test-backend-ops.cpp 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. // static RNG initialization (revisit if n_threads stops being constant)
  19. static const size_t n_threads = std::thread::hardware_concurrency();
  20. static std::vector<std::default_random_engine> generators = []() {
  21. std::random_device rd;
  22. std::vector<std::default_random_engine> vec;
  23. vec.reserve(n_threads);
  24. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  25. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  26. return vec;
  27. }();
  28. size_t size = ggml_nelements(tensor);
  29. std::vector<float> data(size);
  30. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  31. std::uniform_real_distribution<float> distribution(min, max);
  32. for (size_t i = start; i < end; i++) {
  33. data[i] = distribution(generators[ith]);
  34. }
  35. };
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, i, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  47. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  48. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  49. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  50. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
  51. std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
  52. const float * im = imatrix.data();
  53. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  54. // when the imatrix is optional, we want to test both quantization with and without imatrix
  55. // use one of the random numbers to decide
  56. if (data[0] > 0.5f*(min + max)) {
  57. im = nullptr;
  58. }
  59. }
  60. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
  61. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  62. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  63. // This is going to create some weird integers though.
  64. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  65. } else {
  66. GGML_ASSERT(false);
  67. }
  68. }
  69. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  70. std::vector<float> tv;
  71. tv.reserve(ggml_nelements(t));
  72. std::vector<uint8_t> buf(ggml_nbytes(t));
  73. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  74. ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
  75. size_t bs = ggml_blck_size(t->type);
  76. std::vector<float> vq(ggml_blck_size(t->type));
  77. bool quantized = ggml_is_quantized(t->type);
  78. // access elements by index to avoid gaps in views
  79. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  80. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  81. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  82. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  83. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  84. if (t->type == GGML_TYPE_F16) {
  85. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  86. } else if (t->type == GGML_TYPE_BF16) {
  87. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  88. } else if (t->type == GGML_TYPE_F32) {
  89. tv.push_back(*(float *) &buf[i]);
  90. } else if (t->type == GGML_TYPE_I32) {
  91. tv.push_back((float)*(int32_t *) &buf[i]);
  92. } else if (t->type == GGML_TYPE_I16) {
  93. tv.push_back((float)*(int16_t *) &buf[i]);
  94. } else if (t->type == GGML_TYPE_I8) {
  95. tv.push_back((float)*(int8_t *) &buf[i]);
  96. } else if (quantized) {
  97. tt.to_float(&buf[i], vq.data(), bs);
  98. tv.insert(tv.end(), vq.begin(), vq.end());
  99. } else {
  100. GGML_ASSERT(false);
  101. }
  102. }
  103. }
  104. }
  105. }
  106. return tv;
  107. }
  108. /*
  109. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  110. double dot = 0.0;
  111. double mag1 = 0.0;
  112. double mag2 = 0.0;
  113. for (size_t i = 0; i < n; i++) {
  114. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  115. return -1.0f;
  116. }
  117. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  118. continue;
  119. }
  120. dot += v1[i]*v2[i];
  121. mag1 += v1[i]*v1[i];
  122. mag2 += v2[i]*v2[i];
  123. }
  124. return dot/sqrt(mag1*mag2);
  125. }
  126. static float distance(const float * v1, const float * v2, size_t n) {
  127. double d = 0.0;
  128. for (size_t i = 0; i < n; i++) {
  129. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  130. return INFINITY;
  131. }
  132. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  133. continue;
  134. }
  135. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  136. }
  137. return sqrt(d);
  138. }
  139. static float vec_len(const float * v, size_t n) {
  140. double d = 0.0;
  141. for (size_t i = 0; i < n; i++) {
  142. if (std::isnan(v[i])) {
  143. return INFINITY;
  144. }
  145. if (std::isinf(v[i])) {
  146. continue;
  147. }
  148. d += v[i]*v[i];
  149. }
  150. return sqrt(d);
  151. }
  152. */
  153. // normalized mean squared error = mse(a, b) / mse(a, 0)
  154. static double nmse(const float * a, const float * b, size_t n) {
  155. double mse_a_b = 0.0;
  156. double mse_a_0 = 0.0;
  157. for (size_t i = 0; i < n; i++) {
  158. float a_i = a[i];
  159. float b_i = b[i];
  160. mse_a_b += (a_i - b_i) * (a_i - b_i);
  161. mse_a_0 += a_i * a_i;
  162. }
  163. return mse_a_b / mse_a_0;
  164. }
  165. // utils for printing the variables of the test cases
  166. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  167. template<typename T>
  168. static std::string var_to_str(const T & x) {
  169. return std::to_string(x);
  170. }
  171. template<typename T, size_t N>
  172. static std::string var_to_str(const T (&x)[N]) {
  173. std::string s = "[";
  174. for (size_t i = 0; i < N; i++) {
  175. if (i > 0) {
  176. s += ",";
  177. }
  178. s += var_to_str(x[i]);
  179. }
  180. s += "]";
  181. return s;
  182. }
  183. template<typename T, size_t N>
  184. static std::string var_to_str(const std::array<T, N> & x) {
  185. std::string s = "[";
  186. for (size_t i = 0; i < N; i++) {
  187. if (i > 0) {
  188. s += ",";
  189. }
  190. s += var_to_str(x[i]);
  191. }
  192. s += "]";
  193. return s;
  194. }
  195. //static std::string var_to_str(ggml_unary_op unary_op) {
  196. // return ggml_unary_op_name(unary_op);
  197. //}
  198. static std::string var_to_str(ggml_type type) {
  199. return ggml_type_name(type);
  200. }
  201. static std::string var_to_str(ggml_op_pool pool) {
  202. switch (pool) {
  203. case GGML_OP_POOL_AVG: return "avg";
  204. case GGML_OP_POOL_MAX: return "max";
  205. default: return std::to_string(pool);
  206. }
  207. }
  208. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  209. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  210. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  211. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  212. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  213. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  214. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  215. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  216. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  217. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  218. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  219. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  220. #ifdef GGML_USE_SYCL
  221. static bool inline _isinf(float f) {
  222. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  223. }
  224. #else
  225. static bool inline _isinf(float f) { return std::isinf(f); }
  226. #endif
  227. // accept FLT_MAX as infinity
  228. static bool isinf_or_max(float f) {
  229. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  230. }
  231. static bool ggml_is_view_op(enum ggml_op op) {
  232. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  233. }
  234. enum test_mode {
  235. MODE_TEST,
  236. MODE_PERF,
  237. };
  238. struct test_case {
  239. virtual ~test_case() {}
  240. virtual std::string op_desc(ggml_tensor * t) {
  241. return ggml_op_desc(t);
  242. }
  243. virtual std::string vars() {
  244. return "";
  245. }
  246. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  247. virtual double max_nmse_err() {
  248. return 1e-7;
  249. }
  250. virtual void initialize_tensors(ggml_context * ctx) {
  251. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  252. init_tensor_uniform(t);
  253. }
  254. }
  255. virtual size_t op_size(ggml_tensor * t) {
  256. size_t size = ggml_nbytes(t);
  257. // add source tensors
  258. for (int i = 0; i < GGML_MAX_SRC; i++) {
  259. if (t->src[i] != NULL) {
  260. size += ggml_nbytes(t->src[i]);
  261. }
  262. }
  263. return size;
  264. }
  265. ggml_cgraph * gf = nullptr;
  266. static const int sentinel_size = 1024;
  267. test_mode mode;
  268. std::vector<ggml_tensor *> sentinels;
  269. void add_sentinel(ggml_context * ctx) {
  270. if (mode == MODE_PERF) {
  271. return;
  272. }
  273. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  274. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  275. sentinels.push_back(sentinel);
