_ts() const {
  666. return ::stdev(get_ts());
  667. }
  668. static std::string get_backend() {
  669. if (cuda) {
  670. return GGML_CUDA_NAME;
  671. }
  672. if (opencl) {
  673. return "OpenCL";
  674. }
  675. if (vulkan) {
  676. return "Vulkan";
  677. }
  678. if (kompute) {
  679. return "Kompute";
  680. }
  681. if (metal) {
  682. return "Metal";
  683. }
  684. if (sycl) {
  685. return GGML_SYCL_NAME;
  686. }
  687. if (gpu_blas) {
  688. return "GPU BLAS";
  689. }
  690. if (blas) {
  691. return "BLAS";
  692. }
  693. return "CPU";
  694. }
  695. static const std::vector<std::string> & get_fields() {
  696. static const std::vector<std::string> fields = {
  697. "build_commit", "build_number",
  698. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  699. "cpu_info", "gpu_info",
  700. "model_filename", "model_type", "model_size", "model_n_params",
  701. "n_batch", "n_ubatch",
  702. "n_threads", "type_k", "type_v",
  703. "n_gpu_layers", "split_mode",
  704. "main_gpu", "no_kv_offload", "flash_attn",
  705. "tensor_split", "use_mmap", "embeddings",
  706. "n_prompt", "n_gen", "test_time",
  707. "avg_ns", "stddev_ns",
  708. "avg_ts", "stddev_ts"
  709. };
  710. return fields;
  711. }
  712. enum field_type {STRING, BOOL, INT, FLOAT};
  713. static field_type get_field_type(const std::string & field) {
  714. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  715. field == "n_threads" ||
  716. field == "model_size" || field == "model_n_params" ||
  717. field == "n_gpu_layers" || field == "main_gpu" ||
  718. field == "n_prompt" || field == "n_gen" ||
  719. field == "avg_ns" || field == "stddev_ns") {
  720. return INT;
  721. }
  722. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  723. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  724. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  725. return BOOL;
  726. }
  727. if (field == "avg_ts" || field == "stddev_ts") {
  728. return FLOAT;
  729. }
  730. return STRING;
  731. }
  732. std::vector<std::string> get_values() const {
  733. std::string tensor_split_str;
  734. int max_nonzero = 0;
  735. for (size_t i = 0; i < llama_max_devices(); i++) {
  736. if (tensor_split[i] > 0) {
  737. max_nonzero = i;
  738. }
  739. }
  740. for (int i = 0; i <= max_nonzero; i++) {
  741. char buf[32];
  742. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  743. tensor_split_str += buf;
  744. if (i < max_nonzero) {
  745. tensor_split_str += "/";
  746. }
  747. }
  748. std::vector<std::string> values = {
  749. build_commit, std::to_string(build_number),
  750. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  751. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  752. cpu_info, gpu_info,
  753. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  754. std::to_string(n_batch), std::to_string(n_ubatch),
  755. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  756. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  757. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  758. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  759. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  760. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  761. std::to_string(avg_ts()), std::to_string(stdev_ts())
  762. };
  763. return values;
  764. }
  765. std::map<std::string, std::string> get_map() const {
  766. std::map<std::string, std::string> map;
  767. auto fields = get_fields();
  768. auto values = get_values();
  769. std::transform(fields.begin(), fields.end(), values.begin(),
  770. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  771. return map;
  772. }
  773. };
  774. const std::string test::build_commit = LLAMA_COMMIT;
  775. const int test::build_number = LLAMA_BUILD_NUMBER;
  776. const bool test::cuda = !!ggml_cpu_has_cuda();
  777. const bool test::opencl = !!ggml_cpu_has_clblast();
  778. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  779. const bool test::kompute = !!ggml_cpu_has_kompute();
  780. const bool test::metal = !!ggml_cpu_has_metal();
  781. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  782. const bool test::blas = !!ggml_cpu_has_blas();
  783. const bool test::sycl = !!ggml_cpu_has_sycl();
  784. const std::string test::cpu_info = get_cpu_info();
  785. const std::string test::gpu_info = get_gpu_info();
  786. struct printer {
  787. virtual ~printer() {}
  788. FILE * fout;
