| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- #!/usr/bin/env python3
- import argparse
- import json
- import subprocess
- from time import sleep, time
- from typing import Optional
- import datasets
- import logging
- import matplotlib.pyplot as plt
- import numpy as np
- import requests
- from tqdm.contrib.concurrent import thread_map
- logging.basicConfig(level=logging.INFO, format='%(message)s')
- logger = logging.getLogger("server-bench")
- def get_prompts(n_prompts: int) -> list[str]:
- logger.info("Loading MMLU dataset...")
- ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"] # type: ignore
- if n_prompts >= 0:
- ret = ret[:n_prompts]
- return ret
- def get_server(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int) -> dict:
- logger.info("Starting the llama.cpp server...")
- address = f"http://localhost:{port}"
- popen_args: list[str] = [
- path_server,
- "--flash-attn",
- "--n-gpu-layers", str(n_gpu_layers),
- "--parallel", str(parallel),
- "--ctx-size", str(parallel * ctx_size),
- "--model", path_model,
- "--port", str(port),
- "--swa-full", # FIXME performance bad otherwise
- # "--attn-streams",
- ]
- fout = open("bench.log", "w") if path_log is not None else subprocess.DEVNULL
- process = subprocess.Popen(popen_args, stdout=fout, stderr=subprocess.STDOUT)
- n_failures: int = 0
- while True:
- try:
- sleep(1.0)
- exit_code = process.poll()
- if exit_code is not None:
- raise RuntimeError(f"llama.cpp server for {path_model} exited unexpectedly with exit code {exit_code}")
- response = requests.get(f"{address}/health")
- if response.status_code == 200:
- break
- except requests.ConnectionError:
- n_failures += 1
- if n_failures >= 10:
- raise RuntimeError(f"llama.cpp server for {path_model} is not healthy after 10 seconds")
- return {"process": process, "address": address, "fout": fout}
- def get_prompt_length(data: dict) -> int:
- session = data["session"]
- server_address: str = data["server_address"]
- response = session.post(
- f"{server_address}/apply-template",
- json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
- )
- if response.status_code != 200:
- raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
- prompt: str = json.loads(response.text)["prompt"]
- response = session.post(
- f"{server_address}/tokenize",
- json={"content": prompt, "add_special": True}
- )
- if response.status_code != 200:
- raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
- tokens: list[str] = json.loads(response.text)["tokens"]
- return len(tokens)
- def send_prompt(data: dict) -> tuple[float, list[float]]:
- session = data["session"]
- server_address: str = data["server_address"]
- response = session.post(
- f"{server_address}/apply-template",
- json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
- )
- if response.status_code != 200:
- raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
- prompt: str = json.loads(response.text)["prompt"]
- json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
- response = session.post(f"{server_address}/completion", json=json_data, stream=True)
- last_valid_line: str = ""
- token_arrival_times: list[float] = []
- for line in response.iter_lines(decode_unicode=True):
- if not line.startswith("data: "):
- continue
- last_valid_line = line
- token_arrival_times.append(time())
- token_arrival_times = token_arrival_times[:-1]
- if response.status_code != 200:
- raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
- timings: dict = json.loads(last_valid_line[6:])["timings"]
- return (timings["prompt_ms"], token_arrival_times)
- def benchmark(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int, n_prompts: int, n_predict: int):
- num_workers: int = parallel + 1
- prompts: list[str] = get_prompts(n_prompts)
- server: Optional[dict] = None
- session = None
- try:
- server = get_server(path_server, path_model, path_log, port, n_gpu_layers, parallel, ctx_size)
- server_address: str = server["address"]
- adapter = requests.adapters.HTTPAdapter(pool_connections=num_workers, pool_maxsize=num_workers) # type: ignore
- session = requests.Session()
- session.mount("http://", adapter)
- session.mount("https://", adapter)
- data: list[dict] = []
- for i, p in enumerate(prompts):
- data.append({"session": session, "server_address": server_address, "prompt": p, "n_predict": n_predict, "seed": i})
- logger.info("Getting the prompt lengths...")
- prompt_n = [get_prompt_length(d) for d in data]
- logger.info("Starting the benchmark...\n")
- t0 = time()
- results: list[tuple[int, list[float]]] = thread_map(send_prompt, data, max_workers=num_workers, chunksize=1)
- finally:
- if server is not None:
- server["process"].terminate()
- server["process"].wait()
- if session is not None:
- session.close()
- prompt_ms = []
- token_t = []
- depth_sum: int = 0
- for pn, (pms, tat) in zip(prompt_n, results):
- prompt_ms.append(pms)
- token_t += tat
- n_tokens: int = len(tat)
- depth_sum += n_tokens * pn
- depth_sum += n_tokens * (n_tokens + 1) // 2
- prompt_n = np.array(prompt_n, dtype=np.int64)
- prompt_ms = np.array(prompt_ms, dtype=np.float64)
- token_t = np.array(token_t, dtype=np.float64)
- token_t -= t0
- token_t_last = np.max(token_t)
- logger.info("")
- logger.info(f"Benchmark duration: {token_t_last:.2f} s")
- logger.info(f"Request throughput: {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")
- logger.info(f"Total prompt length: {np.sum(prompt_n)} tokens")
- logger.info(f"Average prompt length: {np.mean(prompt_n):.2f} tokens")
- logger.info(f"Average prompt latency: {np.mean(prompt_ms):.2f} ms")
- logger.info(f"Average prompt speed: {np.sum(prompt_n) / (1e-3 * np.sum(prompt_ms)):.2f} tokens/s")
- logger.info(f"Total generated tokens: {token_t.shape[0]}")
- logger.info(f"Average generation depth: {depth_sum / token_t.shape[0]:.2f} tokens")
- logger.info(f"Average total generation speed: {token_t.shape[0] / token_t_last:.2f} tokens/s")
- logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
- plt.figure()
- plt.scatter(prompt_n, prompt_ms, s=10.0, marker=".", alpha=0.25)
- plt.xlim(0, 1.05 * np.max(prompt_n))
- plt.ylim(0, 1.05 * np.max(prompt_ms))
- plt.title(path_model)
- plt.xlabel("Prompt length [tokens]")
- plt.ylabel("Time to first token [ms]")
- plt.savefig("prompt_time.png", dpi=240)
- bin_max = np.ceil(token_t_last) + 1
- plt.figure()
- plt.hist(token_t, np.arange(0, bin_max))
- plt.xlim(0, bin_max + 1)
- plt.title(path_model)
- plt.xlabel("Time [s]")
- plt.ylabel("Num. tokens generated per second")
- plt.savefig("gen_rate.png", dpi=240)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
- "Results are printed to console and visualized as plots (saved to current working directory).")
- parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
- parser.add_argument("--path_model", type=str, required=True, help="Path to the model to use for the benchmark")
- parser.add_argument("--path_log", type=str, default=None, help="Path to the model to use for the benchmark")
- parser.add_argument("--port", type=int, default=18725, help="Port to use for the server during the benchmark")
- parser.add_argument("--n_gpu_layers", type=int, default=999, help="Number of GPU layers for the server")
- parser.add_argument("--parallel", type=int, default=16, help="Number of slots for the server")
- parser.add_argument("--ctx_size", type=int, default=4096, help="Server context size per slot")
- parser.add_argument("--n_prompts", type=int, default=1000, help="Number of prompts to evaluate")
- parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")
- args = parser.parse_args()
- benchmark(**vars(args))
|