  276. }
  277. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  278. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  279. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  280. add_sentinel(ctx);
  281. return t;
  282. }
  283. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  284. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  285. add_sentinel(ctx);
  286. return t;
  287. }
  288. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  289. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  290. add_sentinel(ctx);
  291. return t;
  292. }
  293. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  294. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  295. add_sentinel(ctx);
  296. return t;
  297. }
  298. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  299. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  300. add_sentinel(ctx);
  301. return t;
  302. }
  303. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  304. mode = MODE_TEST;
  305. ggml_init_params params = {
  306. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  307. /* .mem_base = */ NULL,
  308. /* .no_alloc = */ true,
  309. };
  310. ggml_context * ctx = ggml_init(params);
  311. gf = ggml_new_graph(ctx);
  312. // pre-graph sentinel
  313. add_sentinel(ctx);
  314. ggml_tensor * out = build_graph(ctx);
  315. if (op_name != nullptr && op_desc(out) != op_name) {
  316. //printf(" %s: skipping\n", op_desc(out).c_str());
  317. ggml_free(ctx);
  318. return true;
  319. }
  320. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  321. fflush(stdout);
  322. // check if the backends support the ops
  323. bool supported = true;
  324. for (ggml_backend_t backend : {backend1, backend2}) {
  325. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  326. if (!ggml_backend_supports_op(backend, t)) {
  327. printf("not supported [%s] ", ggml_backend_name(backend));
  328. supported = false;
  329. break;
  330. }
  331. }
  332. }
  333. if (!supported) {
  334. printf("\n");
  335. ggml_free(ctx);
  336. return true;
  337. }
  338. // post-graph sentinel
  339. add_sentinel(ctx);
  340. // allocate
  341. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  342. if (buf == NULL) {
  343. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  344. ggml_free(ctx);
  345. return false;
  346. }
  347. // build graph
  348. ggml_build_forward_expand(gf, out);
  349. // add sentinels as graph nodes so that they are checked in the callback
  350. for (ggml_tensor * sentinel : sentinels) {
  351. gf->nodes[gf->n_nodes++] = sentinel;
  352. }
  353. // randomize tensors
  354. initialize_tensors(ctx);
  355. // compare
  356. struct callback_userdata {
  357. bool ok;
  358. double max_err;
  359. ggml_backend_t backend1;
  360. ggml_backend_t backend2;
  361. };
  362. callback_userdata ud {
  363. true,
  364. max_nmse_err(),
  365. backend1,
  366. backend2
  367. };
  368. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  369. callback_userdata * ud = (callback_userdata *) user_data;
  370. const char * bn1 = ggml_backend_name(ud->backend1);
  371. const char * bn2 = ggml_backend_name(ud->backend2);
  372. if (t1->op == GGML_OP_NONE) {
  373. // sentinels must be unchanged
  374. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  375. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  376. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  377. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  378. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  379. printf("sentinel mismatch: %s ", t1->name);
  380. ud->ok = false;
  381. return true;
  382. }
  383. }
  384. std::vector<float> f1 = tensor_to_float(t1);
  385. std::vector<float> f2 = tensor_to_float(t2);
  386. for (size_t i = 0; i < f1.size(); i++) {
  387. // check for nans
  388. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  389. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  390. ud->ok = false;
  391. return true;
  392. }
  393. // check for infs: both must be inf of the same sign, or both must be finite
  394. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  395. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  396. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  397. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  398. ud->ok = false;
  399. return true;
  400. }
  401. } else {
  402. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  403. ud->ok = false;
  404. return true;
  405. }
  406. }
  407. }
  408. double err = nmse(f1.data(), f2.data(), f1.size());
  409. if (err > ud->max_err) {
  410. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  411. //for (int i = 0; i < (int) f1.size(); i++) {
  412. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  413. //}
  414. //printf("\n");
  415. //exit(1);
  416. ud->ok = false;
  417. }
  418. return true;
  419. GGML_UNUSED(index);
  420. };
  421. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  422. if (!cmp_ok) {
  423. printf("compare failed ");
  424. }
  425. ggml_backend_buffer_free(buf);
  426. ggml_free(ctx);
  427. if (ud.ok && cmp_ok) {
  428. printf("\033[1;32mOK\033[0m\n");
  429. return true;
  430. }
  431. printf("\033[1;31mFAIL\033[0m\n");
  432. return false;
  433. }
  434. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  435. mode = MODE_PERF;
  436. static const size_t graph_nodes = 8192;
  437. ggml_init_params params = {
  438. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  439. /* .mem_base = */ NULL,
  440. /* .no_alloc = */ true,
  441. };
  442. ggml_context * ctx = ggml_init(params);
  443. ggml_tensor * out = build_graph(ctx);
  444. if (op_name != nullptr && op_desc(out) != op_name) {
  445. //printf(" %s: skipping\n", op_desc(out).c_str());
  446. ggml_free(ctx);
  447. return true;
  448. }
  449. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  450. fflush(stdout);
  451. // check if backends support op
  452. if (!ggml_backend_supports_op(backend, out)) {
  453. printf("not supported\n");
  454. ggml_free(ctx);
  455. return true;
  456. }
  457. // align while also leaving some margin for variations in parameters
  458. int align = 20;
  459. int last = (len + align - 1) / align * align;
  460. if (last - len < 5) {
  461. last += align;
  462. }
  463. last = std::max(last, 60);
  464. printf("%*s", last - len, "");
  465. // allocate
  466. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  467. if (buf == NULL) {
  468. printf("failed to allocate tensors\n");
  469. ggml_free(ctx);
  470. return false;
  471. }
  472. // randomize tensors
  473. initialize_tensors(ctx);
  474. // build graph
  475. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  476. ggml_build_forward_expand(gf, out);
  477. // warmup run
  478. ggml_backend_graph_compute(backend, gf);
  479. // duplicate the op
  480. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  481. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  482. for (int i = 1; i < n_runs; i++) {
  483. gf->nodes[gf->n_nodes++] = out;
  484. }
  485. // calculate memory
  486. size_t mem = n_runs * op_size(out);
  487. auto tensor_op_size = [](ggml_tensor * t) {
  488. size_t size = ggml_nbytes(t);
  489. // add source tensors
  490. for (int i = 0; i < GGML_MAX_SRC; i++) {
  491. if (t->src[i] != NULL) {
  492. size += ggml_nbytes(t->src[i]);
  493. }
  494. }
  495. return size;
  496. };
  497. for (int i = 0; i < gf->n_nodes; i++) {
  498. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
  499. continue;
  500. }
  501. mem += tensor_op_size(gf->nodes[i]);
  502. }
  503. // run
  504. ggml_backend_synchronize(backend);
  505. int64_t start_time = ggml_time_us();
  506. ggml_backend_graph_compute(backend, gf);
  507. ggml_backend_synchronize(backend);
  508. int64_t end_time = ggml_time_us();
  509. double time_us = end_time - start_time;
  510. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  511. n_runs,
  512. time_us / n_runs,
  513. op_size(out) / 1024,
  514. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  515. ggml_backend_buffer_free(buf);
  516. ggml_free(ctx);
  517. return true;
  518. }
  519. };
  520. // GGML_OP_UNARY
  521. struct test_unary : public test_case {
  522. const ggml_unary_op op;
  523. const ggml_type type;
  524. const std::array<int64_t, 4> ne;
  525. std::string vars() override {
  526. return VARS_TO_STR2(type, ne);
  527. }
  528. test_unary(ggml_unary_op op,
  529. ggml_type type = GGML_TYPE_F32,
  530. std::array<int64_t, 4> ne = {128, 10, 10, 10})
  531. : op(op), type(type), ne(ne) {}
  532. ggml_tensor * build_graph(ggml_context * ctx) override {
  533. ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
  534. ggml_tensor * out = ggml_unary(ctx, in, op);
  535. return out;
  536. }
  537. void initialize_tensors(ggml_context * ctx) override {