  789. virtual void print_header(const cmd_params & params) { (void) params; }
  790. virtual void print_test(const test & t) = 0;
  791. virtual void print_footer() { }
  792. };
  793. struct csv_printer : public printer {
  794. static std::string escape_csv(const std::string & field) {
  795. std::string escaped = "\"";
  796. for (auto c : field) {
  797. if (c == '"') {
  798. escaped += "\"";
  799. }
  800. escaped += c;
  801. }
  802. escaped += "\"";
  803. return escaped;
  804. }
  805. void print_header(const cmd_params & params) override {
  806. std::vector<std::string> fields = test::get_fields();
  807. fprintf(fout, "%s\n", join(fields, ",").c_str());
  808. (void) params;
  809. }
  810. void print_test(const test & t) override {
  811. std::vector<std::string> values = t.get_values();
  812. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  813. fprintf(fout, "%s\n", join(values, ",").c_str());
  814. }
  815. };
  816. struct json_printer : public printer {
  817. bool first = true;
  818. static std::string escape_json(const std::string & value) {
  819. std::string escaped;
  820. for (auto c : value) {
  821. if (c == '"') {
  822. escaped += "\\\"";
  823. } else if (c == '\\') {
  824. escaped += "\\\\";
  825. } else if (c <= 0x1f) {
  826. char buf[8];
  827. snprintf(buf, sizeof(buf), "\\u%04x", c);
  828. escaped += buf;
  829. } else {
  830. escaped += c;
  831. }
  832. }
  833. return escaped;
  834. }
  835. static std::string format_value(const std::string & field, const std::string & value) {
  836. switch (test::get_field_type(field)) {
  837. case test::STRING:
  838. return "\"" + escape_json(value) + "\"";
  839. case test::BOOL:
  840. return value == "0" ? "false" : "true";
  841. default:
  842. return value;
  843. }
  844. }
  845. void print_header(const cmd_params & params) override {
  846. fprintf(fout, "[\n");
  847. (void) params;
  848. }
  849. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  850. assert(fields.size() == values.size());
  851. for (size_t i = 0; i < fields.size(); i++) {
  852. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  853. }
  854. }
  855. void print_test(const test & t) override {
  856. if (first) {
  857. first = false;
  858. } else {
  859. fprintf(fout, ",\n");
  860. }
  861. fprintf(fout, " {\n");
  862. print_fields(test::get_fields(), t.get_values());
  863. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  864. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  865. fprintf(fout, " }");
  866. fflush(fout);
  867. }
  868. void print_footer() override {
  869. fprintf(fout, "\n]\n");
  870. }
  871. };
  872. struct markdown_printer : public printer {
  873. std::vector<std::string> fields;
  874. static int get_field_width(const std::string & field) {
  875. if (field == "model") {
  876. return -30;
  877. }
  878. if (field == "t/s") {
  879. return 16;
  880. }
  881. if (field == "size" || field == "params") {
  882. return 10;
  883. }
  884. if (field == "n_gpu_layers") {
  885. return 3;
  886. }
  887. int width = std::max((int)field.length(), 10);
  888. if (test::get_field_type(field) == test::STRING) {
  889. return -width;
  890. }
  891. return width;
  892. }
  893. static std::string get_field_display_name(const std::string & field) {
  894. if (field == "n_gpu_layers") {
  895. return "ngl";
  896. }
  897. if (field == "split_mode") {
  898. return "sm";
  899. }
  900. if (field == "n_threads") {
  901. return "threads";
  902. }
  903. if (field == "no_kv_offload") {
  904. return "nkvo";
  905. }
  906. if (field == "flash_attn") {
  907. return "fa";
  908. }
  909. if (field == "use_mmap") {
  910. return "mmap";
  911. }
  912. if (field == "embeddings") {
  913. return "embd";
  914. }
  915. if (field == "tensor_split") {
  916. return "ts";
  917. }
  918. return field;
  919. }
  920. void print_header(const cmd_params & params) override {
  921. // select fields to print
  922. fields.emplace_back("model");
  923. fields.emplace_back("size");
  924. fields.emplace_back("params");
  925. fields.emplace_back("backend");
  926. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  927. if (!is_cpu_backend) {
  928. fields.emplace_back("n_gpu_layers");
  929. }
  930. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  931. fields.emplace_back("n_threads");
  932. }
  933. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  934. fields.emplace_back("n_batch");
  935. }