  538. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  539. // test extended range of values to check for NaNs in GELU
  540. init_tensor_uniform(t, -150.f, 150.f);
  541. }
  542. }
  543. };
  544. // GGML_OP_GET_ROWS
  545. struct test_get_rows : public test_case {
  546. const ggml_type type;
  547. const int n; // cols
  548. const int m; // rows
  549. const int r; // rows to get
  550. const int b; // batch size
  551. const bool v; // view (non-contiguous src1)
  552. std::string vars() override {
  553. return VARS_TO_STR6(type, n, m, r, b, v);
  554. }
  555. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  556. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  557. ggml_tensor * build_graph(ggml_context * ctx) override {
  558. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  559. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  560. if (v) {
  561. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  562. }
  563. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  564. return out;
  565. }
  566. void initialize_tensors(ggml_context * ctx) override {
  567. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  568. if (t->type == GGML_TYPE_I32) {
  569. if (ggml_is_view_op(t->op)) { continue; }
  570. // rows
  571. std::vector<int> data(r*b);
  572. for (int i = 0; i < r*b; i++) {
  573. data[i] = rand() % m;
  574. }
  575. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  576. } else {
  577. init_tensor_uniform(t);
  578. }
  579. }
  580. }
  581. };
  582. // GGML_OP_REPEAT
  583. struct test_repeat : public test_case {
  584. const ggml_type type;
  585. const std::array<int64_t, 4> ne;
  586. const std::array<int, 4> nr;
  587. std::string vars() override {
  588. return VARS_TO_STR3(type, ne, nr);
  589. }
  590. size_t op_size(ggml_tensor * t) override {
  591. return ggml_nbytes(t) * 2;
  592. }
  593. test_repeat(ggml_type type = GGML_TYPE_F32,
  594. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  595. std::array<int, 4> nr = {2, 2, 2, 2})
  596. : type(type), ne(ne), nr(nr) {}
  597. ggml_tensor * build_graph(ggml_context * ctx) override {
  598. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  599. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  600. ggml_tensor * out = ggml_repeat(ctx, src, target);
  601. return out;
  602. }
  603. };
  604. // GGML_OP_DUP
  605. struct test_dup : public test_case {
  606. const ggml_type type;
  607. const std::array<int64_t, 4> ne;
  608. const std::array<int64_t, 4> permute;
  609. bool _use_permute;
  610. std::string vars() override {
  611. std::string v = VARS_TO_STR2(type, ne);
  612. if (_use_permute) v += "," + VAR_TO_STR(permute);
  613. return v;
  614. }
  615. test_dup(ggml_type type = GGML_TYPE_F32,
  616. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  617. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  618. : type(type), ne(ne), permute(permute),
  619. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  620. ggml_tensor * build_graph(ggml_context * ctx) override {
  621. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  622. if (_use_permute) {
  623. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  624. }
  625. ggml_tensor * out = ggml_dup(ctx, src);
  626. return out;
  627. }
  628. };
  629. // GGML_OP_CPY
  630. struct test_cpy : public test_case {
  631. const ggml_type type_src;
  632. const ggml_type type_dst;
  633. const std::array<int64_t, 4> ne;
  634. std::string vars() override {
  635. return VARS_TO_STR3(type_src, type_dst, ne);
  636. }
  637. size_t op_size(ggml_tensor * t) override {
  638. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  639. }
  640. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  641. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  642. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  643. ggml_tensor * build_graph(ggml_context * ctx) override {
  644. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  645. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  646. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  647. return out;
  648. }
  649. };
  650. // GGML_OP_CONT
  651. struct test_cont : public test_case {
  652. const ggml_type type;
  653. const std::array<int64_t, 4> ne;
  654. std::string vars() override {
  655. return VARS_TO_STR2(type, ne);
  656. }
  657. test_cont(ggml_type type = GGML_TYPE_F32,
  658. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  659. : type(type), ne(ne) {}
  660. ggml_tensor * build_graph(ggml_context * ctx) override {
  661. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  662. src = ggml_transpose(ctx, src);
  663. ggml_tensor * out = ggml_cont(ctx, src);
  664. return out;
  665. }
  666. };
  667. // GGML_OP_ADD
  668. // GGML_OP_MUL
  669. // GGML_OP_DIV
  670. struct test_bin_bcast : public test_case {
  671. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  672. op_t op;
  673. const ggml_type type;
  674. const std::array<int64_t, 4> ne;
  675. const std::array<int, 4> nr;
  676. std::string vars() override {
  677. return VARS_TO_STR3(type, ne, nr);
  678. }
  679. size_t op_size(ggml_tensor * t) override {
  680. return ggml_nbytes(t) * 3;
  681. }
  682. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  683. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  684. std::array<int, 4> nr = {1, 2, 1, 1})
  685. : op(op), type(type), ne(ne), nr(nr) {}
  686. ggml_tensor * build_graph(ggml_context * ctx) override {
  687. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  688. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  689. ggml_tensor * out = op(ctx, a, b);
  690. return out;
  691. }
  692. void initialize_tensors(ggml_context * ctx) override {
  693. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  694. if (op == ggml_div) {
  695. // avoid division by zero
  696. init_tensor_uniform(t, 1.0f, 2.0f);
  697. } else {
  698. init_tensor_uniform(t);
  699. }
  700. }
  701. }
  702. };
  703. // GGML_OP_SCALE
  704. struct test_scale : public test_case {
  705. const ggml_type type;
  706. const std::array<int64_t, 4> ne;
  707. float scale;
  708. std::string vars() override {
  709. return VARS_TO_STR3(type, ne, scale);
  710. }
  711. test_scale(ggml_type type = GGML_TYPE_F32,
  712. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  713. float scale = 2.0f)
  714. : type(type), ne(ne), scale(scale) {}
  715. ggml_tensor * build_graph(ggml_context * ctx) override {
  716. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  717. ggml_tensor * out = ggml_scale(ctx, a, scale);
  718. return out;
  719. }
  720. };
  721. // GGML_OP_NORM
  722. struct test_norm : public test_case {
  723. const ggml_type type;
  724. const std::array<int64_t, 4> ne;
  725. float eps;
  726. std::string vars() override {
  727. return VARS_TO_STR3(type, ne, eps);
  728. }
  729. test_norm(ggml_type type = GGML_TYPE_F32,
  730. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  731. float eps = 1e-6f)
  732. : type(type), ne(ne), eps(eps) {}
  733. ggml_tensor * build_graph(ggml_context * ctx) override {
  734. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  735. ggml_tensor * out = ggml_norm(ctx, a, eps);
  736. return out;
  737. }
  738. };
  739. // GGML_OP_RMS_NORM
  740. struct test_rms_norm : public test_case {
  741. const ggml_type type;
  742. const std::array<int64_t, 4> ne;
  743. float eps;
  744. std::string vars() override {
  745. return VARS_TO_STR3(type, ne, eps);
  746. }
  747. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  748. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  749. float eps = 1e-6f)
  750. : type(type), ne(ne), eps(eps) {}
  751. ggml_tensor * build_graph(ggml_context * ctx) override {
  752. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  753. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  754. return out;
  755. }
  756. };
  757. // GGML_OP_MUL_MAT
  758. struct test_mul_mat : public test_case {
  759. const ggml_type type_a;
  760. const ggml_type type_b;
  761. const int64_t m;
  762. const int64_t n;
  763. const int64_t k;
  764. const std::array<int64_t, 2> bs; // dims 3 and 4
  765. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  766. std::string vars() override {
  767. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  768. }
  769. double max_nmse_err() override {
  770. return 5e-4;
  771. }
  772. size_t op_size(ggml_tensor * t) override {
  773. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  774. size_t b = ggml_nbytes(t->src[1]) * m;
  775. size_t c = ggml_nbytes(t);
  776. return a + b + c;
  777. GGML_UNUSED(t);
  778. }
  779. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  780. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  781. std::array<int64_t, 2> bs = {10, 10},
  782. std::array<int64_t, 2> nr = {2, 2})
  783. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  784. ggml_tensor * build_graph(ggml_context * ctx) override {
  785. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  786. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  787. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  788. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  789. return out;
  790. }
  791. };
  792. // GGML_OP_MUL_MAT_ID
  793. struct test_mul_mat_id : public test_case {
  794. const ggml_type type_a;
  795. const ggml_type type_b;
  796. const int n_mats;
  797. const int n_used;
  798. const bool b; // brodcast b matrix
  799. const int64_t m;
  800. const int64_t n;
  801. const int64_t k;
  802. std::string vars() override {
  803. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  804. }
  805. double max_nmse_err() override {
  806. return 5e-4;
  807. }
  808. size_t op_size(ggml_tensor * t) override {
  809. size_t a = ggml_nbytes(t->src[2]) * n;
  810. size_t b = ggml_nbytes(t->src[1]) * m;
  811. size_t c = ggml_nbytes(t);
  812. return a + b + c;
  813. GGML_UNUSED(t);
  814. }
  815. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  816. int n_mats = 8, int n_used = 2, bool b = false,
  817. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  818. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  819. m(m), n(n), k(k) {
  820. GGML_ASSERT(n_used <= n_mats);
  821. }
  822. ggml_tensor * build_graph(ggml_context * ctx) override {
  823. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  824. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  825. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  826. if (n_used != n_mats) {
  827. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  828. }
  829. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  830. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  831. return out;
  832. }
  833. void initialize_tensors(ggml_context * ctx) override {
  834. std::random_device rd;
  835. std::default_random_engine rng(rd());
  836. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  837. if (t->type == GGML_TYPE_I32) {
  838. if (ggml_is_view_op(t->op)) { continue; }
  839. // ids
  840. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  841. std::vector<int32_t> data(t->ne[0]);
  842. for (int i = 0; i < t->ne[0]; i++) {
  843. data[i] = i % n_mats;
  844. }
  845. std::shuffle(data.begin(), data.end(), rng);
  846. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  847. }
  848. } else {
  849. init_tensor_uniform(t);
  850. }
  851. }
  852. }
  853. };
  854. // GGML_OP_SQR
  855. struct test_sqr : public test_case {
  856. const ggml_type type;
  857. const std::array<int64_t, 4> ne;
  858. std::string vars() override {
  859. return VARS_TO_STR2(type, ne);
  860. }
  861. test_sqr(ggml_type type = GGML_TYPE_F32,
  862. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  863. : type(type), ne(ne) {}
  864. ggml_tensor * build_graph(ggml_context * ctx) override {
  865. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  866. ggml_tensor * out = ggml_sqr(ctx, a);
  867. return out;
  868. }
  869. };
  870. // GGML_OP_CLAMP
  871. struct test_clamp : public test_case {
  872. const ggml_type type;
  873. const std::array<int64_t, 4> ne;
  874. float min;
  875. float max;
  876. std::string vars() override {
  877. return VARS_TO_STR4(type, ne, min, max);
  878. }
  879. test_clamp(ggml_type type = GGML_TYPE_F32,
  880. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  881. float min = -0.5f, float max = 0.5f)
  882. : type(type), ne(ne), min(min), max(max) {}
  883. ggml_tensor * build_graph(ggml_context * ctx) override {
  884. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  885. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  886. return out;
  887. }
  888. };
  889. // GGML_OP_DIAG_MASK_INF
  890. struct test_diag_mask_inf : public test_case {
  891. const ggml_type type;
  892. const std::array<int64_t, 4> ne;
  893. const int n_past;
  894. std::string vars() override {
  895. return VARS_TO_STR3(type, ne, n_past);
  896. }
  897. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  898. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  899. int n_past = 5)
  900. : type(type), ne(ne), n_past(n_past) {}
  901. ggml_tensor * build_graph(ggml_context * ctx) override {
  902. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  903. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  904. return out;
  905. }
  906. };
  907. // GGML_OP_SOFT_MAX
  908. struct test_soft_max : public test_case {
  909. const ggml_type type;
  910. const std::array<int64_t, 4> ne;
  911. const bool mask;
  912. const float scale;
  913. const float max_bias;
  914. std::string vars() override {
  915. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  916. }
  917. // the 1024 test with bias occasionally fails:
  918. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  919. virtual double max_nmse_err() override {
  920. return 1e-6;
  921. }
  922. test_soft_max(ggml_type type = GGML_TYPE_F32,
  923. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  924. bool mask = false,
  925. float scale = 1.0f,
  926. float max_bias = 0.0f)
  927. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  928. ggml_tensor * build_graph(ggml_context * ctx) override {
  929. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  930. ggml_tensor * mask = nullptr;
  931. if (this->mask) {
  932. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
  933. }
  934. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  935. return out;
  936. }
  937. };
  938. // GGML_OP_ROPE
  939. struct test_rope : public test_case {
  940. const ggml_type type;
  941. const std::array<int64_t, 4> ne;
  942. int n_dims;
  943. int mode;
  944. int n_ctx;
  945. std::string vars() override {
  946. return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
  947. }
  948. test_rope(ggml_type type = GGML_TYPE_F32,
  949. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  950. int n_dims = 10, int mode = 0, int n_ctx = 512)
  951. : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
  952. ggml_tensor * build_graph(ggml_context * ctx) override {
  953. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  954. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  955. ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
  956. return out;
  957. }
  958. void initialize_tensors(ggml_context * ctx) override {
  959. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  960. if (t->type == GGML_TYPE_I32) {
  961. // pos
  962. std::vector<int> data(ne[2]);
  963. for (int i = 0; i < ne[2]; i++) {
  964. data[i] = rand() % n_ctx;
  965. }
  966. ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
  967. } else {
  968. init_tensor_uniform(t);
  969. }
  970. }
  971. }
  972. };
  973. // GGML_OP_POOL2D
  974. struct test_pool2d : public test_case {
  975. enum ggml_op_pool pool_type;
  976. const ggml_type type_input;
  977. const std::array<int64_t, 4> ne_input;
  978. // kernel size
  979. const int k0;
  980. const int k1;
  981. // stride
  982. const int s0;
  983. const int s1;
  984. // padding
  985. const int p0;
  986. const int p1;
  987. std::string vars() override {
  988. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  989. }
  990. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  991. ggml_type type_input = GGML_TYPE_F32,
  992. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  993. int k0 = 3, int k1 = 3,
  994. int s0 = 1, int s1 = 1,
  995. int p0 = 1, int p1 = 1)
  996. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  997. ggml_tensor * build_graph(ggml_context * ctx) override {
  998. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  999. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  1000. return out;
  1001. }
  1002. };
  1003. // GGML_OP_IM2COL
  1004. struct test_im2col : public test_case {
  1005. const ggml_type type_input;
  1006. const ggml_type type_kernel;
  1007. const ggml_type dst_type;
  1008. const std::array<int64_t, 4> ne_input;
  1009. const std::array<int64_t, 4> ne_kernel;
  1010. // stride
  1011. const int s0;
  1012. const int s1;
  1013. // padding
  1014. const int p0;
  1015. const int p1;
  1016. // dilatation
  1017. const int d0;
  1018. const int d1;
  1019. // mode
  1020. const bool is_2D;
  1021. std::string vars() override {
  1022. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  1023. }
  1024. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  1025. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1026. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  1027. int s0 = 1, int s1 = 1,
  1028. int p0 = 1, int p1 = 1,
  1029. int d0 = 1, int d1 = 1,
  1030. bool is_2D = true)
  1031. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  1032. ggml_tensor * build_graph(ggml_context * ctx) override {