  936. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  937. fields.emplace_back("n_ubatch");
  938. }
  939. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  940. fields.emplace_back("type_k");
  941. }
  942. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  943. fields.emplace_back("type_v");
  944. }
  945. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  946. fields.emplace_back("main_gpu");
  947. }
  948. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  949. fields.emplace_back("split_mode");
  950. }
  951. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  952. fields.emplace_back("no_kv_offload");
  953. }
  954. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  955. fields.emplace_back("flash_attn");
  956. }
  957. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  958. fields.emplace_back("tensor_split");
  959. }
  960. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  961. fields.emplace_back("use_mmap");
  962. }
  963. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  964. fields.emplace_back("embeddings");
  965. }
  966. fields.emplace_back("test");
  967. fields.emplace_back("t/s");
  968. fprintf(fout, "|");
  969. for (const auto & field : fields) {
  970. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  971. }
  972. fprintf(fout, "\n");
  973. fprintf(fout, "|");
  974. for (const auto & field : fields) {
  975. int width = get_field_width(field);
  976. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  977. }
  978. fprintf(fout, "\n");
  979. }
  980. void print_test(const test & t) override {
  981. std::map<std::string, std::string> vmap = t.get_map();
  982. fprintf(fout, "|");
  983. for (const auto & field : fields) {
  984. std::string value;
  985. char buf[128];
  986. if (field == "model") {
  987. value = t.model_type;
  988. } else if (field == "size") {
  989. if (t.model_size < 1024*1024*1024) {
  990. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  991. } else {
  992. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  993. }
  994. value = buf;
  995. } else if (field == "params") {
  996. if (t.model_n_params < 1000*1000*1000) {
  997. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  998. } else {
  999. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1000. }
  1001. value = buf;
  1002. } else if (field == "backend") {
  1003. value = test::get_backend();
  1004. } else if (field == "test") {
  1005. if (t.n_prompt > 0 && t.n_gen == 0) {
  1006. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  1007. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1008. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  1009. } else {
  1010. assert(false);
  1011. exit(1);
  1012. }
  1013. value = buf;
  1014. } else if (field == "t/s") {
  1015. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1016. value = buf;
  1017. } else if (vmap.find(field) != vmap.end()) {
  1018. value = vmap.at(field);
  1019. } else {
  1020. assert(false);
  1021. exit(1);
  1022. }
  1023. int width = get_field_width(field);
  1024. if (field == "t/s") {
  1025. // HACK: the utf-8 character is 2 bytes
  1026. width += 1;
  1027. }
  1028. fprintf(fout, " %*s |", width, value.c_str());
  1029. }
  1030. fprintf(fout, "\n");
  1031. }
  1032. void print_footer() override {
  1033. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1034. }
  1035. };
  1036. struct sql_printer : public printer {
  1037. static std::string get_sql_field_type(const std::string & field) {
  1038. switch (test::get_field_type(field)) {
  1039. case test::STRING:
  1040. return "TEXT";
  1041. case test::BOOL:
  1042. case test::INT:
  1043. return "INTEGER";
  1044. case test::FLOAT:
  1045. return "REAL";
  1046. default:
  1047. assert(false);
  1048. exit(1);
  1049. }
  1050. }
  1051. void print_header(const cmd_params & params) override {
  1052. std::vector<std::string> fields = test::get_fields();
  1053. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1054. for (size_t i = 0; i < fields.size(); i++) {
  1055. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1056. }
  1057. fprintf(fout, ");\n");
  1058. fprintf(fout, "\n");
  1059. (void) params;
  1060. }
  1061. void print_test(const test & t) override {
  1062. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1063. fprintf(fout, "VALUES (");
  1064. std::vector<std::string> values = t.get_values();
  1065. for (size_t i = 0; i < values.size(); i++) {