  1033. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1034. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  1035. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  1036. return out;
  1037. }
  1038. };
  1039. // GGML_OP_CONCAT
  1040. struct test_concat : public test_case {
  1041. const ggml_type type;
  1042. const std::array<int64_t, 4> ne;
  1043. const int64_t b_ne2;
  1044. std::string vars() override {
  1045. return VARS_TO_STR3(type, ne, b_ne2);
  1046. }
  1047. test_concat(ggml_type type = GGML_TYPE_F32,
  1048. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1049. int64_t b_ne2 = 10)
  1050. : type(type), ne(ne), b_ne2(b_ne2) {}
  1051. ggml_tensor * build_graph(ggml_context * ctx) override {
  1052. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1053. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
  1054. ggml_tensor * out = ggml_concat(ctx, a, b);
  1055. return out;
  1056. }
  1057. };
  1058. // GGML_OP_ARGSORT
  1059. struct test_argsort : public test_case {
  1060. const ggml_type type;
  1061. const std::array<int64_t, 4> ne;
  1062. ggml_sort_order order;
  1063. std::string vars() override {
  1064. return VARS_TO_STR3(type, ne, order);
  1065. }
  1066. test_argsort(ggml_type type = GGML_TYPE_F32,
  1067. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  1068. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  1069. : type(type), ne(ne), order(order) {}
  1070. ggml_tensor * build_graph(ggml_context * ctx) override {
  1071. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1072. ggml_tensor * out = ggml_argsort(ctx, a, order);
  1073. return out;
  1074. }
  1075. void initialize_tensors(ggml_context * ctx) override {
  1076. std::random_device rd;
  1077. std::default_random_engine rng(rd());
  1078. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1079. if (t->type == GGML_TYPE_I32) {
  1080. // indices
  1081. std::vector<int> data(ggml_nelements(t));
  1082. for (int i = 0; i < ggml_nelements(t); i++) {
  1083. data[i] = rand();
  1084. }
  1085. std::shuffle(data.begin(), data.end(), rng);
  1086. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  1087. } else if (t->type == GGML_TYPE_F32) {
  1088. // initialize with unique values to avoid ties
  1089. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1090. std::vector<float> data(t->ne[0]);
  1091. for (int i = 0; i < t->ne[0]; i++) {
  1092. data[i] = i;
  1093. }
  1094. std::shuffle(data.begin(), data.end(), rng);
  1095. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1096. }
  1097. } else {
  1098. GGML_ASSERT(false);
  1099. }
  1100. }
  1101. }
  1102. };
  1103. // GGML_OP_SUM_ROWS
  1104. struct test_sum_rows : public test_case {
  1105. const ggml_type type;
  1106. const std::array<int64_t, 4> ne;
  1107. std::string vars() override {
  1108. return VARS_TO_STR2(type, ne);
  1109. }
  1110. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  1111. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  1112. : type(type), ne(ne) {}
  1113. ggml_tensor * build_graph(ggml_context * ctx) override {
  1114. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1115. ggml_tensor * out = ggml_sum_rows(ctx, a);
  1116. return out;
  1117. }
  1118. };
  1119. // GGML_OP_UPSCALE
  1120. struct test_upscale : public test_case {
  1121. const ggml_type type;
  1122. const std::array<int64_t, 4> ne;
  1123. const int32_t scale_factor;
  1124. std::string vars() override {
  1125. return VARS_TO_STR3(type, ne, scale_factor);
  1126. }
  1127. test_upscale(ggml_type type = GGML_TYPE_F32,
  1128. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  1129. int32_t scale_factor = 2)
  1130. : type(type), ne(ne), scale_factor(scale_factor) {}
  1131. ggml_tensor * build_graph(ggml_context * ctx) override {
  1132. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1133. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  1134. return out;
  1135. }
  1136. };
  1137. // GGML_OP_GROUP_NORM
  1138. struct test_group_norm : public test_case {
  1139. const ggml_type type;
  1140. const std::array<int64_t, 4> ne;
  1141. const int32_t num_groups;
  1142. std::string vars() override {
  1143. return VARS_TO_STR3(type, ne, num_groups);
  1144. }
  1145. test_group_norm(ggml_type type = GGML_TYPE_F32,
  1146. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  1147. int32_t num_groups = 32)
  1148. : type(type), ne(ne), num_groups(num_groups) {}
  1149. ggml_tensor * build_graph(ggml_context * ctx) override {
  1150. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1151. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
  1152. return out;
  1153. }
  1154. };
  1155. // GGML_OP_ACC
  1156. struct test_acc : public test_case {
  1157. const ggml_type type;
  1158. const std::array<int64_t, 4> ne_a;
  1159. const std::array<int64_t, 4> ne_b;
  1160. std::string vars() override {
  1161. return VARS_TO_STR3(type, ne_a, ne_b);
  1162. }
  1163. test_acc(ggml_type type = GGML_TYPE_F32,
  1164. std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
  1165. std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
  1166. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1167. ggml_tensor * build_graph(ggml_context * ctx) override {
  1168. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1169. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1170. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  1171. return out;
  1172. }
  1173. };
  1174. // GGML_OP_PAD
  1175. struct test_pad : public test_case {
  1176. const ggml_type type;
  1177. const std::array<int64_t, 4> ne_a;
  1178. const int pad_0;
  1179. const int pad_1;
  1180. std::string vars() override {
  1181. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  1182. }
  1183. test_pad(ggml_type type = GGML_TYPE_F32,
  1184. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  1185. int pad_0 = 1, int pad_1 = 1)
  1186. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  1187. ggml_tensor * build_graph(ggml_context * ctx) override {
  1188. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1189. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  1190. return out;
  1191. }
  1192. };
  1193. // GGML_OP_ARANGE
  1194. struct test_arange : public test_case {
  1195. const ggml_type type;
  1196. const float start;
  1197. const float stop;
  1198. const float step;
  1199. std::string vars() override {
  1200. return VARS_TO_STR4(type, start, stop, step);
  1201. }
  1202. test_arange(ggml_type type = GGML_TYPE_F32,
  1203. float start = 0.f, float stop = 10.f, float step = 1.f)
  1204. : type(type), start(start), stop(stop), step(step) {}
  1205. ggml_tensor * build_graph(ggml_context * ctx) override {
  1206. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  1207. return out;
  1208. }
  1209. };
  1210. // GGML_OP_TIMESTEP_EMBEDDING
  1211. struct test_timestep_embedding : public test_case {
  1212. const ggml_type type;
  1213. const std::array<int64_t, 4> ne_a;
  1214. const int dim;
  1215. const int max_period;
  1216. std::string vars() override {
  1217. return VARS_TO_STR4(type, ne_a, dim, max_period);
  1218. }
  1219. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  1220. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  1221. int dim = 320, int max_period=10000)
  1222. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  1223. ggml_tensor * build_graph(ggml_context * ctx) override {
  1224. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1225. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  1226. return out;
  1227. }
  1228. };
  1229. // GGML_OP_LEAKY_RELU
  1230. struct test_leaky_relu : public test_case {
  1231. const ggml_type type;
  1232. const std::array<int64_t, 4> ne_a;
  1233. const float negative_slope;
  1234. std::string vars() override {
  1235. return VARS_TO_STR3(type, ne_a, negative_slope);
  1236. }
  1237. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  1238. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1239. float negative_slope = 0.1f)
  1240. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  1241. ggml_tensor * build_graph(ggml_context * ctx) override {
  1242. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1243. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  1244. return out;
  1245. }
  1246. };
  1247. // GGML_OP_FLASH_ATTN_EXT
  1248. struct test_flash_attn_ext : public test_case {
  1249. const int64_t hs; // head size
  1250. const int64_t nh; // num heads
  1251. const int64_t kv; // kv size
  1252. const int64_t nb; // batch size
  1253. const float max_bias; // ALiBi
  1254. std::string vars() override {
  1255. return VARS_TO_STR5(hs, nh, kv, nb, max_bias);
  1256. }
  1257. double max_nmse_err() override {
  1258. return 5e-4;
  1259. }
  1260. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, float max_bias = 0.0f)
  1261. : hs(hs), nh(nh), kv(kv), nb(nb), max_bias(max_bias) {}
  1262. ggml_tensor * build_graph(ggml_context * ctx) override {
  1263. ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
  1264. ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1265. ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1266. ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  1267. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs), max_bias);
  1268. return out;
  1269. }
  1270. };
  1271. enum llm_norm_type {
  1272. LLM_NORM,
  1273. LLM_NORM_RMS,
  1274. };
  1275. struct llama_hparams {
  1276. uint32_t n_vocab;
  1277. uint32_t n_embd;
  1278. uint32_t n_head;
  1279. uint32_t n_head_kv;
  1280. static constexpr uint32_t n_layer = 1;
  1281. uint32_t n_rot;
  1282. uint32_t n_embd_head; // dimension of values (d_v)
  1283. uint32_t n_ff;
  1284. float f_norm_eps;
  1285. float f_norm_rms_eps;
  1286. // cparams
  1287. static constexpr uint32_t n_ctx = 512; // user-specified context size
  1288. static constexpr uint32_t n_orig_ctx = n_ctx;
  1289. // batch
  1290. int32_t n_tokens;
  1291. // llm_build_context
  1292. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  1293. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  1294. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  1295. return n_embd_head * n_head_kv;
  1296. }
  1297. };
  1298. // LLM base class
  1299. struct test_llm : public test_case {
  1300. llama_hparams hp;
  1301. protected:
  1302. test_llm(llama_hparams hp)
  1303. : hp(std::move(hp)) {
  1304. }
  1305. public:
  1306. struct ggml_tensor * llm_build_norm(
  1307. struct ggml_context * ctx,
  1308. struct ggml_tensor * cur,
  1309. struct ggml_tensor * mw,
  1310. struct ggml_tensor * mb,
  1311. llm_norm_type type) {
  1312. switch (type) {
  1313. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  1314. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  1315. }
  1316. cur = ggml_mul(ctx, cur, mw);
  1317. if (mb) {
  1318. cur = ggml_add(ctx, cur, mb);
  1319. }
  1320. return cur;
  1321. }
  1322. void llm_build_kv_store(
  1323. struct ggml_context * ctx,
  1324. struct ggml_tensor * k_l,
  1325. struct ggml_tensor * v_l,
  1326. struct ggml_tensor * k_cur,
  1327. struct ggml_tensor * v_cur) {
  1328. // compute the transposed [n_tokens, n_embd] V matrix
  1329. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  1330. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  1331. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  1332. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  1333. ( hp.n_ctx)*ggml_element_size(v_l),
  1334. (hp.kv_head)*ggml_element_size(v_l));
  1335. // important: storing RoPE-ed version of K in the KV cache!
  1336. ggml_cpy(ctx, k_cur, k_cache_view);
  1337. ggml_cpy(ctx, v_cur_t, v_cache_view);
  1338. }
  1339. struct ggml_tensor * llm_build_kqv(
  1340. struct ggml_context * ctx,
  1341. struct ggml_tensor * k_l,
  1342. struct ggml_tensor * v_l,
  1343. struct ggml_tensor * q_cur,
  1344. struct ggml_tensor * kq_mask,
  1345. float kq_scale) {
  1346. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  1347. struct ggml_tensor * k =
  1348. ggml_view_3d(ctx, k_l,
  1349. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  1350. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  1351. ggml_row_size(k_l->type, hp.n_embd_head),
  1352. 0);
  1353. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  1354. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  1355. // split cached v into n_head heads
  1356. struct ggml_tensor * v =
  1357. ggml_view_3d(ctx, v_l,
  1358. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  1359. ggml_element_size(v_l)*hp.n_ctx,
  1360. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  1361. 0);
  1362. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  1363. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  1364. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  1365. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1366. cur = ggml_mul_mat(ctx, wo, cur);
  1367. return cur;
  1368. }
  1369. void initialize_tensors(ggml_context * ctx) override {
  1370. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1371. if (t->type == GGML_TYPE_I32) {
  1372. // pos
  1373. std::vector<int> data(hp.n_tokens);
  1374. for (int i = 0; i < hp.n_tokens; i++) {
  1375. data[i] = rand() % hp.n_ctx;
  1376. }
  1377. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  1378. } else {
  1379. init_tensor_uniform(t);
  1380. }
  1381. }
  1382. }
  1383. };
  1384. // Llama
  1385. struct test_llama : public test_llm {
  1386. static constexpr float freq_base = 10000.0f;
  1387. static constexpr float freq_scale = 1.0f;
  1388. static constexpr float ext_factor = 0.0f;
  1389. static constexpr float attn_factor = 1.0f;
  1390. static constexpr float beta_fast = 32.0f;
  1391. static constexpr float beta_slow = 1.0f;
  1392. std::string op_desc(ggml_tensor * t) override {
  1393. GGML_UNUSED(t);
  1394. return "LLAMA";
  1395. }
  1396. std::string vars() override {
  1397. auto n_tokens = hp.n_tokens;
  1398. return VARS_TO_STR1(n_tokens);
  1399. }
  1400. double max_nmse_err() override {
  1401. return 2e-3;
  1402. }
  1403. test_llama(int n_tokens = 1)
  1404. : test_llm({
  1405. /*n_vocab =*/ 32000,
  1406. /*n_embd =*/ 3200,
  1407. /*n_head =*/ 32,
  1408. /*n_head_kv =*/ 32,
  1409. /*n_rot =*/ 100,
  1410. /*n_embd_head =*/ 100,
  1411. /*n_ff =*/ 8640,
  1412. /*f_norm_eps =*/ 0.f,
  1413. /*f_norm_rms_eps =*/ 1e-5f,
  1414. /*n_tokens =*/ n_tokens,
  1415. }) {
  1416. }
  1417. ggml_tensor * build_graph(ggml_context * ctx) override {
  1418. struct ggml_tensor * cur;
  1419. struct ggml_tensor * inpL;
  1420. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1421. // inp_pos - contains the positions
  1422. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1423. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1424. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1425. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1426. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1427. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1428. struct ggml_tensor * inpSA = inpL;
  1429. // norm
  1430. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1431. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  1432. // self-attention
  1433. {
  1434. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1435. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1436. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1437. // compute Q and K and RoPE them
  1438. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  1439. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  1440. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  1441. Qcur = ggml_rope_custom(
  1442. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
  1443. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1444. ext_factor, attn_factor, beta_fast, beta_slow
  1445. );
  1446. Kcur = ggml_rope_custom(
  1447. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
  1448. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1449. ext_factor, attn_factor, beta_fast, beta_slow
  1450. );
  1451. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1452. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1453. }
  1454. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  1455. // feed-forward network
  1456. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1457. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  1458. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1459. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1460. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1461. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  1462. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  1463. cur = ggml_silu(ctx, cur);
  1464. cur = ggml_mul(ctx, cur, tmp);
  1465. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1466. cur = ggml_add(ctx, cur, ffn_inp);
  1467. // input for next layer
  1468. inpL = cur;
  1469. }
  1470. cur = inpL;
  1471. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1472. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  1473. // lm_head
  1474. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  1475. cur = ggml_mul_mat(ctx, output, cur);
  1476. return cur;
  1477. }
  1478. };
  1479. // Falcon
  1480. struct test_falcon : public test_llm {
  1481. static constexpr float freq_base = 10000.0f;
  1482. static constexpr float freq_scale = 1.0f;
  1483. static constexpr float ext_factor = 0.0f;
  1484. static constexpr float attn_factor = 1.0f;
  1485. static constexpr float beta_fast = 32.0f;
  1486. static constexpr float beta_slow = 1.0f;
  1487. std::string op_desc(ggml_tensor * t) override {
  1488. GGML_UNUSED(t);
  1489. return "FALCON";