  1066. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1067. }
  1068. fprintf(fout, ");\n");
  1069. }
  1070. };
  1071. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1072. llama_set_n_threads(ctx, n_threads, n_threads);
  1073. const llama_model * model = llama_get_model(ctx);
  1074. const int32_t n_vocab = llama_n_vocab(model);
  1075. std::vector<llama_token> tokens(n_batch);
  1076. int n_processed = 0;
  1077. while (n_processed < n_prompt) {
  1078. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1079. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1080. for (int i = 1; i < n_tokens; i++) {
  1081. tokens[i] = std::rand() % n_vocab;
  1082. }
  1083. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1084. n_processed += n_tokens;
  1085. }
  1086. llama_synchronize(ctx);
  1087. }
  1088. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1089. llama_set_n_threads(ctx, n_threads, n_threads);
  1090. const llama_model * model = llama_get_model(ctx);
  1091. const int32_t n_vocab = llama_n_vocab(model);
  1092. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1093. for (int i = 0; i < n_gen; i++) {
  1094. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1095. llama_synchronize(ctx);
  1096. token = std::rand() % n_vocab;
  1097. }
  1098. }
  1099. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1100. (void) level;
  1101. (void) text;
  1102. (void) user_data;
  1103. }
  1104. int main(int argc, char ** argv) {
  1105. // try to set locale for unicode characters in markdown
  1106. setlocale(LC_CTYPE, ".UTF-8");
  1107. #if !defined(NDEBUG)
  1108. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1109. #endif
  1110. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1111. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1112. #endif
  1113. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1114. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1115. #endif
  1116. cmd_params params = parse_cmd_params(argc, argv);
  1117. // initialize llama.cpp
  1118. if (!params.verbose) {
  1119. llama_log_set(llama_null_log_callback, NULL);
  1120. }
  1121. llama_backend_init();
  1122. // initialize printer
  1123. std::unique_ptr<printer> p;
  1124. switch (params.output_format) {
  1125. case CSV:
  1126. p.reset(new csv_printer());
  1127. break;
  1128. case JSON:
  1129. p.reset(new json_printer());
  1130. break;
  1131. case MARKDOWN:
  1132. p.reset(new markdown_printer());
  1133. break;
  1134. case SQL:
  1135. p.reset(new sql_printer());
  1136. break;
  1137. default:
  1138. assert(false);
  1139. exit(1);
  1140. }
  1141. p->fout = stdout;
  1142. p->print_header(params);
  1143. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1144. llama_model * lmodel = nullptr;
  1145. const cmd_params_instance * prev_inst = nullptr;
  1146. for (const auto & inst : params_instances) {
  1147. // keep the same model between tests when possible
  1148. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1149. if (lmodel) {
  1150. llama_free_model(lmodel);
  1151. }
  1152. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1153. if (lmodel == NULL) {
  1154. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1155. return 1;
  1156. }
  1157. prev_inst = &inst;
  1158. }
  1159. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1160. if (ctx == NULL) {
  1161. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1162. llama_free_model(lmodel);
  1163. return 1;
  1164. }
  1165. test t(inst, lmodel, ctx);
  1166. llama_kv_cache_clear(ctx);
  1167. // warmup run
  1168. if (t.n_prompt > 0) {
  1169. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1170. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1171. }
  1172. if (t.n_gen > 0) {
  1173. test_gen(ctx, 1, 0, t.n_threads);
  1174. }
  1175. for (int i = 0; i < params.reps; i++) {
  1176. llama_kv_cache_clear(ctx);
  1177. uint64_t t_start = get_time_ns();
  1178. if (t.n_prompt > 0) {
  1179. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1180. }
  1181. if (t.n_gen > 0) {
  1182. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1183. }
  1184. uint64_t t_ns = get_time_ns() - t_start;
  1185. t.samples_ns.push_back(t_ns);
  1186. }
  1187. p->print_test(t);
  1188. llama_print_timings(ctx);
  1189. llama_free(ctx);
  1190. }
  1191. llama_free_model(lmodel);
  1192. p->print_footer();
  1193. llama_backend_free();
  1194. return 0;
  1195. }