  1490. }
  1491. std::string vars() override {
  1492. auto n_tokens = hp.n_tokens;
  1493. return VARS_TO_STR1(n_tokens);
  1494. }
  1495. double max_nmse_err() override {
  1496. return 2e-3;
  1497. }
  1498. test_falcon(int n_tokens = 1)
  1499. : test_llm({
  1500. /*n_vocab =*/ 32000,
  1501. /*n_embd =*/ 3200,
  1502. /*n_head =*/ 50,
  1503. /*n_head_kv =*/ 1,
  1504. /*n_rot =*/ 64,
  1505. /*n_embd_head =*/ 64,
  1506. /*n_ff =*/ 8640,
  1507. /*f_norm_eps =*/ 1e-5f,
  1508. /*f_norm_rms_eps =*/ 0.f,
  1509. /*n_tokens =*/ n_tokens,
  1510. }) {
  1511. }
  1512. ggml_tensor * build_graph(ggml_context * ctx) override {
  1513. struct ggml_tensor * cur;
  1514. struct ggml_tensor * inpL;
  1515. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1516. // inp_pos - contains the positions
  1517. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1518. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1519. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1520. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1521. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1522. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1523. // norm
  1524. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1525. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1526. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  1527. // self-attention
  1528. {
  1529. cur = attn_norm;
  1530. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  1531. cur = ggml_mul_mat(ctx, wqkv, cur);
  1532. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  1533. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  1534. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  1535. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  1536. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  1537. // using mode = 2 for neox mode
  1538. Qcur = ggml_rope_custom(
  1539. ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1540. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1541. );
  1542. Kcur = ggml_rope_custom(
  1543. ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1544. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1545. );
  1546. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1547. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1548. }
  1549. struct ggml_tensor * ffn_inp = cur;
  1550. // feed forward
  1551. {
  1552. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1553. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1554. cur = attn_norm;
  1555. cur = ggml_mul_mat(ctx, ffn_up, cur);
  1556. cur = ggml_gelu(ctx, cur);
  1557. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1558. }
  1559. cur = ggml_add(ctx, cur, ffn_inp);
  1560. cur = ggml_add(ctx, cur, inpL);
  1561. // input for next layer
  1562. inpL = cur;
  1563. }
  1564. cur = inpL;
  1565. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1566. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1567. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  1568. // lm_head
  1569. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  1570. cur = ggml_mul_mat(ctx, output, cur);
  1571. return cur;
  1572. }
  1573. };
  1574. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  1575. std::vector<std::unique_ptr<test_case>> test_cases;
  1576. std::default_random_engine rng(0);
  1577. const ggml_type all_types[] = {
  1578. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  1579. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  1580. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1581. GGML_TYPE_Q8_0,
  1582. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1583. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  1584. GGML_TYPE_Q6_K,
  1585. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1586. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1587. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1588. };
  1589. const ggml_type base_types[] = {
  1590. GGML_TYPE_F32, GGML_TYPE_F16,
  1591. GGML_TYPE_Q4_0,
  1592. GGML_TYPE_Q4_K,
  1593. GGML_TYPE_IQ2_XXS
  1594. };
  1595. const ggml_type other_types[] = {
  1596. GGML_TYPE_Q4_1,
  1597. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1598. GGML_TYPE_Q8_0,
  1599. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1600. GGML_TYPE_Q5_K,
  1601. GGML_TYPE_Q6_K,
  1602. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1603. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1604. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1605. };
  1606. // unary ops
  1607. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  1608. test_cases.emplace_back(new test_unary((ggml_unary_op) op));
  1609. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
  1610. }
  1611. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  1612. for (ggml_type type : all_types) {
  1613. for (int b : {1, 7}) {
  1614. for (bool v : {false, true}) {
  1615. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  1616. }
  1617. }
  1618. }
  1619. for (int b : {1, 7}) {
  1620. for (bool v : {false, true}) {
  1621. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  1622. }
  1623. }
  1624. for (ggml_type type_input : {GGML_TYPE_F32}) {
  1625. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  1626. for (int k0 : {1, 3}) {
  1627. for (int k1 : {1, 3}) {
  1628. for (int s0 : {1, 2}) {
  1629. for (int s1 : {1, 2}) {
  1630. for (int p0 : {0, 1}) {
  1631. for (int p1 : {0, 1}) {
  1632. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  1633. }
  1634. }
  1635. }
  1636. }
  1637. }
  1638. }
  1639. }
  1640. }
  1641. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  1642. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  1643. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  1644. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1645. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  1646. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  1647. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1648. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1649. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1650. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  1651. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  1652. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  1653. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  1654. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  1655. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  1656. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  1657. for (ggml_type type_dst : all_types) {
  1658. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  1659. }
  1660. }
  1661. test_cases.emplace_back(new test_cont());
  1662. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  1663. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  1664. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  1665. }
  1666. };
  1667. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  1668. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  1669. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  1670. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  1671. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  1672. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  1673. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  1674. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  1675. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  1676. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  1677. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  1678. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  1679. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  1680. // stable diffusion
  1681. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  1682. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  1683. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  1684. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  1685. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  1686. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  1687. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  1688. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  1689. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  1690. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  1691. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  1692. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  1693. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  1694. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  1695. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  1696. test_cases.emplace_back(new test_scale());
  1697. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  1698. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1699. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1700. }
  1701. for (ggml_type type_a : base_types) {
  1702. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1703. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1704. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1705. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1706. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1707. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1708. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1709. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1710. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1711. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1712. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1713. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1714. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1715. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1716. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1717. }
  1718. }
  1719. for (ggml_type type_a : other_types) {
  1720. for (ggml_type type_b : {GGML_TYPE_F32}) {
  1721. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1722. }
  1723. }
  1724. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  1725. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  1726. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  1727. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  1728. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  1729. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  1730. for (ggml_type type_a : base_types) {
  1731. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1732. for (int n_mats : {4, 8}) {
  1733. for (int n_used : {1, 2, 4}) {
  1734. for (bool b : {false, true}) {
  1735. for (int n : {1, 32}) {
  1736. int m = 512;
  1737. int k = 256;
  1738. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1739. }
  1740. }
  1741. }
  1742. }
  1743. }
  1744. }
  1745. for (ggml_type type_a : other_types) {
  1746. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1747. for (int n_mats : {4}) {
  1748. for (int n_used : {2}) {
  1749. for (bool b : {false}) {
  1750. for (int n : {1}) {
  1751. int m = 512;
  1752. int k = 256;
  1753. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1754. }
  1755. }
  1756. }
  1757. }
  1758. }
  1759. }
  1760. test_cases.emplace_back(new test_sqr());
  1761. test_cases.emplace_back(new test_clamp());
  1762. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1763. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1764. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1765. #if 0
  1766. std::uniform_int_distribution<> dist_ne1(1, 50);
  1767. int exponent = 1;
  1768. while (exponent < (1 << 17)) {
  1769. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  1770. for (int n = 0; n < 10; ++n) {
  1771. int64_t ne0 = dist_ne0(rng);
  1772. int64_t ne1 = dist_ne1(rng);
  1773. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  1774. }
  1775. exponent <<= 1;
  1776. }
  1777. #endif
  1778. for (bool mask : {false, true}) {
  1779. for (float max_bias : {0.0f, 8.0f}) {
  1780. if (!mask && max_bias > 0.0f) continue;
  1781. for (float scale : {1.0f, 0.1f}) {
  1782. for (int64_t ne0 : {16, 1024}) {
  1783. for (int64_t ne1 : {16, 1024}) {
  1784. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  1785. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  1786. }
  1787. }
  1788. }
  1789. }
  1790. }
  1791. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  1792. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  1793. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  1794. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1795. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
  1796. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
  1797. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
  1798. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
  1799. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1800. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1801. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1802. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1803. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
  1804. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
  1805. }
  1806. test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
  1807. test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
  1808. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  1809. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  1810. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1811. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  1812. }
  1813. test_cases.emplace_back(new test_sum_rows());
  1814. test_cases.emplace_back(new test_upscale());
  1815. test_cases.emplace_back(new test_group_norm());
  1816. test_cases.emplace_back(new test_acc());
  1817. test_cases.emplace_back(new test_pad());
  1818. test_cases.emplace_back(new test_arange());
  1819. test_cases.emplace_back(new test_timestep_embedding());
  1820. test_cases.emplace_back(new test_leaky_relu());
  1821. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1822. for (int hs : { 64, 128, }) { // other head sizes not implemented
  1823. #else
  1824. for (int hs : { 64, 80, 128, 256, }) {
  1825. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1826. for (float max_bias : {0.0f, 8.0f}) {
  1827. for (int nh : { 32, }) {
  1828. for (int kv : { 512, 1024, }) {
  1829. for (int nb : { 1, 2, 4, 8, }) {
  1830. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, max_bias));
  1831. }
  1832. }
  1833. }
  1834. }
  1835. }
  1836. // these tests are disabled to save execution time, but they can be handy for debugging
  1837. #if 0
  1838. test_cases.emplace_back(new test_llama(1));
  1839. test_cases.emplace_back(new test_llama(2));
  1840. test_cases.emplace_back(new test_falcon(1));
  1841. test_cases.emplace_back(new test_falcon(2));
  1842. #endif
  1843. // run tests
  1844. if (mode == MODE_TEST) {
  1845. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1846. size_t n_ok = 0;
  1847. for (auto & test : test_cases) {
  1848. if (test->eval(backend, backend_cpu, op_name)) {
  1849. n_ok++;
  1850. }
  1851. }
  1852. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1853. ggml_backend_free(backend_cpu);
  1854. return n_ok == test_cases.size();
  1855. }
  1856. if (mode == MODE_PERF) {
  1857. for (auto & test : test_cases) {
  1858. test->eval_perf(backend, op_name);
  1859. }
  1860. return true;
  1861. }
  1862. GGML_ASSERT(false);
  1863. return false;
  1864. }
  1865. static void usage(char ** argv) {
  1866. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  1867. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  1868. printf(" op names are as given by ggml_op_desc()\n");
  1869. }
  1870. int main(int argc, char ** argv) {
  1871. test_mode mode = MODE_TEST;
  1872. const char * op_name_filter = NULL;
  1873. const char * backend_filter = NULL;
  1874. for (int i = 1; i < argc; i++) {
  1875. if (strcmp(argv[i], "test") == 0) {
  1876. mode = MODE_TEST;
  1877. } else if (strcmp(argv[i], "perf") == 0) {
  1878. mode = MODE_PERF;
  1879. } else if (strcmp(argv[i], "-o") == 0) {
  1880. if (i + 1 < argc) {
  1881. op_name_filter = argv[++i];
  1882. } else {
  1883. usage(argv);
  1884. return 1;
  1885. }
  1886. } else if (strcmp(argv[i], "-b") == 0) {
  1887. if (i + 1 < argc) {
  1888. backend_filter = argv[++i];
  1889. } else {
  1890. usage(argv);
  1891. return 1;
  1892. }
  1893. } else {
  1894. usage(argv);
  1895. return 1;
  1896. }
  1897. }
  1898. // enumerate backends
  1899. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  1900. size_t n_ok = 0;
  1901. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  1902. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  1903. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
  1904. printf(" Skipping\n");
  1905. n_ok++;
  1906. continue;
  1907. }
  1908. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  1909. GGML_ASSERT(backend != NULL);
  1910. if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
  1911. printf(" Skipping CPU backend\n");
  1912. ggml_backend_free(backend);
  1913. n_ok++;
  1914. continue;
  1915. }
  1916. printf(" Backend name: %s\n", ggml_backend_name(backend));
  1917. bool ok = test_backend(backend, mode, op_name_filter);
  1918. printf(" Backend %s: ", ggml_backend_name(backend));
  1919. if (ok) {
  1920. printf("\033[1;32mOK\033[0m\n");
  1921. n_ok++;
  1922. } else {
  1923. printf("\033[1;31mFAIL\033[0m\n");
  1924. }
  1925. printf("\n");
  1926. ggml_backend_free(backend);
  1927. }
  1928. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  1929. if (n_ok != ggml_backend_reg_get_count()) {
  1930. printf("\033[1;31mFAIL\033[0m\n");
  1931. return 1;
  1932. }
  1933. ggml_quantize_free();
  1934. printf("\033[1;32mOK\033[0m\n");
  1935. return 0;
  1936. }